Off-campus WSU users: To download campus access dissertations, please use the following link to log into our proxy server with your WSU access ID and password, then click the "Off-campus Download" button below.

Non-WSU users: Please talk to your librarian about requesting this thesis through interlibrary loan.

Access Type

WSU Access

Date of Award

January 2017

Degree Type

Thesis

Degree Name

M.S.

Department

Industrial and Manufacturing Engineering

First Advisor

Kyoung-Yun Kim

Abstract

For healthcare providers, using Reusable Medical Equipment (RME) has a strength in the cost-efficiency since it can be reused and reprocessed to multiple patients. Hence, estimating the maintenance (i.e., repair) cost during RME lifecycle has been a topic in healthcare domain. However, most of the existing research regarding RME has focused on the prediction without considering the domain knowledge of the cost in healthcare. This aim of the research is to propose the method of knowledge extension based on the post-mining (i.e., Association Rule Mining) interpreted by the domain knowledge (i.e., RME ontology and statistical cost domain knowledge) for RME lifecycle management. This contains finding the frequent rule patterns from the tremendous volumes of decision rules (i.e., Random Forest Rules) of the non-profit hospital’s legacy database, which can make the pruned frameworks of each rule pattern linked and interpreted to the proper domain knowledge. The interpreted rule patterns make healthcare providers utilize them in the RME lifecycle management decision making.

Off-campus Download

Share

COinS