Access Type

Open Access Thesis

Date of Award

January 2017

Degree Type

Thesis

Degree Name

M.S.

Department

Materials Engineering

First Advisor

Guangzhao Mao

Abstract

This work discusses the experimental and theoretical methods used to control the morphology of nanocrystals. The hypothesis of the thermodynamic/kinetic control of the morphology was verified. We applied the electrocrystallization to make K(def)TCP nanocrystals and we tuned the electrochemical parameters to determine their influence on the nanocrystals morphologies. The characterization was mainly performed with AFM and FE-SEM. We presented in this work the possibility to control the morphology of K(def)TCP using the electrochemical parameters. The obtained shapes ranged from nanorods to rhombohedral shape, which is reported for the first time. The observed growth behavior was modeled and simulated with a method based on Monte-Carlo techniques. The simulation results show a qualitative match with the experimental findings. This work contributes to the understanding of the crystal growth behavior and the thermodynamic/kinetic morphology transition using electrocrystallization.

Share

COinS