Off-campus WSU users: To download campus access dissertations, please use the following link to log into our proxy server with your WSU access ID and password, then click the "Off-campus Download" button below.

Non-WSU users: Please talk to your librarian about requesting this dissertation through interlibrary loan.

Access Type

WSU Access

Date of Award

January 2025

Degree Type

Dissertation

Degree Name

Ph.D.

Department

Civil and Environmental Engineering

First Advisor

Yaoxian Huang

Abstract

Global bottom-up anthropogenic emission inventories show substantial spatial and temporal differences of short-lived pollutant emissions, which results in uncertainties in terms of air quality and human health impacts. In this study, we compare the emissions of trace gases and aerosols for the year 2015 from three different global emission inventories, the Community Emissions Data System (CEDS), the Copernicus Atmosphere Monitoring Service Global Anthropogenic Emissions (CAMS-GLOB-ANT), and Evaluating the Climate and Air Quality Impacts of Short-Lived Pollutants version 6b (ECLIPSEv6b). We then employed the Community Atmosphere Model with chemistry version 6.0 within the Community Earth System Model version 2.2.0 to quantify the atmospheric chemistry and air quality impacts from the above three anthropogenic emission inventories, with a focus on PM2.5 (particulate matter with aerodynamic diameters equal or less than 2.5 micrometers) and ozone (O3). Our results indicate that differences between emission inventories are largest for black carbon, organic carbon, ammonia and sulfur dioxide, in terms of global annual total emissions. These differences in emissions across CEDS, CAMS, and ECLIPSEv6b lead to substantial variations in global annual totals and spatial distribution patterns. This study shows that the global annual total PM2.5-induced premature mortality is three times higher than that from O3 mortality, indicating that PM2.5 is the primary contributor compared with O3. An inter-comparison of global human health impacts from CEDS, ECLIPSEv6b and CAMS indicates that 80% (CEDS), 81.2% (CAMS), and 77.6% (ECLIPSEv6b) of premature deaths due to anthropogenic activities are associated with Asia and Africa continents.

Off-campus Download

Share

COinS