Document Type



Pseudomonas aeruginosa is a virulent pathogen that has become more threatening with the emergence of multidrug resistance. The aspartate transcarbamoylase (ATCase) of this organism is a dodecamer comprised of six 37 kDa catalytic chains and six 45 kDa chains homologous to dihydroorotase (pDHO). The pDHO chain is inactive but is necessary for ATCase activity. A stoichiometric mixture of the subunits associates into a dodecamer with full ATCase activity. Unlike other known ATCases, the P. aeruginosa catalytic chain does not spontaneously assemble into a trimer. Chemical-crosslinking and size-exclusion chro- matography showed that P. aeruginosa ATCase is monomeric which accounts for its lack of catalytic activity since the active site is a composite comprised of residues from adjacent monomers in the trimer. Circular dichroism spectroscopy indicated that the ATCase chain adopts a structure that contains secondary structure elements although neither the ATCase nor the pDHO subunits are very stable as determined by a thermal shift assay. Formation of the complex increases the melting temperature by about 30 ̊C. The ATCase is strongly inhibited by all nucleotide di- and triphosphates and exhibits extreme cooperativity. Previous studies suggested that the regulatory site is located in an 11-residue extension of the amino end of the catalytic chain. However, deletion of the extensions did not affect catalytic activity, nucleotide inhibition or the assembly of the dodecamer. Nucleotides destabilized the dode- camer which probably accounts for the inhibition and apparent cooperativity of the substrate saturation curves. Contrary to previous interpretations, these results suggest that P. aerugi- nosa ATCase is not allosterically regulated by nucleotides.


Biochemistry | Molecular Biology


Copyright: © 2020 Patel et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.