Document Type
Article
Abstract
Feedbacks among vegetation dynamics, pedogenesis, and topographic development affect the “critical zone”—the living filter for Earth’s hydrologic, biogeochemical, and rock/sediment cycles. Assessing the importance of such feedbacks, which may be particularly pronounced in water-limited systems, remains a fundamental interdisciplinary challenge. The sky islands of southern Arizona offer an unusually well-defined natural experiment involving such feedbacks because mean annual precipitation varies by a factor of five over distances of approximately 10 km in areas of similar rock type (granite) and tectonic history. Here we compile high-resolution, spatially distributed data for Effective Energy and Mass Transfer (EEMT: the energy available to drive bedrock weathering), above-ground biomass, soil thickness, hillslope-scale topographic relief, and drainage density in two such mountain ranges (Santa Catalina: SCM; Pinaleño: PM). Strong correlations exist among vegetation-soil-topography variables, which vary nonlinearly with elevation, such that warm, dry, low-elevation portions of these ranges are characterized by relatively low above-ground biomass, thin soils, minimal soil organic matter, steep slopes, and high drainage densities; conversely, cooler, wetter, higher elevations have systematically higher biomass, thicker organic-rich soils, gentler slopes, and lower drainage densities. To test if eco-pedo-geomorphic feedbacks drive this pattern, we developed a landscape evolution model that couples pedogenesis and topographic development over geologic time scales, with rates explicitly dependent on vegetation density. The model self-organizes into states similar to those observed in SCM and PM. Our results highlight the potential importance of eco-pedo-geomorphic feedbacks, mediated by soil thickness, in water-limited systems.
Disciplines
Environmental Sciences
Recommended Citation
Pelletier, J. D., G. A. Barron-Gafford, D. D. Breshears, P. D. Brooks, J. Chorover, M. Durcik, C. J. Harman, T. E. Huxman, K. A. Lohse, R. Lybrand, T. Meixner, J. C. McIntosh, S. A. Papuga, C. Rasmussen, M. Schaap, T. L. Swetnam, and P. A. Troch (2013), Coevolution of nonlinear trends in vegetation, soils, and topography with elevation and slope aspect: A case study in the sky islands of southern Arizona, J. Geophys. Res. Earth Surf., 118, 741–758, doi:10.1002/jgrf.20046.
Comments
©2013. American Geophysical Union. All Rights Reserved.