Document Type



X-ray absorption spectroscopy (XAS) has emerged as one of the premier tools for investigating the structure and dynamic properties of metals in cells and in metal containing biomolecules. Utilizing the high flux and broad energy range of X-rays supplied by synchrotron light sources, one can selectively excite core electronic transitions in each metal. Spectroscopic signals from these electronic transitions can be used to dissect the chemical architecture of metals in cells, in cellular components and in biomolecules at varying degrees of structural resolution. With the development of ever-brighter X-ray sources, X-ray methods have grown into applications that can be utilized to provide both a cellular image of relative distribution of metals throughout the cell as well as a high-resolution picture of the structure of the metal. As these techniques continue to grow in their capabilities and ease of use, so to does the demand for their application by chemists and biochemists interested in studying the structure and dynamics of metals in cells, in cellular organelles and in metalloproteins.


Biochemistry | Chemistry | Molecular Biology


This is the author's post-print version, previously appearing in Methods in Cell Biology. 2008, v. 90 p. 199-216.