Document Type



Year-round human habitation of environments with highly seasonal regimes of ultraviolet B radiation (UVB) depended on adaptive complexes of biological and cultural traits to ensure adequacy of vitamin D. Perturbations of such adaptive complexes resulting from changes in the physical environment, human behavior and culture, or both have had unexpected and untoward consequences for health. Scotland is an excellent case study of the changing nature of human biocultural adaptation to low-UVB environments. Occupation of Scotland after the last Pleistocene glaciation event about 14,000 YBP was made possible by maximally depigmented skin, which facilitated cutaneous biosynthesis of vitamin D3, and by a diet that emphasized foods rich in vitamin D. Changes in human subsistence and diet began with the introduction of agriculture and grazing about 5,000 YBP and accelerated greatly in the last 200 years through industrialization and urbanization. The resulting changes in domiciles, patterns of daily activity and behavior, and diet have led to reduced exposure to UVB and reduced consumption of vitamin D–rich foods. This has perturbed the “vitamin D compromise,” an adaptive complex established in Scotland during the Mesolithic and Neolithic. We describe the UVB environment of Scotland from remotely sensed data and combine these data with information from the archaeological record to describe the vitamin D compromise in Scotland. Changes in human exposure to UVB and vitamin D consumption, which occurred as the result of urbanization and the dietary shift away from the consumption of oily fish, are traced. Vitamin D deficiency contributes to increased disease prevalence in Scotland, including that of the autoimmune disease multiple sclerosis, a debilitating neurodegenerative disease caused by demyelination of the central nervous system. These conditions have created an “imperfect storm” of poor health that should command the attention of public health experts and policy makers.