Access Type

Open Access Dissertation

Date of Award

January 2013

Degree Type


Degree Name



Electrical and Computer Engineering

First Advisor

Abhilash Pandya


The art of teaching laparoscopic or robotic surgery currently has a primary reliance on an expert surgeon tutoring a student during a live surgery. During these operations, surgeons are viewing the inside of the body through a manipulatable camera. Due to the viewpoint translation and narrow field of view, these techniques have a substantial learning curve in order to gain the mastery necessary to operate safely. In addition to moving and rotating the camera, the surgeon must also manipulate tools inserted into the body. These tools are only visible on camera, and pass through a pivot point on the body that, in non-robotic cases, reverses their directions of motion when compared to the surgeon's hands. These difficulties spurred on this dissertation. The main hypothesis of this research is that advanced augmented reality techniques can improve telementoring for use between expert surgeons and surgical students. In addition, it can provide a better method of communication between surgeon and camera operator.

This research has two specific aims:

(1) Create a head-mounted direction of focus indicator to provide non-verbal assistance for camera operation. A system was created to track where the surgeon is looking and provides augmented reality cues to the camera operator explaining the camera desires of the surgeon.

(2) Create a hardware / software environment for the tracking of a camera and an object, allowing for the display of registered pre-operative imaging that can be manipulated during the procedure.

A set of augmented reality cues describing the translation, zoom, and roll of a laparoscopic camera were developed for Aim 1. An experiment was run to determine whether using augmented reality cues or verbal cues was faster and more efficient at acquiring targets on camera at a specific location, zoom level, and roll angle. The study found that in all instances, the augmented reality cues resulted in faster completion of the task with better economy of movement than with the verbal cues.

A large number of environmentally registered augmented reality telestration and visualization features were added to a hardware / software platform for Aim 2. The implemented manipulation of pre-operative imaging and the ability to provide different types of registered annotation in the working environment has provided numerous examples of improved utility in telementoring systems.

The results of this work provide potential improvements to the utilization of pre-operative imaging in the operating room, to the effectiveness of telementoring as a surgical teaching tool, and to the effective communication between the surgeon and the camera operator in laparoscopic surgery.