Access Type

Open Access Dissertation

Date of Award

January 2019

Degree Type


Degree Name



Computer Science

First Advisor

Weisong . Shi


Surge growth of numerous cloud services, Internet of Things, and edge computing promotes continuous increasing demand for data centers worldwide. Significant electricity consumption of data centers has tremendous implications on both operating and capital expense. The power infrastructure, along with the cooling system cost a multi-million or even billion dollar project to add new data center capacities. Given the high cost of large-scale data centers, it is important to fully utilize the capacity of data centers to reduce the Total Cost of Ownership. The data center is designed with a space budget and power budget. With the adoption of high-density rack designs, the capacity of a modern data center is usually limited by the power budget. So the core of the challenge is scaling up power infrastructure capacity. However, resizing the initial power capacity for an existing data center can be a task as difficult as building a new data center because of a non-scalable centralized power provisioning scheme. Thus, how to maximize the power utilization and optimize the performance per power budget is critical for data centers to deliver enough computation ability. To explore and attack the challenges of improving the power utilization, we have planned to work on different levels of data center, including server level, row level, and data center level. For server level, we take advantage of modern hardware to maximize power efficiency of each server. For rack level, we propose Pelican, a new power scheduling system for large-scale data centers with heterogeneous workloads. For row level, we present Ampere, a new approach to improve throughput per watt by provisioning extra servers.

By combining these studies on different levels, we will provide comprehensive energy efficient system designs for data center.