Access Type

Open Access Dissertation

Date of Award

January 2019

Degree Type


Degree Name



Computer Science

First Advisor

Nathan Fisher


Schedulability analysis for real-time systems has been the subject of prominent research over the past several decades. One of the key foundations of schedulability analysis is an accurate worst case execution time (WCET) for each task. In preemption based real-time systems, the CRPD can represent a significant component (up to 44% as documented in research literature) of variability to overall task WCET. Several methods have been employed to calculate CRPD with significant levels of pessimism that may result in a task set erroneously declared as non-schedulable. Furthermore, they do not take into account that CRPD cost is inherently a function of where preemptions actually occur. Our approach for computing CRPD via loaded cache blocks (LCBs) is more accurate in the sense that cache state reflects which cache blocks and the specific program locations where they are reloaded. Limited preemption models attempt to minimize preemption overhead (CRPD) by reducing the number of allowed preemptions and/or allowing preemption at program locations where the CRPD effect is minimized. These algorithms rely heavily on accurate CRPD measurements or estimation models in order to identify an optimal set of preemption points. Our approach improves the effectiveness of limited optimal preemption point placement algorithms by calculating the LCBs for each pair of adjacent preemptions to more accurately model task WCET and maximize schedulability as compared to existing preemption point placement approaches. We utilize dynamic programming technique to develop an optimal preemption point placement algorithm. Lastly, we will demonstrate, using a case study, improved task set schedulability and optimal preemption point placement via our new LCB characterization. We propose a new CRPD metric, called loaded cache blocks (LCB) which accurately characterizes the CRPD a real-time task may be subjected to due to the preemptive execution of higher priority tasks. We show how to integrate our new LCB metric into our newly developed algorithms that automatically

place preemption points supporting linear control flow graphs (CFGs) for limited preemption scheduling applications. We extend the derivation of loaded cache blocks (LCB), that was proposed for linear control flow graphs (CFGs) to conditional CFGs. We show how to integrate our revised LCB metric into our newly developed algorithms that automatically place preemption points supporting conditional control flow graphs (CFGs) for limited preemption scheduling applications. For future work, we will verify the correctness of our framework through other measurable physical and hardware constraints. Also, we plan to complete our work on developing a generalized framework that can be seamlessly integrated into real-time schedulability analysis.