Access Type

Open Access Dissertation

Date of Award

January 2018

Degree Type


Degree Name



Physics and Astronomy

First Advisor

Zhixian Zhou


Transition metal dichalcogenides (TMDCs) as the semiconductor counterparts of gra-phene have emerged as promising channel materials for flexible electronic and optoelectronic devices. The 2D layer structure of TMDCs enables the ultimate scaling of TMDC-based devices down to atomic thickness. Furthermore, the absence of dangling bonds in these materials helps to form high quality heterostructures with ultra-clean interfaces. The main objective of this work is to develop novel approaches to fabricating TMDC-based 2D electronic devices such as diodes and transistors. In the first part, we have fabricated 2D p-n junction diodes through van der Waals assembly of heavily p-doped MoS2 (WSe2) and lightly n-doped MoS2 to form vertical homo-(hetero-) junctions, which allows to continuously tune the electron concentration on the n-side for a wide range. In sharp contrast to conventional p-n junction diodes, we have observed nearly exponential dependence of the reverse-current on gate-voltage in our 2D p-n junction devices, which can be attributed to band-to-band tunneling through a gate-tunable tunneling barrier. In the second part, we developed a new strategy to engineer high-κ dielectrics by con-verting atomically thin metallic 2D TMDCs into high-κ dielectrics because it remains a signifi-cant challenge to deposit uniform high-κ dielectric thin films on TMDCs with ALD due to the lack of dangling bonds on the surfaces of TMDCs. In our study, we converted mechanically ex-foliated atomically thin layers of a 2D metal, TaS2 (HfSe2) into a high-κ dielectric, Ta2O5 (HfO2) by thermal oxidation. X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), and atomic force microscopy (AFM) were used to understand the phase conversion process. Capacitance-voltage (C-V) measure-ments were carried out to determine the dielectric constant of thermally oxidized dielec-trics. We fabricated MoS2 field-effect transistors (FETs) with thermally oxidized ultra-thin and ultra-smooth Ta2O5 as top-gate and bottom-gate high-κ dielectric layers. We observed promis-ing device performance, including a nearly ideal subthreshold swing of ~ 61 mV/dec at room temperature, negligible hysteresis, drain-current saturation in the output characteristics, a high on/off ratio ~ 106, and a room temperature field-effect mobility exceeding 60 cm2/Vs. To fur-ther reduce the leak current and improve the device performance, we have also investigated the chemical transformation of HfSe2 to HfO2 high-κ dielectric, which has significantly larger band gap than Ta2O5.

Included in

Physics Commons