Access Type

Open Access Dissertation

Date of Award

January 2016

Degree Type

Dissertation

Degree Name

Ph.D.

Department

Civil and Environmental Engineering

First Advisor

Carol J. Miller

Abstract

For more than four decades researchers tried to develop optimization method and tools to reduce electricity consumption of pump stations of water distribution systems. Based on this ongoing research trend, about a decade ago, some commercial pump operation optimization software introduced to the market. Using metaheuristic and evolutionary techniques (e.g. Genetic Algorithm) make some commercial and research tools able to optimize the electricity cost of small water distribution systems (WDS). Still reducing the environmental footprint of these systems and dealing with large and complicated water distribution system is a challenge.

In this study, we aimed to develop a multiobjective optimization tool (PEPSO) for reducing electricity cost and pollution emission (associated with energy consumption) of pump stations of WDSs. PEPSO designed to have a user-friendly graphical interface besides the state of art internal functions and procedures that lets users define and run customized optimization scenarios for even medium and large size WDSs. A customized version of non-dominated sorting genetic algorithm II is used as the core optimizer algorithm. EPANET toolkit is used as the hydraulic solver of PEPSO. In addition to the EPANET toolkit, a module is developed for training and using an artificial neural network instead of the high fidelity hydraulic model to speed up the optimization process. A unique measure that is called “Undesirability” is also introduced and used to help PEPSO in finding the promising path of optimization and making sure that the final results are desirable and practical.

PEPSO is tested for optimizing the detailed hydraulic model of WDS of Monroe city, MI, USA and skeletonized hydraulic model of WDS of Richmond, UK. The various features of PEPSO are tested under 8 different scenarios, and its results are compared with results of Darwin Scheduler (a well-known commercial software in this field). The test results showed that in a reasonable amount of time, PEPSO is able to optimize and provide logical results for a medium size WDS model with 13 pumps and thousands of system components under different scenarios. It also is concluded that this tool in many aspects can provide better results in comparison with the famous commercial optimization tool in the market.

Share

COinS