Access Type

Open Access Dissertation

Date of Award

January 2016

Degree Type


Degree Name



Science Education

First Advisor

Maria M. Ferreira


Wagner and colleagues (2006) state the mediocrity of teaching and instructional leadership is the central problem that must be addressed if we are to improve student achievement. Educational reform efforts have been initiated to improve student performance and to hold teachers and school leaders accountable for student achievement (Wagner et al., 2006). Specifically, in the area of science, goals for improving student learning have led reformers to establish standards for what students should know and be able to do, as well as what instructional methods should be used. Key concepts and principles have been identified for student learning. Additionally, reformers recommend student-centered, inquiry-based practices that promote a deep understanding of how science is embedded in the everyday world. These new approaches to science education emphasize inquiry as an essential element for student learning (Schneider, Krajcik, Marx, & Soloway, 2002). Project-based learning (PBL) is an inquiry-based instructional approach that addresses these recommendations for science education reform.

The objective of this research was to study the implementation of project-based learning (PBL) in an urban school undergoing reform efforts and identify the variables that positively or negatively impacted the PBL implementation process and its outcomes. This study responded to the need to change how science is taught by focusing on the implementation of project-based learning as an instructional approach to improve student achievement in science and identify the role of both school leaders and teachers in the creation of a school environment that supports project-based learning.

A case study design using a mixed-method approach was used in this study. Data were collected through individual interviews with the school principal, science instructional coach, and PBL facilitator. A survey, classroom observations and interviews involving three high school science teachers teaching grades 9-12, were also used in the data collection process.

The results of the study indicated that the use of PBL increased student engagement, ability to problem-solve, and to some extent academic performance. The results also revealed several factors that impacted the implementation of project-based learning: (a) Student attributes such as high student absenteeism, lack of motivation, and poor behavior prevented teachers from completing the PBL unit in a timely fashion. (b) Certain school and district policies and requirements were not conducive to PBL implementation. Policies and practices impacting instructional time and teaching supplies acquisition made it difficult for teachers to plan lessons and obtain necessary supplies. (c) Teachers did not receive PBL training in a timely fashion. Teachers received training approximately two months prior to implementation. (d) Teacher collaboration influenced PBL implementation as it enabled teachers to share and discuss ideas, resources, and lessons.

Implications for practice include: (a) School and district leaders must create and follow policies and procedures that support conditions that support inquiry learning, (b) Teachers need resources to overcome the challenges associated with project-based learning, (c) Teachers must have the freedom to have a vision for the implementation of PBL that fits their particular classroom context, and (d) Steps should be taken to ensure students have the prior knowledge and skills to successfully engage in PBL.