Access Type

Open Access Dissertation

Date of Award

January 2016

Degree Type


Degree Name




First Advisor

Charles H. Winter


Thin films containing first-row transition metals are widely used in microelectronic, photovoltaic, catalytic, and surface-coating applications. In particular, metallic films are essential for interconnects and seed, barrier, and capping layers in integrated circuitry. Traditional vapor deposition methods for film growth include PVD, CVD, or the use of plasma. However, these techniques lack the requisite precision for film growth at the nanoscale, and thus, are increasingly inadequate for many current and future applications. By contrast, ALD is the favored approach for depositing films with absolute surface conformality and thickness control on 3D architectures and in high aspect ratio features. However, the low-temperature chemical reduction of most first-row transition metal cations to their zero-valent state is very challenging due to their negative electrochemical potentials. A lack of strongly-reducing coreagents has rendered the thermal ALD of metallic films an intractable problem for many elements. Additionally, several established ALD processes for metal films are plagued by low growth rates, impurity incorporation, poor nucleation, high surface roughness, or the need for hazardous coreagents. Finally, stoichiometric control of ternary films grown by ALD is rare, but increasingly important, with emerging applications for metal borate films in catalysis and lithium ion batteries.

The research herein is focused toward the development of new ALD processes for the broader application of metal, metal oxide, and metal borate thin films to future nanoscale technologies. These processes display self-limited growth and support the facile nucleation of smooth, continuous, high-purity films. Bis(trimethylsilyl) six-membered rings are employed as strongly-reducing organic coreagents for the ALD of titanium and antimony metal films. Additionally, new processes are developed for the growth of high-purity, low-resistivity cobalt and nickel metal films by exploiting the redox non-innocent nature of a series of recently-reported 1,4-di-tert-butyl-1,3-diazabutadienyl complexes. Other metal complexes using the same ligand system are subsequently evaluated for use as ALD precursors. Finally, a novel approach is described for the stoichiometric control of first-row transition metal manganese and cobalt borate films, whereby the film composition is governed by the elements present in a single precursor.

Computational techniques such as density functional theory (DFT) using nucleus-independent chemical shift (NICS) are used to determine the electronic structure and predict the relative reducing power of organic coreagents. Potential ALD precursors are analyzed by 1H and 13C NMR, IR, thermogravimetric and differential thermal analyses (TGA/DTA), melting point and solid state decomposition measurements, magnetic susceptibility measurements, preparative sublimation studies, and solution-screening reactions. Deposition parameters are optimized for successful ALD processes. The composition and surface morphology of the resultant films are studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), auger electron spectroscopy (AES), X-ray diffractometry (XRD), time-of-flight elastic recoil detection analysis (TOF-ERDA), ultraviolet-visible spectroscopy (UV-Vis), and four-point probe resistivity measurements.