Access Type

Open Access Dissertation

Date of Award

January 2016

Degree Type


Degree Name



Industrial and Manufacturing Engineering

First Advisor

Ratna B. Chinnam


Knowledge management adoption is growing, and will continue to grow in no small part because of its recent inclusion into the ISO 9001 quality standard. As organizations look towards ways in which to manage their knowledge, the codification of explicit knowledge through Knowledge Management Systems (KMS) and Electronic Knowledge Repositories (EKRs) will undoubtedly gain more interest.

An EKR is a form of KMS that emphasizes the codification and storage of organizational expertise for the purposes of Knowledge Reuse (KRU). Unfortunately, the factors surrounding KRU are not well understood. While previous studies have viewed EKR usage from a narrow perspective, a broader and interconnected view of KRU via EKRs has yet to emerge. Additionally, while there have been numerous benefits linked to EKRs, there are still issues that limit their utility, particularly in the manufacturing arena where information complexity and geography have made it increasingly difficult to share knowledge.

Hence, this research employed a two pronged approach. First, using a multi-theoretical perspective to model KRU via EKRs, a quantitative study was conducted and identified several socio-technical factors that predicted greater KRU. These factors had not been previously modeled within the context of KRU via EKRs, and hence add to both the theoretical and practical implications of the domain. Additionally, the KRU construct was also tied to a back end resulting outcome view that was informed by the Expectation Confirmation Model (ECM). Through this view, the research quantitatively validated that KRU not only predicted greater performance, but also impacted greater knowledge sharing and continuance of use. This ancillary benefit helps to reinforce the importance of EKRs in that additional gains are manifested along with the core component of KRU.

Second, the research extended the capability of manufacturing EKRs by developing a holistic design and process based ontology that connects key concepts within these domains to provide an overall interconnected view. Additionally, to ensure the relevance of the ontology, a mature and globally recognized industry standard was used as the basis to develop it. The ontology was then formalized and tested via Semantic Web tools: Protege, RDF, and SPARQL. The results demonstrate an improved approach to knowledge recall by providing rich and accurate query returns. The ability to use standalone and federated queries to effectively cull the complexity of this interconnected domain is an enhancement to keyword based and traditional relational database approaches. Additionally, to assist with greater industry adoption a systematic and constructive approach for developing and operationalizing the ontology is provided. Finally, in the spirit of the program in which this dissertation is presented, rounding out the research effort are broader organizational management recommendations for overall knowledge management. Referencing industry targeted literature and syncing them with findings from these two research efforts, several pragmatic and sequentially logical approaches to knowledge management are offered.