"Logistic Growth Modeling with MCMC Estimation " by Jaehwa Choi, Jinsong Chen et al.
  •  
  •  
 

Abstract

A new growth modeling approach is proposed to can fit inherently nonlinear (i.e., logistic) function without constraint nor reparameterization. A simulation study is employed to investigate the feasibility and performance of a Markov chain Monte Carlo method within Bayesian estimation framework to estimate a fully random version of a logistic growth curve model under manipulated conditions such as the number and timing of measurement occasions and sample sizes.

DOI

10.22237/jmasm/1556669820

Recommended Citation

Choi, J., Chen, J., & Harring, J. R. (2019). Logistic growth modeling with Markov chain Monte Carlo estimation. Journal of Modern Applied Statistical Methods, 18(1), eP2997. doi: 10.22237/jmasm/1556669820

Plum Print visual indicator of research metrics
PlumX Metrics
  • Citations
    • Citation Indexes: 2
  • Usage
    • Downloads: 762
    • Abstract Views: 195
  • Captures
    • Readers: 7
see details

Share

COinS