A new model for the weighted method of goal programming is proposed based on minimizing the distances between ideal objectives to feasible objective space. It provides the best compromised solution for Multi Objective Linear Programming Problems (MOLPP). The proposed model tackles MOLPP by solving a series of single objective sub-problems, where the objectives are transformed into constraints. The compromise solution so obtained may be improved by defining priorities in terms of the weight. A criterion is also proposed for deciding the best compromise solution. Applications of the algorithm are discussed for transportation and assignment problems involving multiple and conflicting objectives. Numerical illustrations are given for the proposed model.