Abstract
Hoerl and Kennard (1970) suggested the ridge regression estimator as an alternative to the Ordinary Least Squares (OLS) estimator in the presence of multicollinearity. This article proposes new methods for estimating the ridge parameter in case of ordinary ridge regression. A simulation study evaluates the performance of the proposed estimators based on the Mean Squared Error (MSE) criterion and indicates that, under certain conditions, the proposed estimators perform well compared to the OLS estimator and another well-known estimator reviewed.
DOI
10.22237/jmasm/1414815420
Included in
Applied Statistics Commons, Social and Behavioral Sciences Commons, Statistical Theory Commons