A multicomponent system of k components having strengths following k- independently and identically distributed random variables x1, x2, ..., xk and each component experiencing a random stress Y is considered. The system is regarded as alive only if at least s out of k (s < k) strengths exceed the stress. The reliability of such a system is obtained when strength and stress variates are given by a generalized Rayleigh distribution with different shape parameters. Reliability is estimated using the maximum likelihood (ML) method of estimation in samples drawn from strength and stress distributions; the reliability estimators are compared asymptotically. Monte-Carlo simulation is used to compare reliability estimates for the small samples and real data sets illustrate the procedure.