•  
  •  
 

Document Type

Article

Abstract

The large scale spread of Bantu-speaking populations remains one of the most debated questions in African population history. In this work we studied the genetic structure of 19 Bantu-speaking groups from Mozambique and Angola using a multilocus approach based on 14 newly developed compound haplotype systems (UEPSTRs), each consisting of a rapidly evolving short tandem repeat (STR) closely linked to a unique event polymorphism (UEP). We compared the ability of UEPs, STRs and UEPSTRs to document genetic variation at the intercontinental level and among the African Bantu populations, and found that UEPSTR systems clearly provided more resolution than UEPs or STRs alone. The observed patterns of genetic variation revealed high levels of genetic homogeneity between major populations from Angola and Mozambique, with two main outliers: the Kuvale from Angola and the Chopi from Mozambique. Within Mozambique, two Kaskazi–speaking populations from the far north (Yao and Mwani) and two Nyasa-speaking groups from the Zambezi River basin (Nyungwe and Sena) could be differentiated from the remaining groups, but no further population structure was observed across the country. The close genetic relationship between most sampled Bantu populations is consistent with high degrees of interaction between peoples living in savanna areas located to the south of the rainforest. Our results highlight the role of gene flow during the Bantu expansions and show that the genetic evidence accumulated so far is becoming increasingly difficult to reconcile with widely accepted models postulating an early split between eastern and western Bantu populations.

Pay-Per-View Download

To access this article as a PDF pay-per-view download via BioOne, please click here.

Share

COinS