•  
  •  
 

Document Type

Article

Abstract

In most of the world’s population the ability to digest lactose declines sharply after infancy. High lactose digestion capacity in adults is common only in populations of European and circum-Mediterranean origin and is thought to be an evolutionary adaptation to millennia of drinking milk from domestic livestock. Milk can also be consumed in a processed form, such as cheese or soured milk, which has a reduced lactose content. Two other selective pressures for drinking fresh milk with a high lactose content have been proposed: promotion of calcium uptake in high-latitude populations prone to vitamin-D deficiency and maintenance of water and electrolytes in the body in highly arid environments. These three hypotheses are all supported by the geographic distribution of high lactose digestion capacity in adults. However, the relationships between environmental variables and adult lactose digestion capacity are highly confounded by the shared ancestry of many populations whose lactose digestion capacity has been tested. The three hypotheses for the evolution of high adult lactose digestion capacity are tested here using a comparative method of analysis that takes the problem of phylogenetic confounding into account. This analysis supports the hypothesis that high adult lactose digestion capacity is an adaptation to dairying but does not support the hypotheses that lactose digestion capacity is additionally selected for either at high latitudes or in highly arid environments. Furthermore, methods using maximum likelihood are used to show that the evolution of milking preceded the evolution of high lactose digestion.

Share

COinS