Document Type



Perennial water storage in firn aquifers has been observed within the lower percolation zone of the southeast Greenland ice sheet. Spatially distributed seismic and radar observations, made ~50 km upstream of the Helheim Glacier terminus, reveal spatial variations of seismic velocity within a firn aquifer. From 1.65 to 1.8 km elevation, shear-wave velocity (Vs) is 1,290 ± 180 m/s in the unsaturated firn, decreasing below the water table (~15 m depth) to 1,130 ± 250 m/s. Below 1.65 km elevation, Vs in the saturated firn is 1,270 ± 220 m/s. The compressional-to-shear velocity ratio decreases in the downstream saturated zone, from 2.30 ± 0.54 to 2.01 ± 0.46, closer to its value for pure ice (2.00). Consistent with colocated firn cores, these results imply an increasing concentration of ice in the downstream sites, reducing the porosity and storage potential of the firn likely caused by episodic melt and freeze during the evolution of the aquifer.


Environmental Sciences | Geology


© 2020 The Authors. This is an open access article under the terms of the Creative Commons Attribution License (CC BY 4.0,, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.