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WT atg8Δ crd1Δ crd1Δatg8Δ 

FM4-64 

DIC 

Fig. 4.3 Deletion of ATG8 does not rescue the vacuole 
enlargement triggered by elevated temperature in crd1Δ. 

Cells were pre-cultured at 30 ℃ to the early log phase and 

then transferred to 37℃  at a starting A550 of 0.5 for 8h. FM4-
64 staining was performed and cells were observed using 
fluorescence microscopy for vacuole morphology. 
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nonselective autophagy, was used to trigger nonselective autophagy in WT and crd1Δ 

at 30°C. FM 4-64 staining was performed to observe vacuole morphology. As seen in 

Fig. 4.4, both crd1Δ and WT exhibited enlarged vacuoles, raising the possibility that 

nonselective autophagy triggered by rapamycin results in enlarged vacuoles in even 

WT. However, rapamycin has downstream effects other than autophagy. If the vacuole 

enlargement triggered by rapamycin in crd1Δ and WT was due to increased 

nonselective autophagy, but not to other downstream effects of rapamycin, deletion of 

the nonselective autophagy genes in these strains should rescue vacuole morphology. 

However, with rapamycin, atg8Δ and crd1Δatg8Δ exhibited enlarged vacuoles similar 

to that in crd1Δ and WT, indicating that blocking autophagy does not rescue vacuole 

enlargement triggered by rapamycin. Thus, the vacuole enlargement induced by 

rapamycin is probably not due to increased nonselective autophagy. In addition to 

triggering nonselective autophagy via the TOR1 pathway (Li et al., 2012; Yorimitsu et 

al., 2007), rapamycin may be involved in other cellular processes that regulate vacuole 

size. 

 

4.2 Is the vacuole defect caused by perturbation of the FAB pathway in crd1Δ ? 

The FAB pathway regulates the synthesis of phosphatidylinositol 3-phosphate 

(PI3P) and phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2), which affects the size 

and acidification of the vacuole. Interestingly, the fab1Δ mutant, in which PI(3,5)P2 is 

undetectable, displays growth and vacuole defects that are similar to those in crd1Δ, 

including decreased growth at elevated temperature, vacuole enlargement and loss of  
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WT atg8Δ crd1Δ crd1Δatg8Δ 

FM4-64 

DIC 

Fig. 4.4 Rapamycin triggers enlargement of vacuoles in both WT 
and crd1Δ, which is not rescued by deletion of ATG8. Cells were 

pre-cultured at 30 ℃ to the early log phase and then transferred to 

medium containing 10nM rapamycin at a starting A550 of 0.5 for 8h. 
FM4-64 staining was performed and cells were observed using 
fluorescence microscopy for vacuole morphology.   
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vacuole acidification (Bonangelino et al., 2002; Gary et al., 1998; Yamamoto et al., 

1995). Thus, Chen et al. suggested that perturbation of the FAB pathway in CL 

deficient cells may explain the vacuole defects. Chen determined that mRNA levels of 

the FAB pathway genes were not affected in crd1Δ cells (Chen et al., 2008b). However, 

FAB1 is not transcriptionally regulated (Gary et al., 1998). Therefore, non-

transcriptional regulation of the FAB pathway may be defective in crd1Δ. Further 

studies are necessary to address this possibility. 

 

4.2.1 The FAB pathway 

As shown in Fig. 4.5, the first step of the FAB pathway is the synthesis of PI3P 

from PI, catalyzed by phosphatidylinositol (PI) 3-kinase, Vps34p (Auger et al., 1989; 

Slessareva et al., 2006). Fab1p, which localizes to the vacuole membrane, catalyzes 

the second step, converting vacuolar PI3P to PI(3,5)P2 (Dove et al., 2002; Gary et al., 

1998; Yamamoto et al., 1995). The reverse reaction to dephosphorylate PI(3,5)P2 to 

PI3P is catalyzed by PI(3,5)P2 phosphatase, Fig4p (Rudge et al., 2004), which is also 

needed for maximum function of Fab1p (Duex et al., 2006). Fab1p can be activated by 

Vac7p and Vac14p (Bonangelino et al., 1997; Duex et al., 2006; Gary et al., 2002), the 

latter of which is physically associated with Fig4p (Duex et al., 2006). Atg18p 

negatively regulates Vac7p (Efe et al., 2005). This regulatory pathway controls levels 

of PI(3,5)P2, which affect vacuole size and acidification. It is known that hyperosmotic 

stress leads to increased PI(3,5)P2, resulting in shrunken and fragmented vacuoles 

(Bonangelino et al., 2002; Dove et al., 1997), while loss of PI(3,5)P2 by deletion of  
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Fig. 4.5 The FAB pathway and its regulation. Revised from 

Efe et al., 2005.  
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FAB1 leads to enlarged vacuoles (Gary et al., 1998; Odorizzi et al., 1998). 

 

4.2.2 Is the FAB pathway perturbed in crd1Δ ? 

To determine if there is perturbation of the FAB pathway in crd1Δ, I assessed 

genetic interaction between crd1Δ and fig4Δ, because Fig4p is essential for both 

synthesis and turn over of PI(3,5)P2. If the FAB pathway in crd1Δ is perturbed, no 

matter whether there is altered synthesis of PI(3,5)P2, or altered turn-over of PI(3,5)P2, 

I should see genetic interaction between FIG4 and CRD1. The ability of single cells to 

form colonies was observed, using our lab generated crd1Δfig4Δ, fig4Δ, crd1Δ and WT 

strains in the FGY background. As shown in Fig. 4.6, deletion of FIG4 partially rescued 

the crd1Δ growth defect at 37.5°C, suggesting that the FAB pathway may be perturbed 

in crd1Δ. Levels of PI(3,5)P2 may be decreased, and deletion of FIG4 may rescue the 

growth defects of crd1Δ by blocking the dephosphorylation of PI(3,5)P2.  

 

4.2.3  PI3P and PI(3,5)P2 are localized normally on the vacuole membrane of crd1Δ. 

The findings described in section 4.2.2 provided a clue that the growth and 

vacuole defects in crd1Δ may be due to perturbation of the FAB pathway. Thus, it was 

necessary to determine if PI3P and PI(3,5)P2 on the vacuole membrane of crd1Δ are 

decreased. 

To directly observe if there is loss of PI3P or PI(3,5)P2 on the vacuole membrane, 

both crd1Δ and WT cells were transformed with the pRS415-GFP-FYVE and pRS415-

GFP-ATG18 plasmids (kindly provided by Rania Deranieh), while fab1Δ containing the  
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crd1Δ  

crd1Δfig4Δ fig4Δ 

WT 

Fig. 4.6 Deletion of FIG4 partially rescues crd1Δ 

temperature sensitivity. Cells were pre-cultured in liquid 

YPD at 30˚C to the mid-log phase. Approximately 200 cells of 

each strain were plated on YPD plates and incubated at 

37.5°C for 3 days. 
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pRS415-GFP-ATG18 plasmid (kindly provided by Rania Deranieh) was used as a 

negative control. The pRS415-GFP-FYVE plasmid expresses a protein in which GFP 

is fused to the FYVE zinc finger domain. Binding of the FYVE domain of this probe to 

PI3P enables the monitoring of PI3P intracellular localization. The pRS415-GFP-

ATG18 plasmid expresses a PI(3,5)P2 specific fluorescent lipid-associated reporter 

(FLARE), on which GFP is fused to the PI(3,5)P2 binding domain of Atg18p. At elevated 

temperature, PI3P and PI(3,5)P2 vacuolar localization in crd1Δ was similar to that of 

WT (Fig 4.7). In contrast, there is a loss of PI(3,5)P2 on the vacuole membrane in fab1Δ 

(Fig 4.8), suggesting that loss of vacuolar PI(3,5)P2 may be the cause of the vacuole 

defects in fab1Δ but not crd1Δ. However, normal PI3P and PI(3,5)P2 vacuole 

localization does not exclude the possibility that PI(3,5)P2 levels are slightly decreased 

in crd1Δ, which would not be discernible by comparison of fluorescence intensity. 

Analysis of PI3P and PI(3,5)P2 levels by HPLC would be required to conclusively show 

altered FAB pathway function. 

 

4.2.4 Are protein levels of the FAB pathway regulators altered in crd1Δ ? 

Although overexpression of FAB1 did not increase PI(3,5)P2 levels (Gary et al., 

1998), overexpression of FAB1 suppressed the vacuole defects in vac14Δ (Dove et 

al., 2002). This finding suggests that, other than regulating synthesis of PI(3,5)P2, 

Fab1p also directly controls vacuole size and acidification by a mechanism still unkown. 

Thus, the protein levels of the FAB pathway regulators are also important for vacuole 

morphology and acidification. Although Chen showed that the mRNA levels of FAB1,  
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WT crd1Δ 

Fig. 4.7 crd1Δ exhibits normal PI3P localization at the vacuolar 

membrane. Cells were pre-cultured at 30 ℃  to the early log 

phase and then transferred to 37℃  at a starting A550 of 0.5 for 8h. 
PI3P localization was then observed using fluorescence 
microscopy.   

GFP 

Phase Contrast 
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WT crd1Δ fab1Δ 

Fig. 4.8 Normal vacuolar localization of PI(3,5)P2 in crd1Δ. 

Cells were pre-cultured at 30℃ to the early log phase and then 

transferred to 37℃  at a starting A550 of 0.5 for 8h. Cells were 
then observed using fluorescence microscopy to determine 
PI(3,5)P2 localization. 

Phase Contrast 

GFP 
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VAC7, VAC14, VPS15, VPS34, FIG4, and ATG18 were not affected in crd1Δ cells, the 

protein levels were not examined (Chen et al., 2008b). 

The optimal way to address this question is to detect the protein levels of these 

regulators by Western blot. However, primary antibodies against these proteins are not 

commercially available. Thus, I employed an indirect approach to address this question. 

If overexpression of FAB1 or VAC7 suppresses the vacuole defects in crd1Δ, it 

suggests that Fab1p or Vac7p protein levels may be decreased in the mutant, which 

may account for the vacuole defects. crd1Δ in the BY4742 background was 

transformed with vectors expressing either FAB1 or VAC7  (or empty pYPGK18 

vector as a negative control), plated on leu- plates, and incubated at 30⁰C or 38⁰C. The 

ability of single cells to form colonies was observed. Overexpression of FAB1 and 

VAC7 in crd1Δ did not rescue the growth defects of crd1Δ (Fig 4.9), indicating that 

Fab1p and Vac7p protein levels may be unaltered in crd1Δ. However, it is possible 

that there is targeted degradation of the FAB1 and VAC7 mRNA in crd1Δ, resulting in 

not only degradation of endogenous FAB1 and VAC7 mRNA, but also FAB1 and VAC7 

mRNA that is expressed from the overexpression vector. 

To definitively ascertain if protein levels of FAB pathway regulators are altered in 

CL deficient cells, Western blot detections of these proteins are required. Because the 

primary antibodies against these proteins are not commercially available, an 

alternative approach is to tag each FAB pathway regulator with the hemagglutinin (HA) 

tag to enable the detection of these proteins by Western blot.  
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38℃ 30℃ 

crd1Δ-vec 

crd1Δ-FAB1 

crd1Δ-VAC7 

Fig. 4.9 Overexpression of FAB1 and VAC7 does not rescue crd1Δ 

temperature sensitivity. Cells were pre-cultured in liquid SC leu- at 

30˚C to the mid-log phase. Approximately 200 cells of each strain were 

plated on SC leu- plates and incubated at 38°C for 3 days. 
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4.3 Are the vacuole defects in crd1Δ caused by perturbation of the Ena1 Na+-

ATPase exporter? 

Vacuole size and acidification are regulated by PI(3,5)P2, as well as ion pumps 

and channels presented in the vacuole membrane. These include the H+-Ca2+ 

exchanger Vcx1p, the Ca2+ pump Pmc1p, the Ca2+ channel Yvc1p, the H+-Na+ 

exchanger Nhx1p, and the voltage-sensitive Cl– channel Gef1p (Bonilla and 

Cunningham, 2002; Ke et al., 2013; Li and Kane, 2009). Deletion of NHX1, but not the 

genes encoding the other pumps or channels, suppresses vacuole defects and 

temperature sensitivity of crd1Δ (Chen et al., 2008b). There is defective vacuolar V-

ATPase activity and reduced proton transport in crd1Δ, causing decreased intra-

vacuolar H+ levels (Chen et al., 2008b). Deletion of NHX1 blocks the vacuolar efflux of 

H+ and influx of Na+, which may counteract the decreased vacuolar H+ level. However, 

the mechanism whereby deletion of NHX1 rescues the vacuole morphology remains 

to be elucidated. 

Because deletion of NHX1 blocks the influx of Na+ into the vacuole, it is 

reasonable to speculate that there may be excessive Na+ in the vacuole of crd1Δ. Na+ 

is sequestered in the vacuole when intracellular Na+ levels are increased (Li et al., 

2012). If there is excessive intra-vacuolar Na+ in crd1Δ, it may indicate increased 

intracellular Na+ in this strain. 

The amount of intracellular Na+ in Saccharomyces cerevisiae is tightly regulated 

by activity of the ion pumps and channels on the cell membrane. The cell membrane 

influx of Na+ is mainly induced by the Na+-K+ transporter Trk system and the non-
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specific cation channel Nsc1. Conversely, the efflux of Na+ is induced by the Na+/K+-

ATPase Ena1p and the Na+, K+/H+ antiporter Nha1p (Ke et al., 2013). Although Ena1p 

and Nha1p are both involved in cell Na+ efflux, Nha1p plays a larger role in K+ extrusion 

and cell survival under acidic conditions, while Ena1p is more involved in Na+ extrusion 

and cell survival under alkaline conditions (Jung et al., 2012). In WT cells, heat shock 

stimulates activity of the Na+-K+ pump (the Trk system) without affecting intracellular 

Na+ levels (Boonstra et al., 1984), suggesting that the efflux of Na+ may be upregulated 

to counteract stimulation of the Na+-K+ pump at elevated temperature. Thus, Na+ efflux 

is essential for cell survival under heat stress. 

 

4.3.1  Deletion of ENA1 does not exacerbate crd1Δ temperature sensitivity 

I hypothesized that Na+ efflux is defective in crd1Δ at 39˚C, resulting in increased 

intracellular Na+. To alleviate toxicity caused by increased intracellular Na+, vacuolar 

Na+ influx is increased, resulting in increased osmotic pressure and vacuole 

enlargement. To test my hypothesis, I investigated if there is genetic interaction 

between CRD1 and ENA1, which encodes the major Na+ efflux transporter. Synthetic 

lethality would suggest that Ena1p is defective in crd1Δ. A crd1Δena1Δ double mutant 

was constructed by tetrad dissection and examined for temperature sensitivity. 

Deletion of ENA1 did not exacerbate crd1Δ temperature sensitivity (Fig. 4.10), 

suggesting that Ena1p may not be defective in crd1Δ. 

 

4.3.2  Upregulation of ENA1 expression may be partially impaired in crd1Δ 
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WT 
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Fig. 4.10 Deletion of ENA1 does not affect crd1Δ 

temperature sensitivity. Cells were pre-cultured in 

liquid YPD at 30˚C to the mid-log phase. Aliquots were 

adjusted to 2x108 cells/ml and then diluted in a 10X 

serial dilution. Cells were spotted on YPD plates with 

the most diluted spot containing 2000 cells, and the 

plates were incubated at 30˚C or 39˚C for 2 days. 

39˚C 

30˚C 
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Ena1p is regulated at the transcriptional level (Ke et al., 2013; Márquez JA and 

R., 1996; Platara et al., 2006). To determine if there is defective Na+ efflux in crd1Δ at 

39˚C, it is necessary to determine if ENA1 gene expression is decreased in crd1Δ 

compared to WT at 39˚C. This would suggest that Na+ efflux will be decreased, leading 

to increased intracellular Na+. WT and crd1Δ cells were incubated at either 30˚C or 

39˚C for 2 hours. ENA1 expression in these strains was determined by RT-PCR. At 

39˚C, ENA1 expression was upregulated in both WT and crd1Δ.  However, 

upregulation of ENA1 expression in crd1Δ was less than in WT (Fig. 4.11), suggesting 

that upregulation of ENA1 expression may be partially impaired in crd1Δ at elevated 

temperature. Impaired ENA1 upregulation may lead to inadequate Na+ efflux and 

accumulation of intracellular Na+, leading to vacuole enlargement.  

 

4.3.3  Overexpression of ENA1 does not rescue crd1Δ temperature sensitivity 

As seen in Fig.4.11, there may be impaired upregulation of ENA1 in crd1Δ at 

39˚C. I then determined if overexpression of ENA1 rescues crd1Δ. crd1Δ was 

transformed with a vector (pYPGK18) overexpressing ENA1, spotted on the leu- plates 

and incubated at 30˚C or 39˚C. Overexpression of ENA1 did not affect crd1Δ 

temperature sensitivity (Fig. 4.12), indicating that the growth and vacuole defects in 

crd1Δ at elevated temperature are probably not due to impaired upregulation of ENA1 

in crd1Δ. 

The findings in Section 4.3.2 and 4.3.3 are controversial. To conclusively address 

if there is increased intracellular Na+, the total Na+ level in crd1Δ at 39˚C should be  
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crd1Δ 39˚C crd1Δ 30˚C WT 30˚C WT 39˚C 

Fig. 4.11 Inadequate ENA1 upregulation in crd1Δ 

compared to WT, at elevated temperature. WT and 

crd1Δ cells were cultured in YPD medium to the mid-log 

phase at 30˚C and then incubated at either 30˚C or 39˚C 

for 2 hours. ENA1 expression was determined by RT-PCR. 
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ENA1 
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crd1Δ + 

ENA1 
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39˚C 
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Fig. 4.12 Overexpression of ENA1 does not rescue 

crd1Δ temperature sensitivity. Cells were pre-

cultured in liquid SC leu- at 30˚C to the mid-log phase. 

Aliquots were adjusted to 2x108 cells/ml and then 

diluted in a 10X serial dilution. Cells were spotted on 

YPD plates with the most diluted spot containing 2000 

cells, and the plates were incubated at 30˚C or 39˚C 

for 2 days. 
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directly measured by isotachophoresis (Nakamura et al., 1993), an analytical 

chemistry technique used for quantification of ionic analytes. 

 

5. Summary 

In this chapter, I suggest future experiments to elucidate how CL regulates 

mitophagy and MAPK pathways. In addition, experiments to investigate the role of CL 

in vacuole homeostasis were described, and future directions related to this work have 

been proposed. Much about CL remains to be elucidated. I encourage my junior 

labmates to continue to explore the mystery of how CL contributes to human life and 

health. 
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Cardiolipin (CL), the signature phospholipid of mitochondrial membranes, is 

important for cardiovascular health. Perturbation of CL metabolism is implicated in 

cardiovascular disease (CVD). The link between CL and CVD may be explained by the 

physiological roles of CL in pathways that are cardioprotective, such as 

autophagy/mitophagy and the mitogen-activated protein kinase (MAPK) pathways. My 

dissertation work focuses on elucidating how CL influences mitophagy and MAPK 

pathways. 

crd1Δ was synthetically lethal/sick with the general autophagy mutants atg8Δ, 

atg18Δ and mitophagy mutant atg32Δ, suggesting that autophagy/mitophagy may be 

deficient in cells lacking CL. Microscopic examination of mitophagy revealed 

decreased translocation of GFP-tagged mitochondrial proteins into the vacuole of 

crd1Δ cells. This was confirmed by a decreased level of free GFP generated by 
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cleavage of GFP-tagged mitochondrial protein after delivery into the vacuole by 

mitophagy. These findings indicated that mitophagy is decreased in CL-deficient cells. 

Expression of ATG8 was increased in crd1Δ cells at 37˚C, suggesting that nonselective 

autophagy was upregulated to compensate for decreased mitophagy. 

The PKC and HOG MAPK pathways are known to be required for mitophagy. 

crd1Δ growth defects are exacerbated by deletion of HOG pathway genes SHO1, 

SSK1, STE50 and HOG1, and rescued by stimulating the HOG pathway and 

upregulating the PKC pathway. These findings suggested the possibility that MAPK 

pathways are defective in crd1Δ cells. Phosphorylation of Slt2p and Hog1p in response 

to stimulants was decreased in crd1Δ, consistent with defective activation of these 

MAPK pathways. Interestingly, upregulating PKC by transforming the cell with a vector 

expressing a constitutively activated Pkc1p rescued defective mitophagy in crd1Δ.  

These results suggest that the mechanism underlying defective mitophagy 

caused by loss of CL is a defective PKC pathway. 
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