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1 Introduction

This dissertation investigates problems arising in identification and control of stochastic

systems, in which random noise corrupts the observations of the system. The focus is on de-

veloping methods that are adaptive in nature; that is, methods which can respond to changes

in the dynamics of the underlying systems. Adaptive filtering algorithms use feedback (usu-

ally in the form of error) to iteratively adjust its estimates of the system parameters. Because

of their recursive form and ability to track time-varying parameters, adaptive filters have

been an important tool in many recent technologies and applications. Examples include

tuning of manufacturing systems, navigation and target tracking in autonomous vehicles,

financial modeling across switching market dynamics, and data shuffling in communication

networks. Adaptive filtering has been especially effective in CDMA (code-division multiple

access) wireless communication networks [17] for filtering a given user’s signal from the other

signals being concurrently transmitted as well as ambient noise across the communication

channel.

We begin by considering linear systems whose coefficients evolve as a slowly-varying

Markov Chain. These slow Markov models are useful for modeling systems whose dynamics

change infrequently (in relation to the signal/sampling rate), yet whose parameters ‘jump’

large distances whenever a transition occurs. Again, communication networks are a natural

candidate for such models because of switching network topologies resulting from channel

connections, signal interruptions, transmission queueing and routing dynamics.

We analyze families of constant step-size (or gain size) algorithms for estimating and

tracking the coefficient parameter in the Markovian setting: the Least-Mean Squares (LMS),

Sign-Regressor (SR), and Sign-Error (SE) algorithms. While the LMS algorithm was studied

in [29], we consider analysis of its (faster) variants the SR algorithm in Chapter 2 and the SE

algorithm in Chapter 3. The analysis is carried out in a multi-scale framework considering

the relative size of the gain (rate of adaptation) to the transition rate of the Markovian system

parameter. Mean-square error bounds are established, and weak convergence methods are
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employed to show the convergence of suitably interpolated sequences of estimates to solutions

of systems of ordinary and stochastic differential equations with regime switching. Simulation

studies are presented to display the tracking properties corresponding to the relationship

between the adaptation rate of the algorithm and the transition rate of the underlying

Markov chain.

Next, in Chapter 4 we consider problems in noise attenuation in systems with unmodeled

dynamics and stochastic signal measurement errors. Unmodeled dynamics must be consid-

ered when the modeled system order does not account for the full system dynamics. A

robust two-phase design procedure of the stochastic approximation type is developed which

first estimates the signal in a simplified form, and then applies a control to tune out the noise.

Worst-case error bounds are derived in terms of the unmodeled dynamics and variances of

the disturbance and measurement errors. Simulation studies are then given to display the

noise attenuation performance of the algorithm.

Finally, in Chapter 5, we summarize the theme of this work with some further remarks

and present some directions for future work.

2 Sign-Regressor Algorithms for Markovian Parame-

ters

2.1 Motivation and Formulation

Consider the multiple input, single output adaptive filtering problem for the system of signals

given by

yn = ϕ′nαn + en, n ∈ N (2.1)
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where ϕn ∈ Rr is the sequence of input regression vectors (possibly stochastic), yn ∈ R

are the corresponding observation signals, en ∈ R is a sequence of zero-mean error signals

(noise), and αn is the time-varying parameter process.

Linear systems with a constant parameter αn ≡ α∗ are very well known in classical statis-

tics and signal processing, and copious amounts of results are available for efficient estimation

and identification. Time-varying systems such as (2.1) have also been extensively studied

(see [4, 12, 19, 22]), but the usual approach assumes the parameter process evolves either

deterministic continuously or stochastically due to some zero mean Guassian disturbance.

These models assume that parameter changes are small when they occur, which allows for

more tractability in establishing convergence or error bounds.

In contrast, we analyze the behavior of systems where the parameter process αn acts

as a “slow” Markov chain, meaning that the parameter randomly “jumps” large distances

between many possible states in the state space (albeit infrequently). More precisely, the

Markov chain αn has a near-identity transition matrix P ε = I+εQ for some jump frequency

parameter ε and a matrix Q which is a generator of a continuous-time Markov chain. The

smaller ε is, the closer the transition matrix P ε is to the identity matrix I, implying αn jumps

between states less frequently. Conversely, the larger the value of ε is the more frequently αn

can jump. Hence the parameter ε shall be referred to as the transition rate of the Markov

chain αn.

Many stochastic systems have randomly time-varying parameters can be best described

by this slow Markov chain model. For example, networked systems include communication

channels as part of the system topology. Channel connections, interruptions, data transmis-

sion queuing and routing, packet delays and losses, are always random. Markov chain models

become a natural choice for such systems. In [29] the problem of the adaptive multiuser de-

tector is considered for a synchronous CDMA-DS system with a maximum of N users. The

optimal multiuser detector is dependent on the current active user set and hence can be

modeled as a Markov chain with 2N−1 states; see [27, 34] for further examples of Markov
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chain system models. For control strategy adaptation and performance optimization, it is

essential to capture time-varying system parameters during their operations, which leads to

the problems of identifying Markovian regime-switching systems pursued here.

For the adaptive filtering problem, the goal is to use known input values of ϕn (e.g. from a

training sequence) and observed output values yn to estimate and track the underlying system

parameter αn. Stochastic approximation algorithms of the Robbins-Monro type [21] have

been widely used to generate recursive estimates θn for systems such as (2.1). A traditional

RM algorithm known as the Least Mean Squares algorithm minimizes the expected norm-

squared error between the actual and predicted signals E|yn − ϕ′nθn|2 is given as follows.

Algorithm 1 (Least Mean Squares). The Least Mean Squares (LMS) algorithm for the

adaptive filtering problem given by (2.1) recursively generates estimates θn of αn by

θn+1 = θn + µϕn (yn − ϕ′nθn) (2.2)

The parameter µ in (2.2) is the step-size (gain) of the the algorithm which controls the

magnitude of the change between the iterates θn and θn+1. It scales the current prediction

error (yn−ϕ′nθn) to determine how much to adjust for the next estimate. We henceforth refer

to µ as the adaptation rate of the algorithm. An important consideration for the adaptive

filtering problem is the interplay between the transition rate ε of how fast the true system

parameter αn jumps and the adaptation rate µ of how quickly the estimates θn can adjust.

In [29], the LMS algorithm (2.2) was analyzed for the Markovian adaptive filtering prob-

lem 2.1 under the assumption that ε = O(µ); i.e. the adaptation rate of the estimates is

nearly the same as the transition rate of the Markov chain.

In this chapter, we analyze the so-called Sign-Regressor algorithm for estimating the

time-varying system parameter αn which evolves as a Markov chain. In what follows, denote

sgn(y) = I{y>0}−I{y<0} for a scalar y ∈ R , where I{·} is the indicator function of a set. For

a vector φ = [φ(1), φ(2), . . . , φ(r)] ∈ Rr, denote Sgn(φ) = [sgn(φ(1)), . . . , sgn(φ(r))].
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Algorithm 2. The Sign-Regressor (SR) algorithm generates estimates θn recursively by the

scheme

θn+1 = θn + µSgn(ϕn)(yn − ϕ′nθn). (2.3)

In many of the applications of adaptive filtering it is desirable to speed computations in

order to effectively track the parameter. This is especially true in communication networks,

when computations have to be carried out on-line with high dimensional data, frequent data

shuffling, and limited resources. One method of speeding computations is to reduce the

complexity of the data in the estimation scheme. In [11] a variant of the LMS algorithm

(2.2), was proposed which uses only the sign of the residuals (yn − ϕ′nθn) to update the

algorithm, i.e. θn+1 = θn+µϕnsgn(yn−ϕ′nθn). This algorithm is now often referred to as the

Sign-Error (SE) algorithm. Because of the sgn(·) operator on the residuals, computations

are reduced to simple bit shifts and the speed is substantially improved from the LMS

algorithm. However, the highly non-linear operator sgn(·) on the residuals makes analysis of

the Sign-Error algorithm very difficult (this will be considered in Chapter 3). In addition, by

‘throwing away’ much of the information in the residuals, estimates from the SE algorithm

tend to converge more slowly than the LMS algorithm.

The Sign-Regressor algorithm given in (2.3) can be thought of as a compromise between

the LMS algorithm and the SE algorithm. By keeping the entirety of the information of the

residuals yn − ϕ′nθn the SR modulates its adaptation by the magnitude of the current error

(and not just the direction) and tends to converge at similar rates to the LMS algorithm.

Instead the SR algorithm ‘clips’ the direction information from the regression vectors ϕn

with the Sgn(·) operator and still shows improved computation speed compared the the

LMS algorithm (especially with large r for high-dimensional models). In addition, the linear

form of the algorithm on the residuals makes the analysis much simpler from what we shall

see in Chapter 3.
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In what follows we shall analyze the properties of the Sign-Regressor algorithm for the

Markovian adaptive filtering problem modeled by (2.1). We shall make use of the following

assumptions for the analysis.

A 2.1. The system parameter process αn is a discrete-time homogeneous Markov chain with

state space M = {a1, a2, . . . , am0}, ai ∈ Rr. In addition, there exists a small ε > 0 such that

the transition probability matrix of αn is given by

P ε = I + εQ (2.4)

where I is the m0-dimensional identity matrix and Q = (qi,j) ∈ Rm0×m0 is an irreducible gen-

erator of a continuous-time Markov chain, meaning that qi,j ≥ 0 for i 6= j and
∑m0

j=1 qi,j = 0

for all i. Furthermore, assume the initial distribution π0 = [P{α0 = a1},P{α0 = a2}, . . . ,P{α0 = am0}]

is independent of ε.

A 2.2. The sequences {ϕn}, {en} are independent of the parameter process {αn}. Let Fn be

the σ-algebra generated by {ϕj, ej, αj : j < n;αn} and let En be the conditional expectation

with respect to Fn. The sequence of signals {(ϕn, en)} is bounded. In addition there exists a

stable matrix H ∈ Rr×r and a constant K > 0 such that for all n

∣∣∣∣∣
∞∑
j=n

En
[
Sgn(ϕj)ϕ

′
j −H

]∣∣∣∣∣ ≤ K∣∣∣∣∣
∞∑
j=n

En [Sgn(ϕj)ej]

∣∣∣∣∣ ≤ K

(2.5)

A 2.3. For the matrix H as in A2.1 and for each m ∈ N, as n→∞

1

n

m+n∑
k=m

Sgnϕkϕ
′
k

p−→ H

1

n

m+n∑
k=m

Sgnϕkek
p−→ 0

(2.6)
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Remark 2.1. We pause here to discuss the practicality of the assumptions. Assumption

A2.1 formally defines the transition properties of the slow Markov chain αn. We assume for

simplicity that the underlying generator Q is a constant matrix, but time-varying Q(t) can

be treated as in [31]. We point out that for implementation of the algorithm neither Q nor

the transition rate ε need be known.

Assumptions A2.2 and A2.3 on the signals {(ϕn, en)} are quite broad. The conditions

given in (2.5) and (2.6) characterize the signals as mixing processes and allow us to work

with correlated signals whose distant future and distant past are asymptotically independent.

The matrix H is then asymptotic covariance of the matrix Sgn(ϕn)ϕ′n. By H is stable we

mean the its eigenvalues have negative real parts (H is a Hurwitz matrix).

The boundedness assumption of the signals is taken for simplicity of notation and can

be removed in several ways. For example, one can use a truncation device on the estimates

θn [19, Section 5.1] with randomly increasing bound as in [5]. Given a sequence of increasing

truncation bounds, at any time instance, we compare the iterate computed with the trunca-

tion bound. If the iterate is larger than the bound, the truncation device forces the iterate to

return to a bounded region, and the truncation bound is also updated; otherwise, the iterate

is as without truncations. suppose. More explicitly, let {Mn} be a monotone increasing

sequence of positive real numbers such that Mn → ∞ as n → ∞. Define a sequence of

nonnegative random variables {$n} and the truncation algorithm as

$n =
n−1∑
i=0

I{|θi+µSgn(ϕi)(yi−ϕ′
iθi|>M$i},

θn+1 = [θn + µSgn(ϕn)(yn − ϕ′nθn)]I{|θn+µSgn(ϕn)(yn−ϕ′
nθn)|≤M$n}.

(2.7)

Using the methods in [5], it can be shown that the above expanding random truncations are

only executed a finite number of times, so eventually the algorithm will be bounded with

probability one. With Markovian parameters, we can use the above truncations together

with the methods to be used in this work to carry out the analysis. However, to ease the
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already complex notation we shall assume regressors ϕn and errors en are bounded.

In practice, one chooses an appropriate adaptation rate µ without knowledge of the

underlying transition rate ε. Depending on the relationship of ε to µ, one will see very

different behavior in the limit system. We shall break down the limit analysis into three

cases as follows.

(i) ε = O(µ) “On-Line” : The transition rate ε is on par with the adaptation rate µ, so

the parameter α can jump about as quickly as θ can track it. The limit dynamics have

occasional jumps in αn, but the estimates θn are still able to track it closely.

(ii) ε � µ “Slower Markov Chain” : The transition rate for αn is much slower than the

adaptation rate for θn. More precisely, we shall assume ε = O(µ1+η) for some 0 < η ≤ 1.

In this case since the parameter αn jumps so infrequently it is much as though αn were

constant, and the limit behavior is largely determined by the initial distribution.

(iii) ε � µ “Fast Markov Chain” : The transition rate for αn is much faster than the

adaptation rate for the estimates θn. More precisely, ε = O(µγ) for some 1/2 ≤

γ < 1. In this case the parameter αn jumps too quickly for the estimate to track

it. However, the frequent jumping of α means that it quickly comes to the stationary

distribution ν = [ν1, . . . , νm0 ] associated with the continuous-time generator Q, as does

the distribution of the estimates.

2.2 Mean Squares Error Bounds

Let θ̃n
∆
= θn−αn be the sequence of tracking errors for the estimates. We begin our analysis

by establishing expected error bounds on E|θ̃n|2 in terms of the adaptation rate µ of the

algorithm and the transition rate ε of the Markov chain.

Theorem 2.2. Under assumptions A2.1 and A2.2, there exists Nµ,ε > 0 such that for all
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n > Nµ,ε we have

E|θ̃n|2 = E |θn − αn|2 = O
(
µ+ ε+ ε2/µ

)
. (2.8)

Proof. Note that θ̃n+1 = θ̃n + µSgn(ϕn)(−θ̃n + en). Define a Liapunov function V (x) =

(x′x)/2. Then consider

EnV (θ̃n+1)− V (θ̃n) = Enθ̃
′
n[−µSgn(ϕn)ϕ′nθ̃n + µSgn(ϕn)en + (αn − αn+1)]

+ En| − µSgn(ϕn)ϕ′nθ̃n + µSgn(ϕn)en + (αn − αn+1)|2.
(2.9)

We note that I{αn=ai} is Fn measurable. In addition, because the Markov chain {αn} is

independent of the signals {(ϕn, en)} and has transition matrix of the form given in (2.4) we

can write

En(αn − αn+1) =

m0∑
i=1

[
ai −

m0∑
j=1

aj(δij + εqij)
]
I{αn=ai} = O(ε). (2.10)

Similar estimates also yield

En|αn − αn+1|2 = O(ε). (2.11)

Since|θ̃n| = |θ̃n| · 1 ≤ (|θ̃n|2 + 1)/2, we have

O(ε)|θ̃n| ≤ O(ε)(V (θ̃n) + 1). (2.12)

Using that the signals {(ϕn, en)} are bounded, we obtain

En| − µSgn(ϕn)ϕ′nθ̃n + µSgn(ϕn)en + (αn − αn+1)|2

= En|αn − αn+1|2 +O(µ2 + µε)(V (θ̃n) + 1).

(2.13)
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Then by applying (2.11), (2.12), and (2.13) we have

EnV (θ̃n+1)− V (θ̃n) = Enθ̃
′
n[−µSgn(ϕn)ϕ′nθ̃n + µSgn(ϕn)en + (αn − αn+1)]

+ En|αn − αn+1|2 +O(µ2 + µε)(V (θ̃n) + 1)

(2.14)

We now use a perturbed Liapunov function approach (see [19]) to derive estimates for

the terms in (2.14). Define perturbations of the Liapunov function by

V µ
1 (θ̃, n) = −µ

∞∑
j=n

Enθ̃
′(Sgn(ϕj)ϕ

′
j −H)θ̃, V µ

2 (θ̃, n) = µ

∞∑
j=n

θ̃′EnSgn(ϕj)ej

V ε
3 (θ̃, n) =

∞∑
j=n

θ̃′En(αj − αj+1), V ε
4 (n) =

∞∑
j=n

En(αn − αn+1)′(αj − αj+1).

(2.15)

By A2.2 we can obtain µ
∣∣∣∑∞j=n[EnSgn(ϕj)ϕ

′
j −H]

∣∣∣|θ̃|2 ≤ O(µ)(V (θ̃) + 1), so we have

|V µ
1 (θ̃, n)| ≤ O(µ)(V (θ̃) + 1). (2.16)

Using similar methods we also obtain

|V µ
2 (θ̃, n)| ≤ O(µ)(V (θ̃) + 1). (2.17)

We note that for small ε the transition matrix P ε = I + εQ is irreducible with a stationary

distribution νε, so there exists a Nε such that |(I+εQ)n−1lνε| ≤ Kε for n > Nep. Telescoping

with the above gives
∑∞

j=n |(I + εQ)j+1−n − (I + εQ)j−n| = O(ε) and so

|V ε
3 (θ̃, n)| ≤ O(ε)(V (θ̃) + 1), |V ε

4 (n)| = O(ε). (2.18)
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Going back to V µ
1 (θ̃, n), we note

EnV
µ

1 (θ̃n+1, n+ 1)− V µ
1 (θ̃n, n) = EnV

µ
1 (θ̃n+1, n+ 1)− EnV µ

1 (θ̃n, n+ 1)

+ EnV
µ

1 (θ̃n, n+ 1)− V µ
n (θ̃n, n).

(2.19)

Applying A2.2 to the first difference with θ̃ fixed, we obtain

EnV
µ

1 (θ̃n, n+ 1)− V µ
1 (θ̃n, n) = µEnθ̃

′
n(Sgn(ϕn)ϕ′n −H)θ̃n. (2.20)

For the second term with the index fixed we have

EnV
µ

1 (θ̃n+1, n+ 1)− EnV µ
1 (θ̃n, n+ 1) = −µ

∞∑
j=n+1

En(θ̃n+1 − θ̃n)′[En+1Sgn(ϕj)ϕ
′
j −H]θ̃n+1

− µ
∞∑

j=n+1

Enθ̃
′
n[En+1Sgn(ϕj)ϕ

′
j −H](θ̃n+1 − θ̃n)

(2.21)

In the same manner as (2.11) we obtain

En|θ̃n+1 − θ̃n| ≤ µEn|Sgn(ϕn)ϕ′n||θ̃n|+ µEn|Sgn(ϕn)en|+O(ε)

= O(µ)(V (θ̃n) + 1) +O(ε).

(2.22)

Moreover,

∣∣∣µ ∞∑
j=n+1

Enθ̃
′
n[En+1Sgn(ϕj)ϕ

′
j −H](θ̃n+1 − θ̃n)

∣∣∣ ≤ O(µ2 + µε)(V (θ̃n) + 1),

∣∣∣µ ∞∑
j=n+1

En(θ̃n+1 − θ̃n)′[En+1Sgn(ϕj)ϕ
′
j −H]θ̃n+1

∣∣∣ ≤ O(µ2 + µε)(V (θ̃n) + 1).

(2.23)

Putting the above together we arrive at

EnV
µ

1 (θ̃n+1, n+ 1)− V µ
1 (θ̃n, n) = µEnθ̃

′
n(Sgn(ϕn)ϕ′n −H)θ̃n +O(µ2 + µε) (2.24)
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Using methods similar to the estimate for EnV
µ

1 (θ̃n+1)− V µ
1 (θ̃n, n), we also obtain

EnV
µ

2 (θ̃n+1, n+ 1)− V µ
2 (θ̃n, n) = −µEnθ̃′nSgn(ϕn)en +O(µ2 + µε)(V (θ̃n) + 1),

En[V ε
3 (θ̃n+1, n+ 1)− V ε

3 (θ̃n, n)] = −Enθ̃′n(αn − αn+1) +O(ε2 + µ2)(V (θ̃n) + 1),

En[V ε
4 (n+ 1)− V ε

4 (n)] = −En|αn − αn+1|2 +O(ε2)

(2.25)

The above estimates lead us to define

W (θ̃, n) = V (θ̃) + V µ
1 (θ̃, n) + V µ

2 (θ̃, n) + V ε
3 (θ̃, n) + V ε

4 (n). (2.26)

The condition in A2.2 that H is a stable matrix gives the existence of a λ > 0 such that

θ̃′Hθ̃ ≥ λV (θ̃) and so −µθ̃′Hθ̃ − µO(θ̃) ≤ −µλV (θ̃). With the above, we apply (2.14) to

(2.26) with estimates (2.24)–(2.25) and arrive at

EnW (θ̃n+1, n+ 1)−W (θ̃n, n) ≤ −µθ̃′nHθ̃n +O(µ2 + ε2)

≤ −λµV (θ̃n) +O(µ2 + ε2)(V (θ̃n) + 1)

≤ −λµW (θ̃n, n) +O(µ2 + ε2)(W (θ̃n, n) + 1).

(2.27)

We note that replacing V (θ̃, n) by W (θ̃, n) simply results in another O(µε) = O(µ2 + ε2)

term by the estimates given in (2.16) –(2.18).

Take sufficiently small µ and ε such that there exists 0 < λ0 ≤ λ with −λµ + O(µ2) +

O(ε2) ≤ −λ0µ. We then have the recursive inequality EnW (θ̃n+1, n+1) ≤ (1−λ0µ)W (θ̃n, n)+

O(µ2 + ε2) and so by taking expectation we obtain

EW (θ̃n+1, n+ 1) ≤ (1− λ0µ)n−NεEW (θ̃Nε , Nε) +O
(
µ+ ε2/µ

)
(2.28)

One can now see that there exists Nµ,ε such that for n ≥ Nµ,ε we have (1−λ0µ)n−Nε ≤ O(µ)

and so EW (θ̃n+1, n + 1) ≤ O(µ + ε2/µ). To translate back to V (θ̃n+1) we again apply

(2.16)–(2.18) and finally obtain EV (θ̃n+1) ≤ O(µ+ ε+ ε2/µ) for n ≥ Nµ,ε. 2
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2.3 Convergence Properties

We now consider the limit behavior of the sequence of estimates and true parameters

{(θn, αn)}. The analysis is carried out by examining a continuous-time interpolation of

the discrete sequence. Define the µ-interpolated processes as

θµ(t)
∆
= θn, αµ(t)

∆
= αn for t ∈ [nµ, nµ+ µ) . (2.29)

We examine the limit behavior at the infinitesimal level when µ → 0 by using weak con-

vergence methods on the continuous-time interpolations θµ(t) and αµ(t). Because we are

interpolating the parameter process α at increments of µ while it in fact changes at rate ε,

we shall see different limit behavior corresponding to the cases (i) ε = O(µ), (ii) ε� µ, or

(iii) ε� µ.

For the cases ε � µ and ε � µ, care must be taken since we are interpolating αn by

µ-increments while it changes at a rate of ε. This results in a two-time-scale Markov chain

as in [31]. We will make use of the following calculation for the α limit behavior.

Remark 2.3. Define a probability vector by πεn = (P (αn = a1), . . . , P (αn = am0)) ∈ R1×m0 .

Note that πε0 = (π0,1, . . . , π0,m0) (independent of ε). Because the Markov chain is time ho-

mogeneous, (P ε)n is the n-step transition probability matrix with P ε = I + εQ. Then, for

some 0 < λ1 < 1,

πεn = π(εn) +O(ε+ λ−n1 ), 0 ≤ n ≤ O(1/ε), (2.30)

where π(t) = (π1(t), . . . , πm0(t)) is the probability vector of the continuous Markov chain with

generator Q which satisfies the Chapman-Kolmogorov equation

d

dt
π(t) = π(t)Q, π(0) = π0. (2.31)

We also obtain

(P ε)n−n0 = Ξ(εn0, εn) +O(ε+ λ
−(n−n0)
1 ), (2.32)
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where with t0 = εn0 and t = εn, Ξ(t0, t) satisfies


d

dt
Ξ(t0, t) = Ξ(t0, t)Q,

Ξ(t0, t0) = I.
(2.33)

Consider the continuous-time interpolation of αn by ε-increments (as opposed to µ in (2.29))

given as

αε(t) := αn for t ∈ [nε, nε+ ε). (2.34)

Then αε(·) converges weakly to α(·), which is a continuous-time Markov chain generated by

Q with state space M. We can approximate Eαn by

Eαn = α∗(εn) +O(ε+ λ−n1 ), for n ≤ O(1/ε),

α∗(εn)
∆
=

m0∑
j=1

ajπj(εn).
(2.35)

The results obtained are in the sense of weak convergence. For a stochastic process Xn

we shall write Xn
w−→ X to denote that Xn converges weakly to X, meaning that for any

bounded and continuous function f(·), one has Ef (Xn)→ f (X) as n→∞.

2.3.1 On-Line Limit ε = O(µ)

We begin with the “On-Line” case ε = O(µ).

Theorem 2.4. Let ε = O(µ), and assume A2.1, A2.2, and A2.3. Then as µ → 0, the

processes (θµ(t), αµ(t)) converges weakly to a process (θ(t), α(t)) (i.e. (θµ, αµ)
w−→ (θ, α))

such that α(t) is a continuous-time Markov chain generated by Q and θ(t) satisfies the

Markov-switching ordinary differential equation

d

dt
θ(t) = H (α(t)− θ(t)) , θ(0) = θ0 (2.36)

We establish the theorem through a series of lemmas. For simplicity, we take ε = µ
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in what follows. We begin by using a truncation device to bound the estimates. Define

SN
∆
= {θ ∈ Rr : |θ| ≤ N} to be the ball with radius N , and qN(·) as a truncation function

that is equal to 1 for θ ∈ SN , 0 for θ ∈ SN+1, and sufficiently smooth between. We then

modify the algorithm 2.3 so that the estimates

θNn+1 = θNn + µSgn(ϕn)(yn − ϕ′nθn)qN(θNn ) (2.37)

are bounded by N . As before, interpolate by µ the discrete bounded estimates by θN,µ(t) =

θNn for t ∈ [nµ, nµ+ µ).

To obtain the theorem, we shall first show that the sequence of bounded estimates and

parameters {(θN,µ(·), αµ)}µ is tight, thus allowing us to extract a weakly convergent subse-

quence by Prohorov’s theorem. We then show that the limit sequence satisfies the Markov-

switched differential equation. Lastly, we let the truncation bound N → ∞ to show that

the original sequence of estimates θn is also weakly convergent. For the following we shall

write D([0,∞) : Rr ×M) to denote the space of functions defined on [0,∞) taking values

in Rr ×M that are right continuous with left limits endowed with the Skorohod topology

(see [19, Chapter 7] for definitions and further details).

Lemma 2.5. The sequence {(θN,µ(·), αµ(·))} is tight in D([0,∞) : Rr ×M).

Proof. We have that {αµ(·)} is tight by [31, Theorem 4.3] and that αµ(·) converges weakly

to a Markov chain generated by Q as noted in Remark 2.3. It remains to establish the the

limit for the bounded estimate sequence {θN,µ(·)}µ. We shall employ the tightness criterion

given in [20, p.47], and so the goal is to show limδ→0 lim supµ→0

{
sup0≤s≤δ E

∣∣∣θN,µ(t + s) −

θN,µ(t)
∣∣∣2} = 0, after which tightness shall be established.
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We have that for any δ > 0, and t, s > 0 satisfying s ≤ δ,

E
∣∣∣θN,µ(t+ s)− θN,µ(t)

∣∣∣2
≤ E

∣∣∣µ (t+s)/µ−1∑
k=t/µ

Sgn(ϕk)(yk − ϕ′kθNk )qN(θNk )
∣∣∣2

≤ KEµ2
∣∣∣ (t+s)/µ−1∑

k=t/µ

Sgn(ϕk)[ϕ
′
k(αk − θNk )qN(θNk ) + ek]

∣∣∣2
≤ KEµ2

∣∣∣ (t+s)/µ−1∑
k=t/µ

Sgn(ϕk)ϕ
′
k(αk − θNk )qN(θNk )

∣∣∣2 +KEµ2
∣∣∣ (t+s)/µ−1∑

k=t/µ

Sgn(ϕk)ek]
∣∣∣2.

(2.38)

Applying the moment conditions on the signals Sgn(ϕk)ϕ
′
k given in A2.2 with the bounded-

ness of (θNk , αk) we have

Eµ2
∣∣∣ (t+s)/µ−1∑

k=t/µ

Sgn(ϕk)ϕ
′
k(αk − θNk )qN(θNk )

∣∣∣2 ≤ Kµs

(t+s)/µ−1∑
k=t/µ

E|Sgn(ϕk)ϕ
′
k|2

≤ Ks2 ≤ Kδ2.

(2.39)

and similarly

Eµ2
∣∣∣ (t+s)/µ−1∑

k=t/µ

Sgn(ϕk)ek

∣∣∣2 ≤ Kµ

(t+s)/µ−1∑
k=t/µ

E|Sgn(ϕk)ek|2 ≤ Ks ≤ Kδ. (2.40)

Since the above estimates are uniform in µ we have

lim
δ→0

lim sup
µ→0

{
sup

0≤s≤δ
E
∣∣∣θN,µ(t+ s)− θN,µ(t)

∣∣∣2} = 0

and hence {θN,µ(·)} is tight. 2

With the tightness of {(θN,µ(·), αµ(·))}µ established, Prohorov’s theorem implies that it

is sequentially compact in the closure of D([0,∞) : Rr ×M equipped with the topology of

weak convergence. Thus we shall extract such a weakly convergent subsequence and still

denote it by {(θN,µ(·), αµ(·))} for notational simplicity. We write the limit as (θN(·), α(·))
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and proceed to characterize the limit process. The following lemma is the main tool for the

characterization and utilizes the weak convergence methods outlined in [19, Chapter 8].

Lemma 2.6. Assume the A2.1 – A2.3. Then (θN,µ(·), αµ(·)) w−→ (θN(·), α(·)) such that

(θN(·), α(·)) is a solution of the martingale problem with operator

LN1 f(θN , i) = ∇θf(θN , i)H[ai − θN ]qN(θN) +

m0∑
j=1

qijf(θN , aj), (2.41)

where for each ai ∈M, f((·), i) ∈ C1
0 (C1 function with compact support). That is,

f(θN(t), α(t))− f(θN(0), α(0))−
∫ t

0

LN1 f(θN(τ), α(τ))dτ

is a Ft-adapted martingale for each f ∈ C1
0 and each aj ∈M.

Proof. As shown in [7, p.174], to derive the martingale limit we need only verify that for

each C1 function with compact support f(·, i), for each bounded and continuous function

h(·), each t, s > 0, each positive integer κ, and each ti ≤ t for i ≤ κ,

Eh(θN(ti), α(ti) : i ≤ κ)
[
f(θN(t+ s), α(t+ s))− f(θN(t), α(t))

−
∫ t+s

t

LN1 f(θN(τ), α(τ))dτ
]

= 0.
(2.42)

For ease of notation we shall denote hN = h(θN(ti), α(ti) : i ≤ κ) and hµN = h(θN,µ(ti), α
µ(ti) :

i ≤ κ). Since f(·, i) is C1
0 and (θN,µ(·), αµ(·)) w−→ (θN(·), (α(·)) the Skorohod representation

gives that as µ→ 0,

EhµN
[
f(θN,µ(t+ s), αµ(t+ s))− f(θN,µ(t), αµ(t))

]
→ EhN

[
f(θN(t+ s), α(t+ s))− f(θN(t), α(t))

]
.

(2.43)

We subdivide the interval [ t
µ
, t+s
µ
− 1] by choosing an increasing sequence mµ such that

mµ →∞ as µ→ 0 but δµ
∆
= µmµ → 0. The idea is that while the interval length s

µ
→∞ as

µ→ 0 we partition the interval into an increasing number mµ of subintervals to approximate
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the integral. However, we let the number of subdivisions mµ grow slowly enough such that

the subinterval length s
µmµ

= s
δµ
→ ∞ to allow for averaging. We then telescope over the

endpoints of the subintervals and insert a term to examine changes in the estimate θN and

the parameter α separately so that

lim
µ→0

EhµN
[
f(θN,µ(t+ s), αµ(t+ s))− f(θN,µ(t), αµ(t))

]
= lim

µ→0
EhµN

 t+s∑
lδµ=t

[f(θNlmµ+mµ , αlmµ+mµ)− f(θNlmµ , αlmµ)]


= lim

µ→0
EhµN

[ t+s∑
lδµ=t

[f(θNlmµ+mµ , αlmµ+mµ)− f(θNlmµ+mµ , αlmµ)]

+
t+s∑
lδµ=t

[f(θNlmµ+mµ , αlmµ)− f(θNlmµ , αlmµ)]
]
.

(2.44)

We take the first order Taylor expansion of f at each endpoint of the subintervals lmµ, and

then telescope again through the iterates between the endpoints of the subinterval to obtain

lim
µ→0

EhµN
[ t+s∑
lδµ=t

[f(θNlmµ+mµ , αlmµ)− f(θNlmµ , αlmµ)]
]

= lim
µ→0

EhµN
t+s∑
lδµ=t

δµ
1

mµ

[ lmµ+mµ−1∑
k=lmµ

∇θf(θNlmµ , αlmµ)Sgn(ϕk)ϕ
′
k(αk − θNk )qN(θNk )

+

lmµ+mµ−1∑
k=lmµ

[∇θf(θN,+lmµ
, αlmµ)−∇θf(θNlmµ , αlmµ)](θNk+1 − θNk )qN(θNk )

+

lmµ+mµ−1∑
k=lmµ

∇θf(θNlmµ , αlmµ)]Sgn(ϕk)ek

]
,

(2.45)

where θN,+lmµ
is a point on the line segment joining θNlmµ and θNlmµ+mµ

. Since ∇θf(·, i) is

continuous and (θNlmµ+µ − θNlmµ)
w−→ 0 as µ→ 0 we have

lim
µ→0

EhµN

lmµ+mµ−1∑
k=lmµ

[∇θf(θN,+lmµ
, αlmµ)−∇θf(θNlmµ , αlmµ)](θNk+1 − θNk )qN(θNk ) = 0. (2.46)

As µ→ 0 we must have µlmµ → τ ∈ [t, t+ s]. Thus for all k in the subinterval satisfying
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lmµ ≤ k ≤ lmµ +mµ − 1, we have µk → τ as well. Then considering the term involving the

Markov chain αk, since ∇θf(θNlmµ , αlmµ) is Flmµ measurable, we can insert the conditional

expectation Elmµ to obtain

lim
µ→0

EhµN
t+s∑
lδµ=t

δµ
1

mµ

lmµ+mµ−1∑
k=lmµ

∇θf(θNlmµ , αlmµ)Sgn(ϕk)ϕ
′
kαk

= lim
µ→0

EµN
t+s∑
lδµ=t

δµ
1

mµ

lmµ+mµ−1∑
k=lmµ

∇θf(θNlmµ , αlmµ)Elmµ [Sgn(ϕk)ϕ
′
k −H]αkq

N(θNlmµ)

+ lim
µ→0

EhµN
t+s∑
lδµ=t

δµ
1

mµ

lmµ+mµ−1∑
k=lmµ

∇θf(θNlmµ , αlmµ)ElmµHαkq
N(θNlmµ)

= lim
µ→0

EhµN
t+s∑
lδµ=t

m0∑
j=1

δµ
1

mµ

lmµ+mµ−1∑
k=lmµ

∇θf(θNlmµ , αlmµ)HajI{αk=aj}

= EhN
∫ t+s

t

∇θf(θN(τ), α(τ))Hα(τ)dτ.

(2.47)

We note that we applied A2.3 to average out each sum 1
mµ

∑lmµ+mµ−1
k=lmµ

Elmµ(. . .) since the

number of iterates in each sub-sum mµ → ∞ as µ → 0. Then taking the Riemann sum

over intervals of length δµ, we obtained convergence to the integral. In a similar fashion we

obtain

lim
µ→0

EhµN
t+s∑
lδµ=t

δµ
1

mµ

lmµ+mµ−1∑
k=lmµ

∇θf(θNlmµ , αlmµ)Sgn(ϕk)ϕ
′
kθ
N
k q

N(θNk )

= lim
µ→0

EhµN
[ t+s∑
lδµ=t

δµ
1

mµ

lmµ+mµ−1∑
k=lmµ

∇θf(θNlmµ , αlmµ)ElmµHθ
N
lmµq

N(θNlmµ)

+
t+s∑
lδµ=t

δµ
1

mµ

lmµ+mµ−1∑
k=lmµ

∇θf(θNlmµ , αlmµ)Elmµ [Sgn(ϕk)ϕ
′
k −H]θNlmµq

N(θNlmµ)
]

= EhN
∫ t+s

t

∇θf(θN(τ), α(τ))HθN(τ)dτ,

(2.48)

as well as

lim
µ→0

EhµN
t+s∑
lδµ=t

δµ
1

mµ

lmµ+mµ−1∑
k=lmµ

∇θf(θNlmµ , αlmµ)Sgn(ϕk)ek = 0. (2.49)

We use a similar process with the term of (2.45) which has θN(·) fixed and α(·) varying. By
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exploiting the smooth and bounded property of f and applying Remark 2.3 we have that

lim
µ→0

EhµN
t+s∑
lδµ=t

[f(θNlmµ+mµ , αlmµ+mµ)− f(θNlmµ+mµ , αlmµ)]

= lim
µ→0

EhµN
t+s∑
lδµ=t

[f(θNlmµ , αlmµ+mµ)− f(θNlmµ , αlmµ)] + o(µ)

= lim
µ→0

EhµN
t+s∑
lδµ=t

δµ

 1

mµ

lmµ+mµ−1∑
k=lmµ

Qf(θNlmµ , αk)(αlmµ)

+ o(µ)

= EhN
[∫ t+s

t

Qf(θN(τ), α(τ))dτ

]
.

(2.50)

Thus by combining the above estimates (2.43)–(2.50), (2.42) is verified and the result follows.

2

Proof of Theorem 2.4. By Lemma 2.6, the solution (θN(·), α(·)) of the martingale prob-

lem with operator LN1 satisfies the associated differential equation d
dt
θN(t) = H[α(t) −

θN(t)]qN(θN(t)). It remains to show that as the truncation bound N → ∞, the limit of

the truncated sequence θN(·) is the same as the limit of the untruncated sequence θ(·).

Let P0(·) and PN(·) be the probability measures induced by θ(·) and θN(·) respectively.

Since the solution of the differential equation associated with Lµ1 is unique for each initial

condition, the limit measure as P0 must be unique as well. For each finite time horizon

T <∞ the limit measure P0(·) must agree with PN(·) on all Borel paths in D([0,∞) : SN).

Then as N → ∞, P0{supt≤T |θ(t)| ≤ N} = 1. Finally, the weak convergence θN,µ(·) w−→

θN(·) then gives θµ(·) w−→ θ(·). 2

We note that the Markov-switched limit

d

dt
θ(t) = H[α(t)− θ(t)], θ(t) = θ0

is a novel feature of the analysis. While most results in classic stochastic approximation have

a deterministic differential equation limit, the continuous-time Markov chain α(t) makes the
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limit stochastic in nature. This Markov-switching ordinary differential equation limit is a

special case of regime-switching diffusion models [32], which have recently gained popularity

in many applications.

2.3.2 Slower Markov Chain: ε� µ

We proceed now with the “Slower Markov Chain” case ε � µ. In this case the Markov

chain αn transitions so slowly in relation to the adaptation rate that when we interpolate

α by increments of µ the resulting process is essentially constant. Thus the limit dynamics

are largely determined by the initial distribution π0,i = P{α0 = ai}. In what follows write

α∗ =
∑m0

i=1 aiπ0,i for the mean of the Markov chain α against the initial distribution π0. We

then have the following result.

Theorem 2.7. Let ε = µ1+η for some η > 0, and assume A2.1, A2.2, and A2.3. Then as

µ→ 0, θµ(·) w−→ θ(·) such that θ(·) is the solution of the ordinary differential equation

d

dt
θ(t) = H (α∗ − θ(t)) , θ(0) = θ0 (2.51)

Proof. The proof is much the same as for Theorem 2.4. We shall only outline the key

differences. Truncation is still used, but we omit the operator qN() for ease of notation.

Tightness is obtained as before, and much of the estimates for the martingale limit remain

the same. In the expansion of the term with the Markov chain we still see

t+s∑
lδµ=t

δµ
1

mµ

lmµ+mµ−1∑
k=lmµ

Sgn(ϕk)ϕ
′
kαk

=
t+s∑
lδµ=t

δµ
1

mµ

lmµ+mµ−1∑
k=lmµ

[Sgn(ϕk)ϕ
′
k −H]αk +

t+s∑
lδµ=t

δµ
1

mµ

lmµ+mµ−1∑
k=lmµ

Hαk.

(2.52)

where the first term is averaged out in the limit. For the second term we note that from
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Remark 2.3 for some 0 < λ1 < 1 we have,

(P ε)k−lmµ = Ξ(εk, εlmµ) +O
(
ε+ λ

−(k−lmµ)
1

)
→ I as µ→ 0,

(P ε)lmµ = Ξ(0, εlmµ) +O
(
ε+ λ

−lmµ
1 )

)
→ I as µ→ 0.

Then we see

EhµN
t+s∑
lδµ=t

δµ
1

mµ

lmµ+mµ−1∑
k=lmµ

∇θf(θlmµ , αlmµ)Hαk

= EhµN
m0∑
j1=1

t+s∑
lδµ=t

δµ∇θf(θlmµ , αlmµ)
1

mµ

lmµ+mµ−1∑
k=lmµ

Haj1ElmµI{αk=aj1}

= EhµN
m0∑
j1=1

t+s∑
lδµ=t

δµ∇θf(θlmµ , αlmµ)
1

mµ

lmµ+mµ−1∑
k=lmµ

m0∑
i1=1

m0∑
i0=1

Haj1

×P (αk = aj1 |αlmµ = ai1)P (αlmµ = ai1|α0 = ai0)P (α0 = ai0)

→ EhN
m0∑
i0=1

∫ t+s

t

∇θf(θ(τ), α(τ))Hai0P (α0 = ai0)dτ.

(2.53)

Other estimates are obtained similarly, and the rest of the proof follow as before with Hα(t)

replaced with
∑m0

i=1Haiπ0,i. 2

Given an initial distribution π0, the limit against α∗ =
∑m0

i=1 aiπ0,i is deterministic. In

this case, we can obtain the following corollary.

Corollary 2.8. Assume A2.1 – A2.3 and ε = µ1+η for 1 < η ≤ 2. Take any increasing

sequence of time shifts tµ →∞ as µ→ 0. Then θµ(·+ tµ)
w−→ α∗ as µ→ 0.

Proof. For any finite time horizon T <∞ the pair {θµ(·+ tµ), θµ(·+ tµ−T )}µ can be shown

to be tight using the techniques in Theorem 2.2. Take a convergent subsequence with limit

(θ(·), θT (·)) so that θ(0) = θT (T ). The value of θT (0) may not be known, but the set of

possible {θT (0)} is tight since {θn} is tight. Consequently, we have

θT (T ) = exp(HT )θT (0)−
∫ T

0

exp(H(T − s))α∗ds.
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Applying a change of variables t = T − s in the right-hand side above, we arrive at

θT (T ) = exp(GT )θT (0) +

∫ 0

T

exp(Ht)α∗dt→ α∗ as T →∞. (2.54)

and the result thus follows. 2

2.3.3 Fast Markov Chain: ε� µ

Lastly, we consider the “Fast Markov Chain” case ε� µ. Here the Markov Chain transitions

much faster than adaptation rate µ. While the estimates are unable to track the parameter’s

all too frequent jumps, the large number of transitions allows the parameter process to quickly

come to the stationary distbution ν associated with the underlying continuous time Markov

chain. Write α =
∑m0

i=1 aiνi for the mean of the Markov chain α against the stationary

distribution ν.

Theorem 2.9. Let ε = µγ for some 1/2 < γ < 1, and assume A2.1, A2.2, and A2.3. Then

as µ→ 0, θµ(·) w−→ θ(·) such that θ(·) is the solution of the ordinary differential equation

d

dt
θ(t) = H (α− θ(t)) , θ(0) = θ0 (2.55)

Proof. Again, since the technique is much the same as Theorem 2.4 we only present the

key difference. When considering the integral limits µlmµ → τ as µ → 0 we have that for

lmµ ≤ k < lmµ + mµ that ε(k − lmµ) = µγ(k − lmµ) → ∞. Thus applying Remark 2.3 we

see

Ξij(εlmµ, εk) = νj +O(ε+ λ
−(k−lmµ)
1 ),
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and so

lim
µ→0

EhµN
m0∑
i1=1

t+s∑
lδµ=t

δµ∇θf(θlmµ , αlmµ)
1

mµ

lmµ+mµ−1∑
k=lmµ

Hai1ElmµI{αk=ai1}

= EhN
∫ t+s

t

∇θf(θ(τ), α(τ))H(

m0∑
i1=1

ai1νi1).

(2.56)

The rest follows as before. 2

We again exploit the deterministic limit with ᾱ to obtain the following corollary. The

proof is the same as Corollary 2.8.

Corollary 2.10. Assume A2.1 – A2.3 and ε = µγ for 0 < γ ≤ 1/2. Then for any tµ →∞

as µ→ 0, θµ(·+ tµ)
w−→ α as µ→ 0.

2.4 Asymptotic Distribution

Given that the process (θn, α) converges to a limit, one wishes to establish the rate at

which the process converges. For adaptive algorithms with constant step-sizes µ the rate

of convergence given by the appropriate scaling factor γ large enough such that the scaled

error (θn − α)/µγ converges to a limit, yet small enough such that the limit is non-trivial.

Considering the result of Theorem 2.2, after interpolating at rate µ one expects the

appropriate scaling factor to be γ = 1/2. We shall make use of the following assumption in

this section.

A 2.4. The scaled signals
√
µ
∑t/µ−1

j=0 Sgn(ϕj)ej
w−→ w̃, where w̃(t) is a Brownian motion

with variance Σ̃tΣ̃ ∈ Rr×r positive definite.

The above is a condition on the input and error signals {(ϕn, en)} and is quite general.

For example, suppose Sgn(ϕn)en = $n is a stationary mixing process with
∑

n φ̃
1/2
n < ∞,

where φ̃n is the associated mixing measure. Then
√
µ
∑(t/µ)−1

j=0 $j converges weakly to a

Brownian motion w̃(t) with covariance Σ̃t such that the covariance Σ̃ is given by Σ̃ =

E$0$
′
0 +

∑∞
j=1 E$j$

′
0 +

∑∞
j=1 E$0$

′
j. Further details can be found in [3].
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We again begin with the case ε = O(µ). For simplicity we take ε = µ in what follows. By

virtue of Theorem 2.2 there exists Nµ,ε = Nµ such that E|θn − αn|2 = O(µ). Then consider

the scaled error

un =
θn − αn√

µ
,

uµ(t) = un for t ∈ [(n−Nµ)µ, (n−Nµ)µ+ µ)

(2.57)

so that E|un|2 = O(1) for n ≥ Nµ, giving that {un : n ≥ Nµ} is tight. Then we obtain the

following theorem.

Theorem 2.11. Let ε = O(µ) and assume A2.1 – A2.4. Then uµ(·) w−→ u(·) such that u(·)

is a solution to the stochastic differential equation

du = Hudt+ Σ̃1/2dw (2.58)

where w(·) ∈ Rr is a standard Brownian motion.

Proof. The technique is similar as that in Section 2.3. Since the drift and diffusion coefficients

are linear, there is a unique solution u(t) to (2.58). The tightness of {uµ(·)} is argued above,

and the weak limit is is shown to be u by establishing that the limit must solve the martingale

problem with operator

Lf(u)
∆
= ∇f(u)Hu+

1

2
tr(Σ̃∇2f(u)),

where ∇2f(u) is the Hessian of with respect to u. Estimates as in Theorem 2.4 with second

order expansions are used to establish the result. See [19, Chapter 10] for detailed examples

of the technique. Additionally, the analogous result under more difficult conditions is proven

for the Sign-Error algorithm in Chapter 3. 2

In the case ε� µ, we consider the scaled error from α∗. We take ε = µ1+η for 1 < η ≤ 2.



26

Define

vn =
θn − α∗√

µ
vµ(t) = vn for t ∈ [(n−Nµ)µ, (n−Nµ)µ+ µ) (2.59)

where Nµ = Nµ,µ1+η is as in Theorem 2.2. We again omit the details in favor of brevity, but

present the main result.

Theorem 2.12. Let ε = µ1+η for some η > 0 and assume A2.1 – A2.4. Then vµ(·) w−→ v(·)

such that v(·) is a solution to the stochastic differential equation

dv = Hvdt+ Σ̃1/2dw (2.60)

where w(·) ∈ Rr is a standard Brownian motion.

Finally, for ε� µ we consider the scaled error from the stationary mean α. Take ε = µγ

for some 1/2 ≤ γ < 1, and define

zn =
θn − α∗√

µ
zµ(t) = zn for t ∈ [(n−Nµ)µ, (n−Nµ)µ+ µ). (2.61)

Then the limit is as follows.

Theorem 2.13. Let ε = µγ for 1/2 ≤ γ < 1 and assume A2.1 – A2.4. Then zµ(·) w−→ z(·)

such that z(·) is a solution to the stochastic differential equation

dz = Hzdt+ Σ̃1/2dw (2.62)

where w(·) ∈ Rr is a standard Brownian motion.

Theorems 2.11, 2.12, and 2.13 characterize errors θn−αn, θn−α∗, and θn−α respectively.

For each case the theorems imply the asymptotic error is mean 0 with variance µS, where S

is the solution to the Lyapunov equation HS + SH ′ = −Σ̃.
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3 Sign-Error Algorithms for Markovian Parameters

We now consider the Sign-Error (SE) algorithm for the adaptive filtering problem.

Algorithm 3. The Sign-Error (SE) algorithm generates estimates θn recursively by the

scheme

θn+1 = θn + µϕnsgn(yn − ϕ′nθn). (3.1)

Here the sgn(·) operator is taken on the residuals yn−ϕ′nθn. With an appropriate choice

of the input “training” sequence, computations are reduced to bit shifts and the SE algorithm

is able to be carried out with significant improvement in speed from the LMS and even SR

algorithms. However, the hard operator on the residuals makes the analysis significantly

more difficult than the LMS and SR algorithms. To obtain the desired results, we shall need

slightly stronger conditions than was used for the SR algorithm.

A 3.1. The system parameter process αn is a discrete-time homogeneous Markov chain with

state space M = {a1, a2, . . . , am0}, ai ∈ Rr. In addition, there exists a small ε > 0 such that

the transition probability matrix of αn is given by

P ε = I + εQ (3.2)

where I is the m0-dimensional identity matrix and Q = (qi,j) ∈ Rm0×m0 is an irreducible gen-

erator of a continuous-time Markov chain, meaning that qi,j ≥ 0 for i 6= j and
∑m0

j=1 qi,j = 0

for all i. The initial distribution π0 = [P{α0 = a1},P{α0 = a2}, . . . ,P{α0 = am0}] is inde-

pendent of ε.

A 3.2. The sequence of signals {(ϕn, en)} is stationary and independent of the parameter

process {αn}. The input signals {ϕn} are taken to be uniformly bounded and {ek} is zero-

mean. Let Fn be the σ-algebra generated by {(ϕj, ej), αj : j < n;αn}, and denote the

conditional expectation with respect to Fn by En.
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A 3.3. For each i = 1, . . . ,m0, define

gn
∆
= ϕnsgn(ϕ′n[αn − θn] + en)

gn(θ, i)
∆
= ϕnsgn(ϕ′n[ai − θ] + en)I{αn=ai}

g̃n(θ, i)
∆
= Engn(θ, i)

(3.3)

A 3.4. For each n and i, there is an A
(i)
n ∈ Rr×r such that given αn = ai,

g̃n(θ, i) = A(i)
n (ai − θ)I{αn=ai} + o(|ai − θ|I{αn=ai})

EA(i)
n = A(i)

(3.4)

Remark 3.1. Let us take a moment to justify the practicality of the assumptions. A3.1 is

exactly the same as in Chapter 2, characterizing the transition of the Markovian parameters.

A3.2 is similar to that in Chapter 2. However, the boundedness assumption is only on the

input signals {ϕn}, leaving the error signals {en} to be quite general (e.g., Gaussian, etc.).

This is facilitated by the natural truncation on the error by the sign-operator (|sgn(ϕ′nαn +

en)| ≤ 1). As for the boundedness assumption on ϕn, it can be removed by using a truncation

device as outlined in the beginning of Chapter 2. Moreover, one may also accommodate

unbounded random inputs by assuming them to be a martingale difference sequence; for

example, see the treatment in [26]. In fact, the analysis is easier because the signals are

uncorrelated. In A3.3, we consider that while gn(θ, i) is not smooth w.r.t. θ, its conditional

expectation g̃n(θ, i) can be a smooth function of θ. The condition (3.4) indicates that g̃n(θ, i)

is locally (near ai) linearizable. For example, this is satisfied if the conditional joint density of

(ϕn, en) with respect to {ϕj, ej, j < n, ϕn} is differentiable with bounded derivatives; see [33]

for more discussion. Finally, A3.4 is essentially a mixing condition which indicates that the

remote past and distant future are asymptotically independent. Hence we may work with

correlated signals as long as the correlation decays sufficiently quickly between iterates.
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3.1 Mean Squares Error Bounds

With the stronger assumptions, we can obtain the same error bound as in Chapter 2. Here

we define θ̃n := αn − θn (the negation of the error sequence of Chapter 2) to more easily

facilitate the analysis on the residuals yn − ϕ′nθn .

Theorem 3.2. Assume A3.1 – A3.4 . Then there is an Nµ,ε > 0 such that for all n ≥ Nµ,

E|θ̃n|2 = E|αn − θn|2 = O
(
µ+ ε+ ε2/µ

)
. (3.5)

Proof. As before, define V (x) = (x′x)/2. Observe that

θ̃n+1 = αn+1 − θn+1 = θ̃n − µϕnsgn(ϕ′nθ̃n + en) + (αn+1 − αn), (3.6)

so
EnV (θ̃n+1)− V (θ̃n) = Enθ̃

′
n[(αn+1 − αn)− µϕnsgn(ϕ′nθ̃n + en)]

+En|(αn+1 − αn)− µϕnsgn(ϕ′nθ̃n + en)|2.
(3.7)

By A3.2, the Markov chain αn is independent of (ϕn, en) and I{αn=ai} is Fn-measurable.

Since the transition matrix is of the form P ε = I + εQ, we obtain

En(αn+1 − αn) =

m0∑
i=1

En(αn+1 − ai
∣∣∣αn = ai)I{αn=ai}

=

m0∑
i=1

[ m0∑
j=1

aj(δij + εqij)− ai
]
I{αn=ai}

= O(ε).

(3.8)

Similarly,

En|αn+1 − αn|2

=
∑m0

j=1

∑m0

i=1 |aj − ai|2I{αn=ai}P (αn+1 = aj|αn = ai)

=
∑m0

j=1

∑m0

i=1 |aj − ai|2I{αn=ai}(δij + εqij) = O(ε).

(3.9)
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Note that |θ̃n| = |θ̃n| · 1 ≤ (|θ̃n|2 + 1)/2, so

O(ε)|θ̃n| ≤ O(ε)(V (θ̃n) + 1). (3.10)

Since the signals {(ϕn, en)} are bounded, we have

En|(αn+1 − αn)− µϕnsgn(ϕ′nθ̃n + en)|2

= En|αn+1 − αn|2 +O(µ2 + µε)[V (θ̃n) + 1)
(3.11)

Applying (3.11) to (3.7), we arrive at

EnV (θ̃n+1)− V (θ̃n)

= −µEnθ̃′nϕnsgn(ϕ′nθ̃n + en) + Enθ̃
′
n(αn+1 − αn)

+En|αn+1 − αn|2 +O(µ2 + µε)[V (θ̃n) + 1]

(3.12)

Note also that by A3.3,

µEnθ̃
′
nϕnsgn(ϕ′nθ̃n + en)

= µ

m0∑
i=1

Enθ̃
′
nϕnsgn(ϕ′nθ̃n + en)I{αn=ai}

= µ

m0∑
i=1

Enθ̃
′
nA

(i)
n θ̃nI{αn=ai} + µo(θ̃n)

= µ

m0∑
i=1

θ̃′n[A(i)
n − A(i)]θ̃nI{αn=ai}

+µ

m0∑
i=1

θ̃′nA
(i)θ̃nI{αn=ai} + µo(θ̃n).

(3.13)

To treat the first three terms in (3.12), we define the following perturbed Lypunov func-
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tions by

V µ
1 (θ̃, n)

∆
=
∞∑
j=n

m0∑
i=1

−µEnθ̃′[A(i)
j − A(i)]θ̃I{αj=ai}

V µ
2 (θ̃, n)

∆
=
∞∑
j=n

θ̃′En(αj+1 − αj)

V µ
3 (n)

∆
=
∞∑
j=n

En(αn+1 − αn)′(αj+1 − αj)

(3.14)

By virtue of A3.4, we have

|V µ
1 (θ̃, n)| ≤ µ

m0∑
i=1

K|θ̃|2
∞∑
j=n

φ1/2(j − n) ≤ O(µ)[V (θ̃) + 1] (3.15)

As noted in Chapter 2, the irreducibility of Q implies that of I + εQ for sufficiently small

ε > 0. Thus there is an Nε such that for all n ≥ Nε, |(I + εQ)k − 1lνε| ≤ λkc for some

0 < λc < 1, where νε denotes the stationary distribution associated with the transition

matrix I + εQ. Then the difference of the j + 1 − n and j − n step transition matrices is

given by

(I + εQ)j+1−n − (I + εQ)j−n

= [(I + εQ)− I](I + εQ)j−n

= [(I + εQ)− I][(I + εQ)j−n − 1lνε] + [(I + εQ)− I]1lνε

= (εQ)[(I + εQ)j−n − 1lνε].

The last line above follows from the fact Q1l = 0, hence [(I + εQ)− I]1lνε = 0. Thus

∞∑
j=n

|I + εQ)j+1−n − (I + εQ)j−n| ≤ O(ε)
∞∑
j=n

λj−nc = O(ε). (3.16)

The forgoing estimates lead to
∑∞

j=nEn(αj+1 − αj) = O(ε) and as a result

|V µ
2 (θ̃, n)| ≤ O(ε)(V (θ̃) + 1). (3.17)
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and similarly

|V µ
3 (n)| = O(ε), (3.18)

so all the perturbations can be made small.

Now, we note that

EnV
µ

1 (θ̃n+1, n+ 1)− V µ
1 (θ̃n, n)

= EnV
µ

1 (θ̃n+1, n+ 1)− EnV µ
1 (θ̃n, n+ 1)

+EnV
µ

1 (θ̃n, n+ 1)− V µ
n (θ̃n, n).

(3.19)

where

EnV
µ

1 (θ̃n, n+ 1)− V µ
1 (θ̃n, n)

= µ

m0∑
i=1

θ̃′n[A(i)
n − A(i)]θ̃nI{αn=ai},

(3.20)

and

EnV
µ

1 (θ̃n+1, n+ 1)− EnV µ
1 (θ̃n, n+ 1)

= µ
∞∑

j=n+1

m0∑
i=1

En(θ̃n+1 − θ̃n)′[A
(i)
j − A(i)]θ̃n+1I{αn=ai}

+µ
∞∑

j=n+1

m0∑
i=1

Enθ̃
′
n[A

(i)
j − A(i)](θ̃n+1 − θ̃n)I{αn=ai}.

(3.21)

Using (3.8), we have

En|θ̃n+1 − θ̃n| ≤ En|αn+1 − αn|+ µEn|ϕnsgn(ϕ′nθ̃n + en)|
≤ O(ε+ µ).

(3.22)

Thus, in view of A3.4

∣∣∣µ∑∞j=n+1

∑m0

i=1 Enθ̃
′
nEn+1[A

(i)
j − A(i)](θ̃n+1 − θ̃n)I{αn=ai}

∣∣∣
≤ O(µ2 + µε)[V (θ̃n) + 1],

(3.23)

and ∣∣∣µ ∞∑
j=n+1

m0∑
i=1

En(θ̃n+1 − θ̃n)′En+1[A
(i)
j − A(i)]θ̃n+1I{αn=ai}

∣∣∣
≤ O(µ2 + µε)[V (θ̃n) + 1].

(3.24)
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Putting together (3.19)–(3.24), we establish that

EnV
µ

1 (θ̃n+1, n+ 1)− V µ
1 (θ̃n, n) =

µ

m0∑
i=1

Enθ̃
′
n[A

(i)
j − A(i)]θ̃nI{αn=ai} +O(µ2 + µε)[V (θ̃n) + 1].

(3.25)

Likewise, we can obtain

EnV
µ

2 (θ̃n+1, n+ 1)− V µ
2 (θ̃n, n)

= −Enθ̃′n(αn+1 − αn) +O(ε2 + µ2)
(3.26)

and

EnV
µ

3 (n+ 1)− V µ
3 (n) = −En|αn+1 − αn|2 +O(ε2). (3.27)

Now we define

W (θ̃, n) = V (θ̃) + V µ
1 (θ̃, n) + V µ

2 (θ̃, n) + V µ
3 (n).

Since each A(i) is a stable matrix there is a λ > 0 such that θ̃′A(i)θ̃ ≥ λV (θ̃) for each i. Thus

we may take λ such that −µ
∑m0

i=1 θ̃
′A(i)θ̃I{αn=ai} − µO(θ̃) ≤ −λµV (θ̃). Using this along

with (3.7), (3.13), (3.25)–(3.27), and the inequality O(µε) = O(µ2 + ε2), we arrive at

EnW (θ̃n+1, n+ 1)−W (θ̃n, n)

= −µ
m0∑
i=1

θ̃′nA
(i)θ̃nI{αn=ai} − µO(θ̃n) +O(µ2 + ε2)[V (θ̃n) + 1]

≤ −λµV (θ̃n) +O(µ2 + ε2)[V (θ̃n) + 1]

≤ −λµW (θ̃n, n) +O(µ2 + ε2)[W (θ̃n, n) + 1].

(3.28)

Choose µ and ε small enough so that there is a λ0 > 0 satisfying λ0 ≤ λ and

−λµ+O(µ2) +O(ε2) ≤ −λ0µ.
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Then we obtain

EnW (θ̃n+1, n+ 1) ≤ (1− λ0µ)W (θ̃n, n) +O(µ2 + ε2).

Note that there is an Nµ > 0 such that (1− λ0µ)n ≤ O(µ) for n ≥ Nµ. Taking expectation

in the iteration for W (θ̃n, n) and iterating on the resulting inequality yield

EW (θ̃n+1, n+ 1) ≤ (1− λ0µ)nW (θ̃0, 0) +O
(
µ+ ε2/µ

)
.

Thus

EW (θ̃n+1, n+ 1) ≤ O(µ+ ε2/µ).

Finally, applying (3.15)–(3.18) again, we also obtain

EV (θ̃n+1) ≤ O(µ+ ε+ ε2/µ).

Thus the bound is established for µ and ε sufficiently small and n ≥ max{Nµ, Nε} = Nµ,ε.

2

3.2 Convergence Properties

As in Chapter 2, we investigate the limit of the estimate-parameter pair (θn, αn) in three

cases: ε = O(µ), ε � µ, and ε � µ. We again interpolate the discrete processes to

continuous time as follows for the analysis.

θµ(t)
∆
= θn, αµ(t)

∆
= αn for t ∈ [nµ, nµ+ µ) . (3.29)

On-Line: ε = O(µ)

Beginning with the case ε = O(µ), we have the following result.
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Theorem 3.3. Let ε = O(µ) and assume A3.1 – A3.4. Then (θµ(·), αµ(·)) w−→ (θ(·), α(·))

such that α(·) is a continuous-time Markov chain with generator Q and θ(·) satisfies the

Markov-switched ODE

d

dt
θ(t) = A(α(t)) (α(t)− θ(t)) , θ(0) = θ0 (3.30)

To obtain the limit we use the same techniques presented in Chapter 2. We begin by

employing the truncation device qN(·) bound the estimates. Define

θNn+1 := θNn + µϕnsgn(yn − ϕ′nθNn )qN(θNn ), n = 0, 1, . . . ,

θN,µ(t) := θNn for t ∈ [µn, µn+ µ).
(3.31)

As before, we begin by showing the limit is tight so as to extract a weakly convergent

subsequence.

Lemma 3.4. The sequence (θN,µ(·), αµ(·)) is tight in D([0,∞) : Rr ×M).

Proof. By [31, Theorem 4.3], αµ(·) is tight. As for θN,µ(·), we use the criterion given in [20,

p.47]. With slight abuse of notation, denote Fµt the σ-algebra generated by {(ϕj, ej) : j ≤

t/µ} and Eµ
t the respective conditional expectation. Then for any δ > 0, and t, s > 0

satisfying s ≤ δ,

Eµ
t

∣∣∣θN,µ(t+ s)− θN,µ(t)
∣∣∣2

≤ Eµ
t

∣∣∣µ∑(t+s)/µ−1
k=t/µ ϕksgn(yk − ϕ′kθNk )qN(θNk )

∣∣∣2
≤ µ2Eµ

t

∑(t+s)/µ−1
j=t/µ

∑(t+s)/µ−1
k=t/µ ϕ′jϕksgn(yj − ϕ′jθNj )qN(θNj )

×sgn(yk − ϕ′kθNk )qN(θNk )

≤ µ2
∑(t+s)/µ−1

j=t/µ

∑(t+s)/µ−1
k=t/µ Ek

∣∣∣ϕj∣∣∣2Ek∣∣∣ϕk∣∣∣2
≤ O(s2) ≤ O(δ2)

(3.32)
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uniformly in µ. Then

lim
δ→0

lim sup
µ→0

{
sup

0≤s≤δ
E[Eµ

t

∣∣∣θN,µ(t+ s)− θN,µ(t)
∣∣∣2]
}

= 0,

which establishes the criterion. 2

Since (θN,µ(·), αµ(·)) is tight, by Prohorov’s theorem,we can extract a weakly convergence

subsequence. Select such a subsequence and still denote it by (θN,µ(·), αµ(·)) for notational

simplicity, and write (θN(·), α(·)) for the limit. We characterize the limit with the following

lemma.

Lemma 3.5. The sequence (θN,µ(·), αµ(·)) w−→ (θN(·), α(·)) which solves the martingale

problem with operator

LN1 f(θN , ai) := ∇f ′(θN , ai)A(i)[ai − θN ]qN(θN) +

m0∑
j=1

qijf(θN , aj), (3.33)

where for each i ∈M, f(·, i) ∈ C1
0 .

Proof. While the technique is similar to that in Chapter 2, the details become more compli-

cated because of the non-linear operation on the residuals in the SE algorithm. As before, to

derive the martingale limit we show that for the C1 function with compact support f(·, i),

for each bounded and continuous function h(·), each t, s > 0, each positive integer κ, and

each ti ≤ t for i ≤ κ,

Eh(θN(ti), α(ti) : i ≤ κ)
[
f(θN(t+ s), α(t+ s))− f(θN(t), α(t))−

∫ t+s
t
LN1 f(θN(τ), α(τ))dτ

]
= 0.

(3.34)

We shall use the notation hN,µ
∆
= h(θN,µ(ti), α

µ(ti) : i ≤ κ) and hN
∆
= h(θN(ti), α(ti) : i ≤ κ).

Since f(·, i) is smooth,

lim
µ→0

EhN,µ
[
f(θN,µ(t+ s), αµ(t+ s))− f(θN,µ(t), αµ(t))

]
= EhN

[
f(θN(t+ s), α(t+ s))− f(θN(t), α(t))

]
.

(3.35)
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We use

θN,µ(t+ s)− θN,µ(t) =

(t+s)/µ−1∑
k=t/µ

µϕksgn(ϕ′k[αk − θk] + ek)q
N(θNk ) (3.36)

to see that

lim
µ→0

EhN,µ[f(θN,µ(t+ s), αµ(t+ s))− f(θN,µ(t), αµ(t))]

= lim
µ→0

EhN,µ
[ t+s∑
lδµ=t

[f(θNlmµ+mµ , αlmµ+mµ)− f(θNlmµ , αlmµ)]
]

= lim
µ→0

EhN,µ
[ t+s∑
lδµ=t

[f(θNlmµ+mµ , αlmµ+mµ)− f(θNlmµ+mµ , αlmµ)]

+
t+s∑
lδµ=t

[f(θNlmµ+mµ , αlmµ)− f(θNlmµ , αlmµ)]
]
.

(3.37)

Working with the last term in (3.37) we use the Taylor expansion to obtain

limµ→0 EhN,µ
[∑t+s

lδµ=t[f(θNlmµ+mµ
, αlmµ)− f(θNlmµ , αlmµ)]

]
= lim

µ→0
EhN,µ

t+s∑
lδµ=t

[
δµ

1

mµ

lmµ+mµ−1∑
k=lmµ

∇θf(θNlmµ , αlmµ)ϕksgn(ϕ′k(αk − θNk ) + ek)q
N(θNk )

+

lmµ+µ−1∑
k=lmµ

[∇θf(θN,+lmµ
, αlmµ)−∇θf(θNlmµ , αlmµ)](θNk+1 − θNk )qN(θNk )

]
.

(3.38)

where θN,+lmµ
is a point on the line segment joining θNlmµ and θNlmµ+mµ

. Since |θNlmµ+mµ
− θNlmµ | =

O(δµ) and∇θf(·, i) is smooth, we have the last term in (3.38) is o(1) in the sense of probability

as µ → 0. To work with the first term we insert the conditional expectation Ek and apply

(3.4) to obtain

lim
µ→0

EhN,µ
t+s∑
lδµ=t

δµ
1

mµ

lmµ+mµ−1∑
k=lmµ

∇θf(θNlmµ , αlmµ)Ek[ϕ
′
ksgn(ϕ′k(αk − θNk ) + ek)]q

N(θNk )

= lim
µ→0

EhN,µ
t+s∑
lδµ=t

m0∑
j=1

δµ
1

mµ

lmµ+mµ−1∑
k=lmµ

∇f ′(θNlmµ , αlmµ)

×
[
A

(j)
k (aj − θNk ) + o(|αk − θNk |)

]
qN(θNk )I{αk=aj}.

(3.39)
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Then

E 1
mµ

∑lmµ+mµ−1
k=lmµ

∇f ′(θNlmµ , αlmµ)o(|αk − θNk |) ≤ KE|αlmµ − θlmµ| = O(µ1/2). (3.40)

Letting µlmµ → τ , then by (3.4),

lim
µ→0

EhN,µ
t+s∑
lδµ=t

m0∑
j=1

δµ
mµ

lmµ+mµ−1∑
k=lmµ

[
∇f ′(θNlmµ , αlmµ)A

(j)
k (aj − θNk )qN(θNk )I{αk=aj}

]
= lim

µ→0
EhN,µ

t+s∑
lδµ=t

m0∑
j=1

δµ
mµ

lmµ+mµ−1∑
k=lmµ

∇f ′(θNlmµ , αlmµ)
[
A(j)(aj − θNk )

+[A
(j)
k − A(j)](aj − θNk )

]
qN(θNk )I{αk=aj}

= lim
µ→0

EhN,µ
t+s∑
lδµ=t

m0∑
j=1

δµ∇f ′(θNlmµ , αlmµ)
1

mµ

lmµ+mµ−1∑
k=lmµ

A(j)(aj − θNk )qN(θNk )I{αk=aj}

= EhN
∫ t+s
t
∇f ′(θN(τ), α(τ))A(α(τ))[α(τ)− θN(τ)]qN(τ)dτ.

(3.41)

In a similar fashion, we obtain

lim
µ→0

EhN,µ
t+s∑
lδµ=t

[f(θNlmµ+mµ , αlmµ+mµ)− f(θNlmµ+mµ , αlmµ)]

= EhN
[ ∫ t+s

t

Qf(θN(τ), α(τ))dτ
]
.

(3.42)

Combining the above we verify ((3.34)), establishing the result of the lemma. 2

Proof of Theorem 3.3. With Lemma 3.5, we have the truncated sequence θN(·) satisfies the

switched ODE θ̇N(t) = A(α(t))[α(t)− θN(t)qN(t)], θ(0) = θ0. Letting N →∞, showing that

the limit of the untruncated sequence θ(·) is the same as the limit of θN(·) as N →∞ follows

the same as the analogue in Chapter 2. The Theorem 3.3 follows. 2

Slower Markov Chain: ε� µ

In the case ε� µ, the limit is again characterized by the initial distribution π0 of α0.
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Theorem 3.6. Let ε = µ1+η for 0 < η ≤ 1 and assume A3.1 – A3.4. Then θµ(·) w−→ θ(·)

such that θ(·) is the solution to the ODE

d

dt
θ(t) =

m0∑
i=1

A(i) (ai − θ(t)) π0,i, θ(0) = θ0 (3.43)

Proof. We only note the key difference in the proof from the On-Line case ε = µ which

results in the term involving the Markov chain αn in (3.41). We see that

lim
µ→0

Eh(θN,µ(ti), α
µ(ti) : i ≤ κ)

t+s∑
lδµ=t

m0∑
j=1

δµ∇θf(θNlmµ , αlmµ)

lmµ+mµ−1∑
k=lmµ

1

mµ

A(j)ajI{αk=aj}

= lim
µ→0

EhN,µ
t+s∑
lδµ=t

m0∑
j=1

δµ∇θf(θNlmµ , αlmµ)
1

mµ

lmµ+mµ−1∑
k=lmµ

A(j)ajElmµI{αk=aj}

= lim
µ→0

EhN,µ
t+s∑
lδµ=t

m0∑
j=1

δµ∇θf(θNlmµ , αlmµ)
1

mµ

lmµ+mµ−1∑
k=lmµ

m0∑
i1=1

m0∑
i0=1

A(j)ajP (αk = aj|αlmµ = ai1)

×P (αlmµ = ai1 |α0 = ai0)P (α0 = ai0)

= EhN
m0∑
i0=1

∫ t+s

t

∇θf(θ(τ), α(τ))A(i0)ai0P (α0 = ai0)dτ.

(3.44)

where in the last line we use that for lmµ ≤ k ≤ lmµ + mµ since ε = µ1+∆, εlmµ + mµ ≤

µ∆(t+ s) + δµ → 0 as µ→ 0, by Remark 2.3 we have that (P ε)k−lmµ → I and (P ε)lmµ → I

as µ→ 0 . The rest follows as before. 2

Fast Markov Chain: ε� µ

In the case ε� µ, the limit is characterized by the stationary distribution ν associated with

Q.

Theorem 3.7. Let ε = µγ for 1/2 ≤ γ < 1 and assume A3.1 – A3.4. Then θµ(·) w−→ θ(·)

such that θ(·) is the solution to the ODE
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d

dt
θ(t) =

m0∑
i=1

A(i) (ai − θ(t)) νi, θ(0) = θ0 (3.45)

Proof. Here, we exploit that as µlmµ → τ we have ε(k − lmµ) = µγ(k − lmµ) → ∞. Thus

by Remark 2.3 Ξij(εlmµ, εk) = νj +O(ε+ λ
−(k−lmµ)
1 ) for some 0 < λ1 < 1. Thus in (3.41)

lim
µ→0

EhN,µ
t+s∑
lδµ=t

m0∑
j=1

δµ∇f ′(θNlmµ , αlmµ)
1

mµ

lmµ+mµ−1∑
k=lmµ

A(j)ajElmµI{αk=aj}

= EhN
∑m0

j=1

∫ t+s
t
∇θf(θ(τ), α(τ))A(j)ajνjdτ.

(3.46)

The result follows. 2

3.3 Asymptotic Distributions

On-Line: ε = O(µ)

Without loss of generality we take ε = µ in this section. Define the scaled error

un := θ̃n/
√
µ = (αn − θn)/

√
µ. (3.47)

We note that

un+1 = un −
√
µϕnsgn(ϕ′nθ̃n + en) +

αn+1 − αn√
µ

. (3.48)

By Theorem 3.2 there is a Nµ,ε = Nµ such that E|αn − θn|2 = O(µ) for n ≥ Nµ, with which

we can show {un : n ≥ Nµ} is tight. In addition, take Nµ large such that by (3.16), we have

for n ≥ Nµ
∞∑
j=n

En(αj+1 − αj) = O(µ). (3.49)

As in Chapter 2, we would then define the interpolated process as uµ(t) = un for t ∈

[(n −Nµ)µ, (n −Nµ)µ + µ) to use the above bounds. However, we will omit the increment
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shift (taking Nµ = 0 ) to ease the burdensome notation as follows

uµ(t)
∆
= un for t ∈ [nµ, nµ+ µ). (3.50)

As before, a truncation device may be employed to ensure the boundedness of the the scaled

errors un. For notational simplicity, the boundedness will be assumed here. We begin by

establishing the tightness of the sequence {uµ(·)} to ensure the existence of a weak limit.

Lemma 3.8. The sequence {uµ(·)} is tight in D([0,∞);Rr).

Proof. Using (3.48) we see

uµ(t+ s)− uµ(t) = −√µ
(t+s)/µ−1∑
k=t/µ

gk +
α(t+s)/µ − αt/µ√

µ
. (3.51)

Using Eµ
t to denote the conditional expectation with respect to the σ-algebra Fµt =

σ{uµ(τ) : τ ≤ t}, we apply (3.49) to see that

Eµ
t

∣∣∣uµ(t+ s)− uµ(t)
∣∣∣2 ≤ KEµ

t

∣∣∣ (t+s)/µ−1∑
k=t/µ

−√µgk
∣∣∣2 +O(

√
µ) (3.52)

Considering the first term, we observe

Eµ
t

∣∣∣ (t+s)/µ−1∑
k=t/µ

−√µgk
∣∣∣2 =

m0∑
i=1

Eµ
t µ

(t+s)/µ−1∑
k=t/µ

(t+s)/µ−1∑
j=t/µ

g′kgjI{αk=ai=αj}

≤
m0∑
i=1

Eµ
t µ

(t+s)/µ−1∑
k=t/µ

(t+s)/µ−1∑
j=t/µ

[A
(i)
k θ̃k + o(θ̃k)]

′[A
(i)
j θ̃j + o(θ̃j)]I{αk=ai}I{αj=ai}

≤
m0∑
i=1

Eµ
t Kµ

∣∣∣ (t+s)/µ−1∑
k=t/µ

(A
(i)
k − A

(i))θ̃k + o(θ̃k)
∣∣∣2I{αk=ai}

+

m0∑
i=1

Eµ
t Kµ

∣∣∣ (t+s)/µ−1∑
k=t/µ

A(i)θ̃k

∣∣∣2I{αk=ai}.

(3.53)

By virtue of Theorem 3.2 we have E|θ̃k|2 = O(µ) for k ∈ [t/µ, (t + s)/µ) sufficiently large
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(occurring when µ is sufficiently small). Thus in the last term of (3.53) we have

E
m0∑
i=1

Eµ
t Kµ

∣∣∣ (t+s)/µ−1∑
k=t/µ

A(i)θ̃k

∣∣∣2I{αk=ai} ≤ Kµ

m0∑
i=1

E
(t+s)/µ−1∑
k=t/µ

∣∣∣θ̃k∣∣∣2I{αk=ai} ≤ O(µ)s. (3.54)

Applying the mixing inequality in A3.4 to the first term we have

E
m0∑
i=1

Eµ
t Kµ

∣∣∣ (t+s)/µ−1∑
k=t/µ

(A
(i)
k − A

(i))θ̃k + o(θ̃k)
∣∣∣2I{αk=ai}

≤ E
m0∑
i=1

Eµ
t Kµ

(t+s)/µ−1∑
k=t/µ

(t+s)/µ−1∑
j=t/µ

[(A
(i)
k − A

(i))θ̃k]
′[(A

(i)
j − A(i))θ̃j]I{αk=ai=αj}

+Kµ

(t+s)/µ−1∑
k=t/µ

E
∣∣∣θ̃k∣∣∣2

≤ E
m0∑
i=1

Kµ
[
Eµ
t

(t+s)/µ−1∑
k=t/µ

∣∣∣(A(i)
k − A

(i))
√
µuk

∣∣∣∑
j≥k

∣∣∣(A(i)
j − A(i))

√
µuj

∣∣∣]I{αk=ai=αj} +O(µ)s

≤ O(µ)s

(3.55)

Thus for any T <∞ and any 0 ≤ t ≤ T ,

lim
δ→0

lim sup
µ→0

{
sup

0≤s≤δ
E[Eµ

t |uµ(s+ t)− uµ(t)|2]
}

= 0

Applying the criterion [20, p.47] we have that {uµ(·)} is tight. 2

Observe that gk(ai, i) = ϕksgn(ϕ′k[ai − ai] + ek) = ϕksgn(ek), so that gk(ai, i) is a mean

zero mixing process by combination of A3.2 – A3.4. To proceed, we shall make use of the

following variant of the well-known central limit theorem for mixing processes; see [3] or [7]

for details.

We are now equipped to prove the main result.

Theorem 3.9. If ε = O(µ) and under A3.1 – A3.4 uµ(·) w−→ u(·) such that

du = −A(α)udt− Σ̃1/2dw, (3.56)
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where w(·) is a standard Brownian motion and α = α(·) is the continuous-time Markov chain

associated with Q.

Proof. As usual, extract a convergent subsequence of uµ(·) (still denoted by uµ(·)) with limit

u(·). We will show that for each s, t > 0, the limit process satisfies

u(t+ s)− u(t) =

∫ t+s

t

−A(α(τ)u(τ)dτ −
∫ t+s

t

Σ̃1/2dw(τ) (3.57)

Note from (3.51),

uµ(t+ s)− uµ(t) = −√µ
(t+s)/µ−1∑
k=t/µ

gk +O(
√
µ)

=

m0∑
i=1

[−√µ
(t+s)/µ−1∑
k=t/µ

gk]I{αk=ai} +O(
√
µ).

(3.58)

We define
gk(i)

∆
= gkI{αk=ai}, g̃k(i) := Ekgk(i), and

∆k(i)
∆
= [gk(i)− gk(ai, i)− (g̃k(i)− g̃k(ai, i))]

and expand on the (negative of the) inside of the sum indexed by i in (3.58) as

√
µ

(t+s)/µ−1∑
k=t/µ

gk(i)

=

(t+s)/µ−1∑
k=t/µ

√
µgk(ai, i) +

(t+s)/µ−1∑
k=t/µ

√
µ[g̃k(i)− g̃k(ai, i)] +

(t+s)/µ−1∑
k=t/µ

√
µ∆k(i)

=

(t+s)/µ−1∑
k=t/µ

√
µ$k +

(t+s)/µ−1∑
k=t/µ

µ[A
(i)
k uk + o(|uk|)] +

(t+s)/µ−1∑
k=t/µ

√
µ∆k(i).

(3.59)

using g̃k(ai, i) = o(θ̃k) = o(
√
µ|uk|) by A3.3.

First, we show the last term in (3.59) is o(1). Since ∆k(i) is a martingale difference, we
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have

E
∣∣∣ (t+s)/µ−1∑

k=t/µ

√
µ∆k(i)

∣∣∣2 =

(t+s)/µ−1∑
k=t/µ

µ
∣∣∣∆k(i)

∣∣∣2
=

(t+s)/µ−1∑
k=t/µ

µE[gk(i)− gk(ai, i)]′[gk(i)− gk(ai, i)] +

(t+s)/µ−1∑
k=t/µ

µE[g̃k(i)− g̃k(ai, i)]′[g̃k(i)− g̃k(ai, i)].

(3.60)

The boundedness of ϕk and uk implies
√
µϕ′kuk → 0 in probability uniformly in k as µ→ 0.

Hence, the first term in (3.60) has

(t+s)/µ−1∑
k=t/µ

µE[gk(i)− gk(ai, i)]′[gk(i)− gk(ai, i)]

=

(t+s)/µ−1∑
k=t/µ

µEϕ′kϕk[sgn(
√
µϕ′kuk + ek)− sgn(ek)]

2 → 0 as µ→ 0.

(3.61)

Using A3.3 and A3.4, along with the boundedness of uk, on the second term of (3.60) gives

(t+s)/µ−1∑
k=t/µ

µE[g̃k(i)− g̃k(ai, i)]′[g̃k(i)− g̃k(ai, i)]

=

(t+s)/µ−1∑
k=t/µ

µE[
√
µA

(i)
k uk + o(

√
µ|uk|)]′[

√
µA

(i)
k uk + o(

√
µ|uk|)]

=

(t+s)/µ−1∑
k=t/µ

µ2E
∣∣∣(A(i)

k − A
(i))uk + A(i)uk + o(|uk|)

∣∣∣2
≤ µ2K

∞∑
k=t/µ

φ(k − t/µ) + µ2

(t+s)/µ−1∑
k=t/µ

K → 0 as µ→ 0.

(3.62)

Hence

E
(t+s)/µ−1∑
k=t/µ

√
µ∆k(i)→ 0 as µ→ 0.
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Next, in the second term of (3.59) we have

(t+s)/µ−1∑
k=t/µ

µ[A
(i)
k uk + o(|uk|)]

= A(i)

(t+s)/µ−1∑
k=t/µ

µuk +

(t+s)/µ−1∑
k=t/µ

µ(A
(i)
k − A

(i))uk +

(t+s)/µ−1∑
k=t/µ

µo(|uk|).
(3.63)

Similar to the previous section, choose a sequence mµ such that mµ → ∞ as µ → 0 but

δµ/
√
µ =
√
µmµ → 0. Then

(t+s)/µ−1∑
k=t/µ

µuk =
t+s∑
lδµ=t

δµulmµ +
t+s∑
lδµ=t

δµ
1

mµ

lmµ+mµ−1∑
k=lmµ

[uk − ulmµ ]. (3.64)

Since for lmµ ≤ k < lmµ +mµ, uk − ulmµ = O(δµ/
√
µ), so the second term above goes to 0

in probability, uniformly in t. Similarly, by A3.3,

(t+s)/µ−1∑
k=t/µ

µ(A
(i)
k − A

(i))uk =
t+s∑
lδµ=t

δµ
1

mµ

lmµ+mµ−1∑
k=lmµ

(A
(i)
k − A

(i))uk → 0. (3.65)

Likewise,
∑(t+s)/µ−1

k=t/µ µo(|uk|)→ 0 in probability uniformly in t.

Hence, putting the above estimates together we obtain

u(t+ s)− u(t) = lim
µ→0

uµ(t+ s)− uµ(t)

= lim
µ→0

m0∑
i=1

[
− Ai

t+s∑
lδµ=t

δµulmµ

]
I{αk=ai} −

(t+s)/µ−1∑
k=t/µ

√
µ$k

= −
∫ t+s

t

Aα(τ)u(τ)dτ −
∫ t+s

t

Σ̃1/2dw(τ).

(3.66)

The Theorem follows. 2
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Slower Markov Chain: ε� µ

For the case ε� µ, define

α∗ :=

m0∑
i=1

aiπ0,i, vn :=
α∗ − θn√

µ

vµ(t) := vn for t ∈ [(n−Nµ)µ, (n−Nµ)µ+ µ)

A(∗) :=

m0∑
i=1

A(i)π0,i.

Then we have the following.

Theorem 3.10. If ε = µ1+η for some 0 < η ≤ 1 and under A3.1 – A3.4 vµ(·) w−→ v(·) such

that

dv = −A(∗)vdt− Σ̃1/2dw (3.67)

where w(·) is a standard Brownian motion.

Faster Markov Chain: ε� µ

For the case ε� µ, define

ᾱ :=

m0∑
i=1

aiνi zn :=
ᾱ− θn√

µ

zµ(t) := zn for t ∈ [(n−Nµ)µ, (n−Nµ)µ+ µ)

Ā :=

m0∑
i=1

A(i)νi.

Theorem 3.11. If ε = µγ for some 1/2 ≤ γ < 1 and under A3.1 – A3.4 zµ(·) w−→ z(·) such

that

dz = −Āzdt− Σ̃1/2dw (3.68)
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where w(·) is a standard Brownian motion.

3.4 Numerical Experiments

Here we demonstrate the performance of the Sign-Error (SE) algorithms and compare it

with the Sign-Regressor (SR) and Least Mean Squares (LMS) algorithms (see [28, 29], re-

spectively). In contrast to the prior studies, the θn now is a Markov chain. For example,

in [2] only slowly varying continuous signals were treated; the sign algorithms were proposed

in [11] but only for a constant parameter; only slow Markov chains and adaptive stepsize

algorithms were treated in [17]. Here, to highlight the multi-scale features, we treat three

cases: ε = (3/5)µ (ε = O(µ)); ε = µ2 (a slowly-varying Markov chain); and ε =
√
µ (a fast

Markov chain). We fix the step size µ = .05.

3.4.1 Matched Model

Here we observe an exactly matched model as in the problem formulation; that is, yn =

ϕ′nαn + en. For ease of observation we take the regressors to be one-dimensional such that

{ϕn} and {en} are i.i.d. N (0, 1) and N (0, .25), respectively. For the Markov chain αn we

use state space M = {−1, 0, 1} with transition matrix P ε = I + εQ, where

Q =


−0.6 0.4 0.2

0.2 −0.5 0.3

0.4 0.1 −0.5


is the generator of a continuous-time Markov chain whose stationary distribution is therefore

ν = (1/3, 1/3, 1/3). Hence α =
∑3

i=1 aiνi = 0. We take the initial distribution for α0 to be

(3/4, 1/8, 1/8). So α∗ =
∑3

i=1 aiP (α0 = ai) = −0.625. We proceed to observe 1000 iterations

of the algorithm for the cases ε = O(µ) and ε� µ, and 10, 000 iterations for the case ε� µ

(in order to illustrate some variations of the parameter).

To observe the tracking behavior of the SE algorithm, in comparison to the SR and LMS
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Figure 1: Adaptive filtering with On-Line Markovian parameter ε = O(µ)

algorithms, we overlay the respective plots for each case. When ε = O(µ), the LMS and

SR estimates tend to be approximately equal, while the SE estimates show more deviations

from the other estimates. The SE algorithm responds to changes in the parameter more

quickly, while the LMS and SR algorithms adhere to the parameter more closely while it is

stationary. In the ε� µ case, we see this behavior repeated. While all three estimates track

the parameter closely, the LMS and SR estimates deviate from the parameter less than the

SE estimates between jumps of the parameter.

In the ε � µ case, none of the algorithms can track the parameter at each iterate very

well. However, when we observe the scaled error against the stationary distribution of the

Markov chain zn, the diffusion behavior is displayed. Examining the cumulative average of
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Figure 2: Adaptive filtering with Slower Markovian parameter ε� O(µ)

the parameter and the estimates of the iterates, we note that the parameter average quickly

converges to ᾱ. The LMS and SR estimate averages adhere closely to the parameter average,

while the SE estimate average deviates slightly more.

3.4.2 Impact of Unmodeled Dynamics

We simulate the impact of unmodeled dynamics on the performance of the Sign-Error

algorithm in the Markovian setting. We take the system given by yn = ϕ′nαn + en =

ϕ̌′nα̌n + ϕ̃′nα̃n + en, where ϕ̌n, α̌n are the modeled parts of the regressors and parameters

respectively, and ϕ̃n, α̃n are the unmodeled parts. We take ϕn i.i.d. 7-dimensional N (3, 1),

with modeled part ϕ̌n 4-dimensional, and errors en ∼ N (0, .25) as before. For the Markov
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chain we take state space M = {−ρ,0, ρ} where ρ = [1, 2−1, . . . , 2−6] ∈ R7. The transition

matrix P ε = I + εQ is as before, as well as the initial and stationary distributions.

We examine the SE algorithm for computing estimates θn, using the modeled part of

the regressors ϕ̌n to track the modeled part of the parameter α̌n. More explicitly, θn+1 =

θn + ϕ̌nsgn(yn − ϕ̌′nθn) ∈ R4. In Figure 6 we examine the norm difference between the

modeled part of the parameter and the estimates |α̌n− θn| for ε = O(µ). In Figure 7 we see

convergence in distribution by examining the average of the modeled part of the parameters

¯̌αn up to time n and similarly for the estimates θ̄n (still for ε = O(µ)). In Figure 8 we

examine the difference of the time-averaged estimates θ̄n and (modeled) parameters ¯̌αn from

the modeled part of the stationary mean ˇ̄α for the fast-varying case ε� µ.
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Figure 7: Average difference | ¯̌αn − θ̄n| over time for ε = O(µ).

We note that with the influence of the unmodeled dynamics (of order 2−4) against stochas-

tic regressors of nonzero mean (order 3), there is a resulting bias in the residuals of order

3/24 ≈ 0.2. While the individual estimates vary slightly more in Figure 6, we see conver-

gence within the unmodelled bias of order 0.2 in Figure 7. Similarly, in Figure 8 we observe

convergence of both the estimates and parameters to the stationary mean within the 0.2

unmodeled bias.
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4 Noise Attenuation with Unmodeled Dynamics

As demonstrated in the numerical experiments of the previous chapter, a mismatched model

results in larger deviation from the limit. For example, oftentimes the output signal yt is in

fact a combination of all the previous input signals xt; that is yt =
∑n

j=0 xt−jαj known as

an Infinite Impulse Response (IIR). However, in applications one must assume some finite

model order n, that is yt =
∑∞

j=0 xt−jαj (Finite Impulse Response, FIR) and then applies

an adaptive filtering algorithm such as in Chapters 2, 3 to estimate the underlying system

parameters. The difference between the actual order of the system and the modeled order of

the system introduces bias in the estimates due to the unmodeled dynamics. For tractability,
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one assumes some bound ρn on the unmodeled bias which decays as the modeled order n

increases. It is therefore desirable to employ filtering algorithms which are robust against

the worst-case ρn for the unmodeled dynamics.

In what follows we develop such a robust filtering scheme for a regulation problem with

a linear time-invariant (LTI) plant. The procedure is adaptive in nature, as it first estimates

the noise for N steps, and then applies a control to attenuate the noise. We then analyze

the impact of unmodeled dynamics and noise estimation errors by deriving error bounds,

establishing a measure of robustness for the algorithm.

4.1 Motivation and Development

4.1.1 Linear Regulator Problem

Consider a regulation problem under the linear time invariant (LTI) plant P and controller

F in Figure 9. The goal is to control the output x to follow the constant reference value xr.

However, the system output is influenced by stochastic disturbance d. Since the system is

LTI, the output can be expressed in its transfer function form as

X(z) =
F (z)P (z)

1 + F (z)P (z)
Xr(z) +

1

1 + F (z)P (z)
D(z)

= U(z) +
1

1 + F (z)P (z)
D(z),

where the systems are represented by their z-transfer functions and the signals by their z

transforms, and U(z) = F (z)P (z)
1+F (z)P (z)

Xr(z). x is measured. Denote yk = xk − xr. Since xk is

measured and xr is known, yk is also a measured signal. Then

Y (z) = (U(z)−Xr(z)) +
1

1 + F (z)P (z)
D(z).

We note the first term is deterministic and the second term is stochastic.
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x + xref 

Figure 9: The original regulation problem

If the controller F is stabilizing and the system is at least of type 1 (including at least

one integrator in the forward path), then the first term converges to zero exponentially fast.

Since this is a very fast transient and our interest here is in noise rejection in a persistent

sense, we will mandate a stabilizing controller in our design and then ignore this term in our

analysis on noise attenuation. As a result, we will focus on

Y (z) =
1

1 + F (z)P (z)
D(z),

which can be represented by the diagram in Figure 10. Our goal is to attenuate the impact

of the noise d on the output y. For simplicity, assume that P is an exponentially stable

system.

F 

P 

d 

y 

Figure 10: A basic feedback configuration for noise attenuation

Since the transfer function P (z) is exponentially stable, we may represent it by a finite

impulse response (FIR) filter P0(z) (the modeled part), plus an unmodeled dynamics δ:
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P (z) = P0(z) + δ(z). More precisely,

P (z) = p0 + p1z
−1 + · · ·+ pnz

−n + δ(z) (4.1)

where δ(z) =
∞∑

j=n+1

pjz
−j and

∞∑
j=n+1

|pj| ≤ ρn. Due to exponential stability, |ρn| ≤ κλn for

some κ > 0 and 0 < λ < 1, namely, it is an exponentially decaying function with respect to n.

An immediate implication of this is that for a given required bound ρ on the modeling error,

a model order n (model complexity) can be pre-determined such that ρn ≤ ρ. In subsequent

results, all bounds due to unmodeled dynamics should be interpreted as a function of model

complexity n.

The following parametrization of stabilizing controllers is known as the Youla parametriza-

tion. In the special case of stable plants, it is called Q parametrization [9, 10].

Let S represent the space of exponentially stable systems. For internal stability, the

closed-loop systems 1
1+FP

, F
1+FP

, P
1+FP

, FP
1+FP

must all be (exponentially) stable; that is,

belong to S. Denote:

Q =
F

1 + FP
∈ S. (4.2)

Since P ∈ S, if Q ∈ S, we have PQ = FP
1+FP

∈ S, so 1
1+FP

= 1 − FP
1+FP

∈ S, and

hence P
1+FP

∈ S.

Thus, the stability requirement is satisfied if we choose Q ∈ S and design F = Q
1−QP .

This implies that F in Figure 10 can be implemented by using this Q parametrization, shown

in Figure 11. Note that a positive feedback is used due to the presence of 1 − QP in the

expression for F .

Let Y (z) and D(z) be the Laplace transforms of the output y and disturbance d respec-
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Figure 11: Feedback controller using the Q parameterization

tively. Then we have

Y (z) =
1

1 + FP
D(z) =

(
1− FP

1 + FP

)
D(z) = (1−QP )D(z).

Let W (z) = P (z)D(z). Then Y (z) = D(z)−QW (z). From

D(z) = d0 + d1z
−1 + · · · ; W (z) = w0 + w1z

−1 + · · ·

we obtain the recursive representation

yk = dk −Q ∗ wk.

Suppose that Q is an FIR of order m. Then

yk = dk − (q0wk + q1wk−1 + · · ·+ qmwk−m)

= dk − [wk, wk−1, . . . , wk−m][q0, q1, . . . , qm]′

= dk − φ′kθ,

(4.3)
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with φ′k = [wk, wk−1, . . . , wk−m]. Note that

wk =
∞∑
j=0

pjdk−j =
n∑
j=0

pjdk−j +
∞∑

j=n+1

pjdk−j

= [dk, dk−1, . . . , dk−n]p+ [dk−(n+1), . . .]p
∗

= ψ′kp+ ψ̃′kp
∗

(4.4)

where p = [p0, . . . , pn]′ represents the modeled part of the plant and p∗ = [pn+1, pn+2, . . .]
′

represents the unmodeled dynamics, and ψ′k = [dk, dk−1, . . . , dk−n], ψ̃′k = [dk−(n+1), . . .]. We

now introduce the following assumption to aid with the error analysis.

A 4.1. (1) dk is estimated by d̂k = dk + ek. ek is stationary, Eek = 0, Ee2
k ≤ σ2 <∞.

(2) The modeled part p is known. The unmodeled dynamics p∗ has a uniform norm bound

ρn.

Remark 4.1 (Signal Expansions). Using Assumption A4.1, we can expand

ψ̂′k = [d̂k, d̂k−1, . . . , d̂k−n] = [dk + ek, dk−1 + ek−1, . . . , dk−n + ek−n] = ψ′k + ξ′k (4.5)

where ξ′k = [ek, ek−1, . . . , ek−n]. Thus we can write

wk = ψ′kp+ ψ̃′kp
∗ = ψ̂′kp− ξ′kp+ ψ̃′kp

∗ = ŵk + ε̃k, (4.6)

where

ŵk = ψ̂′kp, ε̃k = −ξ′kp+ ψ̃′kp
∗. (4.7)
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As a result we have the decomposition

yk = dk − [wk, wk−1, . . . , wk−m][q0, q1, . . . , qm]′

= d̂k − ek − [ŵk + ε̃k, ŵk−1 + ε̃k−1, . . . , ŵk−m + ε̃k−m][q0, q1, . . . , qm]′

= d̂k − ek − φ̂′kθ − ζ ′kθ,

where φ̂′k = [ŵk, ŵk−1, . . . , ŵk−m] and ζ ′k = [ε̃k, ε̃k−1, . . . , ε̃k−m]. For estimation, after N

observations the available regression data are

D̂N =


d̂1

...

d̂N

 ; Φ̂N =


φ̂′1
...

φ̂′N

 .

In a nominal system based design procedure, the control parameter Q is then designed by

θN =
(

Φ̂′N Φ̂N

)−1

Φ̂′ND̂N .

If we define

ΦN =


φ′1
...

φ′N

 ; ΞN =


ζ ′1
...

ζ ′N

 ; EN =


e1

...

eN


then

ΦN = Φ̂N + ΞN (4.8)
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and

YN = D̂N − EN − Φ̂Nθ − ΞNθ. (4.9)

The above calculations and expansions will be used in the error analysis.

4.1.2 Two-Phase Signal Estimation and Noise Rejection

We now discuss the signal estimation aspect of our noise attenuation scheme. In keeping

with the adaptive filtering theme of this work, we note that in the above the control shall

be defined and measured by estimates of the disturbances dk. However, even though yk is

measured, dk is not usually directly available. We proceed to explain why certain signals

can be approximately extracted for control design.

After a controller F is (successfully) designed and implemented, the output yk = xk− xr

will be small due to the rejection of disturbance by the feedback system. In this case yk will

have (nearly) no information which can be utilized for the control design. We shall call this

phase the “noise rejection phase”.

Before such a control is implemented, suppose that the disturbance dk is stationary and

its power spectrum density is limited in certain frequency bands. Then there exists an open-

loop causal and stable filter H(z) such that H(z)D(z) ≈ 0 (i.e. H(z) is an annihilating filter

for dk). If such a filter is inserted into the feedback loop in Figure 10 for a period of time,

shown in Figure 12, the plant output vk will be V (z) = FP
1+FPH

HD ≈ 0. Therefore during

this phase, the signal dk can be estimated by yk ≈ dk. Thus in the subsequent control design,

we should use the available signal

yk = d̂k = dk + ek (4.10)
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where d̂k is an estimate of dk with estimation error ek. We shall call this phase the “signal

estimation phase”.

F 

P 

d 

y 

H 

v 

Signal estimation position Noise rejection position 

Figure 12: Modified configuration with annihilating filters for signal estimation

While the approach of using annihilating filters can potentially work for unstable plants,

for stable plants a simple and general open-loop scheme works for the signal estimation phase.

Suppose that P (z) is stable with DC gain K = P (1). By switching to the open-loop control

illustrated in Figure 13, the actual output vk of the plant is a deterministic (yet unknown)

signal and converges exponentially to xr. Thus the measured yk = xk − xr becomes dk after

an exponentially fast convergent transient. We note that this approach does not require any

prior information on dk. For this case, we also have yk = d̂k = dk + ek.

F P 

d 

x + xref 

1/K 
Signal estimation 

position 

Noise rejection 

position 

v 

+ 

xref 

y 

Figure 13: Use of open-loop control for signal estimation when the plant is stable

In this two-phase approach illustrated in Figure 14, control design is performed during

the signal estimation phase. As a result, in the following algorithms, d̂k will be available in

control design. The impact of signal estimation error ek on noise rejection will be analyzed

in Section 4.4.1.
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Control Implementation for Noise Rejection 

Figure 14: Two-phase design diagram

Example 4.2. For an example of this approach, we consider a plant with transfer function,

before sampling, 1
s+2

. The DC gain of this plant is 0.5. As a result, the open-loop controller

is K = 2. Suppose that the disturbance is dk = ak sin(200τk) where τ is the sampling

interval and τ = 0.001. ak is i.i.d. and uniformly distributed in [−5, 5]. Now, in the first

two seconds, we run this system open-loop. Then in t ∈ [2, 10], we switch on the feedback

controller which is a high gain feedback F = 20000. The trajectories of the disturbance dk

and the targeted yk are shown in Figure 15.

4.2 Unmodeled Dynamics and Robust Noise Attenuation

In this section we analyze the impact of unmodeled dynamics and investigate suitable control

design that can attenuate noise effects on the system output. Presently we shall focus only

on the unmodeled dynamics, and so we take ek ≡ 0 throughout this section. Consequently,

we can simplify signals from Remark 4.1 to

d̂k = dk, ψ̂′k = ψ′k = [dk, . . . , dk−n],

ξ′k = 0, wk = ψ′kp+ ψ̃′kp
∗.
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Figure 15: The two-phase design for Example 4.2

The observation equation (4.9) is simplified to

YN = DN − (Φ̂N + ΞN)θ,

with

Φ̂N =


φ̂′1
...

φ̂′N

 , ΞN =


ζ ′1
...

ζ ′N


and φ̂′k = [ψ′kp, ψ

′
k−1p, . . . , ψ

′
k−mp] and ζ ′k = [ψ̃′kp

∗, ψ̃′k−1p
∗, . . . , ψ̃′k−mp

∗]. We shall denote by

Γ ⊂ RN×m the uncertainty set for the matrix ΞN which accomodates all possible unmodeled

dynamics p∗ = {pj}∞j=n+1 with
∑∞

j=n+1 |pj| ≤ ρn.

4.2.1 Nominal Design

Without signal estimation errors the disturbances dk are directly measured and are available

for the design phase. The nominal plant P0 is known, and the nominal design is designed



64

without regard to the unmodeled dynamics. With the goal of minimizing the mean-square

error minθN (DN − Φ̂NθN)′(DN − Φ̂NθN) , the resulting control parameter θ becomes

θN =
(

Φ̂′N Φ̂N

)−1

Φ̂′NDN . (4.11)

When using θN as in (4.11), we analyze performance by considering the residual of noise

attenuation

µN(ΞN , DN)
∆
=

1

N
(DN − (Φ̂N + ΞN)θN)′(DN − (Φ̂N + ΞN)θN)

=
1

N
(DN − (Φ̂N + ΞN)

(
Φ̂′N Φ̂N

)−1

Φ̂′NDN)′(DN − (Φ̂N + ΞN)
(

Φ̂′N Φ̂N

)−1

Φ̂′NDN)

=
1

N
D′N(I − (Φ̂N + ΞN)

(
Φ̂′N Φ̂N

)−1

Φ̂′N)′(I − (Φ̂N + ΞN)
(

Φ̂′N Φ̂N

)−1

Φ̂′N)DN

=
1

N
D′NΠ′(DN ,ΞN)Π(DN ,ΞN)DN

(4.12)

where

Π(DN ,ΞN) = I − (Φ̂N + ΞN)
(

Φ̂′N Φ̂N

)−1

Φ̂′N

whose dependence on DN stems from the fact that Φ̂N depends on DN . Define the worst-case

performance as

µN(DN)
∆
= max

ΞN∈Γ
µ(ΞN , DN). (4.13)

To proceed, we impose the following assumption on DN . It is a sample-path version of

disturbances’ variances being bounded by σ2.

A 4.2. The N-sample path of the disturbances DN satisfies

DN ∈MD
∆
= {‖DN/

√
N‖2 ≤ σ2}.
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To consider the worst-case performance of the disturbance attenuation, we first normalize

the signal. Let ‖DN/
√
N‖2 = λ and define vN

∆
= DN/

√
N

λ
so that ‖vN‖2 = 1. For DN ∈MD,

λ ≤ σ2. Then we can obtain Φ̂N(DN) =
√
NλΦ̂N(vN). Denote σmin as the smallest singular

value of a matrix and

bmin
∆
= min
‖vN‖2=1

σmin(Φ̂N(vN)).

Due to normalization, bmin is independent of the size of DN . Also, denote

f(ρN)
∆
= max

ΞN∈Γ

‖ΞN‖√
N

where ρN is the bound on unmodeled dynamics. We can now state the following theorem

for the robust performance of the nominal design.

Theorem 4.3. The worst-case disturbance attenuation performance is given by

µ
∆
= max

DN∈MD

µN(DN) ≤ f(ρN)

bmin

(4.14)

Proof. Direct computation gives

1

N
D′NΠ′(DN ,ΞN)Π(DN ,ΞN)DN = v′N(λΠ(DN ,ΞN))′(λΠ(DN ,ΞN))vN ,

in which

λΠ(DN ,ΞN) = λ(I − (Φ̂N(DN) + ΞN)
(

Φ̂′N(DN)Φ̂N(DN)
)−1

Φ̂′N(DN))

= λ(I − (
√
NλΦ̂N(vN) + ΞN)

1√
Nλ

(
Φ̂′N(vN)Φ̂N(vN)

)−1

Φ̂′N(vN))

= λ(I − (Φ̂N(vN) +
ΞN√
Nλ

)
(

Φ̂′N(vN)Φ̂N(vN)
)−1

Φ̂′N(vN))

∆
= Π̂(vn,ΞN).



66

Additionally, we see

µ = max
DN∈MD

µN(DN)

= max
‖vN‖2=1

max
ΞN∈Γ

v′N Π̂(vn,ΞN)′Π̂(vn,ΞN)vN ,

so it follows that

µ ≤ max
‖vN‖2=1

max
ΞN∈Γ

‖Π̂(vn,ΞN)‖

where ‖ · ‖ is the largest singular value. Using that

Π̂(vN ,ΞN)Φ̂N(vN) = λ

(
I − (Φ̂N(vN) +

ΞN√
Nλ

)
(

Φ̂′N(vN)Φ̂N(vN)
)−1

Φ̂′N(vN)

)
Φ̂N(vN)

= λ

(
Φ̂N − (Φ̂N +

ΞN√
Nλ

)

)
= − ΞN√

N
,

we have

‖Π̂(vN ,ΞN)Φ̂N(vN)‖ =
‖ΞN‖√
N
≤ max

ΞN∈Γ

‖ΞN‖√
N

= f(εN).

With the above and

‖Π̂(vN ,ΞN)Φ̂N(vN)‖ ≥ ‖Π̂(vN ,ΞN)‖σmin(Φ̂N(vN)) ≥ ‖Π̂(vN ,ΞN)‖bmin

we obtain ‖Π̂(vN ,ΞN)‖ ≤ f(εN )
bmin

and hence the result

µ ≤ f(εN)

bmin

.

2
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4.2.2 Robust Design

In theory, when robustly attenuating noise for systems with unmodeled dynamics, one em-

ploys the performance index

ηN(DN , θN)
∆
=

1

N
max
ΞN∈Γ

(DN − (Φ̂N + ΞN)θN)′(DN − (Φ̂N + ΞN)θN), (4.15)

and seeks to find the optimal θ∗N which attains

ηN(DN)
∆
= min

θN
ηN(DN , θN). (4.16)

The difference between the nominal design and robust design is that the former is a

“max-min” design in which the design is done first; and the latter is a “min-max” design.

One sees that

ηN(DN) ≤ µN(DN) (4.17)

indicating a potential performance improvement in the worst-case sense. It is well known

that the “min-max” often leads to nonlinear and non-quadratic optimization problems and

is usually more complicated. Often only numerical solutions are feasible, and to this end

we proceed to introduce a gradient-descent numerical algorithm. Note that the gradient of

ηN(DN , θN) with respect to θN is

G(DN , θN)
∆
=
∂ηN(DN , θN)

∂θN
=

2

N
max
ΞN∈Γ

(Φ̂N + ΞN)′(DN − (Φ̂N + ΞN)θN). (4.18)

Algorithm 4 (Two-Phase Algorithm). The following algorithm searches for θ∗N in two

phases:

• Initial Value.
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The initial value θ0 is given by the nominal design

θ0 =
(

Φ̂′N Φ̂N

)−1

Φ̂′NDN .

• Iteration Steps.

For k = 0, 1, 2, . . .,

θk+1 = θk − βkĜ(DN , θ
k)

where βk is the step size at the kth iteration, Ĝ(DN , θ
k) is an approximate gradient.

Typically, these approximate values can be obtained by using Monte Carlo methods or

grid calculation in place of the uncertainty set Γ.

4.3 Examples

We now use a simulation example to demonstrate performance on noise attenuation.

Example 4.4. The system to be controlled is a 7th order system P (z) = p0 + p1z
−1 + · · ·+

p7z
−7. However, a lower-order model is used to represent this system: P0(z) = p0 + p1z

−1 +

p1z
−2 + p3z

−3, leaving the higher-order terms as unmodeled dynamics. Hence, the modeled

part has order n = 3 with 4 parameters, and the true values are p0 = 1, p1 = 0.2, p2 = 2, and

p3 = 0.5. The unmodeled dynamics represent higher order terms which are excluded in the

model, and in this example they are p4, p5, p6, p7. So, p∗ = [p4, p5, p6, p7]′. We do not have

information on the unmodeled dynamics, except for the bound ρ = |p4| + |p5| + |p6| + |p7|.

In this example, we first use ρ = 0.6.

The noise sequence {dk} is i.i.d., uniformly distributed in [−1, 1]. As explained in the
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previous sections, without estimation errors, dk are known in our design process. The data

length is N = 1000.

The uncertainty set from unmodeled dynamics is generated by the Monte Carlo method.

We randomly generate 200 values of p∗, and then normalized them so that they all satisfy

|p4|+ |p5|+ |p6|+ |p7| = 0.6. The corresponding set of ΞN matrices is used as the uncertainty

set Γ.

The controller has order m = 20, hence θ has 21 parameters. We consider the nominal

design in this example. After generating the matrices DN , ΦN , we obtain

θN =
(

Φ̂′N Φ̂N

)−1

Φ̂′NDN

= [0.0289,−0.1221, 0.4797, 0.0720,−0.2364,−0.0412, 0.1163, 0.0236,−0.0576,−0.0130, 0.0284,

0.0075,−0.0143,−0.0039, 0.0072, 0.0020,−0.0035,−0.0013, 0.0016, 0.0009,−0.0010]′

To evaluate performance on noise attenuation we use the noise-attenuation factor, defined

as

γ =
‖YN‖2/N

‖DN‖2/N
,

where ‖DN‖2/N is the magnitude of the noise and ‖YN‖2/N is the magnitude of the output.

Thus γ < 1 indicates noise attenuation, and smaller γ corresponds to better noise-attenuation

performance.

When there is no unmodeled dynamics (ρ = 0), the nominal design delivers a perfor-

mance factor γ = 0.0148, which is an excellent 98.5% noise attenuation. However, when

the unmodeled dynamics are introduced with ρ = 0.6, this factor is increased to γ = 0.2943

(70.1% noise reduction attenuation), a substantial loss of performance.
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Figure 16 demonstrates noise attenuation performances. The top plot is the original un-

attenuated noise, whose magnitude bound is 1. The second plot shows the noise attenuation

performance of the controller when the system does not contain unmodeled dynamics. It is

seen that the output values are around 0 and have much smaller magnitudes than the original

noise, indicating substantial noise reduction. The third plot depicts the impact when the

system contains unmodeled dynamics. By considering the worst case in the uncertainty set

Γ, the noise reduction capability is significantly diminished when the nominally designed

controller is used. To further illustrate this point, the fourth plot compares directly the

performances between the matched-model system and the system with unmodeled dynamics.

The first 500 points are the output when no unmodeled dynamics are involved, and the next

500 data points show impact of unmodeled dynamics. One sees the bias that results from

the addition of the unmodeled component of the system. However, it should be noted that

this is a worst-case study. There are some incidences in Γ under which the noise attenuation

performance may be much better. This is the key issue of “robustness” of the controller

which is assessed under the worst-case scenario.

Example 4.5. The impact of unmodeled dynamics on noise reduction performance is quite

significant. To sustain acceptable noise reduction factors, one needs to use a well represen-

tative model so that the unmodeled dynamics are not too big. To illustrate such impact,

we choose different sizes ρ for unmodeled dynamics for the same example as in Example

4.4 under the same simulation conditions. The resulting noise reduction factors and the

corresponding noise reduction percentages are included in Table 1.
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Figure 16: Noise attenuation under the nominal design.

Table 1: Impact of Unmodeled Dynamics
Size ρ of Unmodeled Dynamics 0.1 0.3 0.5 0.7 0.9
Reduction Factor 0.0570 0.1464 0.2512 0.3459 0.4493
Reduction Percentage 94.3% 85.4% 74.9% 65.4% 55.1%

4.4 Impact of Signal Estimation Errors

Lastly, we analyze impact of measurement errors by considering the difference of the system

limit with only unmodeled dynamics from the limit with unmodeled dynamics and measure-

ment error. We shall impose the following additional assumptions.

A 4.3. The following conditions hold:

1. {dk} is a sequence of i.i.d. random variables satisfying Edk = 0 and Ed2
k = σ2

d < ∞.

The fourth moment of dk is finite: Ed4
k <∞.

2. {dk} is estimated by d̂k = dk + ek such that {ek} is a sequence of independent and
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identically distributed (i.i.d.) random variables with Eek = 0 and Ee2
k = σ2

e <∞. {ek}

is independent of {dk}.

3. The modeled part p is known. The unmodeled dynamics p∗ has a uniform norm bound

ρn.

4.4.1 Limit with Measurement Errors

Let

θeN = (Φ̂′N Φ̂N)−1Φ̂′ND̂N

= ((ΦN − ΞN)′(ΦN − ΞN))−1(Φ′N − Ξ′N)(DN + EN)

(4.19)

be the estimates from the design with both measurement errors and unmodeled dynamics.

We begin by showing that for this nominal design the unmodeled dynamics are canceled

out. This is done by separating the modeled and unmodeled components of ΦN and ΞN as

follows.

Recall that

ΦN =


φ′1

φ′2
...

φ′N

 =


w1 w0 · · · w1−n

w2 w1 · · · w2−n
...

...
...

...

wN wN−1 · · · wN−n

 .

We separate the modeled and unmodeled parts of wk by writing

wk = ψ′kp+ ψ̃′kp
∗

=
n∑
j=0

dk−jpj +
∞∑

j=n+1

dk−jpj

=: w0
k + w̃k,

where w0
k :=

∑n
j=0 dk−jpj is a stationary, mean zero, strong mixing process [3] as dk is i.i.d.



73

mean zero. Thus we may represent ΦN by

ΦN = W 0
N + W̃N

where W 0
N and W̃N are the N × (n+ 1) matrix collections of w0

k and w̃k respectively. Also,

we have

ΞN =


ζ ′1

ζ ′2
...

ζ ′N

 =


ε̃1 ε̃0 · · · ε̃1−n

ε̃2 ε̃1 · · · ε̃2−n
...

...
...

...

ε̃N ε̃N−1 · · · ε̃N−n

 .

where

ε̃k = ψ̃′kp
∗ − ξ′kp

=
∞∑

j=n+1

dk−jpj −
n∑
j=0

ek−jpj

∆
= w̃k − ε0

k

Thus we have the decomposition

ΞN = W̃N −ΥN

where ΥN is the N × (n + 1) matrix of ε0
k =

∑n
j=0 ek−jpj, a stationary, mean zero, ergodic

process. With this new notation, we have

Φ̂N = ΦN − ΞN = W 0
N + ΥN (4.20)

and so

θeN =
[
Φ̂′N Φ̂N

]−1

Φ̂′ND̂N

=

[
N

N
(W 0

N + ΥN)′(W 0
N + ΥN)

]−1

(W 0
N + ΥN)′(DN + EN)

= AN
1

N

(
W 0
N
′
DN +W 0

N
′
EN + ΥN

′DN + Υ′NEN

)
,

(4.21)
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where

AN :=

[
1

N

(
W 0
N
′
W 0
N + ΥN

′W 0
N +W 0

N
′
ΥN + ΥN

′ΥN

)]−1

. (4.22)

Write

P 0
n =

n−|l2−l1|∑
j=0

pjpj+|l2−l1|


l1,l2=0,1,...,n

. (4.23)

Then we can formulate the limit of the estimate θeN in terms of P 0
n as follows.

Proposition 4.6. Under Assumption 4.3, assuming P 0
n is full rank, we have

θeN =
[
Φ̂′N Φ̂N

]−1

Φ̂′ND̂N
a.s.−→

[
P 0
n

]−1



p0

0

...

0


as N →∞. (4.24)

Proof. Working with the terms of AN , we see that

1

N
W 0
N
′
W 0
N =

1

N

N∑
k=1



w0
kw

0
k w0

kw
0
k−1 · · · w0

kw
0
k−n

w0
k−1w

0
k w0

k−1w
0
k−1 · · · w0

k−1w
0
k−n

...
...

...
...

w0
k−nw

0
k w0

k−nw
0
k−1 · · · w0

k−nw
0
k−n


(4.25)
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with

Ew0
k−l1w

0
k−l2 = E

n∑
j1=0

n∑
j2=0

dk−l1−j1dk−l2−j2pj1pj2I{l1+j1=l2+j2}

= σ2
d

n−|l2−l1|∑
j=0

pjpj+|l2−l1|.

(4.26)

We claim that the stationary process {w0
k−l1w

0
k−l2}k has mean

m
∆
= Ew0

k−l1w
0
k−l2 = σ2

d

n−|l2−l1|∑
j=0

pjpj+|l2−l1|

and

R(h)
∆
= E

{
w0
k+h−l1w

0
k+h−l2w

0
k−l1w

0
k−l2

}
−m2 → 0.

as h→∞. Examining the first term, we see

E
{
w0
k+h−l1w

0
k+h−l2w

0
k−l1w

0
k−l2

}
= E

n∑
j1,...,j4=0

dk+h−l1−j1dk+h−l1−j2dk−l1−j3dk−l2−j4pj1pj2pj3pj4 .

For h > 2n, k+h− l1− j1 > k+h− l2− j2 for l, j ∈ {0, . . . , n}, so dk+h−l1−j1 is independent
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of dk+h−l2−j2 , and thus we can reduce the terms in the sum to

E{w0
k+h−l1w

0
k+h−l2w

0
k−l1w

0
k−l2}

= E
n∑

j1,...,j4=0

dk+h−l1−j1dk+h−l1−j2dk−l1−j3dk−l2−j4pj1pj2pj3pj4I{l1+j1=l2+j2}

=

n−|l2−l1|∑
j1=0

n−|l2−l1|∑
j3=0

E[d2
k+h−j1 ]E[d2

k+h−j3 ]pj1pj1+|l2−l1|pj3pj3+|l2−l1|

= σ4
d

n−|l2−l1|∑
j=0

pjpj+|l2−l1|

2

= m2

(4.27)

Thus the covariance function R(h) = 0 for h > 2n. Moreover,
∑N−1

h=0 R(h)/N → 0. As a

result, with Xk = w0
k−l1w

0
k−l2 , XN = 1

N

∑N
k=1 Xk

L2

→ m as N → ∞ by [16, Theorem 9.5.1].

Moreover, since R(h) = 0 for h > 2n, {Xk} is a strong mixing process [16, p. 488]. By virtue

of [16, Theorems 9.5.6], {Xk} is strongly ergodic, and by [16, Theorems 9.5.5], XN → m a.s.

Using the ergodicity obtained above and (4.23),

1

N
W 0
N
′
W 0
N

a.s.−→ σ2
dP

0
n as N →∞. (4.28)

Similar arguments yield

1

N
Υ′NΥN

a.s.−→ σ2
eP

0
n and

1

N
W 0
N
′
ΥN

a.s.−→ 0 as N →∞,

and thus

AN
a.s.−→

(
σ2
d + σ2

e

)−1 [
P 0
n

]−1
as N →∞.
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Examining the terms that AN is applied to in (4.21),

1

N

(
W 0
N
′
DN +W 0

N
′
EN + Υ′NDN + Υ′NEN

)

=
1

N

N∑
k=1



w0
kdk + w0

kek + ε0
kdk + ε0

kek

w0
k−1dk + w0

k−1ek + ε0
k−1dk + ε0

k−1ek
...

w0
k−ndk + w0

k−nek + ε0
k−ndk + ε0

k−nek


(4.29)

where

Ew0
k−ldk = E

n∑
j=0

dk−l−jdk = σ2
dp0I{l=0}

Ew0
k−lek = E

n∑
j=0

dk−l−jek = 0

Eε0
k−ldk = E

n∑
j=0

ek−l−jdk = 0

Eε0
k−lek = E

n∑
j=0

ek−l−jek = σ2
ep0I{l=0}.

Inspecting the covariance function for Xk = w0
k−ldk we see that dk+h is independent of dk+h−j

for any j > 0, so that

Ew0
k+h−ldk+hw

0
k−ldk

= E
n∑

j1=0

n∑
j2=0

dk+h−l−j1dk+hdk+h−l2−j2dkpj1pj2I{l=0,j1=0,j2=0}

= Ed2
k+hd

2
kp

2
0 = σ4

dp
2
0I{l=0} =

[
Ew0

k−ldk
]2

if h > 0.

(4.30)
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Thus 1
N

∑N
k=1w

0
k−ldk

a.s.→ Ew0
k−ldk, and similarly for the other terms of (4.29). Hence we have

1

N

(
W 0
N
′
DN +W 0

N
′
EN + Υ′NDN + Υ′NEN

)
a.s.−→ (σ2

d + σ2
e)



p0

0

...

0


. (4.31)

Using (4.21), (4.22), (4.31), and the limits obtained thus far, we have

[
Φ̂′N Φ̂N

]−1

Φ̂′ND̂N
a.s.→ (σ2

d + σ2
e)
−1
[
P 0
n

]−1
(σ2

d + σ2
e)



p0

0

...

0


. (4.32)

The proposition is thus established. 2

4.4.2 Limit without Measurement Errors

Without measurement errors, the estimates are simplified to

θ0
N = (Φ′NΦN)−1Φ′NDN = BN

(
1

N
Φ′NDN

)
, (4.33)

where BN =
[

1
N

ΦN
′ΦN

]−1
. Denote

Pn =

[
∞∑
j=0

pjpj+|l2−l1|

]
l1,l2=0,1,...,n

. (4.34)

As before, we can formulate the limit of θeN in terms of Pn as follows.
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Proposition 4.7. Under Assumption 4.3 and assuming Pn is full rank, we have

θ0
N = [Φ′NΦN ]

−1
ΦNDN

a.s.−→ [Pn]−1



p0

0

...

0


as N →∞. (4.35)

Proof. We have that

1

N
Φ′NΦN =

1

N

N∑
k=1


wkwk · · · wkwk−n

...
...

...

wk−nwk · · · wk−nwk−n

 , (4.36)

and observe

Ewk−l1wk−l2 = E
∞∑
j1=0

∞∑
j2=0

dk−l1−j1dk−l2−j2pj1pj2

= E
∞∑
j1=0

∞∑
j2=0

dk−l1−j1dk−l2−j2pj1pj2I{l1+j1=l2+j2}

= σ2
d

∞∑
j=0

pjpj+|l2−l1|

(4.37)

Using the definition (4.34), we have

E [wk−l1wk−l2 ]l1,l2=0,...,n = σ2
dPn. (4.38)

Establishing that the product sequences {wk−l1wk−l2}k are ergodic is more complicated due

to the infinite sum involved in wk. We show it for Xk = wkwk, with the shifted products
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done in a similar manner. Here, [Ewkwk]2 =
[∑∞

j=0 σ
2
dp

2
j

]
= σ4

d

∑
j1

∑
j2
p2
j1
p2
j2

, and

Ewk+hwk+hwkwk =
∞∑

j1,...,j4=0

Edk+h−j1dk+h−j2dk−j3dk−j4pj1pj2pj3pj4 .

For the expectation of a term to be non-zero, every index of d must be paired with another.

Writing A = {(j1, j2, j3, j4) : j1 = j2, j3 = j4}, B = {j1 = j3 + h, j2 = j4 + h}, and

C = {j1 = j4 + h, j2 = j3 + h}, we have that the non-zero terms are precisely A ∪ B ∪ C.

Furthermore, A∩B = A∩C = B∩C = A∩B∩C, so
∑
A∪B∪C =

∑
A+

∑
B+

∑
C −2

∑
A∩B∩C

Then we can express

Ewk+hwk+hwkwk

=
∞∑
j1=0

∞∑
j3=0

Ed2
k−j1d

2
k−j3p

2
j1
p2
j3

+
∞∑
j3=0

∞∑
j4=0

Ed2
k−j3d

2
k−j4pj3pj3+hpj4pj4+h

+
∞∑
j3=0

∞∑
j4=0

Ed2
k−j3d

2
k−j4pj3+hpj3pj4+hpj4 − 2

∞∑
j=0

Ed4
k−jp

2
jp

2
j+h

=
∑

j1 6=j2+h

∞∑
j2=0

σ4
dp

2
j1
p2
j2

+
∞∑
j=0

Ed4p2
jp

2
j+h + 2

∑
j1 6=j2

∞∑
j2=0

σ4
dpj1pj1+hpj2pj2+h

+ 2
∞∑
j=0

Ed4p2
jp

2
j+h − 2

∞∑
j=0

Ed4p2
jp

2
j+h

=
∑

j1 6=j2+h

∞∑
j2=0

σ4
dp

2
j1
p2
j2

+
∞∑
j=0

Ed4p2
jp

2
j+h + 2

∑
j1 6=j2

∞∑
j2=0

σ4
dpj1pj1+hpj2pj2+h

(4.39)



81

Thus the covariance R(h) = E {wk+hwk+hwkwk} − [E {wkwk}]2 satisfies

|R(h)| =
∣∣∣ ∑
j1 6=j2+h

∞∑
j2=0

σ4
dp

2
j1
p2
j2

+
∞∑
j=0

Ed4p2
jp

2
j+h

+ 2
∑
j1 6=j2

∞∑
j2=0

σ4
dpj1pj1+hpj2pj2+h −

∞∑
j1=0

∞∑
j2=0

σ4
dp

2
j1
p2
j2

∣∣∣
=
∣∣∣− σ4

d

∑
j1=j2+h

∞∑
j2=0

p2
j1
p2
j2

+ Ed4

∞∑
j=0

p2
jp

2
j+h + 2σ4

d

∑
j1 6=j2

∞∑
j2=0

pj1pj1+hpj2pj2+h

∣∣∣
≤ |ph|σ4

d

∞∑
j=0

p2
j + |ph|Ed4

∞∑
j=0

p2
j + |ph|2σ4

d

∞∑
j1=0

∞∑
j2=0

pj1pj2

≤ |ph|K → 0 as h→∞.

(4.40)

Thus the process {wk+hwk+hwkwk} is strong mixing as well. Similar argument as in the

derivation of (4.28) yields that 1
N

Φ′NΦN
a.s.→ σ2

dPn. Recall that Pn is full rank,

BN
a.s.→ σ−2

d [Pn]−1 as N →∞. (4.41)

Similarly,

1

N
Φ′NDN =

1

N

N∑
k=1



wkdk

wk−1dk
...

wk−ndk


(4.42)

where

Ewk−ldk = E
∞∑
j=0

dk−l−jdkpj = σ2
dp0I{l=0} (4.43)
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and the covariance function decays asymptotically in a manner similar to (4.40), so that

1

N
Φ′NDN

a.s.→



σ2
dp0

0

...

0


as N →∞. (4.44)

Finally, we have

θ0
N = BN

(
1

N
Φ′NDN

)
a.s.→ σ−2

d {Pn}
−1



σ2
dp0

0

...

0



as N →∞, and the result follows.

2

4.4.3 Difference of Estimates

Combining Propositions 4.6 and 4.7, we finally arrive at the following theorem. It gives

the impact of measurement errors by characterizing the limit of the difference system with

measurement error to the system without.

Theorem 4.8. Under the assumptions of Propositions 4.6 and 4.7 and assuming that P 0
n−Pn
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is invertible, we have

θeN − θ0
N

a.s.→
[
P 0
n − Pn

]−1



p0

0

...

0


(4.45)

where

−
[
P 0
n − Pn

]
l1,l2

=
∞∑

j=n−|l2−l1|+1

pjpj+|l2−l1|.

Defining

ρ(l)
n

∆
=

∞∑
j=n+1

pj−lpj ≤
∞∑

j=n+1

|pj| ≤ ρn (4.46)

for sufficiently large n, we see that

[
P 0
n − Pn

]−1
= −



ρ
(0)
n ρ

(1)
n ρ

(2)
n · · · ρ

(n)
n

ρ
(1)
n ρ

(0)
n ρ

(1)
n · · · ρ

(n−1)
n

ρ
(2)
n ρ

(1)
n ρ

(0)
n · · · ρ

(n−2)
n

. . . . . . . . . . . . . . .

ρ
(n)
n ρ

(n−1)
n · · · ρ

(1)
n ρ

(0)
n



−1

(4.47)

for l = |l2 − l1| ∈ {0, 1, . . . , n}.

Example 4.9. We conduct a simulation study to display the limit of the estimate differences.

We take {dk} ∼ N (0, 1) and {ek} ∼ N (0, .1), both iid. The plant is a stable system with
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IIR coefficients pk = (0.5)k for k = 0, 1, . . . . The model order is selected as n = 10. We

then observe the estimates θeN , θ0
N for N = 10, 20, . . . , 1010 (100 updates). Thus ρn =

2 −
∑10

k=0 pk = (.5)10 ≈ 9.8 × 10−4. Figure 17 shows that ||θeN − θ0
N || quickly converges to

O(ρn).
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2
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8

10

12

14

16
x 10

−4

K = number of updates

Figure 17: Impact of est. errors given by ||θeN − θ0
N ||, N = Kn = 10, . . . , 1010

5 Further Remarks

This dissertation has analyzed problems associated with adaptive filtering for identification

and control of systems with switching Markovian dynamics, and of systems with unmodeled

dynamics. For Markovian-switching systems, we used constant step-size algorithms to enable

the estimates to persistently adapt to the changing dynamics of the underlying system. Error

bounds and limit behavior was characterized by the relationship of the transition rate of the

Markov chain to the adaptation rate of the estimates. For feedback systems with unmodeled

dynamics, a two-phase algorithm was used to first estimate the noise characteristics and then

attenuate the system to reduce the impact of the noise. Worst case performance bounds were

obtained characterized by the magnitude of the unmodeled dynamics.
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Naturally, a direction for future study would be analysis of systems with both Markovian-

switching and unmodeled dynamics, as heuristically depicted in Figure 6. For example,

consider a linear system given by

yk= φ′kαk + ek

= φ̌′kα̌k + φ̃′kα̃k + ek

(5.1)

where φ′k = [φ̌′k, φ̃
′
k] is the input signal with modeled part φ̌k ∈ Rd, α′k = [α̌′k, α̃

′
k] is the

time-varying (Markovian) parameter with modeled part α̌k ∈ Rd, and ek ∈ R is the zero-

mean noise at time k. Under the approach in Chapters 2, 3 one would use only the modeled

component φ̌′kα̌k to design the filter, and thus one expects to observe additional bias of

magnitude εd resulting from the unmodeled component φ̃′kα̃k. This should result in an

additional term of εd in the error bound, and an additional bias term in the infinitesimal

limit.

In [30], such systems were studied with the Least Mean Squares algorithm estimates. It

should be interesting to analyze performance of the Sign-Error algorithm with said systems.

It may be that the direction-only scaling on the residuals employed in the SE algorithm

could allow for better compensation of the bias in the unmodeled dynamics.

Additionally, we note the systems analyzed here were linear. If the underlying systems

have nonlinear aspects, model mismatch will cause further bias in the estimates. A framework

for addressing model mismatch, unmodeled dynamics, Markovian parameters, and stochastic

noise was developed in [15]. Using said framework to analyze the robustness of the algorithms

in this work is an important consideration to be addressed.

Finally, the step-size (adaptation rate) of the algorithms in Chapters 2, 3 were taken to

be constant, and in Chapter 4 the step-sizes were left unspecified. As seen in the analysis,

for a fixed step-size the performance of the algorithm depends on the underlying distribution

of the Markov chain (the transition rate), and indeed can also be influenced by the possibly
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time-varying bias of the unmodeled dynamics, model mismatch, and random noise. In such

case, one may employ an additional adaptive algorithm to create a time-varying sequence of

stochastic step-sizes {µk} which can respond to changes in the underlying dynamics to search

for an optimal step-size. For example, in [15] the following adaptive step-size algorithm was

presented for the Least Mean Squares algorithm

θk+1 = θk + µkφk[yk − φ′kθk]

µk+1 = Π[µ−,µ+] (µk + c1[yk − ϕ′kVk])

Vk+1 = Vk − µkc2φkφ
′
kVk + φk[yk − φ′kθk], V0 = 0.

(5.2)

where c1, c2 are scaling constants, [µ−, µ+] is a bounded set for the step-sizes µ, and Π[µ−,µ+]

is the corresponding projection operator to ensure the iterates for µk remain in the feasible

set. Similar considerations can be made for the SR and SE algorithms in a generalized

framework.
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This dissertation investigates problems arising in identification and control of stochastic

systems. When the parameters determining the underlying systems are unknown and/or

time varying, estimation and adaptive filtering are invoked to to identify parameters or to

track time-varying systems. We begin by considering linear systems whose coefficients evolve

as a slowly-varying Markov Chain. We propose three families of constant step-size (or gain

size) algorithms for estimating and tracking the coefficient parameter: Least-Mean Squares

(LMS), Sign-Regressor (SR), and Sign-Error (SE) algorithms.

The analysis is carried out in a multi-scale framework considering the relative size of the

gain (rate of adaptation) to the transition rate of the Markovian system parameter. Mean-

square error bounds are established, and weak convergence methods are employed to show

the convergence of suitably interpolated sequences of estimates to solutions of systems of

ordinary and stochastic differential equations with regime switching.

Next we consider problems in noise attenuation in systems with unmodeled dynamics

and stochastic signal errors. A robust two-phase design procedure is developed which first

estimates the signal in a simplified form, and then applies a control to tune out the noise.

Worst-case error bounds are derived in terms of the unmodeled dynamics and variances of

the disturbance and measurement errors.
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