3-1-1975

Steenrod Homology and Operator Algebras

Jerome Kaminker

Claude Schochet
Wayne State University, clsmath@gmail.com

Recommended Citation
Available at: https://digitalcommons.wayne.edu/mathfrp/7

This Article is brought to you for free and open access by the Mathematics at DigitalCommons@WayneState. It has been accepted for inclusion in Mathematics Faculty Research Publications by an authorized administrator of DigitalCommons@WayneState.
STEENROD HOMOLOGY AND OPERATOR ALGEBRAS
BY JEROME KAMINKER AND CLAUDE SCHOCHET
Communicated by I. M. Singer, September 25, 1974

The recent work of Larry Brown, R. G. Douglas, and Peter Fillmore (referred to as BDF) [2], [3], and [4] on operator algebras has created a new bridge between functional analysis and algebraic topology. This note and a subsequent paper [5] constitute an effort to make that bridge more concrete.

We first briefly describe the BDF framework. This requires the following C*-algebras: \(C(X) \), the continuous complex-valued functions on a compact metric space \(X \); \(L \), the bounded operators on an infinite dimensional separable Hilbert space; \(K \subseteq L \), the compact operators; and \(L/K \), the Calkin algebra. (Let \(\pi: L \rightarrow L/K \) be the projection.) An extension is a short exact sequence of C*-algebras and C* algebra morphisms of the form \(0 \rightarrow K \rightarrow E \rightarrow C(X) \rightarrow 0 \) where \(E \) is a C*-algebra containing \(K \) and \(I \) (the identity operator) and contained in \(L \). Unitary equivalence classes of extensions form an abelian group, denoted \(\text{Ext}(X) \).

\(\text{Ext}(X) \) was invented by BDF in order to study essentially normal operators, that is, operators \(T \in L \) with \(\pi T \) normal. Let \(E_T \) denote the C*-algebra generated by \(I \), \(T \), and \(K \), and let \(X = \sigma(\pi T) \), the spectrum of \(\pi T \). Then the exact sequence \(0 \rightarrow K \rightarrow E_T \rightarrow C(X) \rightarrow 0 \) represents an element of \(\text{Ext}(X) \). This element is zero if and only if \(T \) is a compact perturbation of a normal operator. For \(X \subseteq C \), BDF prove that

\[\text{Ext}(X) \simeq \tilde{H}^0(C - X). \]

This isomorphism assigns to \(E_T \) a sequence of integers corresponding to the Fredholm index of \(T - \lambda J \) on the various bounded components of \(C - X \).

The isomorphism (1) was subsequently generalized [3]. Let \(E_{2n+1}(X) = \text{Ext}(X) \) and \(E_{2n}(X) = \text{Ext}(SX) \), where \(SX \) is the suspension of \(X \). Then BDF show that \(E_* \) satisfies (on compact metric pairs) all of the Eilenberg-Steenrod

Key words and phrases. Brown-Douglas-Fillmore homology, generalized Steenrod homology, \(K \)-theory, Chern character.

1Research partially supported by NSF Grant GP29006.
axioms for an homology theory, except the dimension axiom. For finite CW complexes, $E_*(X) = \tilde{K}_*(X)$, where \tilde{K}_* is the reduced homology theory corresponding to complex K-theory [1] and [10].

The homology theory E_* satisfies two additional axioms:

(RH) Let $f: (X, A) \to (Y, B)$ be a relative homeomorphism (i.e., $f|X - A$ is a homeomorphism onto $Y - B$). Then $f_*: E_*(X, A) \to E_*(Y, B)$ is an isomorphism.

(Wedge) Let $\bigvee_j X_j$ be the strong wedge of a sequence of pointed compact metric spaces. Then $E_*(\bigvee_j X_j) = \prod_j E_*(X_j)$. (The strong wedge of a family of pointed spaces is the subspace of the product consisting of all points with at most one coordinate not a basepoint.)

In 1941, Steenrod introduced a homology theory on compact metric spaces via “regular cycles” [9] and [8]. This theory, which we denote by sH_*, satisfies all seven of the usual axioms as well as (RH) and (Wedge).

Steenrod showed that one may obtain $^sH_n(X)$ as follows. Write $X = \lim X_j$, where $\{X_j, p_j\}$ is an inverse system of finite simplicial complexes obtained as the nerves of open covers which successively refine each other and whose mesh goes to zero. Assume also that $X_0 = \text{point}$. Let FX be the infinite mapping cylinder—that is, $FX = (\bigcup_j X_j \times [j, j + 1])/\sim$, where \sim is the equivalence relation corresponding to pasting the cylinders $X_j \times [j, j + 1]$ together at their ends via the maps $\{p_j\}$. Then FX admits the structure of a countable, locally finite CW-complex. Steenrod proved that $^sH_n(X)$ is isomorphic to the $(n + 1)$st homology group of FX based on infinite chains. We thus obtain a useful characterization of the groups $^sH_*(X)$.

Steenrod [9] and Milnor [7] also proved that $^sH_n(X)$ is related to the more common Čech homology group $\check{H}_n(X) = \lim_{\leftarrow j} H_n(X_j)$ by a split exact sequence

$$0 \to \lim_{\leftarrow j} H_{n+1}(X_j) \to ^sH_n(X) \to \check{H}_n(X) \to 0.$$ (2)

Milnor also showed that sH_* is the dual theory to Čech cohomology theory on compact metric spaces. Since E_* bears the same relationship to cohomology K-theory on compact metric spaces, we were led to make precise the relation between E_* and sH_*.

An important tool is the spectral sequence provided by the following theorem.

Theorem 1. Let X be compact metric of dimension $d < \infty$. Then there is a spectral sequence $\{E^p_{p,q}\}$ which converges to $E_*(X)$, is natural in X,
has $E^{d+1} = E^\infty$ and $E^2_{p,q} = \delta H_p(X; E_q(\text{point}))$.

For finite CW-complexes this spectral sequence is equivalent to the Atiyah-Hirzebruch spectral sequence.

If $X \subset R^3$ then $E_\ast(X)$ is determined by Steenrod homology. Precisely, $\text{Ext}(X) = \delta H_1(X)$ and there is an exact sequence $0 \to \delta H_0(X) \to E_0(X) \to \delta H_2(X) \to 0$. This is useful in studying the following question. Let A_1 and A_2 be essentially normal operators such that πA_1 and πA_2 commute. When do there exist compact perturbations $A_j = B_j + K_j$, $j = 1, 2$, with B_1 and B_2 commuting normals? If A_2 is selfadjoint then the obstruction to perturbation is an element of $\text{Ext}(X) = \delta H_1(X)$, where $X = \text{joint}(\pi A_1, \pi A_2) \subset R^3$. So, for example, if $\delta H_1(X) = 0$ then the B_j exist. If A_2 is just normal then $X \subset R^4$ and the obstruction group $\text{Ext}(X)$ is an extension of $\delta H_1(X)$ by a certain subgroup of $\delta H_3(X)$. The applicability of higher dimensional computations to operator theory was first observed by BDF [4, p. 119].

In analogy to K-theory there is a Chern character useful in comparing E_\ast with homology. This yields $\text{ch} \otimes Q: E_\ast(X) \otimes Q \to \delta H_\ast(X; Q)$ which is not always an isomorphism, in contrast to the cohomology K-theory situation.

Theorem 2. The following are equivalent:

(a) The differentials in $\{E^r_{p,q}\}$ are torsion-valued and $\text{ch} \otimes Q$ is an isomorphism.

(b) $\text{hom}(\delta H_\ast(X), Q/Z) \otimes Q = 0$.

Finally, an analog of (2) holds for E_\ast. If X is the inverse limit of finite CW-complexes X_j, then there is a split exact sequence

$$0 \to \lim_{\leftarrow} K_0(X_j) \to \text{Ext}(X) \to \lim_{\leftarrow} K_1(X_j) \to 0$$

and thus $\text{Ext}(X)$ is completely determined by K-theory on finite complexes. Also, if X and Y have the same shape [6] then $E_\ast(X) \simeq E_\ast(Y)$.

The authors are deeply grateful to Larry Brown, Ron Douglas, and Peter Fillmore who have shared preliminary versions of their work with us. John Milnor’s unpublished manuscript [7] was essential to our work.

REFERENCES

