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CHAPTER 1: BACKGROUND AND INTRODUCTION

1.1 Introduction

In recent years, a number of organizations and users have started exchanging

workstation-based systems with web services or what is sometimes known as “Cloud

Computing”. Cloud computing is centered on the services notion which are defined

as “independently developed and deployed artifacts to which clients subscribe on per

need basis and pay the service providers based on their usage” [3]. Web services

can be defined as a set of related functionalities to be accessed using an XML-based

standard. One of the main reasons for changing from workstation-based applications

to Web services-based applications is the cost of deployment and maintenance. Web

services reduce this cost to the user dramatically since the user will not be involved

in any of these, instead, the service provider is the responsible party. The users then

do not need to own and operate their server and maintain it which is quite costly.

This has helped many of the web apps to grow and be comparable to some large

companies. According to Forbes.com, Pinterest had a huge growth in terms of the

generated tra�c, and it can be compared to Facebook. The former uses Amazon’s

Web services while the latter maintain their own servers.

One of the main concerns of the users and organizations is the security and

privacy of their data. The data can be hosted on some services such as Apple’s iCloud

or transmitted using services. Either of these cases, we need to prevent unauthorized

data access at all time, hence the need of encryption schemes which will help achieving

this. another issue is due to the huge number of services provided by service providers,

the users look service composition optimization to reduce the cost and/or enhance

the application’s performance. The service provider on the other hand looks to make

the highest possible revenue while providing competitive prices to attract users. This
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brings the need of a composition optimization model that serves both the user and

the service provider.

1.2 Service Oriented Architecture

The service oriented architecture is usually defined as a ”Paradigm for orga-

nizing and utilizing distributed capabilities that may be under the control of di↵erent

ownership domains” [41] [27]. SOA’s boundaries are explicit so the communication be-

tween the services would be across di↵erent zones geographically, trust wise ownership

wise and according to operating environment. The SOA has two main components

which are the service provider and the user (also called customer). The services are

provided by the service providers by having the service information published in the

UDDI [52] [45] which is a public directory where the users query these directories to

find the best services for their applications.

1.3 QoS and Composition Optimization

Quality of Service (QoS) parameters refer to the features of the service such

as response time, availability, cost...etc. These play a major role when it comes

to determining the failure and success of the application to be composed [4]. This

brings the need of a Service Level Agreement (SLA) that is set between the service

provider and the service user and provides the expected QoS details. In Web service

composition we aim at finding the set of services that satisfy the QoS constraints of

set by the user or the application to be composed. Just as Real-world negotiations

do not require the parties to reach a negotiated agreement; similarly, the automated

negotiation has the same options. An entity can choose “no deal” if it cannot negotiate

a satisfactory agreement. Furthermore, there are distinct negotiation strategies for

“open” and “closed” marketplaces. A closed marketplace is based upon a predefined

set of users, who “enroll” in the marketplace and agree to a certain set of rules. An
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open marketplace has no such agreement; entities are welcome to enter and exit at

any time and are not required to agree to any rules. This adds to the complexity and

uncertainty of information. Hence entities need to take into account these uncertain

information patterns and deal accordingly.
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CHAPTER 2: LITERATURE REVIEW

2.1 Existing Web Service Composition Optimization Schemes

Di↵erent Schemes were proposed to tackle the Web service composition opti-

mization problem using di↵erent techniques. The following will summarize some of

the most popular ones and what technique they have used,

2.2 Genetic Algorithms

Due to the presence of multiple objectives in some problems, the solution to

this kind of problem consists of a set of optimal solutions known as Pareto-optimal

solution instead of a single optimal solution. Since we cannot judge weather one set

of Pareto-optimal solutions is better than the other, this arises the need of finding as

many sets as possible [20]. Multi-objective evolutionary algorithms were proposed as

a solution of this problem. These algorithms use a population of random solutions

to produce another population of solutions that converges toward the true Pareto-

optimal solutions region. Genetic algorithms evolved from that concept.

NSGA (Non-dominated Sorting Genetic Algorithm) was one of the first evolution-

ary algorithms. This algorithm uses the principles of evolutionary biology to solve this

problem. It applies techniques such as inheritance and mutation [58]. The optimiza-

tion process begins with a population containing randomly generated solutions and

has a fitness value for these solutions. The individuals having higher fitness values are

saved into another population where the winners form a mating pool. the algorithm

is then applied to the newly generated population and this step is repeated until

the termination criteria is met. NSGA-II was implemented to solve multi-objective

optimization problems as an improved version of NSGA. The di↵erence in NSGA-II

is that: after the random population is created and crossover/mutation phase, the

individuals are ordered into non-dominated sets. These sets are then reduced to find
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the next non-dominated sets. This is repeated until enough individuals are sorted

into the non-dominated sets where the sorting here is using Quick sort algorithm [49].

The following are some of the schemes using GA as a Base for the solution.

2.2.1 Multi-objective Service Composition with Time- and

Input-Dependent QoS

Since dependency on execution time or input data is mostly ignored in current

QoS models, this paper introduces a QoS model that covers the dependencies and

discuss how this can be used to consider multiple workflows at once. The paper also

proposes a multi-objective optimization approach to o↵er solutions varying on the

time and price to give the user the ability to make decisions. Fictional and non-

functional requirements are both considered to achieve the user satisfaction. In QoS

there is no single selection that dominates all other selections, so the users need to

define their preferences for the solution they want and then service composition is

applied to choose the services on behalf of the user. The proposed approach consists

of three steps: 1. Modeling the problem using Hierarchical Workflow Graph.

2. Use this Graph to determine time and input dependencies.

3. Compute the set of feasible solutions using the multi-optimization algorithm.

The approach is based on GA.[77]

2.2.2 Single-Objective versus Multi-Objective Genetic Al-

gorithms for Workflow Composition based on Service

Level Agreements

This paper analyzes both the single objective and the multi-objective genetic

algorithms in the context of Web service composition measuring the success rate along

with the execution time SLA (Service Level Agreement) is defined as a contract be-
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tween the service provider and the consumer with respect to QoS parameters. The

paper first revisits the GA. The paper has the functions for both the single objective

and the multi-objective problems based on four factors: Reliability, Availability, Ex-

ecution time and Execution price. In the single-objective GA the algorithm is used

to find the approximate solutions to the di�cult-to-solve problems by applying the

evolutionary biology principles to the problems. The optimization takes a randomly

generated population (solutions) and evaluates the fitness of each individual and then

saves the fittest ones. In the multi-objective GA Approach, the most fit individuals

from both archive and child population are determined by a ranking mechanism. This

is referred to as NSGA-II which is di↵ers from the GA in: all individuals are ordered

into non-dominated sets then the reduced set is used to find the next non-dominated

solutions which is executed iteratively until enough individuals are sorted into non-

dominated sets. Detailed comparison with the experiments and results are presented

in graphs in the paper proving that NSGA-II has a slightly higher success rates for

smaller population sizes.[49]

2.2.3 QoS decomposition for service composition using ge-

netic algorithm

This paper presents a top-down approach that uses genetic algorithm to de-

compose the global constraints into local constraints then select the best web service

for each task using a simple linear search. The composite service structure is defined

as a workflow that is conceptually specified based on tasks and control structures. The

paper then represents some definitions that are used in the proposed approach such

as global constraints and local constraints. The quality model in this paper depends

on a set of attributes that are categorized into 2 main types: positive and negative.

The objective is to maximize the positive ones and minimize the negatives. The
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approach handles the QoS composition through 2 sub problems: quality constraint

decomposition, Local selection. The paper then explains each of these concepts and

how these ones are done. After that some information about genetic algorithm is

explained. Local selection is the explained along with some formulas followed by the

experiment and performance evaluation.[53]

2.2.4 Solving Multi-Objective and fuzzy multi-attributive in-

tegrated technique for the QoS-Aware Web Service Se-

lection

The paper proposes a multiple criteria decision-making methodology for global

web service -selection based on QoS criteria and this integrates the multi-objective

optimization with a fuzzy multi-attributive group decision-making. For the optimiza-

tion, the scheme uses a genetic algorithm basis. The scheme consists of two major

stages:

1) Multi-objective optimization stage to find the Pareto-optimal design alter-

natives.

2) Ranking these PODAs according to the predefined attributes.

In the first stage, a multi-objective optimization technique called FRONTIER

is used which is basically a genetic algorithm that generates individuals randomly

and these individuals represent the service nodes that can be assessed on several QoS

criteria. This finds the trade-o↵ to best approach the solution. Next the solutions

can be combines as parents that generates new (child) solution that is better than the

parents and as this continues, the generations come closer to the optimal solution.

Next stage is the decision-making stage and it consists of three phases:

• Rating phase: where the decision matrix is established for each PODA so the

data need some conversion (the formula for conversion is in the paper).
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• Attribute based aggregation: which creates another matrix according to a six-

stage algorithm to find the aggregation result of the fuzzy opinion based on

relative agreement in the opinions.

• Selection Phase: which has two sub-phases: Defuzzification which generates

another decision matrix that contains only crisp data and Ranking sub-phase

that determines the ranking order of the PODAs which has six steps detailed

in the page to get the result as a ranked order.[84]

2.2.5 Web Service Dynamic Composition Based on Decom-

position of Global QoS Constraints

Since most QoS existing solutions are based on global optimization, they su↵er

from poor performance, so they are becoming inappropriate for applications that

have dynamic and real time requirements. This paper proposes an approach that

decomposes global constraints into local ones. The paper includes 9 properties in

the attributes of QoS composition and these include cost, response time, reliability,

availability, rate of successful execution security reputation throughput and load. The

user requirements are the global constraints, and these are represented as upper and

lower bound for the aggregated values of the QoS attributes. For a solution to be

feasible, all values have to satisfy the global QoS constraints. The paper uses Simple

Additive Weighting approach for the utility function so before the computation of

the utility value of composite web service, each value is transformed into a value

between 0 and 1 by a comparison to minimum and maximum possible values in

the service class. Formulas for each attribute and for the composition function are

available in the paper. The main idea of the decomposition is decomposing each

global QoS constraint into a set of local constraints and these local constraints serve

as conservative lower and upper bounds that are used by the local service selection



9

algorithm to get the best services or each abstract service. A new algorithm called

Culture Genetic Algorithm is developed to handle the growth of the number of quality

level combinations for CWS. An evaluation function is also developed to evaluate the

fitness of di↵erent quality level combinations. Detailed algorithms are included in the

paper. For Future work, the research will continue on applying the method on solving

manufacturing problems like partner selection, supply chain planning? etc. [47]

2.2.6 Selecting Web Services for optimal composition

This paper proposes service quality variables as non-functional criteria to get

the optimal web service composition for a certain goal and also proposes a scheme

for multi-objective optimization to find the set of Pareto Solutions so the user can

then choose one of these solutions depending on the trade-o↵ the user chooses. The

paper also proposes an environment to allow this composition to be automatic. In

the quality model, the scheme considers 4 attributes: cost, time, availability and

reputation. The problem model also models three constraints: 1- only one service

belongs to a composition for each task.

2- User budget.

3- Xij must have binary values (Xij specifies the service belongs to a composition

matrix).

Genetic algorithm NSGA-II is used as a resolution method where it is not necessary to

create a mathematical expression to determine the weights associated to the criteria

which will be needed with aggregation approaches. The experiments results gave

sets of chromosomes (population) that are represented by a set of binary values to

determine whether the service belongs to the composition or not. These have shown

that the approach is feasible for real life applications. Pros: including reputation in

the attributes for checking security, Giving the user ability to choose one solution
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among the set of optimal ones.

Cons: not including scalability which is an important factor. [16]

2.2.7 A QoS-based service composition optimization method

This paper proposes an approach for service composition by first using Pareto

dominant elite screening collection of services to remove redundancy in the candi-

date services then genetic algorithm is used to optimize the set. Pareto dominance

is a classic heuristic algorithm that is used for solving combinational optimization

problems of web services. Genetic algorithms are also classical heuristic algorithm

that are used in the optimization problems and this paper combines both of these

technologies to get the optimized solution to the problem of Web service composition.

The description of these algorithms and their combination is presented in the paper.

[79]

Pros: explained the algorithms and used some solid technologies (that are the

algorithms) to resolve the problem.

Cons: just combined the technologies and did not add a new thing.

2.2.8 Trust-oriented QoS-aware Composite Service Selection

Based on genetic Algorithms

This paper proposes a scheme for service selection in web service composition

as well as a trust evaluation method for the service composition plan based on the

subjective probability theory and based on this, a trust-oriented genetic algorithm is

proposed to find the near-optimal service composition plan with the QoS constraints.

The paper considers four attributes in the QoS composition attributes: Time, Price,

Availability and Reliability and the calculation methods for each one of these in

the composition cases (sequential invocation and loop) are presented in the paper

along with the fitness function of the genetic algorithm. There is a di↵erence in
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this approach in the genetic algorithm which is that the paper assumes that a large

volume of services with their ratings are stores in a third party trust management

authority. The paper only focuses on numerical attributes of the QoS. Experimental

results show the e↵ectiveness and e�ciency in finding the near optimal solution.[26]

Pros: providing equation for all di↵erent cases handled in the approach.

Cons: not handling the conditional case in the service composition.

2.3 Bees Algorithm

Bees Algorithm is a population-based search algorithm that performs search

in the neighborhood combined with random search to find the best solution for multi-

objective optimization problems.

2.3.1 Optimal web service selection and composition using

Multi-objective bees algorithm

The paper proposes a multi objective bees algorithm to select the optimal ser-

vice in the service composition resolving the service composition optimization prob-

lem. The paper considers 4 attributes for the quality: cost, response time, reliability

and availability formulated as the QOS vector. The paper provides computation

models for computing the QOS for the 4 control models provided by BBEL4WS

which are: Sequential, Conditional, Loop and Parallel. A fitness evaluation built as

a matrix records the quality information for the services. The selection is based on

Bees algorithm which is a population-based search algorithm performing search in

the neighborhood combined with random search.[42]

2.4 Particle Swarm

In Particle Swarm Based Algorithms, the solution is encoded as particles in

PSO where there is a position and a velocity for each particle. These particles adjust
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their selves according to pbest (best position experienced by a particle) and gbest

(best position experienced by the swarm).

2.4.1 E�cient Multi-Objective Services Selection Algorithm

Based on Particle Swarm Optimization

This paper proposes a service selection model based on the particle swarm

optimization model. The paper starts by defining the terms task, service and vector

that will be used in the paper. The multi-objective optimization problem falls into

NP complete class problems and PSO has been used in solving many NP complete

problems much more e�ciently than genetic algorithms. These are the comparison

rules between two solutions I copy pasted from the original paper: 1) If two solutions

meet constraints, the dominant one is preferable;

2) If one solution meets constraints and the other doesn’t, the one meeting constraints

is preferable;

3) If two solutions have di↵erent deviation from constraints, the smaller deviation

one is preferable;

4) If two solutions have the same deviation from constraints, the dominant one is

preferable;

5) If two solutions have the same deviation from constraints and are non-inferior,

both are preferable

The solution is then encoded as particles in PSO where there is a position and

a velocity for each particle. These particles adjust their selves according to pbest

(best position experienced by a particle) and gbest (best position experienced by the

swarm). Initialization, update and gbest, pbest selection strategies are described in

the paper. The paper also proposes an algorithm EMOSS (e�cient multi-objective
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service selection algorithm based PSO) with QoS global guarantee. Detailed algo-

rithm along with analysis and comparison are in the paper. The proposed algorithm

does not require heuristic knowledge related to the application background and can

get high quality solutions adapting to the user’s requirements and work even under

QoS dynamic change without the increase in the running time as the problem size

increases.[39]

2.4.2 A Hybrid Multiobjective Discrete Particle Swarm Op-

timization Algorithm for a SLA-Aware Service Com-

position Problem

This paper proposes an algorithm for hybrid multi-objective discrete particle

swarm optimization and a model to optimize SLA-aware service composition. The

paper proposes a local searching strategy based on constraint domination that is

introduced to the algorithm to accelerate the process of obtaining a feasible solution.

The particle updating strategy is made by a crossover operator in genetic algorithm

based on the exchange of candidate service. The paper proposes a strategy to mutate

the particles for the purpose of increasing the diversity of the particle swarm. Service

throughput, cost and also latency are the QoS attributes considered by the paper

for parallel and sequence composition structures, the aggregation functions for each

case are presented in the paper. The paper has details on the design of the proposed

algorithm.[80]

Pros: adding performance to resolve the issue.

Cons: considering only three QoS attributes and only two composition structures.
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2.4.3 An E↵ective Dynamic Web Service Selection Strategy

with Global Optimal QoS Based on Particle Swarm

Optimization Algorithm

This paper proposes an approach to solve the web service selection in the web

service composition based on the theory of particle swarm optimization algorithm.

The strategy is called PSO-GODESS (Global Optimization of Dynamic Web Service

Selection based on PSO). The goal is to implement web service selection with QoS

global optimization. First the algorithm transforms the original selection problem

into a multi-objective service composition optimization problem subject to global QoS

constraints. This is further transformed to a single-objective problem by using the

method of ideal point. Lastly, the intelligent optimization theory is applied to produce

a set of optimal services composition process with the QoS constraints. Details of

the steps and algorithm details are included in the paper. Test results show the

feasibility of the proposed approach and the e�ciency tests prove that it is faster

than multi-objective genetic algorithms.[40]

2.5 Domain Specific Language DSL

2.5.1 An End-to-End Approach for QoS-Aware Service Com-

position

This paper proposes a composition approach based on DSL (Domain Specific

Language) to specify the functional requirements of QoS and also the expected con-

straint hierarchies by leveraging hard and soft constraints. To optimize the composi-

tion in a semi-automatic way, as composition runtime resolves the user’s constraints

and find the solution. Using VERSCO as a runtime environment, the core services

can be access directly via SOAP or using the client library that provides the simple
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API. Leveraging VERSCO core services helps integrating Composition Service on the

level of the infrastructure. The user interacts with the system by specifying a com-

position using VCL. The paper then explains VCL. A VCL composition consists of a

set of features where each feature has a set of candidates to implement the feature.

Querying and matching all candidates that implement certain feature is called feature

resolution and it is used to reduce the number of candidates to speed up the over-

all process. QoS aggregation is needed to determine a formula for the composition.

The first approach is Constraint Optimization Problem. In order for the solution to

be found, all constraints have to be fulfilled including feature constraints and global

ones. The other approach is integer programming approach where we define a new

objective function for calculating an overall utility value for features while consider-

ing the user’s constraints. Details about constraints in both approaches are in the

paper. The test results show that the performance is promising and as a future work,

VERSCo’s infrastructure needs to be leveraged to do e�cient runtime re-composition

and reduce the continuous querying.[69]

2.6 Novel Algorithms

These solutions come up with their own algorithms for Web service selection

and do not depend on one of the well-known algorithms such as GA, Bees or PSA.

2.6.1 An Improved Ant Colony Optimization Algorithm for

QoS-Aware Dynamic Web Service Composition

This paper proposes an algorithm for QoS aware dynamic web service com-

position by transforming the problem of global optimality into a multi-objective,

multi-choice Quality of Service optimization for Web service composition. This is

reduced into the QoS-aware dynamic web service composition. The infrastructure’s

topology can be presented as a multi-stage graph where the edges connecting the
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nodes are the values of QoS attributes between these nodes. The approach uses an

improved OAC algorithm to solve the multi-objective selection. [72]

2.6.2 TQoS: Transactional and QoS-Aware Selection Algo-

rithm for Automatic Web Service Composition

The paper tries to solve the issue of web service selection and composition

problem not only by considering the functional requirements but also by the trans-

actional properties and QoS characteristics. The selection algorithm expresses the

user’s preferences as weights over QoS criteria and as levels of risk to define the

transactional requirements semantically. The paper defines three categories of web

services:

• Pivot WS: these services leave the e↵ect forever once they are executed and

cannot be undone.

• Compensable WS: These ones have other services that can undo what these do.

• Retriable WS: those ones guarantee a successful termination after finite invo-

cation number.

The paper considers five factors a↵ecting the QoS: price, execution duration, reputa-

tion, rate of success and availability. There are also other definitions for the services

according to the transactional properties: Atomic WS: like Pivot WS Transactional

WS which has a transactional behavioral property in a vector. For the users to express

their criteria, the paper defines the risk:

• Risk 0: where the system guarantees compensating the obtained result in the

case of the successful execution.

• Risk 1: the system does not guarantee compensating the result by the user.
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In order to obtain TCWS (Transactional Composition of the Web Services),

the paper assigns a WS for each activity in the workflow. This depends on the

workflow being Sequential, Parallel .... etc. detailed work in the paper. [23]

2.6.3 A Novel Web Service Composition Recommendation

Approach Based on Reliable QoS

The paper proposes a novel approach for web service composition. The QoS

information is classified into 2 categories: local and Global. For data definition,

there are N global QoS dimensions and M local dimensions so there are I QoS where

I = M+N. the rest of the paper provides mathematical formulas to calculate the

credibility which is the greater distance = the worse the credibility. The approach

finally computes the local QoS and the global QoS separately then the paper provides

a real-life case study to validate the feasibility of the proposed approach. [36]

2.6.4 RMORM: A framework of Multi-objective Optimiza-

tion Resource Management in Clouds

This paper proposes a design on multi-objective serial optimization with prior-

ities for the purpose of finding the resource deployment in the clouds. The approach

intends to help the service providers in estimating and satisfying the user require-

ments such as cost, performance, availability and reliability. The main constraints

for the users to measure their applications in the cloud are: security, data, SLA and

performance which is mainly a↵ected by the number of virtual machines and the

distance between them. The proposed scheme is composed of 5 components:

• Performance model: that accepts the user’s SLA and satisfies performance re-

quirements.
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• Availability model: for accepting the data form the performance model and

obtaining the topological structure of the virtual machines.

• Placement model: gets the real locations of the virtual machines.

• Consolidation model: for the providers to save cost and improve resource uti-

lization.

• Monitor: to monitor the rest of the models and also does the database access

part.

The rest of the paper is detailed information about these models followed by

experiments and evaluation which shows that the algorithms used in the scheme need

to be improved. [19]

2.6.5 Metaheuristic Optimization of Large-Scale QoS-Aware

Service Compositions

This paper proposes an approach for optimizing web service composition in

large-scale service-oriented systems using constraint hierarchies. A composition model

contains composite service consisting of a set of abstract services that are non-

executable and describe the core functionality in terms of operations, I/O and condi-

tions. In the QoS model, the selection can be improved by considering the candidate

service and a vector is used to denote the available services. The paper focuses on two

categories: operational attributes and business-related attributes. The model also in-

cludes a flexible model for the QoS constraints which have two categories: Global

and local constraints. The objective function is defined and a metaheuristic (which

is an iterative generation process that guides a subordinate heuristic via combining

di↵erent concepts to explore and exploit the search space) is used and a neighbor

generation function is used to generate new and possibly better solutions. The next
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step is Candidate evaluation and solution evaluation which are described in detail in

the paper. The QoS values are normalized based on the aggregated values to di↵erent

scales where the closer to 0 is better and closer to 1 is worse. Next step is computing

the penalty values for global constraints violation. The scores then must be combined

to a single value. The next step is solution modification which contains some steps

like improved mutation, improved local and global penalty and some other steps that

are detailed in the paper. The evaluation shows that the scheme performs better than

the existing ones and the next step is to extend it for nominal QoS attributes.[70]

2.6.6 An Optimal QoS-Based Web Service Selection Scheme

This paper proposes a service selection scheme for helping the service re-

questers in selecting the services in web service composition. The scheme considers

two contexts: single QoS-based service discovery and QoS based optimization of the

composition. The attributes considered in the selections are response time, reliability,

availability and cost. Since UDDI provides a way of retrieving qualified services for

functional and text-based matchmaking, this paper focuses on numeric based QoS

matchmaking. The paper discusses also the single QoS Based discovery which evalu-

ates task individually and picks the one with highest performance while for the QoS

based optimization, the overall workflow structure for a given composition with high-

est performance is selected. These are discussed in detail in the paper and each case

of the composition is also discussed along with calculation formulas. Mathematical

programming techniques are used for scheme implementation and solving objective

function. The algorithm of the scheme has two main phases: pruning phase which

filters out the candidates in each task then comes the branch-and-bound phase which

selects the maximum of the bounds of all branches. The experiments show that

this scheme’s performance is better than the enumerative method in terms of e�-
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ciency and e↵ectiveness. The next enhancement is focusing on semantics-enhanced

service discovery and composition to provide higher precision in candidate service

discovery.[35]

2.6.7 QoS-Aware and Multi-granularity service composition

This paper considers how to produce a new service composition plan while

preserving original observable behaviors seen by the user. This new plan aims at

finding better quality services. The first step here is defining a model that captures the

observable behavior to the user and then define that two compositions are equivalent

if they have the same observable model. To model the behavioral signature graph, a

directed acyclic graph is used to model the processes which model services and the

reason for choosing DAG is to be able to apply some of the graph algorithms to check

the behavioral compliance. A complete definition of the graph is in the paper. The

algorithms and experiment are also in the paper. The future enhancement on the

proposed mechanism is to do some formal analysis of the proposed algorithms.[24]

Pros: clear and understandable mechanism.

Cons: does not show the gain or loss in the new composition plan i.e. there is nothing

that shows the performance increase or if it is even there in the new plan.

2.6.8 A fuzzy multi-objective model for provider selection in

data communication services with di↵erent QoS levels

This paper proposes a scheme to solve the multi-criteria decision-making prob-

lem where the user must weigh up the relative importance of the factors considering

nonlinear objective membership function, multi-class services, price, penalty defini-

tion in di↵erent tasks and di↵erent QoS levels. The proposed solution reflects both

subjective judgment and objective information in real life circumstances and incor-

porates the concepts of stochastic theory, fuzzy sets and scenario analysis to do the
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provider selection to handle the vagueness and ambiguity that is available in the in-

formation as well as essential fuzziness in human judgment and preference. Objective

function and penalty functions handling di↵erent scenarios are available in the paper.

Also functions to calculate cost, reliability, delay, demand and cases for provider se-

lection are presented in the paper. The functions are also defined in the case of fuzzy

environment with defined symbols to represent fuzziness. One of the major problems

is the uncertainty of the data, therefore an algorithm combining features of fuzzy data

and stochastic data was developed to resolve this issue. The proposed scheme gives

less computational complexity and makes the application more understandable[64].

Pros: handling the missing or uncertain data.

Cons: paper has lots of function without a clarification on how to combine all these

things.

2.6.9 A QoS preference-based algorithm for service compo-

sition in service oriented networks

This paper proposes an order relation model that can be used to calculate

and represent user’s preference information in an e↵ective manner. The ordered QoS

attributes in the vector represent the user’s QoS requirements. To manage the QoS

values, a QoS attributes matrix is introduced. This paper considers four attributes:

response time (as delay), reliability, reputation and cost. The paper defines a QoS

preference function that reflects the user’s preference information. In the order rela-

tion vector, the users sort the QoS attributes according to preference level. Since the

QoS attributes have di↵erent units, these need to be normalized prior to calculation

on the matrix to make it easier to get the result. Defuzzication, normalization and

vector calculation method are explained in the paper along with formulas used in

these stages. To summarize the steps: the user provides QoS preference order, this is
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converted to order relation vector, the QoS value matrix is defizzified and normalized,

the QoS weight vector is obtained from the matrix, fine degree function is used to

calculate the candidate service compositions and finally the matrix is stored to get

the optimal solution[83].

Pros: finds and stores optimal solution.

Cons: lots of calculations: matrix, defuzzication, normalization then function.

2.6.10 An E�cient and Reliable Approach for Quality-of-

Service-Aware Service Composition

The paper addresses the problem that the current existing solutions of QoS

composition do not suit real time decision making that are required to get the optimal

solution within a reasonable amount of time and also the reliability issues. A novel

heuristic algorithm is proposed to serve e�cient and reliable selection of trustworthy

services in a service composition. The algorithm consists of three steps. At the first

step, a trust-based selection method is performed to filter the untrusted services. At

the second step, the search space is reduced for the composition. Finally, a global

optimization approach tries to get the near optimal solution. The system architecture

contains four components:

• Service community: groups services related to specific area.

• Composition Manager: considers functional user requests to create an execution

plan.

• Trust Manager: evaluates trustworthiness of the matched services.

• Selection Manager: selects services along the optimal path from the graph gen-

erated by the composition manager.



23

QoS is divided into three categories: Generic such as response time, availabil-

ity, cost and reliability. Domain specific that depends on the nature of service like

in video service where resolution and color depth are considered, and User perceived

that combines both. Utility function along with algorithm details and test results are

described in the paper [44].

Pros: including domain specific QoS attributes.

Cons: could not think of a negative part.

2.6.11 Toward Better Quality of Service Composition Based

on a Global Social Service Network

The paper proposes an approach to move from isolated service islands to global

social service network by developing a model for the network that supports service

sociability. A construction of a GSSN is first proposed based on quality of social

links and then an algorithm for mapping GSSN into service cluster is proposed to

reduce the search space. The paper also proposes a quality-driven approach to enable

exploitation of the service cluster by providing workflow as a service. The idea of

sociability is for a service to see with whom it has worked before and with whom it is

willing to work in the future. Considering isolated services leads to several di�culties

such as poor scalability, expanded search time and lack of sociability. The GSSN

uses social links to connect cross-domain distributed services and this is similar to

RDF to connect distributed files into single global space. The social link can be

illustrated by rules that include composition patterns such as sequential, parallel and

conditional. The quality of social links is determined through some evaluation criteria

described in the paper. The evaluation of the scheme used three metrics: response

time, number of services required for fulfilling the composition goal and success rate.

The evaluation shows that the approach improved the response time and success



24

rate, but the limitation is with the static generation of the GSSN for each group of

users instead of adapting to user preferences. Another limitation is that the approach

cannot incorporate the user feedback [13].

2.6.12 A Multi-Criteria QoS-aware Trust Service Composi-

tion Algorithm in Cloud Computing Environments

the paper proposes a global trust service composition approach based on ran-

dom QoS and trust evaluation. The approach considers the multi-criteria assessment

of service quality. The first step is removing the uncertain outliers and estimate

the ideal value of the collected objective QoS data, and this is done using statisti-

cal testing (hypothesis test). Then subjective QoS evaluations of the providers and

users are aggregated according to direct trust and recommended trust. The final

step is composing the services through global QoS optimization. Formulas along with

detailed techniques for the steps are included in the paper. The test results show

that the approach improves accuracy and is suitable for dynamically changing cloud

environments.[48]

Pros: accuracy improvement and it is suitable for dynamic clouds.

Cons: does not include the cost of the service and it has lots of calculations.

2.7 Linear Programming

2.7.1 Flow-Based Service Selection for Web Service Compo-

sition Supporting Multiple QoS Classes

This paper considers a broker o↵ering composite service with multiple classes

to several users creating flow requests. the scheme proposed here optimizes the end-

to-end aggregated QoS of the incoming requests and is based on linear programming.

The approach guarantees that the QoS constraints will be met for each request. The
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paper then describes the architecture of the broker which acts as an intermediary

between the service providers and the users and this broker is maintained and operated

by a third party. The paper assumes that composite service structure is defined

using BPEL definition. For the QoS composition model the approach considers the

response time, execution cost and availability and have equations to calculate matrices

for these parameters. For the optimization problem, the goal of the engine here is

to determine the variables that maximize the objective function. The problem is

a linear programming problem that can be solved by standard linear programming

techniques. The approach can be easily modified to take other QoS attributes. For

future enhancement, the work will address supporting more general types of statistical

guarantees, dynamic re-binding and service sharing among multiple brokers [9].

2.8 Analysis works

These papers represent some analysis works for the QoS optimization problem.

They do not necessarily propose a solution in their work.

2.8.1 QoS Analysis and Service Selection for Composite Ser-

vices

In this paper, a scheme for calculating the Quality of Service is proposed. The

scheme is intended to handle the composite services having complex structure. The

paper defines the services as simple graph where the nodes are the services and the

edges between these nodes are transitions. The paper then defines the patterns of

service composition such as: parallel, conditional, sequential and loop. In the loop

construct, the paper assumes only the structured loop which has a single-entry point

and a single exit. The paper visits only three composition patterns: loop, parallel and

sequential. The proposed algorithm takes a graph of services as input and outputs the

QoS along with the execution probability for every path. The approach calculates the
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quality of service for the composition pattern and the places the calculation results

into a vertex. This vertex is then used in the graph to take the place of the calculation

results. Detailed calculation methods along with the experiment are included in the

paper [81].

2.8.2 QoS Analysis for Web Service Compositions with Com-

plex Structures

This paper proposes a semantic approach for calculating QoS for complex

structured composite web services while considering probability and conditions for

each execution path. The patterns discussed in the paper are: loop, loop, sequential

and conditional. The paper gives the good s ordering example as a real-life appli-

cation for the composite services to describe the patterns. The composite services

are represented as a graph where the vertices represent services. Formulas and de-

scription of each pattern are included in the paper. The next section contains the

QoS calculation methods for each pattern. The conditional pattern is divided into

two types: structured and unstructured where in the unstructured pattern, two or

more paths can share the one task before joining. The graph is then passed to a

function that transforms it into a rooted tree for analysis and the time complexity

for this is O(—V—+—A—) where V is the number of vertices and A is the number

of arcs. The paper then does some performance evaluation of the proposed approach

by constructing a service selection to calculate QoS and then compare this with the

service selection based on the other calculation methods. This comparison show that

the proposed approach is much more e↵ective than the previous ones due to some

performance issues and due to the fact that some approaches have open issues that

are covered by this approach. As a future work, the next step is to study QoS cal-
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culation method for composite service with component QoS modeled as general QoS

probability distribution [82].

2.8.3 Scaling the Performance and Cost for Elastic Cloud

Web Services

The paper inspects the tradeo↵ between the consumer’s costs for the resources

and the gain in performance since the pricing of the resources is basically controlled

by the CSPs and most of the studies consider the benefits on their side and not the

user side. So, the privileges and the expenses of the customer are not fully covered.

The experiment was carried out in a way to simulate the real-life example of renting

multiple resources and the testing environment followed the pricing of the CSPs. The

VMs analyzed were Windows Azure, Google Compute and Amazon EC2 since these

are the mostly present on the market. The experiment basically uses 2 web services

hosted on the VM: one demands memory and the other one demands memory and

CPU utilization. The goals are to test the scaling of the performance if the resources

are scaled for the same server load and the second is to find if there is a region in

the server load that maximizes the performance. There is a section on the paper

with the details on how the experiment was carried out. The results show that for

the first web services that needs only memory, performs better for environments with

VM instances with 2 or 4 CPUs by 3.6, 4.8 times than when it is hosted on a one core

VM. For the second one the response time have no such increase but around 1.7 only

so the performance depends on the type of the web service used. So as the result of

the comparison, the more the customers pay the more performance they get. This

shows that the pay-per-use model is convenient to the user. The paper concludes

that the cost-performance relationship really depends on the characteristics of the

web service [75].
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2.8.4 A Comprehensive Infrastructure of Constraint Opti-

mizer in Dynamic Web Service Composition

The paper presents the principles leading to constraint-based selection and

preferring the best services suiting the customer and supplier demands. This will also

support semantic web and its services. The paper proposes a multi-phase approach

for the selection of the optimal web services that has been used. The paper introduces

the Constraint optimizer that consists of Constraint Analyzer, Cost Estimation and

Constraint Representation. Figure 2A in the paper shows the data flow chart which

is the infrastructure of the proposed approach. OWL-S web service registries are

where the web service descriptions are stored, and these reduce the discovery time

and enhance e�ciency and accuracy of web services operations. Web Service Search

Engine is an interface that provides the information about semantic publishing and

discovery of the web services with OWL-s registries. The Constraint optimizer’s

major function is choosing the optimal web service and satisfying the customer’s

requirements. The selection is done dynamically and from the set of services provided

by the web service search engine. The paper also contains descriptions and tasks of

the other components of the optimizer [12]. Pros: seems like a clear approach and

good way to handle various parts of the service composition.

Cons: no scheme testing results or detailed implementation of the scheme is provided.

2.9 Discussion

The Quality of Service in web service composition is a↵ected by several pa-

rameters such as Availability of the service, Service reliability, Service Response time

and service cost per transaction or cost per usage. These parameters are the main or

we can call generic parameters. Other factors that may a↵ect the decision according
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to the nature of the task to be accomplished by the Web service composition. These

factors fall into one of the three categories of QoS composition [44] which are:

1. Generic: such as response time, cost, availability and reliability as we just

mentioned.

2. Domain Specific: which depends on the nature of the service, for example in

the case of video broadcasting services where there are some extra parameters

such as resolution and color depth.

3. User Defined: which is a combination of both categories.

There are some cases where the user needs to take into account some of the domain

specific characteristics e.g. in the case of video streaming service where the video

depth and resolution matters. To provide a good solution to this multi-objective

optimization problem we need to consider all these parameters along with any other

parameters associated with a↵ecting the quality of the solution.

To find the best possible solution, we need first to set some requirements for

the solution so we can compare the available solutions and see which is the best one.

R1- The solution should be a real time solution: in other words, we need a high-

performance algorithm that gives us the desired solution with the highest per-

formance in terms of CPU usage and number of computations which at the

end will result in shorter execution time. Genetic Algorithms are widely used

in these problems and the population generation is one of the things that con-

sumes CPU usage and therefore time. In order for the solution to be a real

time solution, we want it to at least outperform GAs in terms of the time or

generations needed to get the solution or converge to the optimal solution.
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R2- Should give Pareto Optimal Solution set: Pareto optimal solutions set is one

of the essential parts needed for any multi-objective optimization problem. It

shows the tradeo↵ between two characteristics or properties since sometimes

maximizing one property will result in minimizing others in such problems [32].

In order for the solution to express the tradeo↵ between the properties in the

optimization problem we require the solution to be expressed as Pareto Optimal

Solution Set.

R3- Considering User Defined QoS factors: Some solutions cover only partial aspects

of the QoS optimization properties such as response time and cost. In fact,

there are some applications that need more properties, so the approach needs

to be flexible enough to handle such applications and add those functional

properties into consideration. Moreover, as we discussed above, there are some

other factors a↵ecting the optimization which are domain specific requirements.

These play an important role in the optimization in some applications and have

a big impact on the solution. We refer to these here as non-functional properties.

The solution should be able to handle both functional and non-functional QoS

attributes.

R4- Considering invocation patterns: Di↵erent applications have di↵erent workflows

and therefore di↵erent Web service invocation patterns. Types of the invocation

patterns are sequential, parallel, conditional ...etc. The more patterns handled

by the approach means the more application types the approach is suitable for.

We require the solution to handle the invocation types to be capable of handling

di↵erent applications.

R5- Dynamic checking and switching for better provider: As the number of Web

services grow, we will have new services performing the same tasks required by
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some applications that already bind to some services to perform those tasks.

These new services might be better than the current ones and also (according

to the user preferences) might not. Our solution should not only figure out

the best service for a new application but also needs to check the feasibility to

switch from one service provider to another given the information of the service

we have and any SLA initiation/break fees.

We have surveyed many of the major approaches used in solving the problem

and have compared twenty-five di↵erent approaches against our requirements. These

approaches were based on a variety of algorithms from GA based to novel algorithms.

The table below shows the approaches we surveyed and what requirements they im-

plement:

As we can clearly see from the comparison table (Table 2.1), there are many

existing solutions that implement R1 and therefore these are real time solutions,

but they lack some other requirements. We also can see that none of the existing

solutions implement R5 which is dynamically checking and switching to the better

service provider which is an important property in optimizing the solution.
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Table 2.1: Current Approaches and Requirements Implementation
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CHAPTER 3: WEB SERVICE COST OPTIMIZATION

3.1 Introduction

Due to the rapid increase and spread of Web enabled computing many service

providers compete to o↵er better services to the users. The provided quality of

the o↵ered service di↵ers form one service user to another according to the relative

importance of each feature provided by the service. To judge the service quality i.e.

to assess which service may be better for a certain user in a certain task, several

parameters are put to consideration. Finding the cheapest rate does not mean this

service is the best service since there are other parameters judging this. For example

in video streaming services, the video resolution is a primary feature of the service.

In this case, having a service with a very low cost and a lower resolution than what

the application needs is not an e↵ective solution. In some cases, the user already have

a service that performs the desired tasks but want some improvement to be added to

the application. The improvement could be in terms of performance or operational

cost. The problem here is to find another service such that it is feasible to switch

from the current service provider to the new one.

Minimizing the cost to the user does not mean finding the cheapest service

since most of the time the cheapest service is not the most e�cient. There is usually

a relation between cost and performance and in most cases the cheaper the cost leads

to lower performance measures. those performance measures include Availability,

Reliability, Response Time, Cost and in some cases some other domain specific mea-

sures depending on the type of application. Therefore our main problem becomes “

Given a relative importance for each measure, find the best candidate service”. This

includes the case whether the user has no current service for the task or even if the

user has a service but looking for further enhancement. In other words, is it feasible
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and cost e↵ective for the user to switch from one service provider to another service

provider and if it is then which one is the best solution. Our proposed scheme uses

the P-OCEA algorithm proposed in [10] to find the solution to optimize the cost

in Web service composition according to a given objective function. The P-OCEA

algorithm is faster in finding the solution than Genetic algorithms. The Algorithm

uses the P-Optimality Criteria combined with Genetic Algorithm’s operations to find

the solution. P-Optimality plays the role of candidate selection for solution compari-

son according to the provided objective function instead of calculating a fitness value

for each candidate which will enhance the performance of finding a solution to the

problem.

The rest of the chapter is divided as follows:Section II contains a brief discus-

sion of Genetic Algorithms, Section III describes P-Optimality, Section IV Describes

P-OCEA. Section V discusses the derivation of our objective function derivation and

how it can be customized. We discuss some related works in Section VI, Section VII

shows the experiments we conducted along with experimental results and comparison

with some recent approaches and finally insights and discussion in Section VIII.

3.2 Genetic Algorithms

In some cases, an apparently attractive solution may not be optimal. For ex-

ample, trying to find a lower price for the service this results in lower performance

hence there is a tradeo↵ between cost and performance. Trying to solve such prob-

lems results in having a set of solutions referred to as “Pareto-optimal solution” and

its curve shows us the tradeo↵ between the parameters included in the problem. To

find the best possible solution “the optimal solution” we need to generate as many

Pareto-optimal sets as possible[20]. Evolutionary Algorithms were proposed to solve

such problems. The idea behind these algorithms is to start with a set of random
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solutions referred to as initial population. The algorithms use the initial population

to create another new generation containing the best solutions. This population gen-

eration continues and each time the population converges more to towards the true

optimal solution region. This concept is the base of Genetic Algorithms. NSGA

(Non-dominated Sorting Genetic Algorithm) was one of the first evolutionary al-

gorithms. This algorithm uses the principles of evolutionary biology to solve the

above-mentioned problem. It applies techniques such as inheritance and mutation

[58]. NSGA-II was implemented to solve multi-objective optimization problems as an

improved version of NSGA which was mostly used for single objective optimization

problems. The di↵erence in NSGA-II is that after the random population is created

and crossover/mutation phase, the individuals are ordered into non-dominated sets.

These sets are then reduced to find the next non-dominated sets [49].

3.3 P-Optimality

In this section, we provide a brief definition of P-Optimality which is central

to our algorithm for multi-objective optimization problem. It is defined as follows:

for a value x that belong to a set of values S to be optimal over the other values in S

implies that x has a higher probability to be the winner of any comparison between

x and any other randomly selected member of S according to a predefined objective

function. That is:

forx 2 S ! P (x) � P (x⇤), 8x⇤ 2 S (3.1)

where P(x) is the probability that x has the winning criteria according to a predefined

objective function f(x) and x* is any randomly selected member of the set S. So x

should maximize the function:
kX

i=1

Pi(x) (3.2)
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kX

i=1

(1� (Pi(x))) (3.3)

which is the 1-norm function of x, where k is the number of objectives. Then for x

to be better than y the 1-norm function of x has to be less than the 1-norm function

of y:
kX

i=1

(1� (Pi(x)))<
kX

i=1

(1� (Pi(y))) (3.4)

In other words, x is optimal over a set S if and only if:

P � function(x) � P � function(x⇤)8x⇤ 2 S (3.5)

where :

P � function(x) = (
kX

i=1

(1� (Pi(x)))
r)1/r (3.6)

Where, S: finite set of feasible solutions, x*: randomly selected solution, r: real

number larger than zero and P(x): the probability of x winning the comparison with

other randomly selected members of S according to the predefined objective function.

The Optimality Criteria is not the same as selection method as might think,

but it is what allows us to compare two feasible solutions to know which solution is

better. The basic characteristics of the P-optimality criteria are as follows: (1) P-

Optimality allows us to assess the importance of each parameter in the problem we are

trying to solve in order to get a compromise solution. (2) The criteria are defined over

the set C which is the finite set of feasible solutions. (3) Pi(x) is the probability that

x will win the comparison against randomly chosen individuals (solutions) according

to the objective function. The definition of P-Optimality is based on Pi(x). (4)

Probability Pi(x) and the “inverse cripple” concept are relative to the considered



37

solutions. (5) The definition is based on equation 3. 6. (6) The optimality criteria

generate interpretations and gives us what is optimal.

3.4 P-OCEA: A Multi-Objective Optimization Algorithm Based

on P-Optimality and Genetic Algorithms

The algorithm which we used to get the solution for the problem according

to the objective function we derived is called P-OCEA [10] which is an evolution-

ary multi-objective optimization algorithm based on P-Optimality and Genetic al-

gorithms [34]. The implementation of the P-OCEA algorithm considers a posteriori

approach which first begins by filling the sets of solutions and then applying the

preference criteria to these sets [28]. The algorithm starts by generating random

populations to begin with. Each one of these m populations contains n values having

upper and lower bounds. The P-OCEA algorithm performs three major operations to

each one of these m populations to create a new population. These three operations

are as follows, Selection: The selection method here is called tournament selection

[56] where some individuals are chosen randomly from the population and the best

solution of these ones is the one that will be selected. Variation: The algorithm was

implemented with flip mutation and a two point-crossover which results in creating

an o↵spring population having size N. Elite Preservation: The operator here is the

same operator of the elitist NSGA-II [20] which combines the o↵spring population

with the old one then chooses the best solutions out of this combination. More details

about each one of these operations can be found in [10].

3.5 Objective Function Derivation

To Derive a good and suitable objective function for a certain problem, we

need first to consider all parameters associated with it [8]. Since the main goal of our

objective function is to optimize the service cost from the user’s perspective, we need
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to include all parameters associated with the cost of the current service used by the

user and parameters associated with the next potential service to check the feasibility

of changing the service provider. These parameters are: Number of service usages

per day, number of days remaining in the SLA, contract/agreement breaking fee,

new contract/agreement initiation fee, current service price per usage and candidate

service price per usage. So, for the current service and next service respectively we

have:

C1 = rd ⇤ c1 ⇤ u (3.7)

C2 = (rd ⇤ c2 ⇤ u) + BFee+NFee (3.8)

where: rd= Number of remaining days, c1= cost for current service per usage, c2=

cost for candidate service per usage, u= average daily service usage, BFee= con-

tract/agreement breaking fee and NFee= New contract/agreement initiation fee. Now

we calculate:

�C = c2� c1 (3.9)

Finally, we need to include other service parameters in the objective function. Pa-

rameters include service availability, which is defined as “ the probability at steady

state that requests submitted are successfully processed” [54]. Another factor that

we consider is “reliability” which refers to the probability of successful service execu-

tion [37]. Response time which refers to the time it takes for the service to process

the request and send back the result to the user. Web service architecture follows

“pay-per-use” pricing model where the service user needs to pay the usage cost every

time the service is used.
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Let vectors A1= {A11, ...A1n} and A2= {A21, ...A2n} hold the attributes of the

candidate service and the current service respectively, U= {U1, ..., Un} holds the user

preference for each attribute and S= {S1, .., Sn} hold the signs indicating maximizing

or minimizing certain attribute. A general function in this case is:

nX

i=1

AiSi (3.10)

In our case we have two or more services to compare in each iteration and we

also want to consider user preferences for the importance of each parameter. Since

we are taking � C we need � for the other parameters to be included in the objective

function. Therefore we define �A to include the di↵erence between the attributes

of A1 and A2 for each attribute instead of the attribute itself. Then our objective

function for a candidate Web service x in this case becomes:

f(x) =
nX

i=1

U(x)i�A(x)iS(x)i (3.11)

According to this, the services that maximizes the objective function should

be the best available solution. As we mentioned above in equation 3.6, P-Optimality

depends on the probability that a candidate solution will be the winner when com-

pared to any randomly chosen solution according to some objective function which,

in our case, is equation 3.11. Combining our objective function with equation 3.6

yields:

P � function(x) = (
kX

i=1

(1� (Pi(
nX

i=1

U(x)i�A(x)iS(x)i)))
r)1/r (3.12)

There are some cases where the user needs to take into account some of the

domain specific characteristics e.g. in the case of video streaming service where the
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video depth and resolution matters. The objective function we discussed earlier is

designed to calculate the generic characteristics of QoS. Our proposed function has

the flexibility to be customized in order to be suitable for such problems. To customize

our function for the above case, we need to set user preferences for each additional

parameter. Each one of these user preferences is multiplied by the di↵erence of the

corresponding parameters. Multiplication by - sign is needed in the case of minimizing

the parameter where in maximizing it is left as is. In this case, append the signs for the

new parameters to the vector S2, create a new vector U2 for user preferences, create

vector �V = {V1, V2, ....., Vn} and append di↵erence of the user defined attributes into

�V. Now we have to modify our objective function to consider these non-functional

QoS attributes. The new customized function then becomes:

f(x) =
nX

i=1

U(x)i�A(x)iS(x)i +
nX

j=1

U2(x)j�V (x)iS2(x)j (3.13)

Plugging this function back into the P-function of x we get:

P � function(x) = (
kX

i=1

(1� (Pi(
nX

i=1

U(x)i�A(x)iS(x)i

+
nX

j=1

U2(x)j�V (x)iS2(x)j)))
r)1/r

(3.14)

3.6 Experiments and Results

We have implemented the solution in two di↵erent ways. First, we compared

our proposed scheme with a scheme using Genetic Algorithms approach with the

“Roulette Wheel Selection”. This will reflect the performance of the current technol-

ogy in processing the solution to the problem using our objective function. In the

roulette wheel selection, the algorithm gives each solution some probability of choos-
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ing it and then the solutions are compared according to the fitness function which is

calculated according to our proposed objective function. The fittest solution (the one

with higher fitness value) is then returned to go to the next population. The other

way we implemented the solution is using P-OCEA algorithm with “Tournament

Selection” [10]

Fitness(xA) > Fitness(xB) ,

p� function(xA) < p� function(xB)
(3.15)

In our Implementation we have a predefined Web service from the set of the 100 ser-

vices we used for testing. The need of this service is to denote the current service from

the current service provider. We ran both solutions on the same initial population of

100 services. The solution has 200 iterations which makes 200 population generations,

0.7 crossover rate and 0.02 mutation rate. We had our elitism set to 5 which means

in each generation we will take the best 5 individuals to the next generation. We

ran the approaches more than 100 times to see the trend of each one in finding the

solution and to get an idea of the outlier values that we get due to random number

generation. In Table 3.1 we show the min, max and average of a sample run after the

data was cleaned from outliers in both approaches.

Methodology Min Max Average

GA 82 129 106

Wcost 79 126 104

Table 3.1: Number of Generations Needed

Table 3.2 shows that the average convergence to the optimal solution in the proposed

approach is faster than the average convergence using Genetic Algorithms approach
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in the 200 generations which means, in average, using the same number of generations

produces a better solution and to get the same solution as the Genetic Algorithms it

needs less generations which means that the proposed approach outperforms the GA

approach in terms of performance. P-OCEA algorithm outperforms GA algorithm in

terms of runtime. In GA, in each call to the selection procedure, the fitness calculation

function will be called and that what consumes more time. In our proposed approach

we have used Tournament selection where the individuals are compared based on the

p-value which leads to faster execution time since no need to calculate the fitness

function in each selection call. In our experiment we have compared the runtime of

both approaches im milliseconds. We took a sample of runs and removed the outlier

values in both approaches and placed them in a comparison table which can be seen

below.

Methodology Min Max Average

GA 126 153 144.25

Wcost 121 144 136

Table 3.2: Runtime Comparison

From the previous table we can clearly see the di↵erence in the time our ap-

proach needs compared to the GA approach. Our approach’s maximum time was

around the average time needed by GA. In the following figure we show the com-

parison result of the generations needed for convergence to the optimal solution for

our proposed approach compared to three more approaches along with the Genetic

Algorithms approach. These three approaches are: SBA [21] which was proposed in

2007 by Nitto et al. which is an approach that is based on Genetic Algorithms ,

NBA [62] that was proposed in 2008 by Niu and Wang which is also based on Genetic

Algorithms and SWC [43] that was proposed in 2009 by Lecue et al for semantic



43

composition of Web services using GA based Algorithm. The following Chart Shows

the convergence to the optimal solution for each approach. The horizontal access

shows the number of generations needed for convergence.

Figure 3.1: Sample Run Comparison

Therefore, by looking at the experimental results we can clearly see the en-

hancement in the number of generations our approach needs to find the optimal

solution. It clearly shows that our approach needs less generations to converge to

the optimal solution. Moreover, the value we get for the solution is higher than the

values for the other approaches. That shows the e�ciency of our approach in terms

of solution’s accuracy and time to get the solution.

3.7 Insights and Discussion

In this chapter of the dissertation we proposed Wcost, a cost-based web service

composition optimization approach based on P-OCEA algorithm. The algorithm is

based on Genetic algorithms but with di↵erent selection methodology where we used

tournament selection based on the p-value of each service to prevent the computa-

tional overhead of calculating the fitness of each individual every time we perform the

selection operation. This leads us to simple comparison to get the better individual
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instead of calculation before the comparison and the theory here is simply the smaller

the p-value means the higher the fitness and therefore the better the individual. The

p-value of each individual is relational to the probability that this individual would

win the comparison with another randomly chosen individual according to our objec-

tive function. In our objective function we have considered all the parameters that

associated with the cost that will have an e↵ect on it such as the number of service

usages per day and the remaining time in the SLA. We implemented the approach

and tested it to prove its e�ciency and accuracy. We also implemented the problem’s

solution in a normal Genetic Algorithm approach to see the performance di↵erence

between the two approaches. We have proved that Wcost is faster in terms of runtime

than Genetic Algorithms based approach since from the sample runs, we have shown

that the average runtime of Wcost is less than the average runtime of the Genetic

Algorithms based Approach. Moreover, in terms of number of generations needed to

get the solution we have proved it needs less generations than what is needed by the

GA approach.

To see how our proposed Approach performs compared to the other approaches,

we have compared it to three other approaches in terms of the number of generations

needed to converge to the optimal solution. Comparison shows that our approach

outperforms the other approaches since it needs less generations to converge to the

optimal solution. Moreover, it gives us higher value for the convergence. As a fu-

ture extension, we think of extending Wcost to cover the optimization on the service

provider’s side such that the service provider can provide a pricing model such that

this price will be the best price for the user according to the other QoS parameters.
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CHAPTER 4: MULTI-USER WEB SERVICE

OPTIMIZATION

4.1 Introduction

In recent years, a number of organizations and even single users have started

using Web based services instead of workstation-based systems primarily due to the

maintenance and the overall cost of deployment. This translates to huge savings as

the customers do not have to own servers to run their applications, and hence can

deploy large applications fairly easily. A very good example of is Pinterest which

according to Forbes.com is growing steadily since its launch and is estimated to have

about seventy million active users with a net worth of about five billion US dollars.

The primary source of this site‘s revenue to this site is the tra�c it generates, which

is comparable to Facebook. The latter maintains its own servers while Pinterest de-

pends on Amazon‘s Web services. Web services are o↵ered by various service providers

with various performance parameters and pricing schemes to satisfy the users’ needs.

Users look for services that perform the desired tasks, have the desired performance

parameters and at a good price from the user’s perspective. Due to the increasing

number of services, it is not feasible to search them manually; resulting in a body

of research. Existing technology in this regard usually take the user’s preferences

and find the best services that can satisfy the given requirements. Some require-

ments come from single users while others involve multiple users. In this chapter

of the dissertation, we target the latter. To illustrate the problem, we consider the

following scenario: an organization O is trying to find some services (likely part of a

Web service composition) to perform a certain task. This organization has multiple

departments that can influence the service choice through their inputs. Each depart-

ment also has a di↵erent vision of the solution, and therefore has di↵erent preferences.
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The problem statement then is to find the ‘best‘ services that suit the needs of the

organization, and at the same time will be optimal when combining the preferences

of the di↵erent departments influencing the decision. Many solutions were proposed

to tackle the composition optimization problem considering di↵erent scenarios. Most

of the proposed schemes are based on Genetic Algorithms to find a set of optimal

solutions known as Pareto optimal solution set [20]. Within these algorithms the

schemes use some selection mechanism that will select the best set of services to be

the output of the algorithm. To the best of our knowledge, these solutions do not

take the discussed scenario, or similar case, into account. Moreover, some solutions

for the multi-user decision making produce a very large matrix that needs to be pro-

cessed which results in computational overhead. The selection mechanism is one of

the factors that a↵ect the performance of the overall scheme. For this reason, we use

a selection method based on P-Optimality [10] that depends on the probability of

the candidate being optimal according to an objective function. We have proved that

this procedure outperforms roulette wheel selection method in terms of accuracy and

number of generations needed to get the optimal solution [2].

Our main contribution in this dissertation is proposing a PROMETHEE [68]

based approach to tackle the multi-user Web service composition optimization. The

scheme utilizes the P-Optimality theory for faster and more accurate results. The rest

of the chapter is organized as follows: Section 3 presents some of the related work,

the proposed approach is discussed in section 4 followed by the invocation patterns

and the objective function discussion in section 5. Section 6 contains the details of

the conducted experiments and finally a conclusion and some future works in section

7.
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4.2 Proposed Approach

Our proposed solution considers the scenario we mentioned earlier in the in-

troduction. Supposing that the organization is seeking service composition to stream

safety awareness videos to educate its employees. Each department (denoted by D)

in O needs to participate in the awareness. The organization O in this case is seeking

a single service composition that will satisfy the needs of all departments to save

money rather than having multiple compositions. Then the problem statement here

is to find the set of services that will be the best composition choice for the combined

constraints set by all departments such as price limitation and minimum resolution.

We need to take into account here the di↵erence in preferences set by each department

since not all departments have the same needs from the Web service. Moreover, some

of the service parameters which are considered as critical to one department might

be ignored by another one. This is a source of conflict in the decision which might

prevent finding a single solution that satisfies the needs of all parties included in the

decision making. This conflict needs to be resolved first prior to proceeding with

finding the solution. Our approach consists of two main components: Conflict reso-

lution that will deal with conflicts between the decision makers that might prevent

finding a group solution and Group decision making component which will process

the decisions of all decision makers to propose a unified decision.

1. Conflict resolution:In some cases, contradicting requirements may prevent

finding a group solution. To avoid this problem, we need to resolve these con-

tradictions prior to proceeding with finding the solution. For example: one

department may require the video resolution of 720p at most for faster down-

load while another department may require a 1080p minimum resolution HD

purposes. Another source of conflict might not be as obvious as the previous
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one but trying to maintain both will result in two disjoint solution sets. For

example: one department requires the cost per invocation for the service to be

at most $x while another department requires a minimum availability y where

there is no service provider o↵ering this resolution at this price or lower. We

resolve this problem by assigning weights to each department in each attribute.

Note that there are some di↵erent preferences that will not a↵ect the solution

which is the case when the needs of one department fall into the needs of an-

other one. An example of this is when one department needs the resolution to

be at least 720p where another department needs the resolution to be at least

1080p. The first department preference in this case will be satisfied when we

satisfy the requirement of the second one, so we do not need to consider such

contradictions. Let w
Aj

Di
denote the weight of the department’s Di in a↵ecting

the attribute Ai. This allows us to construct the Weights matrix containing the

weight of the decision on each attribute by each department as follows:

wM =

2

66666666664

w
A1
D1

w
A2
D1

.... w
Aj

D1

w
A1
D2

w
A2
D2

.... w
Aj

D2

... ... ... ...

... ... ... ...

w
A1
Di

w
A2
Di

.... w
Aj

Di

3

77777777775

Then we perform a pairwise comparison based on the Analytic Hierarchy Pro-

cess (AHP) [25] to decide which preference is dominant as per the algorithm

shown in Algorithm 1. A threshold here is set prior to submitting the matrix

to the algorithm. This threshold will be used in the comparison to determine

how much of a di↵erence we need to have for a group to dominate the others
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i.e. if the di↵erence in the comparison is more than or equal to the predefined

threshold t then we consider it as a dominant group. By default, t is set to one

so if the di↵erence in the pairwise comparison is more than or equal to one,

we consider that as a dominant decision. In case of multiple departments, we

add the weights that fall in the same solution set and then proceed. In case

there is no dominant decision, we go with the most feasible decision that will

maximize the objective function and will result in better performance at lower

cost. As a result of applying this procedure we might discard some of the can-

didate services resulting in a smaller pool of services to deal with. Algorithm 1

demonstrates our AHP based conflict resolution algorithm.

The preferences of the dominant group, which is the output of the conflict

resolution algorithm, will be used to discard the services that do not satisfy the

preferences and then generate the selection pool that contains the remaining
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services. The original population then will be replaced by the new generated

population.

2. Group Decision: After resolving the contradictions, we generate one set of

solutions that contains the optimal solution from each user’s perspective. So,

let R = NumberOfDepartments and M = NumberOfCandidates. Each

department will set some weight to each QoS attribute such that

nX

i=1

w
r
i = 1 (4.1)

To analyze the combined preference of each QoS attribute, our approach uses

an evaluation matrix of size R ⇥ M to get a group decision. The analysis of

the matrix entries depends on some predefined preference function (objective

function). Let

Pj(a, b) = Gj[fj(a)� fj(b)]

where Pj(a, b) is between 0 and 1
(4.2)

be the preference function associated with the criterion fj where Gj is a non-

decreasing function of the deviation between fj(a) and fj(b). Thus, when we

want to maximize the criterion fj we will have the following:

Gi[fi(a)� fi(b)] = 0 ) no preference

Gi[fi(a)� fi(b)] ⇠ 0 ) weak preference

Gi[fi(a)� fi(b)] ⇠ 1 ) strong preference

Gi[fi(a)� fi(b)] = 1 ) strict preference

(4.3)
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Now we can calculate the weakness and strength of each candidate compared

to other candidates from each department’s perspective as follows:

�+r(a) =
X

x2A

kX

j=1

Pj(a, x)w
r
j

��r(a) =
X

x2A

kX

j=1

Pj(x, a)w
r
j

�r(a) = �+r(a)� ��r(a)

(4.4)

This applies 8a 2 A where A is the set of alternatives or candidates, �+r(a)

is the power of a compared to other candidates, ��r(a) is the weakness of a

compared to the rest of candidates and �r(a) is called ”the net flow alternative”

of the decision maker where a higher the value of �r(a) is better.

From these net flow values, we can get the evaluation matrix to get the best

candidate that suits all departments. At the end of each individual evaluation

stage we get the value �r(a). Hence, if we have R decision makers then we

have:

�r(ai), i= 1,...n and r= 1,...R (4.5)

Then we have:

�
r(ai) =

kX

j=1

�
r
j(ai)wj

given that

�
r
j(ai) =

X

x2A

(Pj(a, x)� Pj(x, a))

(4.6)

where �r
j(ai) is the net flow of a single criterion considered by a decision maker.

This net flow corresponds to the relative importance of a criterion to a decision
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maker. The higher the net flow value means the better the candidate to suit

the decision maker’s needs. The evaluation matrix then will be

M =

2

66666666664

�
r
1(a1) �

r
1(a2) .... �

r
1(aM)

�
r
2(a1) �

r
2(a2) .... �

r
2(aM)

.......

.......

�
r
R(a1) �

r
R(a2) .... �

r
R(aM)

3

77777777775

We can get a global solution then by computing the weighted sum of the indi-

vidual net flow values where the global net flow for the whole decision makers

group on a certain candidate will be:

�a(ai) =
RX

r=1

�r(ai)wr (4.7)

and the candidate with the highest value will then be the best candidate for the

group decision.

Note that in the world, this will be a huge matrix due to the number of can-

didate services, and the matrix computation will be complex. Thus, we need

to reduce the matrix size to decrease this computational overhead. We can-

not decrease the number of departments, but what we can do is reduce the

number of candidates by getting the top Y candidates for each department’s

preferences and generate a new population of candidates that will be used to

generate the evaluation matrix. We employ a Genetic algorithm to extract the

top Y candidates and integrate the P-Optimality theory in our selection mech-

anism (instead of roulette wheel selection) for finding the optimal solution [2].
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The algorithm divides the problem into user blocks such that each user block

will output a set of Y candidates that will be evaluated. P-Optimality states

that:

forx 2 S ! P (x) � P (x⇤), 8x⇤ 2 S (4.8)

where P (x) is the probability of x winning the comparison according to a prede-

fined function f(x) and x⇤ is a randomly selected value belonging to the set S.

In this case, x should maximize the 1-norm of x which is the following function:

kX

i=1

(1� (Pi(x))) (4.9)

Hence for x1 to be a better candidate than x2 the following condition needs to

hold:
kX

i=1

(1� (Pi(x)))<
kX

i=1

(1� (Pi(y))) (4.10)

Therefore, for x to be optimal over the set S it has to satisfy the following:

P � function(x) � P � function(x⇤)8x⇤ 2 S (4.11)

where :

P � function(x) = (
kX

i=1

(1� (Pi(x)))
r)1/r (4.12)

where, S: finite set of feasible solutions, x*: randomly selected solution, r: pos-

itive real number and P(x): the probability of x winning the comparison with

x* according to a predefined objective function. This will reduce the matrix

size from N ⇥M to N ⇥ Y where Y can be increased if no common candidate
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is present among all user block outputs. The resulting matrix is smaller than

the original matrix since Y ⌧ M . The new matrix in this case will be:

M =

2

66666666664

�
r
1(a1) �

r
1(a2) .... �

r
1(aY )

�
r
2(a1) �

r
2(a2) .... �

r
2(aY )

.......

.......

�
r
R(a1) �

r
R(a2) .... �

r
R(aY )

3

77777777775

Figure 4.1: Proposed Algorithm Flow

Figure 4.1 illustrates the flow of our proposed approach. The users submit their

requirements to the contradiction resolution algorithm and the user generator
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shown in Algorithm 1. The contradiction resolution algorithm then resolves the

contradiction and discards the candidates that will not satisfy the requirements.

This then results in a new population of candidate services that will be the

selection pool which will be used in the next steps. The user block generator on

the other hand will use the preferences of each user to create a corresponding

user block. Each user block will generate an objective function depending on

the user preferences and the composition pattern used for the composition. The

Objective function will then be used by the our proposed MWC algorithm to get

the top candidates for the corresponding user. When we get the top candidates

for all users from the user blocks, we then generate the evaluation matrix that

will be processed to get the best candidate for the group of the users.

4.3 Invocation Patterns and Objective Function

Due to the variety of tasks to be accomplished using Web service composition

and the nature of the procedures required to get the task done we need to use di↵erent

composition patters for di↵erent tasks. Invocation patterns include Sequential invo-

cation, Parallel invocation, Loop invocation and conditional invocation [53]. These

patterns a↵ect the calculation of the QoS parameters and hence a↵ect the objective

function that will be used to find the solution, so they have to be included. These

composition patterns can be seen in the following figure:
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Figure 4.2: Web Service Composition Patterns

• Sequential Invocation: In this pattern the Web services are invoked one after

the other in a certain sequence. The response time of the composition in this

case will be the sum of the response times of all services in the composition

as well as the cost since all services in the sequence will be invoked to get the

solution. The availability on the other hand will be the product of availability of

the services to be composed as well as the reliability which will be the product

of the reliability of the composed services[47].

• Parallel Invocation: In this pattern we have two or more services invoked at the

same time and their output is the input of the next service in the composition.

As can be seen from Figure 4.2, S4 will not be invoked until both S2 and S3 are

invoked successfully which means the response time of the parallel invocation

will be dependent on the highest response time i.e. the slowest service will delay

the whole composition even if the services that works in parallel with it is fast

since S4 needs both results from S2 and S3 as its input. The availability of

the composition however will be a↵ected by the minimum availability of the

services in the composition as well as the reliability while the cost will be the

sum of costs for all services to be composed since all services will be invoked.
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• Conditional Invocation: In Conditional Web service invocation the service will

be invoked if a certain condition holds, otherwise the service will not be in-

voked. As we can see in Figure 4.2, S2 will be invoked only if condition x holds,

otherwise S3 will be the invoked service. In this case, the QoS attributes will

be subject to the probability that the services S will be invoked which means

the probability that condition x holds. Other services such as S1 and S4 will be

invoked for sure so the probability of invocation will be 1 while in this case S2

and S3 will depend on the probability of condition x holding or not.

• Loop Invocation: In Loop invocation pattern the service will be invoked several

times as long as certain condition/s hold. Since we will keep invoking the service

for k times then the response time will be multiplied by k as well as the cost of

the composition. The availability however will be multiplied by itself k times

as well as the reliability of the composition [53]. According to the above figure,

we have a probability p for service invocation such that p(S2) = 1�p(S3) and

p(S1) = p(S4) = 1 since they will be invoked for sure.

The following table presents the aggregate functions for the QoS attributes needed

for the objective function for the discussed composition patterns. These are used to

compose the objective function for each composition depending on the pattern and

are preceded with a + sign for maximizing the attribute or a � sign for attribute

minimization.

4.4 Experiments

In order to test the accuracy and performance of our proposed approach we

have set our scenario as follows: we have set the number of departments to five

departments. Each department has its own preferences in terms of Availability, Reli-

ability, Response Time and Resolution. We have also considered the sequential Web
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Pattern/Attribute Availability Response time Cost/invocation Resolution

Sequential
nY

i=1

Av(Si)
nX

i=1

RT (Si)
nX

i=1

C(Si)
R(Si)

Parallel MinAv(S1, S2, ..., Sn) MaxRT (S1, S2, ..., Sn)
nX

i=1

C(Si)
MinR(S1, S2, ..., Sn)

Conditional p(Si)
nY

i=1

Av(Si) p(Si)
nX

i=1

RT (Si) p(Si)
nX

i=1

C(Si)
p(Si)MinR(S1, S2, ..., Sn)

Loop (Av(S))k k ⇥ RT (Si) k ⇥ C(Si) R(Si)

Table 4.1: Aggregate Functions

service composition pattern for easiness of the scenario and due to the fact that other

patterns can be reduced to the sequential composition form [4]. Thus, we have the

following objective function as per Table 4.1:

Max(
nY

i=1

Av(Si)�
nX

i=1

RT (Si)�
nX

i=1

C(Si) +Min(R(Si))) (4.13)

We then performed our experiment starting with the contradiction resolution

algorithm to get rid of any contradiction that prevents finding a group decision such

as when two departments have totally contradicting preferences. We used a set of

one hundred services to find the optimal solution for each user. We ran the conflict

resolution algorithm several times with di↵erent numbers of contradictions to verify

the runtime of the algorithm. We ran our experiments on a Mac computer with 2.5

GHz Intel Core i5 processor and 8 GB 1600 MHz DDR3 memory. Figure 4.3 shows

the runtime for the conflict resolution algorithm:

As can be seen from the graph in Figure 4.3, we have almost a linear runtime

complexity. Moreover, the runtime is not increasing when we increase the number of

conditions as the algorithm will generate a new selection pool of candidates then it is

actually a↵ected by the number of the candidates in the new pool. The results show

that increasing the number of conflicts will result in a smaller or equal population

therefore smaller or equal runtime.
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Figure 4.3: Conflict Resolution Average Runtimes

Our setting finds the five best services for each user to reduce the matrix size

from D ⇥ N to D ⇥ 5 where D is the number of departments and N is the number

of services. We have used our algorithm that is based on P-Optimality which as we

have shown is more accurate and faster that other algorithms in finding the optimal

solution. Upon acquiring the top candidates from each user block, we then used our

PROMETHEE based procedure to find the group decision. First, we need to set the

preference Matrix of the departments which is as follows:

PM =

2

66666666664

P
a1
D1

P
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an
D1
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P
a2
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.. P
an
D2

...........

..........

P
a1
Dm

P
a2
Dm

.. P
an
Dm

3

77777777775

where P
aj
Di

corresponds to the weight of attribute aj from the perspective of

the department Di. Accordingly, we set our preference matrix as follows:
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PM =

2

66666666664

1 1 2 1

2 0 1 2

1 1 1 1

1 2 0 3

2 1 3 2

3

77777777775

The numbers here are set by the decision makers. The decision makers here

do not have to worry about an upper bound or a scale for the numbers as they will

normalized to reflect the relative importance of each of the preferences. The normal-

ization is performer row by row on the matrix as each row contains the preferences of

a certain decision maker hence the scale of one decision maker will not a↵ect others.

After normalizing the above matrix, we get NDM as follows:

NPM =

2

66666666664

0.2 0.2 0.4 0.2

0.4 0 0.2 0.4

0.25 0.25 0.25 0.25

0.166 0.333 0 0.5

0.25 0.125 0.375 0.25

3

77777777775

Accordingly, the decision making matrix DM becomes:

DM =

2

66666666664

S58 S91 S10 S02 S95

S10 S91 S02 S58 S95

S58 S10 S91 S02 S95

S58 S91 S10 S95 S02

S10 S58 S91 S95 S02

3

77777777775
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The above matrix (obtained from the generated user blocks) shows the top

five common services from the participating decision makers perspectives. We have

used MWC [2] for the extraction of these candidates which is based on P-Optimality

for the service selection mechanism providing higher accuracy with lower number of

generations compared to using roulette wheel selection as per Genetic Algorithms.

Figure 4.4 that compares our approach to other approaches that tackle the same

problem [2] The figure shows how our approach reaches the optimal solution area

before GA based approaches. Moreover, it shows more accuracy than the other

approaches.

Figure 4.4: MWC Vs other schemes performance comparison

We performed a manual calculation as a test to get the group decision and

to compare it with the solution we get from running the proposed approach. Each

row in the above matrix corresponds to one of the departments as the first row cor-

responds to department D1, second row represents D2 and so on. From the above

matrix we can see that S58 is the top candidate for department D1. We can also see

that it is the best candidate according to departments D3 and D4 although it is the

second-best option for department D5 and the fourth best option for department D2.

Similarly, the matrix shows that S10 is the best candidate according to the preferences
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of department D2 and department D5, where it is the second option for department

D3 and the third option for departments D1 and D4. Following the same inference

logic, we can clearly see that the Top candidate for the group decision is S58 followed

by S10 then S02, S91 and S95 respectively. We then performed the computation on

the matrix DM to get the evaluation matrix M that gives us the best service for all

departments as follows:

M =

2

66666666664

0.40 �0.10 �0.30 �0.40 0.40

�0.10 0.10 0.00 �0.20 0.20

0.35 0.30 �0.20 �0.60 0.15

0.3125 0.00 �0.375 �0.25 0.3125

0.4167 0.500 �0.5833 �0.1667 �0.1667

3

77777777775

After global evaluation we get the following NetFlow values for the candidate

Web services:

Candidate Service NetFlow

S58 0.3698

S10 0.1750

S02 -0.3646

S91 0.1740

S95 -0.3542

Based on PROMETHEE Group decision[68], the candidate with the highest

NetFlow value should be the best group solution. This implies that service S58 is the

best candidate for the composition considering the case scenario we set prior to the

experiment followed by S10 then S02, S91 and S95 respectively which matches the

manual calculation we performed. This shows the accuracy of the proposed approach.
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4.5 Insights and Discussion

We proposed a novel Web service composition approach to tackle multi-user

Web service composition optimization problem. Our proposed approach uses the

concepts of P-Optimality for accuracy and e�ciency and is based on AHP [25] to

remove any constraints contradiction among users and the group decision extraction

mechanism is based on PROMETHEE decision support [68]. We performed some

experiments that show the feasibility of our proposed approach and to show how

it can get a group decision that will be the optimal solution for the problem. Our

experiments show the accuracy and the performance of our proposed approach. As a

future work we are considering the case when we cannot find a unified solution and

how we can solve the problem providing the lowest number of compositions needed.
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CHAPTER 5: PROFIT MAXIMIZATION IN

LONG-TERM E-SERVICE AGREEMENTS

5.1 Introduction

Web services are becoming the technology of choice for conducting business

[57] due to their ease in integration and cost of operation and maintenance. Many

companies provide the services to the users with di↵erent performance parameters,

usually at di↵erent prices. This results in a competition among the service providers

to attract more users and therefore make more profit. To do so, the service provider

needs to set the best price possible that will maximize the revenue while attracting

users. This cannot be done by simply o↵ering the services at the lowest market rate.

Doing so will attract the users but will not guarantee the desired maximum profit

to the service provider since this rate might actually be less than or equal to the

operation and maintenance costs.

One problem that a service provider might encounter in trying to distribute the re-

sources is that some users may not be willing to pay the price, that is set for the

service, therefore we need to adjust the price to attract these users. To address this

problem, we use dynamic pricing where prices are adjusted based on the value the

customers attribute to a product [67]. Some research works refer to this as flexible

pricing or customized pricing [60] and some call it price discrimination as di↵erent

users will get di↵erent rates according to how much those users are willing to pay

[76]. Another Approach that helps attracting more users is to bundle the services at

a rate that is lower than the total price of these services. This will not only attract

users, but it will help the service provider in selling more resources, specifically the

ones that have the least demand. This is important to the service provider since

these resources are already running so the service provider is already paying for the
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running and maintenance costs. The problem here is what resources to bundle and

at what rate? To solve this problem, we use Instance Based Risk Assessment and

a Kernel Regression Model to assess the risk of the bundle not having a good demand.

The service provider may also face a favorable scenario where it gets an o↵er

from one or more users requesting to use certain resources that are currently being

utilized by other users For example in the case of storage services, if a new user

requests an amount of storage space, the available amount that is not being used

and can be o↵ered by the service provider is less than the one requested by the user.

The new users could bring more profit to the service provider as they can o↵er to

pay more for the resources. This case may require breaking an agreement with one

or more existing users which will have some consequences that the service provider

needs to take into account in such case such as the service level agreement breaking

fee which the provider will need pay to the user. other things apply to this problem

as we will discuss later in the chapter.

In this dissertation we propose a scheme that handles the above-mentioned

case. Specifically: proposing a price that maximizes the profit for some resource (in

our case Web service resource usage) depending on the market demand for such a re-

source. Distributing all the available resources on the market by utilizing the concepts

of economic equilibrium that are based on Nash equilibrium [46]. Proposing a service

bundling scheme based on instance-based risk assessment and kernel regression, and

finally proposing an automated negotiation mechanism to decide if it is feasible to

exchange one or more users with a new user that is requesting to utilize some of the

resources. The rest of the chapter is divided as follows: Section 3 presents some of the

related works, Section 4 presents our proposed approach and in Section 5 we discuss
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the experiments we performed to test the approach’s feasibility. Finally, we conclude

in Section 6.

5.2 Related Works

The literature has a number of works negotiating pricing of information goods.

For instance, Wei-Lun Chang and Soe-Tsyr Yuan [11] proposed an approach for pric-

ing the information goods in which the users or customers are an active part in the

decision since the prices are adopted to meet the changing needs of the users. This

collaborative pricing model is based on the concepts of bundling and user discrimi-

nation according to how much a certain user is willing to pay. Y Narahari et. al. [60]

discussed the dynamic pricing models for electronic business surveying the di↵erent

models that have been used in dynamic pricing such as inventory-based models, Data

driven models and other models. B. Edelman et. al [22] investigated the generalized

second price that is used by the search engines to sell online advertising encountered

daily by the internet users. A decentralized information pricing model was presented

by A. Polanski [66] where he found out that the price is intimately related to the

existence of cycles in the network where the price is zero if the cycle covers the

trading pair and is proportional to the direct and indirect utility generated by the

goods otherwise. Similarly, C. Maina [51] examined whether the price contributes

to the emerging information. He also divided and identified the existing gaps in the

economics of information research.

Halliday [31] values information goods based on the availability of the informa-

tion goods and the number of consumers that are willing to pay for them (supply and

demand). Rowley [71] describes the price as the dominant force in resource allocation

that determines supply, demand and income among the consumers and the providers.

Sharma et al. [73] proposed a financial model to provide a high QoS to the consumers
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employing the financial option theory and treating the cloud resources as assets to

determine their realistic values. There was a shortcoming to their approach which is

not taking maintenance costs into consideration. Wang et al. [78] proposed an algo-

rithmic solution to optimize the net profit where they developed two algorithms for

the net profit optimization. Macias [50] proposed a model utilizing genetic algorithms

for pricing cloud resources which they were able to prove its e�ciency in acquiring

the highest revenue. [76] Discussed pricing policies for information goods where he

proved that bundling products increases the profit via reducing the heterogeneity of

the customers. Bakos et. al. [6] investigated the e↵ect of bundling on the competi-

tion where they concluded that large bundles may provide significant advantages in

competition. Altinkemer and Jaisingh [5] have devised a mathematical model for the

bundle and price determination.

Estimating the demand on certain goods is one of the crucial steps prior to

o↵ering those goods to the market. Many approaches to estimate the demand have

been proposed and in di↵erent fields since each field of marketing has di↵erent factors

that a↵ect the demand for certain goods. D. Besanko et.al. [7] proposed a demand

estimation framework for competitive pricing in 1998. Their approach estimates the

value created by a brand which looks for the willingness of the consumers to pay

certain prices for certain brands. A Bayesian approach for the workload and demand

estimation was then proposed in 2004 by Pena et. al [65] which estimates the work-

load on the Web farms. These Web farms include Web services and estimating the

workload on a service will help determine the number of users that are willing to

pay a certain price to use a service. Aksoy et. al. [1] proposed another Bayesian

approach for the demand estimation in 2015 and that approach was proved to give

better estimates than previous ones.
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Multi-attribute optimization problems solving is an evolving area of interest in

many fields such as computer science and others. Evolutionary algorithms are widely

used to help solve such problems [17]. These algorithms can help the user find the best

service composition for certain tasks which involves having a Service Level Agreement

between the user and the service provider. This brings the need to negotiate the

SLA terms and hence the need of some automated negotiation approaches which is

a complex problem in terms of providing the feasible solution and the time it needs

to get such one [33]. Many e↵orts were employed to enhance the negotiation via

Genetic Algorithms such as Matos et.al [55] who presented an approach in which

strategies and tactics correspond to the genetic material in a Genetic Algorithm.

Others also proposed many approaches, but they lack a crucial requirement and

that is the support for dynamic selection of the decision-making models [33]. Since

Negotiation will include selection then we also have concern for the selection method

to be used and the e↵ectiveness of it. Many selection methods are available such

as tournament selection, ranking selection and roulette wheel selection. EC Jara

[38] proposed an approach based on P-optimality that uses tournament selection

and gave very good results. We have Used tournament selection in a previous work

and compared it with roulette wheel selection and showed increased accuracy and

performance [2]. Chhetri et al. [14] presented a multi-agent framework that uses

local QoS are coordinated to satisfy the global QoS constraints for the composition.

These local constraints have to be inferred from the global ones using the workflow

topology. Comuzzi [18] proposed a model that utilizes a broker that carries out

the one-to-one negotiations on behalf of the consumers and providers. An approach

using multi-agent system paradigm along with Web service technology to perform

online bargaining was presented by Ncho in [61]. Oliver utilized Genetic algorithms

to calculate the fittest strategy based on the negotiation outcome runs in [63].
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5.3 Proposed Scheme

The proposed approach is divided into four main parts. In the first two sec-

tions we use simple methodologies to set the price which will be a base for the main

contribution which is bundling services. In the first part, we calculate and provide

the pricing model that will guarantee the maximum revenue, based on the market

demand for certain performance characteristics provided by the Web services. The

second part utilizes the concept of Nash Equilibrium for resource distribution among

the services to implement a dynamic pricing model which will guarantee the distri-

bution of all available resources, and hence a higher profit. The third part of the

approach is a bundling scheme where for each bundle we calculate the feasibility of

bundling some resources and o↵ering them to the users by utilizing an instance-based

risk assessment and kernel regression. The last part helps in deciding if and when to

break an SLA with some users if there are new requests and negotiates the price and

other SLA related fees (such as initiation and/or breaking fees) with the potential

users.

Figure 5.1 shows the flow of the proposed scheme which starts by setting an

initial price for the service. The next step is to o↵er the service to the users at the

initial price. We then check if all resources are in use or not. If not, we go to the

dynamic pricing and bundling phase and o↵er the services again, at the new price.

This process repeats till all or maximum resources are in use. Then the approach can

view other user o↵ers and negotiate the price with them if it is feasible to exchange

the new user with one or more existing users.



70

Figure 5.1: Proposed Scheme Flow

5.3.1 Pricing Model - Setting Initial Price

In elementary economics, revenue is defined as the price of the unit times the

quantity sold, minus the original costs. In the case of Web services, this maps to

the price per service usage, the number of usages and the operational costs that the

service provider has to pay in order to operate the services (servers, production...etc.).

A higher price may correspond to lower demand as users will look to optimize their

costs too. On the other hand, higher proposed prices correspond to higher profits for

the service provider. This is a standard demand-supply problem, where revenue as

R, price = P , usages = U and operational costs, then:

R = (P ⇤ U)� C (5.1)

Moreover, increasing the price by a variable ax will lower the demand by bx where

a and b are integers and x is the increment coe�cient which is a real number larger
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than zero. Equation 5.1 thus becomes:

R = ((P + ax)(U � bx))� C (5.2)

We want to maximize the revenue so to get the highest value of the variable x that

will maximize the value of R we need to first derive equation 5.2 to find its curve and

then look for the value x in which the slope is zero so it is at the top of the curve or

R
0. Expanding equation 5.2 will give us:

R = PU � bPx+ aUx� abx
2 � C (5.3)

The derivative of equation 5.3 with respect to x is then:

R
0 = 2abx� bP + aU (5.4)

In order to get the value of the variable x that will maximize R
0, we need to look for

slope zero in the equation which will correspond to the peak of the curve as shown

in Figure 5.2. Solving for x by setting equation 5.4 to zero will give us the price

increase that guarantees the maximum revenue. We call this the Highest Possible

Price (HPP).

Demand Estimation

The demand is one of the main factors to set the initial price as it will provide

the values of a and b. We rely on server log data to help provide information of the

demand on a certain service. We then apply the basic Bayesian theorem to estimate

the probability of a certain demand given certain log file history. Bayes’ theorem is
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Figure 5.2: Revenue vs price increase

expressed as follows

P (A|B) =
P (B|A)P (A)

P (B)
(5.5)

That is the probability of an event A happening given another event B happened is

equal to the probability of event B happening given that event A happened times the

probability of event A all over the probability of event B. In our case this translates

to the following [1]:

p(D|x) = P (Di|x1, x2, x3, .......xn) =

P (xn|Di, x1, ......, xn�1)P (Di|x1, ......, xn�1)R I

m=1 P (xn|Dm, x1, ....xn�1)P (Dm|x1, ....., xn�1)dD

(5.6)

where p(D|x) refers to the probability of having a demand D given that the price

changes by x. Estimating this demand will help getting the values of a and b in

equation 5.2 as the demand will translate to the number of usages such that (D|x)

equals to the demand (number of usages) where a = 1 then we solve for b in equation

5.2 to get its value.
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5.3.2 Dynamic Pricing for Ultimate Resource Distribution

After setting the HPP, the service provider o↵ers the resources to the con-

sumers. It is not necessary that all resources are booked at the respective HPPs, so

the next step may alter it a little bit, so we can use all the resources and generate

more profit. The idea here is that not all users are willing to pay the assigned HPP

for the provided services. This implies that we should check how much the users are

willing to pay and alter the prices accordingly. The approach is to divide and dis-

tribute the available resources for the users based on the concept of Nash Equilibrium

to get the best resource utilization. Consider we have n users and m resources to be

distributed among these users. Initially we grant each user some amount gi � 0 and

an increasing utility function f . Nash theory states that there exists some unique

allocation for the resources y on each user i that will maximize the user satisfaction

in terms of spending and budget constraints py  pgi . In this case, given the price

that we generate from the first step as a vector p and the user i then the resource

allocation for i will be:

Si(p) = (Si1(p), Si2(p), .......Sin(p)

= maxfi(y) , such that: py  pgi

(5.7)

Then for each resource or service j let us define the total demand function of j as:

Dj =
nX

i=0

Sij(p) (5.8)

Then we extract a pricing vector such that all resources will be utilized (market equi-

librium). This vector will satisfy: p is greater than or equal to zero, D(p)�
X

gi  0

and p(D(p) �
X

gi) = 0 [46]. The Price curve then will be as shown in Figure 5.3.
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Figure 5.3 shows the Dynamic price change which guarantees the maximum profit

Figure 5.3: Revenue vs price increase

and the distribution of all available resources. The shaded area denotes the range we

can go in price change such that we will be able to distribute the available resources.

This area is directly a↵ected by the number of users that are willing to pay to use

the resources provided by the service provider.

A negotiation process might be needed to be performed between the service

provider and the customers to determine the price for the service. We use an auto-

mated negotiation based on WebNeg [33] which is a Genetic Algorithm- based scheme

that has been proven to outperform other similar schemes. We use Tournament se-

lection [29] which pairs the candidates and extracts the best candidate out of them

according to the probability that this candidate is the optimal solution. We employ

the concepts of P-Optimality [38] which translates to the following: “for a value x

that belong to a set of values S to be optimal over the other values in S implies that

x has a higher probability to be the winner of any comparison between x and any

other randomly selected member of S according to a predefined objective function”
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[2]. This is represented as

forx 2 S ! P (x) � P (x⇤), 8x⇤ 2 S (5.9)

This, as we have proved in our previous work [2] minimizes the calculation as we

will not need to calculate the fitness value for each candidate when we perform the

selection mechanism. Instead, we rely on the p-function [38] as follows, x is optimal

over a set S if and only if:

P � function(x) � P � function(x⇤)8x⇤ 2 S (5.10)

where :

P � function(x) = (
kX

i=1

(1� (Pi(x)))
r)1/r) (5.11)

where, S: finite set of feasible solutions, x*: randomly selected solution, r: real number

larger than zero and P(x): the probability of x winning the comparison with other

randomly selected members of S according to the predefined objective function [2].

5.3.3 Service Bundling based on Instance Based Risk Assess-

ment and Kernel Regression

Some goods tend to be more popular and people buy them more often where

some others are not. In the case of the service provider, the services that are not sold

have a remaining cost since the service provider has to keep them operational, and

this cost is totally paid by the service provider, whether it is being used by a user or

not. To maximize the profit of the service provider, these services need to be used

by users; but what if the users are not interested in such a service? The solution

here is to “sell as a package”, in our approach we perform service bundling based
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on the assessment of the risk of creating a bundle that will have low or no demand.

The assessment is based on examining similar bundles in the marketplace in the case

of Pure Bundling which refers to selling the items as bundles and not o↵ering the

services individually (instance-based method). We define Sj as the selling rate in

which j ranges from 1 to n so we will be able to predict the demand Di of a bundle

Bi via the use of the weighted average of the selling rates of the previous bundles as

follows:

Di =
nX

j=1

wijSj (5.12)

wij here represents the weight of bundle Bj for predicting the demand of a bundle

Bi in a way that is similar to voting schemes where each vote has a di↵erent weight

assigned to it. In order to predict the demand of the new bundle we can use the

weighted average but the problem here is that this average cannot be taken directly

since the sell rates are not quantified so we need to quantify these values as the

weighted variance of the votes as follows:

vi =
nX

j=1

wij(Sj �Di)
2 (5.13)

Higher variation of the votes indicates a higher risk of a low demand for the bundle

Bi. The distance between two instances is primarily tied to the probability of default

(in our case the default refers to the bundle selling with a good demand) of these

instances. We define the distance between the bundles Bi and Bj as:

dij = |bi � bj| (5.14)

Where bi and bj are the probabilities of default for bundles Bi and Bj. The more

distance between the instances implies less weight to the vote.
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Determining the weights is a very critical step and we use Kernel Regression for

this step because although the naive weighting schemes are easy to implement, they

are not optimized to provide the most accurate prediction [30]. Kernel Regression

is a statistical method that aims at finding the non-linear relation among a pair of

random variables [59]. It states that, supposing that each observation is evaluated

based on two dimensions namely x being the predictive variable and y being the

response variable. Observing n instances of xi and yi helps us in the prediction of an

outcome given its predictive observation X a s follows:

Y =

Pn
i=1 K(x�xi

ß )yiPn
i=1 K(x�xi

ß )
(5.15)

Where K() is the kernel function such that :

K(x) =
1p
2⇡

e
� 1

2x
2

(5.16)

this allows the assignment of more weight as the observation gets closer to x and less

weight as it gets further away from x. Also, ß here refers to the bandwidth e�ciency.

The bandwidth is a smoothing factor parameter for the estimator’s bias-variance

tradeo↵ which we calculate by adopting the mixed bandwidth selection strategy by

Silverman[74] that searches for the optimal bandwidth. As can be seen from Figure

5.4, the first bandwidth is overfitting the data generating too much variance in the

prediction while the third one is too smooth resulting in more bias for the estimator.

The second one is balancing the bias and variance tradeo↵ of the estimator.

The bandwidth is calculated as follows:

ß =

✓
4

3n

◆ 1
5p

v (5.17)
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Figure 5.4: Bandwidth Selection

Where v is the variation, we get in equation 5.13. This bandwidth needs to be

optimized based on some training data in order to fit the kernel regression model.

To do so, a cross validation method was proposed by[15] namely the “leave-one-out

least-square cross-validation” in which the bandwidth ß is chosen to minimize the

cross-validation error as follows:

CV (ß) =
1

n

nX

i=1

✓
fß(x�i)� yi

◆2

(5.18)

Where fß(x�i) is what is called the leave-one-out estimation of yi using the kernel

regression which refers to Di (equation 5.12) but the instances for the distance are

not equal i.e. the summation is:
nX

i=1,j 6=i

. in our case, this maps to the following:

CV (ß) =
1

n

nX

j=1

 Pn
i=1

1p
2⇡
e
� 1

2 (
dij
ß )2

Si

Pn
i=1

1p
2⇡
e
� 1

2 (
dij
ß )2

� Si

!2

(5.19)

To Estimate the demand of a bundle we will substitute the values of x and y

with b and S. Substitution and expansion of equation 5.15 will give us:

Di =

Pn
i=1

1p
2⇡
e
� 1

2 (
dij
ß )2

Si

Pn
i=1

1p
2⇡
e
� 1

2 (
dij
ß )2

(5.20)
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Where Di is the demand for a bundle Bi and dij is the distance from equation 5.14.

Now we can calculate the weights as follows:

wij =
1p
2⇡
e
� 1

2 (
dij
ß )2

Pn
i=1

1p
2⇡
e
� 1

2 (
dij
ß )2

(5.21)

This implies that the smaller the distance between the instances, the higher the as-

signed weights to their vote. Now to create the bundles we make the bundle such that

it maximizes the demand D so our objective then becomes finding bi that maximizes

Di.

Bundle Size and Demand Estimation

Although bundling helps increase the demand on the low demanded resources,

the overall demand may a↵ect the demand of the highly demanded resources nega-

tively. Thus, adding many resources to the bundle while implementing Pure Bundling

principle may result in lower revenue. Changing the bundle size has a direct e↵ect on

the demand of the bundle. Assuming that we bundle the low-demanded services, this

implies that increasing the number of services in the bundle decreases the demand of

the bundle. To determine the ultimate bundle size, we need to find the number of

services i  m  n that maximizes the revenue equation:

MAX((PB +
nX

i

axPi)(DB �
nX

i

bx('i(�(DBDi))))) (5.22)

Where PB is the bundle price, Pi is the price of each individual service to be added

to the bundle, DB is the initial bundle demand, 'i is the coe�cient of the change in

demand associated with adding service i, Di is the demand for service i and a, b and

x are real numbers. This will show the increase/decrease of the demand resulting

from adding more services to the bundle. To get the values of 'i, a, b and x we need
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to perform instance-based comparison with similar bundles using the same procedure

for creating the bundles proposed in section 4.3.

5.3.4 User Exchange

In some cases, the resources provided by the service provider are already

booked and a new request comes in but there is no capacity to handle that request.

In this case the options are either to deny the request or break the SLA with one

or more users to be able to process the new request. In the second case, the service

provider needs to consider many factors such as how much is the di↵erence in the

revenue and how much gain will be the result of this action. Another thing to be

considered is the reputation since it will be a↵ected by such an action. The type and

reputation of the new potential user also plays a role.

To be able to decide on such cases we need to consider all these factors along with

how much more profit we will be making. First thing we need to do is to calculate

how much profit is to be gained by keeping the current users and this depends on the

amount of resources they use and the price they pay for the usage. We also need to

calculate how much profit the new contract will guarantee. Let us define a ranking

mechanism that will give the users ranks according to their reputation and the size

of the organization as a threshold T . When we get a new request from a user Ui with

a threshold TUi then 8Uj 2 S where S is the set of current users using the resources.

• If: TUi < TUj 8U 2 S, deny the request.

• else, calculate the total gain as follows:

Let SLARi denote the number of days remaining on the SLA with the users to be

compared, Susage denotes the service usage per day ⇢i denoting the net profit from

every usage, Bfeei is SLA breaking fees and Ifee corresponds to the Initiation fees



81

of the SLA. We can define the total profit gained from that user i over the contract

period as:
X

(⇢i) = SLARi ⇥ Pi ⇥ Susagei (5.23)

Then to calculate the net gain from discarding user to grant the request of a new user

will be: P
(⇢i) + Ifeei �

Pn
j=1(

P
(⇢j))�

Pn
j=1(Bfeej)Pn

j=1(
P

(⇢j))
⇥ 100 (5.24)

This will give the percentage increase in profit which then can be compared to some

preset percentage to decide either grant the request or negotiate higher price for the

service with the new potential user.

Another aspect a↵ecting the user exchange is the reputation. Exchanging

many users will a↵ect the reputation of the service provider which in turn will impact

the demand on the o↵ered services. Since the reputation has a direct relationship

with the demand, it needs to be considered. The service provider gains reputation by

several means such as the quality of o↵ered resources, the quality of customers e.g.

if the customers are large organizations then this will result in higher reputation for

the service provider, and the loyalty to customers which implies how often does the

service provider breaks an SLA.

Taking these factors into consideration, we can derive the equation for repu-

tation < calculation as follows:

< =
X

(<QoS,<u, g) (5.25)
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where <QoS is the reputation gained by the quality of provided services, <u is the

reputation gained by the type and reputation of users using the services and g is the

negative impact factor of breaking an SLA. We can rewrite equation 5.25 as:

< =
X

(
QoSavg

QoSavgc

,<u,�
n) (5.26)

where QoSavg is average Quality of Service provided by the service provider, QoSavgc

is the average Quality of Service provided by other competitors in the market, � is

the one-time SLA break factor and n is a real number. Since the impact of breaking

an SLA is not linear i.e. the change in reputation will not change by a fixed amount

for every time the service provider breaks an SLA, we calculate the impact as an

exponent. The reputation will have a direct relationship to the average demand on

the services provided by the service provider as follows:

D
0
avg =

Davg<
Davg

(5.27)

where D0
avg is the change in the average demand. Now we can negotiate the price and

SLA agreement with the new user accordingly using the Same negotiation process

used for Dynamic Pricing but this time we negotiate multiple attributes instead of

just negotiating the price which is supported by the negotiation algorithm we use.

5.4 Experiments

5.4.1 Setting Highest Possible Price

In order to calculate the revenue R we need to multiply the price of the service

by the number of usages and subtract the operational costs from the total and that

will give us the net profit as in equation 5.1. As equation 5.2 implies, when we change

the price for the service the demand will change accordingly. Increasing the price will
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result in lower demand and vice versa. In order to calculate the e↵ect of the price

change we introduced the values a as the price change, b as the demand change and

x as the number of times this change is applied. This means whenever we add x

times a to the price then the demand will change by x times b, where a and b are real

numbers and x is an integer.

Expanding equation 5.2 will result in a polynomial as shown in equation 5.3 which

will have a curve shaped graph that represents the profit or the revenue R. In order

to finds the highest revenue, we need to find the peak of the curve of equation 5.3

which is when the slope of the curve is equal to zero. The way to find the slope is

to derive the equation as we did in equation 5.4 and then solve for x by setting the

equation to zero and that will give us the amount of change that we can apply to

both a and b in order to find the highest revenue R.

5.4.2 Dynamic Pricing

In order to test the e�ciency of the Dynamic Pricing we have used the WS

Dream dataset. First, we set the Highest Possible Price (HPP) and compare the total

revenue with the original service revenue that is calculated using the initial service

price that is in the dataset and the estimated demand. We have used the service

throughput as our measure for the service performance to compare similar services in

order to estimate the demand change according to the price. We then calculate the

revenue for the HPP which as can be seen from the figure is more than or equal to

the original revenue since the HPP will provide the price that generates the highest

revenue. Next, we use Dynamic pricing based on a certain threshold TH such that

the service provider is not willing to sell for lower than TH as the price. We then

construct the price vector along with the corresponding demand vector and calculate
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the total revenue which will be more than the Dynamic pricing revenue or equal to

it depending on the threshold. The lower the threshold the more revenue will be

accomplished.

Figure 5.5: Initial Price vs HPP vs Dynamic Pricing

We can see from Figure 5.5 that the Dynamic pricing clearly generates more

revenue as it will maximize the resource distribution and in the optimal case (depend-

ing on the threshold) will distribute all the available resources which will generate

the maximum revenue.

5.4.3 Resource Bundling

To test the bundle creation, we have created several bundles to increase the

selling rates of some services that have low selling rates. We have used the service

throughput as a parameter to calculate the distance between instances. We have

assumed that these services have already been priced using our proposed pricing

model. Table 5.1 shows the revenue increase and the selling rate increase of the

services after they are bundled.

The service ID refers to the ID of the service in the dataset, SR refers to

the selling rate, Rev. stands for revenue, B denotes the bundled services and E in

the cases of the revenue and the selling rate refers to the estimated value from the
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S1ID S2ID S1SR S1Rev. S2SR S2Rev. Rev.C B SRE B Rev.E

1819 1012 94% 69.56 19% 3.23 72.79 84% 76.44
1526 1486 83% 29.05 51% 54.06 83.11 83% 117.03
3024 794 77% 107.03 45% 11.25 118.55 73% 119.72
4068 4756 94% 29.14 74% 46.62 75.76 68% 114.24
688 304 81% 72.09 34% 28.9 100.99 81% 140.94
5426 3374 72% 64.06 38% 12.92 77 71% 87.33
3686 3580 80% 80 24% 13.44 93.44 74% 115.44
162 1943 82% 52.29 14% 9.1 61.39 72% 92.16
4702 3942 75% 14.25 28% 5.88 20.13 58% 22.4
3094 4062 71% 50.41 26% 12.48 62.89 66% 78.54
4887 1568 79% 34.76 36% 22.32 57.08 6% 63.6
168 4522 94% 141 26% 28.86 169.86 88% 229.68
5187 3450 85% 56.1 23% 6.21 62.31 84% 78.12
1640 3956 86% 63.64 45% 25.2 88.84 77% 100.1
5289 4749 89% 77.34 57% 11.97 89.4 84% 90.72
3734 917 84% 43.68 14% 2.66 46.34 79% 56.09
4252 4081 80% 94.4 41% 18.45 112.85 77% 125.51
3440 2835 89% 19.58 31% 7.44 27.02 81% 37.26
684 3533 82% 97.54 21% 9.3 88.84 71% 90.17
4904 2251 85% 99.45 36% 20.88 120.33 74% 129.5

Table 5.1: Bundle Creation Simulation

similar bundles. As can be seen from Table 5.1, although in some cases the selling

rate of one service decreases, the overall revenue of selling as a bundle will increase

the total revenue as the revenue from the other service will compensate for the loss

in the revenue. For example, let us take the first bundle (row 1 of Table 5.1), the

first service (S ID: 1819) tends to sell 94% of the time and the second one (S ID:

1012) tends to sell only 19% of the time. Considering the case of 100 times then

we will get the total revenue of selling these two services as: S1Rev. + S2Rev, that

is 69.56 + 3.23 = $ 72.79. Bundling these two services together and comparing to

similar bundles we estimate the selling rate of this bundle to be 84% which will result

in $76.44 in estimated revenue which is higher than the combined revenue of selling

both services. Similarly, in the second row of Table 5.1, the combined revenue of
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S1ID S2ID S1SR S1Rev. S2SR S2Rev. Rev.C B SRE B Rev.E

302 3773 94% 128.78 32% 18.24 147.02 70% 135.8
4914 4081 97% 64.99 41% 18.45 83.44 69% 77.28

Table 5.2: Bad Bundles

selling 100 services of each will be $83.11 at 83% selling rate for the first service and

51% selling rate for the second service while the estimated revenue of the bundle is

$117.03 at 83% estimated selling rate for 100 bundles. Moreover, we can then use

our proposed pricing model based on the other similar bundles to achieve the highest

possible revenue.

Similar to creating bundles that are close to the high-selling bundles, creating

bundles at random or bundles that are similar to low-selling bundles may result in

a revenue loss as can be seen from Table 5.2. The services in these bundles have

similar throughput to services in bundles we have in the dataset, therefore have

similar estimated selling rates. We can see that in these particular cases, the services

tend to generate more revenue if not combined in a bundle due to the face that the

bundle has a lower selling rate and the generated revenue from the one service ( the

one that gained more selling rate) is not su�cient to cover for the loss in selling rate

and revenue of the other service.

Bundle Size

To test the ultimate bundle size, we have generated di↵erent bundles using

twelve services. The results indicate that enlarging the bundle might result in a

bundle with high risk of not selling which will result in lower revenue.

Figure 5.6 shows the impact of increasing the number of services per bundle

on the total revenue. As the figure shows, selling twelve bundles of single services

(o↵ering the services individually without any bundling) has lower revenue than selling
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Figure 5.6: Bundle Size vs Revenue

six bundles of two services. In our particular case, the ultimate number of services

per bundle came out to be two services per bundle. This number may be di↵erent

based on the selected services. The main observation here is that the revenue tends to

increase to a certain level and then decreases when the number of services per bundle

exceeds the optimal number. It might even result in lower revenue than selling single

services as we can see from Figure 5.5.

Generating bundles with optimal number of services per bundle will result in

higher revenue than selling individual services as the bundling will increase the selling

rate of the low demanded services without a severe e↵ect on the highly demanded

services as can be seen from Figure 5.7.

in Figure 5.7, the lower part of each column corresponds to the revenue gen-

erated by single services while the top part corresponds to the revenue generated by

bundling services with the number of bundles below each column. The figure shows

the revenue increase when selling services as bundles of optimal number of services
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Figure 5.7: Bundle Revenue vs Individual

per bundle. Moreover, it shows that increasing the number highly demanded bundles

and decreasing the number of individually sold services can generate more revenue.

5.4.4 Negotiation

As we mentioned earlier, we have done some improvement in the negotiation

process through using P-optimality in the selection process via tournament selection

instead of roulette wheel selection. We have implemented both methods and ran both

of them on the same dataset of one hundred services as an initial population with more

than one hundred generations. After running them for several times we were able to

see the trend of finding the solution in each approach and we were able to clean our

run data from outliers due to random number generation. Averaging the performed

runs clearly shows how our approach improves the accuracy of the produces solution

as can be seen from Figure 5.8. The figure shows the accuracy which refers to how

close is the solution to the optimum solution are and that is in terms of percentage vs

number of iterations needed to get to the solution. As can be seen from Figure 5.8,

Although the runtime and number of iterations needed for WebNeg is slightly lower
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Figure 5.8: WebNeg VS Other Schemes

than those of ImprovedNeg, the ImprovedNeg performs better than WebNeg in terms

of solution accuracy since it converges more to the optimal solution, that is about

98 percent for ImprovedNeg versus about 96 percent for WebNeg. Since the runtime

of ImprovedNeg is not significantly higher than that of WebNeg and we were able

to achieve a more optimal solution then trading-o↵ the runtime for accuracy we can

conclude that it is an improvement over WebNeg. Moreover, in our previous work

we have found out that our approach outperforms using normal genetic algorithm

with roulette wheel selection in terms of runtime, number of generations and solution

accuracy [2]. It also outperforms SBA, NBA and SWC [21] [62] [43] in terms of both

runtime and accuracy.

5.5 Insights and Discussion

Web services are becoming widely used nowadays and hence becoming a major

interest for investment in the information market. Service providers are competing to

o↵er the best services at competitive rates but at the same time make the most profit

they can. Since raising the prices may result in lowering the number of customers then

we needed to find a way to set the highest possible price that guarantees the highest

profit. In this dissertation we proposed an approach that utilizes the concepts of Nash
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Equilibrium and automated negotiation to tackle this problem. Our approach helps

setting the HPP for the information goods by estimating the demand based on the

server logs and posterior probability. The approach then applies Nash equilibrium

concepts to alter the price to guarantee maximum resource distribution. We have

also proposed a service bundling approach based on Instance Based Risk Assessment

and Kernel Regression to increase the revenue by increasing the selling rates of the

least desired services. Moreover, our approach negotiates the incoming users and the

possibility of user exchange using automated negotiation.
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CHAPTER 6: CONCLUSIONS AND FUTURE WORK

Web Service cost optimization is one of the most important aspects in Web

service composition as it matters to bot the user and the service provider. Cost

saving may encourage the users to seek di↵erent service providers that will o↵er

similar performance characteristics. This requires comparing the current solution

with other possible candidates in order to find the best suitable one. Additional

parameters need to be considered here such as SLA initiation fees ans SLA break

fees (if applicable). We have proposed a scheme that will provide the best available

solution for the user according to their preferences. Our proposed approach is based

on P-Optimality in which we have proved that it enhances the performance of getting

the solution. Moreover, our approach calculates the feasibility of switching from one

service provider to the another considering the parameters associated with it.

We then have expanded our approach to account for multiple users seeking

one service composition. An example for that is when an organization has multiple

departments and seeking one service composition that will suit the most requirements.

In our approach we first handle the conflicts that will result in two or more mutually

exclusive solutions. We used the concepts of PROMETHEE group decision support

to help get a group decision from the candidate matrix which we used our proposed

approach in WCost to reduce its size. We simulated our approach and shown that it

is able to provide the most suitable group decision for the Web service composition.

As for the service provider, we have proposed an approach that aims at maxi-

mizing the profit by employing a pricing model that sets initial prices for the services

and then dynamically adjusts these prices based on the client’s willingness to pay.

This as we showed in our experiments generates higher profit as we will attract more

users and will achieve higher resource distribution. Moreover, we tackled the problem

of the resources that have low demand by bundling them with the highly-demanded
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services to achieve more sales for these services. The bundling is based on risk assess-

ment to assess the risk of a bundle not selling and the risk of the low demand service

a↵ecting the bundle demand in a way that generates less overall profit. We utilized

kernel regression in our risk assessment for bundle creation. As adding more services

to the bundle a↵ects the bundle demand, we proposed a way to estimate the optimal

bundle size that will generate the highest profit. Finally, our approach checks for

the feasibility of discarding one or more users to grant a new upcoming user taking

multiple factors into account, namely: overall profit, the reputation of the upcoming

user and how is that switch going to a↵ect the reputation of the service provider since

the reputation of the service provider will a↵ect the demand on the o↵ered services.

We ran experiments on the di↵erent aspects of our proposed scheme and the results

show how our proposed scheme maximizes the profit of the service provider.

For future work, we plan on further improving the profit gain by utilizing the

concepts of green cloud computing, specifically load balancing. The idea here is when

the load is balanced over the servers, these servers will consume less power which

translates to lower energy costs to the service provider and therefore higher profit.



�
� ���

REFERENCES 

1. H Kıvanc Aksoy and Asli Guner. A bayesian approach to demand estimation. Procedia 

Economics and Finance, 26:777–784, 2015.  

2. Hussain Aljafer, Khayyam Hashmi, Zaki Malik, and Abdelkarim Erradi. Web service 

cost optimization. In Proceedings of the 7th International Conference on Management of 

computational and collective intElligence in Digital EcoSystems, pages 116–120. ACM, 

2015.  

3. Hussain Aljafer, Zaki Malik, Mohammed Alodib, and Abdelmounaam Rezgui. A brief 

overview and an experimental evaluation of data confidentiality measures on the cloud. 

journal of innovation in digital ecosystems, 1(1):1–11, 2014.  

4. Mohammad Alrifai, Dimitrios Skoutas, and Thomas Risse. Selecting skyline services for 

qos-based web service composition. In Proceedings of the 19th inter- national conference 

on World wide web, pages 11–20. ACM, 2010.  

5. Kemal Altinkemer and Jeevan Jaisingh. Pricing bundled information goods. In Advanced 

Issues of E-Commerce and Web-Based Information Systems, 2002.(WECWIS 2002). 

Proceedings. Fourth IEEE International Workshop on, pages 89–96. IEEE, 2002.  

6. Yannis Bakos and Erik Brynjolfsson. Bundling and competition on the internet. 

Marketing science, 19(1):63–82, 2000.  

7. David Besanko, Sachin Gupta, and Dipak Jain. Logit demand estimation under 

competitive pricing behavior: An equilibrium framework. Management Science, 44(11-

part-1):1533–1547, 1998.  



�
� ���

8. Robert Bradley, Anthony Brabazon, and Michael O’Neill. Objective function de- sign in 

a grammatical evolutionary trading system. In Evolutionary Computation (CEC), 2010 

IEEE Congress on, pages 1–8. IEEE, 2010.  

9. Valeria Cardellini, Emiliano Casalicchio, Vincenzo Grassi, and F Lo Presti. Flow-based 

service selection forweb service composition supporting multiple qos classes. In Web 

Services, 2007. ICWS 2007. IEEE International Conference on, pages 743–750. IEEE, 

2007.  

10. Emiliano Carreno Jara. Multi-objective optimization by using evolutionary al- gorithms: 

the p-optimality criteria. 2014.  

11. Wei-Lun Chang and Soe-Tsyr Yuan. Collaborative pricing model for bundling 

information goods. Journal of Information Science, 34(5):635–650, 2008.  

12. N CHANNA+, KT PATHAN, and NH ARIJO. A comprehensive infrastructure of 

constraint optimizer in dynamic web service composition.  

13. Wuhui Chen and Incheon Paik. Toward better quality of service composition based on 

global social service network.  

14. Mohan Baruwal Chhetri, Jian Lin, SukKeong Goh, Jun Yan, Jian Ying Zhang, and 

Ryszard Kowalczyk. A coordinated architecture for the agent-based service level 

agreement negotiation of web service composition. In Software Engineering Conference, 

2006. Australian, pages 10–pp. IEEE, 2006.  

15. R Malcom Clark. A calibration curve for radiocarbon dates. Antiquity, 49(193):251, 

1975.  



�
� ���

16. Daniela B Claro, Patrick Albers, and Jin-Kao Hao. Selecting web services for op- timal 

composition. In ICWS International Workshop on Semantic and Dynamic Web 

Processes, Orlando-USA, 2005.  

17. Carlos Coello Coello, Gary B Lamont, and David A Van Veldhuizen. Evolution- ary 

algorithms for solving multi-objective problems. Springer Science & Business Media, 

2007.  

18. Marco Comuzzi and Barbara Pernici. An architecture for flexible web service qos 

negotiation. In EDOC Enterprise Computing Conference, 2005 Ninth IEEE International, 

pages 70–79. IEEE, 2005.  

19. Wenyun Dai, Haopeng Chen, Wenting Wang, and Xi Chen. Rmorm: A frame- work of 

multi-objective optimization resource management in clouds. In Services (SERVICES), 

203 IEEE Ninth World Congress on, pages 488–494. IEEE, 2013.  

20. Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. A fast and 

elitist multiobjective genetic algorithm: Nsga-ii. Evolutionary Computation, IEEE 

Transactions on, 6(2):182–197, 2002.  

21. Elisabetta Di Nitto, Massimiliano Di Penta, Alessio Gambi, Gianluca Ripa, and Maria 

Luisa Villani. Negotiation of service level agreements: An architecture and a search-

based approach. Springer, 2007.  

22. Benjamin Edelman, Michael Ostrovsky, and Michael Schwarz. Internet advertis- ing and 

the generalized second-price auction: Selling billions of dollars worth of keywords. The 

American economic review, 97(1):242–259, 2007.  



�
� ���

23. Joyce El Hadad, Maude Manouvrier, and Marta Rukoz. Tqos: Transactional and qos-

aware selection algorithm for automatic web service composition. Services Computing, 

IEEE Transactions on, 3(1):73–85, 2010.  

24. Zaiwen Feng, Rong Peng, Raymond K Wong, Keqing He, Jian Wang, Songlin Hu, and 

Bing Li. Qos-aware and multi-granularity service composition. Information Systems 

Frontiers, 15(4):553–567, 2013.  

25. Ja ́nos Fu ̈lo ̈p. Introduction to decision making methods. In BDEI-3 Workshop, 

Washington. Citeseer, 2005.  

26. Hao Gao, Jun Yan, and Yi Mu. Trust-oriented qos-aware composite service selection 

based on genetic algorithms. Concurrency and Computation: Practice and Experience, 

26(2):500–515, 2014.  

27. Debanjan Ghosh, Raj Sharman, H Raghav Rao, and Shambhu Upadhyaya. Self- healing 

systems—survey and synthesis. Decision Support Systems, 42(4):2164– 2185, 2007.  

28. Bart Goethals and Jan Van den Bussche. A priori versus a posteriori filtering of 

association rules. 1999.  

29. David E Goldberg and Kalyanmoy Deb. A comparative analysis of selection schemes 

used in genetic algorithms. Foundations of genetic algorithms, 1:69–93, 1991.  

30. Yanhong Guo, Wenjun Zhou, Chunyu Luo, Chuanren Liu, and Hui Xiong. Instance-

based credit risk assessment for investment decisions in p2p lending. European Journal of 

Operational Research, 249(2):417–426, 2016.  

31. Sharon Halliday, Karin Badenhorst, and Rossouw Von Solms. A business ap- proach to 

effective information technology risk analysis and management. Infor- mation 

Management & Computer Security, 4(1):19–31, 1996.  



�
� �	�

32. Khayyam Hashmi, Amal Alhosban, Zaki Malik, and Brahim Medjahed. Webneg: A 

genetic algorithm based approach for service negotiation. In Web Services (ICWS), 2011 

IEEE International Conference on, pages 105–112. IEEE, 2011.  

33. Khayyam Hashmi, Zaki Malik, Erfan Najmi, Amal Alhosban, and Brahim Med- jahed. A 

web service negotiation management and qos dependency modeling framework. ACM 

Transactions on Management Information Systems (TMIS), 7(2):5, 2016.  

34. John H Holland. Adaptation in natural and artificial systems: An introductory analysis 

with applications to biology, control, and artificial intelligence. U Michi- gan Press, 

1975.  

35. Angus FM Huang, Ci-Wei Lan, and Stephen JH Yang. An optimal qos-based web service 

selection scheme. Information Sciences, 179(19):3309–3322, 2009.  

36. San-Yih Hwang, Ee-Peng Lim, Chien-Hsiang Lee, and Cheng-Hung Chen. Dy- namic 

web service selection for reliable web service composition. Services Com- puting, IEEE 

Transactions on, 1(2):104–116, 2008.  

37. San-Yih Hwang, Ee-Peng Lim, Chien-Hsiang Lee, and Cheng-Hung Chen. Dy- namic 

web service selection for reliable web service composition. Services Com- puting, IEEE 

Transactions on, 1(2):104–116, 2008.  

38. Emiliano Carreno Jara. Multi-objective optimization by using evolutionary algo- rithms: 

The-optimality criteria. IEEE transactions on evolutionary computation, 18(2):167–179, 

2014.  

39. Cao Jiuxin, Sun Xuesheng, Zheng Xiao, Liu Bo, and Mao Bo. Efficient multi- objective 

services selection algorithm based on particle swarm optimization. In Services 

Computing Conference (APSCC), 2010 IEEE Asia-Pacific, pages 603– 608. IEEE, 2010.  



�
� �
�

40. Guosheng Kang, Jianxun Liu, Mingdong Tang, and Yu Xu. An effective dy- namic web 

service selection strategy with global optimal qos based on particle swarm optimization 

algorithm. In Parallel and Distributed Processing Sympo- sium Workshops & PhD Forum 

(IPDPSW), 2012 IEEE 26th International, pages 2280–2285. IEEE, 2012.  

41. Michael J Katchabaw, Hanan L Lutfiyya, Andrew D Marshall, and Michael A Bauer. 

Policy-driven fault management in distributed systems. In Software Reliability 

Engineering, 1996. Proceedings., Seventh International Symposium on, pages 236–245. 

IEEE, 1996.  

42. Tai-hoon Kim, D Palanikumar, and G Kousalya. Optimal web service selection and 

composition using multi-objective bees algorithm. INFORMATION-AN IN- 

TERNATIONAL INTERDISCIPLINARY JOURNAL, 14(10):3289–3295, 2011.  

43. Freddy L ́ecu ́e, Usman Wajid, and Nikolay Mehandjiev. Negotiating robustness in 

semantic web service composition. In Web Services, 2009. ECOWS’09. Seventh IEEE 

European Conference on, pages 75–84. IEEE, 2009.  

44. Jun Li, Xiao-Lin Zheng, Song-Tao Chen, William-Wei Song, and De-ren Chen. An 

efficient and reliable approach for quality-of-service-aware service composi- tion. 

Information Sciences, 269:238–254, 2014.  

45. Cui Lin, Shiyong Lu, Zhaoqiang Lai, Artem Chebotko, Xubo Fei, Jing Hua, and Farshad 

Fotouhi. Service-oriented architecture for view: A visual scientific workflow 

management system. In Services Computing, 2008. SCC’08. IEEE International 

Conference on, volume 1, pages 335–342. IEEE, 2008.  

46. Richard J Lipton and Evangelos Markakis. Nash equilibria via polynomial equa- tions. In 

Latin American Symposium on Theoretical Informatics, pages 413–422. Springer, 2004.  



�
� ���

47. Zhi-Zhong Liu, Xiao Xue, Ji-quan Shen, and Wen-Rui Li. Web service dynamic 

composition based on decomposition of global qos constraints. The International Journal 

of Advanced Manufacturing Technology, 69(9-12):2247–2260, 2013.  

48. Weina Lu, Xiaohui Hu, Shangguang Wang, and Xiaotao Li. A multi-criteria qos-aware 

trust service composition algorithm in cloud computing environments. International 

Journal of Grid & Distributed Computing, 7(1), 2014.  

49. Simone A Ludwig. Single-objective versus multi-objective genetic algorithms for 

workflow composition based on service level agreements. In Service-Oriented 

Computing and Applications (SOCA), 2011 IEEE International Conference on, pages 1–

8. IEEE, 2011.  

50. Mario Mac ́ıas and Jordi Guitart. A genetic model for pricing in cloud computing 

markets. In Proceedings of the 2011 ACM Symposium on Applied Computing, pages 

113–118. ACM, 2011.  

51. Charles Maina. Valuing information in an information age: The price model and the 

emerging information divide among individuals, societies, and nations. In Proceedings of 

the Annual Conference of CAIS/Actes du congr`es annuel de l’ACSI, 2013.  

52. Zaki Malik and Athman Bouguettaya. Rateweb: Reputation assessment for trust 

establishment among web services. The VLDB Journal—The International Journal on 

Very Large Data Bases, 18(4):885–911, 2009.  

53. Farhad Mardukhi, Naser NematBakhsh, Kamran Zamanifar, and Asghar Barati. Qos 

decomposition for service composition using genetic algorithm. Applied Soft Computing, 

13(7):3409–3421, 2013.  



�
� 	���

54. Magnos Martinello, Mohamed Kaaniche, and Karama Kanoun. Web service 

availability—impact of error recovery and traffic model. Reliability Engineering & 

System Safety, 89(1):6–16, 2005.  

55. Noyda Matos, Carles Sierra, and Nicholas R Jennings. Determining successful 

negotiation strategies: An evolutionary approach. In Multi Agent Systems, 1998. 

Proceedings. International Conference on, pages 182–189. IEEE, 1998.  

56. Brad L Miller and David E Goldberg. Genetic algorithms, tournament selection, and the 

effects of noise. Complex Systems, 9(3):193–212, 1995.  

57. Sajib Mistry, Athman Bouguettaya, Hai Dong, and A Kai Qin. Predicting dy- namic 

requests behavior in long-term iaas service composition. In Web Services (ICWS), 2015 

IEEE International Conference on, pages 49–56. IEEE, 2015.  

58. Melanie Mitchell. An introduction to genetic algorithms (complex adaptive sys- tems). A 

Bradford Book, third printing edition, 55:02142–1493, 1998.  

59. EA Nadaraya. On non-parametric estimates of density functions and regression  

curves. Theory of Probability & Its Applications, 10(1):186–190, 1965.  

60. Y Narahari, CVL Raju, K Ravikumar, and Sourabh Shah. Dynamic pricing  

models for electronic business. Sadhana, 30(2-3):231–256, 2005.  

61. Ambroise Ncho and Esma Aimeur. Building a multi-agent system for automatic 

negotiation in web service applications. In Proceedings of the Third Interna- tional Joint 

Conference on Autonomous Agents and Multiagent Systems-Volume 3, pages 1466–

1467. IEEE Computer Society, 2004.  



�
� 	�	�

62. Xiaotai Niu and Su Wang. Genetic algorithm for automatic negotiation based on agent. In 

2008 7th World Congress on Intelligent Control and Automation, pages 3834–3838, 

2008.  

63. James Robert Oliver. On artificial agents for negotiation in electronic commerce. In 

System Sciences, 1996., Proceedings of the Twenty-Ninth Hawaii International 

Conference on,, volume 4, pages 337–346. IEEE, 1996.  

64. Wei Pan, Lean Yu, Shouyang Wang, and Xianjia Wang. A fuzzy multi-objective model 

for provider selection in data communication services with different qos levels. 

International Journal of Production Economics, 147:689–696, 2014.  

65. Jos ́e M Pena, V ́ıctor Robles, Oscar Marb ́an, and Mar ́ıa S P ́erez. Bayesian meth- ods to 

estimate future load in web farms. In International Atlantic Web Intelli- gence 

Conference, pages 217–226. Springer, 2004.  

66. Arnold Polanski. A decentralized model of information pricing in networks. Journal of 

Economic Theory, 136(1):497–512, 2007.  

67. Werner Reinartz. Customizing prices in online markets. Symphonya. Emerging  

Issues in Management, (1):55–65, 2002.  

68.  Abbas Roozbahani, Banafsheh Zahraie, and Massoud Tabesh. Promethee with 

precedence order in the criteria (ppoc) as a new group decision making aid: an 

application in urban water supply management. Water resources management, 

26(12):3581–3599, 2012.  

69. Florian Rosenberg, Predrag Celikovic, Anton Michlmayr, Philipp Leitner, and Schahram 

Dustdar. An end-to-end approach for qos-aware service composition. In Enterprise 



�
� 	���

Distributed Object Computing Conference, 2009. EDOC’09. IEEE International, pages 

151–160. IEEE, 2009.  

70. Florian Rosenberg, MB Muller, Philipp Leitner, Anton Michlmayr, Athman Bouguettaya, 

and Schahram Dustdar. Metaheuristic optimization of large-scale qos-aware service 

compositions. In Services Computing (SCC), 2010 IEEE In- ternational Conference on, 

pages 97–104. IEEE, 2010.  

71. Jennifer Rowley. Principles of price and pricing policy for the information mar- ketplace. 

Library Review, 46(3):179–189, 1997.  

72. Zhao Shanshan, Wang Lei, Ma Lin, and Wen Zepeng. An improved ant colony 

optimization algorithm for qos-aware dynamic web service composition. In In- dustrial 

Control and Electronics Engineering (ICICEE), 2012 International Con- ference on, 

pages 1998–2001. IEEE, 2012.  

73. Bhanu Sharma, Ruppa K Thulasiram, Parimala Thulasiraman, Saurabh K Garg, and 

Rajkumar Buyya. Pricing cloud compute commodities: A novel financial economic 

model. In Proceedings of the 2012 12th IEEE/ACM International Sym-  

posium on Cluster, Cloud and Grid Computing (ccgrid 2012), pages 451–457. IEEE 

Computer Society, 2012.  

74. Bernard W Silverman. Density estimation for statistics and data analysis, vol- ume 26. 

CRC press, 1986.  

75. Monika Simjanoska, Marjan Gusev, Sasko Ristov, and Goran Velkoski. Scal- ing the 

performance and cost for elastic cloud web services. CIT. Journal of Computing and 

Information Technology, 21(2):85–95, 2013.  

76. Hal R Varian. Pricing information goods, 1995.  



�
� 	���

77. Florian Wagner, Adrian Klein, Benjamin Klopper, Fuyuki Ishikawa, and Shinichi 

Honiden. Multi-objective service composition with time-and input-dependent qos. In 

Web Services (ICWS), 2012 IEEE 19th International Conference on, pages 234–241. 

IEEE, 2012.  

78. Wei Wang, Peng Zhang, Tian Lan, and Vaneet Aggarwal. Datacenter net profit 

optimization with individual job deadlines. In Proc. Conference on Inform. Sci- ences 

and Systems, 2012.  

79. Wang Xiaolong, Zou Peng, He Jun, Wang Peng, and Chen Liang. A qos-based service 

composition optimization method. In 1st International Workshop on Cloud Computing 

and Information Security. Atlantis Press, 2013.  

80. Hao Yin, Changsheng Zhang, Bin Zhang, Ying Guo, and Tingting Liu. A hybrid 

multiobjective discrete particle swarm optimization algorithm for a sla-aware service 

composition problem. Mathematical Problems in Engineering, 2014, 2014.  

81. Huiyuan Zheng, Jian Yang, and Weiliang Zhao. Qos analysis and service selection for 

composite services. 2010.  

82. Huiyuan Zheng, Weiliang Zhao, Jian Yang, and Athman Bouguettaya. Qos anal- ysis for 

web service compositions with complex structures. Services Computing, IEEE 

Transactions on, 6(3):373–386, 2013.  

83. Wei Zhou, Junhao Wen, Min Gao, and Junwei Liu. A qos preference-based al- gorithm 

for service composition in service-oriented network. Optik-International Journal for Light 

and Electron Optics, 124(20):4439–4444, 2013.  

84. Liu Zhuang, Guo HeQing, Li Dong, Han Tao, and Zhang Juan Juan. Solving multi-

objective and fuzzy multi-attributive integrated technique for qos-aware web service 



�
� 	���

selection. In Wireless Communications, Networking and Mobile Computing, 2007. 

WiCom 2007. International Conference on, pages 735–739. IEEE, 2007.  

 



 
	���

ABSTRACT 

WEB SERVICE COMPOSITION OPTIMIZATION 

by 

HUSSAIN ALJAFER 

August 2019 

Advisor:     Dr. Zaki Malik 

Major:        Computer Science 

Degree:      Doctor of Philosophy 

In recent years, users and organizations started switching from workstation-based 

applications to Web services also known as cloud services. Web services offer many 

advantages such as cost of use and maintenance. Web services follow the pay-per-use 

pricing model, so the users pay for their usage only. Due to the huge number of services, a 

composition optimization mechanism is needed to help the users find the best service/set 

of services for their application/s. On the other hand, service providers look for generating 

the highest profit possible from the offered services. In this dissertation, we address the 

problem from both the user's perspective and the service provider's perspective. We 

propose a mechanism to find the best service for a composition based on the user's 

preferences. We also extend our work to account for multiple users. Last but not least, we 

propose a scheme for the service provider to help generate higher revenue by proposing a 

pricing model that includes dynamic pricing. We also tackle the issue of the low-demanded 

services by utilizing resource bundling to help sell these services. 
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