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1

1 Introduction

1.1 Background

Predictive and prescriptive analytics are quickly forming a modern era in health care de-

cision support system. Predictive models and machine learning methods are well-developed

with a considerable impact on many industries including healthcare delivery systems. Medical

service providers are increasingly benefiting from the remarkable developments in this domain

by improving quality of care, hospital administrative decisions, disease management and pre-

dictions, and health care supply chain efficiency. One of the under-investigated opportunities

in health care studies is the study of the predictive analytics applications and their integration

with well-studied prescriptive methods for surgical services.

Prescriptive analytics aim at providing (near-)optimal solutions for decision problems using

optimization techniques. These methods enable healthcare planners and analysts to recommend

the best course of action for care providers and patients. In the context of apriori planning

of healthcare operations, these methods provide solutions to operational problems by using

deterministic and stochastic approach. In addition they can be used as a comprehensive tool

for comparing multiple scenarios to foresee the effect of selecting one decision over another

through “what if" analysis. However, in this research, we explored another benefit of such

methods. It’s inevitable that optimization models help in selection of the optimal parameters

for machine learning tasks. Given the power of machine learning techniques in learning patterns

and providing most accurate predictions, their case-by-case weaknesses are causes of higher

prediction errors. To alleviate this, prescriptive models further improve the outcomes by filling

the gaps within each ML model. Today, predictive and prescriptive technologies together offer

a more evidence-based and transparent approach to decision making.

In recent years, the growing rate of inefficiencies caused by scheduling problems in surgery

departments highlights the need for more potent decision support tools. In surgical services,

misalignment between what is planned for and when versus what actually happens and when

creates stressful atmosphere both for staffs and patients. In this research, we develop an analyt-

ical framework as a solution to this problem using both prediction and prescriptive approaches.

Surgical procedure durations are innately unpredictable attributable to known and unknown

patient, surgical team and other factors. Further, the degree of uncertainty varies across dif-
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ferent surgery categories. Effective planning of surgical service operations thus necessitates

accurate prediction of surgery demand (duration, equipment, etc. [45]) and is a key step in

efficient scheduling of operating rooms.

Developing a robust system for accurately predicting surgery durations is challenging and

requires use of different learning methods. Various predictive learning concepts aligned with

health care system goals can bring outcomes that not only satisfy the staffs’ expectations

but also improve the patient experience in surgical unit, if presented and utilized accordingly.

Generally, the main focus of related research is to improve surgical service processes and make

them more predictable [45]. In addition to other predictive approaches, text mining methods

offer significant improvement in predicting and planning surgical service operations in hospitals.

[46].

A surgery is characterized by a set of vital activities that is characterized by single or

multiple codes from a list of surgical procedure codes (Current Procedure Terminologies, CPTs)

maintained by the American Medical Association for singularity and consistency. CPT codes

are known to be one of the most significant determinant in estimating the duration of the

surgeries [85]. Due to the various uncertainties, exact characterization of surgical activities for

a given case is unknown apriori. Instead, various text-based perioperative notes (entered by

providers, nurses and schedulers) as well as other information available through medical records

specific to the patient, condition and providers are available. Hence, ability to use multiple types

of input information is critical in predicting the CPT codes and surgery durations for effective

operatoins planning. In this context, integrating text mining approaches to extract improved

feature set in predicting CPT codes of surgery cases and surgery durations is critical.

1.2 Statement of the Problem

Over the past decade, there has been an increased effort in both the academia and prac-

tice to develop optimized solutions for the operating room scheduling problem. OR, as an

expensive facility in hospitals, requires a continuous performance control system to ensure high

utilization of expensive resources and while minimizing delays due to different sources. A major

source of such delays is the misalignment between planned and realized operations. One major

contributor to such misalignment is relying solely on prescriptive analytics, e.g. deterministic

optimization methods, that fails to account for the implications of variations of daily surgical
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cases on the planning decisions. While there are more advanced prescriptive approaches that

recognize the variability, i.e., stochastic programming, their effectiveness depends heavily on

how well the surgery duration variability is captured. Hence, with this dissertation, our main

goal is to improve the operational planning decision making in surgical services with novel pre-

dictive approaches that can more accurately characterize the variability of surgery durations.

In this research, we use and develop novel supervised and unsupervised methods to improve the

CPT and duration prediction task. In this problem, given a set of preoperative features includ-

ing unstructured surgery descriptions, we first perform feature engineering and create features

for the machine learning model from raw description data. Then, we build a robust framework

for predicting CPT code and surgery durations using both predictive and prescriptive models.

The outcome of this research helps extensively in scheduling and billing processes.

This research consists of three parts: unstructured text mining to generate useful features

for prediction task, classification approaches for surgical operations planning and estimating /

predicting surgery case duration based on CPT classification outcome. In the first part, this

research investigates the prediction of the surgery durations and Current Procedural Termi-

nology (CPT) Codes. Accurate prediction of the surgery duration improves the utilization of

indispensable surgical resources such as surgeons, nurses, and operating rooms. Prediction of

the correct CPT codes not only helps the preparation process for the surgery (i.e., case cart)

but also enhances prediction of surgery duration distributions. State-of-the-art efforts, albeit

without text features, have predicted the point estimates of surgery durations given the set of

predictive features. As an alternative to point-estimate (i.e., direct approach), we also evaluate

the surgery duration prediction performance through the predicted CPTs in a two-step ap-

proach where the surgery duration distributions are estimated from the predicted CPT codes.

In another part of the dissertation, we improve the single PCT prediction task by optimizing

tree selection with respect to two goals; CPT classification and duration prediction. This en-

ables the user to make hybrid decision while both targets are counted in the final decision to a

specific level of importance. Furthermore, we predict secondary CPT using multi-channel deep

neural network structure using text, categorical, and continuous data. By integrating duration

estimation (predictive) and case schedule optimization (prescriptive) tasks, we develop a hybrid

method to improve resource utilization by more accurate prediction of important indicators in
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efficient surgery planning. This research contributions are further discussed in the following

subsections.

1.2.1 Text Mining: Misspelling Correction and Abbreviation Detection in Health-

care

Text data set’s ingestion for statistical predictive modeling requires preprocessing and trans-

formation steps. Hospital staff usually enter the surgery procedure descriptions and other

information without a predefined pattern, i.e., mostly manual entry. Hence, a text input re-

ferring to same surgery procedure with the same current procedural terminology (CPT) code

might be entered differently (different order of terms, abbreviations, typos). Therefore, when

estimating durations considering text as one of the features may mislead the prediction in-

stead of providing value. In medical domain, correcting misspelled words is a crucial task to

ensure reliable interpretability of medical records. Additionally, natural language processing

practices in information retrieval such as knowledge extraction and information encoding are

preconditioned on existence of a solid tool to appropriately detect and correct the possible data

noises.

In this research, the initial step is to organize the unstructured text data with text mining

approaches to reduce the unnecessary variability of the descriptions and increase the efficiency

of our predictive model. It is also worth mentioning that, the provided procedure descriptions

precisely characterize the surgery case process, but it can bring some pitfalls in regards of

surgery procedure code due to additional minor details for each case. Particularly, in health-

related research, text data is mostly being used where the symptoms of the diseases should

be extracted to find the best cure for them using text mining approaches. Recently there has

been some developments regarding application of text mining in hospital’s claim processing

and DNA/gene pattern recognition. In our approach a mixture of measurements and concepts

originally generated from text mining methods leads us to distinguishing transformed features.

The corpus in our dataset contains 17,400 rows of surgery cases, and consequently, the

same amount of textual procedure descriptions each of which describes a case scheduled for

a patient in a particular day of surgery at operating rooms (ORs). Text mining approaches

has been deployed to help us achieve our goal and gradually improve the subgroups of medical
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terms. Following several steps of cleaning and organizing the text, we try to form the initial

clusters of the medical terms using a weighted Levenshtein distance matrix and Hierarchical

Agglomerative Clustering (HAC) method. The second phase of clustering is developed and

conducted using a heuristic clustering approach by N-grams distance which we refer to as the

Heuristic Clustering of Hierarchical Agglomerative clusters or (HCHAC) which is triggering

the reduction of true negative cluster members in our first attempt of clustering results. This

method is designed specifically to the group the abbreviated terms and its complete format in

the same cluster.

Once our text analysis is accomplished, it provides the chance of reviewing the outcome

of clustering the typos, abbreviations, and raw medical terms based on a customized sorting

technique. The primary benefits of our approach is that there is no need for identifying the

number of clusters in the first phase of clustering and the distance between the clusters pro-

vides rational measurement which is setting the differences between the terms reasonably. The

distance matrix is a norm of modified Levenshtein distance to account for the abbreviation

forms of the words more precisely. We demonstrate effectiveness of our approach empirically,

not only for clustering medical text but also for identifying underlying structure of clusters,

using real world datasets.

1.2.2 Prediction: Surgery CPT Code Prediction, single and multiple CPT(s)

While some surgical services use a preliminary CPT code(s) prior to the surgery for opera-

tional planning, majority of services choose to only use only textual descriptions and identifiers.

Even those providers using preliminary CPT codes end up revising their CPT codes upon the

completion of the surgery by examining the surgery notes (i.e., medical coding for billing).

Hence, apriori prediction of CPT code(s) for a surgery is critical for operations planning such

as scheduling and equipment provisioning. Accurately predicting CPT code(s) not only help

surgical services to prepare the necessary case equipment and other service resources, but also

help the case scheduling.

Hence, this research contribution consists of CPT code(s) prediction and surgery duration

estimation. For the CPT code(s) prediction, we evaluate the value of the text features (with

and without dimensionality reduction as proposed in the previous subsection). Initially, our
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focus is on the primary CPT prediction and evaluate the predictive performances of different

filtering and set-based prediction strategies. Tree-based classification models are proposed and

enhanced to predict the primary CPT. While the objective function in a classification task is

strictly defined as producing the correct categorical label, the importance of duration error is

ignored. We, further, improve the framework by optimizing the decision tree selection in the

boosting model to account for duration loss. We also let users decide on the outcome based on

the classification and duration estimation goals by assigning weights to both targets.

While the primary CPT code is the most important determinant of surgery durations and

preoperative planning tasks, surgeries often entail multiple procedures (i.e., auxiliary CPTs)

which influence the surgery durations. Hence, by using multi-task learning concepts in the

context of deep learning models, we aim to predict multiple CPT codes, i.e. set containing the

CPTs of all procedures being performed in the operation. The predicted CPT set is then used

to enhance the surgery duration estimation task. An accurate CPT set prediction may help

scheduler to schedule OR in a more efficient manner.

1.3 Surgery Duration Estimation

For the surgery duration prediction, we first use all the available information (quantitative,

categorical, and text features) and directly predict the surgery duration as a point-estimate

using different regression models and develop estimates of variability using sampling methods

to obtain distributions of the surgery durations (referred as "direct approach"). Next, we

follow a two-step approach, where we first predict CPT code (either single or multiple based on

previous step) as a multi-class classification task and then using the predicted CPT code(s), we

develop empirical duration distributions. The direct and two-step approaches are compared for

their bias in the mean duration estimation and ability to accurately characterize the duration

distribution. Ultimately, the duration distributions are generated from both primary CPT

prediction and CPT set prediction. It also worths to mention that the enhanced hybrid CPT

classification method is also another alternative to generate duration distribution and use them

for comparison purposes.
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1.4 Research Questions and Objectives

This research’s overall goal is to improve the prescriptive tasks of operational planning in

surgical services with novel predictive approaches that can more accurately characterize the

variability of surgery durations. Specific research questions are as below:

1. How to reduce the dimensionality of text features in surgical services through a dictionary-

free correction of varied typo and abbreviations to improve subsequent prediction tasks?

2. How accurately and robustly the CPT code(s) can be predicted with and without text

features?

(a) What is the contribution of text features on CPT code(s) prediction?

(b) How to best incorporate duration accuracy in the prediction of CPT code(s) using

cost-sensitive learning concepts?

(c) What is the best multi-task predictive strategy for the primary and auxiliary CPT

codes of a given surgery?

3. How to best characterize the duration distribution of surgical cases apriori?

(a) What are the advantages/disadvantages of point-based prediction versus two-step

approach of first predicting CPTs and then characterize the duration distributions

(in terms of prediction bias, practical utility, distribution characterization)?

(b) How does prediction of multiple-CPTs versus only the primary CPT influence the

duration prediction task?

4. How does the primary CPT prediction performs in terms of primary CPT classification

accuracy and surgery case duration error?

1.5 Significance, Implications and Contributions

Significance and contributions of this research is as follows: Objective 1 of this research is

relevant to those applications with prediction task entailing text features and the availability

and use of a reference dictionary for abbreviations and typos is limited. While there exists

medical and non-medical domain focused text mining methods for handling typo and abbrevi-

ations, all of them require availability of a reference (e.g., dictionary of common typos). Thus

our contribution is the first dictionary-free approach for such tasks in the healthcare domain.

Objective 2 contributes to primarily healthcare application domain where a patient service
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(i.e. surgery) is defined in terms of single or multiple classes (i.e. CPT codes) and collectively

determine a dependent attribute (i.e., surgery duration) of which either the mean value or

the distribution (mean, median, standard deviation) is of concern. This approach contributes

to the healthcare application domain as well as to the broad machine learning literature of

cost-sensitive primary-class classification where the objective function of classification problem

is combination of duration and classification loss function with weight assignment for optimal

hybrid decision making. Also in the context of classification model another important con-

tribution highlights the robustness of the optimized tree based machine learning model using

Genetic Algorithm based on hybrid decision factors.

Objective 3 is relevant for healthcare and other domain applications where a continuous

prediction task with a need for characterizing variability around mean (or median) prediction is

decomposed into first a classification task and then subsequent step of distribution fitting based

on the CPT class. This objective contributes to the healthcare predictive analytics domain as

well as broad machine learning domain in terms of regression predictions and characterization

of variability around mean estimates in the presence of distributional relationship with class

membership. There are many healthcare and other manufacturing and service operations that

rely on prediction of inputs fed into a subsequent prescriptive task for planning and execution.

In the remainder, we investigate some of the comprehensive studies in the application of

text mining and prediction in health care efficiency improvement, our findings of applying

our prediction methods to the surgical dataset in this dissertation research, and the future

opportunities and developments in this area. The rest of this dissertation is organized as

follows. In the next section, we review the related efforts to unstructured text analysis, and

surgery CPT prediction and duration estimation. This section is followed by methodology

section, in which the details about the research for aforementioned objectives are explained.

Next section presents the results of the analysis framework, the dataset of our experiments and

derived insights and lastly we conclude the research.

We fine tune the GA for crossover, mutation, fitness calculation and obtain the optimal

results in terms of duration estimation.
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2 Literature Review

This study adopts a systematic approach to investigate the literature related to surgery

improvement potentials and problems which can be attributed to a specific class of surgery

duration prediction and scheduling problem. We divide this section into subsections to review

the related work of each step of the research.

2.1 Text Mining: Misspelling Correction and Abbreviation Detection in Health-
care

Many research studies have focused on the extraction of context information in healthcare

systems as it is widely being generated in such system’s databases. Moreover, the shortness of

standardized medical text coding is a major difficulty that blocks improvements in the process

of further automated learning tasks in subdivisions of any healthcare system. A short overview

of such researches that investigate the importance of textual data and its alignments to the

modern analytic settings is provided in this subsection.

In order to highlight key health related information from unstructured or semi-structured

text data, text mining approaches has been used for over 35 years on different health records

to extract medication, cancer, procedure, or other patient-related information [28, 72, 82].

These studies rely on many semantic, syntactic or lexical methods to identify and link different

concepts [99]. The outcome of such studies reveals the potential of text mining to enhance

data collection, improve quality of care, decrease the costs and possible risks arise from human

errors [16, 93].

A remarkable group of researchers make extensive use of the existing standard vocabularies

gathered by the National Library of Medicine in the unified medical language system (UMLS)

while extracting information from their medical datasets. In 2008, a study was conducted by a

group of researchers at Alabama University focusing on text mining tools for extracting critical

information from textual data context. During their analysis they recognized that existence of

some common words such as glass, pm and volume skewed their output clusters by unavoidable

noise words that were tectonically false positive/false negative cluster members. An attempt

for reducing this noise was beginning with a dedicated start list which helps distinguishing

between technical and common terms in a clinical text. They used the standard vocabularies

in UMLS to target some technical terms. [75]



10

Several works have investigated the issue of typo correction thus far, however, literature

on misspelling detection/correction in medical notes as an explicit problem is indeed sparse

[73]. A previous study generated a prototype spell checker by the use of Wordnet and UMLS

as their sources of information [89]. Mykowiecka and Marciniak also designed a framework for

automatic spelling correction in mammography reports using edit distance measure and bi-gram

probabilities [65]. However, these methods are applied to a very specific domain. Kenneth H.

Lai et. al. developed a spelling correction system for noisy medical text to make them correctly

interpretable based on UMLS vocabulary source. The base model used in their system is

Shannon’s noisy channel along with vocabularies from different sources such as SPECIALIST

lexicon (UMLS edition 2014), RxNorm Drug lexicon (April 2014), list of previously observed

abbreviations, and Aspell’s English dictionary. Such libraries need continuous update in terms

of new words and their different forms of typos, misspellings and limited amount of synonyms

while the methods offered in this study helps eliminating the dependency of most research

questions in this area to an upgradeable library to a great deal. [52]

Other than the dictionary-based methods, some studies devised unsupervised text mining

methods such as affinity propagation or its hierarchical extension, and the family of K-means

(e.g. K-medoid and K-median)[27, 32, 38] and applied them to medical text data to identify

the similar terms (both contextually and syntactically), analyze HIV-strain mutation and de-

tect genes. Nonetheless, most of these approaches necessitates some restrictions on the data

and initialization steps, therefore, they are not recommended for an automated framework of

clustering. Moreover, these methods identify data point differences based on similarity mea-

sures such as N-grams, edit distance, cosine and so on. Anna H. compares and analyzes the

effectiveness of some distance measures in such algorithm for some selective text documents.

The results of this study shows the outcome on seven text document datasets and five most

popular distance methods in text clustering. [40]

In 2017, Kruse, Eiken and Vestergaard studied establishing patient groups of high, av-

erage and low fracture risk by an unsupervised machine learning algorithm. They studied

standardized variable means, Euclidean distances and Ward’s D2 method of hierarchical ag-

glomerative clustering (HAC), on regional and national Danish patient data on dual-energy

X-ray absorptiometry (DXA) scans and medication reimbursement to form the clusters based
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on bone mineral density characteristics. Using this method nine clusters were obtained which

represents this approach as a novel tool for enhancing patient characteristics in bone disease be-

yond traditional diagnosis and current DXA scan indication guidelines can be further improved

by HAC algorithm. [51] Their study shows the effectiveness of clustering function of HAC

algorithm in medical contexts. However, present study improved the first stage of clustering

method by applying HAC with a weighted Levenshtein distance and by developing a second

phase of clustering method which tends to combine the initially cluster outputs that are not

merged by HAC but both are representing the same term.

2.2 Prediction: Surgery CPT Code Prediction and Duration Estimation

In health care, patient safety matters the most in every aspect of the patient related oper-

ations in this system. The reliable safety level needs to be ensured by the staff at any level

of authority. Machine learning methods are well-known tools in knowledge diffusion from raw

data in many areas including health centers. Such methods solve many physicians’ challenges

in different departments such as accessing to up-to-date clinical evidence, patient-related infor-

mation interaction and details of personalized medicine. More specifically, supervised learning

methods can support human controlled prediction studies such as case identification code as-

signment, operation duration forecasting, and risk assessment. The duration prediction studies

are widely being used and they are not limited to operating rooms in healthcare. [94] evalu-

ate the performance in an automated application for classification of mesothelioma patient’s

personal and family history of cancer from clinical reports.

Assigning the International Classification of Diseases in patient visit data (ICD code clas-

sification) is a similar challenge to CPT code classification in terms of the input types and the

problem structure. [56] present a Multi-Filter Residual Convolutional NN in ICD classifica-

tion task. Their main contribution includes a multi-filter convolutional layer to learn different

patterns in textual data with various lengths and residual convolutional layer to expand the

receptive field. [96] developed ML models that can handle unstructured, semi-structured and

structured text data from different modalities. The final ICD code assignments are predicted

through the ensemble method of ML models. In another study, [30] propose a vector-space

based topic modeling to prepare clinical data by using fuzzy similarity-based cleansing method

to capture redundant patient data. Moreover, various multi-label classification models are used
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to facilitate ICD coding task [9]. [78] offer a hierarchical deep learning classifier that uses CNN

model to employ in the problem of pathology reports with applicable 9 unique ICD morphology

codes. They demonstrate that the hierarchical deep learning classification method improves on

performance in comparison to a flat multi-class Convolutional Neural Network model for ICD

morphology classification problem.

Many studies classified the medical radiology reports as textual data using deep neural

network architectures. [8] compare two deep NN structures, an attention-based hierarchical

recurrent neural network (RNN) and a CNN Word Glove to the domain specific rule based sys-

tem (PEFinder) and to other machine learning models such as SVM and Adaboost in radiology

report classification problem. The results suggest that the deep NN outperforms traditional

methods given the single institutional training dataset. [55] represent RNN system for au-

tomatic prediction of binary class; fracture and non-fracture cases. Their results show that

the proposed RNN system classifies important findings in radiology reports with %96 F1-score.

[88] developed a multi label classification system, which includes a text feature engineering, fea-

ture reduction and multiple classifiers, for automatic diagnostic code assignment to radiology

reports. Accordingly, there are quality researches to establish valuable domain-specific embed-

ding sources and provide useful pre-trained biomedical word embeddings which has extensively

been used in deep NN based papers [17, 42, 77].

Many researches try to predict accurate durations in emergency rooms, and clinics to reduce

the patient wait times in vital departments. In 2009, Stepaniak et. al investigates the possibility

of existence of correlation between some surgeon related factors (such as age, experience, gender,

and team composition) and procedure durations [83].

In the presented literature, several studies have focused on predicting the remaining surgery

duration (or RSD) intra-operatively. The main challenge of such researches is predicting surgery

durations prior to the scheduled time of operation using some correlated preoperative factors

such as surgeon, procedure descriptions, case type, and other intra/inter-operation circum-

stances. These features combined with proper prediction model with consideration of pre-

operative variations can provide valuable information regarding the operation durations. For

instance, Travis et al. have demonstrated the consequence of underestimated anesthesiology

durations on the total wait times [90].
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Also, a great variation in waiting durations with mean of 47 and deviation of 17 minutes is

reported for 157 patients of cholecystectomy case by Paalvast et al., while it has been shown that

the patient preparation time is usually around 25 minutes. They also proposed a classification

method using the activation of the electro-surgical devices to arrange the upcoming patients

reception [70]. In 2009, Dexter’s work focused a semi-automatic method which requires the

input from anesthesiologists during the surgery [20]. Other indications, such as surgical tool

utilization [62, 71], and low-level operation representations [26] have also been used to estimate

RSD of surgery rooms.

In the computer vision community, only a few studies address the problem of estimating

the RSD. For instance, a recent attempt proposed an architecture to localize short length

activities (e.g. tennis swing, and cliff diving). Their method helped in predicting such activities

completion progress as well [10]. In Li et al. study, a deep architecture was deployed to do

progress approximation and phase identification from various datasets, and as a result the

remaining duration is subsequently derived from the progress [57].

From another view point, predicting reliable elective surgical cases durations is quite a

challenging task which is available in most of the studied extensively [79]. Many authors

have pointed three main trends out in this area. The first group of researches, explore the

significance of some elements, such as procedure interruptions, communication failures, and

team familiarity that contribute to the duration variations in many processes [14, 31]. Studies

of the second stream investigate the goodness of fit of the known distributions for estimating

procedure durations, especially the normal distribution and lognormal distribution [81, 83, 86].

The next trend of papers that tend to develop predictive models for surgery duration using

machine learning models such as regression methods with continuous prediction labels. For

instance, Combes used rough sets and neural networks to predict the durations [18]. Along

with these point estimate approaches, Dexter (2013) also found upper prediction limits for

surgery durations [21]. They find that factors such as team composition, experience, and time

of the day are significant elements in estimating surgery duration variable [22, 44, 58, 84]. The

results of the studies in this stream are derived from a particular specialty. For instance, in

2001 Pisano et al. investigated the rate of improvement from cumulative experience for cardiac

surgeries [74]. Later on, in 2005 Ballantyne et al. analyzed the learning curve for gastric bypass
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operations [7].

With respect to the revised cost-functions in machine learning models (i.e. tree based

models) to control over predominant categorical and continuous decision factors, [67] take a

comprehensive investigation for choice of representative cost functions and analyse their latent

properties. [95] derive a semantic loss function which defines sensible connection between neural

output vectors and the model’s logical constraints. Their proposed loss function represents

how close NN is to fulfilling the constraints on its results. [37] demonstrate robust regularized

extreme ML frameworks to reduce the effect of noise by using the asymmetric and Huber loss

functions. The literature is limited in using custom loss function in tree-based models due to

the challenge in revising the Gini index measure of the tree splits based on the features. In this

paper, we support the bagging step in the Random Forest algorithm and optimize tree subset

selection using GA given the duration loss function.

The last stream includes papers which used optimization methods in machine learning mod-

els, [69] represents an open-source GA based AutoML package that optimizes feature selections

in preprocessing step and machine learning models with the goal of maximizing classification

accuracy. More specifically, in the context of healthcare studies, [48] performed a classification

task using different classification algorithms optimized by Particle Swarm Optimization (PSO)

combined with Ant Colony Optimization (ACO) approaches. [59, 61, 66, 87, 97] optimized the

input parameters of the Random Forest model based on optimization methods e.g. Genetic

and Bayes algorithms, and etc.

In a wide range of real-world applications, many researchers improved the optimization

experience by incorporating machine learning methods to predict the stochastic optimization

solutions. Nowak and Emami et al. [23, 68] approximated a double stochastic matrix in the

output directly derived from the neural network to characterize the permutation. In another

study, Larsen et al. [53] predicted the solution to a stochastic load planning problem with

a given deterministic mixed-integer linear program formulation by training a neural network

model. They proposed a simple feed-forward NN structure for processing the input vector, and

incorporating limited prior knowledge about the structure of the stochastic problem.
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3 Automated Surgical Term Clustering: A text mining approach for surgery
description unstructured data

As described in the "introduction" chapter, this research is divided into individual yet unified

study steps. In the first section, we define and explain the text mining methodology with precise

details in dedicated subsections. Also, we discuss how the outcome of text mining analysis is

used in the next step; CPT prediction task. We have brought common initiative ideas of

clustering and combined them with some concepts to form a unified system for conducting

more robust and accurate clustering analysis. To explain this solution system, we divide the

integrated methods into the following subsections and will explain each in detail.

3.1 Preprocessing and cleaning

Data collection approaches are sometimes loosely controlled which associates with missing

values, wrong entries and outliers due to system malfunction or human error. Therefore, in

data mining and knowledge discovery case studies the initial step is to perform data prepro-

cessing on raw data. It is crucial to determine the framework of the analysis input and prepare

high quality data prior to any kind of mining process. Likewise, we will precisely define the

phases of the cleaning procedure and how it improves the clustering results. Many researchers

[5, 91] have studied the influence of preprocessing stages specifically in the area of text min-

ing. In addition to authors who claimed that feature selection [25] and feature extraction [35]

affect the classification or clustering process significantly, we also underline the importance of

preprocessing phase that not only can change the results of text clustering positively but it

also helps improving further prediction phase results by pruning unnecessary features. The

preprocessing stage usually can be categorized into functions such as filtering, lemmatization,

tokenization, stemming and data transformation. In the next section, table 3 shows the effect

of preprocessing steps on removing less important words.

3.1.1 Removing special characters

We coded the process of removing unwanted characters, numbers and words by using natural

language processing techniques and regular expression operations. The functions are able to

handle some frequently used technical abbreviations in the surgery descriptions such as I&D

and D&C which stand for "Incision and Drainage" and "Dilatation and Curettage" respectively.



16

Also as the roles of employees in any organization may change continually and without a

predefined pattern these descriptions end up containing high level of noise and outliers. As

a consequence the more variation is added to the text, the more complex preprocessing steps

need to be designed. The special characters such as:

1. Slash, backslash, dash, semicolon and so on are replaced with space since the later steps

can handle any number of spaces between the words.

2. Dot is not removed but is retained to determine the abbreviation form of words. These ab-

breviations form "Abbreviation Dictionary" (AD). In some cases, two words are attached

to each other by a dot or dot comes as the first letter of a word. By defining different

regular expression compilers we are able to handle such errors that are associated with

dot sign more efficiently.

3. The words with length less than three excluding some meaningful symbols such as "LT"

or "L", "RT" or "R", and "FT" are removed from the text.

3.1.2 Detecting stop words

Stop words are terms that need to be eliminated prior to processing of textual data. Although

one might think that the words appearing more frequently in a text are more likely to be

considered as important terms but eventually such words are less informative and usually refers

to the common words in a language. Since available tools fail in removing all stop words to

support phrase search expertly, such extra efforts are essential for accomplishing a ready-to-use

text. The stop word list used in this study contains around 130 stop words of English language

and added 40 frequently observed medical stop words such as dr, surgery, doctor, treatment,

and so on.

3.1.3 Tokenization

In tokenization stage, textual content is breakdown into words, symbols, terms, and etc. The

output of this stage is then a list of words which can be used as input for further processing of

text mining. After tokenizing the descriptions into words in the text, the abbreviated form of

words and typos with their corresponding frequencies are stored in a dictionary, called "Original

Term Dictionary" (OD).
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Algorithm 1 Add-stem-derivatives(SDOD)
1: procedure Stem-Derivate(w)
2: for each word w in SDOD do
3: L1 = Length(w)
4: w′ = Stem(w)
5: L2 = Length(w′)
6: T = 1000
7: for each character ch in w \ w′ do
8: w′

D = w′ + ch
9: Add w′

D to SDOD
10: SDOD[w′

D] = T
11: T+ = 1
12: end for
13: end for
14: Return SDOD
15: end procedure

Figure 1. Algorithm represented for adding stem derivatives to the universal dictionary, SDOD.

3.1.4 Stemming & Stem Derivatives

Finding the roots of the existing terms in a dictionary helps reducing the dictionary size as

two or more words may share the same root. However, this method cannot treat the words with

typos or abbreviated words in the same way. Therefore, we added the stemmed version of the

words and the derivatives of them using stem-derive algorithm represented in Figure 1. We will

explain about the benefits it offers to our studies in the next step. Furthermore, the processed

words obtained by each step will be added to a dictionary which we call "Universal Dictionary"

(SDOD) for further analysis. Note that the counts of the stem derivatives is greater than 1000.

It enables us to map the derivatives and original words in two dictionaries, Universal Dictionary

(SDOD) and Original Term Dictionary (OD).

3.1.5 Computing TFIDF Matrix

A numerical statistic that reflects the importance level of a word in each document of corpus

is called term frequency - inverse document frequency (TF-IDF) described by LP Jing [43]

in 2002. TFIDF can be categorized in feature selection methods and is widely applied in text

mining studies with the purpose of increasing the system’s efficiency and avoid over-fitting [100].

This method consists of two parts, first Term Frequency (TF) as the frequency of occurrence
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of a term in a document and second Inverse Document Frequency (IDF) as a penalty weight

of terms based on their frequency of occurring in the corpus. After constructing the clusters

of the words, we can use this method to get the importance score of the words in each surgery

description. The TFIDF matrix provide fruitful input information for predicting CPT Code of

the surgeries in a supervised manner.

Remove 
Special 

Characters

Detect Stop 
Words

Tokenization Stemming
Compute 
TFIDF

Figure 2. Preprocessing Stages

3.2 Calculating Similarity Matrix

3.2.1 Levenshtein Distance Matrix

The Levenshtein distance, also called edit distance introduced in 1965, is a sensitive measure

by which between-string distances (in this case hand typed medical terms) are calculated. This

algorithm tends to assess the cost of the least expensive set of operations such as insertions,

substitutions and deletions for transforming one word into another [39]. The recursive Lev-

enshtein algorithm that takes two strings, s1 and s2, and returns the corresponding distance

between them is provided from Wilbert’s work [39] as shown in Figure 3. Among the sting-

based distance methods such as cosine, Jaccard, euclidean similarity measures [34] this method

is more effective in terms of spell checking when we have many typos due to manual entries by

passing in various types of operations.

3.2.2 Updated Levenshtein Distance Matrix

Levenshtein distance matrix does not account for abbreviated forms of the terms as it

dynamically searches for minimum amount of change can be made to transform a term into

another. Consequently, it can report high dissimilarity between such pairs (in some cases

distance of 1) which is undesirable, hence the goal of clustering terms with consideration of

typos, abbreviations, and stem derivatives will be violated. To tackle this issue, we define

possible scenarios for the terms in original dictionary (OD) and target the expected responses

per scenario by the represented paths in Figure 4.
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Algorithm 2 Levenshtein-Distance(S1,S2)
1: procedure Levenshtein-Distance(S)
2: for i = 0 to m do
3: for j = 0 to n do
4: Upper = UpperLeft = left = maxint
5: if i > 0 then Upper = dist[i− 1, j] + weight(S1[i], ∅)
6: end if
7: if i > 0 and j > 0 then UpperLeft = dist[i− 1, j − 1] + weight(S1[i], S2[j])
8: end if
9: if j > 0 then left = dist[i, j − 1] + weight(∅, S2[j])

10: end if
11: dist[i, j] = min(upper, upperleft, left)
12: if dist[i, j] = maxint then dist[i, j] = 0
13: end if
14: end for
15: end for
16: Levenshtein-Distance=dist[m,n]
17: Return Levenshtein-Distance
18: end procedure

Figure 3. Algorithm represented for generating the Levenshtein distance matrix [39].
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Figure 4. Flowchart represents the paths A, B, and C to update Levenshtein distance matrix.
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In Figure 4, Levenshtein Matrix is derived by applying Levenshtein Distance algorithm

(Figure 3) iteratively on the terms in original dictionary (OD). Other than original and universal

dictionary we use a general medical dictionary (MD) as a simple filtration tool which exploits

some available comprehensible medical terms out of meaningless words. Then, the flowchart

modifies the Levenshtein matrix in order to improve the representativeness of the similarities

between medical terms in unstructured text. Each path checks for the fulfillment of dictionary-

related conditions (OD, MD, and SDOD) and leads to execution of two operations, removing

words (RW) and changing distance (CD) (see Figure 5 and 6). Below we will explain the

performance of these paths in detail.

• Path A: This path is for the abbreviation words of original term w assuming that OD has

this abbreviation with a "." in the end. Therefore, CD operation in this path performs

n-grams analysis to determine the initial or ending part truncation abbreviations.

• Path B: If there is a typo, then it will be the w’ with a forgotten "."; this situation will be

handled in Path B when we are scanning the words j (w’ with forgotten "." will appear

as a j candidate. This path is for the abbreviation-like words which can be caused in

at least two scenarios: first is end of sentence period might make a word look like an

abbreviation. Second is a typographic error where "." is entered by mistake after a word

without a space. In such cases, this path B will correct it. It also adjusts the Levenshtein

distance for abbreviations whose "." is forgotten (see description in Path A).

• Path C: While the other two paths, A and B, mainly process the words that does not

exist in MD, this path applies RW operation on those terms exist in OD and MD but not

in SDOD. Such words are full spelling medical terms that happened to be in abbreviation

dictionary due to attaching to "." as ending punctuation in a sentence. In some cases,

the staff may include more than one sentences in a single description which cause this

ambiguity regarding the abbreviation detection when automating this process (see Figure

6).

3.2.3 Optimal Distance Weight

The proposed optimal weight for abbreviation and full spelling pairs distance is calculated

by dividing each pairs distances by a lower bound of the distance values in Levenshtein matrix
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Algorithm 3 Changing Distance Operation(t, SDOD, Pt,j, Lev_Matrix)

1: procedure Changing-Distance((t, j))
2: L1 = Length(w)
3: w = t \ ”.”
4: for each word j in SDOD \ w do
5: L2 = Length(j)
6: if L1 > 1 AND L2 ≥ L1 then
7: n_set = n_grams(j, L1)
8: w′[−1]_”i” = (w \ ”.”) + ”i”
9: if w = n_set[0] then

10: Lev_Matrix[t, j] = Pt,j × Lev_Matrix[t, j]
11: else if w′[−1]_”i” = n_set[0] then
12: Lev_Matrix[t, j] = Pt,j × Lev_Matrix[t, j]
13: end if
14: end if
15: end for
16: Return Lev_Matrix
17: end procedure

Figure 5. Changing distance of abbreviations and complete form and its derivatives.

(LBD). The reason lies in the mechanism of the hierarchical clustering (with single linkage

method) which groups the words (clusters) which share minimum distance value. Using equa-

tion eq:erl5 the weight values (Pt,tb) can be found for each candidate pairs in order to modify the

corresponding distances to local minima distance value in Levenshtein matrix. This guarantees

the triggered merging task in initial step of the HAC implementation.

Pt,tb = min(Lev-Matrixi) (1)

This optimal weight is used in operation CD to reduce the distances of candidate full spelling

words and their abbreviations (see Figure 5).

Note that in CD operation, n-grams method plays an important role in identifying the

sequence of characters in single words based on the n tokens triggered iteratively.

To validate the process demonstrated in the flowchart of Figure 4, we represent an example

for each path per specialty in Table 1.
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Algorithm 4 Removing Word Operation(t, SDOD, Lev_Matrix)
1: procedure Removing-Word((t))
2: w = t \ ”.”
3: if w ∈ SDOD then
4: Freq_w = Freq_t+ Freq_w
5: SDOD → SDOD \ t
6: Remove Lev_Matrix[t, w]
7: else if w′[−1]_”i” ∈ SDOD then
8: Freq_w′[−1]_”i” = Freq_t+ Freq_w′[−1]_”i”
9: SDOD → SDOD \ t

10: Remove Lev_Matrix[t, w′[−1]_”i”]
11: end if
12: Return SDOD, Lev_Matrix
13: end procedure

Figure 6. Removing the words while duplication of their full spelling word as an abbreviation
exist in SDOD.

 

𝑨  𝑩 
𝑪 

𝑨𝟏 𝑨𝟐 𝑩𝟏 𝑩𝟐 

Urology 

𝒘 app.  cysto. urethra. cystoscopic. 

𝒘′ app  cysto urethra cystoscopic 

𝒋 applic 
applica 
applicat 
applicati 
applicatio 
application 

 cysto 
cystoscop 
cystoscopi 
cystoscopoy 
 
 
 

urethral 
urethra 
urethr 

 

General 

𝒘 explor.  lap. laparotomy. port. 

𝒘′ lap  lap laparotomy port 

𝒋 

explor 
explora 
explorat 
explorati 
exploratio 
exploration 

 lap 
laparoscop 
laparoscopi 
laparoscopic 
laparoscopic 
laparoascopic 
laproscop 
laparscop 

laparotomi 
 

 

OBGYN 

𝒘 pacu. system. condyloma. cystoscopy. assist. 
𝒘′ pacu system condyloma cystoscopi assist 

𝒋 pacu  condyloma cystoscopi assist 

Cardio 

𝒘 rep. area. bypass. biopsy. vein. 
𝒘′ rep area bypass biopsi vein 

𝒋 

replac 
replace 
replacem 
replaceme 
replacemen 
replacement 

 bypass 
bypasstim 
bypasstime 
bypasstimes 

biopsie 
biopsies 
biopsis 

 

Other 

𝒘 bone. none. catheter. exostectomy. buttocks. 

𝒘′ bone none catheter exostectomi buttocks 

𝒋 

bonea 
boneam 
boneamp 

 cathet 
cathete 
catheter 

exostectomi  

 

Specialty 

Path 

Table 1. Examples for paths A, B, and C.
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3.3 Hierarchical Agglomerative Clustering (HAC)

Clustering methods can be divided into two categories in terms of the grouping procedure,

partitional and hierarchical. Partitional clustering such as k-means has been applied to many

real world data recently and providing high quality clusters. The k-means algorithm is one of

the most popular partitional clustering methods currently due to its running time and simplicity

in practically understanding and deploying. Later on, various extensions of this method such

as K-mediod, K-interval [36], K-mode [41] are designed to improve the outputs for designated

areas of data mining and pattern recognition. However, still with these extensions in-use some

hierarchical methods can outperform partitional methods such as k-means in medical text

mining. One of the issues of partitional approaches such as k-means is that the number of

clusters need to be determined at the beginning of the clustering. With lack of knowledge

about large datasets with complex structures and possible oscillations in clusters it is hard to

determine the optimal number of clusters.

However, extensive effort has been undertaken to find the answer to this research question

but many found the right value of this parameter using heuristic approaches such as elbow

method which is mostly applicable for specific data structures. While complications of finding

initiative parameters such as optimal k (cluster numbers) is still there, hierarchical clustering

methods are designed to eliminate the requirement of defining such inputs. One of these

approaches is a greedy algorithm called Hierarchical Agglomerative Clustering. Other than

simple and straightforward implementation, HAC provides more interpretive clusters in the

shell of hierarchy structure compared to the unstructured flat clusters set derived by k-means.

Accordingly, this helps in making decision on the level of clusters simply by analyzing the

dendrogram levels.

In this study, we applied hierarchical agglomerative clustering with single-linkage method

and euclidean linkage metric on our customized Levenshtein matrix (Lev-Matrix). HAC then

provides a matrix (Z-Matrix) consisting information regarding each clustering iteration such

as iteration number, grouped cluster IDs, distance value, and total number of words. More

precisely, this bottom up approach merges the terms (or the clusters) at each stage based on

minimum intra-cluster distances calculated by developed distance metric. Then, the dendro-

gram cutting levels can be defined based on the cluster size and minimum inter-cluster distance
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of the largest cluster for each cut depth in elbow graph. The lack of good theoretical and

applied study in this regards, of course, makes it more challenging to reify the clusters. This

has been broadly discussed in the next subsection.

3.4 Finding the best cutoff distance of the dendrogram

After obtaining the hierarchical representation of the clusters, in order to find the best

dendrogram cutting depth we go beyond the current theories and heuristically uncover a new

metric which helps reducing the ratio of false positive and false negative instances to the total

number of unique words in the dataset for each cutting point. Previously, elbow graph has been

used to determine the optimal number of clusters from dendrograms by the elbow location [98]

but here we tend to look into more detailed information on how the clusters change per cut to

decide which represents the target depth jump among the cuts more effectively by introducing

a new evaluation metric for analysis in this graph. This metric can be used extensively for

choosing the best cutoff point in the dendrograms empirically and eliminates human error

which rises from human judgment as usually the investigators inspect the final dendrogram

and select this point based on their own judgment. While the traditional metrics including

silhoutee measure fail to find the best k clusters for the optimal distance depth (d), the presented

measurement transforms the distances to more applicable gauge, namely cluster weight at cutoff

point d or WCd
, and reports the best cutoff value candidate at the first recognizable downward

trend of the graph till the point where the second upward trend is observed.

In the following equation, we define the NormMLd
as normalized value of the length of

the longest cluster which has the highest average intra-cluster distance and NormSd
as the

normalized value of the total number of clusters in the clustering results at cutoff threshold (d).

Additionally, MeanMIDd
represents the average pairwise intra-cluster distance of the proposed

cluster with NormMLd
parameter. Consequently, MeanMIDd

divided by 2 provides the mean

intra-cluster distance of the word members without duplication. Apparently, as the length of

largest cluster (NormMLd
) increases the total number of clusters decrease (NormSd

) since at

smaller cutoff points more singleton clusters can be observed and at higher levels HAC method

tries to merge these clusters in a bottom-up fashion. Moreover, we trigger the largest cluster

of each cut which has the property of possessing the maximum intra-cluster distance because

it highlights the suspicious case of an erroneous cluster merge step in the hierarchy.
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Algorithm 5 Sample cutoffs S([LB,UB]) for Dendrogram D
1: procedure Sample Cutoffs(S(Z-Matrix, N))
2: S = ∅
3: N = 10
4: Step = 0
5: UB = ⌈min(Z-Matrix.distance\{0})⌉
6: LB = ⌊max(Z-Matrix.distance\{1})⌋
7: delta = UB−LB

N

8: while Step < UB do
9: Step + = delta

10: S = S ∪ {Step}
11: Return S
12: end while
13: end procedure

Figure 7. Generating sample of distances for cutting the dendrogram.

In HAC, increasing cutoff leads to reduced number of clusters (desirable) at the expense of

increased intra-cluster distance (undesirable). Proposed formula trades off these changes and

focuses on the longest cluster which dynamically changes with the cutoff distance. Numerator

of this expression measures the size of the cluster (focus on the longest one) as a function of

number of terms in cluster and average intra-cluster distance. The numerator increases with

the increased cutoff distance. Denominator of this expression measures the number of clusters,

i.e. increases with cutoff distance as the number of clusters decreases. Hence the ratio decreases

if the rate of decrease in the number of clusters is greater than the rate of the increase in the

size of clusters. We thus identify such regions where there is such a decrease in the ratio and

at the lowest cutoff distance possible.

WCd
=

NormMLd
+ (

MeanMIDd

2
)

1−NormSd

(2)

We will calculate the cluster weight using equation eq:erl for each cutoff point while a set

(S) of cutoffs can be found from an evenly spaced samples computed over the interval with

lower bound LB and upper bound UB. In Sample cutoffs algorithm, considering that the size

of S is equal to 10, we can generate the sample cutoff set S given the Z-Matrix from HAC step

(see Figure 7).
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Algorithm 6 SelectionSort(C-Matrix[ID,V1,...,Vn-1])
1: Sorted-C=∅
2: for i = 0 to n− 2 do
3: min=i
4: for j = i+ 1 to n− 2 do
5: if C −Matrix.ID[j] < C −Matrix.ID[min] then min = j
6: end if
7: Swap C-Matrix[i] and C-Matrix[min]
8: end for
9: end for

10: Return C-Matrix

Figure 8. Selection sort algorithm as an initiative step for HCHAC.

3.5 Heuristic Clustering of HAC (HCHAC)

One of the main issues of implementing HAC is that when cutting the dendrogram at a

distance level some clusters may be splitted at the cut level with very small difference in terms

of the similarity measure compared to the words that remained together. The reason lie in

the minimum distances at each hierarchy and a predefined constant cutting level. Therefore,

by specifying any cutting point some words may be pruned from the parent clusters. This

problem rises some number of singleton cluster pairs or a singleton and a non-singleton cluster

pairs as false negative (FN) samples. In this case, after performing first step of clustering the

results show there exist some consecutive clusters that contain false negative cluster members,

meaning that the words in two consecutive clusters represent the same word but not grouped in

the same cluster. Consequently in the final phase of this study, Heuristic Clustering algorithm

of HAC (HCHAC) is represented to reduce the FN instances derived from HAC clustering

method by sorting the clusters based on their cluster ID. Algorithm represented in Figure 8

returns a sorted clustering matrix (C-Matrix) with respect to the cluster IDs.

C-Matrix provides the clusters information including cluster IDs and members. When sort-

ing the matrix by cluster IDs, the aforementioned pattern can be perceived quite clearly. For

example, HAC couldn’t capture "lepp" as misspelled form of the word "leep" and match them

at the designated threshold cut level. While the word "lepp" falls in cluster 67 and "leep"

in cluster 68, this phase merges them into a single cluster. The second clustering algorithm,

HCHAC, focuses on such instances and form a single cluster by merging two consecutive groups.
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The main idea in this step is to decide merging based on some factors such as the length of

exemplar word of the cluster where exemplars are selected based on the frequency of cluster

terms in text. Moreover, whether the initial characters of the two candidate words match. The

algorithmic representation of this step-wise approach is offered in algorithm described in Figure

9.

Algorithm 7 Heuristic Clustering of HAC(C-Matrix)
1: procedure HCHAC(C-Matrix[ID,M])
2: D = 0.3
3: L = 4
4: for i = 0 to n− 1 do
5: if Length(M [i]) > 2 AND Length(M [i+ 1]) > 2 then
6: if Levenshtein-Distance(M [i][0],M [i+1][0]) ≤D AND Length(M [i][0]) > L then
7: if M [i][0 : L] = M [i+ 1][0 : L] then
8: Merge C-Matrix[i] & C-Matrix[i+1]
9: end if

10: end if
11: else
12: D = 0.25
13: if Levenshtein-Distance(M [i][0],M [i+ 1][0]) ≤ D then
14: if M [i][0:2] = M [i+ 1][0:2] then
15: Merge C-Matrix[i] & C-Matrix[i+1]
16: end if
17: end if
18: end if
19: end for
20: Return C-Matrix
21: end procedure

Figure 9. HCHAC algorithm for empowering HAC.

In the procedure above the length of the first word in each cluster is a determinant parameter

in emendation of false negative cluster members. By optimizing the thresholds we can assume

that the words with 3 or 4 characters are considered to be short medical terms for which the

rule of identical first 2 characters apply. Also the words with length of more than 4 tend to

be merged into single cluster if the initial 3 characters match according to Figure 9. Also the

optimized distance threshold of the exemplar words is 0.25 and 0.3, respectively. Therefore,

HCHAC can be introduced as a spell checking process which is clustering the initially formed

clusters based on words length, comparison of first portion and Lenvenshtein distance of the

words. Some HCHAC singleton and non-singleton clusters merging examples from Cardio
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specialty are presented in Table 2. Evidently, applying HCHAC as a complementary step for

HAC method is more informative rather than misleading. This can be observed in all specialties

multi-step clustering results.

Cluster ID Words Result 

129 roon - 
1 FP 

130 room robot 

248 laparoscopi - 
1 FP 

249 laparoscop laparotomi 

262 mini minim 
2 TP 

263 min - 

332 extend extens 
2 TP 

333 externd - 

 

 

 

 

(a) Table 2a. HCHAC singleton clusters can-
didate from Cardio specialty.

Cluster ID Words Result 

17 aneursym 
1 TP 

18 aneurysm 

29 dddr 
1 TP 

30 ddd 

39 nmud 
1 TP 

40 nmuc 

48 mosaic 
1 TP 

49 mosiac 

59 hrs. 
1 TP 

60 hr. 

94 site 
1 FP 

95 side 

159 drainag 
1 TP 

160 drainage. 

186 repiar 
1 TP 

187 repair 

245 endograph 
1 TP 

246 endograf 

255 ligatur 
1 TP 

256 ligat 

 

 

 

 

 

(b) Table 2b. HCHAC non-singleton clusters
candidate from Cardio specialty.

Table 2. HCHAC complementary step for clusters grouping. In Table 2a you can see that 2
FPs and 4 TPs and in Table 2b 1 FP and 9 TPs are added to the results of HAC. Therefore,
the gain of this method is 13 TPs as opposed to 3 FPs loss.

Step 1. Preprocessing
2. Add Stem 

Derivatives 
3. Generate Levenshtein 4. Update Levenshtein 5. Run HAC

6. Selection Sort
(HAC clusters)

7. Run HCHAC

Key
Task(s)

• Remove special 
char 

• Remove stopword
• Tokenization
• Stemming

• Add derivative 
terms

• Add frequencies

• Calculate Levenshtein
matrix

• Scenario 1:
• Remove “𝑡𝑏”
• Freq(t) = Freq(𝑡𝑏) + Freq(t)

• Scenario 2:
• Find:
• First part shortenings
• Last part shortenings
• Optimal penalty 𝑤𝑖

• Single linkage
• Provide pairwise 

merging steps      
details

• Sort the clusters 
based on cluster   
IDs

• Merge C[i], C[i+1] if:
• Distance(M[i],M[i+1]) ≤ 0.25

• Length(M[i])>4 & 
first 3 chars match

• Length(M[i])≤ 4 & 
first 2 chars match

Output Dictionary (Universal, Original) Distance Matrix (Lev-Matrix) Cluster Matrix (Z-Matrix, C-Matrix)

Table 3. Study Framework and steps of this research along with methodologies and outputs.
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3.6 Medical Text Analysis Results

In our evaluation of the presented approach, we used historical surgery datasets. The histor-

ical datasets were extracted from a hospital’s surgery database spanning a three-year period.

The raw text fields extracted include free text surgical notes and procedure descriptions of

the surgeries entered manually by the surgery department’s staff and clinics. The surgery de-

scription corpus contains in total 17% misspellings and 8% abbreviation words. Given that

misspellings and abbreviations depend on the specialty, the data set is organized into five

main specialties each with sufficiently large number of observations. The last specialty, called

"Other", is an aggregation of all other specialties with fewer observations. Table 3 and second

and third columns of Table 4 present the detailed dataset information for each specialty. We

note that there are more misspelled terms than the abbreviations in all specialties.

 
 

Specialty 

Original Word 

Counts 

Unique Typo 

Counts 

Unique Abbrev. 

Counts 

Word Length  

(char) 

Description Length  

(word) 

Range Mean Range Mean 

Urology 22,221 103 36 18 7.8 21 9.1 

General 14,939 112 20 19 7.7 21 7.5 

OBGYN 14,778 100 23 17 8.1 21 7.9 

Cardio 8,476 76 36 14 6.7 26 9.4 

Other 23,342 213 42 23 7.3 27 8.2 

Table 4. Insights about text data per specialty

3.6.1 Obtaining Ground Truth

The ground truth in this study corresponds to the correct clustering of misspelled variants

and abbreviations of each term (medical or non-medical) of the corpus. In finding ground truth,

we followed a manual process of labeling by human experts which are inherently subjective,

and thus cannot be expected to be 100% accurate but rather expected to be informed. To

reduce the inherent subjectivity and increase the accuracy, we have performed wildcard pattern

searching using medical dictionaries, CPT databases, and UMLS. To illustrate, consider the

cluster {"laparoscopi","laparoscop","laparotomi"} obtained from HCHAC process. We do 3

wildcard searches using the dictionaries would result in "laparotomi" to be identified as the

stem of "laparotomy" which is different than the "laparoscopy". Another cluster example is

{"roon", "room", "robot"} for which manual processing identifies "robot" to be separated from

the rest.

To illustrate a case for the limitation of this manual labeling approach, consider the cluster
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{"contert", "content", "convert"} where "contert" can be the typo with original form of either

"content" or "convert". To decide which cluster this typo belongs to, we further considered

the context of the term and co-occurrence similarities with other terms in the raw data set. In

such ambiguous cases where it was not possible to determine the correct cluster assignment,

we created scenarios of multiple ground truth cluster assignments and report our results based

on these scenarios.

Creating ground truth clusters from scratch is a very time-consuming task (i.e., pairwise

comparison of all terms) due to difficulty level of medical terms and size of the word dictio-

nary. Instead, we begin the manual ground truth discovery process with the cluster outputs

of HCHAC method for each specialty. This initialization has significantly reduced the manual

labeling effort and allowed for wildcard pattern search with multiple sources.

3.6.2 Impact of Clustering Method

To better judge our model’s capability in standardizing the free text descriptions, we first

compared the performance of the HAC (our selected clustering approach) to that of Density-

based spatial clustering of applications with noise (DBSCAN)[24]. The results of reduced text

features in standardized text using HAC and DBSCAN are presented in Table 5. Both HAC

and HCHAC methods are able to reduce number of text features (i.e., clusters of words) by

identifying misspellings and abbreviations. When compared with stemming-based reduction,

HCHAC is able to detect 17% to 37% of the terms as misspellings and abbreviations with

an average of 26% across all specialties. While the DBSCAN is able to reduce number of

clusters more than HAC and obtain a better misspelling detection accuracy, its clustering and

abbreviation accuracies are worse. We used the following expression to calculate the accuracy

and the ground truth (explained next).

In an effort to improve the performance of DBSCAN, we applied the DBSCAN to the

clusters obtained from HAC, i.e. HAC-DBSCAN, which slightly improved the accuracy results.

The two-step approach in Algorithm 6, HCHAC, displays best performance in terms of all

accuracy types.
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3.6.3 HAC and HCHAC Clustering Results

The output of the presented approach is a clustering of the terms in the corpus, i.e., mis-

spellings, abbreviations, full spelling of words, correctly spelled words. The underlying hy-

pothesis in generating clusters of terms is that each cluster consists of a correctly and fully

spelled word, its misspelled and/or abbreviated variants. In order to test the performance of

the proposed approach’s cluster results of misspellings and abbreviations, we compared the

results with the ground truth results obtained by manual processing. We note that manually

assigned category labels are usually used as a diagnostic baseline criteria for the evaluation of

clustering results. With this kind of evaluation, we are intrinsically assuming that the objective

of clustering is to replicate human thinking and processing. We report on the misspelling and

abbreviation detection accuracy, as well as clustering precision, recall, accuracy and F1-score

based on their consistency with the manually created ground truth (gold standard clusters).

Assessing precision, recall, and F1-score, accounts for the clustering and the ground truth

cluster assignments as comparable groups explained by the particular TP, FP, and FN instances.

The precision and recall scores of clusters in clustering results, C, and their equivalent ground

truth clusters, M, are obtained by finding instance pairs of cluster members in both C and M

based on the criteria represented in the following confusion matrix (Table 6).

The precision and recall and accuracy are computed by equations (7), (8), and (9) in the

previous section. F1-score is the harmonic mean of these two measurements. [4]
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Specialty 

After 

Preprocessing 

After 

Stemming 

HAC  

Clusters 

HC-HAC  

Clusters 

DBSCAN  

Clusters 

HAC-DBSCAN 

Clusters 

Urology 862 663 435 415 423 405 

General 784 653 545 515 490 494 

OBGYN 809 667 471 449 433 438 

Cardio 761 596 521 494 477 477 

Other 1,579 1,271 1,017 973 889 892 

Text feature reduction while standardizing the free text

Average 
Clustering 

Accuracy 
TP Rate 

Typo 

Accuracy 

Abbrev. 

Accuracy 

HAC 80.2 86.4 74.2 80.4 

HC-HAC 84.4 90 90.6 90 

DBSCAN 66.2 70.8 79.2 75.4 

HAC-DBSCAN 68.2 73.6 79.2 80.2 

 

The performance measure (average) for different models

Table 5. Feature reduction in each specialty with respect to the performance measure

Table 6. Confusion matrix in clustering

Figures 10 - 13 represent the precision, recall, F1-score and accuracy percentages respec-

tively for HAC and HCHAC methods under two scenarios of the study; HAC worst, HAC

best, HCHAC worst, and HCHAC best. Here ‘-best’ and ‘-worst’ denotes the best and worst

performance level obtained across all scenarios of ambiguous case cluster assignments. Results

in Figures 10 - 13 show that while HAC results are promising, HCHAC is able to improve

over HAC results further, especially in terms of accuracy. For instance, accuracy and F1-score

percentage of HCHAC lies in [91,92] and [85,87], respectively, which corresponds to almost 8%

average improvement in clustering results.

To better assess these results, we compared with a baseline approach. Since HCHAC is

an unsupervised approach and does not require a reference source (e.g., dictionary) and there

exists no other study which does not use a reference or a dictionary, we are unable to provide a

comparable baseline approach from the literature. Instead, we provide the results of a simplified

approach which uses parts of the presented methodology, i.e., updating LD for abbreviations
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and optimal threshold setting. The results of this baseline is presented in Table 5 compared

with HCHAC. Results show 8-10% average accuracy improvement over the baseline established.

Lastly, we also evaluated the effect of the size of the corpus on the stability with respect to three

different accuracies. Our experiments showed that, while different accuracies (clustering, typo,

abbreviation) stabilize at different corpus sizes across specialties, the stability of the clustering

model (HCHAC) is attained by using at least 75% of each specialty’s corpus.
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Figure 10. HCHAC and HAC precision (worst and best scenarios) plot.
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Figure 11. HCHAC and HAC recall (worst and best scenarios) plot.
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Figure 12. HCHAC and HAC F1-score (worst and best scenarios) plot.
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Figure 13. HCHAC and HAC accuracy (worst and best) scenarios plot.



34

Abbrev. Typo Clustering Abbrev. Typo Clustering
Urology 92 88 89 83 84 84
General 90 93 86 85 79 74
OBGYN 87 91 81 78 85 71
Cardio 86 90 86 80 79 71
Other 95 91 80 83 86 70
Avg 90 90.6 84.4 81.8 82.6 74

HCHAC Baseline
Accuracy (%)

Specialty

Table 7. The accuracy of abbreviation and typo detection in text

3.6.4 Choosing the best cutoff point

As discussed in the methods section, we developed a new metric in elbow method to find the

best cutoff point in the generated dendrogram. We illustrate the effectiveness of this approach

using the historical data set. In Figure 14, the x-axis shows the range of cut-off values for

each specialty. We describe a specific range of cut-off points for each specialty based on the

minimum and maximum distances in dendrogram as described in Algorithm 4. The candidate

thresholds for Cardio, General, OBGYN, Urology, and Other specialties are (0.16, 0.18), (0.19,

0.22), (0.19, 0.21), 0.18, and 0.17 respectively. Note that some specialties have multiple cut-off

points in the region of interest, i.e. where the metric is decreasing first time.

Figure 14. Cluster Weights on different random dendrogram cut for each specialty.

In order to assess the quality of the identified thresholds for cutting the dendrogram (for each

specialty), we experimented with different cut-off levels and report the precision, recall, and

F1-score of the clustering results at each cutoff level (Figure 15). According to these results, the

optimal cuts are indeed the ones identified with our proposed cut-off threshold procedure. For

the specialties where there are multiple cut-off candidates, Figure 15 confirms that one of the

candidate cut-off levels is the optimal level. For instance, the optimal cut-off point for "Cardio"

is identified to be either 0.16 or 0.18. Referring to Figure 15, the precision is maximized at

0.18 with an acceptable recall percentage, 83.3%, which results in highest F1-score percentage
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(90%) among all cutoff points for this specialty.

Figure 15. P/R/F for different cuts per specialty.
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4 Classification: Primary and Multiple CPT Prediction

While some surgical units use preliminary CPT codes for operational scheduling, majority

of services choose to only use textual descriptions and key identifiers. Identifying key sub-

procedures and their importance in estimating the surgery duration are usually based on the

schedulers’ knowledge and years of experience. Even those providers using preliminary CPT

codes end up changing their CPTs upon the completion of the surgery by examining the surgery

notes and outcomes (i.e., medical coding for billing). Hence, knowing the accurate CPT code(s)

for a surgery case in advance is critical for operations planning such as scheduling and equip-

ment provisioning. Therefore, in this chapter, we develop multi-class classification models and

enhancements to predict the CPT codes and improve the outcomes. The presented models use

the structured text data from the previous chapter to improve the feature set for predicting

more accurate CPT codes.

4.1 Primary CPT Prediction

• Data Collection

Data should be collected from interactive information system’s relations in surgical

units. The consistency of the data determines how close the prediction will be to the

ground truth labels. We have determined the most influential inputs for this predication

task. These inputs are surgeon ID, patient’s age, case type, TFIDF (term frequency

score of text data processed in the previous step) and surgery scheduled duration. The

dataset contains about 28,000 of records of surgery scheduled cases, containing operations

details in the period of May 2013 till June 2017 in the main OR suite. However, after

performing initial data cleaning, the size of the dataset is reduced to 10,000 cases. Also,

the feature set of the data that is used in the analytical pipeline of this research includes

both categorical and continuous variables.

• Preprocessing

We have extracted the importance scores of the words in procedure descriptions after

applying our text mining research plan [47]. Moreover, prior to any prediction effort,

we have investigated whether actual surgery durations follow a well-known parametric

distribution, such as normal or log normal. This will help us to determine if we can use

a simple parametric technique for estimation or we need to propose a method that look



37

into the parameter relations and prediction task more precisely [44].

• Prediction Models

In surgical CPT prediction studies, surgery description holds invaluable information

[58]. The text entry in the system of many hospitals is pattern-free as surgery descrip-

tions in surgical records. Therefore, any prediction attempt directly from unprocessed

text simply results in poor estimations with high prediction error. In the previous sec-

tion, we have identified structured feature set by utilizing an unsupervised text mining

approach from the free-text descriptions [47]. Current literature failed to use this im-

portant feature in CPT prediction task however we think it improves the accuracy of

the prediction model considerably. The ongoing and standard CPT assignment approach

involves manual labeling, which entails significant human effort and is cumbersome for

huge surgery schedule databases in large hospitals.

In our data set, CPT codes are not provided as a singleton, rather as a set of CPT

candidates. In other words, the surgeries are represented in terms of single or in many

cases multiple CPT codes; that is named "CPT list". This is because most surgeries have

multiple components, some of which are standard procedures such as anesthesia etc. and

others are multiple procedures being done concurrently. The class assignments, using

either of these two methods, are the predicted singleton CPT codes for each surgery. The

single CPT label reflects the most dominant procedure among other CPTs. To train the

model with single label, we have extracted the dominant single CPT from the CPT set by

reviewing their corresponding Relative Value Unit scores. Relative Value Units (RVUs)

are the effort to quantify the physician services for reimbursement in US Medicare system.

The CPT which owns the highest RVU score is chosen as the dominant CPT in the surgery

CPT set; that is named "primary CPT" [54].

Subsequently in this discussion, surgical CPT codes are predicted through supervised

methods, namely Random Forest (RF) [12] or Extreme Gradient Boosting (XGBoost)

[15] classifiers. We mention both models as effective methods for modeling multi-class

problems, yet both are flexible with many variable modification capabilities; e.g. loss

function. These methods are well-supported by making decisions based on constructed

probability tree of the possible scenarios and outputting the class label which is the mode
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Algorithm 8 RF(Strain={(x1,y1),...,(xN ,yN)}, A = {1, ..., N}, t = {1, ..., ntree})
1: procedure RF(Strain,A,t)
2: Bootstrap sampling ← Bt

3: Bt ⊂ A
4: B′

t ← A\ Bt

5: Fit classification tree to Bt

6: Obtain the predicted class of each terminal node
7: for each member m in B′

t do
8: Pass m down the tree t
9: Terminal nodes ← qt(i) for i ∈ A

10: end for
11: Find frequency of the classes for observations ∈ Strain of all trees in set t for which the

observation ∈ B′
t ←Fclass∈c

m

12: Class label of m ← max(Fclass
m )

13: end procedure

Figure 16. Random Forest classification algorithm.

of the leaves class assignments. While these methods are both ensemble learning models

and using decision trees as the base learner, GB tends to use weak learners (shallow

trees that could be as small as stumps) iteratively. On the other hand, unlike GB, RF

uses fully-grown trees in parallel. We define RF and GB classifiers are represented as

algorithms in Figures 16 and 17.

In RF algorithm, bootstrap samples are taken N times randomly with replacement at

tree t. Moreover, in line 5 the classification process is acquired by splitting tree nodes

of tree t on predictor variables, converging when reaching terminal nodes of the same

class. In line 4, the class assignment of Bt members in each node of tree t is obtained.The

optimal class for observations in test set is the label with maximum frequency of the same

training observations at terminal nodes of all constructed trees. The standard method

for probability estimation is based on the proportion of trees that predict class c when m

is passed down the tree t (See lines 8-12 of algorithm 8).

In Figure 17, at each iteration of XGB model FCM(xi) is computed by fitting a base

learner to the negative gradient of the loss function L in regards to preceding iteration’s

output, Fc,m−1(x). In step 7, it tends to train using (xi, ricm) for all i ∈ {1, ..., N},

iteration m, and class c. In line 9, one-dimensional optimization problem, γjcm =

argmin
∑n

1 L(yic, Fc,m−1(xi) + γhcm(xi)), is solved for J terminal nodes to obtain the
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Algorithm 9 GB(Strain={(x1,y1),...,(xN ,yN)}, L = l(y, F (x)), niteration = M , c = {1, ..., C})
1: procedure GB(Strain,L,niteration)
2: Initialize model with a constant value: Fc0(x) = argmin

∑n
1 L(yi, γ)

3: for each iteration m in M do
4: Compute pc(x) =

exp(Fc(x))∑c
l=1 exp(Fl(x))

5: end for
6: for each iteration c in C do
7: Compute residuals: rjcm = −

[
∂l(yic,Fc(xi))

∂Fc(xi)

]
Fc(x)=Fc,m−1(x)

∀j∈ {1, ..., J}

8: Fit a base learner hcm(x) to ricm

9: Compute multiplier γjcm: γjcm = C−1
C

∑
xi∈rjcm(yic−pc(xi))∑

xi∈rjcm(|yic−pc(xi)|)(1−|yic−pc(xi)|)

10: Update the model: Fcm(x) = Fc,m−1(x) +
∑J

1 γjcmhcm(x) (x ∈ rjcm)
11: end for
12: return FCM(x)
13: end procedure

Figure 17. Extreme Gradient Boosting algorithm for multi-class prediction [15, 29].

prediction in mth iteration for class c. In multi-class case, for each pair of data (x, y),

yc = 1 is considered to be the class label of observation x while yc ∈ {0, 1}, and we

investigate pc(x) = p(yc = 1|x).

The estimations in FCM(x) then can offer us the probability estimation (pcM(x)) of all

c classes in XGB model. The optimal parameters of the models can be obtained by cross-

validated grid search over a given grid of parameters to iterate over different parameter

value combinations. The parameter grid offers variations of important tree parameters

such as minimum number of samples at leaves (min_samples_leaf), minimum number

of samples to split an internal node (min_samples_split), and number of trees in RF or

number of boosting levels to execute in XGB (n_estimators).

• Class Weight Recalculation

We developed this method to apply it to the ensemble methods’ output for reducing

the noise caused by those data points which misinform the learner. As an instance, CPTs

of similar procedures are different codes but their textual feature contents are similar

with minor word differences. These divergences are muted and not resolved well in the

ensemble methods hence it brightens the need for differentiating such observations with

clarity. One solution is to design a CPT selection approach as a wrapper method which
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assigns weights to the most probable CPT sets. These CPT sets are in consistency with

the most influential features, such as special characteristics of textual feature, model’s

feature importance measurements, and probabilities of the most possible CPTs. For

building the wrapper, we need a model that informs the importance of text features and

CPT assignment probabilities with respect to the classification task at hand.

In this approach, we used the RF’s feature importance as one of the effective factors.

RF calculates the feature importance measure based on calculation of the Gini impurity

at each split node [6]. It worth to mention that XGB also produces potentially useful

feature importance. In XGB model, feature importance is only defined if the decision tree

model is selected as a base learner. However, these measures usually roll up with their own

pitfalls mainly in data interpretation efforts. With correlated attributes in the feature set,

potent features in prediction turn out to be less important based on assigned scores. In

other words, such importance measurements can be biased towards variables with more

categories. Instead using these importance weights in coding the input text features and

retraining the model, we make perturbations of the probabilities of the predicted CPT

alternatives.

Following the single CPT predicting task, we present a novel perturbation-based ap-

proach to improve the accuracy of prediction using the class probabilities extracted from

RF probability matrix (pc(x) of all c classes given each surgery case x). The prediction

probabilities of the alternative CPT classes (c) is then recalculated through a weighting

scheme. Here, the probabilities of the CPT prediction alternatives would be altered re-

sulting in the modified ordering of the label predictions with respect to the primacy of

the CPTs in the class sequences based on calculated weights. For the ordered list of three

CPTs with highest probabilities per surgery case, we represent CPTpi where i = {1, 2, 3}

and i = 1 denotes highest probability CPT and i = 3 denotes lowest probability CPT,

then we have:

CPTpin = [CPTp1 , CPTp2 , CPTp3 ]n∈{1,...,N} ∀i ∈ {1, 2, 3} (3)

Let CPT_catalog_dictpi be the dictionary of tuples, [(W1, F1, I1), ..., (Wk, Fk, Ik)] for

k words in CPTpi description word list, where W,F, andI represents word in CPT de-
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scription, frequency of W, and importance measure of W, respectively. Then we have:

CPT_catalog_dictpi = {CPTpi : {(W1, F1, I1), ...

, (Wk, Fk, Ik)}k∈CPTpi
∀i ∈ {1, 2, 3}}} (eqn)

In addition, let CPT_catalog_dictactual be the dictionary of tuples, [(Wn1, Fn1, In1), ...

, (Wne, Fne, Ine)]n∈{1,...,N} for e words in CPTn description word list. Then we have:

CPT_catalog_dictactual = {CPTn : {(W1, F1, I1), ...

, (We, Fe, Ie)}e∈CPTn∀n ∈ {1, ..., N}}} (eqn1)

The weighting approach supports the improvement of CPT prediction accuracy by

incorporating pairwise similarity (S), word frequency (F ), and word importance measure

(I). Algorithm 10 and 11 in Figures 12 and 13 are presented to calculate the class

weights based on given variables. The coexistence of words in CPT_catalog_dictactual

and CPT_catalog_dictpi determines which algorithm should be used to compute the

new weights for 3 most probable CPT assignments. The ultimate weight is calculated by

following relational formula:

W = function(Sw,w′ , Fw, Iw, Fw′ , Iw′) (6)

The magnitude of weight increases if the importance measure and frequency increases,

W ∝ I × F . The reason is that if the frequency of a word feature in the learning model

increases, the gini impurity measure of this feature increases too since it provides more

classes in gini computation compared to a less frequent feature. Additionally, pairwise

word similarity measure can greatly improve the weights as the co-occurrence of the

medical terms in the candidate CPT and actual label descriptions reflects the level of

both CPTs’ procedure similarity.
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Algorithm 10 Weight_Calc1 (CPT_catalog_dictpi , CPT_catalog_dictactual, CPTn)

1: procedure Weight_Calc1(CPT_catalog_dictpi , CPT_catalog_dictactual)

2: S ← 1

3: FCPT pik = Count(w) | w ∈ CPT_catalog_dictpi [CPTpi ]

4: ICPT pik = Importance(w) | w ∈ CPT_catalog_dictpi [CPTpi ]k

5: FCPTn = Count(w′) | w′ ∈ CPT_catalog_dictactual[CPTn]

6: ICPTn = Importance(w′) | w′ ∈ CPT_catalog_dictactual[CPTn]

7: Wpik = S × (FCPT pik)× (ICPT pik)× (FCPTn)× (ICPTn)

8: Assigned_Weight← Wpik

9: return Assigned_Weight

10: end procedure

Figure 18. Algorithm for calculating class weight when word w is in both dictionaries,
CPT_catalog_dictpi and CPT_catalog_dictactual.

Algorithm 10 is repeated for each high-priority CPT in CPT_catalog_dictpi (i = {1, 2, 3})

and each observation in CPT_catalog_dictactual (n={1,...,N}) until the new weights for three

high-priority CPTs of each surgery case is calculated. With N observations in surgery schedule,

this algorithm outputs I ×N matrix consisting of 3 weights for each observation. Lines 3 and

5 are given to compute the frequency count of the words w and w′ in CPT_catalog_dictpi

and CPT_catalog_dictactual dictionaries, namely FCPT pik and FCPTn , respectively (Note that

w = w′). Additionally, in lines 4 and 6 the importance measure of these words are extracted

from importance matrix of RF/XGB models.

Algorithm 11 (Figure 19) reflects the same behaviour with this difference: w ̸= w′. In

the light of this contrast, we can claim that ICPT pik ̸= ICPTn . The Levenshtein distance [39] is

computed to find the word pairs with maximum similarity measure and consider them in weight

calculation. The ThreshDist parameter is a threshold distance measure defined specifically for

each specialty based on the level of dissimilarity in description words.

We illustrate the framework of our weigh assignment approach in Figure 20. The feature

set is reprocessed [47] and the CPT labels are assigned to each case using RVU measures.
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Algorithm 11 Weight_Calc2(CPT_catalog_dictpi , CPT_catalog_dictactual,
Thresh_Dist, CPTn)
1: procedure Weight_Calc2(CPT_catalog_dictpi , CPT_catalog_dictactual,

Thresh_Dist)
2: SetS ← ∅
3: for k tuples in CPTpi do
4: S = 1 − Lev_Dist(w ∈ CPT_catalog_dictpi [CPTpi]k, w′ ∈

CPT_catalog_dictactual[CPTn])

5: Add S to SetS
6: end for
7: Smax ← max(SetS)
8: if Smax > 1− Thresh_Dist then
9: FCPT pik = Count(w) | w ∈ CPT_catalog_dictpi [CPTpi ]

10: ICPT pik = Importance(w) | w ∈ CPT_catalog_dictpi [CPTpi ]k

11: FCPTn = Count(w′) | w′ ∈ CPT_catalog_dictactual[CPTn]

12: ICPTn = Importance(w′) | w′ ∈ CPT_catalog_dictactual[CPTn]

13: Wpik = S × (FCPT pik)× (ICPT pik)× (FCPTn)× (ICPTn)
14: else
15: Wpik = (S2)× (FCPT pik)× (ICPT pik)× (FCPTn)× (ICPTn)
16: end if
17: Assigned_Weight← Wpik

18: return Assigned_Weight
19: end procedure

Figure 19. Algorithm for calculating class weight when word w exists in CPT_catalog_dictpi
but not in CPT_catalog_dictactual.
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W take 80% of the entire data set of each specialty for training the classification model and

obtaining two dictionaries: CPT_catalog_dictpi and CPT_catalog_dictactual. The model is

tuned using grid search technique to find the optimal combination of hyper parameters. Given

the CPT probability matrix, feature importance matrix (outputs of the fitted model), and

training data, we extract importance measure and occurrence frequency of the words in the

descriptions for 3 CPT assignments with highest probabilities and the actual CPT label. The

framework presented in Figure 20 executes two algorithms given the word co-occurrence states.

We repeat this process for each of the three CPT codes in CPT_catalog_dictpi dictionary

and obtain their new weights. Given the calculated weights, we can determine a new order of

the high-priority CPT codes and offer a CPT assignment for each surgery case which may be

different from the single CPT prediction output.

Run 
tuned RF / XGB

3 Highest Probability
Predicted CPTs 

Extract frequency and
importance measure of

words in each CPT
description

Extract	EHR	of
Surgical	Theater
Operations

Prepare Dataset:
Input Features +

Labels 

Dictionary creation:
1. CPT_catalog_dictpi

2. CPT_catalog_dictactual
Assigned_Weight=0

Training Set

   If w	∈	
CPT_catalog_dictactual

Select
CPTpik ∈	CPT_catalog_dictpi 

where k=1

								If	∃	w		|	w	∈	CPTpik 

Algorithm 4

Algorithm 3

   - Pop tuple k 
   - Next w	∈	CPTpik 
   - k = k+1

Yes

No

Yes

No      Is CPTpi     
      empty?

No

Yes

Return 
Assigned_Weight

Figure 20. The class weight recalculation procedure. Algorithm 10 and 11 are calculating new
weights based on the observed circumstances.

The Primary CPT prediction results are reported with respect to different filtering and

subseting of the dataset to reflect the performance of the presented model from important

perspectives. These settings are introduced in Table 8 and we will discuss more about these in

the results section.
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Setting Label Description

C Complete data set

F1 Overlook small CPT difference (CPTi − CPTj ≤ 10 ⇒ y0,1 = 1

F2 Eliminate rare CPT occurrences (FCPTi
< 4)

F1F2 F1 & F2 (F1 ∩ F2)

F3 Recalculate CPT weight

F3CPTpRV UmaxF1 F3 & (1st) max weight CPT & compare with max RVU label & F1

F3CPTpRV UmaxF2 F3 & (1st) max weight CPT & compare with max RVU label & F2

F3CPTpRV UmaxF1F2 F3 & (1st) max weight CPT & compare with max RVU label & F1 & F2

F3CPTp,sRV UmaxF1 F3 & 1st and 2nd max weight CPTs & compare with max RVU label & F1

F3CPTp,sRV UmaxF2 F3 & 1st and 2nd max weight CPTs & compare with max RVU label & F2

F3CPTp,sRV UmaxF1F2F3 & 1st and 2nd max weight CPTs & compare with max RVU label & F1 & F2

F3CPTp[CPT ]F1 F3 & (1st) max weight CPT & compare with CPT list & F1

F3CPTp[CPT ]F2 F3 & (1st) max weight CPT & compare with CPT list & F2

F3CPTp[CPT ]F1F2 F3 & (1st) max weight CPT & compare with CPT list & F1 & F2

F3CPTp,s[CPT ]F1 F3 & 1st and 2nd max weight CPTs & compare with CPT list & F1

F3CPTp,s[CPT ]F2 F3 & 1st and 2nd max weight CPTs & compare with CPT list & F2

F3CPTp,s[CPT ]F1F2 F3 & 1st and 2nd max weight CPTs & compare with CPT list & F1 & F2

Table 8. Different settings (data filtering methods) for deep result analysis

4.2 Primary CPT Prediction with respect to Surgery Duration Loss

Tree-based ML models provide an alternative to additive and linear logistic models for solving

classification problems. Specifically, Random Forest technique is useful for CPT classification

problem where we have a set of classification variables and a single-response class; CPT codes.

Statistical inference for such models is in its infancy as a a specific feature selection under-

lies tree-based. In this section, our proposed method is using a collection of functions (CPT

classification and surgery duration loss functions) instead of a single objective function in RF

modeling. This will form a basis for building and assessing the new CPT class assignments.

Then, we applied a metaheuristic optimization method, Genetic Algorithm (GA), to help in

selecting the best set of final decision trees given the appropriate goal function. This section

is our attempt to show the importance of custom loss function in RF model to produce more
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reliable durations in this effort.

• Cost Function

Like any other ML algorithms, RF model is trained to minimize a cost function on the

surgical training data. In literature, there are few well-developed cost functions that are

using the capability of the available built-in libraries. In the real-world problems, such

off-the-shelf loss functions are usually not well-tuned to achieve specific goals, in this case

the CPT classification and surgery duration estimation problems. Hence in this study,

we assigned a hyperparameter λi to two players of the cost function. This controls the

accuracy trade-off (CPT classification vs. duration estimation) by adjusting the weight

of the penalty term.

Given the goal of predicting CPT codes with respect to minimized duration loss,

we optimize the general cost function (f(g(x, λ1), h(x, λ2)) where the optimal decision

depends upon magnitude of weight we want to give to both functions, CPT classification

loss function g and duration loss function h which are λ1 and λ2. Consequently, this

enables the user to choose to either predict more accurate CPT code or produce more

precise surgery duration distributions based on the scheduling needs. This is formally

called a Neyman-Pearson criterion [13].

In a standard multi-label RF classification application Gini Impurity metric serves as

the decision criteria in the form of objective function to determine the best splits. Suppose

C is the total number of unique classes in the training dataset and P (j) is the probability

of randomly choosing a data point with class j, then Gini Impurity is computed as follows:

G =
C∑

j=1

p(j) ∗ (p(j)− 1) (7)

When training a Random Forest model, the best split (in each tree in the forest)

is selected by maximizing the Gini index which is the weighted Gini impurities of the

branches subtracted from the original impurity. Given that the Gini gain is cable of

fulfilling only the binary or multi class classification goal, it’s not tuned to account for a

continuous loss, e.g. duration estimation loss.

• Genetic Algorithm

Genetic algorithm is designed to search according to the natural selection and genetics
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pattern mechanisms. In terms of its application in real world problems, this algorithm is

mostly used when searching in non-linear and large spaces. Consequently, due to existence

of many possibilities in search area, the subject-matter expert knowledge or the state-of-

the-art are lacking. The idea and basis of such mechanism was first introduced by John

Holland [33] in 1988. This algorithm employs principles as basis for the search such as

chromosomes. Chromosomes are considered as a population of individual strings while

each of them represents one possible solution to the defined problem.

In the GA context, parents are utilized to generate the generations of candidate in-

dividuals in each iteration. The children produced by the parent pairs are then used in

recombination step where a crossover operator is present. Crossover includes selection of

a random split point on the individual genes and generating a child individual with the

genes up to the split point from the first individual parent and from the split point to

the end of the individual taken from the second parent. Similarly, the second child is also

inverted.

Meanwhile, a fitness value is assigned to each chromosome based on the outcome of

the fitness function. This allows the algorithm to provide more chance of reproduction to

highly fit chromosomes and the offspring share features acquired from their parents. This

approach is different from other optimization and search methods in literature based on

the following reasons [33]. This algorithm:

1. employs a function of the parameter set (resembles coding region in human DNA),

not the parameters themselves.

2. uses payoff information, not derivatives or other auxiliary knowledge. The value of

an objective function feeds back to direct a search.

3. utilizes probabilistic transition rules (not deterministic ones). Then, the sub-optimal

fitness may be achieved while the best fitness value is not always guaranteed.

4. initiates the search process using a population of points, not from just a single point

and is carried out from generation to generation until convergence is reached.

GA generally consists of three operators: 1. selection, 2. recombination and, 3.

evaluation. Assume P (gt) is the population of individuals (set of Xis) at generation t, a

simple GA will have the following structure:
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Generate Initial Random
Population P(gt) 

t = 1

Selection

t > T ?

Substitution

Crossover

Mutation

t = t+1

Start

End

Yes

No

gt

X1 , X2 , X3 , ... , Xn

X1 , X2 , X3 , ... , Xn

X1 , X2 , X3 , ... , Xn

...

Figure 21. A simple GA structure.

The fitness function evaluates the individuals (set of Xis) in each population in ev-

ery iteration (t < T ). In the selection process, individuals are selected and their genes

are passed to the next generation based on their fitness function value. The traditional

Genetic algorithm employs a selection method where the selection probabilities are pro-

portional to their corresponding fitness values. This selection method (so-called roulette

wheel selection) reassures that highly fit individuals have a higher probability of being

selected for the next step. The next step is recombination process which includes two

operators; crossover and mutation. The crossover operator randomly chooses a crossover

cite, cuts individuals into two sub-strings, and swaps the tail sub-strings to generate two

offspring individuals.
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X6 , X7 , X8 , X2 , X3 , X4 , X5 , X1

X1 , X2 , X3 , X4 , X5 , X6 , X7 , X8

X6 , X7 , X8 , X1 , X4 , X2 , X5 , X1 

Parent 1

Parent 2 Offspring

Figure 22. GA crossover example.

Mutation process modifies the value of random genes in each individual to help the algo-

rithm prevent getting stuck on a local optimal or in other words premature convergence.

X6 , X7 , X'8 , X2 , X3 , X4 , X5 , X'1

Figure 23. GA mutation example.

• GA application in RF loss function modification

– Revised Loss Function

The revised loss function aims to select the top k trees based on their CPT

prediction accuracy as well as the median duration error (of the predicted CPT

vs the actual CPT). Therefore, first define the loss terms for these two objectives

separately, and then introduce the final objective function which is used in GA

algorithm as a next step.

For each top k selected trees we first measure the CPT accuracy. Each tree

predicts the CPT and it can be compare to the actual CPT of the case and calculate

the score. The score is 0 if the prediction is wrong and 100 vice versa. For the

duration objective, the predicted CPT label by each tree has a median actual surgery

duration which can be compared to the one for the actual CPT label. Therefore, we

can calculate the duration error given the median duration differences for predicted

and actual CPTs. We also normalize the duration errors and subtract that from

1 so that the duration score can be put in the same scale as the CPT prediction

objective. Since the higher the CPT accuracy is the better the model performed, we

can describe the same behavior for 100 ∗ (1−NormalizedDurationError). Also we

find the optimal importance coefficients that leads the model to produce the best

results with not sacrificing CPT score but also improve the duration estimation.

The sweet point for predicting CPTs when focusing on duration results is 0.4 and

0.6 for CPT score and duration score, respectively. Then, simply the sum of 0.4 ∗



50

CPTAccuracyScore(0|100) + 0.6 ∗ 100 ∗ (1 − NormalizedDurationError) for all k

trees in the subset forms the final objective of GA in selecting the best set of k trees

from N total trees in RF with respect to both perspectives; CPT prediction and

duration estimation.

– GA and RF bagging

Genetic algorithm employs the revised cost function (explained in previous item)

to choose the best set of k (here k = 100) decision trees out of N (here N = 1000)

total trees that fits the CPT classification and surgery duration estimation goals.

In other words, in each iteration, the selected tree population with the best fitness

score is passed to the next steps; crossover, and mutation. Therefore, in order to

properly adopt the GA method in this use-case, we define the individuals as the

series of constructed trees in the process of training Random Forest algorithm and

obtaining the N = 1000 trees in the forest. Then, the random populations (sets of

trees each set with size of 100 trees) are drawn from the complete individual set.

The populations can be represented as set of unique binary individuals. Each binary

individual reflects the presence (gene is encoded as 1) and absence (gene is encoded

as 0) of the randomly selected trees. For crossover and mutation steps, we use the

traditional methods where as an example in mutation the value of a random gene

is modified (e.g. from 0 to 1 or vice versa); switching on / off the trees existence in

each individual of the whole population.

Collectively, as the second step in the attempt to predict CPT code with respect to

duration loss, we use GA to optimize the tree selection at the bootstrap stage of Ran-

dom Forest model given the new objective function. Similarly, [60] recommend an

enhanced decision tree algorithm for user classification in mobile application, which

employed genetic algorithm to optimize the results of the decision tree algorithm.

However, Liu et. al optimized the generated rules within decision tree splits to come

up with the best set of rules in producing the desired classification outcome. In this

study, we focus on the weak learners (trees) in Random Forest and improve the class

selection (i.e. bagging) based on the optimized objective function. Each tree in the

forest is generated through assigning a new feature in the split node and produce
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a class given the final class votes in the leave nodes. We also performed the grid

search on the parameters of GA to find the best set size (k), mutation probability

bound (MUTPB) and crossover probability bound (CXPB).

4.3 Multi-CPT Prediction

Manual CPT coding has become a huge burden in U.S. Healthcare due to surge in surgery

case volume. This effort has even led to significant error in coding (human error) which cost

hospital income loss according to [1]. Consequently, ML application in such coding practices has

recently attracted interests from efficient healthcare management and effective decision making

perspective. In this section, we develop a multi-channel deep convolutional neural network to

extract information from the surgery descriptions and other categorical and continuous features

through multiple layers and activation functions.

One simple neural network model for text and sentiment analysis employs single word-

embedding layer in the context of one-dimensional convolutional neural network (CNN) model.

A convolutional neural network consists of stacked, layered, operations. There are two types

of layers, convolutional, and spacial pooling. The convolutional layers extract feature maps by

applying several trainable filters to the input, before applying a nonlinear activation function

(e.g. relu and sigmoid) to the result. The spacial pooling layers (with pool size equal to 2)

operate in a similar fashion by applying an operation to a receptive field which is moved over the

input feature map. The operation is designed to down-sample the input so the resulting feature

map has reduced dimensions. The two layers are stacked alternatively, with the idea being that

the complexity of the features extracted increases with the depth of the network. The kernel

size in the convolutional layer defines the amount of words to consider as the convolution is

passed across the input text document, providing a grouping parameter.

The central concept of the convolutional layer is the convolution operation. Let the kernel,

w, be a k×k dimensional matrix. This kernel will operate on the output of the preceding layer,

x. The output from the convolution can be calculated as follows:

w ∗ xij =
∑
m

∑
n

wmnxi−m,j−n

Where (m,n) spans the index set of the kernel which is center originated, i.e. w0,0 is the
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center element of the kernel. The patch of x involved in the sum at each step is referred to as

the receptive field. As the operation is repeated for every index of x, the receptive field slides

across the input. The resulting output of the convolution is referred to as a feature map.

Such model has been developed with more complexity in the literature by adding multiple

parallel convolutional neural networks [49]. These networks read the input data with various

kernel sizes which effectively generates a multi-channel CNN for text layers that analyze text

data with different n-gram word combinations. The kernel size parameter in convolutional layer

represents the number of tokens to consider as the layer is passed across the input text data, in a

grouping manner. Normally, a standard model for text labeling is supported by an Embedding

layer as encoded text input, followed by a one dimensional convolutional pooling layer, and

a prediction output layer with respect to output dimension. A multi-channel convolutional

neural network for text classification integrates multiple versions of the standard model with

different sizes of kernels. This capability of CNN allows processing the text information at

several resolutions or multiple n-grams simultaneously, while the final model learns how to best

integrate these interpretations.

• Model Architecture

– Pre-trained Biomedical Embedding

In any ML modeling, textual data needs to be encoded in the form of vectors. The

initial step is fitting a Keras Tokenizer [3, 76] on the the cleaned surgery descrip-

tions of the trainig dataset. We will use this tokenizer to both define the medical

vocabulary for the embedding layer and encode the descriptions as numerical val-

ues. We pad all surgery description records (as sequences) to the fixed length by

taking the maximum length of input sequences. For the embedding layers, we also

need to extract the size of the vocabulary. In this thesis, we employ pre-trained

biomedical embeddings,: 1. BioNLP with 200-dimensional word vectors trained on

PubMed with 2.89B tokens using word2vec embedding method, and 2. FastText

with 200-dimensional word embeddings trained on PubMed and MIMIC-III.

Word2vec is a well-established word embedding method, referred as a predictive

model learns word embeddings by predicting the words based on their context [64].

Two main techniques exist for word2vec; CBOW and skip gram. Continuous bag
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of words (known as CBOW) calculates the word conditional probability as target

given the combination of words around it while, skip gram predicts the surrounding

context words by setting the target. Both approaches can be conceptualised as a

shallow NN. In skip-gram method, the target word is entered as the input layer while

the surrounding context tokens are in the output layer. Generally, both the target

word and it’s relative context are employed in encoding a vector representation of

the word.

FastText is another word embedding method that has been used in this research

[11]. It is a Word2vec extension where words are represented by a set of n-grams

characters within them. Likewise, it has both skip gram and CBOW models. The

benefit of using character n-grams of words is that it allows the embeddings to

learn vectors in morphological tasks as well as extracting information in case of

unstructured text. With respect to unstructured text, it allows to learn the words

that may not exist in the embeddings (e.g. typos) while it’s similar form exists.

Such n-gram embeddings can be utilized to compute a vector corresponding to the

n-grams of an out-of-dictionary token, essentially due to its built-in mechanism of

character n-grams.

– Define Model

Such deep NN structure was first introduced by [49]. Kim demonstrated static

and dynamic embeddings, however this research simplifies the method and focuses

on the importance of various kernel sizes in the proposed embedding layers. This

section explains architecture of our multi-channel NN model which is demonstrated

in Figure 18. This network has three input channels with different n-grams, such

as 2-grams, 3-grams, and 6-grams in word embeddings of various sources (PudMed,

and FastText) for processing text information. We also incorporated additional

categorical and continuous features as input layers. Each channel consists of these

components:

∗ Input layers for the surgery description text data (captures text sequence lengths);

∗ Embedding layers to encode the text using embedding methods and sources

discussed above (captures the vocabulary size and vector of k-dimensional word
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representations; here 200);

∗ Input layers for other categorical and continuous features (age, case type, sched-

uled duration, and etc.);

∗ Single-dimensional convolution layer with 32 filters, and kernel size as the num-

ber of words to pass simultaneously;

∗ Dropout layers to prevent NN model from overfitting. We perform grid search

to discover the best dropout probability for this model and our dataset, as well

as how sensitive it is to the dropout rate since the more sensitive a model is, the

more unstable results we may expect which implies that it very well can benefit

from increasing the data size;

∗ Max-pooling layers for consolidating the output from convolution layers;

∗ Flatten layer to reduce the multi-dimensional output layer to support the num-

ber of dimensions defined with respect to multi-CPT prediction work stream;

∗ Concatenate layers for concatenating the text and other features in each channel,

and merging three channels and use it in the output layer;

∗ Dense layers to process output with respect to the output shape, the output

layers from 3 channels are merged into one final dense layer;

As a result of running the presented multi-channel CNN, the summery of the model

architecture and network are presented in Figure 24, and Table 9.
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Figure 24. Multi-channel CNN model architecture.

As indicated above, we have defined 3 embedding layers for each convolution chan-

nel. First embedding layer uses the tensorflow pre-trained embedding [2], second em-

bedding layer embedding employs weights from a pre-trained PubMed word2vec em-

bedding matrix with holding the embedding matrix constant during training (train-

able parameter is set to False) or technically freezing the layer, and the last layer

utilizes Fasttext embedding matrix while it keeps changing the trainable weights

during fit training or in the custom loop which depends on embedding weights to

apply gradient updates.
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Layer (type) Output Shape Param # Connected to 
Ch2_Text (InputLayer) (None, 222) 0  

Ch3_Text (InputLayer) (None, 222) 0  
Ch2_Embedding_FastText 
(Embedding) 

(None, 222, 200) 98600 Ch2_Text 

Ch3_Embedding_PubMed_Trainable 
(Embedding) 

(None, 222, 200) 98600 Ch3_Text 

Ch1_Text (InputLayer) (None, 222) 0  

Ch2_CL_KS_3 (Conv1D) (None, 220, 32) 19232 Ch2_Embedding_FastText 
Ch3_CL_KS_6 (Conv1D) 

 
(None, 217, 32) 38432 Ch3_Embedding_PubMed_Trainable 

Ch1_Embedding_PubMed 
(Embedding) 
 

(None, 222, 400) 197200 Ch1_Text 

Ch2_Dropout (Dropout) (None, 220, 32) 0 Ch2_CL_KS_3 
Ch3_Dropout (Dropout) (None, 217, 32) 0 Ch3_CL_KS_6 
Ch1_CL_KS_2 (Conv1D) (None, 221, 32) 25632 Ch1_Embedding_PubMed 
Ch2_Pooling_2 (MaxPooling1D) (None, 110, 32) 0 Ch2_Dropout 
Ch3_Pooling_2 (MaxPooling1D) (None, 108, 32) 0 Ch3_Dropout 
Ch1_Flatten (Flatten) (None, 7072) 0 Ch1_CL_KS_2 
Ch1_Features (InputLayer) (None, 5)   
Ch2_Flatten (Flatten) 
 

(None, 3520) 0 Ch2_Pooling_2 

Ch2_Features (InputLayer) 
 

(None, 5) 0  

Ch3_Flatten (Flatten) (None, 3456)  Ch3_Pooling_2 
Ch3_Features (InputLayer) 
 

(None, 5) 0  

Ch1_Concat (Concatenate) (None, 7077) 0 Ch1_Flatten, Ch1_Features 
Ch2_Concat (Concatenate) (None, 3525)  Ch2_Flatten , Ch2_Features 
Ch3_Concat (Concatenate) (None, 3461) 0 Ch3_Flatten, Ch3_Features 

Merge_Ch1_Ch2_Ch3 (Concatenate) (None, 14063) 0 
Ch3_Concat, Ch2_Concat, 
Ch1_Concat 

Dense_output_128_relu (Dense) (None, 128) 1800192 Merge_Ch1_Ch2_Ch3 
Dense_output_39_sigmoid (Dense) (None, 39) 5031 Dense_output_128_relu 
Total params: 2,282,919 
Trainable params: 2,184,319 
Non-trainable params: 98,600 

 

Table 9. Multi-channel CNN model summary.

4.4 Evaluation Metric

An important step towards building a model is defining how we measure its performance.

Implicitly, this is done through the construction of a Loss function. The models we examine

in single CPT prediction section do not employ novel loss functions, so delving into their con-

struction is not warranted. The metrics used when measuring the performance of classification

models (with multi-label, single-class output), specifically, predicion, recall, and accuracy are

however of interest.

• Precision, Recall, & Accuracy

The precision and recall of the CPT prediction model refers to its ability to correctly

label the surgery cases within each specialty data. The accuracy is the ratio of corrected

predicted CPTs over the total number of data points. Before we can define these mea-
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surements in multi-label single class classification problem, we must first introduce the

following quantities:

True Positive (TP): Number of primary CPTs correctly labelled.

False Positive (FP): Number of incorrect primary PT predictions.

True Negative (TN): Correct non-prediction, not usually relevant.

False Negative (FN): Number of objects missed by model.

Precision measures the accuracy of the model, i.e. how many of the predictions are

correct while recall is how many of the surgical cases the model correctly labels. These

two metrics are the basis for how both text mining (as described in the first section)

and classification (binary or multi label) problems are evaluated. They are computed by

substituting the above quantities in formulas (7), (9), and (8).

Precision =
TP

TP + FP
(8)

Recall =
TP

TP + FN
(9)

Accuracy =
TP

TP + FP + FN
(10)

In the case of multi-CPT prediction as a multi-label classification problem, we first calculate

the subset accuracy. The subset accuracy is 1 if the full set of predicted CPTs for a surgery

case matches with the true set of CPT labels (primary and secondary CPTs). In addition, we

assigned accuracy 0.5 if one of the predicted CPTs, either primary or secondary) exist in the

true CPT label set.
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4.5 CPT Prediction Results

4.5.1 CPT and Duration Prediction Results

As stated in the previous chapter, the dataset consists of both categorical and continuous

features with nearly 10000 data rows. The CPT codes describe the details of procedure and is

considered as target in this step. The surgery durations (either scheduled or actual) varies based

on the procedure tasks summarized as CPTs. Figure 25 shows the distribution of 20 top frequent

CPT codes (noted as significant labels) within each specialty dataset. The average scheduled

durations of these CPT codes are also demonstrated in the heatmap plot. For instance, in

Cardio dataset CPTs "76376" and "93320" are surgery codes with highest average scheduled

durations.

Figure 25. Most frequent CPTs distribution and average durations per specialty.

The general framework of this research includes the following phases: CPT classification

and duration estimation. In the interest of performance evaluation, the classification models

are evaluated by the accuracy score which is a popular metric for reporting the performance

rate. We also report the models’ performance by precision and recall.

4.5.2 Primary CPT prediction

We have tested the performance of several multi-class classification methods for each spe-

cialty. Random forest modeling approach has been observed as the superior method and thus

has been has been fitted on each specialty data; the performance is reported in Table. 10.

The specialty "Other" can be decomposed into more specific specialty types (e.g. ENT, Or-
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thopedics, and so on) as more future observations of the same discipline are added to the data

set. We also compare the performance of original RF model and RF + CWR extension (our

method) with the state-of-the-art Neural Network model (see Table. 10).
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Table 10. CPT prediction accuracy measures under different filter combinations and accuracy
calculation approaches for each specialty.

The variations of analyzing the accuracy are defined in Table 4. These settings are orig-

inally generated from predominant elements: data filtering approaches as F1, and F2, or the
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performance improvement settings as F3 (provides either 1st or [1st, 2nd] highest weight CPT)

or the comparison baselines as CPT of RV Umax, and [CPT] (provides all possible CPT codes

in CPT list). These filters are defined to better understand the nature of data and prediction

schemes with respect to the weighting approach. Each closed break line in radar graph in Fig.

20 is showing the accuracy variations of each specialty data under different filters and settings.

Moreover, the text mining approach improves the CPT prediction performance and hence the

surgery durations significantly (discussed in the next chapter). The average accuracy of CPT

prediction models, XGB and RF, are represented in Table 11 with and without the transformed

text features in the feature set.
 

Average Accuracy (%) C ������������ �� �� ������[���] �� �� ������,������� �� �� ������,�[���] �� �� 

w Text Mining 
RF 51.6 75.4 76.6 81.6 83.2 

XGB 52 73.6 74.1 79.4 81.8 

w/o Text Mining 
RF 22.1 34.5 35.6 39.2 40.9 

XGB 25.7 33.1 33.9 37.1 38.7 

Table 11. Plot of average CPT prediction accuracy under optimal settings for XGB and RF
models.

To better demonstrate the performance of our prediction model, we compute the weighted

average precision and recall. Knowing that the CPT dataset is unbalanced and includes at least

800 unique CPTs, precision and recall metrics are weighted in each specialty dataset. Therefore,

we calculate the overall precision and recall given the specialty-specific performance measures

and weight them based on the sizes of each dataset. The total weighted average recall and

precision for the Neural Net model (as state-of-the-art model) are 0.22 and 0.23 while for the

presented model (CWR) are 0.52 and 0.45, respectively. These results are reported based on the

CPT predictions which are drawn from complete data (C), and the model predicts the primary

CPT (accuracy@2). The true label is chosen based on maximum RVU score. Given that F2 is

defined as one of the substantial filters, we report the precision and recall of CWR and NN while

this filtering method is present. With respect to F2 filter, the recall and precision of NN are

0.26 and 0.28 and for CWR are 0.64 and 0.62 which are close to their corresponding accuracy

scores depicted in Table 11. While the highest accuracy (84%) is reported as accuracy@2 when

compared with CPTset and presence of F1 and F2 methods, the recall and precision are also

calculated as 0.86, and 0.85, respectively.
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4.5.3 Multi-CPT Prediction

We ran the deep multi-channel model with the full CPT dataset while filtering out those

cases with CPT frequencies less than 8. After filtering the rare CPT cases, we are left with

738 surgery cases with 2 CPT labels and 6946 surgery cases with single CPT label. For each

surgery in multi CPT data, we consider 0.8 reward if the primary CPT, and 0.2 if the secondary

CPT are predicted accurately. Hence, for each case if both primary and secondary CPTs are

correctly predicted then the score will be 1. The accuracy, weighted precision, and recall (based

on the CPT counts in the dataset) of multi CPT data are 0.7, 0.69, and 0.61, respectively. The

accuracy breakdown for each specialty, namely Cardio, General, OBGYN, Urology, and Other

is as follows: 0.77, 0.75, 0.64, 0.72, and 0.54. We also predicted for single CPT cases using the

same multi-channel structure and the accuracy, weighted precision, and recall are 0.45, 0.41,

and 0.36. The multi-channel model performs worse than the presented CWR model for primary

CPTs, however it performs better than the NN model in previous section. We think that if

more multi CPT surgery cases are added to the dataset (with frequent CPT occurrences),

the multi-channel model can perform better since such models have many parameters to learn

which highlights the need for a well-representative dataset.



63

5 Surgery Duration Prediction

The ultimate goal of this chapter is predicting / estimating the surgery procedure durations.

The duration prediction analysis is performed in two ways: directly from input data using a

regression model and indirectly from the classified CPT codes using statistical sampling. In

indirect method, we calculate the distribution characteristics of surgery durations given the

actual durations of surgery cases for each CPT code. The CPT codes are produced by the

presented methods for primary CPT prediction. Direct and indirect approaches are described

in greater detail below. We further evaluate the performance of these models in the "results"

chapter.

5.1 Direct Method

The first approach focuses on prediction of the point-estimate surgery durations given the

set of correlated features by state-of-the-art regression models such as Decision Tree Regression

(DTR), Multiple Linear Regression (MLR), Random Forest (RF), Support Vector Regression

(SVR), and Multilayer Perceptron (MLP). The feature set employed in these models include

the numerical transition of text feature (surgery descriptions), surgeon, specialty, case type,

and patient age. The purpose of running ML models is to create a comparable baseline which

we can report the current state accuracy in duration prediction if the commercial models are

to be used.We found that the aforementioned models are widely used in literature to predict

continuous variable such as duration, or in similar efforts [92]. Below we briefly explain the

mechanism of each machine learning model.

• Decision Tree Regression (DTR) & Random Forest Regression (RFR)

Decision tree models are known as the most popular machine learning methods [19] in

many classification applications due to their simplicity and intelligibility. While a wide

range of such methods application can be found under classification problems, DTR-like

analysis is when the predicted target (y) is a continuous variable (y ∈ R). One of the key

elements in decision tree regression models is variance reduction, V R, of a split decision

at node N in each tree due to existence of continuous variable as the target. It aims to

reduce the total variance of the continuous target variable y as a result of the split at

node N .

Random Forest regression model (known as ensemble method) construct more than
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one decision tree to make the predictions by re-sampling training data with replacement,

repeatedly. The nonlinear nature of RF model outperforms other linear algorithms in

many applications. However, it is also important to know the data structure and the

major limitation of this model; that Random Forest can’t extrapolate. It predicts the

continuous target within the average of the labels in the training data. In this sense, RF

algorithm is quite similar to K-Nearest Neighbor algorithm. In other words, the range of

predictions that the Random Forest model produce is bound by the highest and lowest

continuous target in the data. This behavior becomes problematic when the training

inputs and target labels differ way greater than their distribution metrics (e.g. outside

of variance limits from the average). This issue, so-called co-variate shift, is a limitation

in most of the machine learning models especially in Random Forest, due to lack of

extrapolation.

• Multiple Linear Regression (MLR)

The goal of multiple linear regression models (MLR) is to find the closest expected

function (ŷ) that best explains the linear relationship between the independent variables

(Xi) and response target given the training dataset. Due to having more than a single

predictor (i > 1), we applied MLR which is an extension of ordinary least-squares regres-

sion. Generally, the assumptions of this model are homoscedasticity and independence of

independent variables.

• Support Vector Regression (SVR)

Support Vector Regression model provides the flexibility to define the extend of the

residual that should be considered as the model error and find the fitted line or hyperplane

accordingly. Despite the MLR regression, SVR objective function is to minimize the

coefficients or l2-norm of the coefficient vector instead of squared error. Ultimately, the

SVR error (ϵ) is controlled through the model’s constraints. In the constraints, we can

choose the desired lower limit (margin) for the absolute error (so-called the maximum

error). The model can be tuned using the margin values as the most important hyper

parameter to achieve the best accuracy.

• Multilayer Perceptron (MLP)

MLP, as one important form of Neural Network models, optimizes the squared loss
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using iterative methods as SGD, LBFGS, or ADAM [50]. MLP is trained using back-

propagation [80] method; an extension of gradient descent in which the gradients are

computed using back-propagation with no activation function (equivalent to identity func-

tion) in the final output layer, hence the loss function is simply squared error. Also, a

regularization term can be added to the cost function which may shrink parameters in

the model to avoid over-fitting.

While each method predicts the point estimate duration as continuous variable for each

surgery case, we need to make sure that the reported durations are in a form of distribution.

This is because the output of indirect method (described in the next subsection) is the duration

distribution parameters (mean and variance) for the predicted CPTs of surgical cases. There-

fore, the distribution characteristics of point estimate duration predictions are calculated by

simply sampling based on the actual CPT code assuming that the correct CPT code is known

which presents a best case scenario for predicting duration distributions. This assumption also

highlights the importance of CPT study as the CPT codes are eventually unknown prior to

surgeries.

5.2 Indirect Method

The indirect approach describes the procedure of predicting surgery durations with respect

to an intermediate step; the CPT prediction method (described in previous step). Conse-

quently, given the predicted CPT codes we can obtain the duration distribution parameters

such as mean and variance for each data record in surgery schedule. Given that the study

predicts primary CPT is the first place and then predict the secondary CPT, we can compute

the durations using both steps’ output, single and multiple CPT predictions, and compare

against the direct method. Moreover, we calculate duration distribution specifications using

the revised RF classification with respect to the new cost function as another alternative in our

comparison scheme. The duration estimation alternatives utilized in our comparison engine are

demonstrated in the table below (Table 12s).
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Method Model Assumption Input Output

Indirect

RF + CWR
Cleaned surgical descriptions

transformed to vector (TFIDF)
Initial Feature Set

Primary CPT Code

fd
CWR(µ1, V1)

RF + Revised Loss
Cleaned surgical descriptions

transformed to vector (TFIDF)
Initial Feature Set

Primary CPT Code

fd
RFL

(µ3, V3)

Direct

DTR Cleaned surgical descriptions

transformed to vector (TFIDF)

Actual CPT code is known

Initial Feature Set fd
DTR(µ4, V4)

RFR Initial Feature Set fd
RFR(µ5, V5)

MLR Initial Feature Set fd
MLR(µ6, V6)

SVR Initial Feature Set fd
SV R(µ7, V7)

Table 12. Actual duration distribution estimation using different proposed alternatives.

In Table 12, the initial feature set (described in the Classification section) includes surgeon

ID, patient’s age, case type, and text information. Also, the assumption column describes

the method used for employing text information in each model in addition to the assumption

of actual CPT existence in the distribution estimation step. Moreover, the output column

represents the outcome of each model; actual surgery duration distribution paired with CPT

code(s) (for the models in the indirect method).

5.3 Evaluation Metrics

Mean squared error (MSE), mean absolute error (MAE), duration standard error (SE),

and adjusted R-squared or coefficient of determination are computed to evaluate and compare

the regression model performances. The standard error of duration estimations represents the

standard deviation of the absolute difference between actual duration and predicted values.

The Mean absolute error represents the average of the absolute difference between the actual

and predicted values in the dataset. It measures the average of the residuals in the dataset.

The adjusted R-squared is used to compare the goodness-of-fit for models which include various

numbers of independent variables. The reason is that R-squared increases when more variables

are added to the regression model. As a matter of fact, R-squared never declines even if there

is a chance correlation among the added independent variables. A model which includes more

variables than another regression model may appear as it fits better solely due to existence of

more independent variables. Mathematically, R-squared is computed as following while y is the

actual duration, ŷ is the predicted duration, and ȳ is the average duration for i observations in
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range of {1,...,N}:

R2 = 1−
∑N

i=1(yi − ŷi)∑N
i=1(yi − ȳi)

= 1− SSe

SST

(11)

The adjusted R-squared measures the proportion of variation explained by only those highly

correlated independent variables which contribute in explaining the target variable and it penal-

izes the performance for including independent variable that are loosely contributes to predict-

ing the dependent variable. We calculate this measure in our analysis due to having different

number of features in the specialty dataset. The adjusted R-squared formula is:

R̄2 = 1−
SSe

dfe
SST

dfT

(12)

In equation (12), dfT is the total degrees of freedom or n− 1 in the estimate of population

variance of the target (y), and dfe is the error degrees of freedom or n− p− 1 in the estimate

of underlying population error variance. Then, adjusted R-squared is computed given the

R-squared, number of predictors (p), and total sample size (N):

R̄2 = 1− (1−R2)(N − 1)

N − p− 1
(13)
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5.4 Duration Estimation Results

We have compared the performance of our duration prediction models (indirect methods)

against the state-of-the-art models (direct methods). The indirect approach includes two meth-

ods ; 1. two-step CPT classification (RF and CWR), and 2. CPT classification using the revised

loss function in RF algorithm. After predicting the surgery CPT code, we estimate the surgery

case duration distribution using empirical data. The duration errors are analyzed for each

CPT using performance metrics such as adjusted R-squared (equation 12), mean squared er-

ror or MSE, standard error or SE, and mean absolute error or MAE. Moreover, 2-sample

Kolmogorov-Smirnov test [63] is deployed for assessing the duration distributions (output of

direct method for duration prediction). In Tables 13, the performance metrics are presented

based on two perspectives; 1. CPT known, and 2. CPT unknown. Below we include more

explanation of what the values in this table represent under these two cases.

The results set in the first column set of Table 13, "CPT known" is considered as an

assumption for replicating the reality of processes in OR department of a hospital where the

actual CPT code is unknown prior to the surgery is performed. Hence, the duration estimation

can vary when the CPT is unknown. The reason is that the CPT codes highly tie to the

procedure details and standard durations from historical pattern. Then, if the CPT codes are

known for surgery cases pre-surgery, the surgery duration distribution and its key characteristics

such as mean, median, and standard deviation can be used to guide the scheduler in correctly

initiating the estimation of surgery durations. Given the distribution of actual durations based

on CPT codes, the scheduler can provide more accurate duration estimations. This entitles

the necessity of predicting the CPT (CPT classification study contribution) and estimating the

duration distribution based on the classification results.

For calculating the error estimates shown in Table 13, we use two approaches described

in equations (14)-(16). In these equations, we use different estimated surgery durations to

show the performance we can obtain with employing either the hospital system (equation

14 which indicates the current state) or traditional machine learning models [18, 44, 58, 70]

(equation 15 when CPT is unknown). In equation 15, the errors of state-of-the-art models (SVR,

DTR, RFR, and MLP) are calculated based on actual duration data points (ActualDurationi

which is also indicated as the target variables (see table 5)) and the predicted actual durations
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(Pred(ActualDurationi)) for each surgery case (i). On the other hand, we calculate some

performance measures by bringing the "CPT known" assumption for the same baseline models

to introduce an upper bound or a perfect scenario where accurate CPT codes are always known

pre-surgery. These upper bound performances are computed based on the error terms from

equation (16) for state-of-the-art models and equation (17) for hospital system.

epi,pi = |ScheduledDurationi − ActualDurationi| (14)

epi,pi = |ActualDurationi − Pred(ActualDurationi)| (15)

edi,di = |AvgActualCPT (ActualDuration) − AvgPredCPT (ActualDuration)| (16)

edi,di = |AvgActualCPT (ScheduledDuration) − AvgActualCPT (ActualDuration)| (17)

More precisely, under "CPT unknown" in Table 13, we reproduce the performance of state-

of-the-art models and hospital surgical unit given the actual surgery duration of each surgery

case. The hospital surgery unit performance is named as "Scha-Acta" and is based on the sched-

uled duration (ScheduledDurationi) and actual duration (ActualDurationi) of each surgery

case (i). The error term for presented models under "CPT unknown" columns however, follow

the equation (16) where the CPT is first predicted using two developed approaches and then

surgery duration distributions are estimated. In equation (16) AvgActualCPT (ActualDuration) repre-

sents the average duration of actual CPT’s actual durations and likewise, AvgPredCPT (ActualDuration)

represents the average duration of predicted CPT’s actual durations in the training dataset.

Therefore, if the predicted CPT matches the actual CPT the error will be zero. This implies

that the accuracy of CPT prediction comes first when trying to predict the durations. We

developed CWR model to improve the Random Forest classification in terms of CPT accuracy;

however, in order to improve the duration estimation further we developed Random Forest

classification with revised loss which contributes to produce even better durations. As duration

results in Table 13 and CPT prediction accuracy in Table 10 suggest, the presented models are

capable of not only producing reliable CPT but also a more credible and explainable duration
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estimation per case. This enables the hospital to calculate the duration distribution from actual

durations in historical data by filtering the CPTs.

CPT Known CPT Unknown

Adj R-squared (%) MSE (min) MAE (min) RMSE (min) e_STD (min) Adj R-squared (%) MSE (min) MAE (min) RMSE (min) e_STD (min)

SVR 78 894 15 30 26 36 3627 38 60 47

DTR 72 1074 23 33 24 40 3207 37 57 43

RFR 88 541 13 23 19 49 2801 29 53 42

MLP 88 505 12 22 19 53 2647 34 51 39

Scha-Acta 88 528 13 23 20 51 2708 34 52 40

RF 59 2473 21 50 44

RF + CWR 61 2027 15 44 42

Cardio

RF + Revised Loss 68 1551 12 39 37

SVR 65 332 10 18 16 22 1481 25 38 29

DTR 58 468 14 22 17 22 1484 25 39 30

RFR 71 259 7 16 14 30 1323 18 36 27

MLP 71 260 8 16 15 34 1270 25 36 26

Scha-Acta 67 300 9 17 15 28 1398 25 37 28

RF 51 664 10 26 22

RF + CWR 56 576 8 24 22

General

RF + Revised Loss 57 518 8 22 20

SVR 89 278 9 17 14 53 1906 28 44 34

DTR 84 517 16 23 17 51 1940 28 44 33

RFR 93 219 8 15 13 60 1602 21 40 32

MLP 92 226 8 15 13 58 1717 27 41 31

Scha-Acta 90 241 9 16 13 52 1927 28 44 34

RF 66 1304 15 36 34

RF + CWR 70 1197 13 35 30

OBGYN

RF + Revised Loss 70 1175 13 34 30

SVR 84 166 7 13 11 62 762 18 28 22

DTR 80 306 12 17 13 60 797 19 28 22

RFR 85 109 6 10 9 68 663 13 26 20

MLP 86 103 6 10 9 69 632 18 25 19

Scha-Acta 84 136 8 12 9 67 699 18 26 19

RF 79 478 9 22 19

RF + CWR 80 303 8 17 15

Urology

RF + Revised Loss 81 286 7 17 14

SVR 50 650 15 25 21 29 1944 28 44 34

DTR 48 794 19 28 22 18 2417 30 49 39

RFR 53 597 14 24 20 23 2101 27 46 35

MLP 59 495 14 22 18 35 1757 28 42 32

Scha-Acta 53 595 15 24 19 31 1887 28 43 33

RF 36 1711 23 41 33

RF + CWR 47 935 15 30 26

Other

RF + Revised Loss 49 801 14 28 24

Table 13. Duration estimation performance in different specialty datasets (point estimates
vs duration distributions) for CPT known assumption and when the CPT is unknown and
predicted in our presented models.

Moreover, the duration distribution characteristics of top 5 CPT codes (with respect to

frequency) are represented in terms of mean, median, and standard deviation for 5 specialties

in Figures 26-30. We have compared the distribution statistics of presented models against the

best performing traditional regression model; Random Forest Regression.
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Figure 26. Model comparison: plot of mean, median and standard deviation of actual durations
for top 5 CPTs in Cardio specialty.
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Figure 27. Model comparison: plot of mean, median and standard deviation of actual durations
for top 5 CPTs in General specialty.
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Figure 28. Model comparison: plot of mean, median and standard deviation of actual durations
for top 5 CPTs in OBGYN specialty.
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Figure 29. Model comparison: plot of mean, median and standard deviation of actual durations
for top 5 CPTs in Urology specialty.
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Figure 30. Model comparison: plot of mean, median and standard deviation of actual durations
for top 5 CPTs in Other specialty.

In Figures 26-30, we plot the duration distribution characteristics for CPT codes with

highest number of label occurrences in each specialty dataset. These CPTs are known as the

most significant CPTs in each specialty. While some of other CPT labels partially share same

procedure information with significant CPTs, minor procedure variations appear in one or more

additional tasks given specific circumstances such as patient age, urgent diagnostic matters at

the time of surgery, etc. In sub-figures (a) (on the left hand side of Figures), the height of the

bar reflect the average duration for our models and average scheduled and actual duration of

actual CPT labels, while they show the median durations in sub-figures (b) for the same set of

models.

By reviewing and comparing the sub-figures (median and mean durations) of CWR and GA

models (green and blue bars), we observe that when the predicted mean and median durations

deviates considerably, the median plot suggests more precise estimates with respect to the

median actual duration bar (red bar) which indicates the model target. Then, the distribution

recommendation can vary given how wide the standard deviation is in the results of our models.
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The wider the predicted duration standard deviation is the more likely the median would be a

closer match to the actual duration median. This is due to the existence of outliers in predictions

based on CPTs which may through the average off and skew it. In Figures 31-33, we extract

some examples from Figures 26-30 to illustrate and analyze such behaviors more precisely.

(a) Mean Duration (b) Median Duration

Figure 31. Model comparison: plot of mean, median and standard deviation of actual durations
for the CPT durations with wide standard deviation in OBGYN specialty.

(a) Mean Duration (b) Median Duration

Figure 32. Model comparison: plot of mean, median and standard deviation of actual durations
for top 5 CPTs in Other specialty.

(a) Mean Duration (b) Median Duration

Figure 33. Model comparison: plot of mean, median and standard deviation of actual durations
for top 5 CPTs in Other specialty.

In Figure 31, CPTs "58571" and "58662" in OBGYN specialty have relatively wide duration
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prediction standard error. The average actual durations for CPTs predicted with "RF + CWR"

and "RF + GA" models for "58571" and "58662" (as actual CPT labels in the models) are 183.9

and 185.2 minutes respectively, while the average actual duration for these CPTs are 186.6 and

131 minutes. Although, the average durations show that "RF + GA" approach outperform all

other models including hospital’s system performance, in median bar plot the median actual

durations of predicted CPTs provide more promising duration estimates than average points.

These phenomena are noticeable for other specialties such as General and Other; see Figures

32 and 33.

Lastly, K-S test (2 samples) is built upon two samples of durations: 1. The average actual

duration of actual and predicted CPTs, and 2. The average scheduled duration of actual

and predicted CPTs. The results show that, on average, 87% of the predicted and scheduled

distributions of two samples are drawn from the same distribution.

To conclude, the presented two-step prediction methods (CWR or Revised Loss) are consid-

ered to produce more reliable results over the traditional (direct) methods. Providing a large

feature set traditional machine learning models brings high complexity to the learning process.

Therefore, the presented models reduce the duration prediction complexity by predicting the

CPT labels first. Also, given that the surgeries are coded (CPT code) based on what sub-

procedures are performed in the surgery room, the results of CPT-based duration estimation

models are more explainable and reliable. In other words, the distribution information through

CPTs from indirect methods (over the point estimate based direct method) can be explained

easily to the model users through the historical data and also introduce more reliable results

for scheduling purposes.
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6 Conclusion
6.1 Text Mining: Misspelling Correction and Abbreviation Detection in Health-

care

In the first step of this research, an unsupervised text mining algorithm, Hierarchical Ag-

glomerative Clustering (HAC), combined with the most proper distance measure, Levenshtein

distance (LD), and NLP methods have been proposed to correct the typos and detect abbrevia-

tions of the medical terms in the problem of free-text noisy surgery descriptions. The proposed

approach permits finer data acquisition in an automated fashion. The primary application of

this automated, robust, and yet highly reliable approach is improving unique word searching

and highlighting in medical context to help the user ot quickly focus on retrieved important text

information for further statistical analysis. In the process flow of this analysis, the Levenshtein

distance matrix is furthered empowered with a capability to improve the distance of the pairs

of surgical terms e.g. surgical terms and abbreviations, and surgical terms and typos.

The application of HAC method needs a rigid method of cutting at the right level of den-

drogram to extract the most accurate clusters. Thus, the cluster weight metric is developed to

heuristically find the best level of dendrogram given the related medical text and dendrogram

characteristics. The cluster results produced by HAC, proposed LD, and cluster weight met-

ric represent the sub-optimal cluster outcomes with respect to performance metrics. Hence,

Heuristic clustering of HAC (HCHAC) approach is developed to find some clusters with false

negatives members. The overall purpose of this phase is to provide an indicative representa-

tion of pruned and corrected text for next step research schema, CPT prediction and duration

estimation.

In text mining area, the potential extension of the current method can be including co-

existence features to improve both clustering results and CPT prediction. The combination

of terms’ occurrences in the surgery procedure descriptions can be a helpful factor in estab-

lishment of the CPT prediction model. It can also be experimented that the weight assigned

to the distance between terms and their abbreviation forms changes at each iteration of the

Hierarchical model in order to reduce the sparse clusters in the clustering results. Furthermore,

the future upgrades of this research may offer a recommendation tool for text entries of the

hospitals to reduce the noise in text entered by users in future surgical procedures.
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6.2 Prediction: Surgery CPT Code Prediction, single and multiple CPT(s)

In this step of the research, the focus is utilizing and developing machine learning models

/ algorithms to classify surgery cases by primary or primary and auxiliary CPT codes. The

dedication to improving medical text clusters in previous step help us apply what we’ve learned

from text similarities to enhance the classification flow of CPT codes where we introduced the

Class Weight Recalculation (CWR) algorithm. In our CPT classification analysis, while we

have obtained encouraging primary CPT prediction accuracy results from Random Forest and

CWR algorithm, the duration estimation performance with respect to mean duration prediction

has not been as strong, especially when compared with those mean durations in direct method

or OR scheduling system of the hospital.

Also, we observe high variations in CPT prediction and consequently mean durations in the

distribution of many CPT cases. Although, the intermediate goal of CPT code(s) prediction

is the classification accuracy, the ultimate goal is to utilize these code(s) predictions in charac-

terizing duration distributions. Hence, in our proposed Random Forest model we incorporate

duration mistmatch cost sensitivity to the CPT prediction (Objectives 2b and 3a). In other

words, the Random Forest classification model utilized in this study is re-purposed to account

for both duration loss (absolute error of duration prediction) and CPT classification loss (Gini

index at each tree node) with coefficients that work as weight of each perspective. Whereas this

reduced the CPT prediction accuracy, we observed that the cost sensitivity term with a proper

choice of weight parameter can in fact improve the duration performance of the predicted CPT

code(s) without much sacrifice from the classification accuracy.

In another stream of this research, the goal is predicting primary CPT and auxiliary CPT

codes which represent the procedures in a surgery case collectively (rather than predicting

only primary CPT). Predicting secondary CPTs in addition to primary CPTs provide more

precise and helpful guidelines for operations planning. This also has the potential to improve

the precision of surgery duration estimation where the second CPT contributes to durations

considerably and is replicated through data points so the model can differentiate the code as

primary and secondary more clearly. To achieve these goals, we proposed a deep neural multi

channel model by employing the embedding layers for the text information and additional layers

for bringing in the categorical features. We predict at 2 dominant CPT labels for each surgery
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using this approach; primary and secondary. The order of CPT codes are determined by the

probabilites of the output matrix and RVU importance criteria.

6.3 Surgery Duration Distribution Estimation

In this part of the remaining research, we evaluate the value of integrated CPT prediction

and surgery duration prediction in improving the surgery duration objectives over the classical

two-step approach. Towards this aim, we perform the following analysis:

1. RF + CWR: Surgery duration distribution prediction using the primary CPT prediction

where CWR method is used on top of RF predicted class probabilities to relearn the

selective CPT code for each surgery case by focusing more on procedure text information.

2. RF + Revised Loss using GA: Surgery duration distribution prediction using the

primary CPTs from RF model trees and optimize the selective subset of trees based on

an objective function. The objective function takes into account both CPT prediction

and duration estimation loss with respect to the optimized balancing coefficients.

3. Multi Channel: Predicting surgery durations using the primary and secondary CPTs

predicted by multi-channel deep neural network model.

We then compare the performance of the proposed models to the preformance of the state-

of-the-art regression models and the scheduling system of the hospital. The results show that

the proposed models produce more reliable surgery duration distributions.
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APPENDIX

Additional Surgery Duration Information
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Figure 34. Actual and scheduled duration plots for significant CPTs in specialty datasets.
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Figure 35. Duration percentile of average predicted and actual durations in all specialties.



82

(a) Actual and scheduled durations in all specialties.

(b) Actual and scheduled surgery durations greater than 150 minutes in all specialties.

Figure 36. Kernel Density Estimate plot using Gaussian kernels to estimate and show the
probability density function (PDF) of both actual and scheduled durations.
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Figure 37. Heatmap of of average actual surgery duration per procedure start hour of surgeries
(0-24) and CPT codes.



84

 

C
P
T

 C
od

e 

Start Hour 

Figure 38. Heatmap of of average actual surgery duration specialty (pre-aggregation in terms
of other) and CPT codes.
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Recently, health care related studies are being widely conducted by researchers using unique

and efficient techniques to increase system profitability, quality of care, and patient satisfaction.

Surgery department is considered as the hospital’s engine, and cost of surgical services has a

huge impact on the overall profitability of the hospital. This thesis proposes novel approaches

to improve the efficiency of surgical services by using machine learning concepts.

In the first part, this research investigates the prediction of the surgery durations and

Current Procedural Terminology (CPT) Codes. Accurate prediction of the surgery duration

will improve the utilization of indispensable surgical resources such as surgeons, nurses, and

operating rooms. Prediction of the correct CPT codes not only aids the preparation for the

survery (i.e., case cart) but also enhances prediction of surgery duration distributions.

In predicting the CPT code(s) of each surgery, we use continuous, categorical and textual

preoperative information as the independent features. Since information-rich textual informa-

tion available perioperatively is mostly entered manually and thus is non-standardized (i.e.

abbreviations) and prone to typos. Accordingly, direct usage of the raw text features leads to

loss of text feature information. Thus, we first find the most informative text features from

unstructured principal procedure and some physician notes through a novel text mining method

for the detection and clustering of typos and abbreviations and efficiently reduces feature di-

mensionality. The output is a well-established in terms of typo correction and abbreviation

detection and provides accuracy improvements in the prediction of CPTs as well as surgery

durations. To predict CPTs, we first focus on the primary CPT prediction and evaluate the

predictive performances of different filtering and set-based prediction strategies. While the

primary CPT code is the most important determinant of surgery durations and periopera-
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tive planning tasks, surgeries often entail multiple procedures (i.e., auxiliary CPTs) which can

greatly influence the surgery durations. Hence, by using multi-task learning concepts, we de-

velop models to predict multiple CPT codes, i.e. set containing the CPTs of all procedures

being performed in the operation.

For the surgery duration prediction, we compare direct methods (i.e., regression based pre-

diction using all feature information) with two-step approach where we first predict primary

or set-CPTs of the surgery and then, given the predicted CPT codes, we estimate a duration

distribution for each surgery case. By first predicting the CPT, the two-step approach provides

valuable planning information to the preoperative services in addition to the improvements in

surgery duration predictions. We evaluate the improvements in surgery duration estimation

by comparing direct approach versus two-step approach and primary versus set-CPT predic-

tions. Whereas direct approach primarily estimates the mean duration, the two-step approach

naturally leads to a distribution information. We also evaluate the distributional information

quality of the two-step approach with those that can be elicited from the direct approaches.

Lastly, two-step approach also allows for more specific prediction and operational planning of

surgical service operations such as case scheduling.

In order to account for the duration estimation loss in the single CPT prediction approach,

we modified the CPT selection by applying the Genetic optimization algorithm. GA enables us

to select the optimal trees with respect to the two goals, predicting correct CPT or estimating

more accurate duration, in the model’s boosting step. Lastly, we can compare the duration

output of the revised single CPT approach with the aforesaid approaches. The hospital may

choose to produce more accurate durations or weigh more on CPT prediction for the surgery

cases given the package of CPT / duration prediction tool.
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