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CHAPTER 1- INTRODUCTION

1.1 Prostate Cancer. Prostate cancer (PCa) is the second most diagnosed cancer, most prevalent
among men 65 and older, and of non-Hispanic, African-American and Caucasian descent, with
estimated new cases of 268,490 in the United States in 2022. In 2021, PCa was estimated to
account for 13.1% of all new cancer cases, and 5.6% of all cancer deaths. Even though the 5-year
relative survival rate is ~97.5%, with most cases belonging to the localized stage, it is the second
leading cause of cancer death (Surveillance, Epidemiology, and End Results (SEER) 18 registries,
National Cancer Institute). This increased survival rate can be contributed to early detection though
diligent screenings using prostate specific antigen (PSA) testing and digital rectal exams (DREs);
and Active Surveillance for men with low-risk tumors and some intermediate-risk cases.

The morbidity rate from PCa can significantly progress after diagnosis by spreading to

lymph nodes, liver, and mainly metastasizing to the bone (65-75%)% °. They can lie dormant,

which is a unique characteristic of PCa, other than estrogen positive breast cancer 10 With

increased improvement in risk stratification of patients, the better treatment of course for
metastasized patient seems to be an initial treatment of chemotherapy than just androgen
deprivation therapy (ADT) alone'l. Also, in chemotherapy-naive and chemotherapy-refractory
patients, Abiraterone that targets the de novo steroidogenesis, and anti-androgen Enzalutamide are
approved single-agent treatments, and also used together in Combined androgen blockade (CAB)
treatments. These drugs improve the survival status of patients but not as curative treatments. The
increase in poor outcomes and mortality rate are seen in advanced stages of metastatic castrate
resistant PCa (mCRPC), and display sensitivity to ADT and androgen receptor signaling inhibitor
(ARSI) only from 24-36 months, and have a median survival of less than 2 years'?. These are due

to the acquired resistance to these modern-day treatments, that are generally categorized as



‘restored AR signaling’, ‘AR bypass signaling’ and ‘complete AR independence’! !4, The first
line of treatment for mCRPC is usually docetaxel'>- a microtubule stabilizer, along with ADT, as
most mCRPC’s are still reliant on androgen signaling. Also, ARSI abiraterone and prednisolone is
added to the regiment, after multiple trials proving the benefits of addition of these agents at these
metastatic stages. Second line of ARSI treatments is the androgen targets such as enzalutamide
and apalutamide, providing higher efficacy, especially in non-metastatic CRPC. Cabazitaxel is
provided to men resistant to docetaxel in advanced mCRPC as a second-line of treatment!'® 7.
With inherent or acquired resistance still being a problem, more research into biomarkers,
mechanisms of resistance and new-generation AR metabolite inhibitors are being researched!’;
along with alternate treatments that include other hormonal therapies with anti-androgens,
radiation therapy using radium-223'8, immune therapies using Sipuleucel-T and bone-targeting

agents“- to alleviate secondary complications, such as impaired mobility, fractures and

hypercalcemia. With the spread of PCa to distant sites, the 5-year relative survival rate decreases

to 30.6% (SEER), making this indolent cancer, still a leading cause of cancer death in men.
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Figure 1. Schematic progression of Prostate cancer.

Representation of progression of normal prostate epithelium with PIA and PIN as a precursor of

Advanced PCa’* 8, as adapted from Abaloff Clinical Oncology 6™ edition.




1.2 Phosphatidylinositol metabolism. Phosphoinositides represent a minor component of the
eukaryotic plasma and organelle membranes and are involved in key functions of the cell
physiology!'®2?°. They are formed by phosphorylation of the inositol ring at the 3,4,5 position of a
phosphatidylinositol (PtdIns) (Fig. 2), resulting in seven phosphoinositide species (Fig. 3).

< Diacylglycerol

Lipid Bilayer (DAG)

Acyl chains

Cytoplasm

Glycerol

/! O Phosphodiester link
—O/ P

Inositol head

Figure 2. Inositol ring anchored to the lipid bilayer on PM.

Phosphorylation of inositol ring at the 3,4,5 position producing phosphatidylinositol.

PtdIns(4)P along with PtdIns(4,5)P2, PtdIns(3,4,5)P3 and their downstream metabolites are
critical in signal transduction, organelle identity and functions, vesicular trafficking, cell motility,
cell proliferation and as a result play important role in cancer and its metastasis!*->*, The dynamic
fluctuations of the membrane phosphoinositide concentrations are critical, as they mediate cellular
functions under tight control. They are regulated by their specific kinases, phosphatases and

phospholipases and often localized to the subcellular locations where their



substrates are produced (Fig. 3)!*-?°. This spatiotemporal location of these phosphoinositides are
critical and are under tight control, as they provide the organelle identity and synchronized

membrane trafficking for the regular functioning of a cell'.
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Figure 3. Metabolism of the different phosphoinositide species and their subcellular
localization.

The seven main phosphoinositide species are PI4P, PI3P, PISP, P1(4,5)P», P1(3,5)P2, PI(3,4)P; and
PI(3,4,5)Ps. The kinases and phosphatases that are responsible for their production are shown in

purple and blue respectively. The subcellular localization of these species is as listed above.

The initial step is catalyzed by phosphatidylinositol 4-kinase (PI4-Kinase) to form
PtdIns(4)P, which plays a crucial step in signal transduction as the precursor of PtdIns(4,5)P2%.
Hence the PI4-kinase complex has been associated with many cellular functions like maintaining
the plasma membrane composition and identity, regulation of coat adaptors for endosomal
trafficking, act as regulators of effectors of PI4P proteins such as FAPP2 and OSBP 2*2427-2 The

mammalian genome consists two families of PI4-kinases with four isoforms: Type III



Phosphatidylinositol 4 Kinases- PI4KIlloo and PI4KIIIB (encoded by PI4KA and PI4KB, and
homologues of yeast PI4-kinases stt4 and Pik1), that is responsible for PtdIns(4)P generation in
the plasma membrane (PM), ER and Golgi complex respectively. Type Il Phosphatidylinositol 4
Kinases- PI4KIla and PI4KIIB (encoded by PI4K2A and PI4K2B, and homologues of yeast PI4-
kinase Lsb6), and function mainly in the Golgi complex and endosomal system. Amongst these

PI4KIIla is considered to be essential for life*, and is implicated as a critical host factor for the

31-33

hepatitis C virus life cycle®!-3, other viral** and bacterial® infections.
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Figure 4. Domain structure of PI4KIIIa.

Detailed organization of the various domains that comprises PI4KIIIa.

PI4KIlla is recruited to the PM by a complex super assembly of accessory and regulatory
proteins - EFR3 (a palmitoylated scaffold protein), TTC7 and FAMI126. Two heterodimeric
complexes of PI4KIIIa-TTC7-FAM126 dimerizes with each of their C-terminal portions forming

a super assembly, with TTC7-FAM126 directly interacting with c-terminus of EFR3 and recruited



to the PM. This lipid kinase complex is conserved from yeast to humans?® 3¢-3°, This localization
of the PI4KlIIla to the PM is extremely crucial for maintaining the PM integrity, identity and its
phosphoinositide balance?®. PI4KIIla has dual functions of regulating PIP binding proteins
involved in vesicular trafficking; and generate PtdIns(4,5)P2 in the PM, by maintaining steady
pools of PtdIns(4)P. Also, the structural domain regulates the activity of vesicular trafficking
proteins*’, PtdIns(4)P phosphatase -Sac1, expressed in the ER, along with its corresponding kinase
PI4KIlla, is a critical regulator of PtdIns(4)P levels in the PM, Golgi and at the ER. This requires
exchange of lipid molecules such as cholesterol through the oxysterol-binding homology (Osh)
proteins, which localizes to the PM/ER contact sites, acting as sensors of the PM PI4P levels,
which can stimulate SAC1 activity in vitro. This also requires 6 other ER membrane proteins such
as VAP, for this exchange and maintenance of cholesterol levels at the PM, by depletion of PI4P
at the ER. Thus, the counter-transport of lipids through non-vesicular traffic is driven by the
concentration-gradient of PI4P levels at the membrane, maintaining the levels is made possible by

SAC-1 phosphatase and Osh protein sensors using the membrane contact sites of PM/ER*!-43,



Pl4Kllla

Figure 5. Localization of Phosphatidylinositol 4 kinase I1la to the plasma membrane.

A complex regulation of accessory proteins mediates PI4KIIla localization to PM, where it
participates in generation of PtdIns4P. EFR3B is a GPI anchored plasma membrane protein and
TTC7B is cytosolic PI4KIIla adaptor protein. TTC7B and PI4KIlIla complexes targeted to plasma

membrane through interaction with EFR3B.

The PtdIns(4)P generated from Pl4-kinases phosphorylation has many other crucial
functions other than generating PtdIns(4,5)P2. It acts as an effector protein for binding of adaptor
and coat complexes (eg: AP-1, GGA proteins, epsinR), as well as lipid-transfer proteins (eg:
OSBP,CERT and FAPP proteins), for Golgi-membrane localization, and giving membrane domain
identity and organelle specific specialization for that membrane!® 24, More specifically the PI4P
from PI4KlIIla, induces curvature in the plasma membrane playing a role in the biophysical identity
of that helps in many of its biochemical characteristics®’. In addition, PI4P gives an identity to the
cytoplasmic side of the plasma membrane as negatively charged along with other negatively
charged phosphoinositide species, making it possible to recruit proteins with polybasic lipid

46, 47

binding domains like K-Ras . Thirdly, is to regulate ion channels like transient receptor

potential vanilloid 1 (TRPV1) cation channel®.



The signal transduction is carried to the downstream effectors from the PM through the
help of phosphoinositides and their interacting proteins, along with the dynamic fluctuations of
their levels on the PM. The PtdIns(4,5)P2 produced can be hydrolyzed by phospholipases such as
PLC leading to amplification of signals or converted to PtdIns(3,4,5)P3 that can respond to growth
factor stimulation, mediating a wide variety of effects. PtdIns(4,5)P2 primarily is produced from
PtdIns(4)P, as there is very little PtdIns(5)P in cells. It is now known that PI4KIIla is the primary
kinase involved in the maintenance of the PtdIns(4)P pool on the PM during PLC signaling after
GPCR stimulation, and Ca2+ signaling®®->°. Small amounts of this enzyme are sufficient to
maintain the house-keeping functions of this kinase and maintain the previously mentioned steady-
state membrane phosphoinositide pools®® #°, even after receptor stimulation with hormones, for
sustained PLC activation and Ca*" signaling®,.

1.3 Phosphatidylinositol kinases in Cancer. The deregulation of the normal functions of the PI
kinases are found in many cancers leading to tumorigenesis and metastasis in association with

phosphoinositides?!> 3! 2

. One of the most frequently mutated Pl-kinases is the Class I
Phosphoinositide 3-kinases (generate PIP3 from PIP2) especially the PIK3CA gene encoding the
p110a catalytic subunit, with mutations that often alter the enzymatic activity and are found in
many cancers>? and other malignancies. The other catalytic subunit p110p, although not commonly
mutated promotes tumorigenesis in cancers with PTEN loss®* 3. The regulatory subunit of Class
I PI3-kinase p85a is known to have somatic mutations that hinders its ability to inhibit PI3K in

endometrial and colon cancers>® 37

. Currently there are multiple on-going and completed trials of
pan, isoform-specific and dual PI3K/mTOR inhibitors that are more target specific and can

overcome resistance to therapies. Some of these inhibitors have been tested as single-agents or as
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combination therapies, for drug toxicities and other issues associated with PI3K inhibition. These
are tested in multiple cancers, and are in various phases of the trials>®.

So far, no activating/driving mutations or deletions of PI4-kinases in general have been
discovered in any cancer. Although irregular vesicular trafficking leading to faulty receptor
signaling and misinterpreted organelle identities seemed to play contributing factors, in cancers
associated with PI4K expression. Depleting PI4P to limit supply for growth factor signaling and
proliferation through AKT signaling proves ineffective, as results show AKT signaling in various
cell lines is PI4K-isoform dependent and cell-type dependent™.

Increased PI4KIla expression is observed in cancers like breast cancer, thyroid papillary
carcinoma, bladder transitional carcinoma et cetera®!. and is associated with promotion of tumor
angiogenesis by altering HER2-PI3K kinases- ERK signaling cascade and increasing production
of VEGF and hypoxia-induced factors®. It is also shown to be important in the EGFR signaling
and subsequent endosomal trafficking of the activated EGFR®!. This kinase is involved in the Wnt
signaling, a crucial signaling pathway in cell-fate determination and thus many malignancies®? 3,

Conversely, PI4KIIfs role in oncogenic signaling has been tied to growth factor signaling®*
with anti-metastatic contribution in hepatocellular carcinoma leading to inhibition of cell migration
through actin remodeling®.

The other family of PI4-kinases is equally implicated in carcinogenesis. PI4KIIIf
stimulation by eEF1A2, a protein elongation factor, has been associated with development of
metastatic breast cancer®® 7. Similarly, PI4KIIIa gene expression is associated with more invasive
and metastatic phenotypes in pancreatic®® and prostate! cancer, as well as chemoresistance®” 70,

Very recently the EFR3A-PI4KIlIla interaction on the PM has been implicated in many KRAS

dependent tumors, and treatments with PI4KIIla inhibitors along with KRAS inhibitors, or MAPK
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and PI3K inhibitors have proved to improve efficacy’!: 72

. Whereas loss of PI4KIIla expression is
linked to developmental abnormalities’®, neuronal impairments’* and neurological dysfunctions’
76, Pharmacological blockade or genetic inactivation leads to sudden death in-vivo and embryonic
lethality®®- 30, Majority of these dysregulations are attributed to the MAP kinase signaling cascade.

Of particular interest in our lab, is the function of PI4KIlIla in cell signaling, especially in

Prostate Cancer (PC).
1.4 Biological Functions of CXCR4. CXCR4/Fusin is a seven transmembrane G-protein coupled
receptor (GPCR), with an only confirmed chemokine ligand known as CXCL12/SDF. CXCL12
can also bind to another chemokine receptor- type 7 CXCR7. CXCR4 receptor activation is
mediated through coupling to an intracellular heterotrimeric G-protein associated inside the PM
(inactive state - Gq, Gp, Gy bound to GDP (vs) active state upon ligand binding- dissociate into Ggpy
dimer and G, bound to GTP). GTP is rapidly hydrolyzed to GDP, after signal transduction, and
the heterotrimeric protein reverses back to its inactive state and associates with the receptor. The
signaling is further desensitized, by phosphorylation at the serine sites, of the CXCR4 C-terminus
by G-protein receptor kinases (GRK), resulting in B-arrestin recruitment and clathirin-mediated
endocytosis’’. The homodimerization and heterodimerization of CXCR4 with other receptors such
as CXCR7, CCR7, CCR2 and CCRS5- the coordinated binding of ligands, the multiple pathway
activation and the mechanism of desensitization is under investigation’”"°.

This interaction results in downstream signaling involving broad biological processes such
as chemotaxis, cell proliferation, migration, differentiation, homing and activation through many
divergent pathways. CXCR4 is widely expressed in many cell types; it plays an essential role in
embryogenesis during development of heart, brain and vasculature. It is also known for its role in

leukocyte chemotaxis and adhesion; along with immune-cell recruitment and retention during
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adulthood. Another crucial function is for homing circulating progenitors at sites of tissue injury®®-
82 and hematopoietic stem cells into the bone marrow niche, and has to be constitutively active for
subsequent retention in the marrow in adulthood®. This axis is involved in development of
embryonic pluripotent stem-cells and many tissue-committed stem-cells®.

1.5 CXCR4 function in tumor microenvironment and cancer metastasis. This CXCR4-
CXCL12-CXCR?7 axis play crucial roles in several types of cancers and can act as an independent

predictor of poor survival in patients® 86

. Hypermethylation of CXCLI12 resulting in
downregulation of this ligand, yet over-expressing CXCR4 results in selective metastasis to
specific organs with high CXCL12 secretion®’. This axis is involved in tumor proliferation,
angiogenesis, metastasis, cell migration and invasion, survival, maintain cancer stemness with self-

8 and influence the tumor microenvironment by recruiting more

renewing capacity®®
immunosuppressive cells?*1%, This aiding in tumor progression is by direct involvement in the
signaling pathways that promote cancer growth and also indirectly by recruiting CXCR4 positive
cancer-cells to sites that express CXCLI12. Through these multiple roles, it also fosters a
chemoresistant phenotype in cancers!’!. Both CXCR4 and CXCL12 are highly expressed in PCa

playing the above-mentioned roles in the progression and resistance””: 102

. In prostate cancer patient
tumors, TMPRSS2-ERG fusion gene is frequently expressed due to fusing of androgen responsive
TMPRSS2 promoter with ERG transcription factor coding sequence. It has been shown that ERG
transcriptionally regulates CXCR4 gene in PCa cells, thus androgens can regulate CXCR4 through
TMPRSS2-ERG fusion expressing tumors 103105,

The tumor growth and survival have been attributed to the many downstream signaling

cascades activated by this axis. The CXCR4-CXCL12 activation of MAPK and phosphorylation

of downstream proteins like c-Myc have known to form a positive feedback loop to aid in the
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proliferative signaling!%. Increase in EGF/EGFR signaling proteins'®’, activation of canonical
Whnt pathway!%®, increased NF-«kB signaling through activation of AKT and ERK!? are some of

the ways leading to increased cell proliferation through this axis. This NF-kB activation, along
with MAPK-ERK and PI3K pathways also leads to anti-apoptotic characteristics''°.

The angiogenic properties of tube formation and migration of vessels require CXCR4-
CXCLI12 signaling and this is achieved by upregulation through other transcription factors like
Foxc!!!, promotion of VEGF, bFGF, COX-2!!2 113 and other angiogenesis-associated genes such
as IL-6, SOCS2, cyclooxygenase-2, mainly through PI3K-Akt and NF-kB !'!# signaling. There
have also been growing evidence of CXCR4-CXCL12 mediating metastasis in many cancers!!>:
116 Prostate cancer is known to predominantly metastasize to the bone, this is established to be
mediated by this axis, as PCa cells directly compete with the hematopoietic stem-cell niche and
drives them to differentiate!!”, and neutralization of this axis through CXCR4 antibodies reduces
the metastatic load!!®. This axis also promotes intraosseous growth after the PCa cells home to the
bone through transactivation of HER2!'!®- 12° and EGFR on lipid-raft membrane mediated by Src
and G2 proteins. And blocking this axis impedes the initial tumor establishment in bone without
an effect on established tumors suggesting CXCL12/CXCR4 axis contributes to the initial
establishment in bone microenvironment '2!,

CXCLI12/CXCR4 axis has shown to be a significant contributor to changes in tumor
microenvironment leading to metastasis. This axis has been shown to be activate signaling
pathways such as SHH'?2; MEK/ERK, PI3K/AKT, Wnt/B-catenin'?*; upregulation of survivin®?;
production of MMP-9!!, MMP-13 expression!?; attracting CXCR4-positive cancer stem cells to
areas of hypoxia through HIF-1 production resulting in CXCL12 upregulation®¥; promote

expression of a5 and B3 integrins on tumor cells to enhance adhesion of tumor cells to the ECM!?>-
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all to facilitate the invasion through the process of the Epithelial-to-mesenchymal transition
(EMT)!26, NF-kB activation through MEK/ERK signaling is also seen to play a role in preferential
adhesion and transendothelial migration (TEM) of PC3 cells to the marrow stroma by
overexpressing CXCR4!?7,

128The influence on this axis on the tumor and its microenvironment is evident as CXCL12

secreted by carcinoma associated fibroblasts (CAFs) can aid tumor growth in cancer cells that
express high CXCR4 on the cell-surface promoting invasiveness, and also attract endothelial
progenitor cells promoting angiogenesis'?’. Specifically, in PCa the CAF cells can secrete
transforming growth factor-f (TGF-f) resulting in CXCR4 stimulation propagating AKT signaling
in prostate epithelium indicative of the tumor stromal cooperation in carcinogenesis'°.
This axis can also act as a chemoattractant and aid in metastasis by attracting CXCR4 expressing
cancer cells to sites of high CXCLI12 expression like liver, lungs and bone marrow!3!. As
mentioned this is especially true in PCa, as this cancer majorly metastasizes to the bone in
advanced PCa. Also, this characteristic aids in tumor development by attracting other CXCR4
expressing inflammatory, vascular, immune and stromal cells that can provide a tumor nourishing
and immunosuppressive environment!'?®, CXCL12 secreted by CAFs and M2 macrophages
induces myeloid derived suppressor cells (MDSCs)!3? and attracted regulatory T (Tregs)'*? cells,
weakening an anti-tumor response.

The chemoresistance of many cancers is shown to develop upregulation of CXCR4 and
CXCLI12 after chemotherapy!** 135, This phenomenon can also be seen in patient that develop
distant recurrence!*®, and in some cancers with the maintenance of cancer progenitor cells in
treatment-resistant cancers'?’. This chemoresistance is abled by activation of downstream

PI3K/AKT pathway and NF-«xB and thus downregulating apoptotic proteins!'3®,
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There are targeted therapies in trials aimed towards this axis in preclinical and clinical
cancer treatments. Some of the pre-clinical studies for this axis include. CTCE-9908- a peptide
CXCL12 analog'®!4!, Olaptesed-pegol- a CXCL12 PEGylated mirror-image!*?, AMD3465-
small-molecule CXCR4 antagonist!}, BKT140- new-generation peptide CXCR4 inhibitor'#4, and
POL5551- a CXCR4 antagonist'*. The only FDA approved CXCR4 antagonist thus far is
plerixafor (AMD3100), to be used for autologous stem-cell transplantation in patients with Non-
Hodgkin’s lymphoma or multiple myeloma. It is used in combination with granulocyte-colony
stimulating factor (G-CSF) to replenish hematopoiesis after chemotherapy!'#S. The clinical trials
involving plerixafor currently involve using this drug as a combination with chemotherapy in AML

)149

and multiple myeloma!4”- 48| radiochemotherapy in cervical cancer (RTCT)!'*°, immunotherapies

150

including ovarian cancer'>!, mesothelioma, and breast cancer!'>% 133

in many cancer models
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CHAPTER 2- HYPOTHESIS & RATIONALE

CXCR4 activation contributes to multiple signaling pathway activation leading to tumor
promoting activities culminating in metastasis, we focus our efforts on the immediate molecular-
downstream interactors which may involve in CXCR4 mediated tumor metastasis. Towards this
end, SILAC (Stable Isotope Labeling by Amino Acids in Cell Culture) a proteomic analysis was
performed on prostate cancer cells. This method elucidates the relative proteomic change using
the combination of metabolic incorporation of modified stable isotopic nuclei and mass
spectrometry.

Our lab identified PI4KIIla as a novel lipid-raft-associated regulator of CXCR4 mediating
invasion and metastasis in PC cells'.

For the SILAC we first characterized the cells that will be used in this analysis- PC3 cells
overexpressing (CXCR4) and underexpressing CXCR4 (shCXCR4) using stable lentiviral
transductions. The mRNA level of the CXCR4 in these cell-lines were verified using gPCR, and
the cell-surface expression was characterized using FACS analysis. The FACS indicated large
CXCR4 overexpression in PC3-CXCR4 cells from the positive shifts in the median fluorescence

intensity (MFT), while PC3-shCXCR4 showed a negative shift (Fig 6).
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Figure 6. Characterization of PC3-CXCR4 and PC3-shCXCR¢4 cells.

The quantitation of the mRNA levels of CXCR4 after lentiviral transductions were verified using

qPCR and the cell-surface expression of CXCR4 was characterized using FACS analysis.
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Figure 7. Schematic representation of the SILAC analysis was performed.
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ratio of H CXCR4:L shCXCR4 or L CXCR4:shCXCR4 based on flotillin levels. The samples were

analyzed using HPLC tandem mass-spectrometry.

Rho

 CAD11_HUMAN
I SRC_HUMAN
- COFT_HUMAN
- GBG2_HUMAN
. ) + GBB2_HUMAN
Q9 O + GBG10_HUMAN
22 B O I GNAI2_HUMAN
e, P A  GNAI3_HUMAN
3 O - GNAS2_HUMAN
o - GBG12_HUMAN
0 0 + GBG5_HUMAN

‘ rears A I MOES_HUMAN
o ol 0 o - GBB1_HUMAN
5“7' L. 52 + GNATT_HUMAN

o - PI4KA_HUMAN
N - CD44_HUMAN
t RAC1_HUMAN

00- < o "3%~, > GBG7_HUMAN
% g > o - CDC42_HUMAN
° p - MYL6_HUMAN

-

 RHOG_HUMAN
e o  ACTB_HUMAN
° ) - ACTG_HUMAN

0  ITB1_HUMAN

o e °  ITA3_HUMAN

© ° - ITA2_HUMAN

0.0625 0.25 1 4 16

Sbrissa et al, 2019!

CXCR4-UshCXCR4-H

Figure 8. Proteins identified as interactors of CXCR4 through SILAC analysis.

Integration of the two independent flip experiments of H CXCR4:L shCXCR4 and L
CXCR4:shCXCR4 lipid raft protein ratios. Overexpressed proteins are shown in yellow and
underexpressed proteins are shown in blue. Here you see the presence of PIAKA HUMAN

expressed in lipid-rafts along with CXCR4.

Here 277 proteins identified from this analysis, were represented as a scatter plot on the
basis of, if they were 1.5-fold up (79 proteins) or down (47 proteins) regulated on both the
orientations of the sample pools. The proteomics analyzed 2 independent experiments resulting in
the scatterplot profile of the same pattern, with proteins of overexpression in yellow and
downregulated in blue. The ingenuity pathway database, identified pathways of the proteins
overexpressed, as showing enrichment of several pathways that would be associated with CXCR4,

like the GPCR interacting proteins, caveolar mediated endocytic pathway and viral entry endocytic
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pathway. Interestingly it also showed presence of PI4KIlla and a PI4kinase A-phosphotase- Sacl,

as being overexpressed in the lipid rafts with CXCR4 overexpressing cells.

With our SILAC showing enrichment of PI4KIIla with CXCR4 in the lipid rafts. Next, we

characterized the interaction between CXCR4 and PI4KlIlla using - PC3-CXCR4 and PC3-

shCXCR4 cell model system.
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Figure 9. Characterization of protein expression and lipid kinase activity of PC3-CXCR4

and PC3-shCXCR4 cells.

A)WB analysis of total cellular proteins isolate from PC3-CXCR4 and PC3-shCXCR4 cells.
These are representative data from 3 different experiments, showing down regulation of CXCR4,

PI4KIIIa and Sacl in shCXCR4 cell lines and an increase in CXCR4 overexpressing cell lines.

B)Lipid Kinase activity. Representative autoradiograms from TLC analysis of PI4KIIla lipid
kinase activity, in CXCR4 overexpressing and downregulated cell lysates vs their parental

controls, and in other PCa cell lines, from 3 independent experiments.

The characterization of the expression and kinase activity, show that PI4KIIla and SACI
expression correlates with CXCR4 expression as can be seen in CXCR4 knock-down and
overexpressing PC3 cell lines. PC3-CXCR4 cell line shows a 2-fold increase in PI4KIIla levels
compared to the parental PC3 cell line (Fig 9A). Interestingly there is no change in gene expression
levels of PI4KIIla and Sacl between the parental and overexpressing cell line, indicating a post-
transcriptional modification to alter PI4KIIIa protein expression in CXCR4 overexpressing cells!.
Similarly, to check the activity of this increased PI4KIlIla levels, an in-vitro lipid kinase assay was
performed from the immunoprecipitated PI4KIIla from these lysates. The kinase activity also
correlated with the expression of PI4KIIla, with almost 2-fold increase in CXCR4 overexpressing
cells, indicative of the PI4P product formed. Also, amongst the various PCa cell-lines tested VCaP
has the highest kinase activity'. The high expression and kinase activity in VCaP as seen in Sbrissa
et al, could potentially be contributed to the high CXCR4 expression through the increased ERG
transcription, as VCaP cells are TMPRSS2-ERG fusion positive, thus providing another evidence

of CXCR4 regulating PI4KIIIa.
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We also see from the preliminary data presented here and the literature of these respective

proteins, we hypothesize that CXCR4 interacts with PI4KIIla using its adaptor proteins leading to
cellular invasion.
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Figure 10. CXCR4 interaction with PI4KIIla leads to cancer cell invasion and metastasis?

In this study we investigate further the association of PI4KIlla and CXCR4 in Prostate
cancer cells, along with stable overexpression of CXCR4 and knockdown of PI4KIIIa. This will
be achieved by functionally characterizing the interaction between PI4KIIla , its adaptor proteins
in relation to CXCR4, and also determining their roles in CXCR4 induced invasion.

This relationship will be additionally studied in patient metastatic biopsies with mHSPC

for their clinical relevance. The differentially expressed genes and the predominant signaling

pathways between these conditions and their relation to cancer cell invasion and proliferation will
be explored.
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CHAPTER 3- DETERMINE THE MECHANISMS OF PI4KIIla. INTERACTION WITH
CXCR4 IN PROSTATE CANCER

3.0 Introduction. CXCR4 has many interactor proteins either through direct or indirect

interactions. signaling involves activation of multiple downstream pathways leading to cellular

homing to their respective target sites. !4 Here as established from the preliminary studies, we

identified lipid kinase PI4KIIla as a novel interacting partner of CXCR4 and may play an

important role in the cellular and biological functions of CXCR4.

PI4KIIIa (Stt4p in yeast) has few critical adaptor proteins as mentioned that are required
for its recruitment to the PM. The accessory and regulatory proteins, super-complex consist of
EFR3, TTC7 (Ypplp in yeast) and FAM126 (this subunit not present in yeast). The PI4KIlIlo-
TTC7-FAM126 heterotrimers form homodimers with each of their C-terminal portions, forming a
~700-kDa assembly>®. TTC7 is initially required for the stability of this complex in-vivo, and the
TTC7-FAM126 interacts with the c-terminus of EFR3, and phosphorylation of this terminus
hinders PI4KIIla recruitment 3738,

Here we elucidate this interaction between CXCR4 and PI4KIIla along with the adaptor

proteins EFR3B and TTC7B.
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Figure 11. PI4KIIla complex recruitment to the PM.
EFR3 localizes to the PM at its N terminus, along with the N-terminal palmitoylation. PI4KIIla is

recruited by an interaction with TTC7-FAM126 and the C-terminus of EFR3.

3.1 Native interaction of PI4KIIIo and CXCR4. To characterize the interaction that we observed
in the SILAC enrichment, we performed interaction studies by pulling down for CXCR4 using
immunoprecipitation (IP) assays. Initially we tested our IP system in Cos-7 cells, after transfecting
with tagged-proteins of interest (Fig 12). We conclude from this study that the CXCR4 and
PI4KIIIa interaction is not direct, as we do not see the presence of PI4KlIlla in the pull-downs of
CXCR4 lysates (Fig 12A). So, we tested if CXCR4 binds to any of the adaptor and regulatory
proteins mentioned above. We see that CXCR4 binds to both EFR3B and TTC7B. More
specifically EFR3B binds to CXCR4 dimers whereas TTC7B binds to CXCR4 monomers (Fig
12B and 12C). The other chemokine receptors such as CXCR7 and CXCR1 also have this

interaction profile of binding to EFR3B and TTC7B, but this is not the case for all GPCRs, such
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as Gprc6a or ADR2BI. This data suggest that chemokine receptor family members interact with
PI4KIIIa through the adaptor proteins. Now we wanted to test for the presence of PI4KIlla, when
we pull-down CXCR4 after performing a triple transfection with the HA-PI4KIIla, Myc-CXCR4
and EFR3B-C-EGFP plasmids. As demonstrated here, when we transfect CXCR4 and PI4KIlla,
with an adaptor protein, we found PI4KIIla in a complex with CXCR4 (Fig 12D), indicating that
the interaction between them is facilitated by the adaptor protein EFR3B. As seen in the SILAC
studies, this data supports that chemokine receptors could regulate PI4KIIlo through its adaptor
proteins, and in this way recruit PI4KIIla to the PM for further downstream signaling.

3.1.1 Results.
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Figure 12. CXCR4 interacts with adaptor proteins of PI4KIlIla in tagged gene transfected
immunoprecipitations.

Cos-7 cells transfected with plasmid expressing fusion genes as mentioned, were co-
immunoprecipitated followed by western blot analysis. A) CXCR4 pull-down was performed using
Myc antibody and immunoblotted for HA to see the presence of PI4KlIlla; and reciprocal PI4KIIla
pull-down was performed using HA antibody. B) CXCR4 pull-down was performed using Myc
antibody and immunoblotted for GFP to see the presence of EFR3B; and reciprocal EFR3B pull-
down was performed using GFP antibody. C) CXCR4 pull-down was performed using GFP antibody
and immunoblotted for Myc to see the presence of TTC7B; and reciprocal TTC7B pull-down was
performed using Myc antibody. D) Triple transfection of CXCR4, EFR3B, and PI4KIIla in Cos-7
cells was followed by CXCR4 pull-down with Myc antibody and immunoblotted for HA to see the

presence of PI4KlIlIla; and reciprocal PI4KIIla pull-down was performed using HA antibody.
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3.1.2 Endogenous PI4KIIla interaction with CXCR4 in PC3 cells. We tested endogenous
interaction between CXCR4 and PI4KIIla in CXCR4 overexpressing and knockdown PC3 cells.
We observe that there is a basal level of interaction between the adaptor protein -TTC7B, PI4KIlla
and CXCR4, , in PC3-CXCR4 overexpressing cell-line (Fig 13A). Whereas this interaction is
enhanced almost 2 and 3.5 folds of TTC7B and PI4KIIla respectively, under CXCL12
treatment.(Fig 13A). In CXCR4 knock-down cell-line of PC3-shCXCR4, we see no observable
interaction between TTC7B, PI4KIIla and CXCR4, in the presence or absence of CXCL12 (Fig
13B). These data suggest that in CXCR4 expressing PC3 cells a complex is formed between
CXCR4, PI4KIlIIa and TTC7B and this complex formation further enhanced in the presence of

CXCR4 ligand CXCL12.
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3.1.3 Results.
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Figure 13. CXCR4 interacts with adaptor protein of PI4KIIla in stable CXCR4
overexpressing PC3 cells - under basal, and increases under ligand conditions.

PC3 cells stably transfected with CXCR4 were serum starved and induced with either no ligand
or with CXCL12 (200ng/ml). The lysates were immunoprecipitated with CXCR4 antibody and
observed for the presence of TTC7B and PI4KIIla in A) in CXCR4 overexpressing cells - PC3-

CXCR4 and B) in CXCR4 downregulated cells — PC3 shCXCR4.

3.1.4 Determine endogenous interaction between CXCR4 and PI4KIlIlIa in other PCa cells.
We tested endogenous interaction between CXCR4 and PI4KIlIa in C4-2B and VCaP cells. - we
observe the mechanism of the CXCR4 regulation of PI4KIIla in native PCa cell-lines. These
endogenous native interactions were observed in C4-2B and VCaP cell lines. These interactions
were tested after induction under, with or without ligand CXCL12 conditions. Similar conditions
as above of serum starvation and concentration of ligand for induction were followed for the

immunoprecipitation assays.
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We observe that there is a basal level of interaction with the adaptor protein in both C4-2B
and VCaP in the absence of ligand (Fig 14A,14B). And as seen in CXCR4 overexpressing cells
(Fig 13), this interaction is enhanced almost 3 folds in C4-2B and 8 folds in VCaP, under CXCL12
treatment. Of all the prostate cell-lines, it would be interesting to recall we observed that VCaP
has the highest kinase activity and PI4P levels (Fig 9B). From these immunoprecipitation studies,
we demonstrate that there is a basal level of interaction between CXCR4, TTC7B and PI4KlIlIla,
and with CXCL12 treatment, this interaction is enhanced in PCa cells.

3.1.5 Results.

A C42B - native
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Figure 14. CXCR4 interacts with adaptor protein of PI4KIIla in native PCa cells - under
basal, and increases under ligand conditions.

C4-2B and VCaP cells were serum starved and induced with either no ligand or with CXCL12.
The lysates were immunoprecipitated with CXCR4 antibody and observed for the presence of
TTC7B interactions. A) in C4-2B cell line, TTC7B interacts with CXCR4 under basal conditions.
Under CXCL12 induction the interaction increases ~3 fold with TTC7B. B) in VCaP cell line,
TTC7B and PI4KIIla interacts with CXCR4 under basal conditions. Under CXCL12 induction the

interaction increases ~8 fold with TTC7B and ~4 fold with PI4KIIla respectively.

3.1.6 Discussion. These data support the initial observations in the SILAC studies, that chemokine
receptor CXCR4 interacts with PI4KIIla kinase as seen with the enrichments in the lipid rafts.
These immunoprecipitation studies show that these are facilitated through its adaptor proteins, and

thus recruited to the PM. These interactions are also shown to be common to some chemokine
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receptors such as CXCR7 and CXCR1 but not with other G-protein coupled receptors such as
Gprc6a and human o2b adrenergic receptors (ADR2B)!.

From current studies we can conclude that CXCR4 does not directly bind to PI4KIIla, but

through the adaptor proteins EFR3B and TTC7B in Cos-7 and PCa cell lines (Fig 12-14). These
adaptor proteins and their interaction with PI4KIIla are well established and evolutionarily
conserved, with EFR3 a membrane targeted protein through its palmitoylation, interacts with
cytosolic TTC7 bound to PI4KIIIa, acting as a docking site on the membrane?®:36-3, These specific
interactions are seen in relation with CXCR4 with EFR3B binding to CXCR4 dimers and TTC7B
binding to CXCR4 monomer, and whether these interactions are affected by a characteristic of
CXCR4 receptors to homodimerize or heterodimerize with other GPCRs including chemokine
receptors are yet to be elucidated.
3.2 Determine co-localization using Proximity Ligation Assay. Immunoprecipitation involve
lysing cells with detergents and this process may aid artificial interaction of proteins, to overcome
this issue proximity ligation assay was performed to determine the CXCR4 interaction with
adaptor protein TTC7 in prostate cancer cells. Target specific antibodies from different host
species (TTC7B-rabbit and CXCR4-mouse) are used and colocalization assay performed as
specified in the Sigma Duolink DU0O92101-1 kit. This is an assay performed with intact cells that
detects proximity, through hybridization of connector oligos, which yields rolling circle
amplification products, if the two proteins of interest are within 40nm of distance, proving co-
localization.

This assay validates the co-localization of CXCR4 with the adaptor protein TTC7B,
observed as red punctates from oligo probes attached to red fluorophores (Fig 16B). As determined

from the immunoprecipitation studies, there is a basal level of red punctate formation with no
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ligand induction, indicative of basal level of co-localization. When induced with CXCLI12 the
number of red punctates increase as confirmed with quantitation, indicating increase in co-

localization, thus increased interaction of CXCR4 and TTC7B complex formation in cells.
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Figure 15. Schematic representation of how the Proximity Ligation Assay (PLA) was

performed. (Sigma Duolink DUO92101-1 kit)

The samples are initially incubated with target specific antibodies and further incubated with the
PLA probes that are conjugated to secondary antibodies, provided as part of the kit. The connector
oligos hybridize if the two proteins of interest, are less than 40nm apart, and form a circularized
oligo. This is further amplified into rolling circle amplification products through the DUO
polymerase and amplification buffer. The resulting products hybridize to red fluorophores, by
incubating with oligonucleotide probes attached to red fluorophore. The assay can be imaged using

fluorescence microscopy and quantitated.




33

3.2.1 Results.
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Figure 16. CXCR4 co-localizes with adaptor protein of PI4KIIla in native PCa cell - under
basal, and increases under ligand conditions.

C4-2B were serum starved and induced with either no ligand or with CXCL12. The cells were
fixed with 4%PFA and permeabilized with mild buffer 0.01% tween-20 in PBS. The cells were
further treated as per the Sigma Duolink DUO92101-1 kit. CXCR4-mouse and TTC7B-rabbit
antibodies were used for primary incubation and observed for the presence of co-localization of
CXCR4 and TTC7B. A) in C4-2B cell line, the fluorescence images show very minimal presence
of red fluorophores in the control conditions of no primary antibody, only CXCR4, or only TTC7B
antibody. B) here we see TTC7B co-localizes with CXCR4 under basal conditions. Under

CXCL12 induction the co-localization increases (P < 0.05) between CXCR4 and TTC7B.

3.2.2 Discussion. The proximity assay further confirms the interaction studies of CXCR4
interacting with the PI4KIlIla adaptor protein TTC7B. The co-localizations show that the PI4KIIIa
interactions are indeed facilitated through these adaptor proteins and thus recruited to the PM.
These endogenous interactions initially confirmed from cell lysates in native PCa cell lines, are
also proved in intact cell lines with this PLA assay.

As with fluorescence interaction techniques there are always limitations to these assays.
PLA has non-linear effects, as it is shown to have saturation effects at higher expression levels, so
can be considered semi-quantitative when tested for some conditions. So, this might be a factor to
consider, and another alternate fluorescence technique would be the fluorescence resonance energy
transfer (FRET), as it is shown to have linear effects with protein expression levels. The limitation
of FRET is that, it can detect co-localization of 10nm or less only, whereas PLA also detects co-

localization more than 10nm and less than 40nm, as in the case with complex assemblies, that may
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not necessarily be within 10nm. So, in this study with the super-complex formation of PI4KIlIla-
TTC7B-EFR3B and their interaction with CXCR4, PLA might after all be a more dependable
technique, if we do not simply just rely on quantitation alone.

These results so far suggest that there is a basal constitutive level of interaction of PI4KIIIa
kinase with the CXCR4 on the membrane, and induction with CXCL12 enhances the interaction,
potentially suggesting this interaction is both constitutive and ligand induced.

3.3 Determine functional significance of CXCR4 interaction with PI4KIIIa using GFP-P4M-
SidMx2 biosensor. To determine the functional significance of the CXCR4- PI4KIlla interaction
we used biosensors to detect PI4P production on plasma membranes, which is an indicative of
PI4KIIIo function. The GFP-P4M-SidMx2 (Addgene #51472) biosensor!> has been characterized
and well established for visualization in membrane studies*® 13> 136, PC3, C4-2B and VCaP cells
were transfected with this biosensor and the functionality under different conditions were observed
in fixed cells and quantitated. The peak max obtained from Image] was used, and the areas
quantitated are shown within the inset (Fig 17). The quantitation method was adopted from the
seminal papers that were used in the characterization of this biosensor, further validating the
CXCR4- PI4KlIIla crosstalk. Here we observed basal level of PI4P production on the PM of the
PCa cells. Upon induction with CXCL12, we observe enhanced GFP localizing to the membrane,
indicating increased PI4P production on PM. To determine this PI4P production is specific to
PI4KIIIa we treat the cells with GSK-F1 which is a PI4KIlIla inhibitor. PI4KIIIa inhibition in cells
leads to decreased GFP-P4M-SidMx2 biosensor accumulation on PM as detected by fluorescence
signal originating from GFP suggesting that CXCL12 induced PI4P production is mediated
through PI4KIIla in PM. Similarly, we determined CXCL12 induced PI4P is mediated through

CXCR4 using small molecule CXCR4 inhibitor, AMD-3100. In the presence of AMD3100 the
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PI4P production on PM also reverted back to baseline suggesting CXCL12 induced PI4P
production is mediated through CXCR4 on PM. These data demonstrate that the PI4P production

is dependent on the induction of the CXCR4- PI4KIIla crosstalk (Fig 17A 17B 17C).

Cells Treatment Expected
PI4P levels
PC3, C42B, VCaP | Regular media Baseline
PC3, C42B, VCaP +CXCL12 Increase
(200ng/ml)
PC3, C42B, VCaP | +GSK-F1 (2uM) Decrease
+CXCL12
(200ng/ml)
PC3, C42B, VCaP + AMD3100 Decrease
(4ug/ml)
+CXCL12
(200ng/ml)

Table 1. Conditions used with the GFP-P4M-SidMx2 biosensor.

The table shows the various conditions used for the fluorescence imaging of the PC3 and C4-2B

cell lines transfected with the GFP-P4M-SidMx2 biosensor.
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Figure 17. PI4P production is induced under CXCL12 ligand conditions in native PCa cell
lines.

A) C4-2B B) PC3 C) VCaP cells were grown on cover-slips and transfected with 2.5ug of GFP-
P4M-SidMx2. They were serum starved and treated with the following conditions as seen in Table
1. The cells were fixed with 4%PFA and 0.2% glutaraldehyde and washed with 50mM NH4Cl in
PBS. Condition 1) there is a basal level of fluorescence as seen in the insets with no ligand
induction. 2) there is an increase in fluorescence with CXCLI12 induction 3) decrease in
fluorescence after treatment with GSK-F1. 4) decrease in fluorescence after treatment with AMD-

3100.

3.3.2 Discussion. We utilized a novel PI4P probe designed by Balla and Hammond!* that exploits
the P4AM domain binding capacity to the PI4P lipids, isolated from L.pneumophila SidM. This
probe is shown to be highly specific and efficient in localizing to PI4P in live cells, compared to
previous probes, and is shown to detect in localization in organelles such as PM, Golgi and late
endosomes. Especially another advantage of using this probe in our study is that, the probes ability
to detect the fluctuating PI4P abundance on the PM has already been validated in this paper, owing
its ability to have just the appropriate amount of affinity to PI4P, as opposed to the very high
affinity of P4M when intact with SidM in vitro, eliminating background or false positive
fluorescence. Nonetheless, this biosensor in conjunction with a PI4P binding protein, may not be
able to distinguish different organelles, as it is shown to localize in the three different organelles,
unless used with another organelle-specific targeting molecules or proteins. In our case the
CXCL12 induction of CXCR4 is widely researched and strictly studied to be on the PM, so we

focus on the fluorescence fluctuations on the PM when studying this CXCR4-PI4KIlla crosstalk.
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As seen from the immunoprecipitation studies and proximity assays, this fluorescence
imaging further validates that, there is a basal constitutive level of interaction of PI4KIIla kinase
with the CXCR4 on the membrane. And induction with CXCL12 enhances the interaction,
potentially suggesting this interaction is both constitutive and ligand induced., as indicated through

PI4P production, sensed using GFP-P4M-SidMx2.
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CHAPTER 4- DETERMINE ROLE OF ADAPTOR PROTEIN TTC7B IN CANCER
CELL INVASION

4.0 Introduction. As we see the wide implications of CXCR4 and PI4KIIla in various cancers
from our background information, here we determined the influence of the adaptor proteins of
PI4KIIIa in PCa. Briefly, PI4KIIla is recruited to the PM by these evolutionarily conserved
adaptor proteins forming a stable complex, which includes EFR3, TTC7 and FAM126. EFR3A
has been implicated in KRAS-dependent pancreatic cancer, that shows TCGA datasets with a
positive correlation between KRAS and EFR3A mRNA expressions’. Also, EFR3A alterations is
associated with reduced survival, and increased expression is observed in tumor samples of various
pancreatic cancer datasets. This study also demonstrated that EFR3A binds to KRAS through
immunoprecipitation and size-exclusion chromatography assays’!. Here we examine the
functional attributes of the adaptor protein TTC7B in invasion using PCa cells.

4.1 Determine the impact of adaptor proteins TTC7B in CXCR4-PI4KlIlla interaction.
PI4KIIla regulates chemokine mediated invasion in PCa cells, as studied through native
interactions in PC3-RFP parental cell line, along with PC3-CXCR4 and other PCa cells, under
different chemokine ligand conditions (Fig 21). We characterize the effect of TTC7B knockdown
on invasion using siRNA, and also determine the impact of these knockdowns directly on the
interaction of CXCR4 and PI4KIIla. Briefly, from Fig 18, we have established that CXCR4
interacts with PI4KIIla through its adaptor proteins — cytosolic TTC7B. This interaction is
enhanced with CXCL12 from its basal level, and is tested in various PCa cell lines, including PC3-
CXCR4. Now using the same PC3-CXCR4 cell line, we learn from CXCR4 antibody pull-down
assays that siRNA knockdown of TTC7B, almost completely disrupts PI4KIIla interaction with

CXCR4 (Fig 18B), while no change in CXCR4 (Fig 18C) is observed. This further validates the
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knockdown efficiency of this TTC7B siRNA for use in our invasion assays (Fig 18A). From these
data we can confirm that endogenous expressions of TTC7B are required for the CXCR4- PI4KIIIa
crosstalk.

4.1.1 Results.

B
< Pl4Kllla
<+ TTC7B
82
82
64 ot
49 49
TTC7BSiRNA - + - + TTC7TBsSiRNA - + - o+
(100nM)
(oo ; Input  |P: Anti-
c Input  |P: Anti- CXCRA AD
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49 < CXCR4
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CXCR4 Ab

Figure 18. TTC7B depletion disrupts the CXCR4-PI4KIIla interaction.

PC3-CXCR4 were transfected with TTC7B siRNA (100nM final) and lysates were
immunoprecipitated with 4ug CXCR4 antibody and observed for the presence of A) TTC7B

B) PI4KIIla. C) and CXCRA4.
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4.2 Determine the depletion of TTC7B on CXCL12 induced cell invasion. Now that the TTC7B
siRNA was validated for efficient knockdown, we used them to observe the effect of their depletion
in CXCL12 induced invasion, and determine if their effects closely correlate with that of PI4KIIIa
knockdown. These chemokine invasion studies were performed with PC3-CXCR4 cell line in
Matrigel coated inserts as before and stained with crystal violet. There is an increase in cell
invasion in ligand induced conditions of CXCL12 compared to untreated levels in both scrambled
(Scr) siRNA and TTC7B siRNA conditions. But within these conditions between Scr and TTC7B
siRNA, the knockdown cells have decrease in invasion almost 2-fold in both the basal and ligand
conditions, to their respective Scr siRNA levels (Fig 20A-B). This suggests that this adaptor
protein TTC7B has important roles in both basal and ligand induced invasion.

Furthermore, we tested if this effect of TTC7B on invasion is restricted to CXCR4-
CXCL12 axis or any other chemokine mediated cell invasions as well. So, we also tested another
chemoattractant CXCLS8, which is known to mediate invasion in PCa. In Scr siRNA between the
untreated and CXCLS8 conditions, there is an almost 1.5-fold increase in invasion upon ligand
stimulation. And when treated with the adaptor protein siRNAs of TTC7B, there is a 3-fold and 2-
fold decrease in invasion respectively compared to Scr siRNA, under induced ligand conditions.
Between the untreated samples of Scr siRNA and the adaptor protein knockdown, there was not
much significant difference (Fig 20A-B).

This data suggests that the adaptor protein of PI4KIIla- TTC7B might be common to other
chemokine induced invasions other than CXCL12. TTC7B plays a role in invasion under both

basal and ligand induced conditions with stimulants such as CXCL12 and CXCLS, as tested here.
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Figure 19. TTC7B regulates invasion in PCa through CXCL12 and other chemokines, under

both basal and ligand induced conditions.

A) PC3-CXCR4 were transfected with TTC7B siRNA (100nM final) and were serum starved.

PC3-CXCR4-TTC7B siRNA cells were plated on Matrigel coated 8uM insert transwells, bottom

wells were supplemented with media and appropriate ligand conditions (CXCL12 200ng/ml,

CXCLS8 50ng/ul). Next day inserts were stained with crystal violet, imaged and quantified. B)

Quantitation of the same is shown, with an Anova followed by Tukey post-test (P<0.0001).
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CHAPTER 5- DETERMINE ROLE OF PI4KIIla IN CANCER CELL INVASION AND
PROLIFERATION

5.0 Introduction. Here we study the influence of this CXCR4-PI4KIIla crosstalk in PCa. Briefly
CXCR4-CXCL12 is involved in many facets of cancer progression from proliferation to the
various stages of metastasis including invasion, angiogenesis and survival. PCa has a high
expression of CXCR4 and CXCL12 contributing to the progression and chemoresistance®® 7- 102
115,116 ' CXCR4 expression is also transcriptionally regulated in TMPRSS2-ERG fusion positive
PCa, increasing CXCR4 expression and tumorigenicity of these cancers. This axis aids in the PCa
metastasizing to the bone, as high CXCR4 expression on the cell surface aids directly to compete
for the hematopoietic stem-cell niche in the bone marrow, and in further colonization through
intraosseous growth after homing!!”- 11%- 120 Also, the CAF cells associated with PCa can secrete
CXCL12 and TGF-B resulting in tumor growth promoting invasiveness and tumor growth!2% 130,
Likewise, PI4KIIla gene expression is shown to be associated with more invasive and metastatic
phenotypes in prostate cancer!, as well as chemoresistance$® 7°,

So, we observe the role of CXCR4-PI4KIlla crosstalk in cancer progression, specifically
how it impacts the proliferation and invasion of these PCa cells. For these we perform cell-based
assays and hope to elucidate how these proteins play a role in these steps. In this study we further
analyze the differential gene expressions and pathways that are involved in control and low
expressing PI4KIIla cell-lines that were stably knockdown of PI4KIIIa. These were examined and

studied through RNA-sequencing analyses and provided further insight into the processes that

promote these characteristics of invasion and proliferation.
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Figure 20. Overall progression of cancer.

Representation of progression of a localized tumor into an advanced staged metastasis or into

dormancy®®.

5.1 Impact of PI4KIIla transient knockdown on CXCL12 induced cell invasion. As observed
in (Fig 17), higher PI4P production is seen on the PM with CXCL12 induction. CXCR4-CXCL12
axis plays a role in cancer progression, so the role of PI4KIlla in cellular invasion was studied, as
PI4KIIla is shown to interact with CXCR4, and this was performed in prostate cancer cells
overexpressing CXCR4. The PI4KlIlla effects were studied in PC3-CXCR4 cells by transient
knockdown studies using siRNA. Between parental cell line PC3 and CXCR4 overexpressing PC3;
the cell invasion was enhanced under both basal and CXCL12 stimulation in PC3-CXCR4 cells.
Under basal conditions, PCR-CXCR4 had 3-fold more invasion than PC3-RFP, and with CXCL12
stimulated induction there were 6-fold more invasion (Fig 21A). When PI4KlIIla is knockdown,

this severely hinders the invasion capacity (Fig 21B), even when CXCR4 is overexpressed. Under
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basal conditions, PC3-CXCR4 PI4KIIlo siRNA had 3-fold decrease in invasion than PCR-
CXCR4 Scr siRNA, and with CXCL12 stimulated induction there were 6-fold less invasion.
Furthermore, we wanted to test if this effect of PI4KIllo on invasion is restricted to
CXCR4-CXCL12 axis or many other chemokine mediated cell invasions as well. Other
chemoattractants tested were CXCL11, CXCL8 and CCL21, which are known to play some
function in mediating invasion in PCa. PI4KIIla knockdown showed a decrease in invasion in both
basal and other chemokines induced cell invasion (Fig 21C). This suggests PI4KIIla is common
to many chemokines induced invasions under basal and ligand induced conditions. Within the
parameters of our cellular invasion protocol, PI4KIIla knockdown, showed no significant effect

on cell proliferation.
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5.1.1 Results.
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Figure 21. PI4KIIla regulates invasion in PCa through CXCL12 and other chemokines,
under both basal and ligand induced conditions.

A) PC3-RFP, PC3-CXCR4 were plated on Matrigel coated 8uM insert transwells, bottom wells
were supplemented with media and stimulated with CXCL12 for 10 minutes. Next day inserts
were stained with crystal violet, imaged and quantified. B) PC3-CXCR4 were transfected with
PI4KIIIa siRNA (100nM final) and were serum starved. PC3-CXCR4- PI4KIIIa siRNA cells were
plated on Matrigel coated 8uM insert transwells, bottom wells were supplemented with media and
stimulated with CXCL12 for 10 minutes. Next day inserts were stained with crystal violet, imaged
and quantified. C) Cell invasion studied under the presence of CXCL12, CXCL11, CXCL8 and
CCL21 with Scr and PI4KIIIa siRNA cell lines. D) Cell proliferation assay of PC3-CXCR4 cells

between Scr and PI4KIIIa siRNA transfected cells.

5.2 Characterize PI4KIIla stable knockdown cell models. To understand the effects of stable
knockdown of PI4KIIla on invasion and use them for RNA-seq to identify differential gene
expressions (DEG) in cells, C4-2B and PC3-CXCR4 were stably knockdown using lentiviral
transduction of PI4KIIla using the following sequences:
A) 27 PI4KIIla shRNA sequence = V2LHS 170027
Mature antisense: TAGATCTCCAGTTGGCCAC (NM_058004 : 4660-4678)
B) 30 PI4KIIIa shRNA sequence = V3LHS 352630
Mature antisense: TCACTAACTCCACATCGCT (NM_058004 : 5516-5534)
(Source: Biobanking and Correlative Sciences Core- Karmanos Cancer Institute)

Both the PI4KA shRNA #27 and #30 show decrease in protein expression compared to

Scr. The kinase activity also is highly reduced in the #27 shRNA, showing lesser PI4P production,
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using PI4KIIla specific antibody pull-down and analysis by TLC (Fig 22A,B). These
characterizations validate the knockdown efficiency of the shRNA used, and hence we used #27
shRNA cells along with Scr for the subsequent experiments.

5.2.1 Results.

A PC3 CXCR4 C4-2B
0.35 0.31 1.00 0.15

< Pl4Kllla

Scr 27

I I Diego

Figure 22. PI4KIIlo knockdown using lentiviral shRNA shows decreased expression and

activity.
Stably knocked down PI4KIIIa using the shRNA sequences mentioned characterized in C4-2B
and PC3-CXCR4 cells using A) protein expression from Western blots. B) kinase activity through

lipid kinase assay.
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5.3 Impact of PI4KIlIla stable knockdown on CXCL12 induced cell invasion. The stable
shRNA knockdowns were used to study the effect of PI4KIIla depletion in CXCL12 induced
invasion studies. These chemokine invasion studies were performed with PC3-CXCR4 cell line in
Matrigel coated inserts as before and stained with crystal violet. There is an increase in cell
invasion in CXCL12 induced conditions compared to untreated levels in Scr and PI4KIIIa 27, 30
shRNA conditions. There is almost a 1.3-2-fold decrease in invasion in PI4KIIla knockdown cells
in both the basal and CXCL12 induced conditions (Fig 23). These effects are more in #30 PI4KIIla
shRNA and suggests that PI4KIIlo has an important role in both basal and ligand induced
invasions. We already established through PI4KIIla siRNA studies that PI4KIllo is common to
many chemokines induced invasion under both basal and ligand induced conditions (Fig 21).
These provide evidence that PI4KIlla is an essential mediator of cell invasion along with its

adaptor protein TTC7B (Fig 19).
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5.3.1 Results.
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Figure 23. PI4KIIla regulates invasion in PCa through CXCL12, under basal ligand induced

conditions.

A) Stable knockdown of PI4KIIla in PC3-CXCR4 were serum starved and were plated on Matrigel

coated 8uM insert transwells, bottom wells were supplemented with media and appropriate ligand
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conditions (CXCL12 200ng/ml). Next day inserts were stained with crystal violet, imaged and
quantified. B) Quantitation of the same is shown, with an Anova followed by Tukey post-test

(P<0.05).

5.4 Perform RNA-Sequencing analysis to determine differential gene expressions and
pathways contributing to PI4KIIlo function in PCa cell. The cell-lines used for the following
analysis were again C4-2B (androgen insensitive, androgen receptor positive, high tumorigenicity,
osteoblastic, LnCaP derived), and PC3-CXCR4 (Parental PC3: androgen insensitive, androgen
receptor negative, high tumorigenicity, osteolytic), with Scr and stable PI4KIIla knockdown #27
shRNA lines. The DEG were analyzed using both Advaita’s iPathway guide and the Gene Set
Enrichment Analysis (GSEA) software using the Molecular Signatures Database (MSigDB).
When we knockdown PI4KIIla and TTC7B we see a decrease in invasion (Fig 19, 21B,
23). Here we used #27 PI4KA stable knockdown cells and analyzed pathways involved in this
invasive phenotype using the GSEA software. This showed reciprocal enrichment of many
pathways involved in cell-proliferation such as E2F targets, P53 pathways, PI3K-AKT-MTOR
signaling, 116-JAK-STAT3 and MTORCI signaling between the C4-2B and PC3-CXCR4 cell-
lines in the Scr compared to PI4KIIla knockdown cell-lines (Table 2). Interestingly C4-2B cell-
lines being androgen receptor positive, and androgen-insensitive, showed significant upregulation
and reciprocal enrichment of androgen response (p=0, NES=-2.18) signaling in the Scr compared
to PI4KIIla knockdown cell-lines. Among the leading-edge pathway analysis enriched between
PI4KIIIa knockdown cell-lines vs Scr, the top-most significant hallmark pathways are as seen in
the reciprocal enrichment plots, i.e. enriched in Scr and as highlighted in yellow in the gene set

table (Table 2) (FDR g-val< 0.05 and P<0.05).We also validated our RNA-seq reads through gPCR
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for genes that were expressed as the top 50 genes for each phenotype on the heatmap in PC3-
CXCR4 cell-line (Fig 27) (Fig 28).

To study the overlap between pathways of the cells used for our RNA-seq and publicly
available data set, we performed a GSEA analysis. For this we utilized the TCGA Firehose legacy
database with n=498 for prostate adenocarcinoma, and categorized the dataset into high PI4KIIla
expressing and low PI4KIIla expressing cohort to represent the PI4KIIla knockdown cell-line.
(Table 5) We found some overlap of pathways enriched between the Scr of both C4-2B and PC3-
CXCR4, along with the high PI4KIIla expressing cohort, and this includes E2F targets, G2M
checkpoints, mitotic spindle and protein secretion.

We also performed an ingenuity pathway analysis using Advaita Bioinformatics software
to validate our analysis of different expressed genes and pathways. (Fig 29) (Fig 30) Comparison
between PI4KIIloo shRNA and Scr in C4-2B and PC3-CXCR4 show 562 and 222 genes
significantly differentially expressed with a log fold change of 0.6 and above and corrected P value
of <= 0.05. Both the cell-lines show the KEGG pathway map of “neuroactive ligand-receptor
interaction” as the most significantly impacted pathway in the PI4KIIla shRNA cell-lines. The
gene ontology also lists processes and functions that were significantly impacted in these
knockdown cell-lines (Fig 29 iii) iv) and v)), (Fig 30 iii) iv) and v)). A meta-analysis between these
cell-lines also revealed several altered pathways and functions that were mutually altered between
these cell-lines. Interestingly many of these biological processes such as ‘cell-surface receptor
signaling pathway’, ‘regulation of locomotion’, ‘regulation of cell migration’ and ‘cell population
proliferation’; as well as molecular functions such as ‘cytokine activity’ and ‘G protein-coupled

receptor binding’ (highlighted in yellow) (Fig 31) all show significantly altered between PI4KIIIa
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shRNA and Scr cell-lines, suggesting that PI4KIlIla activation in cancer cells contributes to above
described biological processes and molecular functions.

5.5.1 Results.
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Table 2. Gene sets enriched in phenotype scrambled compared to PI4KA knockdown cell-
lines.
In A) C4-2B B) PC3-CXCR4. Gene sets reciprocally enriched in these endogenous levels of

PI4KIIIa expressing cell-lines when compared to PI4KIlloo knockdown show enrichment in

pathways involved in cell-proliferation ((FDR g-val < 0.05 and P<0.05).

C42B PC3 CXCR4-OX
Scr shRNA Scr shRNA

H: hallmark gene sets
(GSEA- Molecular
signatures database)

Myc-Targets V1 -2.80 0.000 0.000 -1.87 0.000  0.000
E2F Targets -263  0.000 0.000 -1.85 0.000  0.000
G2M Checkpoints 244  0.000 0.000 -1.91 0.000  0.000
Oxidative Phosphorylation 243  0.000 0.000 -2.08 0.000  0.000
Unfolded Protein Response -2.31 0.000 0.000 -1.29 0.074 0.154
MTROC1 Signaling 219 0.000 0.000 -1.28 0.041 0.155
Androgen Response 218 0.000 0.000 -1.08 0.306 0.458
Mitotic Spindle 205 0.000 0.000 -1.76 0.000 0.001
DNA Repair -194  0.000 0.000 -1.82 0.000  0.000
P53 Pathway -1.93  0.000 0.000 -1.50 0.007  0.025
Reactive Oxygen Species Pathway -1.88 0.000 0.000 -1.26 0.123 0.102
Adipogenesis -1.86  0.000  0.000 -1.72 0.002  0.000
Cholesterol Homeostasis -1.80 0.000 0.000 -1.41 0.027 0.058
Apoptosis -1.70  0.000  0.000 -1.28 0052 0.143

Table 3. Common Gene sets enriched in phenotype scrambled compared to PI4KA
knockdown cell-lines.

Gene sets reciprocally enriched in these endogenous levels of PI4KIIIa expressing cell-lines
when compared to PI4KIlla knockdown ((FDR g-val < 0.05 and P<0.05 is considered

significant), as analyzed by the Hallmark Gene set collection of MSigDB.
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C42B PC3 CXCR4-OX
PI4K shRNA Pl14K shRNA

H: hallmark gene sets (GSEA- Molecular
signatures database)

HALLMARK_ANGIOGENESIS 1.26 0.152
HALLMARK_COAGULATION

HALLMARK_KRAS_SIGNALING_DN 1.46
HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITION 124 0058 0221
HALLMARK_COMPLEMENT 118 0076 0287
HALLMARK_MYOGENESIS 092 0744 1.000
HALLMARK_HYPOXIA 092 0730 1.000
HALLMARK_TNFA_SIGNALING_VIA_NFKB 090 0858 1.000
HALLMARK_WNT_BETA_CATENIN_SIGNALING 086 0719 1.000
HALLMARK_APICAL_JUNCTION 081 0970 1.000
HALLMARK_UV_RESPONSE_DN 075 0990 0965
HALLMARK_PANCREAS_BETA_CELLS 156 oS oom
HALLMARK_NOTCH_SIGNALING 0.97 0498 0638
HALLMARK_SPERMATOGENESIS 0.80 0921 0907

HALLMARK_IL6_JAK_STAT3_SIGNALING

- = Molecular signatures of significance in
each PI4K KD cell lines.

Table 4. Common Gene sets enriched in phenotype PI4KA knockdown compared to
scrambled cell-lines.

Gene sets enriched in these PI4KIlla knockdown when compared to endogenous levels of
PI4KIIIa expressing cell-lines ((FDR g-val < 0.05 and P<0.05 is considered significant), as

analyzed by the Hallmark Gene set collection of MSigDB.
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TCGA Firehose
C42B PI4KA high
Scr shRNA cohort

H: hallmark gene sets
(GSEA- Molecular
signatures database)

E2F targets -2.63 0.000 0.000 0.96 0606 0.773
Mitotic Spindle -2.05 0.000  0.000 235 0.000 0.000
Protein Secretion -2.10 0.000  0.000 2.08 0.000 0.000
G2M checkpoint -2.44 0.000 0.000 1.67 0.000 0.002
Androgen Response 218 0.000 0.000 1.90 0.000 0.000
PI3K-AKT-MTOR signaling -1.79 0.000  0.000 0.94 0598 0.717

TCGA Firehose
PC3-CXCR4 PI4KA high
Scr shRNA cohort

H: hallmark gene sets
(GSEA- Molecular
signatures database)

Mitotic Spindle -1.76 0.000  0.001 2.35 0.000 0.000
Protein Secretion -1.55 0.007 0.016 2.08 0.000  0.000
G2M checkpoint -1.91 0.000  0.000 1.67 0.000  0.002
E2F targets -1.85 0.000 0.001 0.96 0.606 0.773

Table 5. Common Gene sets enriched between phenotype scrambled and high PI4KIlla
expressing TCGA-Firehose Legacy prostate adenocarcinoma cohort (total n=498).
(FDR g-val < 0.05 and P<0.05 is considered significant), as analyzed by the Hallmark Gene set

collection of MSigDB.
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Figure 24. Gene expression validation of RNA-seq analysis of PC3-CXCR4 cell lines.

A) Genes that are expressed high in PI4K knockdown cell-lines. B) Genes that are expressed

low in in PI14K knockdown cell-lines.
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Figure 25. Pathway analysis of genes differentially expressed in PI4KIIla shRNA vs
scrambled C4-2B cell-lines.

1) Analysis of DEG show GO biological processes significantly impacted in the PI4KIIla
shRNA C4-2B cell-line, with “cell-cell signaling” significantly impacted ii) Analysis of DEG
show GO molecular functions significantly impacted in the PI4KIIIa. shRNA C4-2B cell-line,
with “signaling receptor activity” significantly impacted iii) Analysis of DEG show GO
cellular components significantly impacted in the PI4KIlla shRNA C4-2B cell-line, with
“integral component of plasma membrane” significantly impacted. All processes and

functions of interest to us is highlighted in yellow.
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Figure 26. Pathway analysis of genes differentially expressed in PI4KIIla shRNA vs
scrambled PC3-CXCR4 cell-lines.

1) Analysis of DEG show GO biological processes significantly impacted in the PI4KIIlo. shRNA
PC3-CXCR4 cell-line, with “cell-cell signaling” significantly impacted ii) Analysis of DEG show
GO molecular functions significantly impacted in the PI4KIIla shRNA PC3-CXCR4 cell-line,
with “transmembrane signaling receptor activity” siginificantly impacted iii) Analysis of DEG
show GO cellular components significantly impacted in the PI4KIllo. shRNA PC3-CXCR4 cell-
line, with “cell periphery” significantly impacted. All processes and functions of interest to us is

highlighted in yellow.
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Figure 27. Differentially expressed altered gene and pathway meta-analysis between
PI4KIIla shRNA vs scrambled in PC3-CXCR4 and C4-2B cell-lines.

1) shows 14 genes mutually altered in PI4KIIlo. shRNA cell-lines. (with 521 genes exclusively
altered in C4-2B and 191 genes exclusively altered in PC3-CXCR4.). ii) shows 267 biological
processes mutually altered in PI4KIIlo shRNA cell-lines. (with 843 genes exclusively altered in
C4-2B and 632 genes exclusively altered in PC3-CXCR4.). Some of the biological processes of
interest have been listed and highlighted in yellow. iii) shows 26 molecular functions mutually
altered in PI4KIIlo shRNA cell-lines. (with 115 genes exclusively altered in C4-2B and 123 genes
exclusively altered in PC3-CXCR4.). Some of the molecular functions of interest have been listed

and highlighted in yellow.

5.6 Discussion. From these above data we can conclude that PI4KIIIa contributes to the invasion
in PCa cell lines. The localization to the PM in response to ligand induction as seen in Fig 17,
further attributes to the role PI4KIIla activity contributing to the PI4P production to the invasive
projection in cancer cells from our previously published data!, leading to invasion. We see that
PI4KIIIa knockdown leads to decreased invasion, and this is case when the adaptor protein TTC7B
is transiently knocked down as well. These proteins also have a role in other chemokine mediated
invasions and might be crucial players in the invasive characteristics of cancer progression. The
CXCR4-CXCLI12 axis has already been well studied for its role in aiding circulating tumor cells
home into the bone marrow, and supporting colonization in the hematopoietic niche.

To study the effect of PI4KIIlo knockdown, stable cell-lines were created and
characterized for utilization in the functional and DEG studies. These stable knockdown cells

showed similar results for invasion compared to the transient knockdowns. The role of adaptor
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proteins in contributing to the proliferative nature of PCa cells, remain to be elucidated. PI4KIIla’s
key role may be to influence in this homing by contributing towards the attachment, invasion and
proliferation at the osteoblastic sites. Additionally, we further evaluated the differential expression
with differences in pathways enriched between the control and PI4KIIla knockdown cell-lines.
Consistent to our functional characterization, we find many pathways enriched attributing to cell
proliferation and invasion in Scr compared to PI4KIIla knockdown cell-lines (Table 2) (Table 3),
like the MTROCI signaling and mitotic spindle. Even the androgen response is significantly
enriched compared to PI4KIIla deficient cell-lines in C4-2B, and not so significant levels in PC3-
CXCRA4 cell-lines as expected as PC3 is androgen receptor negative. Interestingly as we saw in the
literature EFR3 and PI4KIIla is crucial for KRAS signaling in cancer’" 72, So, when we
knockdown PI4KIlla, genes downregulated in KRAS signaling (KRAS SIGNALING DN) is
enriched in this population in both C4-2B and PC3-CXCR4 (Table 4). Furthermore, the enrichment
of cell proliferative pathways such as E2F targets and protein secretion in cell-lines is validated
using the publicly available TCGA Firehose expressing high PI4KIllo for prostate
adenocarcinoma. These gene and pathway alterations are also further validated by similar
biological processes and molecular functions impacted by PI4KIllo knockdown using Advaita
ingenuity pathway analysis. These include processes such as proliferation, locomotion, response
to stimulus and GPCR binding.

Overall these studies are some of the initial efforts in uncovering the novel roles of
PI4KIIIa and its adaptor protein TTC7B. The study of the interaction by which these proteins
mechanistically contribute, through chemokine receptors especially the CXCR4-CXCL12 axis is
also quite interesting and sheds light on the various routes by which PI4KIlla transduces its

downstream signaling.
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CHAPTER 6- CLINICAL SIGNIFICANCE OF PI4KlIIla IN METASTATIC PROSTATE
CANCER BIOPSIES
6.0 Introduction. In our previous data, we observed the expression changes in primary vs
metastatic tumors through IHC staining of matched pairs of PCa tumor biopsies. This showed
higher level of PI4KIIla expression in metastatic sample compared to their matched primary
tumors (Fig 28). These were some of the early evidences of PI4KIIla expression and its implication
in prostate cancer. This trend of PI4KIIla expression levels in metastatic samples were also
corroborated with other publicly available datasets showing similar pattern of higher PI4KIIla
expression in metastatic samples. The studies we show here are from A) GDS3289: 101 cell
populations were isolated using laser-capture microdissection and profiled prostate cancer

progression from benign epithelium to metastatic disease!®’

. B) Beltran et al: histologically
characterized 114 castrate- resistant tumors from 81 patients as prostate adenocarcinoma (CRPC-
adeno, n=51) and neuroendocrine prostate-cancer (CRPC-NE, n=30), analyzed these biopsies over
different time points from same patients to perform genome-wide DNA methylation analysis!>3.
And C) GSE6919: 152 human samples that includes prostate cancer tissues, prostate tissue
adjacent to tumor, and metastatic prostate cancer tissues were analyzed for gene expression using
various Affymetrix chip sets. These studies support the increased PI4KIIla expression pattern in
increasing progression of PCa from benign to metastatic phenotype (Fig 29). Interestingly the
corresponding phosphatase SACMIL to the PI4KIIla showed a reciprocal pattern of decrease in
GDS3289 (Fig 29A). The adaptor protein EFR3B also showed a similar increase as PI4KIIla

expression in Beltran et al, in the castrate resistant neuroendocrine phenotype, a marker for drug

resistance and an aggressive variant (Fig 29B).
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In pancreatic ductal carcinoma this gene has been associated with invasion and metastasis
in differential gene expression analysis®®. It is known to be involved in chemoresistance to cisplatin
in medulloblastoma®® and gemcitabine resistance in pancreatic cancer’® from a panel of kinase
siRNAs. One of the recent implications of PI4KIIla along with its adaptor protein EFR3A, in

71,72 provides yet another

association to a commonly mutated gene KRAS in pancreatic cancers
evidence of PI4KIIla and its emerging role in commonly mutated cancers.

The stable knockdown of PI4KIIla in PCa cells leads to alterations in pathways and
processes responsible for regulation of cell motility, locomotion, proliferation and G-protein
coupled receptor binding. Now we analyze the alterations in pathways and functions on the basis
of PI4KIllo expression in metastatic biopsies of metastatic hormone sensitive prostate cancer
patients (mHSPC). This is in efforts to provide further insight into the processes that promote these
characteristics of invasion in samples of high PI4KIIla expression. Here in clinical samples, there
is a trend of high tumor cell proliferation, poor overall survival and PSA progression in patients in
high PI4KIIla levels in the bone.

6.1 Determine the clinical significance of PI4KIIla in human prostate cancer metastasis.
RNA-seq analysis was performed on biopsies from metastatic hormone sensitive PCa (mHSPC)
patients. 50 total metastatic biopsies were used for RNA sequencing from bone (n=32) and soft-
tissues (n=18) including liver and lymph-nodes. These biopsies were also used in clinical trial
NCT02058706, with total n=71 metastatic biopsies, testing the efficacy of enzalutamide vs
bicalutamide, with enzalutamide showing improved outcomes in terms of time to PSA progression,
response (7 month and 12 month) and overall survival (OS); with black patients showing even

159

better outcomes to PSA response with enzalutamide'”. Our RNA-seq analysis was further

stratified based on the origin of biopsies and low or high PI4KIlIla expression. Kaplan-Meier plots
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demonstrated that bone metastasis biopsies have poor OS and PSA progression in cohorts with
high PI4KIlla and CXCR4 expression, and there was no significance in these outcomes in
correlation to these expression levels in soft-tissue biopsies (Fig 30). It is interesting to note that
PCa metastasizes mostly to the bone and this poor outcome trend is also solely noticeable only in
bone biopsies and not in soft-tissues. A detailed COX regression analysis implicated the known
genes involved in PI4P production (Fig 17). These include two isoforms of PI4K (PI4KA and
PI4K2B), all the adaptor proteins involved in the recruitment of PI4KA to the PM, and CXCRA4.
The increased expressions of the proteins were significant in the poor OS of bone metastasis in
PCa (Table 6). Furthermore, the Pearson correlation showed associations of these interacting
proteins based on the origin of biopsy, and in particular EFR3B proved to be of significant
correlation with PI4KA and TTC7B in bone and not soft-tissue (Table 7). The correlation assessed
between PI4KA and CXCR4, and PI4KA and TTC7B showed positive correlation in metastatic
tumor biopsies from both bone and soft-tissue.

We further analyzed the efficacies of enzalutamide and bicalutamide post-treatment on the
overall patient outcome based on the origin of biopsies, in respect to low vs high PI4KIlla
expression levels. (Enzalutamide- Bone n=18, Bicalutamide- Bone n=14, Enzalutamide- Soft-
tissue n=8, Bicalutamide- Soft-tissue n=10). We observe that there is poor OS and PSA
progression associated with bone biopsies of high PI4KIlla expression levels that received
treatment with bicalutamide in combination with ADT and not enzalutamide (Fig 31A) (Fig 31C).
We must note that there might be better outcomes associated to PI4KIIla expression levels with
the improved next-generation androgen-blockade molecules such as enzalutamide, if the OS and
PSA progression were collected and followed-up for longer periods post-treatment. This could be

due to the development of drug-resistance to androgen-blockade therapies. Also, we see no



71

significant overall outcomes to either bicalutamide or enzalutamide in soft-tissue biopsies (Fig
31B) (Fig 31D).

With bone metastatic biopsies showing better outcomes in low PI4KIIla expression level
cohorts and interesting outcomes post-treatment with bicalutamide, we additionally analyze the
gene sets and pathways differentially expressed between the low and the high PI4KIIIa expression
levels. The GSEA analysis showed enrichment of gene-sets involved in cell proliferation such as
E2F targets, P53 pathways, PI3K-AKT-MTOR signaling, and WNT-Beta-Catenin signaling in
high PI4KIIlo expressing bone biopsies (Fig 32). These are the pathways implicated in cell
proliferation, and that are activated through the CXCR4-CXCL12 axis as we mentioned
previously. Among the leading-edge pathway analysis enriched between high PI4KlIlla vs low
PI4KIIla bone biopsy cohort, the top-most significant hallmark pathways are as seen in the
enrichment plots and as highlighted in yellow in the gene set table (Table 8) (FDR g-val < 0.05
and P<0.05).

Additionally, we explored these differential gene expressions based on race, categorizing
samples as of African-American (AA) origin or Non-AA, and further categorizing them based on
origin of biopsy as well. Overall AA population showed enrichment of Hallmark Androgen
Response pathways cumulatively with both bone and soft-tissue biopsies combined (Fig 34). This
might explain why AA patients respond well to the next-generation androgen blockade treatments
using enzalutamide on the basis of rate and duration of PSA response!°.

Interestingly, when bone biopsies were analyzed to show molecular signatures in AA bone
samples, the result showed reciprocal enrichment, that is enrichment of similar pathways we

mentioned for cell proliferation (Fig 35) in Non-AA bone samples, such as E2F targets, KRAS
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signaling, PI3K-AKT-MTOR signaling, and IL6-JAK-STAT3 signaling in high PI4KIIla
expressing bone biopsies.

This proliferative nature of non-AA bone biopsy samples was also validated using other
metastatic signatures, other than the Hallmark GSEA signatures, and re-analyzed with GSEA. The
external metastatic signatures utilized for our study were from GSEA and other published sources,
and they are as follows: a) meta-55, which is a distinct molecular profile that has a unique
MYC/RAS co-activation signature highly associated with PCa metastasis!'®® b) the gene signature
procured from Balk et al, that listed genes associated with aggressive phenotype and identified
genes that mediate androgen metabolism in androgen-independent metastatic tumors.!®! and C)
Chandran et al, differential gene expression analysis that show a unique pattern of 415 genes
upregulated (Chandran-Metastasis-UP) and 364 genes downregulated (Chandran-Metastasis-
DOWN) at least 2 fold in their metastatic samples, and this included pathways related to androgen
ablation and other metastasis associated genes. These multiple cross-validations showed similar
patterns of non-AA bone biopsies being reciprocally enriched compared to the AA. That is there
is an enrichment of these metastasis associated genes including proliferation and invasion in non-
AA bone samples compared to AA. And as expected Chandran-Metastasis-DOWN gene signature
that includes genes that are down-regulated in overall metastasis levels enriched in AA bone, in
comparison to non-AA bone (Fig 36).

As a validation and an overlap of the observations thus far from our cellular functional
assays and our biopsies samples, we can confidently state that knockdown of PI4KIIla leads to
decrease in cellular invasion and proliferation, and Non-AA bone biopsies show enrichment of
cell proliferation pathways. This is further confirmed with the enrichments of phosphatidylinositol

signal system (hsa 04070) and the PI3K-AKT signaling pathway (hsa 04151) from the KEGG
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pathway database in the Non-AA bone biopsies (Fig 37), indirectly correlating to the increased
expression of PI4KlIla, as it is a crucial kinase involved in both the signaling system.

We also analyzed the immune landscape using differential gene expression analysis
between the two different origin of biopsies (Bone and Soft-tissue) and within the low and high
PI4KIIIa expressing metastatic bone biopsies. PCa is known to have a very immunosuppressive
environment from the various regulatory immune cell profiles such as T-regulatory cells!® 163,
tumor associated macrophages (TAMS)!64166 and myeloid-derived suppressor cells (MDSCs)!'®7.
The tumor microenvironment is also bathed with the cytokine fluids and proteins from the
surrounding tumor stromal cells and fibroblasts, that act as immunosuppressants such as TGF-f3,
adenosine from prostatic acid phosphatase, PD-L1, VEGF, prostaglandin E2 and 1L-6,8,10. With
clinical trials in PCa targeting each of the individual mechanisms, optimal clinical efficacy is yet
to be achieved. Patient classification based on genomic profiling, if they have more susceptible
genes that are part of an immunosuppressive signature, along with use of combination therapies
and combined immunotherapeutic targets, might be a way to address the many mechanisms of
drug and other immunotherapy resistances in PCa'®, To gather the immune profile between our
biopsy samples and within our metastatic bone biopsies, the CIBERSORTX tool was utilized to
understand the differential gene expression using the LM22 signature, that is inbuilt within the
platform.

Our analysis showed that metastatic bone biopsies showed a more immunosuppressive
phenotype with the macrophage profile, with a higher presence of resting macrophages (M0) and
immunosuppressive macrophages (M2), while soft-tissues showed a more immune-active
phenotype with an increased presence of immune-active macrophages (M1). Naive T-cells CD4

where shown to be of higher expression in their unprimed state in high PI4KIIlo expressing bone
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biopsies, along with T-cells gamma delta (Fig 38A). The latter cell type gamma-delta is known to
have both pro-tumor and anti-tumor effects depending on the subset of gamma-delta'®®, but this
CIBERSORTX platform does not allow us to differentiate between the subsets. This was an
interesting trend to see between the biopsies, with bone showing a higher presence of naive and
immunosuppressive cells, considering that the majority of the PCa cells metastasizes to the bone.

Within the low and high PI4KIlla expressing metastatic bone biopsies, high PI4KIlla
expressing bone biopsies showed a more immunosuppressive phenotype, with increased
expression of MO and M2 macrophages. Although the expression of M1 immune-active
macrophages were similar between low and high PI4KIIla biopsies, the presence of MO and M2
makes the environment more irresponsive to any anti-tumor immune activity. Interestingly other
immune cells of significance in the profiling such as mast cells, natural killer cells (NK) and T-
cells CD4 memory cells were of higher expression in their resting state in high PI4KIIla expressing
biopsies, whereas they were of higher expression in their active state in low PI4KIIla expressing
bone biopsies (Fig 38B). Other immunosuppressive cells like t-regulatory cells showed no change

between soft-tissue vs bone or low vs high PI4KIIla bone metastatic biopsies.
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6.1.1 Results.
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Figure 28. PI4KIIla expression is higher in metastatic tumors compared to its matched
primary tumors.

9 matched primary tumors and their respective metastic tumors of bone or soft-tissue were stained
for observing the PI4KIlla levels. The graph shows the quantitation of the same showing higher

PI4KIIIa staining in the metastatic samples.
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Figure 29. PI4KIIla expression profile in

A) GDS3289: show high PI4KIIla expression, between population E to F, E= metastatic prostate
cancer, only refractory, F= Localized prostate cancer, gleason pattern <4. SACMLI1 expression,
which is the corresponding phosphatase between the progression of E to F. B) Beltran et al: show
high PI4KIIla and EFR3B expression in castrate resistant neuroendocrine population compared to
adenocarcinoma. C) GSE6919: PI4KlIIla expression from N=normal to T= localized prostate

tumor to M= metastatic tumor population.
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Figure 30. Better OS and PSA progression is associated with low PI4KIllo and CXCR4
expression in bone biopsies.

Kaplan-Meier analysis comparing OS and PSA progression in patients based on A) PI4KIlla levels
in bone. B) CXCR4 levels in bone. C) PI4KlIla levels in soft-tissue. D) CXCR4 levels in soft-

tissue.

Overall-Survival (OS) in bone biopsies

Hazard
Ratio (95%
(od)]

3.449

PI4KA (1.286,9.251) 0.009
2.454

PI4KB (0.946,6.365) 0.056
2.047

PIAK2A (0.791,5.300) 0.132
3.000

PI4K2B (1.119,8.041) 0.022
3.173

CXCR4 (1.181,8.525) 0.016
3.194

EFR3A (1.189,8.579) 0.015
4.093

EFR3B (1.446,11.588) 0.004
3.173

TTC7A (1.181,8.525) 0.016
3.449

FAM126B (1.286,9.251) 0.009
3.173

FAM126A (1.181,8.525) 0.016

Table 6. Cox regression analysis of Overall Survival of bone metastasized PCa.
Genes highlighted in yellow show a higher HR with p<0.05, indicating poor OS in biopsies of

bone metastasis.
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All tissues

R?=0.386 R2=0.001 R?=0.001
P<0.0001 P=0.795 P=0.796
R?=0.386 R?=0.249 R?=0.283
P<0.0001 P=0.0002 P<0.0001
R?=0.001 R?2=0.249 R?2=0.124
P=0.795 P=0.0002 P=0.0123
R2=0.001 R2=0.283 R?2=0.124
P=0.796 P<0.0001 P=0.0123

Bone

R2=0.415 R2=0.000 R2=0.002
P<0.0001 P=0.976 P=0.812
R2=0.415 R2=0.327 R2=0.253
P<0.0001 P=0.0006 P=0.0033
R2=0.000 R2=0.327 R2=0.288
P=0.976 P=0.0006 P=0.0015
R2=0.002 R2=0.253 R2=0.288
P=0.812 P=0.0033 P=0.0015
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CXCR4 R?=0.346 R?=0.021 R?=0.000
P=0.0102 P=0.566 P=0.923
R?=0.346 R?2=0.151 R2=0.360
P=0.0102 P=0.111 P=0.0085
R?=0.021 R?=0.151 R?=0.004
P=0.566 P=0.111 P=0.809
R?=0.000 R?2=0.360 R?=0.004
P=0.923 P=0.0085 P=0.809

Table 7. Pearson Correlation between the interacting proteins.

The correlation showing significance between interacting proteins of tumor biopsies.
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Figure 31. Better OS and PSA progression is associated with low PI4KIIla in bone biopsies
with Bicalutamide treatment in addition to ADT.

Kaplan-Meier analysis comparing OS and PSA progression in patients based on PI4KIIla
expression levels A) with enzalutamide treatment in bone biopsies B) with enzalutamide treatment
in soft-tissue biopsies C) with bicalutamide treatment in bone biopsies D) with bicalutamide

treatment in soft-tissue biopsies.

1 |[HALLMARK_E2F_TARGETS Details 200 ||0.61((1.38]/0.000 0.003 0.003 12466 tags=87%, list=32%, signal=128%
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3 ||HALLMARK_OXIDATIVE_PHOSPHORYLATION Details ... 200 ||0.60([1.35)/0.000 0.001 0.004 13408 tags=90%, list=35%, signal=136%
4 ||HALLMARK_MITOTIC_SPINDLE Details 199 ||0.60{[1.35({0.000 0.001 0.004 13277 tags=88%, list=34%, signal=133%
5 ||HALLMARK_PROTEIN_SECRETION Details .. 96 ||0.60((1.33]/0.000 0.002 0.011 12590 tags=85%, list=33%, signal=126%
6 ||[HALLMARK_G2M_CHECKPOINT Details . 199 ||0.59([1.32{{0.000 0.002 0.011 13663 tags=87%, list=35%, signal=135%
7 ||HALLMARK_DNA_REPAIR Details . 149 ({0.58((1.30([0.000 0.003 0.017 14534 tags=91%, list=38%, signal=146%
8 ||[HALLMARK_PI3K_AKT_MTOR_SIGNALING Details .. 105 ||0.57(|1.25{0.000 0.009 0.067 13776 tags=82%, list=36%, signal=127%
9 ||HALLMARK MYC_TARGETS_V2 Details 58 ||0.58((1.24]/0.004 0.010 0.087 13420 tags=84%, list=35%, signal=129%
10 [[HALLMARK_UNFOLDED_PROTEIN_RESPONSE Details . 113 |{0.54|(1.20([0.000 0.026 0.232 13580 tags=77%, list=35%, signal=118%
11 [[HALLMARK_WNT_BETA_CATENIN_SIGNALING Details 42 ||0.56(11.19([0.022 0.027 0.263 13646 tags=81%, list=35%, signal=125%
12 |[HALLMARK_ADIPOGENESIS Details 200 ||0.52((1.17)0.001 0.040 0.389 16254 tags=85%, list=42%, signal=146%
13 |[HALLMARK_P53_PATHWAY Details 197 ||0.52{[1.17 |[0.000 0.039 0.406 15267 tags=80%, list=40%, signal=132%
14||HALLMARK_MTORC1_SIGNALING Details ... 200 ||0.52((1.17)0.000 0.037 0.409 17811 tags=93%, list=46%, signal=171%
15 [[HALLMARK_PEROXISOME Details 104 ||0.52{|1.15((0.015 0.056 0.577 16223 tags=83%, list=42%, signal=142%
16 || HALLMARK_REACTIVE_OXYGEN_SPECIES_PATHWAY || Details .. 48 ||0.53((1.14]/0.077 0.069 0.678 14868 tags=85%, list=38%, signal=139%
17 [HALLMARK_TGF_BETA_SIGNALING Details 54 ||0.53||1.13|[0.067 0.075 0.731 16093 tags=87%, list=42%, signal=149%
18||HALLMARK_UV_RESPONSE_DN Details .. 144 ((0.50((1.13[[0.018 0.075 0.749 15871 tags=81%, list=41%, signal=136%
19 [[HALLMARK_FATTY_ACID_METABOLISM Details . 158 ||0.50([1.13{{0.013 0.074 0.758 15000 tags=75%, list=39%, signal=123%
20 [[HALLMARK_INTERFERON_ALPHA_RESPONSE Details . 97 ||0.51([1.13]/0.029 0.070 0.761 17958 tags=94%, list=46%, signal=175%
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22 |[HALLMARK_INTERFERON_GAMMA_RESPONSE 199 |[0.50((1.12[0.007 0.075 0.820 18036 tags=89%, list=47%, signal=167%

Table 8. Gene sets enriched in phenotype high-PI4K-Bone (n=13).

Gene sets enriched in this high PI4KIIla expressing bone biopsy cohort show enrichment in

pathways involved in cell-proliferation ((FDR g-val < 0.05 and P<0.05)
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Enrichment plot: HALLMARK_ADIPOGENESIS Enrichment plot: HALLMARK_P53_PATHWAY
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Figure 32. GSEA of proliferation-associated gene set in PI4KIIla high and low expressing
bone biopsies.

GSEA comparing pathways enriched in high PI4KIlla vs low PI4KIIlo expressing human
metastatic bone biopsy signature from bulk RNA-seq of hormone sensitive prostate cancer
(mHSPC) patients. These are the top-most enriched pathways between the two cohorts, and are
associated with the cell proliferative characteristics. The samples were classified into low (mRNA

expression < 22.5) or high (mRNA expression > 22.5) based on the average.
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Figure 33. Heatmap representation of individual expression levels of top 50 features for each phenotype

in Expression dataset in metastatic bone biopsies of mHSPC patient samples.
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Figure 34. GSEA of Hallmark Androgen
Response in AA metastatic biopsies of all
tissues.

This pathway is enriched as one of the top-most
molecular signatures with a NES= 1.40 and FDR

q- value= 0.027.
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Figure 35. GSEA of proliferation-associated gene set in Non-AA bone biopsies.
GSEA comparing pathways enriched in AA vs Non-AA human metastatic bone biopsy signature
from bulk RNA-seq of hormone sensitive prostate cancer (mHSPC) patients. These are the top-

most pathways reciprocally enriched in Non-AA compared to AA cohorts, and are associated with

the cell proliferative characteristics.
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5 ||HALLMARK _MYC_TARGETS_V1 Details .. 200 |[[-0.59((-1.89(|0.000 0.000 0.000 13684 tags=79%, list=35%, signal=122%
6 ||HALLMARK_INTERFERON_ALPHA_RESPONSE Details .. 97 |[-0.61|[-1.84|[0.000 0.000 0.000 7415 tags=54%, list=19%, signal=66%
7 ||HALLMARK_DNA_REPAIR Details .. 149 ||-0.56|(-1.74)0.000 0.000 0.003 14340 tags=72%, list=37%, signal=115%
8 |[HALLMARK_OXIDATIVE_PHOSPHORYLATION Details ... 200 |[-0.54)|-1.74|/0.000 0.000 0.003 13095 tags=67%, list=34%, signal=101%
9 [[HALLMARK_IL2_STAT5_SIGNALING Details ... 199 |([-0.53|-1.69((0.000 0.001 0.006 8237 tags=51%, list=21%, signal=65%
10 [[HALLMARK_MITOTIC_SPINDLE Details ... 199 |([-0.52|-1.68((0.000 0.001 0.007 12184 tags=57%, list=32%, signal=83%
11 [[HALLMARK_IL6_JAK_STAT3_SIGNALING Details ... 87 |[-0.55|[-1.65|[0.000 0.001 0.012 6968 tags=52%, list=18%, signal=63%
12 [[HALLMARK_INFLAMMATORY_RESPONSE Details ... 200 |[[-0.50(-1.64|[0.000 0.002 0.019 9913 tags=56%, list=26%, signal=74%
13 [[HALLMARK_COMPLEMENT Details .. 199 ||-0.501(-1.62)/0.000 0.002 0.023 10918 tags=57%, list=28%, signal=79%
14 |[[HALLMARK_TNFA_SIGNALING_VIA_NFKB Details .. 200 |[[-0.45((-1.59(|0.000 0.003 0.035 9025 tags=49%, list=23%, signal=63%
15 [[HALLMARK_KRAS_SIGNALING_UP Details . 198 ||-0.48|(-1.56|/0.000 0.004 0.053 11140 tags=58%, list=29%, signal=81%
16 [[HALLMARK_MTORC1_SIGNALING Details .. 200 |[[-0.47((-1.53]/0.000 0.006 0.087 12376 tags=61%, list=32%, signal=89%
17 [[HALLMARK_MYC_TARGETS_V2 Details .. 58 |[-0.54((-1.50(|0.006 0.008 0.118 11909 tags=64%, list=31%, signal=92%
18 [[HALLMARK_PI3K_AKT_MTOR_SIGNALING Details .. 105 ||-0.49](-1.49)0.002 0.008 0.129 11976 tags=60%, list=31%, signal=87%
19||HALLMARK_CHOLESTEROL_HOMEOSTASIS Details ... 74 |[-0.50)|-1.45|(0.012 0.015 0.224 7857 tags=45%, list=20%, signal=56%
20 ([HALLMARK_PANCREAS_BETA_CELLS Details ... 40 |[-0.53)|-1.41|0.043 0.023 0.337 7135 tags=43%, list=18%, signal=52%
21||HALLMARK_UNFOLDED_PROTEIN_RESPONSE 113 [[-0.43|-1.34(0.031 0.052 0.637 12593 tags=52%, list=33%, signal=77%

Table 9. Gene sets enriched in phenotype Non-AA-Bone (n=19).

Gene sets enriched in the non-AA bone biopsy cohort show enrichment in pathways involved in

cell-proliferation ((FDR g-val < 0.05 and P<0.05
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Figure 36. GSEA using A) Meta-55, B) Balk et al, and C) Chandran et al- Metastasis-Up D)
Chandran et al- Metastasis-Down-regulated gene signatures

- showing reciprocally enriched metastatic gene signatures in non-AA bone biopsies, while
Chandran et al, Metastasis-Down-regulated gene signatures showing enrichment in AA bone

biopsies.




94

Phosphatidylinositol Signaling system hsa04070

Enrichment plot: kegg db hsa04070 Ptdins signal

system.grp
E 0.0 "\‘I
3 01 1
s F
g0 o
£ N
% -03 ,:
AA vs Non-AA Bone ; N
8y [ABene Gont
NES =-1.51 5.
FDR =0.001 % .. Zuro caes 0470
P=10.001 :
- 08 Non-AA-Bane (negatively comelated
§ o 5,000 10,000 15,000 20,000 25,000 30 000 35,000 40 oot
Enriched in Non-AA o« Rank in Ordered Dataset
Bone samples [ Enrichment profile — Hits Ranking metric scores
PI3K-AKT Signaling pathway hsa04151
Enrichment plot: Kegg db PI3K-AKT hsa04151.grp
0.101
‘(v[.{ 0.05
t'., 0.00
g 0,05
2 -0.10
Z 015
g -0.20
i 0,28
£ .0.30
Y 03s]
£ W \ x lll 'M
% 10 |[AVBIAE (sositive tlated
NES =-1.21 € os
FDR = 0.048 E oo
P=0.048 3o e r—
% o %000 10.000 15‘600 20,000 :‘S‘IOW » CCo 3% 000 <0 .00
Elm'chedin Non—AA = Rank in Ordered Dataset
Bone SWIRS l - Enrichment profile — Hits Ranking mewic scores

Figure 37. GSEA using Kegg pathway database.
showing reciprocal enrichment of both phosphatidylinositol signaling system (hsa04070) and

PI3K-AKT signaling pathway (hsa04151) in Non-AA bone biopsies when compared to AA bone

biospies.
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Figure 38. Immune expression profile.

A) between bone and soft-tissue: Soft-tissue biospies show higher expression of immune-active
macrophages (M1), and CD4 memory resting cells. While bone has a higher expression of resting
macrophages (M0), immunosuppressive macrophages (M2), CD4 naive and gamma-delta cells.
B) within the low and high PI4KIIla metastatic bone biospies: low PI4KIIla expressing biopsies
show almost similar expression of immune-active macrophages (M1) as high PI4KIIla biopsies,
but high PI4KIIla expressing biopsies also shows higher expressions of resting macrophages (M0),
and immunosuppressive macrophages (M2).

Other immune cells of significance such as mast cells, natural killer (NK) cells, and CD4 memory
cells are of higher expression in their resting state in high PI4KIIla expressing biospies, whereas

they are of higher expression in their active state in low PI4KIIla expressing biospies.

6.2 Discussion. The significance of PI4KIlla is evident in these metastatic samples from hormone
sensitive PCa patient, on the basis of poor OS and PSA in bone biopsies with higher expression
levels. The COX regression analysis also pointed towards significance in genes associated with
PI4KIIIa to be implicated in poor OS in bone biopsies. PI4KIlIa seems to be of relevance in the
hormone sensitive patients that underwent Bicalutamide treatment compared to Enzalutamide, this
could undrescore one of the limitations of the data avaialbility of our patient cohort. PI4KIIla
could potentially be of much importance in castrate-resistant patients when they are undergoing
new generation androgen blockade therapies and this could only be verified if the OS and PSA
data of patients are followed up for a longer time period, as resistance is known to be acquried
overtime especially with the new generation drugs. This is evident from both PI4KIIla and EFR3B

being significantly overexpressed in populations of neuro-endocrine differentiation (NED) (Fig
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29B). NED is used as an identification marker for CRPC and is a characteristic of a more
aggressive PCa with poor prognosis. The signaling transductions invovled in this NED has been
of interest for possible disgnostic and theraputic targets. For example, 5-HT and PHTtP are
associated with malignant growth and dysregualtion through stimulation of GPCRs; neuropeptides
also transudce messages thorugh Src, PI3K/AKT, FAK kinases by activating transcription factors
like NFKB'!7°, Our Beltran analysis show PI4KIIIa levels associate with a NE phenotype ( Fig
29B), so PI4KIlla inhibitors might prove useful in combination with other NED associated CRPC
therapeutic strategies, such as somatostatin analogs that also couple to G proteins, bombesin
antagonists, aurora kinase inhibitors, zoledronic acid et cetera!”’,

The patient tumor studies (GDS3289, GSE6919) show high PI4KIlIla expression levels
correlate with PCa metastatic tumor population. These findings support our DEG analysis that
identified metastatic bone biopsies expressing high PI4KIIla, to be enriched in cell proliferative
pathways, potentially contributing to the metastatic and invasive phenotype we observe in the
public datasets.

When studying how race contributes to the development of PCa, it defenitely seems to be
one of the contributing factors in the proliferative and invasive capactiy leading to metastasis,
between AA and non-AA patients. Firstly, AA patients have the highest enrichment of androgen
response pathways when compared to other races through GSEA analysis of metastatic biopsies
(Fig 34). Interstingly in the clinical studies using our biopsies show, AA patients have better
outcomes to PSA response with enzalutamide!'*®. When AA patient were stratified based on the
origin of biospy, the GSEA analysis additionally showed enrichment of epithelial-mesenchymal-
transition (EMT) pathways in bone biospies, further contributing to the aggressive phenotype in

the AA cohort.
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PCa has a highly immuno-suppressive environment from a multi-factorial regulatory, pro-
tumirogenic and immunosuppressive environment, contributing to broad mechanisms of
resistance. The potential contribution or mere presence of PI4KIIla in more immunosuppressive
profiles of metastatic bone biospies, opens more potential areas of exploration on how PI4KIlIla
influences the TME of PCa. This is due to the Currently there are many ongoing trials that are
testing immunotherapies with anti-CTLA-4, anti-PD-1/PD-L1, anti-CTLA-4 + anti-PD1/PD-L1,
adenosine pathway inhibitors, bispecific antibodies and CART T cells, mostly in mCRPC and in
some HSPC, mHSPC and CRPC cohorts. These are tested in combination with chemotherapy,
anti-androgens, anti-CD73, antiangiogenics, PARP inhibitors, cytokine-targeted therapy,
antitumor vaccines, immune checkpoint inhibitors, radiation et cetera. PI4KIlla could be
potentially used as a tumor-intrinsic feature or a biomarker for optimizing patient selection,
responsive to particular treatments.

In conclusion, we can assert the novel interaction of PI4KlIlla and its adaptor protein-
TTC7B with CXCR4, plays a role in CXCL12 induced invasion and proliferation, leading to
metastasis in advanced PCa, resulting in poor overall OS and PSA progression. The attributes of
EFR3B to the PI4KIIla- CXCR4 interaction requires further investigation, by confirmation
through interaction studies. The limitations on performing these studies to detect endogenous
interaction in cells relies on appropriate EFR3B antibodies, in my work we tried 2 different EFR3
antibodies in interaction studies but none of them are specific to EFR3B. Nontheless EFR3B is
shown to be an important protein in correlation (Table 7) and hazard studies (Table 6), contributing
to the OS and PSA in bone. Thus PI4KIIla can be considered as another metastatic molecular
feature and should be investigated for its role in resistance and possible immunosuppressive

attributes.
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Figure 39. CXCR4 interacts with PI4KIIla leading to PCa invasion and metastasis.
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MATERIALS AND METHODS

7.1 Cell Culture. Prostate cancer cell lines PC3, C4-2B, VCaP were obtained from ATCC. PC3
and C4-2B were maintained in RPMI-1640 (Gibco-Invitrogen-Life Technologies), and
supplemented with 10% heat-inactivated FBS (Hyclone, Fisher Scientific) and 1% P/S (50 units/ml
penicillin, 50 ug/ml streptomycin, Gibco). VCaP cells were maintained in DMEM (ATCC),
supplemented with 10% regular FBS (Cytiva, Hyclone, Fisher Scientific) and 1% P/S (50 units/ml
penicillin, 50 ug/ml streptomycin, Gibco). C4-2B and PC3 stable, lentiviral generated cell lines
were maintained in RPMI-1640 (Gibco-Invitrogen-Life Technologies) supplemented with 10%
heat-inactivated FBS (Hyclone, Fisher Scientific), 1% P/S (50 units/ml penicillin, 50 ug/ml
streptomycin, Gibco) and appropriate selection antibiotics (40ug/ml blasticidin S for PC3-RFP and
PC3-CXCR4 overexpressing cells; puromycin at 2ug/ml for PC3 Scr-shRNA or 24ug/ml for PC3-
CXCR4 shRNA knockdown cells; 40ug/ml blasticidin S and 0.35ug/ml puromycin for PC3-
CXCR4 overexpressing and PI4K or Scr shRNA knockdown cells). All cell cultures were
performed at 37°C with 5% COz. All cell lines were authenticated with STR analysis (Genomics
core at Michigan State University, East Lansing, MI) and shown to have markers respective for
each cell line as established by ATCC, and were tested for mycoplasma contamination prior with
Venor-GeM mycoplasma detection kit (Sigma Biochemicals, St. Louis, MO).

7.2 Lentiviral generation of stable cell-lines. Stably transduced PC3 cells with a knocked-down
(GIPZ shRNA-CXCR4 lentiviral construct) or overexpressed (pLOC-CXCR4 lentiviral construct)
CXCR4 gene were produced using a Trans-Lentiviral Packaging Kit (Thermo-Fisher Scientific)
according to manufacturer’s protocols. Briefly, pPLOC-CXCR4 was generated by PCR cloning of
CXCR4 gene from a pPCDNA3-CXCR4 construct (30) as template. Transfection into HEK293T

cells generated infectious, non-replicating pseudoviral particles used to stably transduce PC3 cells
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and isolate stable clones selected with blasticidin S. GIPZshRNA-CXCR4 lentiviral construct
targeting the 5’-UTR of CXCR4 mRNA (mature antisense sequence: 5’-
ACAGCAACTAAGAACTTGG-3’) was purchased/obtained through GE Dharmacon (Lafayette,
CO 80026)/Wayne State University Biobank Core Facility and used in a similar manner to
transduce PC3 cells with infectious, replication incompetent lentiviral particles to generate stable
CXCR4-knockdown cells using puromycin for selection of stable clones. For selecting stable
clones, lentivirus transduced cells were seeded in 96 well plates at single cell density, monitored
for GFP/RFP fluorescence and treated with either blasticidin S or puromycin. Two clones were
further characterized for CXCR4 overexpression and knockdown and used in subsequent
experiments.

7.3 Western Blot analysis. Total cellular proteins were extracted using RIPA buffer with 1x
Protease inhibitor cocktail (Roche, Indianapolis, IN). Protein was quantified using BCA protein
assay (Pierce Biotechnology, Rockford, II). Western blotting was performed using SDS-PAGE
with gel transfer to a nitrocellulose membrane. Membranes were blocked in 5% BSA, probed with
primary antibody in 5% BSA, and with secondary antibody linked with horseradish peroxidase, in
5%BSA. Enhanced chemiluminescence (ECL) substrate and autoradiography film was used to
detect proteins. Primary and secondary antibodies are listed in Table . Densitometry was performed
using image J software.

7.4 Immunoprecipitation. Prostate cancer cells were grown in their respective complete media
till 70% confluency. Transient transfections were performed if showing native interactions with
over-expressions using 15ug of plasmid and Lipofectamine2000 Transfection Reagent (Life
Technologies, Invitrogen) in Opti-MEM media (Gibco). Cells were serum starved overnight,

washed with PBS and treated with ligand CXCL12 (Peprotech, final [200ng/ml]) for 10 minutes
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or left untreated. Cells were then lysed with 500ul/100mm-plate RIPA lysis buffer. Lysates were
rotated in 4C for 15 minutes, and centrifuged at 15,000rpm for 15 minutes. The supernatants were
used to determine protein concentration using BCA protein assay kit. (ThermoFisher Scientific).
400-600ug of protein lysate were rotated with 4ug of antibody (CXCR4 AB1846 Millipore) at 4C
overnight., followed by rotation with 40ul of Pierce Protein A/G agarose (ThermoScientific) next
day for 2 hours at 4C. The samples were centrifuged at 5000rpm for 30secs, and washed 3 times
with RIPA bead wash-buffer and resuspended in denaturing sample buffer. The input samples
along with the immunoprecipitation samples were heated at 100C for 5 minutes and
immunoblotted as per Western blot analysis protocol.

7.5 PI4KlIlla lipid kinase assay. In vitro PI4KIIla lipid kinase assays were performed as
described earlier (22). Post kinase assay the chloroform-extracted PI(4)P product was separated
by thin-layer chromatography (TLC) in n-propanol-2M acetic acid (65:35 v/v). PtdIns was
visualized with 12 vapor following PI(4)P detection through autoradiography. PI4KIlIla activity
was set as one-fold in control PC3 cells (PC3 Scr and PC3-RFP) and compared with CXCR4
manipulated cells.

7.6 Cell proliferation and invasion assays. For cell proliferation, Prostate cancer cells were
plated in 96-well by supplementing media with 10mM of HEPES buffer, with the appropriate drug
treatments as applicable. Viable cells were measure using WST-1 (Roche) as per manufacturers
protocol. For cell invasion 24-well 8uM transwells (Falcon) were coated with 37.5ug Matrigel per
insert, cells were seeded on the top of the chamber in serum-free media, along with chemo -
attractants in the lower chamber in serum-free media. After 24 hours cells were stained with 0.9%

crystal violet, and imaged for quantitation.
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7.7 Fluorescence microscopy. Cells were plated on coverslips coated with poly-L-lysine (Sigma)
in a 6-well plate, and transfected with 2.5ug of respective plasmids with lipofectamine. Cells were
serum starved overnight; treated with either 2uM GSK-F1 or 4ug/ml AMD-3100 for 2 hours and
then ligand-induced with CXCL12 (200mg/ml, Peprotech). After treatment, cells were fixed with
4% PFA with 0.2% glutaraldehyde at room temperature for 15 minutes. After aspiration, cells were
further incubated with 50mM NH4Cl in PBS and washed for 10 minutes, 3 times. Then cells were
thoroughly washed with water, and mounted on slides using Vectashield with DAPI. Cells were
imaged using Leica DMi3000 B fluorescence microscope.

7.8 Proximity Ligation Assay. Cells were plated on chamber slides and serum starved overnight.
After ligand induction with CXCL12 (200ng/ml), cells were fixed with 4% PFA and permeabilized
with mild buffer 0.01% tween-20 in PBS. The cells were further treated as per the Sigma Duolink
DUO092101-1 kit. CXCR4-mouse and TTC7B-rabbit antibodies were used for primary incubation
and observed for the presence of co-localization of CXCR4 and TTC7B using fluorescence
microscope.

7.9 Gene Expression Omnibus Database. GDS3289 from the public database of GEO-NCBI was
used to analyze the PI4KlIlla expression from LCM-captured epithelial cell populations that
represent prostate cancer progression from benign to metastatic disease. The total 104 epithelial
and stromal samples from these different states were extracted, by downloading the platform and
matrix files from the GDS3289 database. Data in the files were converted to log2 scale and
analyzed using GraphPad Prism 6.

7.10 Patient and Clinical data. Pre-biopsy samples from 50 patients with metastatic hormone-
sensitive prostate cancer (mHSPC) were used for the clinical analysis in these studies. These

patients participated in a multi-center trial conducted in 4 different centers in the US. These men
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have no history of seizures, and have adequate marrow, renal and liver function, with a median
age of 65. Clinical outcome data of the PSA response rate and Overall Survival statistics were
obtained from this study for our analysis (Clinical trial: Identifier: NCT02058706). Total RNA
was extracted using the RNeasy midi kits (Qiagen) along with ON-Column DNase digestion
(Qiagen), as described below, and submitted to the core. A total of 32 bone biopsies and 18 soft-
tissue biopsies were used in this study after RNA quality was confirmed, and RNA-sequencing
(RNA-seq) was performed. The GSEA analysis was performed on the resulting RNA-seq TPM
data, as described below. The upregulation and downregulation of genes in the pathways after this
enrichment analysis was further verified by RT-PCR. Cibersortx machine-learning tool was also
utilized to identify immune expression profile using the LM22 signature.

7.11 RNA-sequencing analysis. Transcriptomic analysis of PC3-CXCR4 Scr and 27-PI4KA
shRNA cells were performed in quadruplicates. RNA was prepared from cultured cells using the
Qiagen RNeasy mini kits (Qiagen) along with ON-Column DNase digestion (Qiagen), and
submitted to the core. Poly-A pulldown was performed for total RNA enrichment with an
acceptable RIN number above 7.

7.12 Gene Set Enrichment Analysis. Pathway enrichment was performed using GSEA software
(version 4.1). The Hallmark pathway dataset was downloaded from the MsigDB database of the
GSEA website. The Scr vs 27-PI4KA shRNA expression profile data and the attribute files were
enriched and analyzed by default weighted enrichment statistics. The number of permutations was
set to 1000. Similar methods were followed to analyze the metastatic biopsies of hormone-
sensitive PCa patients.

7.13 Pathway Analysis. Pathway analysis was performed using iPathwayGuide (Advaita

Bioinformatics) and DEGs with fold change >= 1.5 and FDR <=0.05 was considered significant.
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The software uses the DEG interactions as mapped by the Kyoto Encyclopedia of Genes and
Genomes, (KEGG) database.

7.14 Statistical Analysis. GraphPad Prism 6 was used to assess statistical significance. Unpaired
non-parametric t-test (Mann-Whitney) and one-way Anova followed by Tukey post-test were used
to determine statistical significance (P < 0.05) by comparing means of control and experimental
groups. *: P value < 0.05. ** P value < 0.01. *** P value < 0.001. NS stands for “not significant”.
7.15 Antibody links.

Anti-Rabbit HRP Linked CELL SIGNALING 7074S (1:5000) DataSheet

Mouse Anti-rabbit IgG (Conformation Specific) (L27A9) mAb (HRP Conjugate) CELL
SIGNALING #5127 (1:5000) DataSheet

CXCR4 Millipore rabbit AB1846 (1:5000) DataSheet

CXCR4 R&D mouse MAB172 (for IF) DataSheet

TTC7B Invitrogen/ ThermoFisher PA5-63750 (1:1000) DataSheet

PI4KA Cell-signaling PA5-63750 #4902 (1:1000) DataSheet

Anti-mouse HRP linked CELL SIGNALING 7076S DataSheet

Protein A HRP conjugate CELL SIGNALING 122918 (1:1000) DataSheet

EFR3B LSBIO ab LS-C186976 DataSheet

EFR3B ABCAM ab-177971 DataSheet

Phospho-AKT rabbit CELL SIGNALING (1:1000) DataSheet

AKT-pan rabbit CELL SIGNALING (1:1000) DataSheet

AGXT?2 mouse Proteintech (1:6000) DataSheet

GAPDH rabbit Proteintech (1:10,000) DataSheet

OTUD7A Novusbio rabbit Proteintech (1:1,000, but very strong so 1:2000 can try) DataSheet
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EFHDI1 Novusbio rabbit Proteintech (1:1,000) DataSheet
MMP1 R&D Biotechne mouse (powder reconstituted at 0.5mg/ml to 2ug/ml in 5%BSA)

DataSheet
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The CXCR4-CXCL12 chemokine signaling axis plays a key role in migration and bone
metastasis in prostate cancer (PC). Androgens regulate CXCR4 expression and its receptor
activation in lipid-raft micro domains of PC cells, resulting in higher protease expression and
invasion. In order to identify some novel CXCR4 co-regulators associated within the lipid-raft, a
SILAC (Stable isotope labeling using amino acid in cell culture)-based proteomic analysis was
performed with PC3 stable cell-lines over-expressing or knocking-down CXCRA4.
Phosphatidylinositol 4-kinase III alpha (PI4KIIla or PI4KA) and SAC1 lipid phosphatase were
identified as candidate proteins enriched in CXCR4 expressing cells. PI4KA is an evolutionarily
conserved mammalian kinase that converts PI to PI4P; and SAC1 dephosphorylates PI4P to PI.
PI4K is required for the maintenance and functioning of the plasma-membrane and vesicular
trafficking in the Golgi apparatus. PI4KA is also needed to maintain a steady pool of PI(4,5)P2 in
the plasma-membrane, to be utilized in various signaling pathways.

We show that CXCR4 interacts with PI4KA through its adaptor proteins EFR3B and
TTC7B, recruiting it to the plasma-membrane for PI4P generation. Similarly, PI4KA was closely

linked to CXCR4 induced PC cell invasion, and knockdown of PI4KA in CXCR4 over-expressing
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PC3 cell lines reduced cell invasion. Also, localized productions of PI4P was evident in invasive
projections of CXCR4 over-expressing cell lines through immunofluorescence microscopy. PC
tumor microarray data show increased PI4K expression in metastatic PC tissue vs localized or
normal adjacent tissue. These data suggest a novel interaction between PI4KA and CXCR4,
promoting tumor cell invasion and metastasis. Pharmacological targeting of PI4KA, its adaptor
proteins or its signaling-related proteins might prove therapeutically beneficial and enhance

survival in PC patients.
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