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CHAPTER 1 INTRODUCTION

1.1 What are the benefits of QGP study?

When Edwin Hubble found in 1929 that the distance between galaxies is directly

proportionate to the speed at which they are moving away from us, he coined the term

′′expanding universe′′. It’s clear to see how the universe gets smaller and smaller as we

travel back in time (Figure 1.1). A time (now estimated to be 14 billion years ago)

when the whole universe was confined in a single point in space may be reached by going

backwards farther in our time travel. Big Bang must have been a single, cataclysmic

event that established the universe as we know it today.

Figure 1.1: The Evolution of the Big Bang Theory.

QGP 1 has to have existed at some point in the very early history of the universe.

1Quark-gluon plasma (QGP) is a soup of Quarks and gluons that scientists have been trying to
recreate for the past decade by smashing atom nuclei together with enough energy to generate trillion-
degree temperatures.
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According to the Big Bang theory, the universe has gone through numerous stages of

evolution because it was created 14 billion years ago.

When it comes to studying nuclear matter the nucleus–nucleus collision technique is

widely established. When a nucleus collides with another nucleus with relativistic energy,

it goes through many phases. Figure 1.2 depicts a schematic representation of the various

stages of the collision as it occurs.

Figure 1.2: Space-time diagram of a nucleus-nucleus collision, illustrating the many stages
of the expanding matter[1]

At the pre-equilbrium stage, the collisions are at the partonic level. The collisions

between the initial partonic result in the formation of a fireball in an extremely excited

state. The fireball is most likely not in equilibrium. Fireball constituents frequently col-

lide, establishing a local equilibrium condition. The period of time required to achieve

local equilibrium is referred to as the thermalization time. While in the QGP stage,

thermal pressure exists in the system, acting in opposition to the surrounding vacuum.

The fireball then expands collectively (hydrodynamically).The energy density of the sys-
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tem reduces as it expands, and the system cools. During the hadronization stage (Mixed

phase-Interacting hadron gas), the entropy density will fall quite quickly over a short

temperature interval.Because total entropy cannot be reduced, the fireball will grow fast

while the temperature remains essentially constant.

Relativistic heavy ion collisions can be modeled in a variety of ways. They fall into two

categories: a static model and a dynamic model. Modeling the freeze-out situation is the

goal of the static models, which are used to explain experimental results. However, they

make no attempt to provide an explanation for how the freeze-out situation is achieved.

Dynamical models make an attempt to solve this question. At the moment, two types

of dynamical models are popular: those that take a transport approach and those that

take a hydrodynamic approach. Within certain approximations, the development of the

system from pre-equilibrium through freeze-out may be represented using the transport

approach. On the other hand, hydrodynamic models are limited to expanding until the

freeze-out stage. We used in the thesis kinetic theory in order to study the evolution of

the system, since the goal of kinetic theory is to comprehend the process of approaching

equilibrium.

1.2 Motivation

For the study of relativistic nuclear collisions, two-particle correlations are an often

used tool. Multiplicity fluctuations between charge and particle species have been inves-

tigated as a possible signal for QGP and the QCD critical point2. All of these fluctuation

investigations involve particle variances that can be traced back to a two-particle corre-

lation function. The shear relaxation time, the shear viscosity per entropy density and

temperature fluctuations have all been extracted using momentum correlations and mo-

mentum covariance fluctuations, which are all derived from the same correlation function.

In this thesis we will study two major things

The first major study is, these correlation observables are also used to conduct searches

2Quantum Chromodynamics is a basic quantum field theory that describes the strong interaction
between quarks and gluons. It has been successfully used to a broad variety of phenomena, ranging from
hadron spectra to inelastic collisions.

Lately, there has been a great deal of theoretical and experimental interest in the search for QCD
critical point. The possibility of this point existence has been discussed for a long time [2, 3].
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for critical fluctuations. Several number as well as momentum density correlation observ-

ables are linked mathematically, and we discuss the various physical mechanisms that have

been attributed to each of these observables. In addition, a new multiplicity-momentum

correlation is included in this set of observables. Our mathematical relationship may be

used to validate observations, to understand the relative contributions of various physi-

cal mechanisms to correlation observables, and to evaluate the ability of theoretical and

experimental models to concurrently explain all observables. With respect to all of the

observables in the collection, we compared the independent source model against simu-

lations from PYTHIA.

The other major objective of this thesis is to establish theoretical and phenomeno-

logical techniques for examining the nonequilibrium characteristics of correlation mea-

surements. Our study in this case is based on a relaxation time approximation of the

Boltzmann-Langevin equation.
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CHAPTER 2 BACKGROUND

The purpose of this chapter is to provide you with some background information

that will be useful as you progress through the text. We’ll start with a straightforward

description of an ion collision to establish some terms. The two ions are approaching

each other along the z-axis, which is specified by the direction of the beam. As a result,

the x- and y-axes are the transverse directions in relation to the beam. One of the ions is

labeled as the projectile, while the other is designated as the target ion (with non-fixed

target colliders, the choice is random). With the help of the Glauber model, we were able

to determine two important centrality variables: the number of binary collisions (Ncoll)

and the number of participants (Npart), which were calculated in relation to the impact

parameter (b) of a collision.

One of the most remarkable characteristics of relativistic heavy-ion collisions is the

rapid transverse expansion that occurs. According to the transverse momentum spectrum

calculated from RHIC, the hadronic average final state transverse velocity is greater than

the transverse velocity of a freely expanding heat source on average. A scenario using

a blast wave can be used to simulate the situation at RHIC which we will obtain its

features in this chapter.

We’ll use natural units for the rest of this thesis, thus ( speed of light ′c′ = Planks

constant ′~′ = Boltzmann constant ′k′B = 1). Furthermore, Greek letters represent both

space and time (µ = ν = 0, 1, 2, 3), whereas Latin letters represent just spatial compo-

nents (i, j = 1, 2, 3). Three-vectors have a Latin index or are stated in bold font, whereas

four-vectors always have a Greek index. Einstein summation notation is also used.

2.1 Kinematic variables and four-vectors

Kinematics is the branch of dynamics concerned with the motion of objects without

taking into account the forces acting on the objects. To describe particle interactions

in heavy-ion collisions we introduce some of the important kinematic variables that are

useful to describe a particle’s position and momentum. In case of the position, we can

write the contravariant four-vector as xµ = (x0, x1, x2, x3) where µ = 0, 1, 2, 3 and

xµ = (t, x, y, z) (2.1)
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Where x1 = x, x2 = y and x3 = z are the spatial coordinates and x0 = t is the time

coordinate.

By using the metric space gµν = diag(1,−1,−1,−1) we can define a covariant four vector

as,

xµ ≡ gµν = (x0,−x1,−x2,−x3) = (t,−x,−y,−z). (2.2)

The distance between xµa = (ta, xa, ya, za) and xµb = (tb, xb, yb, zb) is calculated as

dτ 2 = (ta − tb)2 − (xa − xb)2 − (ya − yb)2 − (za − zb)2

= dt2 − dx2 − dy2 − dz2 (2.3)

Where τ =
√
t2 − x2 − y2 − z2 is called proper time and invariant under Lorentz trans-

formation.

In Figure 2.1, the space–time continuum has been portrayed in two dimensions, t and

z. The region of space–time for which τ 2 > 0 is referred to as the time-like zone, whereas

τ 2 < 0 is referred to the space-like region. The t = z line is referred to be light-like (only

particles with neglected masses can travel along this line). A physical particle cannot

enter the space-like area because it must travel faster than light. Figure 2.1 shows how

the light-like surfaces will form a cone. Only the forward/future light-cone region is

openable to physical particles.

In relativity, a particle with four-momentum is expressed as pµ = (E,p) = (E, px, py, pz).

However, variables, transverse mass mt and rapidity y, are more convenient to use. A

particle’s transverse mass mt and rapidity y are defined as,

mt =
√
m2 + p2

t (2.4)

y =
1

2
ln
E + pz
E − pz

=
1

2
ln

1 + pz/E

1− pz/E

= tanh−1 pz
E

= tanh−1 (β). (2.5)
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Figure 2.1: Left side is the space-time diagram in (z, t) dimensions. The time-like region
refers to t-axes and the space-like region refers to z-axes. The red curve is a proper time
curve. The right side includes the picture of a past light cone and future light cone. At
the origin, in relativistic heavy ion collisions the nuclei will collide (observable).

Where pt =
√
p2
x + p2

y from equation (2.4) is the transverse momentum. From the

first equality in Equation (2.5) the inverse transformation for E = mt cosh y and pz =

mt sinh y. Rapidity may be viewed as another way of expressing a particle’s longitudinal

velocity. In some aspects, it acts more naturally than the velocity at relativistic speeds.

To begin, the domain of definition of rapidity is from −∞ to +∞ , as one would anticipate

of velocity in a non-relativistic situation. Second, as with non-relativistic speeds, rapidity

is additive when the coordinate system is boosted.

From Equation (2.5) we can study two explicit limits. Firstly the non-relativistic limit

when p � m and secondly at very high energy when m � p where in the second case

the mass can be neglected.

When p� m, equation (2.5) can be written as

y =
1

2
ln
m+mvz
m−mvz

=
1

2
ln (1 + vz)−

1

2
ln (1− vz)

y ≈ vz (2.6)

It is important to note that rapidity describes a particle’s velocity, but spatial rapidity



8

specifies the particle’s position. As a result, we can observe that there is a substantial

connection between velocity and position in this specific example.

In high-energy nuclear scattering, the collision axis is taken along the z-axis, which

is also known as the beam axis. θ is the emitted angle for a particle as a function of the

beam axis, z, the rapidity variable can be written as

y =
1

2
ln

√
m2 + p2 + |p| cos θ√
m2 + p2 − |p| cos θ

. (2.7)

Now in case when m� p we can neglect the mass,

y =
1

2
ln
|p|+ |p| cos θ

|p| − |p| cos θ

y = − ln tan(θ/2) ≡ η, (2.8)

where η is the pseudo-rapidity. From equation (2.8) we noticed that the pseudo-rapidity

only depends on θ. It is a useful parameter for experimentalists when information about

the particle, such as mass, momentum, and so on, are unknown and just the angle of

emission is known. Let us focus on one-dimensional Bjorken scaling flow reference [4]

for illustration purposes. Bjorken proposed that physics is rapidity independent, i.e.

boost-invariant, based on the fact that the rapidity density dN/dy is flat in high-energy

collisions. If transverse expansion is ignored, hydrodynamic four-velocity for a boost-

invariant system may be stated as

uµ =

(
t

τ
, 0, 0,

z

τ

)
(2.9)

Where t/τ = cosh η and z/τ = sinh η.

Because the system is boost-invariant, the hydrodynamic equations may be solved at

rapidity η = 0 and then boosted to any finite rapidity. At η = 0, the hydrodynamic four-

velocity is represented as uµ = (1, 0, 0, 0). The model’s simplicity is demonstrated by using

it to quickly obtain a few equations that describe the evolution of a few thermodynamic

variables in an expanding Bjorken system. To accomplish so, we employ two useful

identities.

∂µu
µ =

1

τ
(2.10)
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uµ∂µ =
∂

∂τ
. (2.11)

The appropriate stress–energy for an ideal gas are written as,

T µν = (ε+ p)uµuν − pgµν (2.12)

then, using energy-momentum conservation for equation (2.12),

uν∂µT
µν = 0

∂ε

∂τ
+
ε+ p

τ
= 0 (2.13)

If the fluid is considered to be free of baryons, The entropy density is defined as

s = (ε+ p)/T , and equation (2.13) may be rewritten as

dτs

dτ
= 0. (2.14)

sτ = constant can be used to solve equation (2.14). Isentropic flow is one-dimensional

flow. s is proportion to T 3 in an ideal gas gives us the well-known T 3 rule for Bjorken

scaling expansion.

T 3
0 τ0 = T 3

f τf , (2.15)

The subscripts 0 and f correspond to the fluid’s initial and final states, respectively.

Similarly, the number conservation equation may be solved. For fluid velocity uµ =

(1, 0, 0, 0), nµ = (n, 0, 0, 0).

uν∂µn
µν = 0

∂τn+
n

τ
= 0

.

(2.16)

The problem may be solved to produce the following result:

nf = n0
τ0

τf
(2.17)

As a result, both entropy and particle density in the Bjorken model decrease as the inverse

of proper time via sf = s0
τ0
τf

and nf = n0
τ0
τf

. While these equations are only valid for an

ideal fluid undergoing Bjorken expansion, they will suffice for approximations later on.
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Figure 2.2: Two-particle scattering diagram of the a+ b→ c+ d process.

Finally, in figure (2.2), given a two particles collision process with incoming and

outgoing momenta and masses. The incoming momenta and masses are pa, pb, ma and

mb. The outgoing momenta and masses are pc, pd, mc and md. The Mandelstam variables

s, u and t are defined as,

s = (pa + pb)
2 = (pc + pd)

2 (2.18)

u = (pa − pd)
2 = (pb − pc)

2 (2.19)

t = (pa − pc)
2 = (pb − pd)

2. (2.20)

Where s, u and t are also called Lorentz-invariant Mandelstam variables. They are de-

pendent and constrained by the following relation:

s+ u+ t = m2
a +m2

b +m2
c +m2

d = constant. (2.21)

√
s is used to describe the entire collision energy, and this number represents the strength

of a collision for example see Table 2.1 for different energies.

2.2 Glauber model

Only a few model inputs are needed to see the difference between the geometric results

of this model with real experimental data. The most important things are the energy

dependence of the nucleon-nucleon inelastic cross-section and the profile nuclear density

of the colliding nuclei.

In this work, we used the Glauber model [5] to calculate two relevant centrality vari-

ables: The first one is the number of participants, Npart, and the second one is the number
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of binary collisions, Ncoll, based on a collision’s impact parameter, b. It is important to

find the probability that a pair of nucleus will overlap, in order to calculate the collisions

between participant nucleons in a heavy-ion collision. Assuming a two-dimensional pro-

jection of the nuclei A and B as two colliding circles with some overlap in between as

shown in figure 2.3, the overlap function defined as:

TAB(~b) =

∫
d2~sTA(~s)TB(~b− ~s) (2.22)

The nuclear thickness functions for target A and projectile B are:

TA/B(~b) =

∫
ρA/B(~b, zA/B)dzA/B. (2.23)

Where ρA/B(~b, zA/B) is the probability to find a nucleon in a projectile B or target A at

a point (~b, zA/B) per unit volume normalized to unity, and ρA/B is the nuclear density for

target A or projectile B.

In most cases, the Glauber model assumes that the nucleon density inside the nucleus

is of the Woods Saxon [6] form.

ρ(r) =
ρ0

1 + e
r−R
a

(2.24)

where R is the nuclear radius and a corresponds to diffusioness parameter. ρ0 is the

normalized density. We can take spherical shape as an example to find,∫
ρdV =

∫ ∞
0

4πr2ρ(r)dr = A (2.25)

where A is the atomic mass in the nucleus.

For example, hard-sphere shape.

ρ = ρ0, r < R

= 0, r ≥ R

From this example, the normalization density can be expressed as,

ρ0 =
A

4
3
πR3

(2.26)
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For a gold nucleus(A−197), the normalization density in the order of 0.16 nucleon/fm3.

WhereR is assumed to be∼ R0A
1/3 in case ofR0 approximately 1.12fm and a ∼ 0.545fm

[6].

The real value of the radius, R, in terms of A is given by the empirical relationship

described below [7]:

R = 1.12A1/3 − 0.86

A1/3
(2.27)

Figure 2.3: Schematic diagram of optical Glauber model includes two views: side view
and beam-line view.

By using a binomial probability the inclusive inelastic cross-section can be derived

from:

σAB(~b) =

∫
d~b[1− e−σNNinelTAB(~b)] (2.28)

where σNNinel is the nucleon-nucleon cross section, taken from proton-proton colisions with

different values for different energies given in the Table 2.1.

Now, the binary collisions, Ncoll, is [6]

Ncoll = σNNinel

∫
dsdzAdzBρA(zA, s)ρB(zB, s− b) = σNNinelTAB(b) (2.29)

The number of participants, Npart, is [6]

Npart =

∫
ds2[TA(s)(1− eσNNinelTB(|~b−~s|)] + TB(|~b− ~s|)(1− eσNNinelTA(s)) (2.30)
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√
s σNNinel Reference

(GeV ) (fm2)
11.5 3.08 [8]
19.6 2.973 [8]
27 3.194 [8]
39 3.098 [8]
62.4 3.155 [8]
200 4.2 [9]
2760 6.4 [9]

Table 2.1: For a given beam energy, experimental values of σNNinel are given.

We applied this model to the Lead (208Pb) nuclei (Pb− Pb collision) and Gold (197Au)

nuclei (Au−Au collisions) in order to get the binary nucleon-nucleon collisions by using

equation (2.29) and the number of participants by using equation (2.30) as a function of

impact parameter. We used those parameters in our blast wave to find all the observables

and compare the correlation transverse-momentum fluctuation to experimental data from

STAR and ALICE .

2.3 Features of the blast wave model

One of the most well-studied elements of heavy ion collisions is the transverse expan-

sion of the collision volume. Experimental studies of azimuthal anisotropy have provided

compelling proof that the thermalized system’s expansion may be represented hydrody-

namically [10]. To get the data required to solve the problems addressed in this thesis,

hydrodynamical simulations must run millions of events. As a result, we resort to the

blast wave 1 model, a simplified model of transverse expansion.

Several researchers have utilized the blast wave model to evaluate experimental data

from relativistic energy in heavy-ion collisions [11, 12, 13, 14]. The blast wave model pre-

dicts that a fireball will be created during a collision, which grows rapidly to the freeze-out

state. As a result, the model implies that all particles freeze out at the same moment,

measured in a frame that travels longitudinally with the expanding fireball’s fluid ele-

ment. Most crucially in this model is that the final fluid parameters are independent of

the development details and may be treated as parameters. The blast wave model will

1A blast wave is formed when a tremendous quantity of energy E is released in an infinitesimally
small volume surrounded by a medium of density ρ.
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describe the transverse expansion, surface velocity β and the freeze-out temperature T .

Due to its simple structure, it describes elliptic flow and transverse momentum spectra

adequately [12, 14]. On the other hand, the blast wave model suffers from its simplicity,

this means no information concerning the particle production, hadronization, perturba-

tive processes of QCD, and so on. Nevertheless, it’s a useful model in our studies and

the version of the blast wave model that is used in this work was used in reference [14].

The model attempts to characterize the particle momentum distribution on the freeze-out

surface σ, which is defined by the proper final time τf . To do so, we apply the Cooper-

Frye formula [15], by considering a three-dimensional hypersurface σ(x) in a Minkowski

space-time with four dimensions and then count how many particles that will cross the

hypersurface. The total number of particles that cross the hypersurface σ can be written

as,

N =

∫
σ

dσµj
µ =

∫
σ

d3σµ

∫
d3p

E
pµf(x,p) (2.31)

where jµ is the particle current and f(x,p) is chosen to be the Boltzmann distribution

function [12]:

f(x,p) = Ae−
uµpµ
T (2.32)

where A is the normalization factor of the distribution function and uµ is the fluid velocity.

The differential version of equation (2.31) can be written as

E
dN

d3p
=

∫
σ

f(x,p)pµdσµ =
dN

dyd2pt
. (2.33)

We can use this distribution function to find the rapidity, elliptic flow and the average

transverse momentum

dN

dy
=

∫
E
dN

d3p
d2pt. (2.34)

v2 =

∫
cos (2φ)E dN

d3p
d3p

〈N〉
. (2.35)

〈pt〉 =

∫
ptE

dN
d3p
d3p

〈N〉
. (2.36)

The value of observables in local equilibrium is the major reason for our interest

in the blast wave model. We utilize it instead of more complex models because of it’s
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accessibility, and we find it to be quite appropriate for our requirements. Reference [16]

contains all of the model’s information and characteristics.

Figure 2.4: A graphic showing (on the left) an off-center collision resulting in anisotropic
flow, and (on the right) a centered collision resulting in small elliptic flow.

One of the most important observables in heavy-ion collisions is the azimuthal distri-

bution. The shape of a collision with a non-zero impact parameter (b 6= 0) collision is

seen in Figure 2.4. The overlap zone between the two nuclei is known as the participant

region, and at this region, the majority of collisions occur. On the periphery, the target

and projectile fragments serve as spectators. Figure 2.4 shows that in collisions with

non-zero impact parameters, the participant in coordinate space do not have azimuthal

symmetry. As a result of many collisions between the constituent particles, this spatial

anisotropy is transformed into momentum anisotropy of the created particles. Collective

flow is the term used to describe the observed momentum anisotropy [17, 18], which has

explanation in a hydrodynamic model [19].

In a Fourier analysis of distribution, values (the Fourier coefficients) that have physical

significance are described mathematically.

2π

N

dN

dφ
= 1 + 2

∑
n=1,2,3..

vn cos [n(φ−ΨRP )] (2.37)
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Where φ is the azimuthal angle and ΨRP is the reaction plane. The flow coefficients vn

may be simply calculated.

vn = 〈cos [n(φ−ΨRP )]〉 (2.38)

The Fourier coefficients, v1, v2, v3 and v4 are called directed, elliptic, triangular and hex-

adecapole flow respectively.

The elliptic flow v2 is a subject that has received significant attention in
√
s = 200

GeV gold-gold collisions at RHIC [20, 21] and in
√
s = 2.76 TeV lead-lead collisions

at LHC [22, 23]. At the RHIC and LHC, a large elliptic flow has provided persuasive

evidence that almost perfect fluid is created. The ratio of shear viscosity by entropy

density, (η/s), is the factor that determines how much a fluid deviates from its ideal

behavior. Elliptic flow is highly sensitive to the value of η/s. The sensitivity of v2 has

been used to get phenomenological estimates of η/s [24, 25].

In order to determine the correctness of our blast wave model, we use this code to

calculate 〈pt〉, v2{4}
2 and dN/dy. The figures below that show 〈pt〉 and v2{4} as a function

of Npart. The output data from our blast wave model (BW) denoted by the black solid

curves compared to experimental data for energies 11.5, 19.6, 27, 39, 62.4 and 200 GeV

from RHIC and 2760 GeV from LHC.

2Without taking into account the non-flow terms, the cumulants have the following formulations[26],

v2{4} =
√
〈v22〉

v2{4} =4

√
2 〈v22〉

2 − 〈v42〉
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Figure 2.5: 〈pt〉 for Au−Au at
√
s = 11.5 GeV fits to experimental data for all charged

particles with a constant temperature with centrality at 118 MeV . The solid line is the
blast wave calculation, and the circles represent STAR data [27, 28].
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Figure 2.6: v2{4} for Au−Au at
√
s = 11.5 GeV fits to experimental data for all charged

particles with a constant temperature with centrality at 118 MeV . The solid line is the
blast wave calculation, and the circles represent STAR data [27, 28].
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Figure 2.7: 〈pt〉 for Au−Au at
√
s = 19.6 GeV fits to experimental data for all charged

particles with a constant temperature with centrality at 116 MeV . The solid line is the
blast wave calculation, and the circles represent STAR data [27, 28].
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Figure 2.8: v2{4} for Au−Au at
√
s = 19.6 GeV fits to experimental data for all charged

particles with a constant temperature with centrality at 116 MeV . The solid line is the
blast wave calculation, and the circles represent STAR data [27, 28].
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Figure 2.9: 〈pt〉 for Au−Au at 27 GeV fits to experimental data for all charged particles
with a constant temperature with centrality at 119 MeV . The solid line is the blast wave
calculation, and the circles represent STAR data [27, 28].
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Figure 2.10: v2{4} for Au−Au at 27 GeV fits to experimental data for all charged particles
with a constant temperature with centrality at 119 MeV . The solid line is the blast wave
calculation, and the circles represent STAR data [27, 28].
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Figure 2.11: 〈pt〉 for Au−Au at 39 GeV fits to experimental data for all charged particles
with a constant temperature with centrality at 117 MeV . The solid line is the blast wave
calculation, and the circles represent STAR data [27, 28].
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Figure 2.12: v2{4} for Au−Au at 39 GeV fits to experimental data for all charged particles
with a constant temperature with centrality at 117 MeV . The solid line is the blast wave
calculation, and the circles represent STAR data [27, 28].



21

50 100 150 200 250 300 350 400
partN

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

<
pt

>
<pt> from BW

STAR Au+Au 62.4 GeV

<pt> from BW

STAR Au+Au 62.4 GeV

Figure 2.13: 〈pt〉 for Au − Au at 62.4 GeV fits to experimental data for all charged
particles with a constant temperature with centrality at 129.42 MeV . The solid line is
the blast wave calculation, and the squares represent STAR data [29, 30].
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Figure 2.14: v2{4} for Au − Au at 62.4 GeV fits to experimental data for all charged
particles with a constant temperature with centrality at 129.42 MeV . The solid line is
the blast wave calculation, and the squares represent STAR data [29, 30].
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Figure 2.15: 〈pt〉 for Au−Au at 200 GeV fits to experimental data for all charged particles
with a constant temperature with centrality at 130 MeV . The solid line is the blast wave
calculation, and the triangles represent STAR data [29, 30].
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Figure 2.16: v2{4} for Au − Au at 200 GeV fits to experimental data for all charged
particles with a constant temperature with centrality at 130 MeV . The solid line is the
blast wave calculation, and the triangles represent STAR data [29, 30].
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Figure 2.17: 〈pt〉 for Pb − Pb at 2760 GeV fits to experimental data for all charged
particles with a constant temperature with centrality at 117.7 MeV . The solid line is the
blast wave calculation, and the triangles represent STAR data [31, 32].
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Figure 2.18: v2{4} for Pb − Pb at 2760 GeV fits to experimental data for all charged
particles with a constant temperature with centrality at 117.7 MeV . The solid line is the
blast wave calculation, and the triangles represent STAR data [31, 32].
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Starting with energy
√
s = 11.5 GeV , we can observe that both 〈pt〉 (Figure 2.5) and

v2 {4} (Figure 2.6) from the blast wave match extremely well to the data from STAR at

this energy; on the other hand, for
√
s = 19.6 GeV , the output from our blast wave 〈pt〉

(Figure 2.7) fits very well and v2 {4} (Figure 2.8) likewise except for the most central

point, Npart ≈ 290. For energy
√
s = 27 GeV , 〈pt〉 (Figure(2.9)) fits perfect with the

experimental data from STAR and v2 {4} (Figure 2.10) fits rather well as well, except

for the most periphery point, Npart ≈ 23. For
√
s = 39 GeV , we can also observe that

the black solid line from the blast wave model fits the STAR data exceptionally well for

both 〈pt〉 (Figure 2.11) and v2 {4} (Figure 2.12), except for the most peripheral point on

v2 {4} plot. With energy
√
s = 62.4 GeV , 〈pt〉 (Figure 2.13) from blast wave matches

well with the experimental data from STAR, and v2 {4} (Figure 2.14) fits relatively well

with the experimental data from STAR, except for the most peripheral point. When we

look at the data from STAR at
√
s = 200 GeV , we can see that both 〈pt〉 (Figure 2.15)

and v2 {4} (Figure 2.16) from the blast wave fit exceptionally well with the experimental

data. Alternatively, with some variance between the output from the blast wave and the

experimental data, the energy of
√
s = 2760 GeV from ALICE matches pretty well for

both 〈pt〉 (Figure 2.17) and v2 {4} (Figure 2.18).

As we can see, the blast wave performs admirably for the seven various energies

tested, and it is sufficiently accurate to be used for the calculation of the values of the

four observables in Chapter 7 at the point of local equilibrium.
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CHAPTER 3 ONE-PARTICLE DISTRIBUTION

Several factors influence the properties of many-body systems, including particle in-

teraction and constraints. Both the system’s macroscopic state variables, such as particle

density and temperature, as well as the system’s particular microscopic features, are dis-

cussed in this section. The next step is to make an attempt to comprehend some of the

equilibrium and non-equilibrium characteristics of the macroscopic system. In kinetic the-

ory, this is accomplished by the use of a statistical description based on the ’one-particle

distribution function’ and the corresponding transport equation. Using the transport

equation and conservation laws, it is possible to construct a hydrodynamic theory of an

ideal fluid.

With kinetic equation, often known as relativistic Boltzmann, we may describe the

progression of a thermodynamic system toward equilibrium. Which is caused by a mix of

diffusion and scattering mechanisms, as well as any external forces acting on the system.

There are several applications in a wide range of disciplines, including particle transport in

plasmas and superfluids, as well as radiative transfer in planetary atmospheres. Because

no assumption is made about the initial state being in local equilibrium, this is also one

of the few methodologies available for investigating the non-equilibrium features of ion

collisions.[19, 33, 34, 35, 36, 37, 38].

The entire Boltzmann equation, which is a nonlinear integro-differential equation,

may be extremely difficult to solve, even numerically, because of its nonlinear nature.

The assumptions we make about the sorts of solutions that are available, as well as the

effect collisions have on the system, allow us to overcome this problem. When developing

these assumptions, care must be given to ensure that they do not violate desired system

features, particularly the conservation laws. Even though many of the assumptions we

make are conventional when working with the Boltzmann equation, we present a unique

method of enforcing the conservation rules. Furthermore, while these approximation ap-

proaches may not represent a developing system with as much information as is necessary

as the full equation, it is permitted for the discovery of accurate solutions as well as the

provision of physical insight into the processes that are taking place.
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3.1 Relativistic kinetic equation

A macroscopic system is characterized in kinetic theory by the one-body distribu-

tion function f(x,p, t). The distribution function’s space–time evolution is given by the

kinetic or transport equation. The Boltzmann equation was the first to be developed

by Boltzmann 1. The relativistic version of the Boltzmann equation without and with

collisions respectively can be written as,

∂tf(x,p, t) + vp · ∇f(x,p, t) = 0 (3.1)

∂tf(x,p, t) + vp · ∇f(x,p, t) = I {f} (3.2)

Where vp = p
p0 = p

E
is the three-velocity of a single particle. The system’s free streaming

(collision-free) development is described by equation (3.1) and the systems with streaming

(collisions) development is described by equation (3.2).

If the particles collide, the net flow will not be zero. In a tiny volume element δ4x,

the change in the number of particles for given momentum range between p and p + δp

is represented as

δ4x
δ3p

E
I {f} (3.3)

I {f} is an invariant function in the momentum-position space whose form must be solved.

To compute I {f}, Boltzmann assumes the following assumptions.

• Only two-particle collisions need to be examined since the system is dilute enough.

• Instantaneous collisions occur.

• In space–time, the distribution function f(x,p, t) fluctuates slowly.

• The colliding particles momenta are uncorrelated and position-independent. The

′′Stosszahlansatz′′ (collision number hypothesis) or the ′′molecular chaos′′ hypothesis

is a major Boltzmann assumption.

From the assumptions above, collisions between two particles are the only ones that

matter. Consider a collision Figure 3.1, where two particles with starting momenta pµ1
1Ludwig Eduard Boltzmann was an Austrian scientist who lived from 1844 to 1906. In statistical

thermodynamics, he made significant contributions. He was an early supporter of atomic theory, long
before it became popular. His works were not well received throughout his lifetime. Boltzmann became
devastated as a result of the rejection of his ideas, and he committed suicide in 1906.
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and pµ2 collide to produce a final state pµ3 and pµ4 . In four-volume δ4x, this form of collision

reduces the number of particles in the momentum range pµ + δpµ. The average number

of particle loss, ∆NL, of such collisions, according to the molecular chaos hypothesis, is

proportional to:

Figure 3.1: Schematic diagram includes two phases of the two-particle collision. Left
phase in case of particle lost, ∆NL, caused by collision; the right phase in case of particle
gained, ∆NG, caused by collision.

∆NL ∝ δ3p2δ
3p3δ

3p4δ
4xf(x,p1, t)δ

3p1f(x,p2, t)

= δ3p2δ
3p3δ

3p4δ
4xW12→34f(x,p1, t)δ

3p1f(x,p2, t). (3.4)

Where W12→34 is the scattering rate and f(x,pi, t)δ
3pi is the average number of particles

per unit volume between pi and pi + δpi with three-momentum.

The average number of particles lost via collisions in the range δ4x of Minkowski-space

and with momentum in the range of p and p+dp is then derived by integrating the above

stated number of collisions,

NL = δ4x
δ3p1

E1

∫
dp2dp3dp4f(x,p1, t)f(x,p2, t)×W12→34 (3.5)

Similarly, the gain term can be computed,

NG = δ4x
δ3p1

E1

∫
dp2dp3dp4f(x,p3, t)f(x,p4, t)×W34→12 (3.6)
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Equation (3.3) is equated to the difference between NG and NL in the interval δ4x and

δ3p. Then I {f} has the following form,

I {f} =

∫
dp2dp3dp4 [f(x,p3, t)f(x,p4, t)×W34→12 − f(x,p1, t)f(x,p2, t)×W12→34]

(3.7)

Thus the collision transport equation may be written as,

I {f} =

∫
dp2dp3dp4 [f3f4 ×W34→12 − f1f2 ×W12→34] . (3.8)

Where fi = f(x,pi, t) and dp = d3p
(2π)3

. The scattering rate in the above equation is a

scalar and its detailed balance to each other (W12→34 = W34→12) that may be written in

terms of any two of the three Mandelstam variables specified in chapter 2. The collision

term can be written as,

I {f} =

∫
dp2dp3dp4 [f3f

′
4 − f1f2]W12→34. (3.9)

Where the scattering rate is proportion to δ(pµ1 +pµ2 −p
µ
3 −p

µ
4). To more precisely express

correlations, the products fifj might be replaced by two-particle distributions. Later on,

we will use Langevin noise to introduce correlations.

3.2 Distribution function at equilibrium

The Boltzmann equation defines the space–time development of a macroscopic sys-

tem’s distribution function. One of the main assumptions for a macroscopic system is

that it will approach equilibrium if left without any disturbance or any external forces

applied to the system. Where the instantaneous variation of the distribution function

with respect to time is equal to zero. It’s important to know the difference between global

and local equilibrium. The entire system may be split into multiple small macroscopic

subsystems as shown in Figure 3.2. All cells in global equilibrium may be described by

the same thermodynamic variables, such that thermodynamic variables are independent

of positions. While, in local equilibrium, thermodynamic variables are a function of the

cell’s spatial location. Assuming the cell is in local thermal equilibrium, we can provide

a temperature of T and a chemical potential of µ(x) for each particle species at each

space–time point, x, in addition to the velocity, v(x). The equilibrium distribution func-

tion may be calculated using kinetic theory if and only if the variation in the entropy
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four-flow is equal to zero ′′∂µS
µ = 0′′.

The Boltzmann entropy four-flow can be written as,

Sµ = −
∫

d3p

E
pµf [ln f − 1] , (3.10)

so the variation in the entropy four-flow can be written as,

∂µS
µ = −

∫
d3p

E
pµ [ln f ] I {f} , (3.11)

Figure 3.2: This schematic figure shows a simple explanation of the difference between
local and global equilibrium. For local equilibrium, only the macroscopic subsystem ′′cells
with different colors′′ reaches the equilibrium, while for global equilibrium all the cells
have the same color and independent of space.

where I {f} = pµ∂µf . The collision term is identically zero when,

f1f2 − f3f4 = 0 (3.12)

The requirement for maximizing entropy four-flow is thus in the above equation. The

equilibrium distribution function denoted by f e, the above equation can be written as,

ln f e1 + ln f e2 = ln f e3 + ln f e4 (3.13)

During collision, energy and momentum are conserved

E1 + E2 = E3 + E4 (3.14)

p1 + p2 = p3 + p4 (3.15)
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ln f ei (x,p) is known as the summational invariant. The most general form of a ln f ei (x,p)

is a linear combination between a constant and pµ,

ln f e(x,p) = A(x) +Bµ(x)pµ (3.16)

The local equilibrium distribution function can be expressed as follows:

f e(x,p) = eA(x)+Bµ(x)pµ (3.17)

Both the parameters A and B remain constant when rigid rotation is ignored, and the

equilibrium distribution function may be expressed as,

f e = eA+Bµpµ (3.18)

where A = γ(µ/T ) and Bµ = −γ(uµ/T ). The local equilibrium distribution, which takes

the form (assuming Boltzmann statistics):

f e = e−γ(E−p.v−µ)/T . (3.19)

Where γ = 1√
1−v2 is the corresponding Lorentz factor. Fluid velocity v, chemical potential

µ and temperature T vary in space and time.

3.3 Conservation Laws

If we multiply equation (3.16) by the collision term, I {f}, and then integrate all over

the momentum space, we will get an important equations.∫
dp

E
A(x)I {f}+

∫
dp

E
Bµ(x)pµI {f} = 0 (3.20)

The preceding equation can be expressed as follows:

∫
dp

E
A(x)pµ∂µf +

∫
dp

E
Bµ(x)pµpν∂νf = 0 (3.21)

The first part of the above equation gives the total particle number’s macroscopic con-

servation law and the second part gives the momentum-energy conservation. The five

equations, for a system with a single conserved charge, are

∂µN
µ = 0 & ∂µT

µν = 0. (3.22)
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Where T µν is a momentum-energy tensor. We notice that from the above five equations

the scattering rate W12→34 enforces conservation laws. But in this thesis, we will use the

relaxation time approximation to simplify our calculations. In this approach, the collision

term is estimated as,

I {f} ≈ −ν(f − f e), (3.23)

Where, in a frame when the fluid is locally at rest, the relaxation time ν−1 indicates how

long it takes for a pair of particles to collide or we can define it as the mean free time

collisions between parton. The Boltzmann equation (3.2) is written in its covariant form

as,

pµ∂µf = −νp.u(f − f e), (3.24)

We’ll utilize the method of characteristics to solve equation (3.24), which is often em-

ployed to solve the non-relativistic Boltzmann equation [39]. To begin, we simplify the

equation by inserting a proper time parameter τ , which is defined as follows:

dxµ

dτ
=

pµ

p . u
(3.25)

Because p . u = E in the rest frame of the fluid, the time component of equation (3.25)

is simply written as dt/dτ = E/p . u = 1 in this frame. This means that τ is the proper

time in this rest frame. The Boltzmann equation can be written as,

df

dτ
= −ν(f − f e) (3.26)

We can discover solutions for f when the Boltzmann equation is reduced to a first-order

equation ODE [39]. In order to solve equation (3.26), we first analyze the free streaming

situation with no collisions, by means we set the right side of (3.26) to zero. According to

equation (3.25), matter in a cell that starts at x0 floats along the trajectory x = x0 +vpt

unaffected. From equation ( 3.26) the free streaming relation can be written as,

f(p,x, τ) = f0(p,x− vpt). (3.27)

Where f0(p,x) is the initial distribution function. As we can see equation (3.27) is the

solution of equation (3.1).
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We write (3.26) as the integral equation in the presence of both collisions and drift.

f = f0(p,x− vpt)S(τ, τ0) +

τ∫
τ0

dτ ′ν(τ ′)S(τ, τ ′)f e(p,x− vpt
′). (3.28)

The survival probability is defined as,

S(τ, τ0) = exp{−
τ∫

τ0

ν(τ ′)dτ ′} (3.29)

This means the probability that partons will not collide while traveling along their typical

path [40]. t = t(τ) and t′ = t(τ ′) are calculated using equation (3.25). In reality,

computing (3.28) can be challenging because we must determine temperature, velocity,

and chemical potential as a function of time by applying nonlinear restrictions. It’s worth

noting that Baym used a different approach to this single-particle distribution problem

yet came up with similar conclusions [19]. Equation (3.28), in particular, corresponds to

Baym’s equation (17).

3.4 Linearization of Boltzmann equation

If the problem cannot be solved exactly, but can be described by adding a ”very

small” term, h << 1, to the mathematical description of the perfectly solvable problem,

perturbation theory is applicable in this situation. Although the formulas generated by

perturbation theory can lead to correct findings if the expansion parameter is very small.

Typically, in this case the distribution function due to very small perturbation can be

written as

fi ≈ f ei (1 + hi) (3.30)

fj ≈ f ej (1 + hj) (3.31)

Where index i = 1, 2 and j = 3, 4. We will write the collision term equation (3.9) interms

of the small perturbation h,

fifj ≈ f ei f
e
j (1 + hi)(1 + hj)

= f ei f
e
j (1 + hi + hj + hihj).
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We can neglect the terms hihj and use the equilibrium distribution expression from

Equation (3.12) to rewrite Equation (3.9) in the form of

I {f} =

∫
dp2dp3dp4W12→34f

e
1f

e
2 (h3 + h4 − h1,−h2) ≡ Lh, (3.32)

Where L is a linear operator on h. Take a look at the eigenvectors of this operator that

satisfy Lφα = −ναφα. The eigenvalues of the first five eigenvectors are zero and they are

linear in the conserved variables 1,p, and E. Combinations that are linear,

φ1 = 1 (3.33)

φ2 =

√
n

ωT
px; φ3 =

√
n

ωT
py; φ4 =

√
n

ωT
pz (3.34)

φ5 =

√
n

cvT

(
E − e

n

)
. (3.35)

Where n represents particle density, ω represents enthalpy density, e represents energy

density, and cv represents specific heat. Because of the conservation principles, these

eigenvectors have eigenvalue zero and are linear. On the other hand, each eigenvector is

orthogonal to the other and the orthonormal sense can be written as,

〈φα| f e |φβ〉 =

∫
dpf eφαφβ = nδαβ (3.36)

We will use the above relation to check the orthogonality between φ1 and φ3 for example

〈φ1| f e |φ1〉 =

∫
dpf e (1.1)

= n

〈φ1| f e |φ3〉 =

∫
dpf e

(
1.

√
n

ωT
py

)
=

√
n

ωT
〈py〉 = 0

〈φ3| f e |φ3〉 =

∫
dpf e

(√
n

ωT
py.

√
n

ωT
py

)
=

n

ωT

〈
p2
y

〉
= n.

Where the first projection follows from the conservation of the number of particles, while

the second projection follows from the conservation of momentum, and the third projec-

tion can be calculated from equation (3.25) in the same way in [41].
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The conservation conditions of the five equations for relaxation time approximation

can be written as, ∫
dpφαf

eh = 0 (3.37)

Where α varies between 0 and 5. As we can see from the above equation φα is orthogonal

to the perturbation h.

We assume that all the values relevant to the distribution function f relax at the

same time rate ν−1 in the relaxation time approximation. The relaxation of the modes

is described by the eigenvalues of L. Generally, we may write h as,

h(x,p, τ) =
∑
β>5

cβ(x)φβ(p) exp (−νβτ) (3.38)

Because there is no assurance, a prior, that f and f e will generate the same values – for

example, particle number and energy density. Linearized Boltzmann’s equation does not

explicitly impose conservation constraints as well as the relaxation time approximation.

To formally enforce these criteria, we express the collision term as,

I {f} ≈ df

dτ
= −ν(1− P )f. (3.39)

Where P is the projection operator that can be applied to a specific quantum state to

project it into another state. The useful relations of the projection operator are shown

in Table 3.1.

Projection Operator Properties

(1): Idempotent P 2 = P
(2): Hermitian P † = P
(3): Orthogonal P (1− P ) = 0
(4): Idempotent (1−P )2 = 1−P
(5): Enforce f to f e Pf = f e

(6): Commute P d
dτ

= d
dτ
P

Table 3.1: Useful properties for projection operator to find the solution of the Boltzmann
equation

Many situations in quantum mechanics that tells us where the usage of the projection

operator is important. Example: when we measure the property of a quantum particle,

quantum mechanics tells us that the state of the particle will collapse onto a different
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state. The projection operator allows us mathematically to describe this collapse. This

means that we will prove the properties in Table 3.1 and how they involve across the

linearization of the Boltzmann equation. We define the projection operator as,

Pφ(p) ≡ P =
f e(p)

n

5∑
α=1

φα(p)

∫
dp′φα(p′) ≡ |φ〉 〈φ| (3.40)

We consider the action of the operator on an arbitrary eigenfunction |ψ〉, where

Pφ(p) |ψ〉 = |φ〉 〈φ| |ψ〉 = c |φ〉 . (3.41)

Where the bracket between 〈φ| and |ψ〉 is a scalar c,(if 〈φ| and |ψ〉 are not orthogonal

to each other) we can move it to the front and we obtain c |φ〉. As we can see from the

above equation how the projection operator change the state from one to another, which

is a good sense to show how the projection operator enforces the distribution function

from f to f e.

We will prove the properties for the projection operator in Table 3.1.

Property (1):

P 2 |ψ(p)〉 = P.P |ψ(p)〉

= (|φ〉 〈φ|)(|φ〉 〈φ|) |ψ(p)〉

= |φ〉 〈φ| |φ〉 〈φ| |ψ(p)〉

= |φ〉 〈φ| |ψ(p)〉

= P |ψ(p)〉

∴ P 2 = P.

In the third line we used the orthonormality condition, 〈φ| |φ〉 = 1. We will use below

another way to prove the condition for property (1)

P 2ψ(p) =
f e(p)

n

5∑
α=1

φα(p)

∫
dp′φα(p′)

(
f e(p′)

n

5∑
β=1

φβ(p′)

∫
dp′′φβ(p′′)ψ(p′′)

)

=
f e(p)

n

5∑
α=1

φα(p)

(
5∑

β=1

∫
dp′φα(p′)

f e(p′)

n
φβ(p′)

)∫
dp′′φβ(p′′)ψ(p′′)
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P 2ψ(p) =
f e(p)

n

5∑
α=1

φα(p)

(
5∑

β=1

δαβ

)∫
dp′′φβ(p′′)ψ(p′′)

=
f e(p)

n

5∑
α=1

φα(p)

∫
dp′′φβ(p′′)ψ(p′′)

= Pψ(p)

From the above result, we conclude that P is a projection operator and we can use either

way to prove any property from table 3.1.

Property (2):

P †ψ(p) = (|φ〉 〈φ|)† ψ(p)

= |φ〉 〈φ|ψ(p)

= Pψ(p)

∴ P † = P

We will use a very useful property of the projection operator, which allows us to write

any eigenstate as the sum of two other eigenstates. One is parallel to the initial eigenstate

and the other is perpendicular to it.

Property (3): Consider a

|ψ〉 = 1 |ψ〉

= 1 |ψ〉+ P |ψ〉 − P |ψ〉

= P |ψ〉+ (1− P ) |ψ〉

If the projection operator acts on the above eigenstate, then the above relation can be

written as,

P |ψ〉 = P 2 |ψ〉+ P (1− P ) |ψ〉

= P |ψ〉+ P (1− P ) |ψ〉

∴ P (1− P ) = 0

We used property (1) to move from the first to the second line, and we can notice from

the second line the relation is true if and only if P (1− P ) = 0. On the other hand,
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for property (4) we can do same steps as property (3) but instead of applying P on the

eigenstate we can apply (1− P ) and we will end with (1− P )2 = (1− P ).

Property (5): we will apply the projection operator on the linearization equation, f−f e ≈

f eh, on a state |φ〉. The equation can be written as,

P (f − f e) |φ〉 ≈ Phf e |φ〉

Pf |φ〉 − Pf e |φ〉 ≈ |φ〉 〈φ|hf e |φ〉 .

We can see the right side of the above equation compared to equation (3.37) is equal to

zero, thus the above equation can be written as,

Pf |φ〉 = |φ〉 〈φ| f e |φ〉

= f e |φ〉 〈φ| |φ〉

= f e |φ〉

∴ Pf = f e.

Where in the second line we used the orthonormal condition, 〈φ| |φ〉 = 1, to get the final

relation.

Property (6):

P
d

dτ
ψ(p) =

f e(p)

n

5∑
α=1

φα(p)

∫
dp′φα(p′)

d

dτ
ψ(p)

As a result, there is no dependency on τ outside of ψ(p) and we have

P
d

dτ
ψ(p) =

d

dτ

f e(p)

n

5∑
α=1

φα(p)

∫
dp′φα(p′)ψ(p)

=
d

dτ
Pψ(p)

∴ P
d

dτ
=

d

dτ
P.

Now the linearized Boltzmann equation is approximated as

I {t} ≈ df

dτ
= −ν(1− P )f, (3.42)

Multiply equation (3.42) by (1 − P ). On the left side, we use d/dτ to commute with

(1 − P ), whereas on the right side, we will use property (4) from table 3.1. We have
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discovered

f = f0(x− vpt,p)S(τ, τ0) + f e(x− vpt,p)(1− S(τ, τ0)), (3.43)

In the next chapter, we employ the linearized relaxation time approximation because it

gives a straightforward explanation of transport that successfully integrates conservation

laws. While it may not be as good at describing the early stages of pre-equilibrium

development as the entire relaxation time method or the full equation of Boltzmann,

none of these techniques is completely dependable at that point.



39

CHAPTER 4 TWO-PARTICLE CORRELATION

The usual form of the Boltzmann equation does not provide a method for explaining

correlations in the data. The molecular chaos ansatz, also known as the Stosszahlansatz,

is based on the assumption that particles are uncorrelated before colliding. The fact

that our entire ultimate objective is to characterize two-particle correlations, which are

partially due to collisions, forces us to include a method to do this. Our approach is to

incorporate Langevin noise into the Boltzmann equation, which is compatible with the

conservation principles that are seen in microscopic scattering processes [42, 43, 44].

The background noise that we used in this thesis is based on the fact that we are

looking at the level of the fluid cells Figure 3.2 (thus the relaxation time approximation),

we assume that each fluid cell is out of equilibrium, resulting in a non-zero value for f−f e.

Viscosity is responsible for driving fluid cells toward equilibrium and also influences the

behavior of nearby fluid cells, causing them to move toward a more global equilibrium.

A large number of particles exist in each fluid cell and they interact collectively through

viscous forces, but they also interact microscopically through collisions with one another.

The microscopic interactions might cause a particle to be pushed toward or away from the

equilibrium distribution of the fluid cell depending on the current density and temperature

of the fluid cell. This is true for all of the particles in the system. This means that even if

the fluid cell was in its equilibrium distribution, the microscopic interactions might cause

the distribution to deviate from its equilibrium distribution. Noise can cause correlations

between distinct cells and viscosity is always in a fight with noise, causing the cell to

return to equilibrium.

As an introduction to this chapter, we will look at example an of Langevin noise

applied to Brownian motion and particle number distribution problem. We will utilize

this to illustrate the characteristics of stochastic noise that we will be discussing in this

chapter, namely how we will use noise to build correlations into a system.

4.1 General product rule

We can no longer use the product rule of regular calculus since we now have new differ-

entials in our toolbox which will be useful for small perturbation. We’ll need a universal
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product rule that can handle two half-order differentials being multiplied together.

Given two functions At and Bt, where both of them depend on t. We can write the

product between At and Bt as,

AtBt =
1

2
((At +Bt)

2 − A2
t −B2

t ) (4.1)

The above relation is true if and only if At is commute with Bt.

In case of small perturbation when (∆t→ 0), we can use Itô formula 1 to differentiate

A2
t and B2

t ,

∆A2
t = 2At∆At + (∆At)

2 (4.2)

∆B2
t = 2Bt∆Bt + (∆Bt)

2 (4.3)

Equation (4.1) can be written in the differentiation form as,

∆AtBt =
1

2
(∆(At +Bt)

2 −∆A2
t −∆B2

t ) (4.4)

From the above relation the first term on the right side can be written as,

∆(At +Bt)
2 = 2(At +Bt)∆(At +Bt) + (∆(At +Bt))

2

∆(At +Bt)
2 = 2(At∆At + At∆Bt +Bt∆Bt +Bt∆At)

+ (∆At)
2 + 2∆At∆Bt + (∆Bt)

2.

(4.5)

Now substitute equation (4.2), (4.3) and (4.5) in equation (4.1). Final equation can be

written as,

∆(AtBt) = At∆Bt +Bt∆At + ∆At∆Bt (4.6)

In stochastic calculus, this equation is referred to as the Itô product rule. We will use

this rule to find the product of the linearized Boltzmann equation at two phase space

points in the correlation section.

1Its formula is equivalent to the Newton-Leibnitz formula in (classical) calculus for stochastic calculus.
It not only connects differentiation and integration, but it also offers a way for computing stochastic
integrals.The differentiation of f(Xt) can be written as: ∆f(Xt) = f ′(Xt)∆Xt + 1

2f
′′(Xt)(∆X

2)+o(∆t)
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4.2 Langevin’s Theory

For systems that aren’t in equilibrium, Brownian motion is probably the easiest way

to deal with their dynamics. The Langevin equation is the most important. Frictional

and random forces are included in this category. The fluctuation-dissipation theorem

shows that these two forces of nature are linked together. There are a lot of important

and far-reaching generalizations in this theorem. If we want to start out, we’ll look at a

very simple version of the theorem for now.

Brownian motion is the random movement of a very small particle submerged in a

fluid. Early examinations of this phenomenon were conducted on pollen grains, particles

from dust, and a variety of other materials with a colloidal size of less than one micron. As

time progressed, it became obvious that the idea of Brownian motion could be successfully

applied to a wide range of other phenomena.

The idea of Brownian motion, in particular, has been extended to scenarios in which

the ′Brownian particle′ would not be a real particle, but rather some collective attribute of

a macroscopic system. This might be the concentration of any component in a chemically

reacting system at thermal equilibrium for example. In this case, the uneven temporal

fluctuation of this concentration correlates to the erratic motion of the dust particle.

Although the motion of a particle executing Brownian motion appears to be com-

pletely random, it must still be described by the same equations of motion as any other

dynamical system. Newton’s equations is the one that is used in classical mechanics or

we can use Hamiltonian’s equations

Newtons law for a spherical particle in one dimension can be written as,

mv̇ = Ftot(t), (4.7)

It is typically not practical to try to get a precise formula for Ftot, unless it is absolutely

necessary. Experience has shown us that in most circumstances the frictional force −αv,

which is proportional to the velocity of the particle (Brownian particle), dominates this

force. Stokes’ law, which states that friction coefficient α = 6πηr, is used to calculate

friction force. According to this scenario, the Brownian particle’s equation of motion is
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as follows.

m
dv

dt
≈ −αv, (4.8)

the solution of the above linear first order equation is

v(t) = v(0)e−αt/m, (4.9)

If this is the case, it is expected that the Brownian particle’s speed will slow down to

reach zero over a long time. At thermal equilibrium 〈v2〉eq = T/m, which means that

the particle’s real speed must be greater than zero. In this case, we can notice that the

assumption Ftot is dominated by the friction must be changed.

In order to account for inertia, the model of Brownian motion is based on the following

expression of Newton’s law:

mv̇ = Fexternal − αv + F, (4.10)

Where the drag force term is represented by the function αv , and F is the stochastic

force generated by collisions between microscopic atoms [45], which accounts for random

collisions with molecules. In the case of Fexternal = 0 the above equation can be written

as,

v̇ = −γv +
F

m
, (4.11)

From the above equation,γ = α/m this may be used as a measure of time needed for

drag to completely eliminate acceleration.

When a function is plotted against a variable, the definition of derivative is the rate

at which the function changes. Differential equations issues are solved by the use of

derivatives, which are fundamental concepts in mathematics. For the most part, we

observe changing systems (dynamical systems) to determine the rate at which a particular

variable changes. Equation (4.11) will be written as a difference equation when ∆t→ 0

∆v ≡ v(t+ ∆t)− v(t) = −γv∆t+
F

m
∆t, (4.12)

From now on we will use ∆W instead of F
m

∆t, where ∆W denotes the net change in

velocity caused by collisions in the time between t and t+ ∆t.
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According to the more usually given viewpoint, the fluctuating force is thought to

be caused by the Brownian particle colliding with molecules in the surrounding medium

on an irregular basis. When a collision occurs, the force is expected to change rapidly

throughout the course of any observation, and indeed over the course of any microscopic

time period. This is not true in any real-world system, and it cannot be. The consequences

of the fluctuating force may be described that the impact of a collision does not depend

on the previous collisions in terms of its direction or magnitude, because of this

〈∆W 〉 = 0 (4.13)〈
∆W 2

〉
= Γ∆t (4.14)

In equation (4.14), Γ is defined as the strength of the fluctuating force.

In homogeneous linear first-order differential equations such as the Langevin equation

(4.12) can be solved as,

v(t) = v0e
−γt +

1

m

∫
dt1F (t1)e−γ(t0−t1), (4.15)

In case of finding the average of the above equation, the second term will vanish according

to relation (4.13). Then 〈v(t)〉 = v0e
−γt. It is necessary to compute the average velocity

square to determine the strength of the fluctuating force.

〈
v2(t)

〉
= v2

0e
−2γt +

2v0e
−γt

m

∫
dt1F (t1)e−γ(t0−t1) +

1

m2

∫
dt1F

2(t1)e−2γ(t0−t1)

= v2
0e
−2γt + 0 + Γ

∫
dte−2γt

∴
〈
v2(t)

〉
= (v2

0 −
Γ

2γ
)e−2γt +

Γ

2γ
. (4.16)

The above equation approaches Γ/2γ in the long-term limit when the exponential term

is vanished. Mean squared velocity must reach equilibrium at (T/m) in the long term.

As a result, we discover

Γ =
2γT

m
, (4.17)

The above result is the Fluctuation-dissipation theorem. It connects the quantity of

friction or dissipation to the strength Γ. It describes the equilibrium between friction

and noise. Friction always tries to drive any system to a ′′ dead ′′ state while noise tends
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to keep the system ′′ alive ′′. This equilibrium is essential in order to maintain a thermal

equilibrium condition for a long period of time.

Finally, the idea of Brownian motion serves as the foundation for our approach to

kinetic theory, which allows us to include fluctuations [46, 47]. A model of Brownian

motion (sometimes referred to as ′′Physical′′ Brownian motion) was published by Langevin

after Einstein’s theory was discovered. Because of its inertia, Langevin’s model highlights

that a particle traveling as a result of random collisions with other particles, such as gas

molecules, does not truly experience separate steps, but rather continues in the same

path as it did before.

4.3 New relativistic transport equation

Scattering creates random fluctuations in the phase space distribution in conjunction

with the relaxation process outlined in Equation (3.9) and Equation (3.23). Correla-

tions emerge in addition to those that existed in the original conditions as a result of

these oscillations. It is inadequate to characterize these correlations using the Boltzmann

equation since the premise of molecular chaos requires that particles uncorrelated before

colliding with each other, which is not the case in reality. We will use a Langevin model

to characterize these new correlations in this part, similar to how we described them in

the previous section. We use these relationships to describe them as,

C(x1,p1,x2,p2, t) = 〈f(x1,p1, t)f(x2,p2, t)〉 − 〈f(x1,p1, t)〉 〈f(x2,p2, t)〉 (4.18)

We shall rephrase the preceding equation in the simplest possible manner.

C1↔2 = 〈f1f2〉 − 〈f1〉 〈f2〉 (4.19)

Where C1↔2 ≡ C(x1,p1,x2,p2, t) and fi = f(xi,pi, t).

For the Boltzmann equation, we break phase-space into very small cells so that

Langevin noise can be added to the equation. When particles in these cells collide,

they randomly give each other momentum. This causes the phase space distribution to

change. To better understand this process, we will introduce noise into equation (3.42)
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for each distribution function

df1

dτ
= −ν(1− P1)f1 + ζ1 (4.20)

df2

dτ
= −ν(1− P2)f2 + ζ2 (4.21)

Where ζi=1,2 is the stochastic noise, P1 and P2 are the projection operators acts on particle

1 and particle 2 respectively. The above equations can be written as a difference equation

when τ → 0,

∆f1 ≡ f1(τ + ∆τ)− f1(τ) = −ν(1− P1)f1∆τ + ∆W1 (4.22)

∆f2 ≡ f2(τ + ∆τ)− f2(τ) = −ν(1− P2)f2∆τ + ∆W2 (4.23)

Where ∆Wi ≡ ∆W (xi,pi) is the stochastic increment to fi at point (xi,pi) in the time

between τ and τ + ∆τ . As in Langevin’s theory section, we can write the averaging

increments as,

0 = 〈∆W1〉 = 〈∆W2〉 (4.24)

〈∆W1∆W2〉 = Γ1↔2∆τ (4.25)

In case to find the differential equation for a two body system, C1↔2, we will take the

average for equations (4.22) and (4.23)

∆ 〈f1〉 = −ν(1− P1) 〈f1〉∆τ (4.26)

∆ 〈f2〉 = −ν(1− P2) 〈f2〉∆τ (4.27)

We will find the average between f1∆f2, f2∆f1 and ∆f1∆f2.

For 〈f1∆f2〉:

〈f1∆f2〉 = 〈−f1 [ν(1− P2)f2∆τ + ∆W2]〉

= −ν(1− P2) 〈f1f2〉∆τ

For 〈f2∆f1〉:

〈f2∆f1〉 = −ν(1− P1) 〈f1f2〉∆τ
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For 〈∆f2∆f1〉:

〈∆f1∆f2〉 = 〈[−ν(1− P1)f1∆τ + ∆W1] [−ν(1− P2)f2∆τ + ∆W2]〉

= 〈∆W1∆W2〉

= Γ1↔2∆τ

We can observe from the previous equations that 〈∆Wi〉 = 0. Moreover, we neglect the

term that proportion to ∆τ 2, since its very small compared to ∆τ .

Differentiate C1↔2 with respect to τ , then write it in a difference form when τ → 0

∆C1↔2

∆τ
=

∆ 〈f1f2〉
∆τ

− ∆(〈f1〉 〈f2〉)
∆τ

=
〈f1∆f2〉+ 〈f2∆f1〉+ 〈∆f2∆f1〉

∆τ
− 〈f1〉 〈∆f2〉+ 〈f2〉 〈∆f1〉+ 〈∆f2〉 〈∆f1〉

∆τ

=
[−ν(1− P2)− ν(1− P1)][〈f1f2〉 − 〈f1〉 〈f2〉]∆τ + Γ1↔2∆τ

∆τ

Rearrange and write the above equation in differential form to get,(
d

dτ
+ ν(1− P2) + ν(1− P1)

)
C1↔2 = Γ1↔2 (4.28)

It’s possible that the particles described by f1 and f2 are the same, which would be a

misinterpretation. We don’t use this option since we want to describe distinct particle

pairs. We will write the new form as,

G(x1,p1,x2,p2, t) ≡ G1↔2 = C1↔2 − 〈f1〉 δ(p1 − p2)δ(x1 − x2) (4.29)

Assuming there are no correlations between pairings, G1↔2 compares < f1f2 > − < f1 >

δ(1 − 2)2 phase-space density to the Poisson expectation in the absence of correlations.

Theoretically, counting pairs of particles can be used to determine G1↔2. To find G1↔2,

we just subtract the same particle contribution from G1↔2 as we did in the previous

equation.(
d

dτ
+ ν(1− P2) + ν(1− P1)

)
G1↔2 = Γ1↔2 −

(
d

dτ
+ 2ν(1− P1)

)
〈f1〉 δ(1− 2) (4.30)

or we can write the above equation as,(
d

dτ
+ ν(1− P2) + ν(1− P1)

)
G1↔2 = Γ′1↔2 (4.31)

2δ(1− 2) is an abbreviated form of δ(p1 − p2)δ(x1 − x2)
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Where

Γ′1↔2 = −
(
d

dτ
+ 2ν(1− P1)

)
〈f1〉 δ(1− 2) + Γ1↔2 (4.32)

According to reference [48], the equations for correlation functions of two-particle in the

hydrodynamic regime were constructed. They are equivalent to the equations in this

study. Up to this moment, the derivations have been quite similar to one another. When

a sufficiently big system is brought into local equilibrium, the pair correlation function

G1↔2 disappears. If the grand canonical ensemble is used, particle number variations

in equilibrium meet Poisson statistics on a small scale. The number fluctuations fulfill

〈N〉 = 〈N2〉 − 〈N〉2 in the same way as the equilibrium phase-space correlations satisfy

〈f1〉 δ(1− 2) = (〈f1f2〉 − 〈f1〉 〈f2〉)eq in the opposite direction.

We will now proceed to calculate the coefficient Γ1↔2. From fundamental principles,

we may deduce a great deal about the coefficient Γ1↔2. First, because fluctuations are

stochastic in nature, ∆Wi=1,2 is uncorrelated for distinct cell (pi,xi), also for different cells

(p2,x2) and (p1,x1). Therefore, we anticipate that Γ1↔2 will be singular at (p2,x2) =

(p1,x1) and as the cell size approaches zero, and that Γ1↔2 will be zero elsewhere [47].

As for the second point, we anticipate that Γ1↔2 will vanish in local equilibrium since

correlations are caused by scattering and detailed balancing requires that (df
dt

)col = 0. As

a result, we anticipate

Γ1↔2 = (1− P2)(1− P1)b1δ(1− 2) (4.33)

The fluctuation-dissipation theorem is used to compute the coefficient Γ1↔2 when the

system is close to equilibrium. We can rewrite equation (4.28), taking into account

dCe1↔2

dτ
= 0, as

[ν(1− P2) + ν(1− P1)]Ce
1↔2 = Γ1↔2 (4.34)

Now substitute 〈f1〉 δ(1− 2) in equation (4.34) instead of Ce
1↔2

Γ1↔2 = 2ν(1− P1) 〈f1〉 (4.35)

Compare the above equation to (4.33), we can see b1 = 2ν 〈f1〉. After that, we write

Γe1↔2 = 2ν(1− P2)(1− P1) 〈f1〉 δ(1− 2) (4.36)
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Where we used some useful properties for P1 and P2 from table (4.1) to reach the final

answer for Γe1↔2 A system’s steady-state behavior has been prevented from equilibrium

Projection Operator Properties

P 2
1 = P1 P 2

2 = P2

P †1 = P1 P †2 = P2

P1(1− P1) = 0 P2(1− P2) = 0
(1− P1)2 = 1− P1 (1− P2)2 = 1− P2

P1(1− P2) 6= 0 P2(1− P1) 6= 0

P1P2
d
dτ

= d
dτ
P1P2 P2P1

d
dτ

= d
dτ
P2P1

Table 4.1: Useful properties for projection operators P1 and P2

by significant gradients that are maintained, for example by fixed boundary conditions

is now being considered. Since the contributions from d/dτ = ∂/∂t + v1.∇1 + v2.∇2 are

not zero anymore, the derivatives do not disappear under these conditions. For example,

in this scenario, Pf 6= f eq The operation is performed on (4.31) using P1P2 is used to

produce

P1P2Γ′1↔2 = −P1P2

(
d

dτ
+ 2ν(1− P1)

)
〈f1〉 δ(1− 2) + P1P2Γ1↔2.

The second and the third term from the above equation will vanish due to orthogonality

Table 4.1. We will substitute −ν(〈f〉 − f eq) instead of d 〈f〉 /dτ , the above equation can

be written as,

P1P2Γ′1↔2 = νP1P2(〈f1〉 − f eq1 )δ(1− 2) (4.37)

In the moment when the boundary limitations are no longer present. In our investigation,

we discover

Γ′1↔2 = νP1P2(〈f1〉 − f eq1 )δ(1− 2) (4.38)

To find Γ1↔2, multiply equation (4.32) by (1− P2)(1− P1)

(1− P2)(1− P1)Γ′1↔2 = −
(
d

dτ
+ 2ν(1− P1)

)
〈f1〉 δ(1− 2) + Γ1↔2

0 = −(1− P2)(1− P1)

(
d

dτ
+ 2ν(1− P1)

)
〈f1〉 δ(1− 2) + Γ1↔2

⇒ Γ1↔2 = (1− P2)(1− P1)
d 〈f1〉
dτ

δ(1− 2)

+ 2ν(1− P2)(1− P1) 〈f1〉 δ(1− 2)
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substitute −ν(〈f〉 − f eq) instead of d 〈f〉 /dτ . The last equation can be written as,

Γ1↔2 = ν(1− P2)(1− P1)(〈f1〉+ f eq1 )δ(1− 2) (4.39)

We will now develop the general evolution equation in the case of two-body correlation

function.(
d

dτ
+ ν(1− P2) + ν(1− P1)

)
G1↔2 = νP1P2(〈f1〉 − f eq1 )δ(1− 2) (4.40)

In this case, projection operators make sure that energy, momentum, and numbers stay

the same. There’s a lot of information to cover, so we show the drift terms in a rest frame

and write them down as,(
∂

∂t
+ ν(2− P2 − P1) + v1.∇1 + v2.∇2

)
G1↔2 = νP1P2(〈f1〉 − f eq1 )δ(1− 2). (4.41)

In which the relaxation rate ν and the projection operators Pi=1,2 are determined by

〈f〉 ≡ 〈f(p,x, t)〉, the average one-body distribution, as well as the local equilibrium

distribution f eq. A broad examination of the BBGKY hierarchy was used to develop

equation (4.41) for non-relativistic fluids, which was published in reference [49] by Dufty,

Lee, and Brey.

4.4 Ion collisions connected to relativistic transport equation

Can we apply these equations in phenomenological contexts in some way? The be-

ginning condition for solving equation (4.40) corresponds to a single collision occurrence,

thus we begin with that initial condition. In this case, we may use (3.28) to solve the

one-body equation for f(p,x, t) in conjunction with the conservation constraints to ob-

tain the solution. For the correlation function, we solve (4.40) for a while. Averaging

across an ensemble of initial circumstances are then required. Physically, there is no

restriction on the size of the difference between 〈f〉 and f eq; the only restriction is that

the fluctuations f − 〈f〉 must be small. According to reference [34] for example, such

generic solutions do not necessarily have to attain equilibrium.

In order to show how this method can be used for collisions between heavy ions, we

will use these results as an example. It’s a good assumption for this thesis that the phase

space distribution’s deviation from its equilibrium value is always small enough that the
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linearized solution for 〈f〉 is right for this case. Use the conservation conditions, or solve

the dissipation-free Euler equations, to figure out the effective T , µ and v parameters for

the start of each event in this scenario. We won’t need to do this for our goals. There is

no longer a source phrase in (4.40) that is used in this work.

Observable effects of pre-equilibrium correlations that are dependent on the correla-

tion function G12 are of particular interest to us.

G12 = 〈f1f2〉 − 〈f1〉 〈f2〉 − 〈f1〉 δ(1− 2) (4.42)

In this section, we will design formal solutions based on the formal solutions used in the

creation of G12. We will start with the identity operator relation,

1 = P1P2 + P2(1− P1) + P1(1− P2) + (1− P1)(1− P2) (4.43)

Multiply the identity equation by G12

G12 = P1P2G12 + P2(1− P1)G12 + P1(1− P2)G12 + (1− P1)(1− P2)G12. (4.44)

Let

Ge
12 = P1P2G12

X21 = P2(1− P1)G12

X12 = P1(1− P2)G12

∆G12 = (1− P1)(1− P2)G12

As a result, we have

G12 = Ge
12 +X21 +X12 + ∆G12 (4.45)

Where the equilibrium function Ge
12 is defined in the same way as the correlation function

Ce
12, and as a result, we obtain Ge

12 = Ce
12 − P 〈f1〉 δ(1 − 2).In case of P1 〈f1〉 = f e and

df/dτ = 0, we can find the completely linearized solution (3.43). Apply P1P2 on the

equation (4.40)(
P1P2

d

dτ
+ νP1P2(1− P2) + νP1P2(1− P1)

)
G12 = νP 2

1P
2
2 (〈f1〉 − f eq1 )δ(1− 2)
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The second and third terms from the left side equality will vanish due to orthogonality,

while the first term will commute with d
dτ
P1P2. The above equation can be written as,

d

dτ
Ge

12 = −νP1P2(f eq1 − 〈f1〉)δ(1− 2)

∴
d

dτ
Ge

12 = −P1P2
d

dτ
〈f1〉 δ(1− 2) (4.46)

Apply P2(1− P1) on equation (4.42),

P2(1− P1)G12 = P2(1− P1) 〈f1f2〉 − P2(1− P1) 〈f1〉 〈f2〉 − P2(1− P1) 〈f1〉 δ(1− 2)

X21 = 〈f1f
e
2 〉 − 〈f e1f e2 〉 − 〈f1〉 〈f e2 〉+ 〈f e1 〉 〈f e2 〉

= 〈(f1 − f e1 )f e2 〉 − (〈f1 − f e1 〉) 〈f e2 〉

The phase-space distribution’s variation from local equilibrium is denoted by the symbol

δf = f − f e. The above equation can be written as

X21 = 〈δf1f
e
2 〉 − 〈δf1〉 〈f e2 〉 (4.47)

The above-mixed correlation function X21 is the covariance relation. Apply P2(1 − P1)

on equation (4.40) we find(
d

dτ
P2(1− P1) + 0 + νP2(1− P1)

)
G1↔2 = 0

dX21

dτ
= −νX21 (4.48)

∴ X21 = X0
21S (4.49)

Where S is the survival probability and X0
21is the initial function and its value can be

determined from the initial distribution of nucleon participants, as well as their first few

interactions, influence its value. We will do the same steps to find the solution of X12

but instead of applying P2(1− P1) we will apply P1(1− P2)

X21 = 〈δf2f
e
1 〉 − 〈δf2〉 〈f e1 〉 (4.50)

dX12

dτ
= −νX12 (4.51)

X12 = X0
12S (4.52)
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Where S is the survival probability and X0
12 is the initial function and its value can be

determined from the initial distribution of nucleon participants, as well as their first few

interactions, influence its value.

Apply (1− P1)(1− P2) on equation (4.42)

∆G12 = (1− P1)(1− P2) 〈f1f2〉 − (1− P1)(1− P2) 〈f1〉 〈f2〉

− (1− P1)(1− P2) 〈f1〉 δ(1− 2)

∆G12 = −〈f2f
e
1 〉 − 〈f1f

e
2 〉+ 〈f e1f e2 〉+ 〈f1f2〉+ 〈f1〉 〈f e2 〉+ 〈f2〉 〈f e1 〉

− 〈f e1 〉 〈f e2 〉 − 〈f1〉 〈f2〉+ 〈f1〉 δ(1− 2)− 〈f e1 〉 δ(1− 2)

∴ ∆G12 = 〈δf1δf2〉 − 〈δf1〉 〈δf2〉 − 〈δf1〉 δ(1− 2) (4.53)

The above equation is the contribution of non-equilibrium to correlations. Apply (1 −

P1)(1− P2) on equation (4.40)(
d

dτ
(1− P2)(1− P1) + ν(1− P2)(1− P1)2 + ν(1− P2)2(1− P1)

)
G1↔2 = 0

d∆G12

dτ
= −2ν∆G12 (4.54)

∴ ∆G12 = ∆G0
12S

2 (4.55)

∆G0
12 is the initial function and its value can be determined from the initial distribution

of nucleon participants, as well as their first few interactions, influence its value. The

solution of the new relativistic transport equation can be written as,

G12 = Ge
12 +X0

21S +X0
12S + ∆G0

12S
2 (4.56)

The local equilibrium correlation function for two particles is defined as,

Ge
12 = Ge

12(x1 − v1t,p1,x2 − v2t,p2) (4.57)

In chapter 7, we will demonstrate a way of integrating the solution (4.56) to examine

the approach to thermalization by employing pt fluctuations to investigate the solution

integration method.
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CHAPTER 5 NEW OBSERVABLE ′D′

The main goal of this chapter is to characterize as precisely as possible the likely

observables of a heavy-ion collision. There are a variety of observables, ranging from

the most basic, such as particle multiplicity, which just counts the number of particles

formed in a collision, to more complex ones, such as various correlation functions, which

are described in detail below.

In this dissertation, we demonstrate that the observables R, C, D, and 〈δpt1δpt2〉,

which are all two-particle correlation observables, are mathematically connected by equa-

tion (5.12). When these observables are observed or calculated at the same time using the

same method, (5.12) can be used as a validation tool for theoretical models, depending

on the circumstances. Importantly, because each observable corresponds to a separate

component of the collision system, (5.12) may be used to estimate the relative impacts

of different physics on a single observable.

In fluctuations and correlations section, We will explore briefly how to design a generic

two-particle momentum density correlation function, equation (5.18). The four related

two-particle correlation observables (5.8), (5.9), (5.10), and (5.11) all originate from this

common source.

R stands for the multiplicity fluctuations described in Section 5.6, test particle pro-

duction mechanisms. They are strongly impacted by centrality or volume fluctuations,

demonstrating a link between the collision region’s overlap and the quantity of created

particles. R is created in such a way that it equals zero if the event multiplicity is totally

independent between events that are, if the resulting particle distribution is Poissonian,

by means the particle variance equals the mean. In the case of a non-zero R, it shows

that events within the same ensemble produce particles using a shared underlying particle

production physics, resulting in an event-by-event correlation. While it is tempting to

explain this association to the geometrical initial state distribution in nuclear collisions,

R is not zero in pp collisions as well. This may imply that sub-nucleon scale physics more

correctly describes the initial state.

Momentum correlations, C, are the weighted transverse momentum equivalent of R,
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as described by (5.47) in Section 5.7. Due to the momentum weighting, these correlations

are sensitive in case of dynamical forces acting on the collision system during its evolution,

such as viscosity, with the initial state factors that produce R.

Transverse momentum fluctuations, described by (5.19) in Section 5.4, have been

widely investigated as a measure of collision dynamic systems, temperature fluctuations,

and the critical point phase change phenomena. We demonstrate in this study, for the

first time, how the multiplicity fluctuations, momentum correlations, and momentum-

multiplicity correlations together contribute to 〈δpt1δpt2〉. Additionally, Equation (5.55)

demonstrates how, in comparison to other correlation observables, 〈δpt1δpt2〉 is robust to

changes in centrality definition. Since C and R both contain the same number density

fluctuations, the difference −〈pt〉R+C in (5.55) effectively eliminates the number density

fluctuations associated with their shared centrality definition.

Additionally, this thesis introduces the concept of a multiplicity-momentum correla-

tion measure, D, defined by (5.28). In momentum-multiplicity section, we estimate that

D equals zero in the Grand Canonical Ensemble. In contrast, in chapter 6, we get a

positive result equivalent in size to 〈δpt1δpt2〉 from PYTHIA simulations. PYTHIA simu-

lations do not include bulk correlation dynamics, and we suggest that the growing value

of the average transverse momentum of a particle with increasing multiplicity supports a

positive multiplicity-momentum correlation in both pp and AA collision systems.

5.1 The grand canonical ensemble’s parameters

As part of the comparison, the density matrix in quantum statistics is used in similar

ways to the density function ρ(p, x). When we use classical statistics, we can show from

ρ(p, x) how likely it is that the coordinates and momenta of the particles of the body will

be different. The diagonal matrix of the density matrix ρmm = ρm in quantum statistics

shows how likely it is that the body will be in a certain state m. In quantum statistics,

the most important thing to do is figure out the density matrix. To do this, we’ll figure

out the density matrix for all three types of ensembles.

• Microcanonical ensemble Let us consider a microcanonical ensemble with an en-

ergy range ranging between the values E and E + δE, Where E is much smaller
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than δE. It can be found in a huge number of microstates at the same time. Due

to our lack of knowledge regarding microstates, we assign an equal possibility to

each potential microstate scenario.

In the case of Em between E and E + δE

ρm =
1∑
Em

1

Otherwise

ρm = 0

• Canonical ensemble. During the course of a canonical ensemble, the system under

investigation is capable of exchanging energy with the surrounding environment at

the temperature T , which is equal to 1
β
. It is possible to apply a weight factor

e−βEm to the likelihood of finding the system in the energy state Em. It is then

represented as the density matrix of the canonical ensemble of elements which can

be written as,

ρm =
e−βEm∑
m e
−βEm

The
∑

m e
−βEm is known as the partition function and is represented by the symbol

Z. In fact, it is essentially a trace of the operator e−βĤ , with Ĥ denoting the

system’s Hamiltonian.

Z =
∑
m

e−βEm = Tre−βĤ

• Grand canonical ensemble. Both the number of particles and the energy of the

grand canonical ensemble are subject to change. One can apply a weight factor

e−β(Em−µNm) to the probability of discovering the system of Nm particles in the

energy state Em by using a probability distribution. It is then stated as the density

matrix for this ensemble, which can be written as

ρm =
e−β(Em−µNm)∑
m e
−β(Em−µNm)
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The partition function of the grand canonical ensemble is defined as,

Z =
∑
m

e−β(Em−µNm) (5.1)

The observable or expected value of any operator may be calculated using the

partition function, which looks like this:

〈A〉 =
TrAe−β(Ĥ−µN̂)

Tre−β(Ĥ−µN̂)
(5.2)

The explicit relations for determining the particle number and energy of a system

are derived from the grand canonical partition function in the next step.

If we differentiate lnZ with respect to α = µβ (α is a variable has a condition

dα
dβ

= 0) we are able to obtain

∂ lnZ

∂α
=
Tre−β(Ĥ−µN̂)(N̂)

Z
= 〈N〉 (5.3)

Differentiate lnZ with respect to β to obtain

∂ lnZ

∂β
= −Tre

−β(Ĥ−µN̂)Ĥ

Z
= −〈E〉 . (5.4)

The average energy can be written as

〈E〉 = − 1

Z

∂Z

∂β
. (5.5)

The partition function may also be used to compute fluctuations in particle counts

or in the energy-particle count, which are both useful functions. For example, by

twice differentiating equation (5.3), we get the following result:

∂2 lnZ

∂α2
=
Tre−β(Ĥ−µN̂)(N̂2)

Z
−

[
Tre−β(Ĥ−µN̂)N̂

]2

Z2
=
〈
N2
〉
− 〈N〉2

∴
∂ 〈N〉
∂α

=
〈
N2
〉
− 〈N〉2 (5.6)

In order to obtain energy particle fluctuation, differentiate equation (5.4) as a func-

tion of α

∂2 lnZ

∂α∂β
=
Tre−β(Ĥ−µN̂)N̂Ĥ

Z
−

(
Tre−β(Ĥ−µN̂)N̂

)(
Tre−β(Ĥ−µN̂)Ĥ

)
Z2

∴
∂ 〈E〉
∂α

= 〈NE〉 − 〈N〉 〈E〉 (5.7)
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We will use later the grand canonical ensemble to study the multiplicity-momentum

correlations.

5.2 Defining observables

Observables are defined in this section, and we will go over them in further detail in the

next sections. We shall begin with a new observable defined as multiplicity-momentum

correlations, which can be written as,

D =

∫ ∫
d3p1d

3p2 r(p1,p2) (pt1 − 〈pt〉)
〈N〉2

(5.8)

where r(p1,p2) is the correlation momentum density for two particles with momenta p1

and p2, (pt1−〈pt〉) represents the fluctuation of a particle’s transverse momentum relative

to the global event ensemble average and 〈N〉 signifies the event averaged multiplicity

of a particle. We will discus that D vanishes entirely if the only source of momentum-

multiplicity correlations is the presence of multiplicity fluctuations. Additionally, we

establish that D is 0 when the Grand Canonical Ensemble is in equilibrium. A non-zero

value for D may suggest insufficient thermalization and correspond to correlations arising

from the particle creation mechanism that persisted until the particle production process

freeze-out.

We will show in the chapter 6 that PYTHIA and Angantyr simulations of proton-

proton and nucleus-nucleus collisions reveal that D does not equal zero in these cases.

Furthermore, we discover thatD has a value that is equivalent to correlations of transverse

momentum fluctuations, 〈δpt1δpt2〉, which have been well quantified at both the LHC and

RHIC. In prior work, we considered D to be zero, and this is also assumed in reference

[50], where ALICE analyzes two-particle transverse momentum correlations differently in

relative azimuthal angle and relative pseudorapidity.

We will define another observable which is Transverse momentum fluctuations corre-

lations. Therefore it is possible to express this as

〈δpt1δpt2〉 =

∫ ∫
d3p1d

3p2 r(p1,p2) δpt1δpt2
〈N(N − 1)〉

(5.9)

Where δpt = pt − 〈pt〉 represents the fluctuation of a particle’s transverse momentum

relative to the global event ensemble average and r(p1,p2) is the correlation momentum
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density for two particles. This observable was measured by STAR in reference [51], for

the first time and now in this work we will show how the analytic form of this observable

is linked to the one that can be measured.

Unlike other definitions, the similarities between multiplicity-momentum correlations

and correlations of transverse momentum fluctuations are not only coincidental; they are

both part of a larger set of observed variables that are mathematically related by the

correlation function r(p1,p2), which is itself an observable in the form.

Multiplicity fluctuation observables defined as

R =

∫ ∫
d3p1d

3p2 r(p1,p2)

〈N〉2
(5.10)

R has been extensively explored as a metric for volume or centrality fluctuations, as well

as a possible indicator of the commencement of QGP and QCD critical point fluctuations.

In multiplicity fluctuation section, we go through these details as well as the experimental

measurement of R. The depiction of R in an independent source model, which is ex-

plained in chapter 6, also informs R’s dependency on volume variations. Particle sources

fluctuate from event to event, causing volume fluctuations.

Transverse momentum correlations

C =

∫ ∫
d3p1d

3p2 r(p1,p2)pt,1pt,2

〈N〉2
(5.11)

in other words, they are produced from the same volume fluctuations and initial state

correlations that generate R, and they functionally represent a transverse momentum

weighted version of R. C, on the other hand, is sensitive to the system’s expansion and

equilibrium dynamics due to its momentum dependency.

The most important finding of this study is that the multiplicity momentum correla-

tions, D, correlations and fluctuations of transverse momentum,〈δpt1δpt2〉 , multiplicity

fluctuations, R, and transverse momentum correlations, C, are mathematically connected

by the equation.

(1+R) 〈δpt1δpt2〉+ 2 〈pt〉D − C + 〈pt〉2R = 0. (5.12)

This is how we arrive at the conclusion shown later in the upcoming sections in this chap-

ter. When each observable is assessed separately, the result of (5.12) gives a previously
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undiscovered validation. As an added bonus, models that exhibit high agreement with

one observable may now utilize that comparison as a baseline for simultaneously address-

ing the other two observables, and so on. Furthermore, each observable may represent a

separate physical effect, and with the help of equation (5.12), one observed value may be

subdivided into the contributions from each individual effect.

In the parts that follow, we will go over each observable in depth, as well as how we

link them using an equation (5.12), which is also we defined it as the sum rule method.

5.3 Fluctuations and correlations

Fluctuations affect all observables, and these fluctuations are often influenced by the

characteristics of the system, and they may be utilized to investigate these properties.

These fluctuations can be divided into two categories. At the most fundamental level,

each collision event is distinct from the others because a limited and changing number of

particles are generated. The fact that each event has a finite magnitude is a fundamental

source of fluctuations, which we refer to collectively as statistical fluctuations. We can

determine the magnitude of these fluctuations by examining how a system acts while

it is in local equilibrium. The second sort of fluctuations are those that occur above

equilibrium, which we refer to as dynamical fluctuations. These fluctuations include all

other forms of fluctuations.

In the event of a nuclear collision, one of the most fundamental quantities that may

be seen is the number of particles that impact a detector. This observable is referred

to as the multiplicity of the event and is denoted by the letter N . The event averaged

multiplicity 〈N〉 is obtained by repeating this measurement for a large number (millions)

of collisions and averaging the results.

〈N〉 =

∫
d3p ρ1(p) (5.13)

Where

ρ1(p) =
dN

d3p
=

∫
d3x 〈f(x,p)〉 (5.14)

Here ρ1 is the single-particle momentum density which is related to the average phase

space density 〈f(x,p)〉.
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The average number of particle pairs when auto-correlations are not taken into con-

sideration is defined as,

〈N(N − 1)〉 =

∫ ∫
d3p1d

3p2 ρ2(p1,p2), (5.15)

where

ρ2(p1,p2) =
dN

d3p1d3p2

=

∫ ∫
d3x1d

3x2 [〈f(x1,p1)f(x2,p2)〉 − 〈f1〉 δ(1− 2)] . (5.16)

Here ρ2 is the pair momentum density which is related to the phase space density f .

It is necessary to define the two-particle momentum density before we can generate

any correlation observables for two particles.

ρ2(p1,p2) = ρ1(p1)ρ1(p2) + r(p1,p2) (5.17)

According to equation (5.17), particle pairs can be created in two different ways. If pairs

are created from independent particles, by means there are no correlations between them,

then the pair distribution is just the product of two single-particle densities multiplied

by one another (ρ1ρ1). The second kind of correlated pairings is represented by the

r(p1,p2) = ρ2(p1,p2)− ρ1(p1)ρ1(p2) (5.18)

Correlations are eliminated by construction in the situation of uncorrelated particle emis-

sion, which occurs when just statistical fluctuations are present.

At this point, we don’t know what physical mechanisms are at work to make the

correlations in equation (5.18) happen, even though there are many possibilities.∑
n=2 vn cos (nφ− nψn) [17, 52, 53], where

∑
n=2 vn cos (nφ− nψn) is the particle az-

imuthal distribution. The coefficients vn of a Fourier fit is used to the particle azimuthal

distribution are called ”flow,” and they show how the angle of emission (momentum)

changes with the event plane. A lot of effort has been expended in recent years to iden-

tify ”nonflow” correlations such as HBT-like femtoscopic correlations [54, 55], momentum

conservation [56, 57] resonance decays and final state interactions [58], and jets. Various

papers [14, 59] have proposed that particles created in close spatial proximity to one

another develop a momentum connection due to transverse expansion. We hypothesize
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that this mechanism accounts for a large fraction of the signal found in two-particle cor-

relations. Given that this influence is only loosely tied to the event of the reaction plane,

many would classify this effect as a non-flow effect.

Rather than attempting to diagnose the relative contributions of distinct correlation

mechanisms in a single observable, we suggest a set of observables that all begin with

ρ2, are sensitive to a different physics, and they are linked mathematically by sum-rule

formula equation (5.12).

Correlation and fluctuation values are commonly measured in current research [60,

61, 50] using relative azimuthal angle (∆φ = φ1 − φ2) and the relative pseudorapidity

(∆η = η1 − η2). In several investigations, pairings separated by a pseudorapidity gap

bigger than (|∆η| ≈ 1) are also measured.

Analyzing observables as a function azimuthal angle for the identification of anisotropic

flow contributions. As can be seen from the similarity of the patterns shown by the pro-

jections of differential measurements like (5.9), (5.10), and (5.11) onto the azimuthal axis,

the two peaks at ∆φ = 0 and at ∆φ = π that appear are consistent with anisotropic flow

and momentum conservation. These observables likewise exhibit a wider peak at ∆φ = π

compared to the narrower peak at ∆φ = 0 in these data. These findings have been often

ascribed to triangular flow.

In order to minimize ’short-range’ |∆η|, correlations, and other phenomena like res-

onance decays and jets, pseudorapidity gaps between pairs are utilized. Separately, in

differential measurements, the effects of HBT and track pileup are frequently eliminated

by removing the ∆η = 0 bin from the equation. All three differential measurements of

(5.9), (5.10), and (5.11) indicate a ”long-range” correlation, |∆η| > 1− 2, in center col-

lisions when projected onto the ∆η = 0 axis of the differential observations. In addition

to detector rapidity acceptances, this long-range ’near-side’ (∆φ = 0) connection appears

to extend beyond the detector rapidity acceptances. As a result, the near-side peak is

frequently depicted as a peak resting on a long and flat pedestal, which is referred to

as ’the ridge.’ Anisotropic flow harmonics [62, 60, 50, 63, 64] are frequently used to fit

experimental measurements of the ridge with a Fourier series flat in ∆η and then connect
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the coefficients from the Fourier series to the anisotropic harmonics flow. It is the cor-

relations in excess of the ridge (i.e., correlations in excess of flow correlations) that are

represented by the peak sitting on the pedestal, which nevertheless extends to long-range

in ∆η (and perhaps beyond the experimental acceptability) in center collisions. As colli-

sions grow more peripheral, the ∆η of this surplus reduces in broadness. The widths of

the peripheral peaks are in the range of 0.5 to 1, which is consistent with the resonance

decay correlations and jet. The growing breadth of the near side peak as the number of

collisions moves from peripheral to central implies that a correlation mechanism other

than flow harmonics is at work. Reference [48] is an example of this.

Fourier series can be written as
∑

n=2 an cos (n∆φ). If the observables (5.9), (5.10),

and (5.11) in (∆η,∆φ) are not measured individually, then all flow effects are excluded

from consideration. To further understand this, consider the following scenario: the quan-

tity R(∆φ) has been measured and is well characterized by a Fourier series taking into

consideration the terms an cos (n∆φ) . To obtain the integrated amount, one calculates

R =
∫
R(∆φ)d∆φ, where R again is the multiplicity fluctuation. For example, when

computing the corresponding integral of the Fourier series over a symmetric interval, the

integral of all terms cos (n∆φ) across a symmetric interval vanishes term by term, sug-

gesting that if correlations are solely characterized by flow, R =0 is obtained. Despite the

fact that these residual correlations may be classified as non-flow, they are nevertheless

fascinating and may give significant information about the dynamics of the collisions or

their initial state. We pay particular attention to long-range approaching correlations

in excess of flow. It is also possible to discriminate between different types of events

depending on their jet features by looking at the integrated observables. Instead, the

centrality and dependency on energy of these correlations might suggest how thermalized

events are, which we will leave to future research.

The correlations (5.18) also illustrate the variations in generated particles that occur

from event to event. It is important to note that integrating (5.18) over all momenta in
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the form of∫ ∫
d3p1d

3p2r(p1,p2) =

∫ ∫
d3p1d

3p2 [ρ2(p1,p2)− ρ1(p1)ρ1(p2)]

= 〈N(N − 1)〉 −
〈
N2
〉

= V ar(N)− 〈N〉

where the fluctuations in generated particles are characterized by this method V ar(N) =

〈N2〉− 〈N〉2. Given that each event is completely independent of the others, it is reason-

able to expect this variance to follow the Poisson distribution - where the variance equals

the mean. This would result in a vanishing integral of the variance (5.18).

It is possible to have non-Poissionian fluctuations in an ensemble of events when a

physical mechanism (in initial state formation, dynamical expansion, or final state inter-

actions) causes fluctuations that are correlated across all of the events in the ensemble;

in this scenario, r(p1,p2) 6= 0. Consequentially, because these fluctuations are linked to

physical processes, they are not fully random and may be distinguished from one another

using correlation observables. Non-Poissionian behavior seen in both experiments and

simulations, and will be described in more detail in the following sections.

5.4 Correlations of transverse momentum fluctuations

It has been intensively explored as a putative indication for the existence of QGP as

correlations of transverse momentum in excess of multiplicity fluctuations, as specified by

(5.9) [65, 66, 67, 51, 68, 69, 70, 71, 72, 73, 62, 60, 74]. QCD critical point searches explore

for non-monotonic behaviors because fluctuations are predicted to diverge if the system

undergoes a phase transition [75, 76], and hence non-monotonic behaviors are sought.

Additionally, the event-by-event change in pt may be utilized as a metric of temperature

fluctuations throughout the course of an event [51, 77]. We are particularly interested in

momentum correlations indicated by equation (5.9), which are experimentally quantifi-

able with

〈δpt1δpt2〉 =
1

〈N(N − 1)〉
·

〈
Nk∑
i=1

Nk∑
j=1,j 6=i

δptjδptj

〉
(5.19)
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where

δpt,i = pt,i − 〈pt〉 (5.20)

is the term refers to the fluctuations of particle i′s transverse momentum in event k from

the total average transverse momentum per particle for a certain centrality class. Due to

the fact that (5.20) represents a fluctuation, (5.19) represents a covariance of fluctuations.

In order to prevent misunderstanding, we separate correlations of transverse momentum

fluctuations (5.19) from the transverse momentum correlations, C, in section 5.7 in this

course. In section 5.8, we will look at the relation between these two types of correlations.

The covariance of the transverse momentum fluctuations deviating from the global av-

erage is measured by the function 〈δpt1δpt2〉. Each particle in a pair contributes positively

to 〈δpt1δpt2〉 when the particles in the pair have bigger or smaller pt than the average.

Each particle in a pair adds negatively to the sum of 〈δpt1δpt2〉 when one particle has a

positive δpt and the other particle has a negative δpt. 〈δpt1δpt2〉 = 0 in the case of entirely

independent particle emission.

A little difference exists between the definition (5.19) and the definitions discovered

in experimental measurements. Experiments are used to measure

〈δpt1δpt2〉 =
1

Nevent

Nevent∑
k=1

Ck
Nk(Nk − 1)

(5.21)

where

Ck =

Nk∑
i=1

Nk∑
j 6=i,j=1

(pt,i −Mpt >)(pt,i −Mpt) (5.22)

with

Mpt =
1

Nevent

Nevent∑
k=1

〈pt〉k (5.23)

in which 〈pt〉k denotes the average transverse momentum of event k, and

〈pt〉k =
1

Nk

Nk∑
i=1

pti (5.24)

In this case, there are two distinctions. The first distinction is the average transverse mo-

mentum per particle for each event must first be determined individually before averaging
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that value over all events in the same centrality class can be calculated. As specified in

(5.19), the average transverse momentum of a particle is defined as

〈pt〉 =
〈PT 〉
〈N〉

(5.25)

where

〈PT 〉 =

∫
d3pρ1(p)pt =

〈
Nk∑
i=1

pti

〉
(5.26)

This is more accurate in terms of our theoretical explanation of momentum density (5.14).

The second distinction between (5.19) and (5.21) is one of normalization. The denomina-

tor of (5.19) is determined independently, but the ratio Ck
Nk(Nk−1)

is determined event by

event in (5.21). We make this decision in (5.19) in order to retain the greatest amount of

consistency feasible between (5.9) and (5.8), (5.10), and (5.11). Both (5.19) and (5.21)

are plotted in figure 5.1 since they were computed using the identical PYTHIA events.

It has been noted that there is excellent agreement.

In pp and AA collisions, positive values of 〈δpt1δpt2〉 have been seen in experiments

at a variety of energies. [51, 72, 74] show that 〈δpt1δpt2〉 reduces with centrality, but

that this fall does not follow 1
〈N〉 . If 〈δpt1δpt2〉 falls in the same direction as 1

〈N〉 , then the

number
(
dN
dη

)
〈δpt1δpt2〉 should be relatively flat. However, experimental measurements

of
(
dN
dη

)
〈δpt1δpt2〉 show a gradual increase from periphery to mid-peripheral collisions

and a plateau as the collisions get more central. According to some researchers [51, 72],

this increase might signify the start of critical fluctuations or the impact of insufficient

thermalization [45].

〈δpt1δpt2〉 is commonly reported as a relative dynamical correlation in experimental

measurements. √
〈δpt1δpt2〉
〈pt〉

(5.27)
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Figure 5.1: Equation (5.27) estimations from PYTHIA pp events (circles and squares)
compared to ALICE measurements (solid diamonds) [72, 73]. (5.19) is represented by
solid circles and squares, whereas open circles and squares are represented by equation
(5.21).

Figure 5.2: Equation (5.19) estimations from PYTHIA AA events were compared to
measurements from ALICE pp and PbPb collisions [72, 73], as well as STAR AuAu
collisions [74]. Multiplicity determines centrality.
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Figure 5.3: Equation (5.19) estimations from PYTHIA AA events were compared to
measurements from ALICE pp and PbPb collisions [72, 73], as well as STAR AuAu colli-
sions [74]. The number of participating nucleons determines centrality. The independent
source model for wounded nucleons, Equation (6.27), is represented by solid lines .

it has no dimensions. It also rescales the growth of (5.19) such that it is determined by

the total effect of correlations instead of the size of 〈pt〉. The collision energy dependency

of the observations is almost eliminated by this scaling [51, 72, 74]. We compute (5.27)

using (5.19) and (5.25) from PYTHIA/Angantyr simulated events and compare it to

experimental data in figures. 5.1, 5.2, and 5.3.

Experimental measurements of 〈δpt1δpt2〉 vary in terms of relative rapidity ∆η and

relative azimuthal angle ∆φ, just as they do for R and C. The ALICE collaboration

measures 〈δpt1δpt2〉(∆η,∆φ)

〈pt〉2
= P2(∆η,∆φ), which has a particular ridge-like structure for

charge independent correlations [60]. When using Fourier decomposition, the near-side

ridge at ∆φ equal to zero is not entirely explained, and the excess correlations in ∆η

appear to be long-range in nature. 〈δpt1δpt2〉 correlations can be influenced by short-range

phenomena such as resonance decays and jets; nevertheless, these effects alone are unable

to adequately account for the excess long-range correlations observed in P2(∆η,∆φ).

Several reasons have been postulated for these correlations. They include quark co-

alescence models [78], string percolation models in which clustered strings form colored
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sources [66], fluctuations in event entropy and size [79], and a boosted source model in

which radial flow enhances correlations originating in initial state hotspots [14]. We ar-

gue that any explanation for these correlations should also address additional two-particle

correlations derived from (5.18) such as (5.8), (5.10), and (5.11).

5.5 Multiplicity-momentum correlations

A novel observable D, defined by (5.8), is used to investigate the relationship between

transverse momentum and particle generation on an event-by-event basis. In chapter 6,

we demonstrate that, in PYTHIA/Angantyr simulations, D is typically positive and has

a magnitude that is comparable to 〈δpt1δpt2〉.

According to (5.8), δpt is defined by (5.20), and 〈pt〉 is the average transverse momen-

tum of a particle for a particular class of events with a certain centrality (5.25). (5.8)

may be measured experimentally using the end state particle pair sum.

D =
1

〈N〉2

〈
Nk∑
i=1

Nk∑
j 6=i,j=1

δpt,i

〉
=

1

〈N〉2

〈
(Nk − 1)

Nk∑
i=1

δpt,i

〉
(5.28)

In order to comprehend this observable, we need to expand δpt,i in the intermediate term〈
Nk∑
i=1

Nk∑
j 6=i,j=1

δpt,i

〉
=

〈
Nk∑
i=1

Nk∑
j 6=i,j=1

pt,i

〉
−

〈
Nk∑
i=1

Nk∑
j 6=i,j=1

〈pt,i〉

〉
(5.29)

For any quantity Y , the event average can be expressed as 〈Y 〉 =
∑Nevents
k=1 Yk
Nevents

. When

this occurs, 〈N〉 denotes the average number of particles in each event, and 〈N(N − 1)〉

denotes the average number of particle pairs when autocorrelations are not taken into

consideration.

Equation (5.29) can be written as〈
Nk∑
i=1

Nk∑
j 6=i,j=1

δpt,i

〉
= 〈NPT 〉 − 〈PT 〉 − 〈pt〉 〈N(N − 1)〉 (5.30)

Add and subtract 〈N〉 〈PT 〉 and use 〈PT 〉 = 〈pt〉 〈N〉 to equation (5.30), we find〈
Nk∑
i=1

Nk∑
j 6=i,j=1

δpt,i

〉
= 〈NPT 〉 − 〈N〉 〈PT 〉 − 〈pt〉

(〈
N2
〉
− 〈N〉2

)
= Cov(N,PT )− 〈pt〉V ar(N)
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where Cov(N,PT ) = 〈NPT 〉 − 〈N〉 〈PT 〉 is the covariance between total transverse mo-

mentum and the multiplicity in a single event. V ar(N) is the event multiplicity variance.

Now D can be written as

D =
Cov(N,PT )− 〈pt〉V ar(N)

〈N〉2
(5.31)

The addition of any particle to an event will result in an increase in the total transverse

momentum contained inside that event, because every particle carries a specific transverse

momentum. As a result, there is a natural link between total pt and multiplicity that

is dominated solely by fluctuations in multiplicity. Take note that this contribution is

deducted from the rightmost phrase of the equation (5.31). Consequently, if multiplicity

fluctuations are the only cause of multiplicity momentum correlations, D should be equal

to zero.

Define

DE =
Cov(N,E)− εV ar(N)

〈N〉2
(5.32)

where ε = 〈E〉
〈N〉 , we discover that DE goes to zero when the energy per particle ε = ∂〈E〉

∂〈N〉 is

satisfied.

In order to connect the energy and the transverse momentum, we consider

• Large transverse momentum of a particle (pt � m). The transverse mass can be

written as

mt =
√
m2 + p2

t = pt
√

(m/pt)2 + 1 (5.33)

we take the first order of taylor series of equation (5.33)

mt ≈ pt (5.34)

• Near the mid-rapidity y ≈ 0, we can write the energy as

Ei = mt,i cosh yi (5.35)

Ei ≈ mt,i ≈ pt,i (5.36)
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• The average total transverse momentum over all states is thus essentially equal to

the average total energy.

〈E〉 ≈ 〈PT 〉 (5.37)

The right side of equation (5.7) can be written as

〈EN〉 − 〈E〉 〈N〉 = 〈PTN〉 − 〈PT 〉 〈N〉 (5.38)

equation (5.7) can be written as

∂ 〈E〉
∂α

= 〈EN〉 − 〈E〉 〈N〉 =
∂ 〈E〉
∂ 〈N〉

∂ 〈N〉
∂α

(5.39)

Figure 5.4: For pp collisions at various energy, average transverse momentum of a particle
as a function of the reference of multiplicity. The PYTHIA error bars show statistical
uncertainty.
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Figure 5.5: For certain AA collision systems, average transverse momentum of a particle
as a function of the reference multiplicity. On the PYTHIA results, error bars indicate
statistical uncertainty. The STAR data is derived from [80].

We substitute ∂〈E〉
∂〈N〉 = ∂〈PT 〉

∂〈N〉 in equation (5.39). 〈pt〉 is consistent throughout a broad

range of multiplicities, the definition of equation (5.25) yields ∂〈PT 〉
∂〈N〉 ≈ 〈pt〉. Using this

information in (5.39) with (5.6), we find,

〈PTN〉 − 〈PT 〉 〈N〉 = 〈pt〉
(〈
N2
〉
− 〈N〉2

)
(5.40)

Finally, we establish that D = 0 by replacing (5.40) for (5.31).

A non-zero D can be caused by a variety of circumstances. Hadronization may cause

the assumption that when pt much greater than m holds for all particles to be violated.

For example, in collision systems with
√
s = 200GeV , the average transverse momentum

is around 〈pt〉 ≈ 0.5GeV , which is obviously substantial when compared to the pion mass,

but not when compared to the kaon or proton masses, according to some estimates. Heavy

particles may cause the momentum multiplicity covariance to be skewed. When particle

rapidities are greater than |y| = 0.5, the deviations from our y = 0 assumption become

progressively large. If greater momentum particles, such as those with pt > 2GeV , are

produced at the expense of manufacturing fewer particles with average momentum, then

the covariance Cov(N,PT ) will become negative as a result. Cov(N,PT ) will be positive if
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high momentum particles occur in conjunction with excess particles close to the average.

The assumption 〈pt〉 ≈ ∂〈PT 〉
∂〈N〉 does not hold true if the transverse momentum per particle

grows with increasing event multiplicity.

As seen in Figures 5.4 and 5.5, when we plot 〈pt〉 against event multiplicity, we find

that the average transverse momentum of a particle increases as the number of events

increases. All collision systems and energies exhibit this phenomenon. reference [81] is

an example of this. The transverse momentum and multiplicity covariance is positive, if

only a slight one in this scenario. The production of jet particles or an increase in radial

flow velocity in center collisions, as compared to peripheral collisions, are two possible

explanations for this covariance. When 〈pt〉 increases, it is thought to be a result of

the multiple interaction model [82] and color reconnection [83], which have both been

demonstrated in PYTHIA. A non-zero D shows a connection relating to particle creation

and dynamics that is unique from R, C, and 〈δpt1δpt2〉 in each of these correlations. The

contribution of correlations D to the other observables 〈δpt1δpt2〉 and C will be discussed

in detail in the last section in this chapter.

5.6 Multiplicity fluctuations

Multiplicity fluctuations have been extensively investigated with the purpose of de-

tecting the development of QGP (Quark-Gluon-Plasma). Net charge fluctuations are

utilized to differentiate QGP from hadron gas [84, 85, 86, 87]. Such investigations de-

pend on the concept of ′′volume fluctuations′′ to link event choices based on multiplicity

to geometric description of the collision zone [88]. Other net charge fluctuation investiga-

tions search for substantial divergences that might indicate a QGP phase transition [75,

89, 90]. Inclusive multiplicity fluctuations have been connected to the system’s isother-

mal compressibility [91, 92, 93], providing the midrapidity region can be characterized

by the Grand Canonical Ensemble. (A research meant to be used as a base of statisti-

cal fluctuations originating from a hadron resonance in the Canonical Ensemble, Micro

Canonical Ensemble, and Grand Canonical Ensemble can be found in this reference [94].)

Net baryon fluctuations are utilized to detect small spots of chiral condensates in order

to characterize events that indicate QGP production [95, 96]. All of these references
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make use of observables built from moments of inclusive or identifiable multiplicities of

a particle [97, 98].

In this part, we will discuss elements of the multiplicity fluctuation observable (5.10)

that is measured as

R =
〈(N2 −N)〉 − 〈N〉2

〈N〉2
=
〈N2〉 − 〈N〉2 − 〈N〉

〈N〉2

so R can be written as

R =
V ar(N)− 〈N〉

〈N〉2
(5.41)

We describe how R establishes an overall scale for each two particle correlation generated

from the correlation function (5.18). As a result of this relationship, we investigate how

the design of R results in a distinctive 1
〈N〉 behavior that effects the interpretation of each

two particle correlation observable contained in this study.

Pruneau et al. show that the observable R is resilient to detection efficiency effects

and acceptance restrictions for inclusive distributions in reference [98]. To demonstrate

this, we begin by building (5.41) from the single particle distribution, ρ1, and the pair

distribution, ρ2, respectively, using (5.3) and (5.15) and utilizing reasoning from both ref-

erences [98] and [14]. Given a and b are arbitrary normalizations for ρ2 and ρ1 respectively

such that

ρ2 → aρ2

ρ1ρ1 → bρ1ρ1

then (5.41) can be written as

Racc =
a− b
b

+
a

b
R (5.42)

It is possible for R to have a scale and offset that is dependent on the detector and

collision mechanism, as well as the energy of the impact in case of a 6= b. If, on the other

hand, a and b are equal, as is the case for detector tracking efficiency, then Racc = R is

obtained. This is the motivating factor for the decision to normalize R by 1/ 〈N〉2.
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As a result, while looking at the rightmost definition of R in (5.41), you will see that

in case of both terms have a scale of 〈N〉 in the numerator, then R will behave in a

1
〈N〉 manner. In this scenario, the multiplicity distribution follows binomial distribution

or negative binomial distribution, which is the case in most cases. Independent particle

production results in a Poisson statistics for the multiplicity distribution; the variance

matches the mean, and R = 0. Under chapter 6, we demonstrate that in an indepen-

dent source model, the observables (all the observables) created in a manner similar to

(5.10) trend in a manner similar to 1
〈K〉 , where K is the number of sources for a given

event. These correlations are characterized by their 1
〈N〉 or 1

〈K〉 behavior, and we seek for

deviations from this trend.

In order to identify critical fluctuations, the PHENIX collaboration calculated the

scaled variance for the charged multiplicity

ω =
σ2

µ
=
〈N2〉 − 〈N〉2

〈N〉
(5.43)

µ = 〈N〉 is the average number of charged particles, and σ2 is the variance [92]. A

Negative Binomial Distribution (NBD) with a mean µ and a scaled variance ω = µ
kNBD

+1,

where KNBD is a parameter, describes the distribution of heavy ion collision multiplicity.

This parameter, NBD, is linked to (5.41) by

R =
ω − 1

µ
=
σ2 − µ
µ2

=
1

kNBD
. (5.44)

The same kNBD will be found in subsets of an NBD that are randomly sampled with

constant probability. If we consider an unlimited acceptance ω and µ represent the

scaled variance and the mean multiplicity, respectively. Also, consider ωacc and µacc to be

the scaled variance and the mean from a fractional acceptance, respectively. In this case

the scaled variance of fraction acceptance is ωacc = 1 + µacc
kNBD

. With the use of R = 1
kNBD

and the relationship (5.44) for µacc and ωacc, we can discover

R =
ωacc − 1

µacc
= Racc. (5.45)

As previously stated, kNBD is same for both the fully accepted and the fractional accepted

regions. In the case of a = b, this finding is consistent with (5.42) and establishes R as

an appropriate measure of the strength of correlations.
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According to equation (5.18), R sets the scale for all two-particle correlations that

depend on the r(p1,p2) parameter, since correlations are connected to (5.41) by the

multiplicity fluctuations (5.10). There are a number of factors that contribute to these

correlations, starting with the energy deposition in the initial state. Perturbative QCD

processes such as jets produce particles in a way that is fundamentally distinct from

thermal ′′ hotspots ′′. Mesons and baryons, in particular, are constrained by the distinct

energy scale. Fluctuations in the temperatures and quantity of hard scatterings at various

hotspots also contribute to the changes in the (5.10).

Differential investigations of (5.41) resulted in the discovery of the ridge, which demon-

strates that correlations extend to huge separations in rapidity [60, 99, 100, 101, 102],

and the strength for the long-range correlations is determined by (5.18) [59, 103, 104].

There have been several hypotheses advanced to explain the appearance of the ridge,

including flow or other correlations that have been modified by flow [14, 105]. However,

this type of bulk correlation of particle momenta caused by the geometry of transverse

collision that shifts the location of particles in the phase space and does not change the

yields of particles.As previously established, a geometrical correlation on its own would

result in a value of R = 0 when the correlation is integrated.

It is possible to incorporate biases into the investigation of the centrality dependence of

R (5.41) if the same particles are employed for measuring correlations and for measuring

centrality. Although this will be covered in better detail later, it is useful to touch on

one issue now. Imagine (5.41) was created by combining events with the same amount

of particles. Then there’s 〈N〉2 = 〈N2〉 and

R → − 1

〈N〉
. (5.46)

This demonstrates a limiting behavior that occurs as a result of the use of multiplicity

binning. It is necessary to distinguish between the multiplicity used to assess centrality

and the multiplicity used to compute (5.41) centrality in order to prevent this effect.

Aside from that, for a positive R to exist, the multiplicity variance must be greater than

the number 〈N〉. The multiplicity variance must also change more quickly or more slowly

than 〈N〉 with increasing centrality in order to deviate from a 1
〈N〉 distribution.
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5.7 Transverse momentum correlations

As shown in (5.11), the transverse momentum correlations between two particles are

quantifiable as

C =

〈∑Nk
i=1

∑Nk
j 6=i pt,ipt,j

〉
〈N〉2

− 〈PT 〉
2

〈N〉2
(5.47)

According to reference [106], the momentum correlation observable (5.47) was initially

developed as part of an independent flow harmonic extraction approach for η/s, the shear

viscosity-to-entropy density ratio. Relative pseudorapidity and azimuthal angle,(∆η,∆φ),

C were measured for the first time by STAR [61]. In accordance with hydrodynamic flow

calculations and expected AdS/CFT lower limit for η/s = 1
4π

[107], this measurement

limited η/s to a range between 0.06 and 0.21. The measured range is mostly attributable

to experimental systematic error, which may reduced by measuring the integral form for

the rapidity width of (5.47) without the use of any fit functions like σ2
C =

∫
C(∆η)∆η2d∆η.

ALICE is a significantly modified version of (5.47) defined as G2 = C
〈pt〉2

[50, 108, 109,

110].

G2 =
C
〈pt〉2

(5.48)

In [63], the differential form of G2 was used to detect harmonic Fourier coefficients in ∆φ

from the simulated data and compare those coefficients to harmonic flow coefficients vn

obtained with the cumulant technique and a pseudorapidty gap |η| = 0.7.

The number density fluctuations and the transverse momentum fluctuations are sensi-

tive to momentum correlations (5.47); both are required to address the diffusion of trans-

verse momentum fluctuations because of shear viscosity. Shear viscous forces, according

to reference [106], cause initial state momentum fluctuations to diffuse and dampen at

the same time, resulting in an increase in the relative rapidity of correlations C during

the collision lifespan. For C, a centrality dependent assessment of C’s relative rapidity

width should reveal a monotonic rise due to the longer lifespan of central collisions than

peripheral collisions. STAR was the first to see this phenomenon when they observed

(5.47) differentiably in relative pseudorapidity and aziumuthal angle C(∆η,∆φ) [61].
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STAR discovered a differential correlation structure comparable to ridge, R(∆η,∆φ),

with broad in ∆η near-side peak at ∆φ = 0 and a flat in ∆η away-side peak at ∆φ = π.

Because they can be (mainly) described by a Fourier cosine series, the double peaks in

∆φ are generally interpreted as an indicator of hydrodynamic flow. On the near-side,

however, there are correlations that are greater than the Fourier fit, and they reach their

maximum at ∆φ = ∆η = 0. A narrow ∆η profile associated with resonance decay or jet

correlations is observed in peripheral collisions due to these excess correlations. According

to [106], when collisions grow more central, the rapidity breadth of excess correlations

increases.

Surprisingly, reference [61] discovered that the near side of C(∆η,∆φ)’s rapidity broad-

ening was not Gaussian in nature. Rather than that, central collisions featured two ∆η

peaks and a local minimal at ∆η = 0. We explain in references [48, 111, 112] that non-

Gaussian broadening is the signal of causal diffusion that is dependent on both shear

viscosity and shear relaxation time.

In order to understand how (5.47) integrates number density fluctuations, we must

write it interms of correlation function (5.18) to discover out (5.11). When (5.11) is

compared to (5.10), it is clear that all multiplicity fluctuations in (5.47) are identical

to those in (5.41), except that they are weighted by the average transverse momentum.

This is significant because each particle possesses a certain amount of momentum, and

hence correlations and diffusion of particles imply correlations and diffusion of momen-

tum. Numerous momentum pairings are available in higher multiplicity events. Higher

multiplicity events even have longer lifetimes, which allows for correlations to develop as

a result of dynamic processes such as geometric flow. However, longer lifetimes also allow

for more time for equilibration, that also destroys correlations.

In correlations of transverse momentum momentum fluctuations section, we discuss

the transverse momentum correlations without number density fluctuations, but C was

designed to investigate the transfer correlations of the transverse momentum between two

points in QGP-from small rapidity to larger rapidity separations–and the density number

fluctuations are a part of that process. Hot and cold zones are deposited across the colli-
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sion volume in a kinetic theory or hydrodynamic model, each with a distinct local energy

density and temperature. Viscous forces transfer energy density, particle number density,

or momentum density from higher temperature locations to lower temperature places,

causing movement toward equilibrium. Shear viscosity, interestingly, carries momentum

perpendicular to the flow direction, therefore it distributes transverse momentum fluctu-

ations throughout the longitudinal direction. Microscopic parton collisions and number

density transmission can both spread that momentum.

To begin with, momentum correlations are formed as a result because pairs of particles

come out of the same source and are often enforced by local conservation laws. Due to the

fact that particles begin at the same spatial position, they have nearly the same dynamics

and can form new correlations with one another and with the global event plane as a

result of transverse expansion [14, 59, 113]. Furthermore, if correlations exist throughout

a wide range of |∆η| > 1 − 2 unit rapidity ranges, causality necessitates that they arise

from the earliest stages of the collisions [114]. Assuming that momentum correlations

are formed as a result of particle pairs being emitted from the same source, the number

of correlated pairs is generally directly proportional to the temperature generated by

the source itself. There are more pairings, which means there is a stronger correlation

between them. The differentiation between various sources is eliminated in equilibrium,

lowering the correlation’s strength.

5.8 Sum rule

In accordance with their common origin (5.18) and the concept of a transverse momen-

tum fluctuation δpt, the observables 〈δpt1δpt2〉, (5.19), D, (5.28), R, (5.41), and C, (5.47)

are mathematically connected (5.20). Eventually, we discover the connection (5.12).

We start with the definition (5.19) and work our way up to the argument 〈δpt1δpt2〉

in order to discover

〈N(N − 1)〉 〈δpt1δpt2〉 =

〈
Nk∑
i=1

Nk∑
j 6=i

pt,ipt,j

〉
−

〈
Nk∑
i=1

Nk∑
j 6=i

(pt,i 〈pt〉+ pt,j 〈pt〉)

〉

+

〈
Nk∑
i=1

Nk∑
j 6=i

〈pt〉2
〉

we will work through the right side of the above equation term by term in order to find
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the relationship between the observables.

If we add and subtract 〈PT 〉2 from the first term and after that compare it to (5.47),

we will find 〈
Nk∑
i=1

Nk∑
j 6=i

pt,ipt,j

〉
+ 〈PT 〉2 − 〈PT 〉2 = 〈N〉2 C + 〈PT 〉2 (5.49)

If we compare (5.29) to (5.30) we will find〈
Nk∑
i=1

Nk∑
j 6=i

pt,i

〉
= 〈NPT 〉 − 〈PT 〉 =

〈
Nk∑
i=1

Nk∑
j 6=i

pt,j

〉
(5.50)

and 〈
Nk∑
i=1

Nk∑
j 6=i

〈pt〉

〉
= 〈pt〉 〈N(N − 1)〉 (5.51)

from (5.50) we can write the second term as〈
Nk∑
i=1

Nk∑
j 6=i

(pt,i 〈pt〉+ pt,j 〈pt〉)

〉
= 2 〈pt〉 (〈NPT 〉 − 〈PT 〉) (5.52)

substitute (5.49), (5.51) and (5.52), then add and subtract 2 〈pt〉2 〈N2〉+ 2 〈pt〉 〈PT 〉 〈N〉

to the main equation, we make use of definitions (5.31) and (5.41) in order to build

〈N(N − 1)〉 〈δpt1δpt2〉 = 〈N〉2 C − 〈N〉2 〈pt〉2R− 2 〈N〉2 〈pt〉D (5.53)

we can rewrite (5.41) as

(1 +R) =
〈N(N − 1)〉
〈N〉2

(5.54)

substitute (5.54) in (5.53). we construct

〈δpt1δpt2〉 =
C − 〈pt〉2R− 2 〈pt〉D

(1 +R)
(5.55)

In the case of (5.55) the denominator is a result of the differing normalization of (5.19)

when compared to (5.28), (5.41), and (5.47). The normalization of 〈δpt1δpt2〉 is left un-

changed in order to allow for direct comparison with measured data. However, according

to (5.55) the definition of 〈δpt1δpt2〉 must be (5.19) rather than (5.21). According to

figure 5.1, the effect of this adjustment on measurement is small.
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The fundamental finding of this study is that equation (5.55) is identical to equation

(5.12). We can see from (5.55), that correlations of transverse momentum fluctuations

may be read as multiplicity fluctuations with transverse momentum correlations removed

(−〈pt〉2R+ C) only if D, the multiplicity momentum correlation, is zero.

Suppose that D is small, the discrepancy −〈pt〉2R + C indicates the building of

〈δpt1δpt2〉. Notably, C would be at least an order of magnitude greater than 〈δpt1δpt2〉,

indicating that multiplicity fluctuations, R, to dominate momentum correlations, C. In

spite of this, the results of the 〈δpt1δpt2〉 measurements are non zero and positive, indicat-

ing that momentum correlations are formed by a physical mechanism that is not explained

by multiplicity fluctuations. In order to explain that mechanism, any phenomenological

or theoretical explanation must address both the origin of correlations and the reason

why they are not eliminated by D or R.

We compute D values in simulated PYTHIA events in chapter 6. We discover that D

on the same order of magnitude compared to 〈δpt1δpt2〉, if not bigger. As a result, while

measuring 〈δpt1δpt2〉 or C, D should not be ignored.

〈δpt1δpt2〉’s 1
〈N〉 (or divergence from 1

〈N〉) behavior can also be investigated (5.55). R,

in particular, has the most evident representation of the 1
〈N〉 trend; by construction, C

and D should behave similarly. In an independent source model this is more clear. We

put this behavior to the test with simulated occurrences.

Additionally, the impact of 〈pt〉 is seen in (5.19) and (5.55). Given that 〈pt〉 appears

to increase in magnitude with multiplicity, it is a possible cause of divergence from 1
〈N〉

scaling for 〈δpt1δpt2〉 that is not attributable to critical events. Because 〈pt〉 also grows

as collision energy increases, tests validated a scaling (5.27) for 〈δpt1δpt2〉 that exhibits

good agreement across a wide range of systems and energies [51, 72, 74]. Choices in

centrality measure have some bearing on the quality of agreement. We can see in (5.55),

how constituent correlation observables make a contribution to this scaling and how

centrality determines this agreement. To avoid having to interpret the square root in
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(5.27), we assume 〈δpt1δpt2〉〈pt〉2
and write (5.12) as a

(1+R) 〈δpt1δpt2〉
〈pt〉2

=
C
〈pt〉2

−R− 2D
〈pt〉

(5.56)

We can see from (5.56) that scaling with collision energy necessitates a consistent treat-

ment of multiplicity fluctuationR. Fortunately, whenR and C are assessed using the sim-

ilar methods, R compensates for C’s centrality biases. Well that’s what makes 〈δpt1δpt2〉

resistant to various definitions of centrality.

We may also investigate the transverse momentum correlations of two-particle by

rewriting (5.56) as,

(1+R) 〈δpt1δpt2〉+ 2 〈pt〉D + 〈pt〉2R = C. (5.57)

Different physical impacts on momentum correlations are distinguished by Equation

(5.57). The R term denotes the contribution from multiplicity fluctuations alone (in-

cluding volume fluctuations). This is by far the most significant contribution to C. For

example, in this case, the difference between R and C may be measured. C is influ-

enced by factors such as viscosity, which are represented by the existence of 〈δpt1δpt2〉.

Similarly, the existence of D indicates how the mechanism that links total transverse

momentum-multiplicity is influencing C event by event.

The G2(∆η,∆φ) = C(∆η,∆φ)

〈pt〉2
differential quantity is measured by the ALICE consor-

tium [50, 108, 109, 110]. To locate the integrated version, use (5.56) and (5.48)

G2 =
(1+R) 〈δpt1δpt2〉

〈pt〉2
+R+

2D
〈pt〉

(5.58)

However, each of the terms can also be assessed differently in addition to the others. For

example, in reference [60], the numbers R(∆η,∆φ) and P2(∆η,∆φ) = 〈δpt1δpt2〉(∆η,∆φ)

〈pt〉2
are

measured in the same way. G2(∆η,∆φ) can be tested empirically by measuring D(∆η,∆φ)
〈pt〉

and comparing it to the calculated value (5.58).

Finally, multiplicity fluctuations, R, dictate the scale of correlations at the underlying

level, (5.18) which is governed by particle production processes, volume fluctuations, and

perhaps phase change fluctuations. When we talk about momentum correlations, C, we

are referring to how the initial state correlations survive to the end state particle pt, as well
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as how transverse momentum can be transported across the collision volume by forces such

as shear viscosity. A correlation between total transverse momentum and multiplicity for

each event is represented by D. Equation (5.31) reveals that these correlations are greater

than those resulting from random multiplicity fluctuations, and that D is consequently

associated with particle production. As an added bonus, the absence of correlations D

might indicate equilibrium while the augmentation of D could indicate the presence of

the QGP critical point. The correlations of transverse momentum fluctuations, 〈δpt1δpt2〉,

have a variety of theoretical interpretations, including temperature variations and boosted

hot spots. A significant finding is that the outcomes (5.12), (5.55), (5.56), (5.56), or

(5.58) show that a theoretical or experiential explanation with one of the observables R

, D , C , or 〈δpt1δpt2〉 may be examined by addressing each of the other observables in

turn. Similarly, when all four observables (5.19), (5.28), (5.31), and (5.47) are measured

simultaneously in the experiments, equation (5.12) serves as a validation tool for each

measurement as well as a way to explicitly differentiate multiplicity fluctuations from

other correlation processes when searching for critical phenomena.
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CHAPTER 6 INDEPENDENT SOURCE MODEL (ISM)

The independent source model is critical in our study because it allows us to scale our

pp collision results to AA collisions. Nuclear collisions, according to this hypothesis, are a

superposition of individual proton-proton collisions. However, this ignores hadron rescat-

tering, implying that charged particle pairs will only be associated if they are created in

the same collision.

We calculate the observables (5.8), (5.9), (5.10), and (5.11) in this chapter using an

independent source model. Equations (6.13), (6.17), (6.19), and (6.22) all support the 1
〈N〉

dependency of the observables if the overall multiplicity is the sum of the multiplicities of

the individual sources. Additionally, Equations (6.13) and (6.17) demonstrate that source

fluctuations can dominate R and C. This shows that these observables can be utilized

to discriminate across systems with fundamentally different intial states and particle

production mechanisms.

There are numerous distinct physical mechanisms that might generate particle sources,

but for the sake of simplicity, we will only examine the wounded nucleon model to test.

The discrepancy between the PYTHIA/Angantyr results for nucleon nucleon collisions

and our computation of wounded nucleons is most likely related to the Angantyr nucleon-

nucleon superposition model and our use of simple participant nucleon sources. Interest-

ingly, among all the observables, D appears to be the most sensitive to this change.

Additionally, we demonstrate that (5.12) may be utilized to discern between the

centrality trends of C and R. Even while R is usually constant or lowering as a function

of Npart, C exhibits a tiny non-monotonic rise when the number of participants decreases.

We see that this increase is related to the contributions of 〈δpt1δpt2〉 and D to momentum

correlations, and we urge for comparable measurements in real experimental systems to

corroborate our findings.

6.1 Observables in ISM

Independent source models ignore interactions between the emitted particles from

distinct sources and assume that nuclear collisions are made up of a superposition of

independent particles from each source. A variable number of sources are associated with
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each event, and each source has momentum distribution of particles and a fluctuating

multiplicity associated with it. We’ll go through how the observables described in sections

5.4, 5.5, 5.6, and 5.7 are affected by both forms of fluctuation in this part. Reference [14]

has a similar explanation, however it only covers R and 〈δpt1δpt2〉.

In our independent source model, a single collision event is defined as the total of K

independent particle sources. A momentum distribution is used to represent each source.

ρ̂1(p) normalized in such a way that µ =
∫
d3pρ̂1(p) denotes the average multiplicity

per source. The average particle distribution among sources may be seen by imagining a

large number of sources, each emitting nk particles, running from k = 1, 2, ..., Nsr. The

average number of particles from each source is then calculated as

n̄ =
1

Nsr

Nsr∑
k=1

nk∑
i=1

1 (6.1)

In case Nsr tends to infinity, then the average multiplicity per source can be written as

µ =

∫
d3pρ̂1(p) (6.2)

Where ρ1 in equation (6.2) is represent the particle momentum distribution for each

source in the limit of a continuum of all potential sources and the overbar in equation

(6.1) represents an average over all sources. That’s when the variance is σ2 = ¯(n2)− n̄2

and the mean is n̄ = µ for each source multiplicity. The distribution of pairs particle

released from a single source is also similar and can be written as

n(n− 1) =
1

Nsr

Nsr∑
k=1

nk∑
i=1

nk∑
j=1

1 (6.3)

In case of Nsr tends to infinity we found

µ2 − µ+ σ2 =

∫ ∫
d3p1d

3p2ρ̂2(p1,p2) (6.4)

ρ̂2 denotes the particle pair distribution for a single source.

The event averaged momentum distributions of singles and pairs

ρ1 = 〈Kρ̂1(p)〉 (6.5)



85

ρ2 = 〈Kρ̂2(p1,p2) +K(K − 1)ρ̂1(p1)ρ̂1(p2)〉 (6.6)

The average across all events is shown in angled brackets, but every event has K inde-

pendent sources. The event multiplicity is defined by Equation (6.5) as a combination of

K sources.

〈N〉 = µ 〈K〉 (6.7)

According to Equation (6.6), particle pairings are composed of the sum of pairs from

each of the K separate sources, each of which contains ρ̂2(p1,p2) pairs, with the sum of

pairs in which one particle that comes from the pairs is from one source and the second

particle is from another source. Assuming that there are K(K − 1) sets of sources, this

means that for every pair of sources, the particle pair distribution is ρ̂1(p1)ρ̂1(p2). The

average number of particle pairs per event is thus

〈N(N − 1)〉 = µ2
〈
K2
〉

+ 〈K〉 (σ2 − µ) (6.8)

We will start with multiplicity-fluctuation observable, R, we find

R =
1

〈N〉2
∫ ∫

d3p1d
3p2r12 =

1

〈N〉2
∫ ∫

d3p1d
3p2(ρ2 − ρ1ρ1) (6.9)

where in (6.9) we used equation (5.10) and (5.18). Substitute equation (6.5) and (6.6) in

(6.9), we find

R =

[
1

〈N〉2
∫ ∫

(ρ̂2 − ρ̂1ρ̂1) 〈K〉+
1

〈N〉2
∫ ∫ (〈

K2
〉
− 〈K〉2

)
ρ̂1ρ̂1

]
d3p1d

3p2 (6.10)

substitute (6.2), (6.4) and (6.7) in equation (6.10). The first right term in equation (6.10)

can be written as

1

〈N〉2
∫ ∫

(ρ̂2 − ρ̂1ρ̂1) 〈K〉 d3p1d
3p2 =

σ2 − µ
〈K〉µ2

=
Rsr

〈K〉
(6.11)

where Rsr is the arithmetic equivalent of (5.41) for sources when an ensemble among all

possible independent sources is averaged.
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For the second right term of equation (6.10) we find

1

〈N〉2
∫ ∫ (〈

K2
〉
− 〈K〉2

)
ρ̂1ρ̂1d

3p1d
3p2 =

〈K2〉 − 〈K〉2

〈K〉2
(6.12)

The variance of K in the equation (6.12) describes the event-by-event variability in the

number of sources. Because the sources are assumed to be independent, this variance

approaches Poisson statistics, which means that 〈K〉 = 〈K2〉 − 〈K〉2, and therefore fluc-

tuations (6.10) are reduced by 1
〈K〉 .

We can find the multiplicity fluctuations in independent source model by substituting

(6.11) and (6.12) in (6.10)

R =
Rsr

〈K〉
+
〈K2〉 − 〈K〉2

〈K〉2
(6.13)

For two-particle transverse momentum correlations, C, we will define the following

• Total average transverse momentum for each source can be written as

P̄T =

∫
ptρ̂1d

3p =
〈PT 〉
〈K〉

(6.14)

where 〈PT 〉 is the average for the total transverse momentum for events.

• By substituting (5.25) for (6.7), the event averaged transverse momentum of a

particle is equivalently expressed as

〈pt〉 =
P̄T
µ

(6.15)

• Transverse momentum for pair source defined as∫ ∫
d3p1d

3p2pt1pt2ρ̂2(p1,p2) = µ2 〈pt〉2 − µ 〈pt〉+ σ2
PT

(6.16)

where σ2
PT

is the variance of the total transverse momentum of each source, which

is equal to P 2
T − P̄ 2

T

The transverse momentum correlations of two particle are defined by equation (5.11).

Use equation (5.18) with (6.6), (6.5), (6.14), (6.15) and (6.16) we find

C =
Csr
〈K〉

+ 〈pt〉2
(
〈K2〉 − 〈K〉2

〈K〉2

)
(6.17)
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where

Csr =
σ2
PT
− µ 〈pt〉
µ2

(6.18)

is the equivalent of equation (5.47) for sources.

Take note that both equations (6.13) and (6.17) have a comparable contribution from

source number fluctuations. Since each source is independent of the others, the value of

(6.17) decreases with 1
〈K〉 in the same way as (6.13). However, because the correlation

function is weighted by pt, momentum correlations (6.17) are sensitive to transverse ex-

pansion. The effects of anisotropic flow are completely avoided when C is measured using

the definition in (5.11) rather than differentially in psedurapidity or relative azimuthal

angle. As a result, we may use C to indicate the magnitude of the transverse momentum

correlations induced by the fireball. A measured divergence from the expectations of

the independent source model may indicate that the sources of the correlations are not

independent, which would be the case in a partially or completely equilibrated system.

Multiplicity-momentum correlations, denoted by the letter D, are defined as (5.8).

We obtain by following the same technique as we did for R and C

D =
1

〈N〉2
∫ ∫

d3p1d
3p2(ρ2 − ρ1ρ1)δpt

=
1

〈N〉2
∫ ∫

(ρ2pt1 − 〈pt〉 ρ2 − ρ1ρ1pt1 + 〈pt〉 ρ1ρ1) d3p1d
3p2

=
〈K〉
〈N〉2

∫ ∫
ρ̂2(pt1 − 〈pt〉)d3p1d

3p2

where from the equation in the second line, the third and forth term equal to 〈pt〉 〈K〉2 µ2

with opposite signs. If we integrate the third line and follow the same steps as R and C,

we will find

D =
Dsr
〈K〉

(6.19)

where

Dsr =
〈PTµ〉 − 〈PT 〉 〈µ〉 − 〈pt〉σ2

µ2
=
Cov(PT , µ)− 〈pt〉σ2

µ2
(6.20)

is the equivalent of equation (5.28) when referring to sources rather than events.
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Notably, because (5.28) is structured to exclude the impacts of multiplicity fluctua-

tions, (6.19) does not rely on source fluctuations in the same way as R or C do. However,

the three observables C, R, and D are still decreased by the inverse of the source count.

Finally, correlations between transverse momentum fluctuations are described as (5.9).

If we go back to equation (5.18) with (6.5) and (6.6), we’re good to find

〈δpt1δpt2〉 =

(
Csr − 〈pt〉2Rsr − 2 〈pt〉Dsr

)
〈K〉

〈K〉Rsr + 〈K2〉
(6.21)

=
〈δpt1δpt2〉sr
〈K〉

(1 +Rsr)

(1 +R)
(6.22)

where

(1 +Rsr) 〈δpt1δpt2〉sr = Csr − 〈pt〉2Rsr − 2 〈pt〉Dsr (6.23)

using the same rationale as in equation (5.12), except that the ensemble of all conceivable

independent sources is averaged rather than the individual sources. (5.9) has a different

denominator than the other observables in this study, but because 〈δpt1δpt2〉 is thoroughly

investigated in the literature, this form is more suitable for direct compare to measured

data. As a result, the effects of fluctuating independent sources are less obvious than the

effects of the other observable variables. By reviewing (6.22) we can see that 〈δpt1δpt2〉

approximates 1
〈K〉 in the limit of very large K and small R.

6.2 Calculations of observables in pp collisions

If we assume that the source’s origins are the nucleons of the participants in the

collision, then the minimal source for any collision is two. Independent source correlations

in proton-proton (pp) collisions can be represented by the calculations of the Rsr, Csr,

Dsr, and 〈δpt1δpt2〉sr in proton-proton collisions. In this situation, proton-proton collisions

always have K equal to 2 and have never had a variance in the number of sources involved

in the collision. As a result, we do have 〈K2〉 − 〈K〉2 = 0 in (6.13) and in (6.17). Using

(6.13) as an example, we can see that Rpp = Rsr
2

is obtained for K = 2 participants in

proton-proton collisions. When K = Npart and Rsr = 2Rpp, Csr = 2Cpp , Dsr = 2Dpp and

〈δpt1δpt2〉sr = 2 〈δpt1δpt2〉pp are used for AA collisions, the result is as follows:

• Multiplicity fluctuations, substitute the conditions from pp collisions into (6.13), we
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will find

R =
2Rpp

〈Npar〉
+

〈
N2
part

〉
− 〈Npart〉2

〈Npart〉2
(6.24)

• Transverse momentum correlations, substitute the conditions from pp collisions into

(6.17), we will find

C =
2Cpp
〈Npar〉

+ 〈pt〉2
(〈

N2
part

〉
− 〈Npart〉2

〈Npart〉2

)
(6.25)

• Multiplicity-momentum correlations, substitute the conditions from pp collisions

into (6.19), we will find

D =
2Dpp
〈Npar〉

(6.26)

• Correlations of transverse momentum fluctuations, substitute the conditions from

pp collisions into (6.22), we will find

〈δpt1δpt2〉 =
2 〈δpt1δpt2〉pp
〈Npar〉

(1 +Rpp)

(1 +R)
(6.27)

We ascribe all volume fluctuations in this work to source fluctuations. To illustrate how

volume (source) fluctuations affect multiplicity fluctuations, consider that the variance of,

Npart, the participants number in the numerator of (6.24) for the rightmost term follows

Poisson statistics. Then
〈
N2
part

〉
− 〈Npart〉2 = 〈Npart〉 and (6.24) can be written as

R =
2Rpp + 1

〈Npar〉
(6.28)

It should be noted that the contribution from real source correlations is indicated by the

number 2Rpp. Then, if 2Rpp = 1, half of the multiplicity fluctuations are caused by actual

correlations, while the other half are caused by source fluctuations. As long as 2Rpp is

less than one, fluctuations source contribute more to R than actual correlations. If 2Rpp

is greater than one, the contribution of source fluctuations to R is less than the contri-

bution of actual correlations. We compute Rpp employing PYTHIA simulations, and we

report the results in Table 6.1 for impact energies of
√
s = 200GeV and

√
s = 2760GeV ,

respectively. When
√
s = 200GeV is used, source fluctuations account for somewhat less
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than two-thirds of the total R . When
√
s = 2760GeV is used, source variations account

for almost half of R.

This dependency on source fluctuations is also seen in the transverse momentum cor-

Integrated values of observables using PYTHIA pp collision√
s 200 GeV 2760 GeV
Rpp 0.2731± 7.58× 10−4 0.453± 1.02× 10−3

Cpp 0.0842± 2.20× 10−4 0.1738± 4.84× 10−4

Dpp 0.01685± 9.32× 10−5 0.0348± 1.68× 10−4

〈δpt1δpt2〉pp 0.00257± 2.27× 10−5 0.00446± 3.67× 10−5

〈N〉pp 6.635± 3.65× 10−3 8.453± 8.10× 10−3

〈pt〉pp 0.4860± 1.33× 10−4 0.5356± 1.78× 10−4

Table 6.1: The calculations are performed using charged particles from the kinematic
area and an |η| < 1 at 200 GeV or |η| < 0.8 at 2760 GeV . Uncertainties are expressed
as standard deviation of subgroup values.

relations, (6.25). The Poissonian distribution from participant sources is represented by

the following:

C =
2Cpp + 〈pt〉2

〈Npar〉
. (6.29)

Source fluctuations and genuine correlations have equal contributions to transverse mo-

mentum correlations incase of 2Cpp = 〈pt〉2. Using values from Table 6.1, we find that

for 200GeV , the contributions to C from genuine correlations and source fluctuations

are about similar, but source fluctuations are somewhat bigger at 200GeV and genuine

correlations are slightly larger at 2760GeV . We’ll look at collision energy dependency in

the future.

6.3 Simulation results

The major purpose of this section is to estimate D and test the connection (5.12)

using simulated collision events. We do not try to conduct a complete investigation

comparing different collision dynamics methods using different simulation algorithms;

this is something that will be addressed in our research. To keep things simple, we used

PYTHIA 8.2 [115], which has a well-established description of pp collisions and contains
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the Angantyr model of nuclear collisions [116], which offers a baseline calculation based

on wounded nucleons.

We are looking for values of the novel observable D that are not zero, as described

by equations (5.8) or (5.31). D denotes a multiplicity-momentum correlation and, poten-

tially, a deviation from the thermal equilibrium, as discussed in multiplicity-momentum

correlations section. Additionally, we examine the 1
〈N〉 dependency of (5.8), (5.9), (5.10),

and (5.11) when multiplicity is used as a centrality measurement. Disruption from this

pattern indicates the presence of non-Poissonian particle generation, which means that

correlations arise between particles emerging from separate sources, or that other corre-

lation processes are at work.

When correlations are calculated using the moments of a distribution of multiplicity,

centrality biases can be severe, much more so when the same particles used to generate

the correlations can also be used to define centrality [117]. When assessing observable

dependencies on multiplicity, we use the centrality approach described in reference [14] to

eliminate centrality biases caused by volume fluctuations. Because of this procedure, one-

particle-wide multiplicity bins may be created without experiencing the biases outlined

at the conclusion of multiplicity-fluctuations Section in chapter 5.

The observables are computed using all charged particles in the region of |η| < 0.5,

and the centrality is estimated using all charged particles in the remainder of the experi-

mental rapidity acceptance range. We denote these acknowledged centrality-determining

particles by the abbreviation Nacc. Nacc is compared to STAR using charged particles

in the range 0.5 < |η| < 1. Nacc is compared to ALICE using charged particles in the

range 0.5 < |η| < 0.8. We depict the average mid-rapidity multiplicity versus Nacc in

PYTHIA events in Figures (6.1) and (6.2). The acceptance discrepancy between AL-

ICE and STAR explains why the slopes of the mid-rapidity multiplicities differ. This

centrality measure even has the effect of changing two-particle correlation observables to

three-particle correlations, as the correlation is calculated using two particles and Nacc

is determined using different particles. It is possible to take multiplicity trends at face

value if the pseudorapidity distribution for a charged particles is essentially flat in the
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rapidity acceptance, in which case the correlation between the mid-rapidity regions and

particles number in the centrality determining is effectively 1.

Figure 6.1: Variation of sub-group averaged multiplicity 〈N〉 versus the accepted mul-
tiplicity Nacc for pp collsions at 200 GeV and 2.76TeV in the region 0.5 < |η| < 1 and
0.5 < |η| < 0.8 respectively.

Figure 6.2: Variation of averaged sub-group mid-rapidity multiplicity 〈N〉 versus the
accepted multiplicity Nacc for AA collisions at 200 GeV for Au-Au and 2.76TeV for
Pb-Pb in the region 0.5 < |η| < 1 and 0.5 < |η| < 0.8 respectively.
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A nonlinear correlation between accepted multiplicity and the midrapidity multiplicity

may cause some variation in correlation measurements that is not consistent with the

predicted 1
〈N〉 trend. Nevertheless, as seen in Figures. 6.1 and 6.2 for pp and AA collisions,

the average mid-rapidity multiplicity 〈N〉 tracks quite linearly with Nacc for PYTHIA

events.

Similarly to Reference [74], we estimate the uncertainty of observables correlation

using the so-called ′′subgroup′′ technique. Our methodology divides the total set of events

for a particular centrality class into Thirty subgroups and calculates all observables for

each subgroup. After averaging each observable over all subgroups, the standard deviation

is being used to quantify the uncertainty. When multiplicity is utilized to determine

centrality in AA collisions, we average observable values over many multiplicity bins and

then set the error band to match the standard deviation with those values.

As shown in Figures 5.4 and 5.5, we have calculated the average transverse momentum

for each particle from PYTHIA events in a variety of proton-proton (pp) and nucleus-

nucleus (AA) systems and energies. Both the centrality and sub-group methodologies

mentioned above have been employed in this study to generate all of the PYTHIA simu-

lation results presented in this thesis. Both graphs demonstrate an increase in pt for each

particle as multiplicity rises. In a subsequent section, we shall argue that this is critical

for understanding momentum-multiplicity correlations D. The lower increase in AA col-

lisions relative to pp collisions is very certainly a factor in the disparate magnitudes of D

estimations from different collision systems.

Now we will estimate the observables R, D, C, and 〈δpt1δpt2〉, as well as their math-

ematical connection (5.12), using PYTHIA simulations of AA and pp collision systems

at various energies. We investigate the events that occur after (5.41), (5.47), (5.19), and

(5.28) for each of the four observables. For gold-gold collisions at
√
s = 200 GeV , we used

pt in the range between 0.15 GeV and 2 GeV , and |η| in the kinematic range less than

1, while for lead-lead collisions at
√
s = 2.76 TeV , we choose |η| less than 0.8. We plot

the product of each of the four observables with the multiplicity 〈N〉 to find deviations

from 1
〈N〉 behavior. It is possible that the results will remain constant with multiplicity if
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there is no divergence from the value 1
〈N〉 ; nevertheless, the magnitudes will be different.

(5.10) or (5.41) are used to determine multiplicity fluctuations, which are linked to

volume fluctuations, R. Figure 6.3(a) illustrates the results for 〈N〉R from a PYTHIA

simulation of proton-proton collisions at 200GeV and 2.76TeV . At smaller multiplicities,

the variation from 1
〈N〉 behavior is most likely due to a slight variance in the overall

multiplicity generated by these events. Likewise, values turn negative in the extremely

low multiplicity zone. Consider that events with such a small number of particles in

the rapidity zone defined by centrality also have a small number of particles in the mid-

rapidity region. The variance of midrapidity is almost negligible in this scenario. As a

result of the reasoning around equation (5.46), it is reasonable to assume negative values

of R. At higher multiplicities, the factor 〈N〉R is becoming more and more flat and the

error band widens as the number of events decreases.

It’s worth noting that in pp collisions the factor 〈N〉R at
√
s = 2.76TeV decreases

somewhat quicker than 1
〈N〉 with increasing multiplicity as compared to collisions at

√
s =

200GeV . It will be fascinating to see whether this effect is preserved at greater or lower

collision energy for both simulation and experiment. Additionally, it is critical to note
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Figure 6.3: Observables (5.8), (5.9) ,(5.10) and (5.11) were calculated using PYTHIA pp
collisions and scaled by the mid-rapidity multiplicity 〈N〉.
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Figure 6.4: Observables (5.8), (5.9) ,(5.10) and (5.11) were calculated using PYTHI-
A/Angantyr AA collisions and scaled by the mid-rapidity multiplicity 〈N〉.
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Figure 6.5: Observables (5.8), (5.9) ,(5.10) and (5.11) were calculated using PYTHI-
A/Angantyr AA collisions and scaled by the mid-rapidity multiplicity 〈N〉. The wounded
nucleon model is shown by solid lines.
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that 〈N〉R is greater than zero, indicating that particle production is not Poissonian

and hence not independent. This reaffirms the fact that R quantifies a fundamental

process of particle production. Distinction between experimental data and PYTHIA

estimations may indicate the presence of different particle sources. In order to evaluate

the commencement of QGP or jet impacts on particle production, it may be beneficial

to conduct a comparison of different energies and collision systems

In Figure 6.4(a), the results of the PYTHIA/Angantyr simulation of Pb-Pb and Au-Au

collisions at
√
s = 2.76TeV and

√
s = 200GeV are shown against multiplicity to highlight

the effect of 〈N〉R. When multiplicity is used to assess centrality, 〈N〉R seems to be

constant in perhaps the most central points. The deviation seen in higher multiplicity

events is almost certainly due to insufficient statistics. As a result of averaging the

first several lowest multiplicity bins, where values may be tiny or negative for the same

reasons as small or negative values arose in low multiplicity proton-proton collisions, the

lowest multiplicity point drops to its lowest possible value. As a general rule, the almost

constant value of 〈N〉R as a function of multiplicity is compatible with a superposition

of the proton-proton sub-collision model.

Figure 6.5 (a) shows a plot of the same amount, 〈N〉R, versus the number of par-

ticipants (Npart), which is used to test the Independent Source Model (ISM). We depict

(6.24) as dashed and solid lines on the figure, using participating nucleons as particle

sources. Assuming the variance of Npart in (6.24) is Poissonian, the rightmost term is

reduced to 1
〈Npar〉 . Additionally, we use PYTHIA to construct the ”integrated” value Rpp,

which includes all pp events regardless of their centrality constraints. Table 6.1 contains

values for proton-proton collisions at
√
s = 2760 GeV ≡ 2.76 TeV and

√
s = 200GeV .

We utilize the entire experimental rapidity acceptance to compute all observables when

determining centrality with Npar, and the same is true for integrated values. Equation

(6.24) closely matches the data when Npar = 2 on Figure. 6.5 (a), but deviates when

Npar increases. This might imply that the source value is dominated by low multiplicity

events for pp collisions, or that participating nucleons are not a reliable predictor of all

particle sources on their own.
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Correlations of momentum, C, are described by equations (5.11) or (5.47). Due to

its comparable construction, it exhibits many of the same patterns in centrality as R. C

scales with both 〈pt〉2 and R; the latter scaling may be seen by looking at the data (6.17).

〈N〉 C is shown in Figures 6.3(b), 6.4(b), and 6.5(b). Except for Figure 6.5(b), centrality

behaviors are generally correspond to those of 〈N〉R. In comparing to our independent

source model for wounded nucleons in lead-lead collisions at
√
s = 2.76 TeV , 〈N〉 C grows

with peripheral collisions and reaches a maximum at Npart ≈ 100. In 〈N〉R, this increase

is not observed for the almost same collision system. Furthermore, this peak is absent

for 〈N〉 C in gold-gold collisions with
√
s = 200GeV .

The dependency of C on its centrality may be evaluated in the context of (5.58).

〈N〉 (1 +R) 〈δpt1δpt2〉 and 〈N〉D both surpass the wounded nucleon model estimate in

the same location where 〈N〉 C rises in Figure 6.5(b). Caution should be exercised when

interpreting the peak in Figure. 6.5(b): when 〈N〉 C is plotted against multiplicity as in

Figure. 6.4(b), the peak behavior is not visible. As a result, we utilize these observations

solely to highlight the utility of seeing correlation observables as a complimentary set

with a mathematical relationship, such as (5.12).

The equations (5.9) or (5.19) define the correlations of the transverse momentum

fluctuations, 〈δpt1δpt2〉. STAR and ALICE have both quantified a comparable form (5.21),

typically referring to it as (5.27). In Figure. 5.1, we compare the estimated value of (5.27)

for pp collisions to experimental data for pp collisions. In general, the two techniques

(5.19) and (5.21) accord well. AA collisions provide similar findings, but they are excluded

from Figure. 5.2 for clarity.

Figure 5.2 shows PYTHIA data compared to experimental AA data. Although there is

considerable agreement with STAR data, there is a major discrepancy with ALICE data.

This is most likely due to variations in how STAR and ALICE calculate multiplicity

centrality; our method closely matches STAR’s.

To demonstrate that 〈δpt1δpt2〉 is 1
〈N〉 dependent, we plot 〈N〉 (1 + R) 〈δpt1δpt2〉 in

Figures 6.3(d), 6.4(d), and 6.5(d). As seen in sum rule section in chapter 5 and observables

in ISM section, the factor (1 +R) is necessary to rescale (5.19) such that it exhibits the
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same 1
〈N〉 trends like the other observables.

The PYTHIA values for 〈N〉 (1 +R) 〈δpt1δpt2〉 in proton-proton collisions, as shown

in Figure 6.3(d), are essentially flat except for slight fluctuations in peripheral collisions.

As can be shown in Figure 6.4(d), the trend in AA collisions is a 1
〈N〉 except in the most

center collisions which are statistically limited, as can be seen inside the error band.

In compared to R or C, 〈δpt1δpt2〉 has a lower influence from small fluctuations in low

multiplicity. 〈δpt1δpt2〉 eliminates multiplicity fluctuations through construction (see the

discussion after Equation (5.47) in Sum rule section in chapter 5). As a result, 〈δpt1δpt2〉

appears to be insensitive to centrality selection via participating nucleons or multiplicity.

The results in Figure 6.5(d) of 〈N〉 (1+R) 〈δpt1δpt2〉 are also constant with respect to the

number of participating nucleons, which is consistent with the wounded nucleon model,

Equation (6.27).

The difference between the wounded nucleon model in Figure 5.3 and Figure 6.5(d)

is most likely due to a combination of factors. To begin, the integrated value of of the

average transverse momentum in pp collisions is utilized in conjunction with (6.27). 〈pt〉

is the same for individual sources as it will be for entire event in the independent source

model. In our basic wounded nucleon model, 〈pt〉pp does not change, while 〈pt〉 does in

the dependent of the centrality measurement. Finally, the component (1 + R) in the

denominator of (6.27) results in a deviation from the PYTHIA values. Figure 6.5(a)

shows that R∫ for our wounded nucleon model is greater than PYTHIA values, which is

particularly the case in more central collisions.

The correlations between multiplicity and momentum, denoted by D, are determined

by equations (5.8) or (5.28). The purpose of this research is to generate interest in

experimental measurements of D. The initial estimations of 〈N〉D from PYTHIA AA

and pp collisions are plotted in Figures 6.3(c), 6.4(c), and 16.5(c). Observations made

immediately include the fact that D doesn’t equal to zero and its positive. D’s nonzero

positive value is compatible with 〈pt〉 computations. Consider, for example, Figure 5.4,

where the average transverse momentum of each particle grows as the number of particles

increases. This is a correlation between multiplicity and momentum.The substantial
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difference between 〈N〉D in pp and AA collisions might be explained by the fact that

somehow the rate of growth of pt as a function of multiplicity is faster in pp collisions

than in AA collisions for PYTHIA simulations.

The flatness of the factor 〈N〉D in relation to centrality confirms the 1
〈N〉 dependency.

Surprisingly, pp collisions have a slight negative slope as multiplicity increases, implying

a quicker than 1
〈N〉 decline as multiplicity increases. This slope appears to rise as collision

energy increase from 200 GeV to 2.76 TeV . We want experimental evidence for this

phenomenon over a broader range of collision energy.

As seen in Figure 6.5(c), peripheral collisions have largerD values than those predicted

by our wounded nucleon model when centrality is dictated by participating nucleons.

This might simply be a difference between our independent source model, which uses just

participant nucleons as sources, and the PYTHIA/Angantyr model. If such is the case,

then D is the observable that is most sensitive to the difference.

Finally, D may also be affected by the medium’s thermalization. Similarly, as demon-

strated in Reference [45], if 〈δpt1δpt2〉 can be utilized to quantify partial thermalization,

then D and C may impose further limitations on the model. This is something we’ll take

up in the future.

6.4 Summary

As a conclusion, we show that the same parent correlation function is used to create

two-particle multiplicity fluctuations (R), transverse momentum correlations (C), corre-

lations of the transverse momentum fluctuations (〈δpt1δpt2〉), and multiplicity-momentum

correlations (D) and these four observabels are mathematically linked together by equa-

tion (5.12). These observables and their relationship to PYTHIA/Angantyr simulated

collision events at 200 GeV and 2.76 TeV have been estimated energy of collision. A

novel observable, multiplicity-momentum correlations, is computed for the first time in

this paper.

We argue that when observables and their mathematical relationships are observed or

calculated concurrently, they can reveal more information than the total of the individual

measurements. The Measurements of these observables across a broad range of energies
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and collision systems may yield essential information regarding the mechanics of initial

state particle production in hadronic collisions, as well as the following equilibration

process throughout the collision medium.
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CHAPTER 7 OBSERVABLES IN PARTIAL THERMALIZATION

When dealing with a macroscopic or many-body system, knowing everything about it

is nearly difficult. Using classical physics as an example, 6N real numbers are necessary

to completely characterize an N -body system. This is because each particle required

three real numbers to define its location and three real numbers to define its momentum.

Newton’s equations of motion may be solved in theory for the future evolution of each

particle if the initial circumstances for each particle are known in advance. Now if we

assume we have a huge number of molecules/particles its difficult or impossible to solve.

For example, a gram mole of gas has 1023 molecules, which means that solving huge

numbers of differential equations simultaneously is nearly impossible if N is very large.

Additionally, it is not necessary for practical reasons. A macroscopic system may be

described by macroscopic variables, such as volume, pressure, temperature,energy etc...

and the system’s dynamics can then be expressed as a function of these macroscopic

variables. If an isolated many-body system for some assumptions, is left alone for a long

enough period of time, it is assumed that it will eventually reach equilibrium. Even though

the system is in equilibrium, its elements remain dynamic. We understand equilibrium as

the state of a system in which all of its macro-level variables are independent of time or

more general we can say the probability to find the system in a certain microstate doesn’t

change with respect to time. Statistical physics and thermodynamics are concerned

with the many-body system’s equilibrium features, without discussing the process of

equilibration, which is dealt with in kinetic theory. The goal of kinetic theory is to

comprehend the process of approaching equilibrium.

The purpose of this chapter is to design a methodology for determining the degree

of thermalization by combining momentum-multiplicity correlation observables in kinetic

theory. The Boltzmann equation in relaxation time approximation plus Langevin noise

is used to investigate the influence of thermalization on these correlations. We propose

a novel non-equilibrium transport equation (4.56) for the two-body distribution function

that is compatible with the conservation principles that apply to microscopic scatter-

ing phenomena. We discover that these conservation constraints restrict the correlation
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observables’ long-range behavior to behave differently depending on their degree of ther-

malization. We discovered that transverse momentum fluctuations in peripheral lead-lead

(Pb-Pb) collisions at the LHC and gold-gold (Au-Au) collisions at the RHIC deviates sig-

nificantly from equilibrium. We suggest new measurements that we believe will deliver

more accurate information.

On the other hand, we demonstrate that the observables RPT , CPT , DPT , and

〈δpt1δpt2〉PT , which are all two-particle correlation observables, are mathematically con-

nected by equation (7.46) interms of survival probability. When these observables are

observed or calculated at the same time using the same method, (7.49) can be used as a

validation tool for theoretical models, depending on the circumstances.

In Section 7.2, we will explore briefly how to design a generic two-particle correlation

function (G12), Equation (5.18). The four related two-particle correlation observables

(7.23), (7.29), (7.39) and (7.45) all originate from this common source.

7.1 Signs of partial thermalization

We employ (4.56) to compute the long-range contribution to transverse momentum,

pt, fluctuations in Section (7.2.4) to highlight the promise of these approaches as well as

the practical challenges involved. We indicated in Reference [118] that these fluctuations

may be exploited to investigate thermalization. There is now a sufficient body of evidence

[51, 72, 119] to support this claim. It is well acknowledged that hydrodynamic flow occurs

in central collisions of large nuclei. Thus, we predict the earliest signs of thermalization to

appear in peripheral collisions, with the significance of these signs growing with increasing

in centrality as the system lifespan grows.
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Figure 7.1: Left side figure represent the Integrated elliptic flow v2 at 2.76 TeV compared
to lower energies with similar centralities. On the other hand the right side figure repre-
sents the elliptic flow vs event centrality for 2-particle and 4-particle cumulant approaches
compared to hydrodynamic model calculation[26].

Figure 7.1 illustrates experimental observations of v2. The left figure illustrates elliptic

flow throughout a broad range of collisional energies, demonstrating a consistent increase

in v2 as energy increases. On the right, the ALICE experiment plots v2 with respect to the

centrality (as described in Figure 2.4). Additionally, curves derived from hydrodynamic

simulations are displayed. The remarkable correspondence between these curves and

data from the central region illustrates hydrodynamics applicability for those collisions.

Notably, hydrodynamic models do not agree with evidence from the most peripheral

region.

In search of discrepancies with hydrodynamic behavior, Gavin and Moschelli studied

the quantity 〈δpt1δpt2〉 several years ago [14]. To simulate hydrodynamic flow, they used

a blast wave model (the same blast wave that we mentioned in Chapter 2) [16] to get the

result as shown in Figure 7.2. They found that, the blast wave model in central collisions

fits quite well over a wide range of energy. Importantly, this model systematically fails to

account for the peripheral points in the collisions at all energies. This may indicate that

the peripheral events are not producing fully equilibrated flow. We will now investigate

this hypothesis.
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Figure 7.2: Transverse momentum variations versus the number of participants for the
three beam energies [14].

One of the thesis objectives is to provide an explanation for this phenomenon. When

a system is in local equilibrium, hydrodynamics is relevant. According to data, central

collision systems have sufficient time for particle dispersion to thermalize the system.

Collisions near the periphery result in systems that are less dense and have shorter life-

times, and they may be unable to achieve a state of complete equilibrium. Our research

is motivated by evidence of insufficient thermalization of data.

Peripheral nuclear collisions are more analogous to proton-proton collisions, since they

include far fewer particles and provide significantly less opportunity for equilibration.

During the course of its existence, a peripheral collision is unlikely to equilibrate. We will

represent nuclear collisions in this chapter, as somewhat of a superposition between the

equilibrium expansion (from the blast wave model) and the non-interacting development

of an initial state (from ISM), and the connection between the initial and equilibrium

state for most observables depends on the survival probability, S.

7.2 Observables interms of survival probability

The differential phase space elements in this chapter are denoted by the abbreviation

dω = dxdp. The event averages must be distinguished from the average across thermal

fluctuations in chapter 4. We’ll refer to the thermal noise average as 〈Y 〉n from now on.
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The average of a noise-averaged quantity 〈〈Y 〉n〉 over events is equal to the average of

〈Y 〉n over initial circumstances.

The fluctuation observables RPT , CPT , DPT , and 〈δpt1δpt2〉PT are expressed in this

section as integrals of the pair correlation function G12. To write fluctuation observables

as integrals, we shall establish the following relevant relations

∑
i,j

uivj =
∑
i 6=j

uivj +
∑
i

uivi (7.1)

∑
i,j

uivj =

∫ ∫
u1v2 〈f1f2〉n dω1dω2 (7.2)

∑
i

uivi =

∫ ∫
u1v2 〈f1〉n δ(1− 2)dω1dω2 (7.3)

Ū =

∫ ∫
u 〈f〉n dω (7.4)

V̄ =

∫ ∫
v 〈f〉n dω (7.5)

where u and v are either 1, pt or δpt and 〈f〉n is the noise average of the distribution

function.

Take note of the fact that each of observabels quantities has the same form:

〈N〉2 Fuv =

〈∑
i 6=j

uivj

〉
−

〈∑
i

ui

〉〈∑
i

vi

〉
(7.6)

all averages in (7.6) are averages over events. We must now know the distinction between

this event average and the average over thermal noise that was employed primarily in the

preceding equations.

Add and subtract Ū V̄ to (7.2)

∑
i,j

uivj =

∫ ∫
u1v2 [〈f1f2〉n − 〈f1〉n 〈f2〉n + 〈f1〉n 〈f2〉n] dω1dω2. (7.7)
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From (7.7) we can see the first two terms on the right-side is equivalent to
∫ ∫

u1v2C12dω1dω2,

where C12 is the noise-averaged correlation function (4.19). Averaging (7.7) quantity over

events yields 〈∑
i,j

uivj

〉
=
〈
Ū V̄
〉

+

∫ ∫
u1v2 〈C12〉 dω1dω2. (7.8)

substitute (7.1) in (7.6), we will find

〈N〉2 Fuv =

〈∑
i,j

uivj

〉
−

〈∑
i

uivi

〉
−
〈
Ū
〉 〈
V̄
〉

(7.9)

substitute (4.29) in (7.8), we’ll find out〈∑
i,j

uivj

〉
=

∫ ∫
u1v2 〈G12〉 dω1dω2 +

∫ ∫
u1v2 〈f〉n dω1dω2 +

〈
Ū V̄
〉

(7.10)

subrogate (7.10) in (7.9)

〈N〉2 Fuv =

∫ ∫
u1v2 〈G12〉 dω1dω2 +

∫ ∫
u1v2 〈f〉n dω1dω2 +

〈
Ū V̄
〉

−

〈∑
i

uivi

〉
−
〈
Ū
〉 〈
V̄
〉

From the above, we can notice that the second and fourth terms on the right side of the

equation, they both cancel each other out. So,

〈N〉2 Fuv =

∫ ∫
u1v2 〈G12〉 dω1dω2 +

〈
Ū V̄
〉
−
〈
Ū
〉 〈
V̄
〉
. (7.11)

By employing the equilibrium distribution Ge
12, we derive a generic equation for Fuv. The

projection operators in Ge
12 = P1P2G12 suggest that Ge

12 = −f e1δ(1 − 2), which has a

straightforward interpretation. The one-body distribution f implies a stochastic path

towards the local equilibrium distribution f e for a given initial state. All such pathways

go to the same f e, with no correlations. Following that, the event-averaged correlation

function is expressed as 〈Ge
12〉 = −〈f e1 〉 δ(1− 2). Add and subtract

∫ ∫
u1v2G

e
12dω1dω2 to

(7.11), We discover

〈N〉2 Fuv = 〈N〉2 F e
uv +

∫ ∫
u1v2 〈G12 −Ge

12〉 dω1dω2 (7.12)

where

〈N〉2 F e
uv =

〈
Ū V̄
〉
−
〈
Ū
〉 〈
V̄
〉

+

∫ ∫
u1v2G

e
12dω1dω2 (7.13)
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the last term in (7.13) is equivalent to 〈N〉 〈uv〉e, where 〈N〉 〈uv〉e is averaged over the

equilibrium f e.

In particular, we want to underline that the
〈
Ū V̄
〉
−
〈
Ū
〉 〈
V̄
〉

contribution to F e
uv only

takes into account fluctuations in the total U and V resulting from the initial fluctuations

in each event. The final term denotes the fluctuations in the equilibrium state. We shall

find that observed correlations deviate from these contributions when the influence of

non-equilibrium correlations (7.12) is negligible or is prohibited by conservation laws.

7.2.1 Multiplicity-fluctuations

In order to find the multiplicity-fluctuation, RPT , under partial thermalization con-

ditions we will use u = v = 1 and Fuv ≡ RPT in (7.12) to find

〈N〉2RPT = 〈N〉2Re +

∫ ∫
〈G12 −Ge

12〉 dω1dω2 (7.14)

where,

〈N〉2Re =
〈
N̄(N̄ − 1)

〉
−
〈
N̄
〉2

(7.15)

N̄ =

Nk∑
i=1

1 =

∫ ∫
〈f〉n dω (7.16)

N̄(N̄ − 1) =

Nk∑
i=1

Nk∑
i 6=j

1 =

∫ ∫
[〈f1f2〉n − 〈f1〉n δ(1− 2)] dω1dω2 (7.17)

The evolution of each event effectively conserves particle number N , so that N̄ = N . If

we compare the second right term in (7.14) to (4.45) and (4.56), we will find

∫ ∫
〈G12 −Ge

12〉 dω1dω2 =

∫ ∫
〈X12 +X21 + ∆G12〉 dω1dω2 (7.18)

so,∫ ∫
〈G12 −Ge

12〉 dω1dω2 = S

∫ ∫ (
X0

12 +X0
21

)
dω1dω2 + S2

∫ ∫
∆G0

12dω1dω2 (7.19)

where

X0
21 = 〈δf1f

e
2 〉n − 〈δf1〉n 〈f

e
2 〉n (7.20)
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X0
12 = 〈δf2f

e
1 〉n − 〈δf2〉n 〈f

e
1 〉n (7.21)

∆G0
12 = 〈δf1δf2〉n − 〈δf1〉n 〈δf2〉n − 〈δf1〉n δ(1− 2) (7.22)

in which the integrals in (7.19) are valid across the whole momentum range as well as the

constant proper time freeze out surface. In X0
12, X0

21 and ∆G0
12, the projection operators

(1 − P ) enforce number conservation by causing the integrals on the right hand side in

(7.19) to vanish. In this way,

RPT = Re (7.23)

where Re is multiplicity fluctuations at local-equilibrium. We pick in this thesis that,

Re = const
dN/dy

and adjust the proportionality constants to make the computation of the

blast wave consistent. The reason for this is to make sure that the events described by

〈δpt1δpt2〉eq and 〈δpt1δpt2〉0 have the same number of particles in them.

7.2.2 Multiplicity-momentum correlations

In order to derive multiplicity-momentum correlations, DPT , we use the values u =

δpt = pt − 〈pt〉 and v = 1. The result of Equation (7.12) is

DPT = Deq +

∫ ∫
δpt1 〈G12 −Ge

12〉 dω1dω2

〈N〉2
(7.24)

where Deq is the multiplicity-momentum correlations at equilibrium, as determined by

the blast wave model. The second right-term in (7.24) compared to (4.45) and (4.56) can

be written as∫ ∫
δpt1 〈G12 −Ge

12〉 dω1dω2

〈N〉2
=

∫ ∫
(pt1X12 + pt1X21 + pt1∆G12)dω1dω2

〈N〉2

−〈pt〉
∫ ∫

(X12 +X21 + ∆G12)dω1dω2

〈N〉2

the second right-term will vanish compared to (7.18) and (7.19), since in X0
12, X0

21 and

∆G0
12, the projection operators (1 − P ) enforce number conservation by causing the

integral to vanish. While for the first right-term the projection operator (1− P ) in X0
12

and ∆G0
12 enforce number conservation, forcing the integrals to vanish since,∫ ∫

pt1X12dω1dω2 ≈ 〈pt〉S
∫ ∫

X0
12dω1dω2 = 0 (7.25)
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∫ ∫
pt1∆G12dω1dω2 = S2

∫ ∫
pt1∆G0

12dω1dω2 = 0 (7.26)

∫ ∫
pt1X21dω1dω2 = S

∫ ∫
pt1X

0
21dω1dω2 = 〈N〉2AS (7.27)

where the presence of the non-conserved quantity pt in (7.27) prevents the projection

1 − P1 from annihilating this integral. Where A in (7.27) is
∫ ∫

pt1X
0
12dω1dω2/ 〈N〉2.

Both numerator and denominator in A depends on τ through the range of paths in the

integrand. We can write (7.24) as

DPT = Deq + AS. (7.28)

We assume that A is approximately constant when we integrate over the full rapidity.

We are currently utilizing the fact that when

τ → τ0 S(0) ≈ 1 & τ →∞ S(∞)→ 0.

We can notice that, from the above conditions of survival probability A equal to D0−Deq.

The final relation of (7.28) can be written as

DPT = D0S +Deq(1− S) (7.29)

where D0 is the initial multiplicity-momentum fluctuations, which is obtained from ISM,

Deq is the multiplicity-momentum fluctuations at local equilibrium and S is the survival

probability. The fact that the terms in (7.29) contain just one power of S is directly

related to the fact that they are integrated over the momentum space of only a single

particles. In principle, elastic scattering influences the momentum of particles but not

their number, and when we examine only one momentum, we obtain only a single power

of S, the survival probability.
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7.2.3 Transverse momentum correlations

Taking u = v = pt gives the transverse momentum correlations, CPT , as follows from

(5.47). We have obtained

CPT = Ceq +

∫ ∫
pt1pt2 〈G12 −Ge

12〉 dω1dω2

〈N〉2
(7.30)

where

Ceq =
〈
P̄ 2
t

〉
−
〈
P̄t
〉2 − 〈N〉

〈
p2
t

〉e
(7.31)

is the transverse momentum correlations at equilibrium, as determined by the blast wave

model. The second right-term in (7.30) compared to (4.45) and (4.56) can be written as∫ ∫
pt1pt2 〈G12 −Ge

12〉 dω1dω2

〈N〉2
=

∫ ∫
pt1pt2 (X12 +X21 + ∆G12) dω1dω2

〈N〉2
(7.32)

The first right-part of (7.32), can be determined as∫ ∫
pt1pt2X12dω1dω2

〈N〉2
= S

∫ ∫
pt1pt2X

0
12dω1dω2

〈N〉2
≈ S 〈pt〉

∫ ∫
pt2X

0
12dω1dω2

〈N〉2
. (7.33)

Compare (7.33) to (7.27) with the value of A from DPT , we will obtain

∫ ∫
pt1pt2X12dω1dω2

〈N〉2
= 〈pt〉 (D0 −Deq)S. (7.34)

Now, if we do same steps for the second right-part of (7.32) compared to the first part.

We will obtain the following∫ ∫
pt1pt2X21dω1dω2

〈N〉2
= 〈pt〉 (D0 −Deq)S. (7.35)

For the last right-part of (7.32), we will obtain∫ ∫
pt1pt2∆G21dω1dω2

〈N〉2
= S2

∫ ∫
pt1pt2∆G0

21dω1dω2

〈N〉2
≈ BS2 (7.36)

where B =
∫ ∫

pt1pt2∆G0
21dω1dω2/ 〈N〉2. The presence of the non-conserved quantity

pt1,2 in (7.36) prevents the projection (1 − P1)(1 − P2) from annihilating this integral.

Both numerator and denominator in B depends on τ 2 through the range of paths in the

integrand. We assume that B is approximately constant when we integrate over the full

rapidity.
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Substitute (7.34), (7.35) and (7.36) in (7.30). We will have

CPT = Ceq + 2 〈pt〉 (D0 −Deq)S +BS2. (7.37)

In order to determine B, we will use the preceding conditions of S. So

B = C0 − Ceq − 2 〈pt〉 (D0 −Deq) (7.38)

substitute (7.38) in (7.37), in order to obtain the following relation

CPT = C0S2 + 2 〈pt〉 (D0 −Deq)S(1− S) + Ceq(1− S2) (7.39)

where C0 is the initial momentum-momentum fluctuations, Ce is the momentum-momentum

fluctuations at local equilibrium and 〈pt〉 represented the average transverse momentum

at local equilibrium. To facilitate understanding, we split in (7.39) the initial and equilib-

rium variables. Finally, we discover that CPT relationship to S is more complicated than

the other observables. The symbiotic relationship between C and D is especially interest-

ing. As S declines from 1 to 0, this middle term’s proportional contribution increases from

0 to 1. Ceq, on the other hand, develops at a far quicker rate compared to the middle term.

7.2.4 Correlations of transverse momentum fluctuations

To calculate the influence of thermalization on transverse momentum fluctuations we

will assume u = v = δpt, then the following equation will be used

〈δpt1δpt2〉PT = 〈δpt1δpt2〉eq +

∫ ∫
δpt1δpt2 〈G12 −Ge

12〉 dω1dω2

〈N(N − 1)〉
(7.40)

where, for a system in local equilibrium, the amount 〈δpt1δpt2〉eq contains both initial and

thermal state fluctuations. In order to determine the right most term of (7.40), we will

expand the pt fluctuations as,

δpt1δpt2 = pt1pt2 − 〈pt〉 pt1 − 〈pt〉 pt2 + 〈pt〉2 (7.41)

The second right-term in (7.40) compared to (4.45) and (4.56) can be written as∫ ∫
δpt1δpt2 〈G12 −Ge

12〉 dω1dω2

〈N(N − 1)〉
=

∫ ∫
δpt1δpt2 (X12 +X21 + ∆G12) dω1dω2

〈N(N − 1)〉
(7.42)
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Now combine (7.41) to (7.42). The first right term from (7.42) can be written as∫ ∫
δpt1δpt2X12

〈N(N − 1)〉
≈ S

∫ ∫ (
pt1pt2 − 〈pt〉 pt1 − 〈pt〉 pt2 + 〈pt〉2

)
X0

12dω1dω2

〈N(N − 1)〉

≈ S

(
〈pt〉

∫ ∫
pt2X

0
12

〈N(N − 1)〉
− 0− 〈pt〉

∫ ∫
pt2X

0
12

〈N(N − 1)〉
+ 0

)
= 0

The second right-term of (7.42)∫ ∫
δpt1δpt2X21

〈N(N − 1)〉
≈ S

∫ ∫ (
pt1pt2 − 〈pt〉 pt1 − 〈pt〉 pt2 + 〈pt〉2

)
X0

21dω1dω2

〈N(N − 1)〉

≈ S

(
〈pt〉

∫ ∫
pt1X

0
21

〈N(N − 1)〉
− 〈pt〉

∫ ∫
pt1X

0
21

〈N(N − 1)〉
− 0 + 0

)
= 0

The third right-term of (7.42)∫ ∫
δpt1δpt2∆G12

〈N(N − 1)〉
≈ S2

∫ ∫ (
pt1pt2 − 〈pt〉 pt1 − 〈pt〉 pt2 + 〈pt〉2

)
∆G0

12dω1dω2

〈N(N − 1)〉

≈ S2

(∫ ∫
pt1pt2∆G0

12

〈N(N − 1)〉
− 0− 0 + 0

)
= A′S2

where A′ =
∫ ∫

pt1pt2∆G0
21dω1dω2/ 〈N(N − 1)〉. Both numerator and denominator in

A′ depends on τ 2 through the range of paths in the integrand. We assume that A′ is

approximately constant when we integrate over the full rapidity.

Combine the three calculated terms to (7.40), we will obtain

〈δpt1δpt2〉PT = 〈δpt1δpt2〉eq + A′S2 (7.43)

We’ll utilize the preceding conditions of S to calculate A′. So

A′ = 〈δpt1δpt2〉0 − 〈δpt1δpt2〉eq (7.44)

substitute (7.44) in (7.43), in order to obtain the following relation

〈δpt1δpt2〉PT = 〈δpt1δpt2〉0 S
2 + 〈δpt1δpt2〉eq (1− S2) (7.45)

where S again denotes the chance of survival. At the formation time τ , fluctuations

begin with an initial value 〈δpt1δpt2〉0 and develop to the equilibrium value 〈δpt1δpt2〉eq.
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The local equilibrium value 〈δpt1δpt2〉eq has been determined by fluctuations in the initial

participant geometry from event to event. These fluctuations are estimated using the blast

wave model described in Reference [14]. This model exhibits outstanding agreement with

a wide variety of fluctuation, correlation, and flow harmonic observations at both soft

and hard scales [59, 120, 121].

7.3 Complimentary fluctuation and correlation observables

In accordance with their common origin (7.12) and the concept of a transverse mo-

mentum fluctuation δpt, the observables 〈δpt1δpt2〉PT , (7.45), DPT , (7.29), RPT , (7.23),

and CPT , (7.39) are mathematically connected same as Equation (5.12).

We start with the definition (5.12) and work our way up in order to find the relation-

ship between the observables as a function of survival probability.

(1+RPT ) 〈δpt1δpt2〉PT + 2 〈pt〉DPT − CPT + 〈pt〉2RPT = 0. (7.46)

Substitute (7.29), (7.23) and (7.39) in (7.46). we will obtain

(1+Req) 〈δpt1δpt2〉PT − C
eq + 2 〈pt〉 (D0 −Deq)S2 + 2 〈pt〉Deq − (C0 − Ceq)S2 + 〈pt〉2Req = 0.

(7.47)

rearrange (7.47) to obtain

(1+Req) 〈δpt1δpt2〉PT − C
eq + 2 〈pt〉Deq + 〈pt〉2Req −

[
C0 − Ceq − 2 〈pt〉 (D0 −Deq)

]
S2 = 0.

(7.48)

substitute (7.45) in (7.48), then add and subtract 〈pt〉2ReqS2 from (7.48) to obtain[
(1+Req) 〈δpt1δpt2〉eq + 2 〈pt〉Deq − Ceq + 〈pt〉2Req

]
(1− S2)+[

(1+Req) 〈δpt1δpt2〉0 + 2 〈pt〉D0 − C0 + 〈pt〉2Req
]
S2 = 0. (7.49)

As seen in (7.49), the sum rule varies between the initial and equilibrium states. We

can see that at S = 1, only the initial observables survive, and equation (7.49) becomes

identical to the ISM’s sum rule. When S = 0, however, as shown in (7.49), only the

equilibrium observables remain and the equation becomes identical to the sum rule from

blast wave. Finally, when S varies between 0 and 1, our model exists and the partial

thermalization sum rule is zero in the range of 10−15.
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7.4 Results and discussions

The partial thermalized observables CPT , DPT , and 〈δpt1δpt2〉PT are all dependent

on the survival probability except RPT , as shown by the fact that there is a relationship

between the initial circumstances and the local equilibrium for each of them depending on

the survival probability in the calculations above. For the sake of computing the partial

thermalized observables, we will concentrate on two important aspects in this chapter.

First, in order to compute the initial production of the partial thermalized obsrevables,

it was necessary to assume that each observable did not contain any bulk collectivity or

QGP phase; therefore, in this case we used the Independent Source Model (ISM), which

assumes that nuclear collision events are composed of a superposition of the independent

sources of particles (see Chapter 6 for more information) and ignores any interactions

between the emitted particles from different sources. A variable number of sources are

associated with each event, and each source has a fluctuating multiplicity with momentum

distribution of particles associated with it. In the following equations, the initial states

of the four observables compared to (6.26), (6.27), (6.28) and (6.29) are expressed as

〈δpt1δpt2〉0 =
2 〈δpt1δpt2〉pp
〈Npar〉

(1 +Rpp)

(1 +R)
(7.50)

C0 =
2Cpp + 〈pt〉2

〈Npart〉
. (7.51)

R0 =
2Rpp + 1

〈Npar〉
(7.52)

D0 =
2Dpp
〈Npart〉

(7.53)

where 〈δpt1δpt2〉pp,Rpp, Cpp andDpp are the integrated values of observables using PYTHIA

pp collision (see Table 6.1 and Table 7.1) and 〈Npart〉 is calculated from Equation (2.30)

using Glauber model and 〈pt〉 from blast wave model (from Chapter 2 Section 2.3).

Second, hydrodynamic theory presupposes that the system remains in local equilib-

rium throughout the lifetime of the expansion. We will use blast wave model in order to

find the four observables 〈δpt1δpt2〉eq (7.45), Req (7.23), Ceq (7.31) and Deq (7.28) since
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this model was essentially a boosted source type of model and it assumed local equi-

librium. Back to Chapter 2, our blast wave performs admirably for the seven various

energies tested, and it is sufficiently accurate to be used for the calculation for the values

of the four observables in case of local equilibrium

We chose to work with 〈δpt1δpt2〉PT in order to compare our results with those obtained

by experiment since this data is the most easily available for a variety of collisional energy.

According to (7.50) and its dependency on R, we will examine three distinct versions of

R for each energy, and for each version, we will employ a different type of multiplicity

fluctuation. To explain why we employed three distinct versions as we discussed before.

We expected the number conservation (7.23). By means the in equilibrium and out of

equilibrium, event-by-event multiplicity variations are similar. We would like to empha-

size that this is not always the case (by comparing the three distinct versions of R, we

will get different values of
√
〈δpt1δpt2〉/ 〈pt〉 as shown for different energies in the plots

below). For (7.23), we made substantial assumptions about the equation’s linearity and

several reducing assumptions about the system’s nature in these derivations. Nonethe-

less, we feel that this illustrated example might aid in gaining a better understanding of

the thermalization process.

For the first column for each of the Figures 7.4, 7.6, 7.8, 7.10, 7.12, 7.14 and 7.16

〈δpt1δpt2〉0 (7.50) was calculated using R = R0 (7.52), and we utilized the same scaled

R0 for local equilibrium 〈δpt1δpt2〉eq. Then via superposition between 〈δpt1δpt2〉0 and

〈δpt1δpt2〉eq, we calculate 〈δpt1δpt2〉PT . The solid black curve line in these Figures rep-

resented the partial thermalization data, the blue dashed line (initial production) repre-

sented the PYTHIA integrated production to AA collision data (ISM), the brown dotted

line (local equilibrium flow) represented the blast wave data, the circles, squares and tri-

angles represented the data from STAR at energies 11.5, 19.6, 27, 39, 62.4, and 200 GeV

for Au − Au collisions, and the flipped triangles represented the data from ALICE for

Pb − Pb collisions at 2760 GeV . This assumption leads to a poor fitting of the data

from the STAR experiment, particularly at low energies (11.5, 27 and 39 GeV ). The

fit becomes slightly better at higher energies (62.4 and 200 GeV ), where a handful of
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points in the central region match the model (black curve line). On the case of Pb− Pb

collisions from ALICE at 2760 GeV , the model only fit the first five points from data

collected in the peripheral region. As a result, we conclude that employing multiplicity

fluctuations, R0, from the Independent Source Model is not a good decision, contrary to

what we anticipated.

Due to our belief that R = Const
dN/dy

has physical significance (according to Ref [14]

), we have chosen this as our second option of multiplicity fluctuation condition. In

Figure 7.3, it appears that R = Const
dN/dy

estimates are in good agreement with the data

from PHENIX for Au−Au at 62.4 GeV and 200 GeV for central collisions only. We pick

R = Const
dN/dy

and adjust the proportionality constants to make the computation of the blast

wave consistent in the second column for Figures 7.4, 7.6, 7.8, 7.10, 7.12, 7.14 and 7.16.

This is done to verify that 〈δpt1δpt2〉eq and 〈δpt1δpt2〉0 accurately represent events with

almost the same number of particles. The Au-Au collisions at 11.5 GeV from STAR data

still do not fit well with the partial thermalized curve (〈δpt1δpt2〉PT ) in Figure 7.16. For

Figures 7.14, 7.12 and 7.10, Au-Au collisions at 19.6, 27, and 39 GeV , the central region

matches somewhat better than the first version of R (R = R0). On the other hand,

for Au − Au collisions at 62.4 GeV (Figure 7.8) and 200 GeV (Figure 7.6), the STAR

data matches perfectly to the center collision but misses the peripheral collision, however

when compared to the initial version of R, the gap in the periphery region between the

partial thermalized curve and the data has reduced. In the instance of Pb−Pb collisions

at 2760 GeV (Figure 7.4), the partial thermalized curve fits the ALICE data very well,

with the exception of the most central and two most peripheral spots. We infer that the

model may perform quite well for high energy but not for low energies.

Regarding the third column for figures 7.4, 7.6, 7.8, 7.10, 7.12, 7.14 and 7.16. We

used R = Const
(dN/dy)1.125

in (7.5); this version has no physical meaning, but the point is to

demonstrate that the data for these figures, in case of Au−Au collisions from STAR at

19.6, 27, 39, 62.4 and 200 GeV matches our model perfectly in this scenario. However,

the ALICE data for Pb− Pb collisions at 2760 GeV also matches perfectly.
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Figure 7.3: RdN/dy prediction as a function of the number of participants Npart for three
different beam energies. This plot is taken from Ref [14].

In both Pb−Pb collisions at 2760GeV andAu−Au collisions at 11.5, 19.6, 27, 39, 62.4,

and 200 GeV ,the second row of plots from the Figures 7.5, 7.7, 7.9, 7.11, 7.13, 7.15 and

7.17 shows the prediction curves for C are displayed versus the number of participants for

the three distinct versions of R. With the help of the independent source model (ISM)

Equation (7.51), the initial production curve can be computed. It is possible to determine

the pp reference value in PYTHIA (See Table 6.1 and Table 7.1). The blast wave model

is used once more to represent local equilibrium flow (dotted brown line). The partial

thermalization curve (solid black line ) is determined with the help of the formula (7.39).

C behaves as predicted in the most peripheral and most central areas, matching the ini-

tial and local equilibrium curves, respectively, in the most peripheral and most central

regions. The value of the initial production curve does not differ significantly from the

value of the equilibrium flow when the present model parameters are used. This means
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that we do not anticipate C to provide us with much information on the thermalization

of the system while it is operating in the most extreme conditions.

According to Figures 7.5, 7.7, 7.9, 7.11, 7.13, 7.15 and 7.17, the third row graphs

shows the prediction of the value of D in Pb − Pb collisions at 2760 GeV and Au − Au

collisions at 11.5, 19.6, 27, 39, 62.4, and 200 GeV versus the number of participants for

the three distinct versions ofR (in the first column the three observables, R, C and D, are

calculated whenR ∝ 〈Npart〉−1, while in the second column the observables are calculated

when R ∝ (dN/dy)−1, and for the third column when R ∝ (dN/dy)−1.125 ). According

to Equation (7.53), an initial production curve was produced using the pp (See Table 6.1

and Table 7.1) reference value computed in PYTHIA as the starting point. In the blast

wave model, the value of D at the local equilibrium was estimated. The blast wave curve

for D has an unusual characteristic in that it is completely in the fourth quadrant. This

might be due to a flow that comes from the blast wave model, which would produce a

reduction in D or a lack of jets in this model (blast wave model), which would induce an

increase in D if there were any. We are presently looking into this feature to see whether

or not this is the case. When we zoom in on the periphery region for all energies except

the 11.5 GeV for the three distinct versions of R to analyze the partial thermalization

curve more closely, we notice a striking shift in the sign of D that is not apparent in

the other observables. The transition from positive to negative values may represent the

point at which the flow-like effects of more thermalized center collisions begin to outweigh

the jet-like effects found in peripheral proton-proton and nucleus-nucleus collisions.

Importantly, none of the three independent forms of R break the sum rule for all

energies (7.49).
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Figure 7.4: Partial thermalized observable (black solid curve) 〈δpt1δpt2〉PT (7.45) were
calculated by superposition, using PYTHIA (initial production) and Blast Wave model
(local equilibrium flow) for three distinct versions of R compared to data for Pb− Pb at√
s = 2760 GeV . The flipped triangles represent the ALICE data [72].

Figure 7.5: Partial thermalized observables (black solid curve) RPT , CPT and DPT , for
Pb − Pb at

√
s = 2760 GeV were calculated by superposition, using PYTHIA (initial

production) and Blast Wave model (local equilibrium flow) for three distinct versions of
R. First column the three observables ( R, C and D) calculated when R ∝ 〈Npart〉−1,
second column when R ∝ (dN/dy)−1, and the third column when R ∝ (dN/dy)−1.125.
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Figure 7.6: Partial thermalized observable (black solid curve) 〈δpt1δpt2〉PT (7.45) were
calculated by superposition, using PYTHIA (initial production) and Blast Wave model
(local equilibrium flow) for three distinct versions of R compared to data for Au−Au at√
s = 200 GeV . The triangles represent the STAR data [74].

Figure 7.7: Partial thermalized observables (black solid curve) RPT , CPT and DPT , for
Au − Au at

√
s = 200 GeV were calculated by superposition, using PYTHIA (initial

production) and Blast Wave model (local equilibrium flow) for three distinct versions of
R. First column the three observables ( R, C and D) calculated when R ∝ 〈Npart〉−1,
second column when R ∝ (dN/dy)−1, and the third column when R ∝ (dN/dy)−1.125.
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Figure 7.8: Partial thermalized observable (black solid curve) 〈δpt1δpt2〉PT (7.45) were
calculated by superposition, using PYTHIA (initial production) and Blast Wave model
(local equilibrium flow) for three distinct versions of R compared to data for Au−Au at√
s = 62.4 GeV . The squares represent the STAR data [74].

Figure 7.9: Partial thermalized observables (black solid curve) RPT , CPT and DPT , for
Au − Au at

√
s = 62.4 GeV were calculated by superposition, using PYTHIA (initial

production) and Blast Wave model (local equilibrium flow) for three distinct versions of
R. First column the three observables ( R, C and D) calculated when R ∝ 〈Npart〉−1,
second column when R ∝ (dN/dy)−1, and the third column when R ∝ (dN/dy)−1.125.



124

Figure 7.10: Partial thermalized observable (black solid curve) 〈δpt1δpt2〉PT (7.45) were
calculated by superposition, using PYTHIA (initial production) and Blast Wave model
(local equilibrium flow) for three distinct versions of R compared to data for Au−Au at√
s = 39 GeV . The circles represent the STAR data [74].

Figure 7.11: Partial thermalized observables (black solid curve) RPT , CPT and DPT , for
Au − Au at

√
s = 39 GeV were calculated by superposition, using PYTHIA (initial

production) and Blast Wave model (local equilibrium flow) for three distinct versions of
R. First column the three observables ( R, C and D) calculated when R ∝ 〈Npart〉−1,
second column when R ∝ (dN/dy)−1, and the third column when R ∝ (dN/dy)−1.125.
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Figure 7.12: Partial thermalized observable (black solid curve) 〈δpt1δpt2〉PT (7.45) were
calculated by superposition, using PYTHIA (initial production) and Blast Wave model
(local equilibrium flow) for three distinct versions of R compared to data for Au−Au at√
s = 27 GeV . The circles represent the STAR data [74].

Figure 7.13: Partial thermalized observables (black solid curve) RPT , CPT and DPT , for
Au − Au at

√
s = 27 GeV were calculated by superposition, using PYTHIA (initial

production) and Blast Wave model (local equilibrium flow) for three distinct versions of
R. First column the three observables ( R, C and D) calculated when R ∝ 〈Npart〉−1,
second column when R ∝ (dN/dy)−1, and the third column when R ∝ (dN/dy)−1.125.
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Figure 7.14: Partial thermalized observable (black solid curve) 〈δpt1δpt2〉PT (7.45) were
calculated by superposition, using PYTHIA (initial production) and Blast Wave model
(local equilibrium flow) for three distinct versions of R compared to data for Au−Au at√
s = 19.6 GeV . The circles represent the STAR data [74].

Figure 7.15: Partial thermalized observables (black solid curve) RPT , CPT and DPT , for
Au − Au at

√
s = 19.6 GeV were calculated by superposition, using PYTHIA (initial

production) and Blast Wave model (local equilibrium flow) for three distinct versions of
R. First column the three observables ( R, C and D) calculated when R ∝ 〈Npart〉−1,
second column when R ∝ (dN/dy)−1, and the third column when R ∝ (dN/dy)−1.125.



127

Figure 7.16: Partial thermalized observable (black solid curve) 〈δpt1δpt2〉PT (7.45) were
calculated by superposition, using PYTHIA (initial production) and Blast Wave model
(local equilibrium flow) for three distinct versions of R compared to data for Au−Au at√
s = 11.5 GeV . The circles represent the STAR data [74].

Figure 7.17: Partial thermalized observables (black solid curve) RPT , CPT and DPT , for
Au − Au at

√
s = 11.5 GeV were calculated by superposition, using PYTHIA (initial

production) and Blast Wave model (local equilibrium flow) for three distinct versions of
R. First column the three observables ( R, C and D) calculated when R ∝ 〈Npart〉−1,
second column when R ∝ (dN/dy)−1, and the third column when R ∝ (dN/dy)−1.125.
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Integrated values of observables using PYTHIA pp collision√
s 11.5 GeV 19.6 GeV 27 GeV 39 GeV 62.4 GeV
Rpp −0.0547 ±

9.97× 10−4

0.0492 ±
1.06× 10−3

0.1028 ±
1.39× 10−3

0.1535 ±
1.48× 10−3

0.2027 ±
1.68× 10−3

Cpp −0.0126 ±
3.80× 10−4

0.0175 ±
3.95× 10−4

0.0329 ±
4.69× 10−4

0.0475 ±
5.36× 10−4

0.0619 ±
5.18× 10−4

Dpp −0.00187±
3.25× 10−4

0.00392 ±
2.45× 10−4

0.00700 ±
2.40× 10−4

0.00992 ±
2.26× 10−4

0.01264 ±
2.78× 10−4

〈δpt1δpt2〉pp 0.00242 ±
1.11× 10−4

0.00209 ±
8.22× 10−5

0.00202 ±
9.67× 10−5

0.00199 ±
8.25× 10−5

0.00213 ±
6.62× 10−5

Nevents 2481787 2569268 2578825 2580011 2573404

Table 7.1: The calculations are performed using charged particles from the kinematic
area and an |η| < 1 at 11.5, 19.6, 27, 39 & 62.4 GeV . Uncertainties are expressed as
standard deviation of subgroup values. (This data from G.Moschelli, gmoschell@ltu.edu)

Finally, we have Req = R0 which is intended to come from PYTHIA, where we

already know what it is, but it does not fit as we can see from the low to the high energy

levels from the graphs above. Next, we have the Req = Const/(dN/dy), which is the

one we believe is physically correct (according to reference [14]) and that PYTHIA is

incorrect. The third Req = Const/(dN/dy)α, which is simply the one we want to fit the

data without physical meaning. But it is important to note that, because we used a lot

of approximations, we do not expect our theory to fit everything perfectly; and, in fact

it does not fit everything super-perfectly; but, at the very least, we can demonstrate the

concept.

Last but not least, we seek to persuade the experimentalists that they should measure

D in addition to measuring all correlations at the same time (simultaneously). It is our

intention to utilize all of these observables together to confine our estimates of the survival

probability S, with the hope of being able to answer the question: Can observables

demonstrate that there is a phenomenon known as partial thermalization?
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CHAPTER 8 CONCLUSION

The main goal of this thesis, is after finding that the momentum-multiplicity fluc-

tuations not zero, we demonstrate that the observables R, C, D, and 〈δpt1δpt2〉, which

are all two-particle correlation observables, are mathematically connected by equation

(5.12). When these observables are observed or calculated at the same time using the

same method, (5.12) can be used as a validation tool for theoretical models, depending on

the circumstances. On the other hand we develop differential equations for studying the

evolution of correlations and other characteristics of ion collisions by inserting Langevin

noise into kinetic theory for investigating the non-equilibrium properties of correlation

data.

This dissertation is structured as follows:

• In Chapter 2, we begin by introducing some of the concepts that will be discussed

throughout the remainder of the course. Also with the help of the Glauber model

that derived in this chapter, we were able to determine two important centrality

variables: the number of binary collisions (Ncoll) and the number of participants

(Npart), which were calculated in relation to the impact parameter (b) of a collision

in order to find the value of observables in local equilibrium from the blast wave

model and compare them to the experimental data from STAR and ALICE.

• In Chapter 3, we address features of the Boltzmann equation and relaxation time

approximation, both linearized and non-linearized, that are relevant to our study.

The Boltzmann equation describes how the one-body phase space distribution f

relaxes to f e, the local equilibrium distribution. In general, f e is governed by

nonlinear constraints (3.22) that enforce conservation laws on energy, momentum,

and conservation numbers. When these conditions are linearized, they are reduced

to the requirement that the temperature T , velocity v, and chemical potential µ in

f e obey effective ideal hydrodynamic equations. (3.28) and (3.43).

• In Chapter 4, in order to understand non-equilibrium correlations, we use Langevin

fluctuations in combination with the Boltzmann equation. The two body equation
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(4.40) is derived using stochastic differential equation methods established in the

area of viscous hydrodynamics. To impose the conservation principles laws, we use

projection operators generated from linearized Boltzmann equation. The equation

(4.40) and its formal solution can be used to describe small changes in the flow of

a nonlinear average flow (3.28).

• In Chapter 5, we showed that the same parent correlation function is used to create

two-particle multiplicity fluctuations (R), transverse momentum correlations (C),

correlations of the transverse momentum fluctuations (〈δpt1δpt2〉), and multiplicity-

momentum correlations (D) and these four observabels are mathematically linked

together by equation (5.12).

• In Chapter 6, we showed that multiplicity fluctuations (R), transverse momentum

correlations (C), correlations of the transverse momentum fluctuations (〈δpt1δpt2〉),

and multiplicity-momentum correlations (D) and their relationship to PYTHI-

A/Angantyr simulated collision events at 200 GeV and 2.76 TeV have been esti-

mated energy of collision. A novel observable, multiplicity-momentum correlations,

is computed for the first time in this thesis.

• In Chapter 7, the purpose of this chapter is to design a methodology for determin-

ing the degree of thermalization by combining momentum-multiplicity correlation

observables in kinetic theory. The Boltzmann equation in relaxation time approxi-

mation plus Langevin noise is used to investigate the influence of thermalization on

these correlations. We propose a novel non-equilibrium transport equation (4.56)

for the two-body distribution function that is compatible with the conservation

principles that apply to microscopic scattering phenomena. We discover that these

conservation constraints restrict the correlation observables’ long-range behavior to

behave differently depending on their degree of thermalization. We discover that

transverse momentum fluctuations in peripheral lead-lead (Pb-Pb) collisions at the

LHC and gold-gold (Au-Au) collisions at the RHIC deviates significantly from equi-

librium. We suggest new measurements on this chapter that we believe will deliver

more accurate information.
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[68] D. Adamová et al. “Event-by-event fluctuations of the mean transverse momentum

in 40, 80, and 158 PbAu collisions”. In: Nuclear Physics A 727.1-2 (Nov. 2003),

pp. 97–119. issn: 0375-9474.

[69] STAR Collaboration et al. “Transverse-momentumptcorrelations on (, phi) from

mean-ptfluctuations in Au–Au collisions at GeV”. In: Journal of Physics G: Nu-

clear and Particle Physics 32.6 (May 2006), pp. L37–L48. issn: 1361-6471.

[70] “Event-by-event fluctuations in mean pT and mean eT in
√
sNN = 130GeV Au+Au

collisions”. In: Phys. Rev. C 66 (2 Aug. 2002), p. 024901.

[71] “Measurement of Nonrandom Event-by-Event Fluctuations of Average Transverse

Momentum in
√
sNN = 200 GeV Au + Au and p + p Collisions”. In: Phys. Rev.

Lett. 93 (9 Aug. 2004), p. 092301.

[72] B. Abelev et al. “Event-by-event mean pT pT fluctuations in pp and Pb–Pb colli-

sions at the LHC”. In: The European Physical Journal C 74.10 (Oct. 2014). issn:

1434-6052.

[73] Stefan Heckel. “Event-by-event meanpTfluctuations in pp and Pb–Pb collisions at

the LHC”. In: EPJ Web of Conferences 90 (2015). Ed. by F. Fabbri and P.Editors

Giacomelli, p. 08006. issn: 2100-014X.

[74] “Collision-energy dependence of pt correlations in Au + Au collisions at energies

available at the BNL Relativistic Heavy Ion Collider”. In: Phys. Rev. C 99 (4 Apr.

2019), p. 044918.

[75] H. Heiselberg and A. D. Jackson. “Anomalous multiplicity fluctuations from phase

transitions in heavy-ion collisions”. In: Phys. Rev. C 63 (6 May 2001), p. 064904.

[76] M. Rybczynski, Z. Wlodarczyk, and G. Wilk. Possible signal for critical point in

hadronization process. 2004. arXiv: hep-ph/0305329 [hep-ph].



138

[77] M.J. Tannenbaum. “The distribution function of the event-by-event average pT

for statistically independent emission”. In: Physics Letters B 498.1 (2001), pp. 29–

34. issn: 0370-2693.

[78] Zhenyu Xu et al. In: 47.12 (Oct. 2020), p. 125102.

[79] Piotr Bozek, Wojciech Broniowski, and Sandeep Chatterjee. Transverse Momen-

tum Fluctuations and Correlations. 2017. arXiv: 1707.04420 [nucl-th].

[80] B. I. Abelev et al. “Systematic measurements of identified particle spectra inpp,d+Au,

andAu+Aucollisions at the STAR detector”. In: Physical Review C 79.3 (Mar.

2009). issn: 1089-490X.

[81] B. Abelev et al. “Multiplicity dependence of the average transverse momentum in

pp, p–Pb, and Pb–Pb collisions at the LHC”. In: Physics Letters B 727.4-5 (Dec.

2013), pp. 371–380. issn: 0370-2693.
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Is thermalization necessary for hydrodynamic flow in nuclear collisions? The discov-

ery of flow-like azimuthal correlations in pA and high-multiplicity pp collisions raises

profound questions about the onset of collective flow and its relation to hydrodynamics.

We seek independent experimental information on the degree of thermalization in order

to identify those hydrodynamic collision systems in which flow is sensitive to equilibrium

QCD properties. We aim to develop a protocol for identifying the degree of thermaliza-

tion using a combination of momentum and multiplicity correlation. To study the effect

of thermalization on these correlations, we use Boltzmann equation in the relaxation time

approximation with Langevin noise. We derive a new non-equilibrium transport equa-

tion for the two-body distribution function that is consistent with the conservation laws

obeyed by microscopic scattering processes. We find that transverse momentum fluctua-

tions in peripheral Pb-Pb collisions at LHC markedly deviate from equilibrium behavior.

We propose new measurements that can provide more refined information.
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