
Wayne State University Wayne State University

Wayne State University Dissertations

January 2022

Deep Learning As Native Scientific Workflows In The Modern Deep Learning As Native Scientific Workflows In The Modern

Swfms - Dataview Swfms - Dataview

Junwen Liu
Wayne State University

Follow this and additional works at: https://digitalcommons.wayne.edu/oa_dissertations

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Liu, Junwen, "Deep Learning As Native Scientific Workflows In The Modern Swfms - Dataview" (2022).
Wayne State University Dissertations. 3638.
https://digitalcommons.wayne.edu/oa_dissertations/3638

This Open Access Dissertation is brought to you for free and open access by DigitalCommons@WayneState. It has
been accepted for inclusion in Wayne State University Dissertations by an authorized administrator of
DigitalCommons@WayneState.

http://digitalcommons.wayne.edu/
http://digitalcommons.wayne.edu/
https://digitalcommons.wayne.edu/oa_dissertations
https://digitalcommons.wayne.edu/oa_dissertations?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F3638&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F3638&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wayne.edu/oa_dissertations/3638?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F3638&utm_medium=PDF&utm_campaign=PDFCoverPages

DEEP LEARNING AS NATIVE SCIENTIFIC WORKFLOWS IN THE
MODERN SWFMS - DATAVIEW

by

JUNWEN LIU

DISSERTATION

Submitted to the Graduate School

of Wayne State University

Detroit, Michigan

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

2022

MAJOR: COMPUTER SCIENCE

Approved By:

———————————————————–
Advisor Date

———————————————————–

———————————————————–

———————————————————–

DEDICATION

Dedicated to my wife Ziyun Xiao,

my son Alan Zice Liu,

my father Enzhong Liu & mother Jiamin Liu.

my passed grandma Guangfeng Xiong and grandfather Chuanli Liu

ii

ACKNOWLEDGEMENTS

I would first like to thank my first and second supervisors in Henry ford hopsital - Dr.

Jinkoo Kim and Dr. Winston Wen, for consistently encouraging me to chase after perfection

and keep pursuing self-improvement as a lifetime mission, for fully supporting my decision

to pursue a part time Ph.D. program in Computer Science while working full-time in the

Radiation Oncology, Henry Ford Hospital, and for keeping me in their prayers to persevere

and keep growing.

I would also like to express my sincere and profound gratitude to my Ph.D. advisor Dr.

Shiyong Lu in Wayne State Unviersity, for accepting me as a part-time Ph.D. student in

the Big data Lab since 2018 Fall, and for his constant help, encouragement, and support

throughout my Ph.D. studies in the past 4 years. Tremendous thanks go to Dr. Lu, for his

vision, instruction, kindness and empathy that have consistently kept me in FOCUS on my

studies and research succeeds.

I would also like to sincerely thank all my committee members: Dr. Robert Reynolds,

Dr. Ming Dong and Dr. Dunren Che, for being in my dissertation committee and for

providing their constructive feedback, valuable comments and helpful suggestions on my

research. Especially, I would like to profoundly thank my co-advisor Dr. Dunren Che, for

instructing, helping and supporting me as his own Ph.D. student in the past 4 year. If not

for his help, I would hardly submit all ready manuscripts to good conference or journal. I

would also like to genuinely thank Dr. Rober Reyonolds, for instructing me in the course of

artificial intelligence, patiently advising and explaining the Culture and iCAT algorithms.

I would also like to sincerely thank Dr. Ming Dong, for instructing me in the course of

iii

pattern recognition and deep learning in my master and Ph.D. programs, which set a solid

foundation in my Ph.D. research.

I would also like to thank all my excellent academic colleagues from the WSU Big

Data Laboratory: Dr. Ishtiaq Ahmed, Changxin Bai and Saeid Mofrad for their enjoyable

cooperation, close relationship and supportive help.

I want especially thank my wonderful wife, Ziyun Xiao, for supporting my decision to

quit my job and switch to a full-time Ph.D. student in Wayne State university. Throughout

my Ph.D. program, she was always fully supportive, considerate and helpful. We shared

the same faith and prayer in bad times during the past 4 years. I am also grateful for my

son Alan Zice Liu, he has become one of my greatest source of joy and motivation, and

even brightened the world of mine.

My sincere gratitude goes to my father Enzhong Liu and mother Jiamin Liu, for their

endless love, support and encouragement to me and my family. I am deeply thankful to

my passed grandfather Chuanli Liu and grandma Guangfeng Xiong, for their unconditional

love and encouragement since my childhood.

iv

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

LIST OF TABLES . ix

LIST OF FIGURES . x

Chapter 1 INTRODUCTION . 1

1.1 Scientific workflow and artificial intelligence 1

1.2 Statement of the problems . 3

1.3 Organization of this dissertation . 5

Chapter 2 RELATED WORK . 6

2.1 Modern SWFMSs . 6

2.1.1 SWFMS: goals, requirements and challenges 6

2.1.2 Representative SWFMSs . 16

2.2 ML in SWFMSs . 23

2.3 GPU-based DL . 25

Chapter 3 DEEP-LEARNING-AS-A-WORKFLOW (DLAAW) ON SINGLE GPU IN
DATAVIEW . 30

3.1 Introduction . 30

3.2 Challenges of integrating GPU-enabled DL in SWFMSs 32

3.2.1 NNWorkflows construction Challenge 33

3.2.2 CPU/GPU communication Challenge 33

3.2.3 Challenge of neural network implementation in GPU 34

3.2.4 CPU and GPU I/O overhead Challenge 34

v

3.2.5 NNWorkflow dynamic mapping Challenge 35

3.2.6 Challenge of uniformly supporting diverse GPU types 35

3.3 Our Approach and Implementation . 36

3.4 Experiments . 41

3.4.1 Hardware and Datasets . 42

3.4.2 Experiment Results . 43

3.5 Conclusions and future work . 46

Chapter 4 DEEP-LEARNING-AS-A-WORKFLOW (DLAAW) EXTENDED ON HET-
EROGENEOUS GPU CLUSTER IN DATAVIEW 47

4.1 Introduction . 47

4.2 Architecture . 51

4.2.1 NNWorkflow Engine Component . 53

4.2.2 GPU Resource Management Component 54

4.2.3 GPU Services Component . 55

4.3 Implementation . 56

4.3.1 User Interfaces: GUI and JAVA API for Workflow/NNWorkflow de-
sign, construct, run and reuse . 58

4.3.2 NNWorkflow Engine: from native NNWorkflow to GPU recognizable
specification . 60

4.3.3 GPU Resource Management: Universal gateway to route specifica-
tion to target GPU services . 63

4.3.4 GPU Services: Execute neural networks 64

4.4 Experiments . 66

4.4.1 Hardware . 67

4.4.2 Datasets . 68

vi

4.4.3 Experiment Results . 69

4.5 Conclusions and future work . 76

Chapter 5 THE USABILITY OF DEEP-LEARNING-AS-A-WORKFLOW (DLAAW)
TO THE SWFMS COMMUNITY . 77

5.1 Design, construct and execute an NNWorkflow in DATAVIEW 77

5.1.1 Design, construct and execute an NNWorkflow through JAVA API . . 77

5.1.2 Design, construct and execute an NNWorkflow in Web Interface . . . 79

5.2 Reuse any trained NNWorkflow models on new datasets in DATAVIEW . . . 82

5.2.1 Reuse any trained NNWorkflow on new datasets through JAVA API . 82

5.2.2 Reuse any trained NNWorkflow on new datasets in Web Interface . . 83

5.3 Integrate NNTasks and ordinary Tasks in one comprehensive workflow . . . 84

5.3.1 Design, construct and run neural network ensemble learning work-
flow through JAVA API . 85

5.3.2 Design, construct and run neural network ensemble learning work-
flows in web Interface . 86

5.4 Extensibility of DLaaW in DATAVIEW . 87

5.4.1 Current DLaaW implementation in DATAVIEW 88

5.4.2 Extensibility analysis . 90

5.5 Conclusions and future work . 91

Chapter 6 CONCLUSIONS AND FUTURE WORK 92

APPENDIX A . 95

APPENDIX B . 96

APPENDIX C . 97

APPENDIX D . 98

vii

APPENDIX E . 99

REFERENCES . 100

ABSTRACT . 113

AUTOBIOGRAPHICAL STATEMENT . 115

viii

LIST OF TABLES

Table 1 A summary of SWFMSs. 16

Table 2 Comparison on representative workflow systems. 16

Table 3 Specifications of neural networks and their target datasets. 95

ix

LIST OF FIGURES

Figure 1 DATAVIEW’s new architecture with inherent support for Deep-Learning-
as-a-Workflow. 37

Figure 2 Training models: i) trained models testing accuracies and ii) DLaaW
Timespans (in seconds). 44

Figure 3 DATAVIEW’s new architecture supports GPU clusters in deep-learning-
as-a-workflow. 52

Figure 4 Procedures to construct, execute and reuse a deep-learning-as-a-workflow
in DATAVIEW. 57

Figure 5 NNWorkflow Visualization by DATAVIEW: i) The sample NNWorkflow
and ii) its Neuron-level architecture. 58

Figure 6 Design and construct an NNWorkflow in DATAVIEW webbench. 59

Figure 7 Reuse a trained NNWorkflow model on new dataset for prediction in
DATAVIEW webbench. 61

Figure 8 Hardware setup for DLaaW: i) the desktop with a local GPU and ii) a
heterogeneous GPU Cluster (6 nodes). 68

Figure 9 Regular train and test: i) Testing accuracies and ii) Timespans (in
seconds) . 72

Figure 10 5-fold cross validations: i) Means and Variances of testing accuracies
on 5 folds; ii) Timespans (in seconds) 74

Figure 11 Design and construct an NNWorkflow through JAVA API 78

Figure 12 Micro observation of the sample NNWorkflow which designed and
constructed through JAVA API . 79

Figure 13 Execute the sample NNWorkflow through JAVA API 79

Figure 14 Design, construct and exectuion an NNWorkflow in Web interface . . 80

Figure 15 Execute the sample NNWorkflow in Web interface 81

Figure 16 The result of the sample NNWorkflow execution in Web interface . . . 81

Figure 17 Reuse a trained NNWorkflow model on new dataset through JAVA API 82

x

Figure 18 Reuse a trained NNWorkflow model on new dataset in web interface . 83

Figure 19 Execution result of reusing a trained NNWorkflow model on new
dataset in web interface . 84

Figure 20 Design, construct and run a neural network ensemble learning work-
flow through JAVA API . 85

Figure 21 JAVA visualization of the neural network ensemble learning workflow 86

Figure 22 Design, construct and run the neural network ensemble learning work-
flow in web interface . 87

Figure 23 Execution result of the neural network ensemble learning workflow
in web interface . 87

Figure 24 Overall class diagrams of DLaaW in DATAVIEW 89

Figure 25 Specification of each GPU node in the DATAVIEW GPU cluster 97

Figure 26 Memory utilization of each GPU node during distributed 5-fold cross
validation . 98

Figure 27 Intermediate outputs in the neural network ensemble learning workflow 99

xi

1

CHAPTER 1 INTRODUCTION

In this chapter, first, the notions of workflow and SWFMS are introduced; then a brief

overview of the requirement of deep learning (DL) functionalities in SWFMSs is provided;

next, the major research problems of DL integration in a SWFMS are stated; and finally,

an organization of the rest chapters is outlined for the dissertation.

1.1 Scientific workflow and artificial intelligence

Scientific workflow, which allows scientists to conveniently model the complex data

processing steps and data dependencies, has demonstrated great potential as a key accel-

erator for various scientific discovery processes across numerous scientific domains [19,

25, 26, 96]. Behind the scene are numerous Scientific Workflow Management Systems

(SWFMSs) that have been developed to manage the modeling and execution of scientific

workflows, including Pegasus [23], Kepler [57], Taverna [71], Swift [99], and DATAVIEW [44].

These SWFMSs have been increasingly exploited by various research communities [18,26,

62,77] including astronomy, bioinformatics, ecology, computational engineering, etc. Tra-

ditionally, scientific workflows are formulated as directed-acyclic-graphs (DAGs) [55], in

which nodes represent computational tasks and edges represent data dependencies among

tasks, to organize complex computations and data analysis.

On the other hand, advanced artificial Intelligence (AI) techniques [28] has been thriv-

ing so fast since early this century, ML, especially DL, has become increasingly popular

and been utilized in broad scientific processes and projects across nearly all scientific do-

mains [20, 78, 100]. Thanks to the continued advance in new GPU micro-architectures,

DL models can now be trained on very large datasets in accelerated speed, and deliver

2

extraordinary prediction accuracy across broad application disciplines [103]. However,

current machine learning (ML) or DL models are constrained to be running within their

specified platforms(Tensorflow [2], PyTorch [74], Theano [89],etc), which places burden

on scientists to adapt their existing work on various of platforms with non-trivial learning

curve.

Thanks to the emerging of new HPC and memory technologies, many data-intensive sci-

entific workflows [55] have been developed and new requirements have been introduced,

such as convenient deployment on multi-clouds or HPC platforms, and superior data re-

producibility. To meet above needs, new techniques [9,104] such as Container have been

introduced to ensure better reproducibility, and various APIs have been adopted to enable

users to programmatically define the workflows and tasks, which enhances the flexibility

of customization. Such emerging techniques holds great potentiality to benefit ML/DL in

a SWFMS.

Some works [4, 66, 79] have been done to implement simple CPU-based ML applica-

tions on existing SWFMSs such as unsupervised k-mean and other clustering algorithms,

however these traditional AI techniques come with huge limitations due to their simplicity,

which holds scientists back from fully taking advantages of the legacies on the burst of

modern AI techniques (e.g. Neuron Networks, Capsule Networks, etc.) as well as emerg-

ing High Performance Computing(HPC) technologies (e.g. GPU, TPU, cloud computing,

etc.), to further accelerate their scientific discoveries.

In order to integrate ML/DL to the existing scientific management systems, some works

[85, 92, 93] have been done for the construction of unified frameworks/systems for de-

veloping AI applications. However, as these frameworks/systems may involve multiple

3

ML/DL libraries at the same time, which makes it even harder to trace any root cause of

low/intermediate-level API errors, bringing more uncertainties on performance especially

when outsourcing ML/DL execution to various third-party providers.

Overall, though the idea of incorporating GPU-enabled ML/DL in existing SWFMSs is

quite fascinating, identifying the research issues standing in the way and solving them are

the major research tasks of this dissertation that I will elaborate them in the next section.

1.2 Statement of the problems

Although there are many GPU-enabled DL libraries available, such as PyTorch [75],

Tensorflow [2] Keras [37], Caffe [41], Theano [8] and Mxnet [14], they are not readily

usable in a SWFMS environment. As a consequence, tremendous work such as archi-

tectural design, model training, and optimization has to be first carried out outside of a

SWFMS and then integrated into a workflow in an inefficient, ad-hoc manner [80], which

is neither trivial nor optimal, for the reasons that: 1) it requires expertise with one or

more DL libraries and the underlying SWFMS; 2) transferring data between DL models

and data-intensive scientific workflows [19] in SWFMS tend to be time-consuming and

less efficient; 3) the separate development of DL models and computation-intensive scien-

tific workflows [19] based on completely different platforms tend to be complicated and

error-prone.

One simple idea would be to simply adopt the existing DL APIs (e.g. PyTorch/Keras

Java APIs [36, 87]) in a SWFMS with the hope to quickly apply these production-ready

and user-friendly APIs on the development of the DL functionalities (as components) for

scientific workflows. However, as these DL APIs are not designed for scientific workflow

4

environments, simply outsourcing DL tasks to third-party APIs ineluctably bears limita-

tions, of which I shed more light below.

First, it is very hard to customize any real-time output from intermediate nodes/layers

(e.g. feature maps) of developed DL models based on external frameworks/libraries, and

pipeline them to other workflow tasks, or integrate them as a part of a larger workflow

and stream live data through such workflow in real-time, since the output format and

data types of those DL APIs are fixed/locked by third-party providers, which inevitably

introduce various type-I or type-II shimming problems [51] (i.e. data format and type

incompatibilities) while chaining ordinary tasks and DL tasks together in a workflow.

Second, it is hard to trace the root cause of any bugs, errors or performance issues in a

sophisticated scientific workflow with DL models involving intermediate level DL APIs, as

most of the existing DL libraries are not open-source in their intermediate level APIs. For

example, cuDNN [15] and cuBLAS [69] are NVIDIA’s intermediate level DL APIs (closed

source), which are built upon CUDA [82] (an open-source low-level API) and are pro-

foundly utilized by popular DL libraries/APIs such as PyTorch, TensorFlow and Keras. This

may result in a situation where errors are untraceable and resultant performance becomes

unpredictable to both SWFMS developers and workflow users.

Therefore, it is necessary to provide a SWFMS with infrastructure-level support for

GPU-enabled DL capability that is natively implemented and seamlessly integrated into

the SWFMS.

5

1.3 Organization of this dissertation

The remaining part of this dissertation is organized as follow: Chapter 2 reviews the

research on ML in scientific workflow, GPU-based DL and modern SWFMSs that are closely

related to this research; Chapter 3 presents an innovative approach for supporting DL in

SWFMS (DATAVIEW) on single GPU; Chapter 4 describes the extended support of this

approach on heterogeneous GPU cluster and the reuse of trained DL models in DATAVIEW;

Chapter 5 outlines the usability of DLaaW in DATAVIEW to SWFMS community from JAVA

API and web interface; Chapter 6 concludes the dissertation and list some of the potential

interesting research problems.

6

CHAPTER 2 RELATED WORK

Considerable research and industrial advancement have been done in the area of SWFMSs

and ML/DL. In this Chapter, I focus on reviewing the work that is most closely related to

the research in this dissertation: Section 2.1 recaps the goals, requirements and challenges

of SWFMSs and summarize the modern SWFMSs ; Section 2.2 presents the cutting-edge

GPU-based DL techniques and frameworks; and Section 2.3 reviews research of ML in

SWFMSs from multiple perspectives .

2.1 Modern SWFMSs

A SWFMS provides a platform for domain scientists to compose and execute scientific

workflows, which are pipelined series of computational and/or data processing tasks de-

signed to solve complex computation-intensive and/or data-intensive scientific problems.

Scientists can remotely collaborate on complex scientific projects based on scientific work-

flow platforms through GUI or command line (CMD) tools. Since this research is heavily

correlated with SWFMSs, which enables native GPU-enabled DL capabilities in one of mod-

ern SWFMSs, this section briefly recaps the goal, requirements and challenges of SWFMSs

and reviews on existing representative SWFMSs.

2.1.1 SWFMS: goals, requirements and challenges

One of essential functionality of SWFMS is for Workflow scheduling, which is the proce-

dure of mapping workflow tasks to compute resources (e.g. virtual machines (VMs)) which

are needed for tasks’ execution. The goal of scheduling is to get an efficient scheduling

plan (SP) that optimizes certain objectives, such as minimizing the makespan and/or the

monetary cost of a workflow’s execution. In general, workflow scheduling algorithms can

7

be classified into three classes: static, dynamic and hybrid, of which 1) static algorithms

generate schedules statically, i.e., before the workflow execution starts; 2) dynamic algo-

rithms flexibly intermingle the scheduling and execution steps; and 3) hybrid algorithms

typically construct a preliminary schedule first, then start its execution and dynamically

adapt/optimize (parts of) the SP during the execution based on newly available dynamics

of the actual execution of the workflow.

A SWFMS provides a platform for domain scientists to compose and execute scientific

workflows, which are pipelined series of computational and/or data processing tasks de-

signed to solve complex computation-intensive and/or data-intensive scientific problems.

Scientists can remotely collaborate on complex scientific projects based on scientific work-

flow platforms through GUI or command line (CMD) tools. This section briefly describes

the goal, requirements and challenges of SWFMSs.

Below, I will describe the goals of modern SWFMS from three perspectives:

1) Automate and distribute workflow executions: SWFMS assembles scientific data

processing tasks with data dependencies among them, and automates the scheduling and

execution of the tasks in order to accomplish the overall workflow under user-specified

Quality of Service requirements. Nowadays, scientific workflows are becoming more and

more data- and computation-intensive, running scientific workflows in a single worksta-

tion becomes less practical and may take significant amount of time, which urges SWFMSs

to exploit large amounts of distributed resources and increase the degree of parallelism at

either task level or workflow level or both. As cloud computing offers on-demand, elastic,

pay-as-you-go and multi-tenant resource models, more and more scientific discoveries are

embracing advantages offered by cloud computing, such as the virtually unlimited com-

8

puting resources and the fine-grained control on the trade-off between the computation

power and the cost, in order to be able to flexibly configure the execution of their scientific

workflows in an ideal balance between the execution cost and the completion time.

2) Trade-off between Service Level Agreement (SLA) and Quality of Service (QoS)

requirements: In cloud computing, cloud service providers typically furnish a SLA that

consists of full performance metrics for on-demand services and defines the quality of

services promised to users at different levels of cost [97]. On the other hand, users can

conveniently select and lease services at different quality levels with different costs suit-

able for their QoS requirements, which generally include 1) functional requirements such

as makespan, budget, or their combinations, and 2) nonfunctional requirements such as

energy consumption, security and reliability. A SWFMS must have the capability to fa-

cilitate workflows to realize optimal or near optimal QoS possible per the provider’s SLA,

based on the workflow’s workload characteristics (size of datasets and complexity of work-

flows) and at the cost level of workflow user’s choice. More specifically, a SWFMS need

to automatically determine appropriate (or best) hyper-parameters such as the types and

number of the VMs to be leased from the cloud provider, which is typically accomplished

via workflow scheduling such as the various scheduling algorithms, for the execution of

scientific workflows on behalf of the workflow users.

3) Real-time monitoring and failure handling: As scientific workflows can be very

computation-intensive and may take days or even weeks for execution, real-time monitor-

ing of workflow execution becomes more and more crucial for users to be instantly aware

of the status of a workflow’s execution, to check the intermediate products (stored in the

form of provenance data), and to steer the execution path whenever considered neces-

9

sary. Furthermore, to ensure the availability and reliability of SWFMS during workflow

execution, the capability to detect or even predict potential failures during the workflow

execution is becoming a necessity. Reactive failure handling include, 1) handling failure

caused by data, e.g., due to mismatching data types or the shimming problem [45, 51] in

general, which in most of case requires SWFMS to reveal enough information to users for

a manual fix, re-execute some tasks, and resume workflow execution, 2) handling failures

caused by the system, e.g., due to memory overflow or system crash, which usually requires

re-trying the failed tasks manually or automatically. On the other hand, proactive failure

handling tries to avoid potential failures by predicting failures and proactively replacing

the suspected tasks/sub-workflows and/or data artifacts, which, as a promising new fea-

ture of SWFMS, requires to integrate advanced statistical analysis and ML techniques into

SWFMSs.

Moreover, in the following, I will summarize the three specific requirements of SWFMSs:

1) User-friendly and customizable UI: A user-friendly user interface(UI) is critical

to improve the usability of a SWFMS. A user friendly UI is often required to support the

entire life-cycle of scientific workflows, including workflow design, workflow execution,

data presentation and provenance analysis, etc. A good SWFMS UI can greatly accelerate

the process of scientific discovery by facilitating scientists to design, construct and execute

their application workflows all at great ease, e.g. allowing scientists to conveniently design

workflows by dragging and dropping graphic workflow elements. A good UI in a SWFMS

should allow scientists to easily run or re-run the whole or some parts of a complex work-

flow, check and visualize intermediate data products when needed. There is currently an

increasing need for SWFMSs to provide highly customizable UIs so that the domain-specific

10

requirements or preference can be maximally satisfied via flexible UI customization, and

such customization shall not cause any unintended effect on the functional components of

the SWFMS. Cloud computing particularly calls for SWFMS functionalities to be provided

with resort to the mechanisms of web servers or websocket servers which provide the basis

of supporting UI/GUI and command line interactions between a SWFMS and the users.

2) Reproducibility and provenance support: Reproducibility is one of the fundamen-

tal requirements of scientific experiments, which requires scientific results produced by

scientific workflows to be reproducible. SWFMSs greatly facilitate reproducibility of sci-

entific results via their convenient means of collecting and managing provenance data. In

the context of a SWFMS, provenance data includes the metadata that captures the history

of data product derivation, data transactions among tasks/workflows, and workflow exe-

cution paths, etc. Provenance data are collected and stored during workflow execution.

In order to support provenance analysis and reproducibility of scientific results, SWFMS

must be able to query and present provenance data, and automatically rebuild the same

execution environment based on the stored provenance data when it is required to rerun

the workflow for reproducing previously produced results. In general, the provenance data

management module in a SWFMS needs be able to answer a series of questions regarding

provenance: what were the specifications of an implemented infrastructure? (e.g. oper-

ation system, hardware specifications, etc.) Which steps were taken to produce a specific

intermediate result? What input data had contributed to a specific result? Were there

any human interactions involved in producing a specific result? In clouds, various types

of storage platforms are available, such as relational SQL database, NoSQL database, and

file servers, which provide flexible and scalable storage support for provenance data; the

11

high availability and distributed nature of cloud computing can assure the availability and

reliability of stored provenance data.

3) Interoperability between multi-service providers: As more and more scientific

research projects are collaborated among multiple parties in nature and involving multiple

geographically distributed institutions [83], the availability of SWFMSs may vary by differ-

ent regions. Moreover, different parties may have varied focus on their scientific problems

and different preference with the SWFMSs. Complex scientific workflows tend to be de-

composable and distributed into subworkflows so that the subworkflows can be managed

by different involved parties using different SWFMSs. Therefore, a key architectural re-

quirement for modern SWFMSs is to promote and facilitate the interoperability between

different SWFMSs so that multiple parties can conveniently collaborate on some common

or related parts. The interoperability for SWFMSs lies in three levels: 1) task-level interop-

erability, which requires that various tasks and data products from different SWFMSs can

interoperate one with another; 2) workflow-level interoperability, which requires that a

scientific workflow in one SWFMS can be executed in or invoked by another SWFMS; and

3) subsystem-level interoperability, which requires that a subsystem in one SWFMS can be

called, reused or shared by different SWFMSs.

Last but not least, I will highlight three challenges of modern SWFMSs in the main-

stream of workflow execution environment:

1) Hardware performance fluctuation: Service computing utilizes gigantic shared

resource pools (backed by grid, cluster, huge datacenters, etc.) [12]. Workflow users thus

shall expect high dynamics and sometimes noticeable performance fluctuation, much like

one shall expect much stronger waves while in ocean than in a small pond. For example,

12

in the cloud, multiple VMs may share the same CPUs, main memory, network and disk I/O

of the same physical machine, the performance of the VMs may fluctuate due to varied

status of hardware utilization and network traffic caused by other users, especially when

facing seasonal or other periodical variations of demands. Studies [6] showed 4%-16%

deviation from the mean I/O performance due to network and I/O interference between

VMs. In addition, Hardware and software failure happens, provisioned instances may

crash, network re-partition may be on the fly due to a failed network device, which can all

lead to additional performance fluctuation and uncertainty in the execution of scheduled

workflows, especially long-running complex scientific workflows in the cloud.

The influence on scientific workflows caused by the performance fluctuation can be

much mitigated by: 1) dynamic scheduling algorithms, which is capable to dynamically

adjust scheduling strategy based on real-time execution status, such as WRPS [81] and

DPDS [60], and 2) performance prediction techniques, which can potentially improve the

decision making in dynamic scheduling in a proactive fashion — scheduling decisions are

made not only based on the current status of workflow execution, but also on predicted

performance variation/offset according to provenance data regarding past performance

variation. For the latter, there are already interesting techniques being proposed, for ex-

ample, F.Moradi et al. [67] proposed a performance prediction model in dynamic clouds

using Transfer Learning. The goal of their model is to predict the service quality at the

client during execution time based on available observations of the infrastructure without

heavily relying on extensive measurements and data collection for training their predic-

tion model, by means of transfer learning on deep neural networks. More specifically, it is

noted that the mapping between infrastructure metrics X and service-level metrics Y may

13

change in a cloud environment due to resource scaling, service migration, switching of

hardware platforms, or other structural dynamics. Also, this work adopted transfer learn-

ing that transfers (part of) the knowledge embedded in a neural network learnt from one

source environment to another neural network for solving the problems in another source

environment; the knowledge transfer is selective — retraining only partial layers of the

learnt performance model after some changes made with the load pattern, infrastructure

configuration, service configuration and performance metric. The transfer model config-

uration determines which weights of original model will be retained intact and which

weights will be retrained; if the output type of of the model in the target domain is dif-

ferent from the original, then only the output layer will be replaced by a new layer with

weights randomly initialized and retrained.

2) Data security and integrity: Although the advantages of service computing are

appealing, their data storage usually requires users to relinquish physical possession of

data, thus yields their data to potential security risks in regard to numerous aspects of

confidentiality, data quality, correctness, consistency, completeness, and loss of data, etc.

In order to secure sensitive data, G.S. Mahmood et al. in [59] proposed a novel ap-

proach to enhance confidentiality and integrity of data while uploading image data to

cloud. Steganography is a data hiding technique that makes a confidential image embed

into a cover image based on a shared key, thereby producing a stego image to achieve se-

curity. Steganography methods include two types: 1) Spatial domain, in which the original

image is modified to encode secret information, 2) transform domain, in which an image

is first changed from spatial domain to frequency domain, then image coefficients are al-

tered to hide secret data. The first type has higher payload but is weak to attacks, while the

14

second type type has low payload but is robust against statistical attacks. Steganography

methods have great potential for being used as a security means to secure or to add extra

layer of protection to confidential cloud data in the cloud.

On the other hand, in architecture level for example, S. Mofrad et al. proposed sec-

Dataview [64], which enhances confidentiality and integrity of code and data for work-

flows executed on public clouds by adopting Hardware-assisted trusted execution envi-

ronments: 1) Intel Software Guard extension (SGX) [61], 2) AMD secure encrypted vir-

tualization (SEV) [43]. SGX protects workflow execution and workflow data by means

of a shielding approach and SGX-LKL library OS, and AMD SEV protects sensitive worker

nodes during the workflow runtime. SGX enclave page cache (EPC) memory paging may

significantly increase execution time (>1000x overhead) of a workflow when tasks require

a large amount of secure memory (due to heavy memory paging between EPC and out-

side of EPC); to mitigate, SEV worker nodes are called for workloads that require larger

amount of secure memory but is less security-sensitive, leaving SGX worker nodes mainly

to high security-sensitive confidential tasks. Also, WCPAC protocol is proposed for securing

execution of workflow tasks in remote worker nodes. This protocol, including provision-

ing and attesting secure worker nodes, is used to establish secure communication among

master nodes and worker nodes for secure code provisioning for both the TaskExecutor

and workflow tasks on secure worker nodes. The code provisioning attestation runs on

the master node to verify the integrity of the CodeProvisioner module executed at a re-

mote worker node; upon integrity is verified, it sends the decryption key, workflow’s input

data, and SSL certificate to the CodeProvisioner module and then returns the control to the

workflowExecutor.

15

3) Real-time enormous dataset processing: With IoT and Edge computing [27, 52]

start to saturate every aspects of life, more and more large blocks of real-time data col-

lected from scientific experiment need to be processed in SWfMSs in real-time fashion, in

order to return immediate analysis results or feedback.

For example, in order to address the enormous real-time data processing challenge in

clouds, E. Lyons et al. proposed in [58] a novel network-centric platform that enables high-

performance adaptive data flows across distributed cloud providers and data repositories

for atmospheric scientists. In their work, a system called DyNamo is developed, to enable

high performance data-flows through layer2 global dynamic-circuit network across multi-

ple distributed cloud providers and data repositories. Compare with common layer3 net-

work that accomplishes segmented routing over an internet protocol (IP) network, layer2

is a broadcast Media Access Control(MAC) level network, and capable to forward all traffic

including ARP and DHCP broadcasts in a fast speed.

Another example is Li, F., & Song, F. proposed in [49] to couple scientific simulations

with in-situ(or in-memory) data visualizations. The in-situ data analysis analyze simula-

tion data while data still reside in memory instead of outputting to secondary storage, to

enable user to monitor and get real-time notifications of special patterns or anomalies from

ongoing extreme-scale turbulent data flows. They also designed a computational fluid dy-

namic (CFD) specific ML method, in which the data communication is realized through

Remote Direct Memory Access (RDMA), to connect different applications dynamically at

runtime with high-productivity in distributed/parallel computing, in order to automati-

cally detect anomaly flows, automate data analysis and expedite the process of online

simulation analysis.

16

Table 1: A summary of SWFMSs.

Systems Pegasus [23],DATAVIEW [44], Kepler [57], Taverna [71], Swift
[99], Galaxy [34], VisTrails [30], TimeStudio [70], KNIME [10],
Pipeline Pilot [94], ClowdFlows [47], TextFlows [76], VIEW [50],
U-Compare [42], SecDATAVIEW [64]

Table 2: Comparison on representative workflow systems.

Systems Domains Execution Envs SaaS UI API Language support Open Source
Pegasus Scientific

computing
local, cluster, grid,
clouds

No Cmd Yes Java, Python, Perl https:

//pegasus.isi.

edu/downloads/
DATAVIEW Big data ana-

lytics
local, clouds Yes Web Yes Java, Python https://github.

com/shiyonglu/

DATAVIEW
Kepler Big data ana-

lytics
local, clusters, web
services

No Desktop Yes Java, R https://

kepler-project.

org/
Taverna Bioinformatics local, web services No Desktop,

Cmd
Yes Scufl2 https://taverna.

incubator.

apache.org/
Swift Scientific

computing
local, cluster, grid,
clouds

No Cmd Yes Swift https://github.

com/swift-lang

More innovative works are expected for addressing the enormous data processing with

DL capabilities in native workflows as an integral part of future SWFMSs. I will present

five modern SWFMSs and their key features in following section.

2.1.2 Representative SWFMSs

A SWFMS provides a platform for domain scientists to compose and execute scientific

workflows, which are pipelined series of computational and/or data processing tasks de-

signed to solve complex computation-intensive scientific problems. Scientists can remotely

collaborate on complex scientific projects based on scientific workflow platforms through

GUI or command line (CMD) tools.

In this section, I will present five representative workflow management systems. They

were selected due to their respective outstanding features. For example, Pegasus con-

tributed to LIGO (Laser Interferometer Gravitational wave Observatory) [3] that suc-

https://pegasus.isi.edu/downloads/
https://pegasus.isi.edu/downloads/
https://pegasus.isi.edu/downloads/
https://github.com/shiyonglu/DATAVIEW
https://github.com/shiyonglu/DATAVIEW
https://github.com/shiyonglu/DATAVIEW
https://kepler-project.org/
https://kepler-project.org/
https://kepler-project.org/
https://taverna.incubator.apache.org/
https://taverna.incubator.apache.org/
https://taverna.incubator.apache.org/
https://github.com/swift-lang
https://github.com/swift-lang

17

cessfully helped detect the gravitational wave - a discovery that won the Noble prize;

DATAVIEW manifested the notion of Workflow-as-a-Service (a special kind of SaaS) that

allows users to utilize the system through the DATAVIEW website without the need to

download and install the system; Kepler and Taverna both provide highly intuitive client-

side UIs that ease workflow construction and execution, while Swift comes with a scripting

based language tool that allows users to use C-like syntax to enact rapid applications of

workflows involving big data. All these five selected systems are open-source and can be

freely downloaded from their respective project websites (URLs are provided in Table 2

for readers’ convenience). This work particularly addresses them in terms of their targeted

application domains, execution environments, and other features such as third-party API

support, programmatic language support, etc.

Pegasus [23], is the workflow management system encompasses a set of technologies

that facilitate scientific workflow application execution. Pegasus was designed to man-

age workflow execution on potentially distributed data and compute resources, in close

collaboration with domain scientists. Pegasus workflows are based on Directed Acyclic

Graphs (DAG), a model that has been commonly assumed by various SWFMSs. Pegasus

allows a node in a workflow DAG be a sub-DAG, which facilitates composition of very large

workflows in the scale of millions of task nodes. In Pegasus, tasks exchange data between

machines in the form of files, and workflow execution can be arranged to take place in

a local or remote cluster, or in a grid or cloud. User interaction with Pegasus is through

either command line commands or API interfaces. Pegasus provides programmatic API in

python, Java and Perl for workflow generation in the form of DAX (or DAG in XML). The

system also keeps variety of catalogs in order to support workflow optimization.

18

Pegasus is open-source. It has contributed to the LIGO software infrastructure and

executes the main analysis pipelines of LIGO to detect the gravitational wave. Pegasus uses

HTCondor as its workflow engine and scheduler, and can be setup on distributed or cloud

environments. In Pegasus, graph transformations and optimizations are performed during

mapping when a workflow is mapped onto a distributed environment before its execution.

Optimizations is also performed during run-time by interleaving mapping and just-in-time

planning. In order to improve reliability of workflow execution, during run-time, Pegasus

performs actions such as job retry and failed workflow recovery .

DATAVIEW [44], is a generic and comprehensive SWFMS. The applications of DATAVIEW

range from ML, medical image analysis, bioinformatics, to automotive data analysis, etc.

DATAVIEW is also based on DAG and adopts a layered architecture design that includes

a presentation layer, a workflow management layer, a task management layer, and an in-

frastructure layer. DATAVIEW features a user-friendly Web portal for workflow creation

and execution, and workflow execution can be flexibly arranged to run locally or on a

cloud platform such as AWS. DATAVIEW adopts a master-slave deployment architecture

and supports fast provisioning of virtual machines through VM images created and saved

on AWS. The DATAVIEW VM images include the DATAVIEW kernel that schedules and ex-

ecutes workflows. With a developer-friendly Java API, DATAVIEW supports programmatic

workflow development through Java and Python. DATAVIEW seamlessly integrates Drop-

box as optional storage capacity for feeding workflow input and storing workflow output

products.

DATAVIEW is open-source. In addition to local installation, it can be used as a SaaS

(Software-as-a-Service) from www.dataview.org without download and installation of the

www.dataview.org

19

system. In DATAVIEW, web-based GUI allows users to compose and edit workflows in

an appealing visual style, e.g., by dragging and dropping task components and data ele-

ments onto the design panel and connecting them through edges as executable workflows.

Its workflow engine manages the workflow schedulers, workflow specification mappers,

dataflow storage, provenance data, compute resources, run-time monitor and analysis

tools, etc. Workflow specifications are written in JSON-based SWL (Scientific Workflow

Language). Its elastic Cloud Resource Management module dynamically provisions and

de-provisions virtual machines throughout workflow execution, based on user specified

preferences. DATAVIEW features an open extensible architecture for its workflow engine,

which consists of a set of workflow planners and a set of workflow executors. A devel-

oper can easily choose any existing or to develop their own custom workflow planners and

executors.

Kepler [57], is a community-driven workflow system that supports scientific workflow

applications, and help scientists, analysts and programmers to create and analyze scien-

tific data such as sensor data, medical images and simulations, etc. Kepler provides a

Java-based component assembly framework with a graphical user interface to support the

assembly of concurrent task components. The key underlying principle of Kepler is to

utilize well-defined models of computation to govern the interactions between task com-

ponents in a workflow during execution. Using Kepler’s graphical desktop GUI, scientists

can create executable scientific workflows by simply dragging and dropping task compo-

nents. Kepler supports workflow execution on a local machine, a cluster or through web

services. Kepler is capable to invoke remote Restful web APIs and broadcasts the response

through its output port. Java and R are supported in Kepler for programmatic workflow

20

application development.

Kepler is open-source. It can perform type checking at both design-time (static) and

run-time (dynamic) on workflows and data. Kepler adopted the “one thread for each

task” strategy, in which tasks are run as local Java threads by default, while distributed

execution threads are provided via Grids and web services. The Web service support in

Kepler allows users to take a WSDL (Web Service Description Language) description and

the name of a web service to customize a scientific workflow. The Grid support in Kepler

consists of certificate-based authentication, job submission, third-party data transfer, and

SRB (Storage Resource Broker), etc. Kepler also supports execution of MapReduce tasks

on the Hadoop Master-slave architecture, and the tasks can be executed in batch mode

using Kepler’s background execution.

Taverna [71], is a tool suite written in Java, and can help scientists in diverse domains,

including biology, chemistry, medicine, etc., to create and execute scientific workflows.

Taverna supports workflow execution locally or remotely via WSDL-style web services or

RESTful APIs. Taverna system includes a workbench application that provides a GUI inter-

face for composition of workflows, and a Taverna Server that executes remote workflows.

Besides desktop GUI support, Taverna also provides a command-line tool for executing

workflows from a terminal. Workflows in Taverna are written in an XML-based language

called Scufl2 (Simple conceptual unified flow language). Taverna supports user-interaction

with a running workflow within a web browser and has built-in support for myExperiment

so that users can browse the myExperiment website within the Taverna Workbench. Users

can access the full myExperiment search options and publish their workflows on myExper-

iment for others to use.

21

Taverna is open-source. In Taverna, a workflow consists of three main types of entities:

processors, data links, and coordination constraints. processors take input data and produce

a set of output data; data links mediate the data flow between a data source and a data

sink; coordination constraints bind two processors and control their execution to ensure

their executions are in a certain order. Workflows can be executed in the Scufl workbench

using its enactor panel, which allows users to specify their input data for a workflow and

launch a local instance of the Freefluo enactment engine. The Freefluo engine is not tied to

any workflow language nor to any execution architecture, thus in effect is decoupled from

both the textual form of a workflow specification and the details of a service invocation.

Swift [99], which represents an interesting and distinct category of workflow manage-

ment and is reviewed below in comparison with other systems presented above. By its

nature, Swift is both a general-purpose programming language and a scripting language

for distributed parallel scripting. It is used for composing integrated parallel application-

s/workflows that can be executed on multicore processors, clusters, grids, or clouds. In

Swift, the scripts express the execution of constituent programs that consume and produce

file-resident datasets. Swift is a compiled language that uses C-like syntax and supports

local clusters, grids, HPCs, and clouds. It explicitly declares files and other command-line

arguments as the inputs to each program invocation. A focal point in Swift’s design is

that it provides a simple set of language constructs that regularize and abstract the no-

tions of processes and external data for distributed parallel execution of large application

programs.

Swift is open-source. Workflow execution is implicitly parallel and location-independent

in Swift. As the number of processing units available on the shared resources varies with

22

time, Swift can exploit the maximal concurrency permitted by data dependencies within

the script and the resources available. Swift can use whatever resources available or eco-

nomical at that moment when the user needs to run a swift application, without the need to

continuously reprogram the execution scripts. The implicit parallelism achieved through

Swift functions is no necessarily executed in the source-code order but rather based on

their input data’s availability. Applications should not assume that they will be executed

on a particular host, or in any particular order with respect to other application invocations

in a script, or whether their working directories will be cleaned up after execution.

Though above modern SWFMSs provides strong support (from different aspects) on

composing and executing scientific workflow to solve complex computation-intensive and/or

data-intensive scientific problems, none of them genuinely support GPU-enabled DL func-

tionalities in a native workflow from infrastructure level. Such pressing need urges us to

develop a SWFMS that can satisfactorily address two major needs of SWFMS community

at the same time: 1) fully supports GPU-enabled DL capabilities/tasks which can be inte-

grated with ordinary tasks in a comprehensive workflow, in which some tasks are executed

by GPU and other tasks are executed by CPU; 2) fully aligns with the goals, requirements

of modern SWFMSs and can adequately address SWFMS challenge in the latest trend of

workflow execution infrastructure - clouds. Besides, workflow scheduling algorithms pre-

serve the great potentiality of being leveraged by DL workflows in a SWFMS, for further

optimizing the distributed DL workflow executions on variety types of GPU infrastructure

(e.g. GPU cluster, GPU cloud).

23

2.2 ML in SWFMSs

As the technology of ML, especially DL, is fast advancing, the need for ML/DL across

all application areas increases even faster [13]. ML/DL has greatly contributed scientific

discoveries [80] in numerous disciplines. Along the same line, the need and desire for

integrating ML/DL capabilities into SWFMSs raise higher than ever. In this section, I will

review major recent related works and make comparison with ours as relevant.

CPU-based ML has been exploited by workflow researchers on improving workflow

scheduling algorithms. For example, T.Miu & P. Missier [63] used the C4.5 Decision Tree

algorithm on historical data inputs and makespans to train the model for estimating the

makespans of scientific workflows on new input data. A. Nascimento et al. [68] promoted

application of Reinforcement Learning (RL) and Q-Learning [95] on workflow scheduling,

aiming at discovering/learning the best scheduling plan based on the historical executions

in absence of a mathematical model. Z.Tong et al. [90] proposed a task scheduling algo-

rithm called QL-HEFT which combines Q-Learning with the HEFT algorithm [91] to reduce

the makespan of workflow execution.

Our current work wraps NNWorkflow execution (scheduling) plans in respective NNTrain-

ers/NNExecutors modules to support our DLaaW approach. Though this work have yet

to reach the stage of optimizing NNWorkflow scheduling, this could be one of research

directions in our future work – i.e., to leverage ML/DL and exploit existing workflow

scheduling/optimization algorithms [54] (designed for ordinary workflows) on optimiz-

ing NNWorkflows scheduling in the SWFMS.

On the other hand, much work has been done to incorporate CPU-based ML applica-

24

tions in SWFMSs and workflows. A comprehensive survey [24] on CPU-based ML appli-

cations in SWFMSs has been made by E Deelman et al. The survey covers most of the

representative works published before 2017. Below, I will comment on more recent repre-

sentative works published after 2018. I Ahmed et al. [4] implemented a semi-supervised

clustering-based diagnosis recommendation model in DATAVIEW [44] SWFMS for improv-

ing the diagnosing accuracy via self-training and co-training of the model. ML Mondelli et

al. [66] proposed the BioWorkbench to manage and analyze bioinformatics experiments

in Swift [99] SWFMS by leveraging CPU-based ML using the free software Weka [39]. N

Radosevic et al. [79] utilized CPU-based Decision Tree in solar radiation modeling in the

KNIME [94] SWFMS to increase reproducibility and warrantability of environmental mod-

els. On the other hand, J Herbst and D karagiannis [40] leveraged ML techniques that

combines two ML algorithms to induce the structure of sequential workflows and transi-

tion conditions, and aim at enabling an inductive approach to workflow acquisition and

adaption.

Compare with our approach, while all these works dwell in the realm of leveraging

CPU-based implementations, our effort embraces GPU-based ML approach which bears a

great advantage – the superior parallelization backed by thousands of GPU cores.

Moreover, as a powerful platform for data- and computation-intensive scientific appli-

cations, SWFMSs can benefit the learning and tuning of AI/ML models in multiple ways.

For example, Li and Song [49] proposed to couple scientific simulations with unsupervised

ML and in-situ (or in-memory) data visualizations, which enables user to monitor and get

real-time notifications of special patterns or anomalies from ongoing extreme-scale turbu-

lent flow simulations. On the other hand, J Ozik et al. [73] presented a extreme-scale ML

25

model exploration with Swift/T [101], via parallel scripting and running workflows on

variety of computing resources.

As a foreseable future, SWFMS can be leveraged on optimizing/expediting AI/ML

model training in multiple directions. For example, SWFMSs can be used to automate the

long and complex training process on any user-specified triggers or conditions. Moreover,

the provenance data [84] of a complex training process collected by underlying SWFMS

platform can be analyzed and utilized to optimize the ML models, i.e. the knowledge can

be mined from the provenance data, such as which inputs/hyperperameters have higher

leverage on certain type of output change, may suggest more/less weight updates for cer-

tain neurons, resulting in a more enhanced "supervised" learning than training merely

based on ground truth values/labels. As provenance data is collected and stored in a

SWFMS, the provenance data may potentially enable scientists to tap into the "black boxes"

of deep neuron networks, acquire better insights, or even be able to "debug" a particular

neuron network in a similar way as we debug a regular programming language project.

2.3 GPU-based DL

General-purpose computing on graphics processing units (GPGPU) is the use of graph-

ics processing units (GPU), which typically handles computation only for computer graph-

ics, in contrast, the computations in traditional applications are performed in central pro-

cessing unit (CPU) [16, 31, 32]. Due to the privilege of utilizing large numbers of GPU

cores at the same, higher level of parallelization can be easily achieved by the ready par-

allel nature of graphics processing units.

Basically, GPGPU pipeline is a kind of parallel processing between one or more GPUs

26

and CPUs, which analyzes data in the same way as for image or other graphic form. For

the sake of GPUs operate at lower frequencies with many times the number of cores, GPUs

can process far more pictures and graphical data per second than a traditional CPU. Thus,

processing data as a graphical form in GPUs can create a large speedup.

As GPUs have specialized processors with dedicated memory that conventionally per-

form floating point operations required for rendering graphics, they are optimized for

training DL models (especially dealing with large scale/size of datasets) as they can pro-

cess thousands of computations simultaneously.

Here I will introduce two main GPGPU languages as follow: OpenCL [88] is one of

dominant open-source GPGPU languages, which provides a cross-platform GPGPU plat-

form that additionally supports data parallel compute on CPUs. OpenCL is actively sup-

ported on Intel, AMD, Nvidia, and ARM platforms. Another dominant proprietary language

is Nvidia CUDA [82]. Nvidia launched CUDA in 2006, which provides a software devel-

opment kit (SDK) and application programming interface (API) that allows using CUDA

C/C++ to code and execute on Nvidia GPUs. Programming standards for parallel com-

puting include OpenCL, CUDA, OpenACC [98].

Although above libraries are fully support DL functionalities, these DL capabilities are

constrained to be running within their specified platform, and they are not immediately

read for use in a SWFMS. Due to above facts, such DL usuability in ad-hoc manner places

burden on scientists to adapt their existing work on various of platforms with non-trivial

learning curve.

Next, I will introduce several popular DL libraries/frameworks as follow:

TensorFlow [2] is an open source library for numerical computation using data flow

27

graphs, in which nodes represent mathematical operations, while the edges represent the

multidimensional data arrays (tensors) that flow between them. It enables computation

on one or more CPUs or GPUs in a desktop, server, or mobile device without rewriting

code. Besides, TensorFlow offers TensorBoard visualizing TensorFlow results.

PyTorch [75], which is an open source ML library based on the Torch library that used

for applications such as computer vision and natural language processing. It was primarily

developed by Facebook’s AI Research lab (FAIR), and provide two high-level features: 1)

Tensor computation (like numpy) with strong GPU acceleration; 2) Deep neural networks

built on a type-based automatic differentiation system.

MATLAB [46], which provides DL option for engineers, scientists and domain experts.

With tools and functions for neural networks [1], computer vision, and automated driving.

MATLAB also enables users to generate high-performance CUDA code for DL and vision

applications automatically from MATLAB code.

Though above frameworks provide programmatic interface for higher languages, they

mainly narrowed down to Python or Matlab locales (C, Fortran), which does not align

with most of Java based SWFMSs [54]. Moreover, they are not readily available to tradi-

tional SWFMS users. As a results, scientific processes associate with DL are developed and

executed under an external environment in an ad-hoc manner.

On the other hand, interesting works [11, 38, 102] have been done to exscale dis-

tributed DL based on existing DL libraries/APIs (as mentioned in above subsection). One

particularly interesting project related to workflows is the CANDLE [102] project carried

out at Argonne National laboratory. This project aims to develop exascaled DL networks

(trained on massive datasets) for accelerating cancer research. CANDLE is built upon

28

Swift/T [101] which is a well-known SWFMS centered on the Swift language, involving

various HPC schedulers to leverage DOE supercomputing resources for exascaling comput-

ing tasks. Under the hood, CANDLE distributes time-consuming DL tasks to HPC nodes via

Massage Passing Interface (MPI) and leverages Keras (API) to carry out the actual DL ex-

ecutions. CANDLE particularly aims at hyperparameter optimization to identify the most

effective DL model implementations and scalable parallel learning where very large data

are required. By directly utilizing these Keras API and libraries, developers can immedi-

ately gain user-friendly APIs and deployment agility.

However, as the workflow users inevitably need to face the inherited limitations/issues

from third-party intermediate level DL APIs in SWFMSs (as pointed out in Chapter 1). To

this end, introducing a genuinely GPU-enable support from infrastructure level becomes a

great demand for SWFMS community.

Also, there are works [85, 86, 93] dedicated to the construction of unified framework-

s/systems for developing AI applications. For example, Bazaar [85], is a such a ML frame-

work for developing ML models and automated ML applications; it introduces its own

ML primitives to uniformly leverage different ML/DL libraries (e.g. scikit-learn, Keras,

OpenCV) via a unified API and specification for data processing, through which it allows

data scientists to efficiently construct and automate a variety of ML applications. How-

ever, as its applications may involve multiple ML libraries at the same time, it could be

even harder to trace any root cause of low/intermediate-level API errors, which may bring

more uncertainties on any performance issue while outsourcing ML/DL execution to var-

ious third-party providers. On the other hand, Agora [93], which is a data management

system, aims to provide a unified asset ecosystem that goes beyond marketplace and cloud

29

services and provides infrastructure-level support for ML/DL applications. Considering the

limitations of surrendering infrastructure-level control to third-party providers, Agora’s

architectural design [92] includes a unified data management system with infrastructure-

level support for AI applications and optimization behind its descriptive syntax. Although

Agora is still under construction, the effort is encouraging.

30

CHAPTER 3 DEEP-LEARNING-AS-A-WORKFLOW (DLAAW) ON SINGLE
GPU IN DATAVIEW

Scientific workflow has become a popular cyberinfrastructure paradigm to accelerate

scientific discoveries by enabling scientists to formalize and structure complex scientific

processes. With the recent success of DL models in many scientific applications, there

is a rising need for infrastructure-level support for DL technologies in scientific work-

flow cyberinfrastructures. However, current scientific workflow cyberinfrastructures and

GPU-enabled DL frameworks are developed separately, neither alone can be a satisfac-

tory choice. This work proposes the Deep-Learning-as-a-Workflow approach in DATAVIEW,

which for the first time incorporates native infrastructure level support for GPU-enabled

DL in a SWFMS and enables the fast training and execution of neural networks as work-

flows (NNWorkflows) leveraging various types of GPU resource configurations. The ex-

periments demonstrate the salient usability feature of DATAVIEW in providing seamless

infrastructure-level support to both scientific and DL workflows in one system, while deliv-

ering competitive (better in most cases) learning efficiency compared to the conventional

implementations based on Keras.

3.1 Introduction

Scientific workflow modeling and execution has become a common practice for scien-

tists to accelerate scientific discoveries in numerous research fields. The Montage work-

flow, for example, is used by thousands of astronomers for constructing image mosaics of

the sky [26]. In the CyberShake project, more than 230 scientific workflows were used by

seismologists to generate seismic hazards maps in one year alone [60]. In Bioinformatics,

the myExperiment website currently contains 3935 public scientific workflows shared by

31

11161 members from 429 groups [33]. The Pegasus workflow system [22] aided the LIGO

(Laser Interferometer Gravitational wave Observatory) to successfully detect gravitational

wave – a discovery that won the Noble prize!

Meanwhile, in the past few years, ML, especially DL, has become increasingly popular

and been utilized in broad scientific processes and projects across nearly all disciplines.

Although there are many ML/DL libraries available, such as Keras/TensorFlow [37] and

PyTorch [75], they are not immediately ready (not designed) for scientific workflow en-

vironments. As a consequence, many ML/DL functionalities, such as architectural design,

hyperparameter tuning, and optimizations have to be conducted outside of a scientific

workflow system and then integrated into a workflow in an ad-hoc manner [5], which is

neither trivial nor optimal as it requires expertise with the ML/DL libraries and the under-

lying, sophisticated scientific workflow system. Besides, separate handling of DL for data-

and/or computation-intensive projects [19] from a SWFMS tends to be time consuming

and inefficient in data transfers, which makes the integrated, direct DL support by SWFMS

a necessity. Some recent projects like CANDLE [102] leverage the HPC/GPU infrastructure

facilitated by workflow platforms to accelerate the model design and training of exascale

neural networks, however they simply utilize third-party ML/DL libraries (e.g. Keras in

CANDLE) in a loosely coupled way, but not through a deeply integrated (native) approach.

Furthermore, such obtained neural networks are very hard to be pipelined into a larger,

enclosing scientific workflow. This section address the above limitations and makes the

following contributions:

• We propose and implement a novel DLaaW (Deep-Learning-as-a-Workflow) approach

in DATAVIEW, more specifically, by extending its workflow and task classes to two

32

new subclasses: NNWorkflow and NNTask. This approach is the first (to our best

knowledge) that attempts to implement a DL neural network as a native workflow in

a workflow management system.

• We introduce an NNWorkflow Engine that wraps multi-type of NNTrainers, which

are responsible for executing NNWorkflows according to specific execution plans

(e.g. regular train and test, K-fold cross validation) using various types of under-

lying GPU resources.

• We implement a generic GPU Resource Management module, to leverage various

GPU resource configurations. Currently this work provides three options: the lo-

cal NVIDIA GPU of a host PC, a single NVIDIA Xavier SoM (System-on-Module), and

a single NVIDIA Nano SoM, for executing DL workflows in DATAVIEW.

3.2 Challenges of integrating GPU-enabled DL in SWFMSs

Seamless integration of DL capability into SWFMSs brings numerous benefits: 1) the

coherent usability of SWFMSs gets extended to DL applications, e.g., the convenient pro-

grammatic and graphical design interfaces enjoyed by the scientific workflow community

can be made readily available to the design, training, and execution of NNWorkflows;

2) neural network can leverage the same support as offered to ordinary scientific work-

flows in a typical SWFMS, i.e., supporting neural networks to be constructed, executed

and reused in the same manner as ordinary workflows; 3) the rich optimization strategies

and scheduling algorithms [54] designed for workflows can be utilized to boost the neural

network execution performance. To achieve the above benefits, several major challenges

need to be addressed.

33

3.2.1 NNWorkflows construction Challenge

To construct a neural network as a native workflow in a SWFMS, firstly we need cor-

responding, well-defined neural network tasks (NNTasks). A scientific workflow is con-

structed by pipelining various workflow tasks through their input/output ports and exe-

cuted on available hardware resources by a workflow executor in a SWFMS. Traditionally,

scientific workflows are formulated as directed acyclic graphs (DAGs) [55], in which data

always flow from entry nodes to exit nodes and each task will be visited (and executed)

exactly once. However, a neural network is typically trained through a certain number of

epochs, which means each task is revisited multiple times and the weights trained from

prior epochs must be retained and updated by subsequent epochs throughout the whole

training process. The construction challenge affects how an NNWorkflow is going to be

structured and executed. Generally, there are at least two granularity levels for structuring

a neural network as a workflow: 1) A-Layer-as-a-Task, and 2) A-Neuron-as-a-Task. The de-

cision can greatly affect the complexity of NNWorkflow construction and implementation.

3.2.2 CPU/GPU communication Challenge

GPUs were originally designed to accelerate graphics rendering, but since the early

2010’s, GPUs has been increasingly used to parallelly accelerate computation involving

massive amounts of data. As the representation of data in neural networks are tensors and

the computation on tensors basically consists of massive repetitive operations on tensor el-

ements, thus modern GPUs are optimized for training DL neural networks to leverage their

superior capability in simultaneously running thousands of cores. However, conducting

General-Purpose GPU (GPGPU) computation is still rather abstruse due to the substantial

34

difference between CPU and GPU computing in hardware architecture, computing mecha-

nisms, and programming languages [72]. Efficient communication between CPU and GPU

becomes a big challenge, which involves 1) bridging a SWFMS with GPU computing since

modern SWFMSs are all built upon the CPU infrastructure (i.e. CPU based hardware and

operating systems) [54], 2) smoothing the collaboration between CPU and GPU since GPU

computing is initiated and coordinated by and finally reduced to CPU.

3.2.3 Challenge of neural network implementation in GPU

Currently, there exist several popular computing platforms and models for GPGPU com-

puting: 1) NVIDIA’s CUDA, 2) OpenCL, or 3) OpenACC. They are all focused on providing

a unified language and platform to bridge&bind CPU and GPU together for GPGPU comput-

ing. Although such parallel computing platforms/models provide higher-level languages

than the native hardware languages of CPU&GPU, such programming languages are still

considered as low-level APIs for GPU computing. Consequently, the construction and exe-

cution of neural networks on any one of above GPU computing platforms remains a great

challenge, which includes implementing various neural network layers, constructing the

architecture of a neural network, conducting forward&backward propagations across lay-

ers, etc. These are all non-trivial issues that need to be carefully addressed in a SWFMS in

order to make DL as a readily available functionality for scientific workflows.

3.2.4 CPU and GPU I/O overhead Challenge

In GPU-enabled implementation of NNWorkflows, the input&output ports of NNWork-

flow tasks reside on the CPU side, and the input&output of each task (in either neuron or

layer granularity) are pipelined into/from the GPU, which inevitably aggregate excessive

I/O overhead that is multiplied by the massive number of neurons/layers of a large neural

35

network. The accumulated I/O cost between CPU and GPU can be enormous and over-

whelming, which remains as a big stumbling block preventing traditional SWFMSs from

leveraging the computing power of GPUs at the infrastructure level. Designing an efficient

data transportation mechanism restraining the I/O communication cost to its minimum

is another major challenge for implementing GPU-enabled support for NNWorkflows in

traditional SWFMSs.

3.2.5 NNWorkflow dynamic mapping Challenge

In order to execute an NNWorkflow as a native workflow on GPU, a mapping mech-

anism is needed to map the NNWorkflow from CPU-recognizable specification to GPU-

recognizable specification. Since a neural network can be composed of arbitrary types, ar-

bitrary numbers and in arbitrary order of neural network neurons and layers, such a map-

ping mechanism needs to be generic and dynamic so that any native NNWorkflow can be

mapped into a corresponding GPU-recognizable specification. Given a native NNWorkflow

specification as input, the mapping mechanism must be able to uniformly and consistently

output a legitimate GPU execution specification for the NNWorkflow to be executed on cor-

responding GPU resources. Designing such a generic and dynamic CPU-to-GPU mapping

mechanism is yet another major challenge for incorporating GPU enabled DL in traditional

SWFMSs.

3.2.6 Challenge of uniformly supporting diverse GPU types

Recognizing the fact that different GPU resources require different computing platforms

and execution mechanisms, in order to uniformly execute any NNWorkflow across various

types of GPU resources in a SWFMS, all backend GPU APIs should be developed under the

same standard protocol. Regardless of the variation of interfaces (e.g. message passing,

36

procedural calls) that bridge CPU with a particular GPU, on receiving the same NNWork-

flow specification from an upstream component in SWFMS, all GPU resources should uni-

formly construct the same neural network and conduct the same execution. Implementing

a standardized protocol for various heterogeneous in-house GPU Services is one additional

challenge in our way.

3.3 Our Approach and Implementation

In order to implement DL as a native functionality in SWFMSs and to address the

challenges outlined in Section 2, based on our prior work on DATAVIEW – an established

SWFMS – this work extends DATAVIEW’s prior architecture with novel dedicated compo-

nents. Based on this extended and new architectural design, it particularly emphasizes the

following characteristics of inherent implementation of NNWorkflows in DATAVIEW: 1)

make the design, execution and reuse of any native NNWorkflow as easy and in the same

manner as any ordinary workflow in DATAVIEW; 2) retain the convenience of the current

user interfaces (both programmatic and graphical) of DATAVIEW and extend them to fa-

cilitate efficient incorporation of NNWorkflows into more complex scientific workflows in

DATAVIEW; 3) provide a generic and extensible GPU Resource Management mechanism

that allows users to conveniently choose suitable GPU infrastructures (e.g. local GPU, GPU

SoMs, GPU cluster, cloud GPU) for their NNWorkflows.

Figure 1 shows the new architecture of DATAVIEW which provides inherent support

for DL through the DLaaW approach, which we believe is extendable to other SWFMSs.

The original architecture of DATAVIEW consists of the following main components: 1) the

Workflow Design and Configuration component, which provides intuitive programmatic and

37

Workflow
Engine

Workflow Design
&Configuration

NNWorkflow
Engine

Presentation&
Visualization

Workflow
Monitoring

Cloud Resource
Management

Data Product
Management

Provenance
Mangement

Task
Management

Cloud Services

Presentation Layer

Workflow Management layer

Task Management Layer

Infrastructure Layer

AWS
Services

Other Cloud
Services

GPU Resource
Management

GPU Services

Local GPU on
PC GPU Clusters GPU CloudsGPU SoMs

Figure 1: DATAVIEW’s new architecture with inherent support for Deep-Learning-as-a-
Workflow.

graphical UIs for users to design, execute and reuse workflows; 2) the Workflow Engine

component, which serves as a central component that controls the execution of workflows;

3) the Workflow Monitoring component, which keeps track of the status of workflow ex-

ecution (e.g. “initialized”, “executing”, “finished”, and “error”); 4) the Data Product Man-

agement component, which stores all data products that are used/produced by workflows;

5) the Provenance Management component, which is responsible for storing, browsing, and

querying workflow provenance; 6) the Task Management component, which enables the

execution of heterogeneous atomic tasks such as calling web services and running scripts;

7) the Cloud Resource management component, which plays a key role in provisioning,

cataloging, configuring, and terminating the computation resources in clouds.

Built upon the original architecture of DATAVIEW, the new architectural design adds the

38

following new DL-specific components: 1) the NNWorkflowEngine component, which, if

the input workflow is an NNWorkflow, takes over the control, parses the NNWorkflow and

outputs a pack of GPU recognizable specification to the downstream component; 2) the

GPU Resource Management Component, which, upon receiving the NNWorkflow specifi-

cation, acts as a unified interface to route the specification to the target GPU services; 3)

The GPU Services component, which provisions the local GPU of a host PC or GPU SoM

resources for actually carrying out the execution of an NNWorkflow.

Listing 1: Construct a sample NNWorkflow with 4 neural network layers:

public void design () {

NNTask [] l a y e r s = new NNTask [4] ;

l a y e r s [0] = new L inear (5 ,3) ;

l a y e r s [1] = new ReLU() ;

l a y e r s [2] = new L inear (3 ,1) ;

l a y e r s [3] = new Sigmoid () ;

Sequent ia l (l a y e r s) ;

}

Initially, an NNWorkflow is designed and constructed through programmatic (Java)

or graphical UI as a native workflow in DATAVIEW. More specifically, an NNWorkflow is

constructed as an NNTask array that specifies the type and order of each neural network

layer in the NNWorkflow. Then, the NNTask array is fed into the Sequential() function.

Listing 1 shows a sample of Java code of the design() method in the SampleNNWorkflow

class (a subclass of NNWorkflow) to construct a simple NNWorkflow that contains 4 neural

39

network layers: layers[0] is a Linear layer with 5 input neurons and 3 output neurons;

layers[1] is a ReLU layer; layers[2] is a Linear layer with 3 input neurons and 1 output

neurons; layers[3] is a Sigmoid layer. This sample NNWorkflow shows that the established

usability of DATAVIEW [44] is preserved and extended to NNWorkflows, i.e., NNWorkflows

are constructed and managed in the same way as traditional workflows.

The constructed NNWorkflow is then fed into an NNWorkflow JSON Mapper mod-

ule (Written in Java) that maps all constructs and primitives of the NNWorkflow to their

neural network counterparts that are recognizable by the backend GPU services. Upon

receiving the NNWorkflow specification from the NNWorkflow JSON Mapper module, a

specific NNTrainer (written in Java) which is selected by the user (programmatically or

graphically), encodes the target GPU resource infrastructure information to the NNWork-

flow specification. The aggregated NNWorkflow specification is then fed as input to the

GPU Resource Management component by calling the train() method of the NNTrainer.

Listing 2 is the sample code showing a sample NNWorkflow, w, being fed into two NNTrain-

ers which respectively trigger their train() methods. The NNTrainer_LocalGPU and NNTrainer-

crossValOnSingleNano are the two NNTrainers that respectively wrap up two different exe-

cution plans and target at two GPU services. For an input NNWorkflow, w, NNTrainer_LocalGPU

generates a regular train&test plan for execution on the local GPU of a host PC; on the other

hand, NNTrainer_crossValOnSingleNano generates a k-fold cross validation plan for execu-

tion on a single NVIDIA Nano SoM. The input dataset is split into 6 batches and the model

will be trained through 1000 epochs (see Listing 2). Our implementation satisfactorily

addresses Challenge B.1 and enables GPU computing for DL in the SWFMS.

40

Listing 2: Select and run NNTrainers for the NNWorkflow:

NNTrainer_LocalGPU t r a i n e r 1 = new NNTrainer_LocalGPU (w, 6 , 1000) ;

NNTrainer_crossValOnSingleNano t r a i n e r 2 = new

NNTrainer_crossValOnSingleNano (w, 6 , 1000) ;

S t r i ng r e s u l t 1 = t r a i n e r 1 . t r a i n () ;

S t r i ng r e s u l t 2 = t r a i n e r 2 . t r a i n () ;

Next, the GPUResourceManagement component, which acts as a universal interface/-

gateway at the back door on Java side, to route those unified and aggregated specification

to the CUDA side. The routing is implemented via necessary interface calls (e.g. JNI, MPI)

on GPU API services which are compiled together with our in-house core CUDA imple-

mentation to be executed on a targeted GPU resource. All the backend GPU services are

designed to accept the uniform execution specification (conforming to an internal standard

protocol).

Lastly, the neural network execution plan is initiated on the target GPU resource, and

the corresponding neural network object (comprising NNLayer subobjects) is automatically

constructed in the GPU’s global memory. Our in-house developed CUDA kernels (written in

CUDA C++), which are functions executed by GPU, are then triggered in turn (matching

the procedural arrangement and order of layers) to finally carry out preprocessing, training

and testing of the neural network according to its execution plan.

In our implementation, NNWorkflow specification (in JSON) are routed to a local GPU

of a host PC or a GPU SoM via dynamic .dll or static .a API services. A CUDA C++ parser

41

is called to parse the input JSON specification into C++ key-value pair specification, and

the API service (by its NNConstructor) will correspondingly construct the neural network

in the CUDA environment. Proper memories is then allocated on both CPU (host) and GPU

(device) through Memory Allocator according to the size of input dataset and the architec-

tural design of the neural network (e.g., number of layers, weights and bias dimensionali-

ties). In addition, a universal data preprocessing scheme is automatically applied to each

input dataset that does the following: 1) eliminates rows with empty values; 2) normalizes

the data across all batches per column-wise normalization defined as follows:

Xnew = (X −Xmin)/(Xmax −Xmin) (3.1)

The actual training process is finally kicked off, going through a number of epochs (defined

by user) performing forward and backward propagations, during which respective CUDA

kernels are called for each layer (object) to carry out tensor computations on thousands of

cores available in the GPU. Once the training process completes, the trained model and the

prediction scores are copied from GPU memory to CPU memory, and finally all the results

are returned as a JSON object to the NNTrainer (caller) via interface calls (e.g. JNI, MPI).

Through the above processing scheme Challenge B and C are successfully addressed. The

analytical derivatives of Linear layer, ReLU layer, Sigmoid layer and binary cross entropy

in our CUDA GPGPU implementation can be found in Appendix B.

3.4 Experiments

In order to evaluate the proposed approach and implementation, experiments have

been conducted to validate its correctness and compare its performance with counterpart

42

python implementations based on Keras in the GPU environment. All Keras-based imple-

mentations in our experiments adopt the same structure of python code with variations on

neural network architectural designs and input datasets, and all DLaaW implementations

are based on the same CUDA code.

This work adopted 4 different settings of CUDA infrastructure, of which some use JNI

and some use MPI instead, to train and test 5 neural networks respectively designed for

5 popular binary classification datasets (characterized in Table 3 in Appendix A). These

infrastructure settings include i) one Keras-based python implementation on a local GPU

of a host PC, and ii) three DLaaW implementations under three different infrastructural

settings: local GPU on a host PC, single Xavier GPU SoM, and single Nano GPU SoM, of

which the first setting utilizes JNI calls and the last two utilize MPI calls to pass information

between JAVA and CUDA.

3.4.1 Hardware and Datasets

In the preliminary implementation of DLaaW, hardware have been adopted as follow:

1) An x64-based Windows Desktop with AMD Ryzen 5 3600 6-core CPU, 16GB DDR4

RAM, 500GB SSD, one NVIDIA GeForce RTX 2080 Super GPU with 3072 CUDA cores and

8GB GDDRR6 memory; 2) an NVIDIA Jetson Xavier SoM , which contains a GPU with 384

CUDA cores and 48 Tensor cores (Tensor cores are more recent release and more capable

on matrix computation compared to CUDA cores), a 6-core NVIDIA Carmel ARM CPU and

8GB LPDDR4 share memory for GPU and CPU; 3) an NVIDIA Jetson Nano SoM , which

contains a GPU with 128 CUDA cores, a Quad-core ARM CPU, 4GB LPDDR4 share memory

for both CPU and GPU.

5 datasets have been adopted (as showed in Table 3) by considering 1) their popularity,

43

all the datasets are with high popularity among ML users and scientific researchers, e.g.

the Pima Indians Diabetes Database dataset has more than 1 million views and 0.2 million

downloads on Kaggle , the banknote authentication Dataset gained more than 0.32 million

web hits on UCI ML repository, which is one of the most popular ML repositories with

more than 3400 citations [29]; and 2) their diversity, the selected datasets also show good

diversity in i) application domains (e.g. bank, medical, electrical), which is important to

alleviate potential bias towards any specific application domain; ii) data size, which is

important to test scalablity. In the collection of our selected datasets, the Breast Cancer

dataset, the Pima Indians Diabetes dataset and the Banknote Authentication dataset are

small datasets with less than 1500 instances, while the other two datatsets are relatively

bigger, containing more than 10000 instances.

3.4.2 Experiment Results

The results of experiments are showed in Figure 9. The bar charts on top in this figure

shows the testing accuracy on each trained model based on Keras and our DLaaW (with

various GPU settings). The charts clearly demonstrate the superb prediction accuracy of

the 5 neural networks (described in Table 3) implemented (as NNWorkflows) through

DLaaW as compared to Keras-based implementations. These NNWorkflows consistently

outperform their Keras-based counterparts for 4 of the 5 datasets. The sole exception is

with the Data Banknote Authentication that Keras-based implementation delivers higher

accuracy. One explanation for this exception could be the use of different data shuffle

and partition mechanisms in DATAVIEW and Keras, leading to high data occasional bias

[21] on small datasets that may in turn affect the model training. Overall, the accuracy

result of the experiment convincingly support the validity of our DLaaW approach and its

44

Figure 2: Training models: i) trained models testing accuracies and ii) DLaaW Timespans
(in seconds).

45

competitiveness in comparison to the conventional implementations of neural networks.

This result is very exciting as it will function as a cornerstone for our ongoing research that

tries to leverage GPU-enabled DL to benefit broad scientific workflows in DATAVIEW.

The bar charts in the bottom of Figure 9 demonstrated the timespans of training and

testing on each neural network. The Keras-based implementation on local GPU delivers

very swift execution on the first three relatively small datasets. However, with the much

bigger 4th and 5th datasets, the execution timespans increase dramatically. This result

suggests that Keras-based implementation of neural networks may severely suffer from

bad scalability as reported by other developers1. The scalability issue of Keras may be due

to the inefficient handling of data loading and synchronization between GPU and CPU in its

low level CUDA implementation, which aggregate I/O overhead exponentially as the data

size increases. In contrast, the NNWorkflows implemented per our DLaaW approach enjoys

great scalability. All the NNWorkflows implemented based on our DLaaW show minimum

increase in their execution timepsans – almost unnoticeable – across the datasets of varied

(increasing) sizes. This is exciting since scability is one of the greatest changes brought up

by bigdata to the research community.

Thanks to the Jetson zero-copy mechanism adopted in NVIDIA Jetson SoMs, where CPU

and GPU physically share the same system memory so that synchronization overhead can

be greatly alleviated, which is adequately exploited in our implementation of the DLaaW

approach.

1fit_generator slows down when dealing with large dataset,https://github.com/keras-team/keras/
issues/5390

https://github.com/keras-team/keras/issues/5390
https://github.com/keras-team/keras/issues/5390

46

3.5 Conclusions and future work

In this chapter, it proposes the DLaaW approach which creates, executes and reuses any

neural networks as native workflows in a general SWFMS – DATAVIEW. This work makes

DATAVIEW the first SWFMS that supports GPU-enabled DL on various GPU resources at

the infrastructure level. Through carefully designed comparative experiments with the

Keras-based counterpart implementations, it validated our proposed DLaaW approach and

the correctness of our various implementations on different GPU resource settings, and

demonstrated the effectiveness of our proposed approach and implementation in terms of

prediction accuracy and training scalability. As future work, we plan to investigate and

incorporate more GPU services, enrich CUDA APIs implementations, and provide DLaaW

as an open service for use beyond our own SWFMS – DATAVIEW.

47

CHAPTER 4 DEEP-LEARNING-AS-A-WORKFLOW (DLAAW) EXTENDED
ON HETEROGENEOUS GPU CLUSTER IN DATAVIEW

Scientific workflow has become a common practice for scientists to effectively formal-

ize and structure complex scientific processes, which in turn has accelerated scientific

discoveries in numerous research fields. With the recent thriving of DL in broad scien-

tific projects, there is a rising need for DL support in scientific workflow infrastructures

- SWFMSs. However, current GPU-enabled DL frameworks are developed separately, not

suitable for direct exploitation in SWFMSs, which forces scientists to handle DL outside

of SWFMSs and then integrate in workflows in an ad-hoc manner. What workflow users

pressingly need today is a user-friendly and well-integrated SWFMS to facilitate GPU-

enabled DL as native workflows so that they can conveniently design, train, reuse, and

share DL models. In this section, it reports the latest research progress in supporting GPU-

enabled DL at infrastructure-level in a popular SWFMS - DATAVIEW, which facilitates: 1)

fast design, train and reuse neural networks as native workflows per Deep-Learning-as-a-

Workflow (DLaaW) via JAVA API or WebBench GUI; 2) flexibly leverage various types of

GPU resources for executing DL workflows. This approach and its implementations are

thoroughly evaluated through experiments that demonstrate the efficacy and efficiency as

compared to conventional PyTorch-based implementations.

4.1 Introduction

Scientific workflow modeling and execution using a SWFMS has become a common

practice for scientists to accelerate scientific discoveries across numerous scientific do-

mains. For example, the national Ecological Observatory Network (NEON) [35] relies on

a sensor based data-driven workflow to collect ecological data from sensors across US for

48

studying the ecological processes and changes; the 1000 Genomes project [17] utilizes a

bioinformatics workflow to fetch and parse data and to analyze mutation overlaps in hu-

mans for the statistical evaluation of potential disease-related mutations. In addition, the

Montage workflow [26] has been used by thousands of astronomers for constructing image

mosaics of the sky. In the Bioinformatics field, the myExperiment repository currently con-

tains 3935 public scientific workflows shared by 11161 members from 429 groups [33].

The Pegasus workflow system [22] aided the LIGO (Laser Interferometer Gravitational

wave Observatory) project to successfully detect gravitational waves – a discovery that

won the Noble prize!

Since the past decade, ML, especially DL, has become increasingly popular and been

utilized in broad scientific processes and projects across nearly all scientific domains [20]

[78]. Thanks to the continued advance in new GPU micro-architectures, DL models can

now be trained on very large datasets in accelerated speed, and deliver extraordinary pre-

diction accuracy across broad application disciplines [103]. Although there are many GPU-

enabled DL libraries available, such as PyTorch [75], Keras/TensorFlow [37], Theano [8]

and Mxnet [14], they are not readily usable in a SWFMS environment. As a consequence,

tremendous work such as architectural design, model training, and optimization has to

be first carried out outside of a SWFMS and then integrated into a workflow in an ineffi-

cient, ad-hoc manner [80], which is neither trivial nor optimal, for the reasons that: 1) it

requires expertise with one or more DL libraries and the underlying SWFMS; 2) transfer-

ring data between DL models and data-intensive scientific workflows [19] in SWFMS tend

to be time-consuming and less efficient; 3) the separate development of DL models and

computation-intensive scientific workflows [19] based on completely different platforms

49

tend to be complicated and error-prone.

Therefore, it is very necessary to provide a SWFMS with infrastructure-level support for

GPU-enabled DL capability that is natively implemented and seamlessly integrated into the

SWFMS. In our previous work [56], it proposed the DLaaW (DL as a Workflow) approach

and conducted a feasibility study in the DATAVIEW SWFMS. To our best knowledge, this is

the first effort for implementing a DL neural networks as native workflows in an integral

SWFMS. More specifically, it introduced an NNWorkflow Engine that wraps up multiple

types of NNTrainers for executing any specified NNWorkflow training/execution plans

(e.g. regular train and test, K-fold cross validation) on any chosen, particular type of

GPU Resources (e.g. Local GPU of a host PC, a NVIDIA SoM (System-on-Module)). Ac-

cordingly, it implemented a generic GPU Resource Management module to leverage diverse

GPU resource configurations and maintain great extensibilty for incorporating any new

GPU resource types as they become available in the future. In the preliminary work [56],

it focused on the design, construction and execution of NNWorkflows in DATAVIEW via

programmatic JAVA API, supporting two types of GPU infrastructures, including the lo-

cal NVIDIA GPU of a host PC and a single NVIDIA SoM (Xavier or Nano), for executing

NNWorkflows in DATAVIEW, in which all of DLaaW implementations delivered very com-

petitive performance compared with Keras-based (counterpart) implementations.

Based on our preliminary exploration [56], this work has made tremendous progress,

fully implemented the novel DLaaW approach that was introduced in [56] and thoroughly

tested it. Our new implementations allow workflow users/developers to leverage a full life-

cycle DL utility to not only design, construct and execute deep neural networks in the form

of NNWorkflows, but also reuse previously trained NNWorkflow models on new datasets

50

for prediction in an ordinary workflow, and all of them take place in one integral SWFMS

environment - DATAVIEW. Moreover, a heterogeneous GPU cluster as a new type of GPU

infrastructure has recently been implemented and incorporated in DATAVIEW. Our newly

conducted, more extensive experiments demonstrate not only the efficacy but great advan-

tages of our DLaaW approach. In particular, DLaaW (as implemented in DATAVIEW) allows

more adequate exploitation of the high-degree parallelism enabled by the host SWFMS,

which in turn significantly boosts DL performance. The DATAVIEW project, supported by

multiple NSF grants, is open-source and freely downloadable from Github. The current

version - DATAVIEW Release 3.0 [53], is released at github.com.

Based on the preliminary work [56], the most recent progress as reported in this article

makes following additional main contributions:

• We introduce and implement a new Neural Network Executor module in the NNWorkflow

Engine that supports the reuse of any trained NNWorkflow model on new datasets,

accomplishing a full life-cycle DL utility – from design to reuse of a native neural

network workflow in DATAVIEW.

• We introduce and implement the graphical WebBench GUI to facilitate NNWorkflow

design, construction, run, and reuse in DATAVIEW. The appealing intuitiveness of the

GUI adds to the usability of DLaaW and DATAVIEW as a whole.

• We introduce heterogeneous GPU clusters as a new type of GPU infrastructure for

accelerated training and execution of NNWorkflows, on which we evaluate how well

NNWorkflows can leverage the high-degree parallelism offered by a SWFMS in our

experiments.

https://github.com/shiyonglu/DATAVIEW/releases/tag/3.0

51

• We conduct the performance comparison on DLaaW implementations and PyTorch-

based counterparts (alternative to the Keras-based in our previous work), to assure

the validation of this work not only holds for one particular DL library’s counterpart

implementations.

4.2 Architecture

In order to bring DL as a native functionality into modern SWFMSs and to address the

challenges outlined in Section 2 based on the SWFMS – DATAVIEW, this work proposes a

new architecture, which is extended from DATAVIEW’s prior architecture, with DL-specific

components added to the archetecture to give inherent support for NNWorkflows (models)

in DATAVIEW. Through this new architectural design, it particularly addresses the follow-

ing requirements pertaining to NNWorkflows in DATAVIEW: 1) supporting easy design,

execution and reuse of any native NNWorkflow in the same manner as any ordinary work-

flow; 2) extending DATAVIEW’s current user interfaces (including both programmatic and

graphical interfaces) so that users can conveniently build NNWorkflows as native scientific

workflows via user interfaces; 3) implementing a generic and extensible GPU Resource

Management mechanism that enables users to conveniently choose a suitable GPU infras-

tructure (e.g. local GPU, GPU SoM, GPU cluster) for accelerated building, training and

reusing of target NNWorkflows and their trained models.

Figure 3 shows the new architecture of DATAVIEW which provides inherent support for

DL through the DLaaW approach, which we believe is extendable to other SWFMSs. The

original architecture of DATAVIEW consists of the following main components (shown in

white rectangles in Figure 1): 1) the Workflow Design and Configuration component, which

provides intuitive programmatic and graphical UIs for users to design, execute and reuse

52

Workflow
Engine

Workflow Design
&Configuration

NNWorkflow
Engine

Presentation&
Visualization

Workflow
Monitoring

Cloud Resource
Management

Data Product
Management

Provenance
Mangement

Task
Management

Cloud Services

Presentation Layer

Workflow Management layer

Task Management Layer

Infrastructure Layer

AWS
Services

Other Cloud
Services

GPU Resource
Management

GPU Services

Local GPU
on PC

 GPU
Clusters GPU CloudsGPU SoMs

Figure 3: DATAVIEW’s new architecture supports GPU clusters in deep-learning-as-a-
workflow.

workflows; 2) the Workflow Engine component, which serves as a central component

that controls the execution of workflows; 3) the WorkflowMonitoring component, which

keeps track of the status of workflow execution (e.g. “initialized”, “executing”, “finished”,

and “error”); 4) the Data Product Management component, which stores all data products

that are used/produced by workflows; 5) the Provenance Management component, which

is responsible for storing, browsing, and querying workflow provenance; 6) the Task Man-

agement component, which enables the execution of heterogeneous atomic tasks such as

calling web services and running scripts; 7) the Cloud Resource management component,

which plays a key role in provisioning, cataloging, configuring, and terminating the com-

putation resources in clouds.

Built upon the original architecture of DATAVIEW, the new architectural design adds the

following new DL-specific components (shown in light blue rectangles in Figure 1): 1) the

53

NNWorkflow Engine component, which, if the input workflow is an NNWorkflow, takes

over the control, parses the NNWorkflow and outputs a corresponding GPU-recognizable

specification to the downstream component; 2) the GPU Resource Management Compo-

nent, which, upon receiving the NNWorkflow specification, acts as a unified gateway to

route the specification to the target GPU services; 3) The GPU Services component, which

provisions a pool of various GPU resources that actually carry out the execution of an

NNWorkflow on an associated GPU infrastructure.

Below, I will elaborate each newly introduced DL-specific component for NNWorkflows

and how they help solving the 4 major research challenges (3.1-3.4) in our system.

4.2.1 NNWorkflow Engine Component

In contrast to the traditional workflow engine of DATAVIEW, which consists of two

layers accommodating alternative workflow planners and alternative executors for planing

and executing workflow schedules, the new NNWorkflow Engine component consists of

two DL-specific modules: Neural Network Trainers and Neural Network Executors. The

former is responsible for training (and testing) a newly constructed NNWorkflow, the latter

reuses the trained NNWorkflow models and applies to new datasets for prediction.

The Neural Network Trainers module consists of two layers - NNWorkflow Map-

per and NNWorkflow NNTrainers, which are dedicated to map (from newly constructed

NNWorkflows) and encode GPU execution specification. The NNWorkflow Mapper maps

native NNWorkflows to GPU recognizable specification in a specific textual data format. In

DATAVIEW, this work adopts the so-called a-Layer-as-a-Task construction strategy so that

neural network layers are implemented as NNTasks and the connections between the layers

naturally make up the data flow. Pragmatically, we believe our choice is the best compro-

54

mise between the two extremes: a neuron as a task and a whole neural network as a task

(from the perspective of incorporating a neural net as a component into an ordinary enclos-

ing scientific workflow). At the lower layer, a corresponding NNworkflow NNTrainer will

take the NNWorkflow specification generated by the upper layer and encode the trainer-

specific GPU infrastructure information (e.g. type of GPU resources, number of GPU nodes

to be used, etc.), and then forward them to the downstream GPU Resource Management

component (detailed in the following subsection).

On the other hand, the Neural Network Executors module also consists of two layers

- NNworkflow Specification Parser and NNWorkflow NNExecutors. The former parses the

trained NNWorkflow model (saved as a text file) and generates a GPU-recognizable spec-

ification in a textual data format. At the lower layer, a corresponding NNworkflow NNEx-

ecutor will take the NNWorkflow specification (including the new dataset to be used) gen-

erated by the upper layer and encode the executor-specific GPU infrastructure information

into the specification, and then forward them to the downstream GPUResourceManagement

component (Detailed in the following subsection).

By constructing neural networks in the granularity of a-Layer-as-a-Task in native NNWork-

flows and mapping NNWorkflows to GPU-recognizable specifications, it can satisfactorily

address Challenge 3.1 and 3.4 as discussed earlier Section 3.

4.2.2 GPU Resource Management Component

Upon receiving the aggregated NNWorkflow specification from the NNWorkflowEngine

component, the GPUResourceManagement component will parse the NNWorkflow per its

specification, call a corresponding in-house GPU service and route the NNWorkflow spec-

ification to that target GPU service through a unified gateway. Each GPU service stands

55

behind the gateway require a unified specification (including accessible input datasets) to

kick off an end-to-end neural network GPU computation. All real-time GPU execution logs

(e.g. the GPU execution status, printouts, errors) will be automatically forwarded back to

the NNWorkflow Engine component in real-time. Once the GPU execution is done, the

target GPU service returns the output (e.g. the saved model and testing accuracy) to the

NNWorkflow Engine component.

As the I/O communication between CPU and GPU is not required at the inter-task/layer

level. This arrangement in our implementation significantly reduces the overall I/O cost

between CPU and GPU, which in turn helps boost the overall system performance. Chal-

lenge 3.3 as mentioned in Section 3 thus is satisfactorily solved.

4.2.3 GPU Services Component

The GPU Services component maintains a pool of diverse GPU resources. After a

NNWorkflow specification ”fanned out” from the GPU ResourceManagement component

to a specific GPU resource in the GPU Services component, the target GPU service will 1)

setup the execution environment, which includes loading and preprocessing of the input

datasets, allocating memories on both CPU and GPU sides (Memory synchronization is

needed between GPU and CPU in GPGPU computing); 2) construct the neural network

(according to the received specification) in GPU’s global memory and finally ignite the

neural network’ execution on the target GPU device.

In our approach, GPU ResourceManagement is introduced as a gateway (an interme-

diate interface) between the NNWorkflowEngine and GPUServices components to gain

implementation independence and better future extensibility. The higher layer is built on

an abstraction, i.e., a standard interfacing protocol, and all concrete implementations in

56

the lower layer are accordingly aligned to that interface. As long as the abstraction does

not change, any change or adding GPU services in the future will not affect the higher

level components. As a result, Challenge 3.4 and Challenge 3.5 (discussed in Section 2)

are solved.

4.3 Implementation

In DATAVIEW, native DL capability is implemented according to our DLaaW approach

(i.e., a DL network as a workflow) and the design choice of a-layer-as-a-task. A num-

ber of new architectural components (as shown in Figure 1) are accordingly introduced

to support the implementation of our approach. The implementation of these compo-

nents involves Java, C++, CUDA C++, Java Native Interface (JNI) and Message Pass-

ing Interface (MPI). Our system manifests the following important features: 1) NNTasks

takes user-definable hyperparameters as input and allows users to either pragmatically

or graphically construct NNWorkflows based on their provided hyperparameters; 2) the

NNWorkflow Engine component encapsulates execution plans (including training, test-

ing, k-fold cross validation, etc.) and infrastructure configuration/settings (e.g. types and

number of GPU resources) in NNWorkflow specification; 3) any NNWorkflow (whether a

yet to be trained or already trained model) can be uniformly fed into any chosen GPU

resource (wrapped in the form of a GPU service) and result in the same execution (train-

ing, validation, or prediction) result. Our proposed approach and implementations of DL

not only supports scientists to conveniently build and orchestrate any NNWorkflow at any

scale, but also aid them to configure suitable execution plans on available GPU resources

for particular DLaaWs.

57

NNWorkflow

LocalGPU Java Native
Interface (JNI)

GPUCluster Message
Passing Interface (MPI)

CUDA C++
Parser

Memory
allocator

Kernels
Callers

NN
Constructor

Cuda GPU
memory

Cuda Kernels

Cuda Host
memory

Save model

CUDA C++ Parser

CUDA MPI
Mapper

Working
GPU

node1

Working
GPU

node2

CUDA MPI
Reducer

CUDA Env
JSON&Jsch

MPI exec call

Working
GPU

nodeN
....

NNTask (NN Layer)
NNTask (NN Layer)

NNTask (NN Layer)NNTask (NN
Layer)

...

NNWorkflow JSON Mapper

JSON

JSON&JNI
exec call JSON

GPU Resource Management

.dll GPU API
Service

.a GPU API
Service

NNWorkflow Engine

GPU Services

CUDA GPU

GPU Cluster
Master Node

JSON

NNTrainer_LocalGPU
NNWorkflow NNTrainers

JSON

Trained Model
from NNTrainers

File JSON Parser

Prediction
Dataset

Neural Network Trainers Neural Network Executors

GUI or JAVA API

Training
Dataset

Workflow

NNTrainer_GPUCluster NNTrainer_SingleXavier

...

NNExecutor_LocalGPU

...
NNWorkflow NNExecutors

NNExecutor_GPUCluster

Single SoM Message
Passing Interface (MPI)

Single NVIDIA SoM

JSON&Jsch
MPI exec call JSON

.a GPU API
Service

Figure 4: Procedures to construct, execute and reuse a deep-learning-as-a-workflow in
DATAVIEW.

58

Figure 5: NNWorkflow Visualization by DATAVIEW: i) The sample NNWorkflow and ii) its
Neuron-level architecture.

Figure 4 shows the procedural layout of the latest implementation of the DLaaW in

DATAVIEW, which lays out the details of the three new components. This section will

discuss the implementation details of the DLaaW approach and explain how the 2 ma-

jor engineering challenges (3.5- 3.6) mentioned in Chapter 4 are addressed in the new

implementation.

4.3.1 User Interfaces: GUI and JAVA API for Workflow/NNWorkflow design, con-
struct, run and reuse

In DATAVIEW, all workflows, including NNWorkflows, can be conveniently designed,

constructed, run, reloaded/reused through a uniform JAVA API or an intuitive GUI.

Regarding an NNWorkflow, it is constructed layer-by-layer and saved in an NNTask

array that specifies the type and order of each neural network layer in the NNWorkflow.

The NNTask array is then fed into the Sequential() function along with other training

parameters such as how many batches the input data is to be split and how many epochs

to be used to train the model. Figure 5 shows the visualization of this sample NNWorkflow

59

Figure 6: Design and construct an NNWorkflow in DATAVIEW webbench.

produced by the Presentation&V isualization component in DATAVIEW.

Alternatively, the same SampleNNWorkflow can be designed, constructed and run using

DATAVIEW’s webbench GUI in a drag-and-drop manner, as showed in Figure 6. The input

datasets and Workflow Tasks are pulled from user’s dropbox account via dropbox API v2,

and they can be dragged into the webbench and can be chained by drawing edges from

prior tasks’ output ports to subsequent tasks’ input ports.

Listing 3: Construct a sample Workflow that reuse the NNWorkflow trained model:

wins [0] = new DATAVIEW_BigFile (" NNWorkflow@749702 ") ;

wins [1] = new DATAVIEW_BigFile (" New_dataset . csv ") ;

wouts [0] = new DATAVIEW_BigFile (" output . t x t ") ;

public void design ()

{

Task stage1 = addTask (" NNExecutor ") ;

addEdge (0 , stage1 , 0) ;

addEdge (1 , stage1 , 1) ;

addEdge (stage1 , 0 , 0) ;

60

}

In addition, a DL enabled general scientific workflow (for reusing NNWorkflow trained

models) can be constructed in the usual way, except that trained NNWorkflow models are

incorporated through the predefined generic NNExecutor task, concatenated with other

tasks in the workflow by Edges between the input/output ports of the tasks. Listing 3

shows sample Java Code of the design() method in the NNExecutorWorkflow class, a sub-

class of Workflow in the DATAVIEW system to quickly wrap up trained NNWorkflow model

as an ordinary native workflow (or sub-workflow, from the perspective of a larger, en-

closing workflow). The sample code takes the input trained NNWorflow model, NNWork-

flow@749702 (saved as a text file), and performs intended prediction on New_dataset.csv

and saves the result (in JSON format) in the output.txt file as specified. Alternatively, this

workflow can be designed, constructed and run using DATAVIEW’s graphical webbench UI

as showed in Figure. 7. As trained NNWorkflow models are designed, constructed and run

as an ordinary workflow in DATAVIEW, they can leverage all existing ordinary workflow

executors (for ordinary workflows) in DATAVIEW, including WorkflowExecutor_Beta [65],

WorkflowExecutor_Local [7], etc.

The above two samples show that the established usability of DATAVIEW [44] (either

programmatically or graphically) via JAVA API or webbench GUI are naturally preserved

and extended to NNWorkflows and any workflows subsuming trained NNWorkflow models

as components.

4.3.2 NNWorkflow Engine: from native NNWorkflow to GPU recognizable specifica-
tion

In this subsection, I will elaborate on detailed implementation of NeuralNetworkTrainers

61

Figure 7: Reuse a trained NNWorkflow model on new dataset for prediction in DATAVIEW
webbench.

module and Neural Network Executors module.

Neural Network Trainers The NNWorkflow JSON Mapper module (Written in Java)

maps all constructs and primitives of the NNWorkflow to their neural network counter-

parts that are recognizable by the backend GPU services. Listing 4 is the NNWorkflow

specification mapped from the sample NNWorkflow in subsection 5.1, which includes: 1)

input data repository; 2) output data repository; 3) number of batches to split the input

data; 4) number of training epochs; 5) neural network architectural design. At the time

of this writing, the NNWorkflow Mapper contains only one specific mapper - NNWorkflow

JSON mapper, alternative mappers will be investigated and included in the future.

Listing 4: Sample GPU recognizable specification mapped from native NNWorkflow:

" {\ " wIpt \ " : \ " C:\\\\ Users \\\\DATAVIEW\\\\ Downloads \\\\ Breas t_cancer_data . csv \ " ,

\ "wOpt \ " : \ " f i n a l p r e d i c t i o n . t x t \ " ,

\ " numOfBatches \ " : \ " 6 \ " ,

\ " numOfEpochs \ " : \ "1000\ " ,

62

\ " LayerArc \ " : { \ " 0 \ " : \ " 0 , 5 , 3 \ " , \ " 1 \ " :

\ " 0 , 3 , 1 \ " , \ " 2 \ " : \ " 2 \ " } } "

One of the NNWorkflow NNWTrainers (written in Java), which is selected by user (pro-

grammatically or graphically), will encode the target GPU resource information into the

NNWorkflow specification. The aggregated NNWorkflow specification is then sent to the

GPU Resource Management component by calling the train() method in the NNTrainer.

Listing 2 is the sample code showing a sample NNWorkflow, w, being fed into two NNTrain-

ers which respectively trigger their train() method. Our system currently supports 7 differ-

ent NNTrainers for choice. The NNTrainer_LocalGPU and NNTrainer_crossValOnGPUCluster

are the two NNTrainers that respectively wrap up two different execution plans targeted

on two GPU services based on two corresponding GPU resources (configurations). For

the same NNWorkflow, w, NNTrainer_LocalGPU creates a train&test plan running on the

local GPU of a PC, while NNTrainer_crossValOnGPUCluster creates a k-fold cross train-

ing&validation plan running on a GPU Cluster. Our implementation satisfactorily solves

Challenge B.1, letting the SWFMS, DATAVIEW, inherently leveraging GPU computing.

Neural Network Executors The File JSON Parser module (Written in Java) reads and

parses primitives of trained NNWorkflow models into the counterparts that are recogniz-

able by the backend GPU services. Listing 5 shows the sample Workflow specification

mapped from the trained NNWorkflow model - NWorkflow@749702 in subsection 5.1,

which includes: 1) input data repository; 2) neural network architectural design; 3) saved

model on weight and bias in each layer. At present, our system supports only one specific

parser - File JSON Parser. we are considering to support more alternative parsers in future

63

releases of DATAVIEW.

Listing 5: Sample GPU-recognizable neural network specification:

" {\ " wIpt \ " : \ " C:\\\\ Users \\\\DATAVIEW\\\\ Downloads \\\\ Breas t_cancer_data . csv

\ " , \ " LayerArc \ " : { \ " 0 \ " : \ " 0 , 5 , 3 \ " , \ " 1 \ " : \ " 1 \ " , \ " 2 \ " : \ " 0 , 3 , 1 \ "

, \ " 3 \ " : \ " 2 \ " } , \ " SavedModel \ " : { \ " 0 \ " : { \ " b i a s

\":\"[44.12920380 , −70.366096501 ,1.17895031]\" ,

\ " weight \":\"[[2.44433546 , −2.16660404 ,4.90515614] ,

[−2.16514421 , −0.49593592 ,0.22421788] ,

[1.38725889 , −0.33631948 ,1.02884686] ,

[0.71579784 , −0.51459634 ,0.55676436] ,

[0.01803080 , −2.92734289 ,1.12091708]]\"} ,\"2\":{\" b i a s \ " : \ " [23 .86134911]\ " , \ "

weight \":\"[3.34796143 , −5.95831585 ,2.21814156]\"}}}} "

Currently, DATAVIEW only support one type of NNExecutor - NNExecutor_LocalGPU,

which is capable to apply any trained NNWorkflow model to a new dataset to make pre-

dictions on local GPU of the host PC. Alternative options (such as single NVIDIA SoM,

NVIDIA GPU cluster) will be investigated and integrated in the future. By now, this work

has provided a complete life-cycle DL use case (from design to reuse on new datasets) in

DATAVIEW via both JAVA API and WebBench GUI.

4.3.3 GPU Resource Management: Universal gateway to route specification to target
GPU services

The GPU Resource Management component acts as a universal gateway at the back

door on the Java side to route consolidated neural network specification to the CUDA

side. Such routing is implemented via necessary API calls (e.g. JNI calls, Jsch MPI calls)

for target GPU services (e.g. Local GPU Service, GPU Cluster Service). Each API call is

64

compiled together with our in-house core CUDA implementation as a whole (e.g. .dll, .a)

to be executed on a targeted GPU resource. All the backend GPU services are designed to

accept a uniform execution specification (per an internal standard protocol).

4.3.4 GPU Services: Execute neural networks

Finally, an neural network execution plan is initiated on the target GPU resource where

a the corresponding neural network object (comprising NNLayer subobjects) is automati-

cally constructed in the GPU’s global memory for execution. Our in-house developed CUDA

kernals (written in cuda C++), which are functions executed by GPU, are then triggered

in turn (matching the procedural actions and order of layers) to carry out the preprocess-

ing, training and testing of the neural network according to the execution plan. Currently,

DATAVIEW supports three types of GPU infrastructure for the execution of NNWorkflows

as follow:

A local NVIDIA GPU of a host PC: NNWorkflow specification (in JSON) can be routed

to a local NVIDIA GPU of a PC via direct .dll service call. More specifically, first, a CUDA

C++ parser needs to parse the input JSON specification into a C++ key-value pair specifi-

cation, which is then used by NNConstructor to construct the neural network in the CUDA

Environment; second, proper memories need to be allocated on both CPU (host) and GPU

(device) according to the size of input dataset and architectural design of the neural net-

work (e.g., number of layers and each layer’s weights and bias). In addition, a universal

data preprocessing scheme is automatically applied to each input dataset that does the

following: 1) eliminates rows with empty values; 2) normalizes the data across all batches

65

based on the column-wise normalizor as:

Xnew = (X −Xmin)/(Xmax −Xmin) (4.1)

The actual training process is finally kicked to start for a user-defined number of epochs

through forward and backward propagation, during which respective CUDA kernels are

called within layer objects to carry out tensor computations on thousands of cores avail-

able in the GPU. Once the training process completes, the trained model and the prediction

scores are copied from GPU (device) memory to CPU (host) memory, and all the results,

including the training cost for every 100 epochs (for the sake of catching potential overfit-

ting or underfitting), are returned as a JSON object to the NNTrainer_localGPU caller via

JNI.

On the other hand, to reuse a trained NNWorkflow model on a given new dataset, the

trained model (with its saved model architecture, weights and bias in each layer) gets

reloaded to a target GPU resource and the execution of neural network is carried out just

like an ordinary workflow except for the leveraging of GPU computing. Once the execution

is done, following information will be return to the NNExecutor: 1) device info (e.g. the

GPU’s available memory, registers); 2) the prediction accuracy.

A single NVIDIA SoM: An NNWorkflow specification can also be routed to a single

NVIDIA SoM via Jsch MPI call to .a service. The neural network construction and execution

would be in a very similar manner as in a local NVIDIA GPU (as described in 5.4.1). In

contrast to the scenario of using a local GPU, message passing between DATAVIEW Java-

end and the single NVIDIA SoM leverages MPI instead of JNI. Finally, the single SoM will

66

return the execution results back to the caller (NNTrainer or NNExecuter) on Java side.

A heterogeneous GPU cluster: As the third option, an NNWorkflow specification can

be routed to the master node of a heterogeneous GPU cluster via Jsch MPI calls on another

static link (.a) API service. The GPU cluster consists of multiple NVIDIA Jetson SoMs.

According to the specific execution plan (e.g. distributed k-fold cross validation), the

master GPU node accordingly maps and distributes the execution tasks to other (working)

nodes via MPI calls. Afterwards, each working node independently handles the rest of

the execution of its allocated task in a very similar manner as with a local NVIDIA GPU

(as described in 5.4.1). The message passing between cluster nodes also utilizes MPI.

The master node must wait until all working nodes complete their work and reduce their

results via a CUDA MPI Reducer. Finally, the total result will be passed back to the caller

(NNTrainer or NNExecutor) on the Java side.

Through careful design and implementation of CUDA-based GPGPU computing, and

integration of diverse message passing mechanisms (through a uniform GPU service inter-

face), the two engineering challenges Challenge 3.5 and 3.6 are satisfactorily addressed.

4.4 Experiments

In order to validate our proposed approach, this work conducted two groups of exper-

iments to compare the performance of implementations on DLaaW with the counterpart

python implementations on PyTorch in GPU environment. All PyTorch-based implementa-

tions adopt the same structure of python code with variations on neural network architec-

tural designs and input datasets, and all DLaaW implementations are based on the same

CUDA C++ code except for the variations of native interfaces in different GPU infrastruc-

67

tures. These two groups of experiments are:

4 infrastructures have been adopted, to train and test 5 neural networks respectively

designed for 5 popular binary classification datasets (characterized in Table 3). These in-

frastructures include i) one PyTorch-based python implementation on a local GPU of a host

PC, and ii) three DLaaW implementations under three different infrastructural settings: a

local GPU of a host PC, single Xavier GPU SoM, and single Nano GPU SoM, of which the

last two settings utilize MPI calls (instead of JNI) to pass information between CPU and

GPU.

5 infrastructures have been adopted to conduct 5-fold cross validation on the same

neural networks, using the same datasets as showed in Table 3. These 5 infrastructures

are: i) one PyTorch-based python implementation on a local GPU of a host PC and ii) four

DLaaW implementations on four different infrastructural settings: a local GPU of a host

PC, a heterogeneous GPU cluster, single Xavier GPU SoM, and single Nano GPU SoM, of

which the infrastructure of GPU cluster utilizes 5 GPU nodes (2 Xavier SoMs and 3 Nano

SoMs).

Next, I will provide the details about the hardware and the datasets used for above

experiments.

4.4.1 Hardware

In our preliminary implementation of DLaaW in DATAVIEW, the adopted hardware

include: 1) A x64-based Windows Desktop as showed on the left side in Figure 8, with AMD

Ryzen 5 3600 6-core CPU, 16GB DDR4 RAM, 500GB SSD, one NVIDIA GeForce RTX 2080

Super GPU with 3072 CUDA cores and 8GB GDDRR6 memory; 2) A heterogeneous GPU

cluster as showed on the right side in Figure 8, which consists of i) 2 NVIDIA Jetson Xavier

68

Module and Developer Kits , each contains a GPU with 384 CUDA cores and 48 Tensor

cores (Tensor cores are more recent release and more suitable for matrix computation

compared to CUDA cores), a 6-core NVIDIA Carmel ARM CPU and 8GB LPDDR4 share

memory for GPU and CPU; ii) 4 NVIDIA Jetson Nano Developer Kits , each contains a GPU

with 128 CUDA cores, a Quad-core ARM CPU, 4GB LPDDR4 share memory for both CPU

and GPU. The specification of each GPU node in the heterogeneous GPU cluster can be

found in Figure 25 in Appendix C.

Figure 8: Hardware setup for DLaaW: i) the desktop with a local GPU and ii) a heteroge-
neous GPU Cluster (6 nodes).

4.4.2 Datasets

5 representative datasets have been adopted (as showed in Table 3) to validate our

proposed approach and implementations, including: 1) Breast Cancer Predicton Dataset,

which is obtained from the University of Wisconsin Hospitals, Madison, aimed to correlate

the abnormal lump (radius, texture, smoothness, etc.) with actual cancerous diagnosis;

2) Pima Indians Diabetes Database, originated from the National Institute of Diabetes and

69

Digestive and Kidney Diseases for diagnostically predicting whether a patient has diabetes

based on certain diagnostic measurements; 3) a banknote authentication data set, in which

data are extracted from images via Wavelet Transform tool to evaluate an authentication

procedure for banknotes; 4) Electrical Grid Stability Simulated Data Set, which focus on

the stability analysis (i.e. stable/unstable) of the 4-node star system (electricity producer is

in the center) for implementing Decentral Smart Grid Control concept; 5) Bank Marketing

Data Set, in which the data is related with direct marketing campaigns (phone calls) of

a Portuguese banking institution and the classification goal is to predict if the client will

subscribe a term deposit.

Above datasets were selected by considering their 1) popularity, all the datasets are

with high popularity among ML users and scientific researches, e.g. the Pima Indians

Diabetes Database dataset has more than 1 million views and 0.2 million downloads on

Kaggle, the banknote authentication Data gained more than 0.32 million web hits on UCI

ML repository, which is one of the most popular ML repositories with more than 3400 cita-

tions [29]; and 2) diversity, the collection of datasets shows good diversity in i) application

domains (e.g. bank, medical, electrical), which is important to alleviate the potential bias

towards any specific application domain; ii) data size, which is important to test scalablity.

In the collection of our selected datasets, the Breast Cancer dataset, the Pima Indians Di-

abetes dataset and the Banknote Authentication dataset are small datasets with less than

1500 instances, while the other two datatsets are relatively larger, containing more than

10000 instances.

4.4.3 Experiment Results

Experiment Group I: The purpose of this group of experiments is to evaluate our

70

DLaaW approach and make direct performance comparison of the various implementations

of DLaaW with the conventional implementations of neural networks on PyTorch.

The results of this group of experiments are showed in Figure 9. The bar charts on top in

this figure shows the testing accuracies on each trained model in DATAVIEW and PyTorch,

which demonstrate the superb prediction accuracies of the 5 neural networks (as described

in Table 3) implemented through DLaaW as NNWorkflows. Compared to PyTorch-based

implementations, NNWorkflows consistently outperform for 4 of the 5 datasets. Within

the exception of one dataset, Data Banknote Authentication, PyTorch-based implemen-

tation delivers higher accuracies. Since PyTorch’s intermediate level APIs (e.g cuDNN,

cuBLAS) are closed source, and I implemented our in-house GPU services from scratch

based on the pure CUDA, there can be many potential reasons that lead to the different

testing accuracies by two approaches on the same neuron network modeling, here I will

list out 3 most inclined reasons: 1) our in-house CUDA services embedded its own univer-

sal data preprocessing scheme (as described in 5.4.1), which can potentially improve the

input data quality and deliver better trained models; 2) though both approaches adopts

Xavier weights initialization [48], the weights are randomly initialized by mean 0 and

uniform/standard deviation, which can result in the same neural network being trained

to different local optimals (in a non-convex optimization problem); 3) I was introducing

a small constant (e.g. exp(-10)) in analytical derivative of binary cross entropy, to avoid

the illegitimate case of log(0), the absence/difference of such small constant may lead to

slightly different backward propagations. The results in terms of the accuracy convincingly

support the validity of our DLaaW approach through its competitive prediction accuracies

in comparison to conventional implementation of neural networks, which serve as a cor-

71

nerstone for our ongoing research that tries to leverage GPU enabled DL and provide the

functionality to broad scientific workflows in DATAVIEW.

The bar charts in the bottom of Figure 9 demonstrated the timespans of training and

testing on each neural networks. The PyTorch-based implementation on local GPU delivers

very swift execution on the first three relatively small datasets. However, with the larger

4th and 5th datasets, the execution timespans increase dramatically. This phenomenon

suggests that the PyTorch-based implementation of neural networks may suffer from bad

scalability (in terms of data size), which is also caught in our Keras-based implementation

and by other Keras developers in [56]. This scalability issue is also reported by other Py-

Torch developers2,3. Sharing this same issue in Keras and PyTorch may suggest the root

cause can be in their commonly used intermediate level APIs (e.g. cuDNN, cuBLAS). In

contrast, NNWorkflows implemented per our DLaaW approach in DATAVIEW enjoy great

scalability. The scalability issue of PyTorch may due to the inefficient handling of data

loading and synchronization between GPU and CPU in its low level CUDA implementation,

which aggregate I/O overhead in exponential rate as the data size grows larger. Across the

different datasets of varied sizes, the DLaaW implementations on local GPU shows pretty

consistent but higher than timespans of other DLaaW implementations. Based on our best

knowledge, this may likely suggest that communication through JNI is less efficient than

communication through MPI. On the other hand, the timespans obtained from DLaaW im-

plementations on single Xavier and single Nano GPU SoMs are the shortest, with only very

moderate increase as the data size increases. This result likely indicates that our in-house

2PyTorch official discussion #95247,https://discuss.pytorch.org/t/
training-fast-with-small-dataset-slow-with-large-dataset/95247

3PyTorch issue #2829 in Github.com,https://github.com/pytorch/fairseq/issues/2829

https://discuss.pytorch.org/t/training-fast-with-small-dataset-slow-with-large-dataset/95247
https://discuss.pytorch.org/t/training-fast-with-small-dataset-slow-with-large-dataset/95247
https://github.com/pytorch/fairseq/issues/2829

72

Figure 9: Regular train and test: i) Testing accuracies and ii) Timespans (in seconds)

73

CUDA implementation does a much better job on low level data loading/synchronisations,

meanwhile thanks to the Jetson zero-copy mechanism4 adopted in NVIDIA Jetson SoMs,

where CPU and GPU physically share the same system memory so that synchronization

overhead between CPU and GPU can be greatly alleviated. The obtained timespans also

indicate that NNWorkflow run on a single GPU SoM leads much better scalability with

regard to increased dataset sizes.

Experiment Group II: The purpose of this group of experiments is to evaluate how

well NNWorkflows can leverage the high-degree parallelism offered by a SWFMS and boost

the execution performance of neural networks compared to the serialized implementa-

tions. Thus, this work conducted 5-fold cross validation through various implementations

on five neural networks. These implementations can be further put into two categories: 1)

serialized, which includes PyTorch-based implementation on local GPU, and three DLaaW

implementations respectively on the local GPU, single Xavier GPU SoM and single Nano

GPU SoM. These four implementations are sequentially conducting the 5-fold cross valida-

tion; 2) parallelized, which includes the DLaaW implementation on the GPU cluster. With

this implementation, the five folds of validation are distributed to five working GPU nodes,

and the final results are aggregated at the the master node. The memory tuilization on

each GPU node in the GPU cluster during the 5-fold cross validation can be found in Figure

26 in Appendix D.

The results of this group of experiments are showed in Figure 10. The top chart shows

the means and variances of validation accuracies on each neural network across 5-fold

cross validation. All DLaaW implementations in DATAVIEW consistently deliver competi-

4Jetson Zero-Copy, https://www.fastcompression.com/blog/jetson-zero-copy.htm

https://www.fastcompression.com/blog/jetson-zero-copy.htm

74

Figure 10: 5-fold cross validations: i) Means and Variances of testing accuracies on 5 folds;
ii) Timespans (in seconds)

75

tive or higher average accuracies in comparison to the PyTorch-based Python implemen-

tation, which echos the conclusion from the first group of experiments from the accu-

racy perspective. On the other hand, all DLaaW implementations preserves moderate

or low variance of accuracy across different folds of validation, which demonstrate our

approach delivers relatively more robust models in contrast to PyTorch-based implementa-

tion (which outputs noticeable large variance across different folds’ accuracies in the 4th

dataset). Besides, we observe a larger variance of 5 folds’ accuracies in small datasets (1st

and 2st) than larger datasets (4th and 4th) across all infrastructural settings, which is likely

to suggest the data bias [21] exerts higher impact on smaller datasets while conducting

train and test on different portion of data.

The bottom chart in Figure 10 shows the timespans of 5-fold cross validation on all

these neural networks. The experiment results concur on the conclusions in the first group

of experiments: 1) poor scalability (regarding data size) in PyTorch-based implementation,

which runs very fast in the first 3 datasets but slows down dramatically on the 4th and

5th larger datasets; 2) eminent JNI overhead in the DLaaW implementation on local GPU

compare with other implementations through MPI; 3) high efficiency and superb scalability

in DLaaW implementations on single SoM, even though the five folds of validation are

carried out sequentially. Lastly, coming to the key purpose of this group of experiments,

the timespans obtained from the DLaaW implementation on a GPU cluster are remarkably

smaller than all the sequential implementations. This result clearly demonstrates that our

DLaaW approach, besides all the virtues mentioned above, can gracefully leverage the

high-degree parallelism offered by a traditional SWFMS without any extra effort.

76

4.5 Conclusions and future work

This section proposes an advanced version of DLaaW approach which constructs, exe-

cutes and reuses any neural networks as native workflows via either Java API or graphical

webBench interface in a general SWFMS – DATAVIEW. This work makes DATAVIEW the

first SWFMS that supports infrastructure-level GPU-enabled DL. Currently, DATAVIEW sup-

port 4 types of GPU resources for DLaaW, including the local NVIDIA GPU on a PC, a single

NVIDIA Xavier SoM, a single NVIDIA Nano SoM and a heterogeneous GPU cluster consist-

ing of multiple NVIDIA SoMs. Through two groups of carefully designed experiments, it

validated our proposed DLaaW approach and the correctness of its implementations on dif-

ferent GPU infrastructures, and demonstrate the effectiveness and efficiency (in terms of

prediction accuracy and timespan) by comparing with the counterpart Python implementa-

tions on the cutting-edge DL library - PyTorch. It also shows DLaaW can gracefully leverage

the superior parallelism offered by SWFMS on boosting the DL performance. Moreover,

it demonstrates a clean and user-friendly interfaces (via either Java API or WebBench in-

terface) to SWFMS community through a complete life-cycle use case demo. As future

work, we plan to investigate and incorporate more GPU services, enrich CUDA APIs im-

plementations, and provide DLaaW as an open service for use beyond our own SWFMS –

DATAVIEW.

77

CHAPTER 5 THE USABILITY OF DEEP-LEARNING-AS-A-WORKFLOW
(DLAAW) TO THE SWFMS COMMUNITY

In this Chapter, I will demonstrate the usability of DLaaW in DATAVIEW to the SWFMS

community, which will cover following aspects: 1) the process of designing, constructing

and executing an NNWorkflow through JAVA API or graphical web interface, and 2) the

process of reusing any trained NNWorkflow model on new datasets in JAVA API or graphi-

cal web interface; 3) Also, I will discuss the extensibility of DLaaW approach in DATAVIEW

by providing and analyzing its up-to-date core JAVA class diagrams of the NNWorkflow En-

gine and GPU Resource Management components, as well as the core CUDA class diagram

in our GPU services.

5.1 Design, construct and execute an NNWorkflow in DATAVIEW

DATAVIEW provides two options (programmtically&graphically) for workflow users to

design, construct and execute their NNWorkflows, either approach will deliver the equiva-

lent operation on any particular combination of NNWorkflow, execution plan (e.g. regular

train and test, K-fold cross validation) and GPU infrastructure (e.g. local GPU, GPU SoMs)

in the backend CUDA services.

5.1.1 Design, construct and execute an NNWorkflow through JAVA API

Figure 11 is an example of designing and constructing an NNWorkflow through JAVA

API in DATAVIEW. This sample NNWorkflow consists of 8 layers as an NNTask array, in

which layers[0] is a Linear layer with 28 input neurons and 10 output neurons; layers[1]

is a ReLU layer; layer[2] is a Linear layer with 10 input neurons and 5 output neurons;

layers[3] is a ReLu layer; layer[4] is a Linear layer with 5 input neurons and 3 output

neurons; layers[5] is a ReLu layer; layers[6] is a Linear layer with 3 input neurons and 1

78

Figure 11: Design and construct an NNWorkflow through JAVA API

output neuron; layers[7] is a Sigmoid layer.

Figure 12 is the micro-observation of the corresponding neural networks constructed in

figure 11. On the top of this figure, it demonstrates each line of JAVA code correspondingly

and ultimately construct the corresponding part of neural network.

Figure 13 is the example of executing the sample NNWorkflow through JAVA API,

in which NNWorkflow6 is the target NNWorkflow to be executed. The NNWorkflow-

Trainer_LocalGPU is the NNTrainer that selected for executing the target NNWorkflow in

1000 epochs and the input dataset will be split into 6 batches. Ultimately, by triggering the

train() method, it will provision the target GPU resource and carry out the actual neural

network execution.

79

Figure 12: Micro observation of the sample NNWorkflow which designed and constructed
through JAVA API

Figure 13: Execute the sample NNWorkflow through JAVA API

5.1.2 Design, construct and execute an NNWorkflow in Web Interface

Figure 14 is an example of designing and constructing an NNWorkflow in web interface

in DATAVIEW. This sample NNWorkflow is constructed in 4 layers by dragging and drop-

ping the modules (e.g. dataset, NNTasks, output file) from the right or left panels, these

modules are stored and retrieved from user’s dropbox account. In this neural network,

layers[0] is a Linear layer with 5 input neurons and 3 output neurons; layers[1] is a ReLU

80

layer; layer[2] is a Linear layer with 3 input neurons and 1 output neurons; layers[3] is a

ReLu layer; layer[4] is a Sigmoid layer.

Figure 14: Design, construct and exectuion an NNWorkflow in Web interface

By clicking the "Run" button on the top of middle panel in the web interface, a popup

window will show up for workflow users to select their proper execution environment (as

showed in figure 15). Currently we provide 3 options of execution environment in the web

interface: 1) The DATAVIEW-Server provides the local workflow execution environment,

which will execute the workflow in the CPU multi-threading environment of the host PC;

2) The EC2-Cloud provides the AWS EC2-Cloud workflow execution environment to ex-

ecute the target workflow; 3) The Local-NVIDIA-GPU provides the Local GPU execution

enviroment, which will execute the NNWorkflow in the local NVIDIA GPU of the host PC.

Figure 16 shows the sample NNWorkflow execution result (in JSON fomat) returned

from the backend GPU service (i.e. Local GPU of a host PC). The results includes: 1) Devi-

ceInfo, which shows the details of the targeted GPU service; 2) LayerArc, which stores de-

tails of the trained model, including architectural design, weights and bias, etc; 3) Testin-

gAccuracy, which shows the testing accuracy of the trained model on the last batch of input

81

Figure 15: Execute the sample NNWorkflow in Web interface

Figure 16: The result of the sample NNWorkflow execution in Web interface

dataset; 4) TrainingCostAtEpoch, which shows the training cost at every 100 epochs.

The execution result (in JSON format) will be automatically saved as a file, in which the

saved model (neural network architecture, weights and bias, etc.)can be directly reused

by the NNWorkflow executor (constructed as an ordinary Task, which will be elaborated

in the following subsection) in an ordinary workflow in DATAVIEW.

82

5.2 Reuse any trained NNWorkflow models on new datasets in DATAVIEW

Similarly, DATAVIEW provides two options (programmtically&graphically) for work-

flow users to reuse any NNWorkflow trained model on new datasets in DATAVIEW, either

approach will deliver the equivalent operation in DATAVIEW and carry out the same exe-

cution for a trained model in the target CUDA service.

Figure 17: Reuse a trained NNWorkflow model on new dataset through JAVA API

5.2.1 Reuse any trained NNWorkflow on new datasets through JAVA API

Figure 17 shows a sample ordinary workflow constructed for reusing a trained NNWork-

flow model through JAVA API. The trained NNWorkflow model (in JSON format) is saved

in the direct output from subsection 5.1, which is the auto generated output file from

NNWorkflow execution and named as GeneticNNWorkflow@749070052. This workflow

includes a single ordinary task – NNExecutor, which is a regular Task that forward the

trained neural network model (in JSON format) to NNWorkflowExecutor service, which

will execute the trained model with new dataset on the target GPU resources (specified in

83

the config.json file in DATAVIEW project).

5.2.2 Reuse any trained NNWorkflow on new datasets in Web Interface

Similar to JAVA API, figure 18 shows a sample ordinary workflow constructed for

reusing a trained NNWorkflow model through dragging and dropping manner, user can

drag and drop modules (e.g. dataset, input file that stores trained model) from left-

/right side panels and construct the target workflow in web interface. In this figure,

the trained NNWorkflow model (in JSON format) is one of input files named GeneticN-

NWorkflow@749070052, which was the direct output from the subsection 5.1 (i.e. the

output file of NNWorkflow execution). The NNExecutor is a regular Task that forward the

trained neural network model (in JSON format) to NNWorkflowExecutor service, which

will execute the trained model with new dataset on the Local NVIDIA GPU of a PC.

Figure 18: Reuse a trained NNWorkflow model on new dataset in web interface

Thanks to the NNExecutor was constructed as an ordinary Task in DATAVIEW and its

constructed workflow is an ordinary workflow (instead of NNWorkflow), the workflow

can be executed by an ordinary workflow execution environment (e.g. the first and second

84

type of environments as described in figure 15), as long as the environment (e.g. local PC,

cloud) equiped with an NVIDIA local GPU.

Figure 19: Execution result of reusing a trained NNWorkflow model on new dataset in web
interface

Figure 19 shows the execution result by reusing the above mentioned NNWorkflow

trained model (GeneticNNWorkflow@749070052) on the new dataset. The result (in

JSON format) will be saved in a text file under the DATAVIEW project’s working direc-

tory, and include the information as follow: 1) prediction accuracy, which is predicted

by the trained model on the new dataset; 2) DeviceInfo, which shows the information of

device (e.g. a PC) running the target workflow.

5.3 Integrate NNTasks and ordinary Tasks in one comprehensive work-
flow

To further exploit NNTasks as a part of one comprehensive workflow, which consists of

both NNTasks and ordinary Tasks, DATAVIEW provides two options (programmtically&graphically)

for workflow users to integrate them in one comprehensive workflow. In this section, I will

present a simple use case of Ensemble Learning on neural networks, which includes 3

85

Figure 20: Design, construct and run a neural network ensemble learning workflow
through JAVA API

weak NNWorkflow classifiers, these classifiers are pre-trained NNWorkflow models on dif-

ferent portion of the breast cancer dataset. By leveraging these weak classifiers at the

same time and independently outputting their own predictions, the final prediction can be

derived through a voting process by choosing the majority votes from 3 classifiers.

5.3.1 Design, construct and run neural network ensemble learning workflow through
JAVA API

Such Neural Network ensemble learning workflow can be designed and constructed

through JAVA API (as showed in Figure 20). This comprehensive workflow has 1) 4 in-

puts, including three pre-trained NNWorkflow models (GeneticNNWorkflow@7490702,

@749070052, @7490503) and one dataset - Breast_cancer_data.csv; 2) 4 Tasks, includ-

ing three NNExecutor Tasks that are going to be executed in the GPU environment, and

one ordinary Ensemble_Vote Task, which is executed in the CPU environment; 3) and one

86

Figure 21: JAVA visualization of the neural network ensemble learning workflow

output file (output.txt). Figure 21 shows the visualization of this comprehensive workflow

when run it on a proper workflow executor (e.g. workflowExecutor_Beta, worklfowExecu-

tor_Local) in DATAVIEW. The intermediate outputs from NNExecutors will be pipelined as

inputs for the Ensemble_Vote Task (as showed in Table 27).

5.3.2 Design, construct and run neural network ensemble learning workflows in
web Interface

Similar to JAVA API, figure 22 shows how this comprehensive workflow can be con-

structed through a dragging and dropping manner, user can drag and drop either NNTasks

or ordinary Tasks to the working panel and connect their input/output ports via edges.

The constructed Neural Network Ensemble Learning workflow will be executed as a reg-

ular workflow, such that all regular workflow executors (WorkflowExecutor_local, Work-

flowExecutor_Beta) can be utilized. The execution result of this NN ensemble learning

workflow is showed in the figure 23, in which each 1/0 represents the voted outcome

(based on the 3 weak classifiers’ independent predictions) for a particular row/record in

87

Figure 22: Design, construct and run the neural network ensemble learning workflow in
web interface

Figure 23: Execution result of the neural network ensemble learning workflow in web
interface

the input dataset.

5.4 Extensibility of DLaaW in DATAVIEW

In this subsection, I will briefly walk through the up-to-date core DLaaW implementa-

tion in DATAVIEW, and analyze the extensibility of DLaaW within/beyond DATAVIEW in

long run. Hopefully this can be set as a base work for future developers and DATAVIEW

users who are likely to extend this work on more sophisticated DL workflows.

88

5.4.1 Current DLaaW implementation in DATAVIEW

Figure 24 shows the up-to-date class diagrams (include core classes in each component)

and the relationship among three newly introduced DL-specific components for DLaaW in

DATAVIEW (i.e. NNWorkflow Engine, GPU Resource Management and GPU services).

On the top tier of figure 24 shows the core JAVA class diagram of NNWorkflow En-

gine component, in which I outline a bounding box with red dash-line, outside which

are the cores workflow classes (e.g. Workflow, Task, ports) that have been implemented

in DATAVIEW prior this work, inside which are the newly implemented classes solely for

DLaaW approach in DATAVIEW. These newly implemented classes can be classified into

four categories: 1) NNTask class (which extends Task class) and its child classes (e.g. Lin-

ear, ReLU, Sigmoid), in which the NNTask class is the blueprint of any instantiated neural

network layers (i.e. NNLayers) in an NNWorkflow; 2) NNWorkflow class (which extends

Workflow class) and its child classes, in which the NNWorkflow class is the blueprint for

any instantiated neural network workflows (i.e. NNWorkflows); 3) NNWorkflowTrainer

class and its child classes, in which the NNWorkflowTrainer wraps the JSON Mapper mod-

ule and serves as the blueprint for any NNTrainers; 4) NNExcutor class (which extends

Task class) is a unified ordinary Task to reuse any trained NNWorkflow model on new

dataset in a comprehensive workflow in specified GPU infrastructure.

At the bottom tier of figure 24 shows the core CUDA class diagram of GPU services, in

which I listed out all major CUDA classes for constructing and executing an neural net-

work (e.g. NNLayer, NeuralNetwork, Matrix). These classes can also be classified into

three categories: 1) NNLayer and its child classes, in which the NNLayer class serves as a

89

Figure 24: Overall class diagrams of DLaaW in DATAVIEW

90

blueprint for any instantiated neural network layer to be implemented; 2) NeuronNetwork

class, in which NNLayers are concatenated as an array and all forward&backward prop-

agations have been properly implemented across any arbitrary combination of NNLayers;

3) Supporting classes (Matrix, shape, inputDataset, etc.), which are the supporting classes

to ensure calculation/data processing can be adequately and corectly taken care of.

The middle tier of figure 24 shows the GPU Resource Management module which

bridge the NNWorkflow Engine and GPU Services components together, which also im-

plemented by a base GPUResourceManagement class and its child classes, currently the

child classes are supporting JNI or MPI communication between JAVA and CUDA.

5.4.2 Extensibility analysis

In our approach, GPU Resource Management is introduced as an intermediate interface

between the NNWorkflow Engine and GPU Services components to gain implementation

independence and better future extendability, i.e., the higher layer will be built on abstrac-

tions and all concrete implementations in the lower layer be aligned with a standardized

interfacing protocol. As long as the intermediate abstractions do not change, changing

or adding any GPU service in the future will not require any modifications on the higher

level components. In NNWorkflow Engine component, I have provided blueprints on core

JAVA implementation NNTask (which will be extended by all JAVA NNLayer classes) and

NNWorkflow (which will be extended by all JAVA NNWorkflow classes). In GPU Services

component, I have provided blueprints on core CUDA implementation NNLayer (which

will be extended by all CUDA NNLayer classes) and NeuralNetwork classes (which will

be extended by all CUDA NeuralNetwork classes). In this way, I have carefully decoupled

the higher layer and lower layer implementations and provide all basic blueprints for core

91

classes (new features can be added or overridden in its deriving classes), the extensibility

should be carefully concerned and properly taken care of for a long run development in or

beyond DATAVIEW.

5.5 Conclusions and future work

By walking through the processes of designing, constructing, executing and reusing

any NNWorkflow in DATAVIEW through JAVA API and graphical web interface, and care-

fully analyzing the extensibility of newly added DL-specific components with their core

JAVA/CUDA classes. We can safely draw the conclusion that DLaaW provides very clean

and user-friendly interfaces (both in programmatically and graphically) to SWFMS com-

munity. Which meanwhile preserves the great extensibility for the future SWFMS devel-

opers and users, to further expanding their research territories to wider area base on this

work - DLaaW in DATAVIEW.

92

CHAPTER 6 CONCLUSIONS AND FUTURE WORK

Our research focuses on enabling GPU-based DL workflows in DATAVIEW, one of the

leading big data workflow system in the community. Our goal is to bring DL as native

functionalities into modern SWFMSs. Our main contributions are listing as follow:

1. First, we propose and implement a novel DLaaW (Deep-Learning-as-a-Workflow) ap-

proach in single GPU in DATAVIEW, more specifically, by extending its workflow and

task classes to two new subclasses: NNWorkflow and NNTask. This approach is

the first (to our best knowledge) that attempts to implement a DL neural network

as a native workflow in a workflow management system. Specifically, I introduce an

NNWorkflow Engine that wraps multi-type of NNTrainers, which are responsible

for executing NNWorkflows according to specific execution plans (e.g. regular train

and test, K-fold cross validation) using various types of underlying GPU resources.

I also implement a generic GPU Resource Management module, to leverage various

GPU resource configurations. The supported single GPU includes three options: the

local NVIDIA GPU of a host PC, a single NVIDIA Xavier SoM (System-on-Module),

and a single NVIDIA Nano SoM, for executing DL workflows in DATAVIEW. Our ap-

proach is validated through performance comparison with Keras-based counterpart

implementations.

2. Next, we extend the DLaaW on heterogeneous GPU cluster in DATAVIEW, by in-

troducing heterogeneous GPU clusters as a new type of GPU infrastructure for ac-

celerated training and execution of NNWorkflows, on which it evaluates how well

NNWorkflows can leverage the high-degree parallelism offered by a SWFMS in our

experiments. I also introduce and implement the graphical WebBench GUI to fa-

93

cilitate NNWorkflow design, construction, run, and reuse in DATAVIEW. To validate

our extended work, it conducts the performance comparison on DLaaW implementa-

tions and PyTorch-based counterparts (alternative to the Keras-based in our previous

work), to assure the validation of this work not only holds for one particular DL

library’s counterpart implementations.

3. Finally, we demonstrate the usability of DLaaW in DATAVIEW to SWFMS community.

The appealing intuitiveness of the JAVA API/web interface and superior extensibilty

of DLaaW add to the usability of DLaaW and DATAVIEW as a whole. Furthermore,

for incorporating DL as a part of comprehensive workflow, I extend DLaaW (espe-

cially the NNExecutor’s JAVA and CUDA services) to integrate NNTasks (which will

be executed in the GPU environment) and ordinary/traditional Tasks (which will be

executed in the CPU environment) in one comprehensive workflow. A use case of

the neural network ensemble learning, which derives the final prediction through

voting by multiple weak classifiers, has been successfully implemented and executed

in JAVA API and in web interface in DATAVIEW.

There are still many open problems to be solved, for example:

1. Scheduling DL workflows to the cloud: Currently, our DLaaW supports GPU in-

frastructures including a local GPU of host PC, a single SoM and a heterogeneous

GPU cluster. With the thriving of cloud computing in past decade, the latest trend

of workflow execution also shifted to cloud computing, for the sake of its superior

scalability and virtually infinite computing resources. Potential research problems

can be: how can we incorporate the DLaaW approach in the cloud? And how much

performance gain can DL workflows obtain by introducing so?

94

2. Optimizing DL workflows scheduling: For this moment, DL workflows can be stat-

ically scheduled via DLaaW to a single GPU or on multiple GPU nodes of a hetero-

geneous GPU cluster. With the growth of GPU infrastructure’s diversity and quantity,

a dynamic scheduling algorithm can be needed to schedule a DL workflow on vari-

ous infrastructure in order to gain the optimal QoS. And how much better can it be

compare with the static scheduling?

3. Let one DL workflows learn another: The provenance data of a complex training

process collected by underlying SWFMS platform can be analyzed and utilized to

optimize the DL models, i.e. the knowledge can be mined from the provenance

data, such as which inputs/hyperperameters have higher leverage on certain type of

output change, may suggest more/less weight updates for certain neurons, resulting

in a more enhanced "supervised" learning than training merely based on ground truth

values/labels. If so, the "black boxes" of deep neuron networks may potentially be

capable for looking into.

95

APPENDIX A

Appendix A Specifications of neural networks and their target datasets used in the

experiments can be found in Table 3. For each neural network and its target dataset, this

table provides 1) the neural network’s architecture design; 2) the specification of dataset;

3) the weights initialization mechanism; 4) the training hyperparameters; 5) the number

of splitting batches; 6) the number of training epochs.

Table 3: Specifications of neural networks and their target datasets.

Neural network
1

Neural network
2

Neural network
3

Neural network
4

Neural network
5

Model Arch
Design

4 layers: Lin-
ear(5,3), ReLU,
Linear(3,1), Sig-
moid

6 layers: Lin-
ear(8,5), ReLU,
Linear(5,3),
ReLU, Lin-
ear(3,1), Sig-
moid

4 layers: Lin-
ear(4,2), ReLU,
Linear(2,1), Sig-
moid

8 layers: Lin-
ear(13,8), ReLU,
Linear(8,5),
ReLU, Lin-
ear(5,3), ReLU,
Linear(3,1), Sig-
moid

8 layers: Lin-
ear(16,8), ReLU,
Linear(8,5),
ReLU, Lin-
ear(5,3), ReLU,
Linear(3,1), Sig-
moid

Target
Dataset

Breast Cancer
Dataset with 569
instances

Pima Indians
Diabetes Dataset
with 768 in-
stances

Data Banknote
Authentication
Dataset with
1372 instances

Electrical Grid
Stability Dataset
with 10000 in-
stances

Bank Marketing
Dataset with
45211 instances

Initialization Xavier weight
init [48], shuf-
fled input data

Xavier weight
init, shuffled
input data

Xavier weight
init, shuffled
input data

Xavier weight
init, shuffled
input data

Xavier weight
init, shuffled
input data

Training
Hyperparam-
eters

learningRate=0.1,
momentumSGD
=0.9

learningRate=0.1,
momentumSGD
=0.9

learningRate=0.1,
momentumSGD
=0.9

learningRate=0.1,
momentumSGD
=0.9

learningRate=0.1,
momentumSGD
=0.9

of batches 6 6 6 6 6
of Epochs 1000 1000 1000 1000 1000

96

APPENDIX B

The analytical derivatives of Linear layer, ReLU layer, Sigmoid layer and binary cross

entropy in our CUDA GPGPU implementation can be found as follow:

Linear Layer:

ReLU Layer:

Sigmoid Layer:

Binary cross entropy:

97

APPENDIX C

The specification of each GPU node (6 in total) in the heterogeneous GPU cluster are

printed out in Figure 25, including SoM type, SOC family, Cuda ARCH, etc.

Figure 25: Specification of each GPU node in the DATAVIEW GPU cluster

98

APPENDIX D

The memory utilization on each GPU node in the GPU cluster during the distributed

5-fold cross validation in DATAVIEW are printed out in Figure 26.

Figure 26: Memory utilization of each GPU node during distributed 5-fold cross validation

99

APPENDIX E

The intermediate outputs from 3 weak classifiers, which are served as the inputs of the

Ensemble_Vote Task in the neural network ensemble learning workflow are printed out in

Figure 27.

Figure 27: Intermediate outputs in the neural network ensemble learning workflow

100

REFERENCES

[1] MatConvNet: Convolutional Neural Networks for MATLAB.

[2] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,

A. Davis, J. Dean, M. Devin, et al. TensorFlow: Large-Scale Machine Learning on

Heterogeneous Distributed Systems. arXiv preprint arXiv:1603.04467, 2016.

[3] R. Abbott, T. Abbott, S. Abraham, F. Acernese, K. Ackley, A. Adams, C. Adams,

R. Adhikari, V. Adya, C. Affeldt, et al. GWTC-2: Compact Binary Coalescences

Observed by LIGO and Virgo during the First Half of the Third Observing Run.

Physical Review X, 11(2):021053, 2021.

[4] I. Ahmed, S. Lu, C. Bai, and F. A. Bhuyan. Diagnosis Recommendation Using Ma-

chine Learning Scientific Workflows. In 2018 IEEE International Congress on Big

Data (BigData Congress), pages 82–90. IEEE, 2018.

[5] Z. Akkus, J. Cai, A. Boonrod, A. Zeinoddini, A. D. Weston, K. A. Philbrick, and

B. J. Erickson. A Survey of Deep-Learning Applications in Ultrasound: Artificial

Intelligence–Powered Ultrasound for Improving Clinical Workflow. Journal of the

American College of Radiology, 16(9):1318–1328, 2019.

[6] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee, D. Pat-

terson, A. Rabkin, I. Stoica, et al. A View of Cloud Computing. Communications of

the ACM, 53(4):50–58, 2010.

[7] C. Bai, J. Liu, I. Ahmed, and S. Lu. DATAVIEW Release 2.1. https://github.com/

shiyonglu/DATAVIEW/releases/tag/2.1, 2019.

[8] F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra, I. Goodfellow, A. Bergeron,

https://github.com/shiyonglu/DATAVIEW/releases/tag/2.1
https://github.com/shiyonglu/DATAVIEW/releases/tag/2.1

101

N. Bouchard, D. Warde-Farley, and Y. Bengio. Theano: New features and speed

improvements. arXiv preprint arXiv:1211.5590, 2012.

[9] D. Bernstein. Containers and Cloud: From LXC to Docker to Kubernetes. IEEE Cloud

Computing, 1(3):81–84, 2014.

[10] M. R. Berthold, N. Cebron, F. Dill, T. R. Gabriel, T. Kötter, T. Meinl, P. Ohl, K. Thiel,

and B. Wiswedel. KNIME-the Konstanz Information Miner: Version 2.0 and Beyond.

AcM SIGKDD explorations Newsletter, 11(1):26–31, 2009.

[11] E. Bisong. Building Machine Learning and Deep Learning Models on Google Cloud

Platform: A comprehensive guide for beginners. Apress, 2019.

[12] A. Bouguettaya, M. Singh, M. Huhns, Q. Z. Sheng, H. Dong, Q. Yu, A. G. Neiat,

S. Mistry, B. Benatallah, B. Medjahed, et al. A Service Computing Manifesto: The

Next 10 Years. Communications of the ACM, 60(4):64–72, 2017.

[13] J. Chen and X. Ran. Deep Learning With Edge Computing: A Review. Proceedings

of the IEEE, 107(8):1655–1674, 2019.

[14] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu, C. Zhang, and

Z. Zhang. MXNet: A Flexible and Efficient Machine Learning Library for Heteroge-

neous Distributed Systems. arXiv preprint arXiv:1512.01274, 2015.

[15] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro, and

E. Shelhamer. cuDNN: Efficient Primitives for Deep Learning. arXiv preprint

arXiv:1410.0759, 2014.

[16] D. M. Chitty. A Data Parallel Approach to Genetic Programming Using Pro-

grammable Graphics Hardware. In Proceedings of the 9th annual conference on Ge-

netic and evolutionary computation, pages 1566–1573, 2007.

102

[17] G. P. Consortium. A Global Reference For Human Genetic Variation. Nature,

526(7571):68, 2015.

[18] P. Covas, A. Effler, E. Goetz, P. Meyers, A. Neunzert, M. Oliver, B. Pearlstone,

V. Roma, R. Schofield, V. Adya, et al. Identification and Mitigation of Narrow Spec-

tral Artifacts that Degrade Searches for Persistent Gravitational Waves in the first

two Observing Runs of Advanced LIGO. Physical Review D, 97(8):082002, 2018.

[19] R. F. da Silva, R. Filgueira, I. Pietri, M. Jiang, R. Sakellariou, and E. Deelman. A

Characterization of Workflow Management Systems for Extreme-scale Applications.

Future Generation Computer Systems, 75:228–238, 2017.

[20] S. Dargan, M. Kumar, M. R. Ayyagari, and G. Kumar. A Survey of Deep Learning and

Its Applications: A New Paradigm to Machine Learning. Archives of Computational

Methods in Engineering, 27(4):1071–1092, 2020.

[21] C. DeBrusk. The Risk of Machine Learning Bias (And How to Prevent It). MIT Sloan

Management Review, 2018.

[22] E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, S. Patil, M.-H. Su, K. Vahi,

and M. Livny. Pegasus: Mapping Scientific Workflows onto the Grid. In European

Across Grids Conference, pages 11–20. Springer, 2004.

[23] E. Deelman, R. F. da Silva, K. Vahi, M. Rynge, R. Mayani, R. Tanaka, W. Whitcup,

and M. Livny. The Pegasus Workflow Management System: Translational Computer

Science in Practice. Journal of Computational Science, 52:101200, 2021.

[24] E. Deelman, A. Mandal, M. Jiang, and R. Sakellariou. The Role of Machine Learning

in Scientific Workflows. The International Journal of High Performance Computing

Applications, 33(6):1128–1139, 2019.

103

[25] E. Deelman, T. Peterka, I. Altintas, C. D. Carothers, K. K. van Dam, K. Moreland,

M. Parashar, L. Ramakrishnan, M. Taufer, and J. Vetter. The Future of Scientific

Workflows. The International Journal of High Performance Computing Applications,

32(1):159–175, 2018.

[26] E. Deelman, G. Singh, M. Livny, B. Berriman, and J. Good. The Cost of Doing

Science on the Cloud: the Montage example. In SC’08: Proceedings of the 2008

ACM/IEEE conference on Supercomputing, pages 1–12. Ieee, 2008.

[27] J. Ding, M. Nemati, C. Ranaweera, and J. Choi. IoT Connectivity Technologies and

Applications: A Survey. arXiv preprint arXiv:2002.12646, 2020.

[28] F. K. Došilović, M. Brčić, and N. Hlupić. Explainable Artificial Intelligence: A Survey.

In 2018 41st International Convention on Information and Communication Technol-

ogy, Electronics and Microelectronics (MIPRO), pages 0210–0215. IEEE, 2018.

[29] D. Dua, C. Graff, et al. UCI Machine Learning Repository. 2017.

[30] J. Freire, D. Koop, F. Chirigati, and C. T. Silva. Reproducibility Using VisTrails. In

Implementing Reproducible Research, pages 33–56. Chapman and Hall/CRC, 2018.

[31] J. Fung and S. Mann. Computer Vision Signal Processing on Graphics Processing

Units. In 2004 IEEE International Conference on Acoustics, Speech, and Signal Pro-

cessing, volume 5, pages V–93. IEEE, 2004.

[32] J. Fung, F. Tang, and S. Mann. Mediated Reality using Computer Graphics Hardware

for Computer Vision. In Proceedings. Sixth International Symposium on Wearable

Computers,, pages 83–89. IEEE, 2002.

[33] C. A. Goble, J. Bhagat, S. Aleksejevs, D. Cruickshank, D. Michaelides, D. Newman,

M. Borkum, S. Bechhofer, M. Roos, P. Li, et al. myExperiment: A Repository and

104

Social Network for the Sharing of Bioinformatics Workflows. Nucleic acids research,

38(suppl_2):W677–W682, 2010.

[34] J. Goecks et al. Galaxy: A comprehensive Approach for Supporting Accessible, Re-

producible, and Transparent Computational Research in the Life Sciences. Genome

Biology, 11(8):R86, 2010.

[35] K. J. Goodman, S. M. Parker, J. W. Edmonds, and L. H. Zeglin. Expanding the

scale of aquatic sciences: the role of the National Ecological Observatory Network

(NEON). Freshwater Science, 34(1):377–385, 2015.

[36] A. Gulli, A. Kapoor, and S. Pal. Deep learning with TensorFlow 2 and Keras: regression,

ConvNets, GANs, RNNs, NLP, and more with TensorFlow 2 and the Keras API. Packt

Publishing Ltd, 2019.

[37] A. Gulli and S. Pal. Deep learning with Keras. Packt Publishing Ltd, 2017.

[38] O. Gupta and R. Raskar. Distributed Learning of Deep Neural Network over Multiple

Agents. Journal of Network and Computer Applications, 116:1–8, 2018.

[39] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten. The

WEKA data mining software: An Update. ACM SIGKDD explorations newsletter,

11(1):10–18, 2009.

[40] J. Herbst and D. Karagiannis. Integrating Machine Learning and Workflow Man-

agement to Support Acquisition and Adaptation of Workflow Models. Intelligent

Systems in Accounting, Finance & Management, 9(2):67–92, 2000.

[41] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama,

and T. Darrell. Caffe: Convolutional Architecture for Fast Feature Embedding. In

105

Proceedings of the 22nd ACM international conference on Multimedia, pages 675–678,

2014.

[42] Y. Kano et al. U-Compare: A modular NLP workflow construction and evaluation

system. J. Res. Dev, 55(3):11–1, 2011.

[43] D. Kaplan, J. Powell, and T. Woller. AMD Memory Encryption. White paper, 2016.

[44] A. Kashlev et al. Big data workflows: A reference architecture and the DATAVIEW

system. STBD, 4(1):1–19, 2017.

[45] A. Kashlev, S. Lu, and A. Chebotko. Typetheoretic Approach to the Shimming Prob-

lem in Scientific Workflows. IEEE Transactions on Services Computing, 8(5):795–

809, 2014.

[46] P. Kim. Matlab Deep Learning. With Machine Learning, Neural Networks and Artifi-

cial Intelligence, 130(21), 2017.

[47] J. Kranjc, R. Orač, et al. ClowdFlows: Online workflows for distributed big data

mining. FGCS, 68:38–58, 2017.

[48] S. K. Kumar. On Weight Initialization in Deep Neural Networks. arXiv preprint

arXiv:1704.08863, 2017.

[49] F. Li and F. Song. Building A Scientific Workflow Framework to Enable Real-Time

Machine Learning and Visualization. CCPE, 31(16):e4703, 2019.

[50] C. Lin, S. Lu, et al. A Reference Architecture for Scientific Workflow Management

Systems and the VIEW SOA Solution. TSC, 2(1):79–92, 2009.

[51] C. Lin, S. Lu, X. Fei, D. Pai, and J. Hua. A Task Abstraction and Mapping Approach

to the Shimming Problem in Scientific Workflows. In 2009 IEEE International Con-

ference on Services Computing, pages 284–291. IEEE, 2009.

106

[52] F. Liu, G. Tang, Y. Li, Z. Cai, X. Zhang, and T. Zhou. A Survey on Edge Computing

Systems and Tools. Proceedings of the IEEE, 107(8):1537–1562, 2019.

[53] J. Liu, C. Bai, and S. Lu. DATAVIEW Release 3.0. https://github.com/shiyonglu/

DATAVIEW/releases/tag/3.0, 2021.

[54] J. Liu, S. Lu, and D. Che. A Survey of Modern Scientific Workflow Scheduling Al-

gorithms and Systems in the Era of Big Data. In 2020 IEEE International Conference

on Services Computing (SCC), pages 132–141. IEEE, 2020.

[55] J. Liu, E. Pacitti, P. Valduriez, and M. Mattoso. A Survey of Data-intensive Scientific

Workflow Management. Journal of Grid Computing, 13(4):457–493, 2015.

[56] J. Liu, Z. Xiao, S. Lu, and D. Che. Deep-Learning-as-a-Workflow (DLaaW): An Inno-

vative Approach to Enabling Deep Learning in Scientific Workflows. In 2021 IEEE

International Conference on Big Data (Big Data), pages 3101–3106. IEEE, 2021.

[57] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones, E. A. Lee, J. Tao,

and Y. Zhao. Scientific Workflow Management and the Kepler System. Concurrency

and computation: Practice and experience, 18(10):1039–1065, 2006.

[58] E. Lyons, G. Papadimitriou, C. Wang, K. Thareja, P. Ruth, J. Villalobos, I. Rodero,

E. Deelman, M. Zink, and A. Mandal. Toward a Dynamic Network-Centric Dis-

tributed Cloud Platform for Scientific Workflows: A Case Study for Adaptive

Weather Sensing. In 15th IEEE eScience Conference, 2019.

[59] G. S. Mahmood, D. J. Huang, and B. A. Jaleel. Achieving an Effective, Confidential-

ity and Integrity of Data in Cloud Computing. IJ Network Security, 21(2):326–332,

2019.

https://github.com/shiyonglu/DATAVIEW/releases/tag/3.0
https://github.com/shiyonglu/DATAVIEW/releases/tag/3.0

107

[60] M. Malawski, G. Juve, E. Deelman, and J. Nabrzyski. Algorithms for Cost-

and Deadline-constrained Provisioning for Scientific Workflow Ensembles in IaaS

clouds. Future Generation Computer Systems, 48:1–18, 2015.

[61] F. McKeen, I. Alexandrovich, I. Anati, D. Caspi, S. Johnson, R. Leslie-Hurd, and

C. Rozas. Intel® Software Guard Extensions (intel® sgx) Support for Dynamic

Memory Management Inside an Enclave. In Proceedings of the Hardware and Archi-

tectural Support for Security and Privacy 2016, pages 1–9. 2016.

[62] R. Mitchell, L. Pottier, S. Jacobs, R. F. da Silva, M. Rynge, K. Vahi, and E. Deel-

man. Exploration of Workflow Management Systems Emerging Features from Users

Perspectives. In 2019 IEEE International Conference on Big Data (Big Data), pages

4537–4544. IEEE, 2019.

[63] T. Miu and P. Missier. Predicting the Execution Time of Workflow Activities Based

on Their Input Features. In 2012 SC Companion: High Performance Computing,

Networking Storage and Analysis, pages 64–72. IEEE, 2012.

[64] S. Mofrad, I. Ahmed, S. Lu, P. Yang, H. Cui, and F. Zhang. SecDATAVIEW: A Secure

Big Data Workflow Management System for Heterogeneous Computing Environ-

ments. In Proceedings of the 35th Annual Computer Security Applications Conference,

pages 390–403. ACM, 2019.

[65] A. Mohan, A. Kashlev, C. Bai, and S. Lu. DATAVIEW Release 2.0. https://github.

com/shiyonglu/DATAVIEW/releases/tag/2.0, 2019.

[66] M. L. Mondelli, T. Magalhães, G. Loss, M. Wilde, I. Foster, M. Mattoso, D. Katz,

H. Barbosa, A. T. R. de Vasconcelos, K. Ocaña, et al. BioWorkbench: A High-

https://github.com/shiyonglu/DATAVIEW/releases/tag/2.0
https://github.com/shiyonglu/DATAVIEW/releases/tag/2.0

108

Performance Framework for Managing and Analyzing Bioinformatics Experiments.

PeerJ, 6:e5551, 2018.

[67] F. Moradi, R. Stadler, and A. Johnsson. Performance Prediction in Dynamic Clouds

using Transfer Learning. In 2019 IFIP/IEEE Symposium on Integrated Network and

Service Management (IM), pages 242–250. IEEE, 2019.

[68] A. Nascimento, V. Olimpio, V. Silva, A. Paes, and D. de Oliveira. A Reinforcement

Learning Scheduling Strategy for Parallel Cloud-Based Workflows. In 2019 IEEE

international parallel and distributed processing symposium workshops (IPDPSW),

pages 817–824. IEEE, 2019.

[69] C. Nvidia. CUBLAS library programming guide. NVIDIA Corporation. edit, 1:1–237,

2007.

[70] P. Nyström et al. The TimeStudio Project: An open source scientific workflow system

for the behavioral and brain sciences. Behavior research methods, 48(2):542–552,

2016.

[71] T. Oinn, M. Addis, et al. Taverna: A Tool for the Composition and Enactment of

Bioinformatics Workflows. Bioinformatics, 20(17):3045–3054, 2004.

[72] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger, A. E. Lefohn, and

T. J. Purcell. A Survey of General-Purpose Computation on Graphics Hardware. In

Computer graphics forum, volume 26, pages 80–113. Wiley Online Library, 2007.

[73] J. Ozik, N. T. Collier, J. M. Wozniak, and C. Spagnuolo. From desktop to Large-Scale

Model Exploration with Swift/T. In 2016 Winter Simulation Conference (WSC),

pages 206–220. IEEE, 2016.

109

[74] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison,

L. Antiga, and A. Lerer. Automatic differentiation in PyTorch. 2017.

[75] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,

N. Gimelshein, L. Antiga, et al. PyTorch: An Imperative Style, High-Performance

Deep Learning Library. Advances in neural information processing systems, 32:8026–

8037, 2019.

[76] M. Perovšek, J. Kranjc, et al. TextFlows: A Visual Programming Platform for

Text Mining and Natural Language Processing. Science of Computer Programming,

121:128–152, 2016.

[77] W. L. Poehlman, M. Rynge, C. Branton, D. Balamurugan, and F. A. Feltus. OSG-GEM:

Gene Expression Matrix Construction Using the Open Science Grid. Bioinformatics

and Biology insights, 10:BBI–S38193, 2016.

[78] S. Pouyanfar, S. Sadiq, Y. Yan, H. Tian, Y. Tao, M. P. Reyes, M.-L. Shyu, S.-C. Chen,

and S. S. Iyengar. A Survey on Deep Learning: Algorithms, Techniques, and Appli-

cations. ACM Computing Surveys (CSUR), 51(5):1–36, 2018.

[79] N. Radosevic, M. Duckham, G.-J. Liu, and Q. Sun. Solar radiation modeling with

KNIME and Solar Analyst: Increasing environmental model reproducibility using

scientific workflows. Environmental Modelling & Software, 132:104780, 2020.

[80] M. Raghu and E. Schmidt. A Survey of Deep Learning for Scientific Discovery. arXiv

preprint arXiv:2003.11755, 2020.

[81] M. A. Rodriguez and R. Buyya. A Responsive Knapsack-based Algorithm for Re-

source Provisioning and Scheduling of Scientific Workflows in Clouds. In ICPP,

pages 839–848. IEEE, 2015.

110

[82] J. Sanders and E. Kandrot. CUDA by Example: An Introduction to General-Purpose

GPU Programming. Addison-Wesley Professional, 2010.

[83] D. Saxena, R. Gupta, and A. K. Singh. A Survey and Comparative Study on Multi-

Cloud Architectures: Emerging Issues And Challenges For Cloud Federation. arXiv

preprint arXiv:2108.12831, 2021.

[84] Y. L. Simmhan, B. Plale, and D. Gannon. A Survey of Data Provenance in e-Science.

ACM Sigmod Record, 34(3):31–36, 2005.

[85] M. J. Smith, C. Sala, J. M. Kanter, and K. Veeramachaneni. The Machine Learning

Bazaar: Harnessing the ML Ecosystem for Effective System Development. In Pro-

ceedings of the 2020 ACM SIGMOD International Conference on Management of Data,

pages 785–800, 2020.

[86] B. C. Stahl. Artificial Intelligence for a Better Future: An Ecosystem Perspective on the

Ethics of AI and Emerging Digital Technologies. Springer Nature, 2021.

[87] E. Stevens, L. Antiga, and T. Viehmann. Deep Learning with PyTorch. Manning

Publications, 2020.

[88] J. E. Stone, D. Gohara, and G. Shi. OpenCL: A Parallel Programming Standard for

Heterogeneous Computing Systems. Computing in Science & Engineering, 12(3):66,

2010.

[89] T. T. D. Team, R. Al-Rfou, G. Alain, A. Almahairi, C. Angermueller, D. Bahdanau,

N. Ballas, F. Bastien, J. Bayer, A. Belikov, et al. Theano: A Python framework for fast

computation of mathematical expressions. arXiv preprint arXiv:1605.02688, 2016.

[90] Z. Tong, X. Deng, H. Chen, J. Mei, and H. Liu. QL-HEFT: A Novel Machine Learning

Scheduling Scheme base on Cloud Computing Environment. Neural Computing &

111

Applications, 32(10), 2020.

[91] H. Topcuoglu, S. Hariri, et al. Performance-Effective and Low-Complexity Task

Scheduling for Heterogeneous Computing. TPDS, 13(3):260–274, 2002.

[92] J. Traub, Z. Kaoudi, J.-A. Quiané-Ruiz, and V. Markl. Agora: Bringing Together

Datasets, Algorithms, Models and More in a Unified Ecosystem [Vision]. ACM SIG-

MOD Record, 49(4):6–11, 2021.

[93] J. Traub, J.-A. Quiané-Ruiz, Z. Kaoudi, and V. Markl. Agora: A Unified As-

set Ecosystem Going Beyond Marketplaces and Cloud Services. arXiv preprint

arXiv:1909.03026, 2019.

[94] W. A. Warr. Scientific workflow systems: Pipeline Pilot and KNIME. Journal of

computer-aided molecular design, 26(7):801–804, 2012.

[95] C. J. Watkins and P. Dayan. Q-Learning. Machine learning, 8(3-4):279–292, 1992.

[96] D. Weitzel, B. Bockelman, D. A. Brown, P. Couvares, F. Würthwein, and E. F. Her-

nandez. Data Access for LIGO on the OSG. In Proceedings of the Practice and Expe-

rience in Advanced Research Computing 2017 on Sustainability, Success and Impact,

pages 1–6. 2017.

[97] P. Wieder, J. M. Butler, W. Theilmann, and R. Yahyapour. Service Level Agreements

for Cloud Computing. Springer Science & Business Media, 2011.

[98] S. Wienke, P. Springer, C. Terboven, and D. an Mey. OpenACC — First Experiences

with Real-World Applications. In European Conference on Parallel Processing, pages

859–870. Springer, 2012.

[99] M. Wilde et al. Swift: A language for distributed parallel scripting. Parallel Com-

puting, 37(9):633–652, 2011.

112

[100] G. L. Wojcik, M. Graff, K. K. Nishimura, R. Tao, J. Haessler, C. R. Gignoux, H. M.

Highland, Y. M. Patel, E. P. Sorokin, C. L. Avery, et al. Genetic Analyses of Diverse

Populations Improves Discovery for Complex Traits. Nature, 570(7762):514–518,

2019.

[101] J. M. Wozniak, T. G. Armstrong, M. Wilde, D. S. Katz, E. Lusk, and I. T. Fos-

ter. Swift/T: Large-Scale Application Composition via Distributed-Memory Dataflow

Processing. In 2013 13th IEEE/ACM International Symposium on Cluster, Cloud, and

Grid Computing, pages 95–102. IEEE, 2013.

[102] J. M. Wozniak, R. Jain, P. Balaprakash, J. Ozik, N. T. Collier, J. Bauer, F. Xia, T. Bret-

tin, R. Stevens, J. Mohd-Yusof, et al. CANDLE/Supervisor: A Workflow Framework

for Machine Learning Applied to Cancer Research. BMC bioinformatics, 19(18):59–

69, 2018.

[103] Q. Zhang, L. T. Yang, Z. Chen, and P. Li. A Survey on Deep Learning for Big Data.

Information Fusion, 42:146–157, 2018.

[104] C. Zheng, B. Tovar, and D. Thain. Deploying high throughput Scientific Workflows

on container schedulers with Makeflow and MESOS. In 2017 17th IEEE/ACM In-

ternational Symposium on Cluster, Cloud and Grid Computing (CCGRID), pages 130–

139. IEEE, 2017.

113

ABSTRACT

DEEP LEARNING AS NATIVE SCIENTIFIC WORKFLOWS
IN THE MODERN SWFMS - DATAVIEW

by

JUNWEN LIU

August 2022

Advisor: Dr. Shiyong Lu

Major: Computer Science

Degree: Doctor of Philosophy

Scientific workflow has become a common practice for scientists to effectively formal-

ize and structure complex scientific processes to accelerate many scientific discoveries in

numerous research fields. With the recent thriving of deep learning and it application in

broad scientific projects, there is a rising need for deep learning support in scientific work-

flow infrastructures. However, current GPU-enabled deep learning frameworks are devel-

oped separately, and their capabilities are not immediately accessible to scientific workflow

management systems (SWFMSs). Consequently, scientists have to handle deep learning as

a powerful tool outside of SWFMSs and then integrate it into workflows in an ad-hoc

manner. What workflow users pressingly need today is a user-friendly and well-integrated

SWFMS with built-in support of GPU-enabled deep learning as native (sub-)workflows so

that they can conveniently design, train, reuse, share, and include deep learning models

seamlessly into their scientific workflow projects. In this dissertation, I demonstrate our

research outcome in supporting GPU-enabled deep learning at the infrastructure level in

a popular SWFMS - DATAVIEW, which facilitates: 1) fast design, train and reuse neural

114

networks as native workflows per Deep-Learning-as-a-Workflow (DLaaW) via JAVA API or

WebBench GUI; 2) flexibly leverage various types of GPU resources for executing deep

learning workflows. 3) conveniently integrate NNTasks (tasks implementing neural net-

work capabilities) with ordinary workflow tasks in one comprehensive workflow through

JAVA API or GUI web interface. Our approach and implementations are thoroughly eval-

uated through experiments that demonstrate the efficacy and efficiency as compared to

conventional PyTorch-based and Keras-based implementations.

115

AUTOBIOGRAPHICAL STATEMENT

EDUCATION

• Doctor of Philosophy (Computer Science), April 2022
Wayne State University, Detroit, Michigan, United States

• Master of Science (Computer Science), August 2014
Wayne State University, Detroit, Michigan, United States

PUBLICATION

• Junwen Liu, Ziyun Xiao, Shiyong Lu, and Dunren Che. "Deep-Learning-as-a-Workflow
(DLaaW): An Innovative Approach to Enabling Deep Learning in Scientific Work-
flows." In 2021 IEEE International Conference on Big Data (Big Data), pp. 3101-
3106. IEEE, 2021.

• Junwen Liu, Shiyong Lu, and Dunren Che. "A Survey of Modern Scientific Workflow
Scheduling Algorithms and Systems in the Era of Big Data." In 2020 IEEE Interna-
tional Conference on Services Computing (SCC), pp. 132-141. IEEE, 2020.

• Junwen Liu, Ziyun Xiao, Shiyong Lu, Dunren Che, Ming Dong, and Changxin Bai.
"Infrastructure-level Support for GPU-Enabled Deep Learning in DATAVIEW." In Proc.
of the IEEE Transactions on Services Computing Journal, 2022. (submitted).

• Junwen Liu, Shiyong Lu, and Dunren Che. "A Survey on Scientific Workflow Schedul-
ing Algorithms in the Cloud." In Proc. of the Future Generation Computer Systems
Journal, 2022. (submitted).

• Changxin Bai, Shiyong Lu, Dunren Che, and Junwen Liu. "Deadline-Constrained Big
Data Workflow Scheduling in the Cloud: the LPOD Algorithm." In Proc. of the IEEE
Transactions on Services Computing Journal, 2021. (submitted).

• Changxin Bai, Junwen Liu, Shiyong Lu, and Dunren Che. "A Generic Efficient Work-
flow Executor for the Optimizations of Run-time Execution Of Workflow Schedules."
In Proc. of the IEEE International Conference on Services Computing (SCC), 2022.
(submitted).

TEACHING

• CSC4110: Software Engineering, Spring/Summer 2021
Wayne State University, Detroit, Michigan, United States

• CSC4710: Introduction to Database Management Systems, Spring/Summer 2020
Wayne State University, Detroit, Michigan, United States

	Deep Learning As Native Scientific Workflows In The Modern Swfms - Dataview
	Recommended Citation

	DEDICATION
	ACKNOWLEDGEMENTS
	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	Scientific workflow and artificial intelligence
	Statement of the problems
	Organization of this dissertation

	RELATED WORK
	Modern SWFMSs
	SWFMS: goals, requirements and challenges
	Representative SWFMSs

	ML in SWFMSs
	GPU-based DL

	DEEP-LEARNING-AS-A-WORKFLOW (DLAAW) ON SINGLE GPU IN DATAVIEW
	Introduction
	Challenges of integrating GPU-enabled DL in SWFMSs
	NNWorkflows construction Challenge
	CPU/GPU communication Challenge
	Challenge of neural network implementation in GPU
	CPU and GPU I/O overhead Challenge
	NNWorkflow dynamic mapping Challenge
	Challenge of uniformly supporting diverse GPU types

	Our Approach and Implementation
	Experiments
	Hardware and Datasets
	Experiment Results

	Conclusions and future work

	DEEP-LEARNING-AS-A-WORKFLOW (DLAAW) EXTENDED ON HETEROGENEOUS GPU CLUSTER IN DATAVIEW
	Introduction
	Architecture
	NNWorkflow Engine Component
	GPU Resource Management Component
	GPU Services Component

	Implementation
	User Interfaces: GUI and JAVA API for Workflow/NNWorkflow design, construct, run and reuse
	NNWorkflow Engine: from native NNWorkflow to GPU recognizable specification
	GPU Resource Management: Universal gateway to route specification to target GPU services
	GPU Services: Execute neural networks

	Experiments
	Hardware
	Datasets
	Experiment Results

	Conclusions and future work

	THE USABILITY OF DEEP-LEARNING-AS-A-WORKFLOW (DLAAW) TO THE SWFMS COMMUNITY
	Design, construct and execute an NNWorkflow in DATAVIEW
	Design, construct and execute an NNWorkflow through JAVA API
	Design, construct and execute an NNWorkflow in Web Interface

	Reuse any trained NNWorkflow models on new datasets in DATAVIEW
	Reuse any trained NNWorkflow on new datasets through JAVA API
	Reuse any trained NNWorkflow on new datasets in Web Interface

	Integrate NNTasks and ordinary Tasks in one comprehensive workflow
	Design, construct and run neural network ensemble learning workflow through JAVA API
	Design, construct and run neural network ensemble learning workflows in web Interface

	Extensibility of DLaaW in DATAVIEW
	Current DLaaW implementation in DATAVIEW
	Extensibility analysis

	Conclusions and future work

	CONCLUSIONS AND FUTURE WORK
	APPENDIX A
	APPENDIX B
	APPENDIX C
	APPENDIX D
	APPENDIX E
	REFERENCES
	ABSTRACT
	AUTOBIOGRAPHICAL STATEMENT

