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CHAPTER 1 INTRODUCTION

1.1 Background

The amount of collected data is rapidly increasing, and the revolution of data

collection has created different kinds of data analytics. Modern data processing plat-

forms can load collected big data sets and prepare them for analysis within seconds

these days. In the meantime, data-driven businesses analyze more data and dive

deeper into analytics than ever before. Descriptive analytics, predictive analytics,

and prescriptive analytics are the three dominant types of analytics, transforming the

data exploration and examination into insights to make better and smarter decisions.

Each of these analytics process the data to answer different questions.

Descriptive analytics: Descriptive analytics is the most basic and commonly used

form of data analytics that looks at data statistically to answer “What has happened?”.

This analytics aims to learn from the past by aggregating and mining the data and

using simple maths and statistical tools.

Predictive analytics: Predictive analytics focuses on predicting and understanding

“What could happen?”. It analyzes the past data patterns and trends by leveraging

forecasting algorithms, statistical tools, and machine learning models. Then, it at-

tempts to forecast the best possible future outcomes and their likelihood.

Prescriptive analytics: Prescriptive analytics recommends the best possible courses

of action based on the best possible future scenarios. To achieve the best outcomes,

prescriptive analytics uses simulation and optimization algorithms to answer “What

should be done?”.
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In summary, prescriptive analytics is the next step of predictive analytics that

seeks solutions to transform data into a good decision rather than a good prediction.

We can talk about a good prediction as long as it provides good decisions. However,

all the predictive methods measure the quality of predictions based on the degree

of closeness between actual and predicted responses, such as mean squared error,

maximum likelihood, or cross-entropy. The one point overlooked is the quality of

these predictions must be measured based on the decisions that these predictions

lead us in a business environment.

Although there has been increasing research interest in combining predictive and

prescriptive analytics to improve the quality of decisions, it is still an open challenge

to address this issue and leverage the available data to better future actions. To this

end, this dissertation focuses on developing new frameworks using machine learn-

ing and mathematical optimization techniques under different circumstances. The

common point of all the developed frameworks is that they evaluate the prediction

performance based on decision quality.

1.2 Motivation

Despite all the machine learning area developments, traditional stochastic and

robust optimization techniques are still being employed to overcome uncertainty in

the parameters of decision models. Point estimate-based solutions like "first predict,

then optimize" do not provide a good decision since the effect of these predictions
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are not considered in the prescription stage. In today’s data-rich world, learning al-

gorithms’ performance is measured based on the closeness between predicted and

actual responses. It is a need to evaluate the performance of learning algorithms

based on the decision qualities and integrate predictive and prescriptive analytics

frameworks to improve the accuracy of the predictions most relevant for the optimal

decisions.

1.3 Research Objectives

In this dissertation, the overall goal is to develop integrated frameworks for per-

forming predictive and prescriptive analytics concurrently to realize the best prescrip-

tive performance under uncertainty; simultaneously, these frameworks should be ap-

plicable to all prescriptive tasks involving uncertainty. These frameworks should be

scalable and capable of handling integrated predictive and prescriptive tasks with

a reasonable computational effort and enabling users to apply decomposition algo-

rithms for large-scale problems. Further, these frameworks should be able to accom-

modate prediction tasks ranging from simple regression to more complex black-box

neural network models. Accordingly, this dissertation has the following research ob-

jectives:

1. Developing an integrated analytical framework for regression-based prediction

and mathematical programming-based prescription tasks as a bilevel program.

While the lower-level problem prescribes decisions based on the predicted out-
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come for a specific observation, the upper-level evaluates the quality of the de-

cision regarding true parameters. The upper-level problem can be considered

as a prescriptive error, and the goal is to minimize this prescriptive error.

(a) Offering different approaches to control the "the prescription generaliza-

tion error" associated with out-of-sample observation in order to achieve

the same performance in external data (test) compared to internal data

(train).

(b) For large dimensional problems, developing a scalable method to solve

the resulting bilevel formulation and solving the generated sub-problems

in parallel-working slave nodes, then sending the results to the master

node for evaluation and preparation for the next iteration if the criteria

are not satisfied.

(c) Comparing the results with traditional methods such as stochastic opti-

mization, point-estimate-based optimization, and recently developed com-

peting methods from the literature in order to show the performance of

integrated methodology.

2. Developing an integrated learning framework for neural network-based predic-

tion and optimization tasks as a nested neural network. While the predictive

neural network promotes decisions based on predicted outcomes, the prescrip-

tive neural network evaluates the quality of predicted decisions with respect to

true values. Extending this integrated learning framework for fully or partially
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known prescription tasks.

(a) For large dimensional problems, developing a scalable method to train the

nested neural network, training each prescriptive scenario with respect to

the predictive task, then updating predictive weights by aggregating the

scenario-based derivatives until convergence or a maximum number of

iteration is reached.

(b) Proposing a weight initialization process for nested neural networks to

improve convergence by starting a zero-constrained violation in the pre-

scription task or starting with a suitable prescription representation.

(c) Demonstrating the effectiveness of proposed nested neural network archi-

tectures and comparing results with recently developed methodology.

1.4 Dissertation Organization

Now that we address the problem in predictive and prescriptive areas, the rest

of this dissertation is framed as follow. In Chapter 2, We build an integrated op-

timization framework for both predictive and prescriptive tasks in the light of our

objectives where the prescriptive model is fully known (objective function and con-

straints). We show the power of integrated optimization with two examples, and we

offer ways of controlling the generalization error for the sake of consistent test re-

sults. We also introduce a decomposition algorithm to solve the resulting integrated

optimization framework. In Chapter 3, we build different integrated learning frame-
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works for the predictive and prescriptive tasks where the prescriptive task is known

fully or partially to decision-makers. We also propose a weight initialization process

and decomposition technique for large-scale problems. In Chapter 4, we discuss what

has been achieved so far based on our motivation and objectives. We offer some con-

cluding remarks for this dissertation and define future work extensions.

1.5 Notations

There are different variables and parameters in prediction and prescription tasks.

In real-world examples, prediction tasks mainly have their own components, fea-

ture data, response data, and the parameters connecting these two via a function.

As for prescription tasks, we generally have cost vector parameters in the objective

function,right-hand and left-hand side parameters in the constraints, and decision

variables. Our interest in this dissertation is to fit a function with responses and fea-

ture data and feed prescriptive model parameters by this fitted function. For the sake

of uniformity, we use the same notation for the rest of this dissertation. We indicate

feature data as X, responses as Y , the parameter of the predictive algorithm as β,

and decision variables as Z. Responses indicated by Y serve as a bridge connecting

predictive and prescriptive tasks.
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CHAPTER 2 INTEGRATED OPTIMIZATION OF PREDICTIVE AND
PRESCRIPTIVE TASKS

2.1 Introduction

Today we are living in a world called the information age. The exponential

growth of data availability, ease of accessibility in computational power, and more ef-

ficient optimization techniques have paved the way for massive developments in the

field of predictive analytic. Particularly when organizations have realized the ben-

efits of predictive methods in improving their efficiency and gaining an advantage

over their competitors, these predictive techniques become more powerful. There is

a mutual relationship between predictive and prescriptive analytics. We cannot deny

the role of optimization techniques while obtaining predictive models because most

of the predictive models are trained over the minimization of a loss or maximization

of a gain function. On the other hand, prescriptive models containing uncertainty

need the estimated inputs from predictive analytics to handle uncertainty in opti-

mization parameters. Although these statistical (machine) learning methods have

been provided well-aimed predictions for uncertain parameters in many different

fields of science, scenario-based stochastic optimization introduced by Dantzig [9]

and similar works in [8, 19, 15, 20] are widely preferred techniques in order to

tackle uncertainty in decision problems. One of the reasons why these stochastic or

robust optimization methods or similar solutions provided by Ben-Tal et al. [4] and

Bertsimas et al. [6] do perform better than point estimate-based optimization is that

training process of statistical learning methods does not take into account optimal
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actions because traditional learning algorithms measure prediction quality based on

the degree of closeness between true and predicted values. This gap between pre-

scriptive and predictive analytics leads point estimate-based decisions to a failure in

the prescription phase.

In order to visualize our motivation, imagine a newsvendor problem with a cost

function, Cost = Ch(Z − Y )+ + Cb(Y − Z)+, containing holding cost (Ch) and back-

ordering cost (Cb) with demand parameter (Y ), and let’s assume the historical data

D = {(X̃n, Ỹ n)}n∈N = (X̃, Ỹ ) for the demand Y and explanatory features X is given.

In the company of feature data, a predictive regression model can be built for future

demand as Ŷ = ψ(X̃, β̂) where β̂ = argmin
β

(Ỹ − ψ(X̃, β))T (Ỹ − ψ(X̃, β)) in order to

minimize cost function. However, the training criteria of this predictive regression

model will be based on the closeness between true and predicted responses via a loss

function which is mean squared error in our case, the predictive regression model

will not capture the effect of holding and backordering costs in the cost function,

and future predictions will most probably fail in the prescription stage. In Figure 1a,

one predictive regression and two different prescriptive regression models (consider-

ing holding and backordering costs) are presented based on two different scenario.

When backordering cost is greater than holding cost, using prescriptive regression 1

gives a lower cost on the average since it keeps predictions higher in order to avoid

shortage cost as seen in Figure 1b. Similarly, when holding cost is greater than back-

ordering cost, using prescriptive regression 2 gives a lower cost on the average since

it keeps predictions lower in order to avoid holding cost as seen in Figure 1c. The
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(a) Regression Models (b) Predictive Reg. vs Prescriptive Reg 1 (c) Predictive Reg. vs Prescriptive Reg 2

Figure 1: Comparison of Predictive and Prescriptive Regression Models Based on
Cost Function

question is how to obtain such a predictive model directly caring the characteristics

of the prescriptive model.

In this chapter, our purpose is to build a framework for a predictive regression

model caring for the characteristics of the prescriptive model and providing the best

decisions. We will call our framework as "Integrated Predictive and Prescriptive Op-

timization" (IPPO). While IPPO is seeking the most accurate predictive regression

model, the desired predictive regression model will tackle uncertainty by providing

the best actions in the prescription stage.

2.2 Related Work

There have been recent developments in supervised machine learning algorithms

(classification and regression tasks), but no matter what kind of learning algorithm is

employed, the common and final task is generally to train these algorithms in order
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to find the closest predictions to true values.

The latest works in the literature show that scientists realize that training ma-

chine learning models solely based on a prediction criterion like mean squared error,

mean absolute error, or log-likelihood loss is not enough when these noisy predic-

tions will be parameters of prescription tasks. Bengio [5] is one of the first works

considering this issue and building an integrated framework for both prediction and

prescription tasks. He emphasized the importance of the evaluation criteria of pre-

dictive tasks. His neural network model was not designed to minimize prediction

error but instead to maximize a financial task where those noisy predictions are used

as input.

Another integrated framework developed by Kao et al.[14] trains parameters of a

regression model based on an unconstrained optimization problem with a quadratic

cost function. It is a hybrid algorithm between ordinary least square and empirical

optimization. Tulabandhula and Rudin [23] minimizes a weighted combination of

prediction error and operational cost, but they ignore that the operational cost must

be assessed based on the true parameters instead of the predicted parameters. Bert-

simas and Kallus [7] add a new dimension to this field by introducing the conditional

stochastic optimization term. This simple but efficient idea leverages non-parametric

machine learning methods in order to assign weights into train data points for a

given test data point, then calculates optimal decisions over stochastic optimization

based on calculated weights. However, this methodology is using machine learning
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tools outside of the prescription problem. A different approach developed by Ban and

Rudin [2] considers the decision variables as a function of auxiliary (feature) data,

but this method may fail if the connection between optimal decisions and uncer-

tain parameters is weak in a constrained optimization problem or may end up with

indefeasible decisions. Oroojlooyjadid et al.[17] and Zhang and Gao [25] built an

extension of the work provided by Ban and Rudin [2] since both of them approach

to the solution from the same perspective, but they solve the problem via neural

network to capture the non-linearity between auxiliary (feature) data and optimal

decisions.

One more neural network-based integrated task is proposed by Donti et al. [11],

and primarily they focus on quadratic stochastic optimization problems since they

are tuning neural network parameters by differentiating the optimization solution to

a stochastic programming problem.

One of the latest works in integrating predictive and prescriptive tasks is devel-

oped by Elmachtoub and Grigas [12] by introducing a new loss function called as

SPO+. This framework aims to find the parameter of linear regression model in-

side of decision problem via SPO+ loss function. This method aims to minimize the

difference between objective value provided by true parameters and objective value

where decisions provided by predicted parameters are assessed.
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2.3 Integrated Predictive and Prescriptive Optimization

Given a decision problem (DP) with parameter uncertainty, our goal is to estimate

the predictive relationship between responses (uncertain parameters of the decision

problem) and a set of input features such that the prescriptive modeling of the deci-

sion problem using the predicted responses results in the best decisions. We consider

decision problems that can be formulated as an optimization model. Further, the sta-

tistical relationship between uncertain parameters (Y) and input features (X) can be

approximated through a parametric regression model, i.e., Y = ψ(X, β) + ε, where β

is a vector of k parameters and ε is an error term and ψ(·) is some function describ-

ing the relationship between Y and X. Without loss of generality, given the estimates

Ŷ = (Ŷo, Ŷc) of uncertain parameters Y = (Yo, Yc), we define the deterministic deci-

sion problem (DP) as follows:

min
Z

f(Z; Ŷo) (2.1a)

s.t. h(Z; Ŷc) = 0 (2.1b)

In the above formulation, Z denotes the decision variables, and Ŷ = (Ŷo, Ŷc) de-

notes the estimates of the uncertain parameters in the objective and constraints set,

respectively. Let (Ẑ) denotes the optimal solution of DP given Ŷ = (Ŷo, Ŷc), i.e.

Ẑ = argmin
Z
{f(Z; Ŷo) satisfying constraint 2.1b}. The uncertain parameters in DP are

estimated through a parametric regression model. Let’s assume given the historical

data D = {(X̃n, Ỹ n)}n∈N = (X̃, Ỹ ) for the response Y and explanatory features X, the
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prediction problem (PP) using parametric regression is expressed as:

β̂ = argmin
β

(Ỹ − ψ(X̃, β))T (Ỹ − ψ(X̃, β)) (2.2)

In classical approach, the predictive (PP) and prescriptive (DP) tasks which are often

treated independently and often in a sequence, i.e., first predict Ŷ = ψ(X̃, β̂) (using

PP) and then prescribe (using DP). This process is illustrated in Figure 2.

Figure 2: Independent Framework

We herein develop an integrated framework joining the predictive (PP) and pre-

scriptive (DP). Three modules of the integration framework are as follows:

1. Given a set of independent features, a predictive regression model generating

responses which are input to the optimization model as part of the input pa-

rameter set (Module 1),

2. An optimization model prescribing decisions based on input parameters (Mod-

ule 2),

3. Another optimization model evaluating the quality of prescribed decisions with
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respect to ground truth in the response space and updating the parameters of

the predictive model (Module 3).

Figure 3 illustrates these three modules. The sequential predictive and prescriptive

tasks (modules 1 and 2) are concurrently optimized through the module 3. While

module 1 is a prediction model, modules 2 and 3 are decision optimization problems

with their respective decisions influencing one another. The embedding structure of

modules 1 and 2 within module 3 is similar to those of bilevel optimization problems.

Hence, we model the integration framework as a nested optimization model. In

the next section, we model the integrated prediction and prescription problem as a

bilevel optimization model.

Figure 3: Integrated Framework

2.3.1 Bilevel Models and Solving Techniques

Bilevel problems are nested optimization problems where an upper-level opti-

mization problem is constrained by a lower-level optimization problem [3]. A com-

mon application of the bilevel problems is a static leader-follower game in economics
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[21], where the upper-level decision-maker (leader) has complete knowledge of the

lower-level problem (follower). Decision variables of the upper-level serve as param-

eters of the lower-level.

We model the integrated framework for the prediction and prescription tasks

as a bilevel optimization problem. The upper-level problem jointly determines the

parameters of the regression model (β) and prescription decisions. At the lower-

level, we make decisions with the help of predicted parameters, and we evaluate

these decisions with respect to true parameters by fixing those prediction based "here-

and-now" decisions (Ẑf) at the upper-level problem in constraint 2.3c, so that we

integrate all proposed steps in one framework formulated as in (2.3a)-(2.3e).

min
Zf ,Zs,β

F (Zf , Zs) (2.3a)

s.t. Gi(Zf , Zs; Ỹ ) ≤ 0 ∀i ∈ I (2.3b)

Zf = Ẑf (2.3c)

min
Ẑf ,Ẑs

F (Ẑf , Ẑs) (2.3d)

s.t. Gi(Ẑf , Ẑs; Ŷ = ψ(X̃, β)) ≤ 0 ∀i ∈ I (2.3e)

The most popular solution technique for bilevel optimization problems is to transform

the bilevel problem into a single-level problem by replacing the objective function of

the lower-level problem with Karush–Kuhn–Tucker (KKT) conditions [3]. The KKT

conditions appear as dual and complementary slackness constraints. Duality con-
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straint appears in 2.4e where ∇ represents the derivative of the Lagrangian function

(Γ) with respect to the lower-level problem decisions variables. Because of the com-

plementary slackness constraint, KKT conditions require convexity, so this approach

is limited to convex lower-level problems. Complementary slackness constraint in

2.4f converts model into a non-linear problem; thus, these constraints are replaced

with logic constraints by defining new binary variables and sufficiently enough an

M parameter. With this final touch, the bilevel model turns into a mixed-integer

problem, and traditional solvers can solve it as in form (2.4a)-(2.4g).

min
Zf ,Zs,β

Ẑf ,Ẑs,πi

F (Zf , Zs) (2.4a)

s.t. Gi(Zf , Zs; Ỹ ) ≤ 0 ∀i ∈ I (2.4b)

Zf = Ẑf (2.4c)

Gi(Ẑf , Ẑs; Ŷ ) ≤ 0 ∀i ∈ I (2.4d)

∇Ẑf ,Ẑs
Γ(Ẑf , Ẑs, πi) = 0 (2.4e)

Gi(Ẑf , Ẑs; Ŷ )πi = 0 ∀i ∈ I (2.4f)

πi ≥ 0 ∀i ∈ I (2.4g)

where

Γ(Ẑf , Ẑs, πi) = F (Ẑf , Ẑs) +
∑
i∈I

πiGi(Ẑf , Ẑs; Ŷ )

Ŷ = ψ(X̃, β)
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2.3.2 Controlling Generalization Error in IPPO

Our model is developed based on finding the best decision in the train data set.

In order to ensure the quality of the prediction model in the external data set, we

propose three different ways to control generalization error within this framework

by regularizing predictive model parameters. The first method is to rewrite objective

function as weighted average of predictive error and prescriptive error as shown

in formulation (2.5a)-(2.5e) where 0 ≤ λ1 ≤ 1. When λ1 = 1, we solve a pure

bilevel optimization model without generalization error. When λ1 = 0, we ignore the

prescription part and optimize directly predictive algorithm solely, and that leads us

to point estimate-based prescriptions.

min
Zf ,Zs,β

λ1F (Zf , Zs) + (1− λ1)L(Ỹ , Ŷ = ψ(X̃, β)) (2.5a)

s.t. Gi(Zf , Zs; Ỹ ) ≤ 0 ∀i ∈ I (2.5b)

Zf = Ẑf (2.5c)

min
Ẑf ,Ẑs

F (Ẑf , Ẑs) (2.5d)

s.t. Gi(Ẑf , Ẑs; Ŷ = ψ(X̃, β)) ≤ 0 ∀i ∈ I (2.5e)

The second method uses predictive error term again, but in a way that a constraint

can restrict it. However, this restriction cannot be less than the loss value which

is provided by the predictive model solely because constraining loss less than the

optimal (L∗) makes the optimization model indefeasible. This method is shown in
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formulation (2.6a)-(2.6f) with a restriction parameter λ2 ≥ 1.

min
Zf ,Zs,β

F (Zf , Zs) (2.6a)

s.t. Gi(Zf , Zs; Ỹ ) ≤ 0 ∀i ∈ I (2.6b)

L(Ỹ , Ŷ = ψ(X̃, β)) ≤ λ2L
∗ (2.6c)

Zf = Ẑf (2.6d)

min
Ẑf ,Ẑs

F (Ẑf , Ẑs) (2.6e)

s.t. Gi(Ẑf , Ẑs; Ŷ = ψ(X̃, β)) ≤ 0 ∀i ∈ I (2.6f)

The last method is to shrink predictive model parameters by penalizing with a penalty

coefficient λ3 ≥ 0 as Tibshirani [22] introduced, this model is formulated in (2.7a)-

(2.7e).

min
Zf ,Zs,β

F (Zf , Zs) + λ3β
Tβ (2.7a)

s.t. Gi(Zf , Zs; Ỹ ) ≤ 0 ∀i ∈ I (2.7b)

Zf = Ẑf (2.7c)

min
Ẑf ,Ẑs

F (Ẑf , Ẑs) (2.7d)

s.t. Gi(Ẑf , Ẑs; Ŷ = ψ(X̃, β)) ≤ 0 ∀i ∈ I (2.7e)



19

2.3.3 Proposed Decomposition Method for IPPO

Bilevel optimization problems are NP-hard, and it is not easy to solve. However,

our proposed predictive and prescriptive integrated methodology has a unique fea-

ture. All the defined variables belong to their own scenario except the regression

parameters. Regression parameters are common for all scenarios. After converting

bilevel to a single-level problem by applying KKT conditions, our model becomes

a two-stage mixed-integer program whose first stage variables are regression pa-

rameters. Here, we create copies of regression parameters across all scenarios and

make the problem fully scenario-based decomposable, but we need to include a non-

anticipativity or implementability constraint to ensure all regression parameters are

equal to each other for all scenarios. Progressive hedging algorithm (PHA) proposed

by Rockafellar and Wets [18] can be used as decomposition techniques for our two-

stage mixed-integer problem. In our framework, we will provide the best candidate

solution as initial regression parameters for depicted Figure 3, and PHA solves all sce-

nario problems independently, then we wıll update regression parameters ıteratıvely.

These steps repeat until convergence is satisfied.

min
Zf ,Zs

cfZf +
∑
n∈N

csZs
n (2.8a)

s.t. aZf ≥ b (2.8b)

tnZ
f + wnZ

s
n ≥ rn ∀n ∈ N (2.8c)
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For better understanding, let’s consider the formulation in (2.8a)-(2.8c), Zf indicates

first stage variable, and Zs
n indicates second stage variable for nth scenario.

min
Zf ,Zs,Zd

∑
n∈N

(cfZd
n + csZs

n) (2.9a)

s.t. aZd
n ≥ b ∀n ∈ N (2.9b)

tnZ
d
n + wnZ

s
n ≥ rn ∀n ∈ N (2.9c)

Zd
n − Zf = 0 ∀n ∈ N (2.9d)

In the formulation (2.9a)-(2.9d), first stage variable is duplicated, and Zd
n variables

are created for each scenario, but they are linked via non-anticipativity constraint

2.9d. By relaxing constraint 2.9d, all scenarios can be easily solved in a parallel.

PHA iterates and converges to a common solution taking into account all the

scenarios belonging to the original problem. We show the details and steps for basic

PHA in Algorithm 1. Let ρ > 0 be penalty factor, δ be stopping criteria, and ω be dual

prices for non-anticipativity constraint 2.9d.
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Algorithm 1: The Progressive Hedging Algorithm

1 Initialization

2 k = 0

3 Zd,k
n = argmin

Zd,Zs

(cfZd
n + csZs

n) s.t. 2.9b-2.9c ∀n ∈ N

4 Z
k

=

∑
n∈N

Zd,k
n

|N |

5 ωkn = ρ(Zd,k
n − Z

k
) ∀n ∈ N

6 Iteration Update

7 k = k + 1

8 Decomposition

9 Zd,k
n = argmin

Zd,Zs

(cfZd
n + csZs

n +ωk−1n Zd
n + ρ

2
(Zd

n−Z
k−1

)2 s.t. 2.9b-2.9c ∀n ∈ N

10 Z
k

=

∑
n∈N

Zd,k
n

|N |

11 ωkn = ωk−1n + ρ(Zd,k
n − Z

k
) ∀n ∈ N

12 Convergence Check

13 If all scenario solutions Zd,k
n are equal with at most δ deviation, stop. Else, go to

step 6.

2.4 Experimental Study

In this part, we discuss why and how we select the predictive and prescriptive

models, and then we will introduce the parameters and variables of these two tasks.

Next, we explain the data creation process step by step, and we will show the formu-

lation of the integrated predictive and prescriptive task.
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2.4.1 Prescriptive and Predictive Model Selection

We validate the performance of integrated predictive and prescriptive methodol-

ogy and compare it with various well-known and recently developed methods. We

perform numerical experiments on two different prescriptive models. The first one

is a well-known newsvendor problem used by Ban and Rudin [2], but we extend it

from a single product to a multi-product newsvendor problem (dp = 12 products),

and we use different costs for each scenario (production, holding, and backordering)

instead of fix costs in order to increase the complexity of the problem. Extensive

form of classical newsvendor problem with multi-product is expressed as formulated

in (2.10a)-(2.10d).

min
Q,U,O

1

|J |
∑
j∈J

[
1

|N |
∑
n∈N

(cn,jQj + bn,jUn,j + hn,jOn,j)

]
(2.10a)

s.t. Un,j ≥ Ỹn,j −Qj ∀j ∈ J,∀n ∈ N (2.10b)

On,j ≥ Qj − Ỹn,j ∀j ∈ J,∀n ∈ N (2.10c)

Qj, Un,j, On,j ≥ 0 ∀j ∈ J,∀n ∈ N (2.10d)
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Decision Variables for Newsvendor Problem

Qj Amount of regular order done in advance for product j

Un,j Amount of shortage for product j in scenario n

On,j Amount of surplus for product j in scenario n

Parameters for Newsvendor Problem

cn,j Cost of order for product j in scenario n

bn,j Cost of backordering for product j in scenario n

hn,j Cost of hold for product j in scenario n

Ỹn,j Amount of observed demand for product j in scenario n

The second prescriptive model is two-stage shipment planning problem leveraged

by Bertsimas and Kallus [7] where there is a network between dw = 4 warehouses

and dl = 12 locations. The goal is to produce and hold a product at a cost in ware-

houses to satisfy the future demand of locations. Then the product is shipped, when

needed, from warehouses to locations with transportation costs. In case the current

total supply in warehouses does not satisfy the demand of locations, the last-minute

production takes place at a higher cost. The extensive form of two-stage shipment

problem is formulated as follow in (2.11a)-(2.11d).
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min
Z,T,S

∑
i∈I

p1Zi +
1

|N |
∑
n∈N

[∑
i∈I

p2Tn,i +
∑
i∈I

∑
j∈J

cn,i,jSn,i,j

]
(2.11a)

s.t.
∑
i∈I

Sn,i,j ≥ Ỹn,j ∀j ∈ J,∀n ∈ N (2.11b)

∑
j∈J

Sn,i,j ≤ Zi + Tn,i ∀i ∈ I,∀n ∈ N (2.11c)

Zi, Tn,i, Sn,i,j ≥ 0 ∀i ∈ I,∀j ∈ J,∀n ∈ N (2.11d)

Decision Variables for Two-Stage Shipment Problem

Zi Amount of production done in advance at warehouse i

Tn,i Amount of production done last minute at warehouse i in scenario n

Sn,i,j Amount of shipment from warehouse i to location j in scenario n

Parameters for Two-Stage Shipment Problem

p1 Cost of production done in advance at warehouse

p2 Cost of production done last minute at warehouses

cn,i,j Cost of shipment from warehouse i to location j in scenario n

Ỹn,j Amount of observed demand at location j in scenario n

As for the predictive model, since we embed the predictive model inside of the

prescriptive model, we choose the linear regression model as in 2.12 to maintain the

linearity of the prescriptive model. However, other predictive methodologies still can

be applied to capture non-linearity outside of this integrated framework as prepro-

cess, and dimensionality can be reduced between feature variables and responses,

especially in high dimensional data as built in deep learning. These converted fea-
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ture variables can be embedded inside of prescriptive model via linear regression

again as described above.

Ŷn,j = βj,0 +
∑
p∈P

βj,pX̃n,p ∀j ∈ J ∀n ∈ N (2.12)

2.4.2 Data Generation

In both experiments, we randomly generate feature variables of predictive model

based on a dx = 4 dimensional multivariate normal distribution with size of n =

2000 observations, X̃ ∈ Rn×dx, i.e., X̃ ∼ N(µ,Σ), where µ = [1, 0, 0, 0] and Σ =

[[0, 0, 0, 0], [0, 1, 0.5,−0.5], [0, 0.5, 1,−0.5], [0,−0.5, 0.5, 1]]. Then, we choose the true

parameters of our predictive model, linear regression in our case, as β ∈ Rdx×dl ma-

trix including slopes and intercepts. Next, we calculated observed response according

to the model Ỹ = X̃β + ε, where ε is independently generated noise term and fol-

lows normal distribution, i.e., ε ∼ N(0, σ). Here the standard deviation of added

noise controls the correlation between feature values and responses (responses rep-

resent the demand in both prescriptive problems). To see the behavior of our method

and other methods, we have employed 10 different noise standard deviations, thus

we create 10 different feature and response pairs with different correlations. we

measure these correlations based on R-Square value of a linear regression model. As

for shipment cost, we randomly simulate its matrix as from warehouse i to location

j based on uniform distribution cn,i,j ∼ U(0, 30) for each scenario. In newsvendor

problem, we create order, backordering, and holding costs again based on uniform
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distribution cn,j ∼ U(0, 300), bn,j ∼ U(0, 3000), and hn,j ∼ U(0, 150) for each scenario

and product, respectively. Out of created n = 2000 observations, we randomly choose

train, validation, and test sets with size of 70, 15, 15, respectively. This splitting pro-

cess is repeated by 30 times, and all results are reported based on the average cost of

these 30 replications in both problems.

2.4.3 IPPO Formulations

We modify newsvendor and two-stage shipment problems here for the integration

process. First, we introduce β variable to make predictions for demand via linear re-

gression. Then we also introduce counterpart decision variables of original variables

in newsvendor and shipment models because these counterpart decision variables

will be made based on predicted demands. In our lower-level, we make decisions

based on the output of the predictive algorithm, linear regression, and submit these

decisions to the upper-level, so that we can evaluate the quality of these decisions

based on true parameters in 2.13d and 2.14d.
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min
Q,U,O,β

1

|J |
∑
j∈J

[
1

|N |
∑
n∈N

(cn,jQn,j + bn,jUn,j + hn,jOn,j)

]
(2.13a)

s.t. Un,j ≥ Ỹn,j −Qn,j ∀j ∈ J,∀n ∈ N (2.13b)

On,j ≥ Qn,j − Ỹn,j ∀j ∈ J,∀n ∈ N (2.13c)

Qn,j = Q̂n,j ∀j ∈ J,∀n ∈ N (2.13d)

Qn,j, Un,j, On,j ≥ 0 ∀j ∈ J,∀n ∈ N (2.13e)

min
Q̂,Û ,Ô

1

|J |
∑
j∈J

[
1

|N |
∑
n∈N

(cn,jQ̂n,j + bn,jÛn,j + hn,jÔn,j)

]
(2.13f)

s.t. Ûn,j ≥ Ŷn,j − Q̂n,j ∀j ∈ J,∀n ∈ N (2.13g)

Ôn,j ≥ Q̂n,j − Ŷn,j ∀j ∈ J,∀n ∈ N (2.13h)

Q̂n,j, Ûn,j, Ôn,j ≥ 0 ∀j ∈ J,∀n ∈ N (2.13i)

Detailed formulation of integrated newsvendor problem and two stage shipment

problem is provided below in (2.13a)-(2.13i) and (2.14a)-(2.14i), respectively. If

controlling generalization error is needed, one of the recommendations formulated

in Section 2.3.2 can be included in these models.

In both formulations, there will be a trade-off between the lower-level and the

upper-level problems, such that the lower-level problem minimizes its own cost based

on β variables provided by the upper-level problem, and the upper-level problem

minimizes its own objective value based on prescriptions provided by the lower-level

problem. To be able to solve the bilevel model, we need to add optimality conditions

for the lower-level problem based on KKT conditions. We introduce dual variables
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for lower-level constraints and write these conditions, but KKT conditions bring non-

linearity because of complementary slackness, so new binary variables can be de-

fined, and SOS constraints and the big M method can be used. After introducing KKT

conditions, the predictive task integrated two-stage shipment problem becomes a mix

integer problem with single-level, and this formulation is given in (2.4a)-(2.4g).

min
Z,T,Sβ

1

|N |
∑
n∈N

(
∑
i∈I

p1Zn,i +
∑
i∈I

p2Tn,i +
∑
i∈I

∑
j∈J

cn,i,jSn,i,j) (2.14a)

s.t.
∑
i∈I

Sn,i,j ≥ Ỹn,j ∀n ∈ N,∀j ∈ J (2.14b)

∑
j∈J

Sn,i,j ≤ Zn,i + Tn,i ∀n ∈ N,∀i ∈ I (2.14c)

Zn,i = Ẑn,i ∀n ∈ N, ∀i ∈ I (2.14d)

Zn,i, Tn,i, Sn,i,j ≥ 0, β free ∀n ∈ N,∀i ∈ I,∀j ∈ J (2.14e)

min
Ẑ,T̂ ,Ŝ

1

|N |
∑
n∈N

(
∑
i∈I

p1Ẑn,i +
∑
i∈I

p2T̂n,i +
∑
i∈I

∑
j∈J

cn,i,jŜn,i,j) (2.14f)

s.t.
∑
i∈I

Ŝn,i,j ≥ Ŷn,j ∀n ∈ N,∀j ∈ J (2.14g)

∑
j∈J

Ŝn,i,j ≤ Ẑn,i + T̂n,i ∀n ∈ N,∀i ∈ I (2.14h)

Ẑn,i, T̂n,i, Ŝn,i,j ≥ 0 ∀n ∈ N,∀i ∈ I,∀j ∈ J (2.14i)

2.4.4 Convergence to Stochastic Optimization

The Equation in 2.12 defines the linear regression where the output is a weighted

combination of inputs plus an intercept. Linear regressions are generally trained
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based on mean squared deviations. In our proposed integrated model, this Equa-

tion in 2.12 produces predictions for each scenario, and lower-level objective and

constraints prescribes decisions based on these predictions as seen in (2.13f)-(2.13i)

and (2.14f)-(2.14i) for each scenario again. Suppose the level of correlation between

observed feature data X̃ and response Ỹ goes to zero. In that case, slopes of a predic-

tive model in 2.12 or the feature variable contribution goes to zero, and predictions

will be all equal to each other thanks to intercepts. The same prediction for all sce-

narios will prescribe the same decisions across all scenarios as seen in forwarded

decisions from lower-level to upper-level in (2.13d) and (2.14d). This assumption

converts our integrated methodology to a single-level problem and becomes scenario

formulation of a two-stage stochastic problem as shown in (2.9a)-(2.9d).

2.5 Computational Results

This section discusses the performance of our integrated methodology and other

methods under different circumstances. All results for these experiments are ob-

tained from Gurobi python API [13]. We compared results of various well-known

methods like Point-Estimate-Based Optimization, Stochastic Optimization, and re-

cent methods like Conditional Stochastic Optimization (kNN), and The Feature-Based

Optimization by Bertsimas and Kallus [7], and by Ban and Rudin [2], respectively.

We investigate the behaviors of these methods under different correlations between

observed features X̃ and responses Ỹ , and evaluate the performance of validation

data set to see if generalization error is needed.
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2.5.1 Newsvendor Problem

First and common feature of all methods, as we see in Figure 4, solution qual-

ity improves when we increase the correlation between features (side info) and re-

sponses, and this is expected because the more information is provided, the better

results are obtained. However, improvement rates are different in each method. Sec-

ond, kNN from Bertsimas and Kallus [7] gives better result compared to stochastic

optimization (k neighbors value is optimized over validation data set). It gives a

better solution because it leverages specific neighbors in train data. Instead of mini-

mizing expected cost over the whole train data set, it eliminates irrelevant scenarios

and seeks optimal solutions by minimizing expected cost around neighbors.

(a) Train Data Set (b) Test Data Set

Figure 4: Comparison of Different Methods for Newsvendor Problem

We observe that value of k neighbors increases when correlation level between

observed X̃ and Ỹ decreases. Since this correlation decreases, kNN tends to mini-

mize expected cost over more train data as we reported in Table 1 and 2. We did not
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include result of Elmachtoub and Grigas [12] in Figure 4 and 6 because Elmachtoub

and Grigas [12] build their method when there is an uncertainty in cost vector of

objective function.

Correlation
between X and Y

True Objective Values IPPO Performance Optimal Regularization
Parameter

Optimal Neighbors
for kNNMean Max Min S.Dev. Mean Max Min S.Dev.

%7 873.5 924.8 815.0 27.2 2016.3 2118.5 1897.9 58.3 %7 1 41
%13 853.7 892.9 813.6 21.0 1484.9 1549.1 1410.3 35.0 %10 1 41
%20 852.7 889.5 814.5 19.6 1312.5 1369.6 1252.7 28.3 %11 1 31
%26 852.5 889.2 815.3 19.0 1216.8 1270.1 1164.7 25.0 %13 1 28
%34 852.5 889.4 816.1 18.6 1148.9 1199.4 1102.0 22.9 %15 1 28
%43 852.5 889.6 816.8 18.3 1093.3 1141.6 1050.7 21.4 %17 1 22
%53 852.5 889.8 817.3 18.2 1050.1 1096.5 1010.9 20.4 %20 1 16
%64 852.5 890.0 817.8 18.1 1006.9 1051.5 971.0 19.5 %24 1 16
%76 852.5 890.2 818.3 18.0 966.7 1009.7 933.4 18.8 %31 1 10
%92 852.5 890.4 818.9 17.9 914.2 955.0 881.2 18.2 %53 1 5

Table 1: Newsvendor Problem Train Data Set Statistical Values

Correlation
between X and Y

True Objective Values IPPO Performance Optimal Regularization
Parameter

Optimal Neighbors
for kNNMean Max Min S.Dev. Mean Max Min S.Dev.

%7 873.0 972.6 688.7 59.2 2229.5 2546.0 1987.2 140.0 %7 1 41
%13 851.3 929.5 711.3 44.0 1596.6 1774.5 1431.6 80.2 %9 1 41
%20 849.1 924.9 724.4 40.5 1391.9 1527.4 1248.6 63.4 %10 1 31
%26 848.2 922.4 731.7 39.3 1278.3 1391.2 1148.2 55.0 %12 1 28
%34 847.7 920.9 737.2 38.7 1197.6 1293.9 1075.7 50.0 %14 1 28
%43 847.3 921.2 741.8 38.4 1131.6 1214.2 1016.3 46.2 %16 1 22
%53 847.0 925.1 745.5 38.3 1080.3 1154.2 970.4 43.7 %18 1 16
%64 846.7 929.1 749.1 38.4 1029.0 1103.7 925.0 41.8 %22 1 16
%76 846.4 932.7 752.4 38.6 981.3 1061.2 882.6 40.5 %28 1 10
%92 846.1 937.5 756.8 38.9 919.0 1007.0 827.2 39.5 %47 1 5

Table 2: Newsvendor Problem Test Data Set Statistical Values

Since IPPO methodology fully leverages side information and evaluates decisions

regarding true parameters inside the integrated framework, it gives the best solution.

We did not observe an over-fitting issue in the newsvendor problem, and there is no

need to control generalization error. As we report in Figure 5, regardless of the cor-

relation level between observed X̃ and Ỹ , validation and train performance improve

constantly until λ1 = 1 where no generalization is needed. That is why IPPO with

and without generalization error in Figure 4 overlaps.
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(a) R-Square=%7 (b) R-Square=%13 (c) R-Square=%26

(d) R-Square=%34 (e) R-Square=%43 (f) R-Square=%53

(g) R-Square=%64 (h) R-Square=%76 (i) R-Square=%92

Figure 5: Newsvendor Problem Train and Validation Performance Over Regulariza-
tion Parameter λ1 For Different R-Square Values Between X and Y
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2.5.2 Two-Stage Shipment Problem

We observe similar behaviors here as in the newsvendor problem. The main dif-

ference in the two-stage shipment problem is IPPO overfits in especially low level

X and Y correlations since IPPO methodology fully leverages side information and

searches the best solution for train data set. As we see the effect of regularization

coefficient (λ1) in Figure 7, train performance constantly improves, but validation

performance becomes worse after some point.

(a) Train Data Set (b) Test Data Set

Figure 6: Comparison of Different Methods for Shipment Problem

In figure 6, we report train and test performance with and without controlling

generalization error. Although train performance is better than other methods with-

out controlling generalization error, a better solution is achieved via optimizing the

regularization coefficient (λ1).
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Some detailed statistical measures are given in Table 3 for train set and in Table

4 for test set. The performance column is calculated in Equation 2.15 based on the

second-best method, which is Feature-Based Optimization. These results are based

on 30 replications, and the mean column is presented in Figure 6.

Performance =

[
The Feature Based− True Objective

IPPO − True Objective
− 1

]
100 (2.15)

Correlation
between X and Y

True Objective Values IPPO Performance Optimal Regularization
Parameter

Optimal Neighbors
for kNNMean Max Min S.Dev. Mean Max Min S.Dev.

%7 792.5 855.7 738.0 22.2 925.0 988.4 864.1 28.4 %11 0.49 50
%13 773.3 820.2 728.2 18.6 847.2 889.9 798.1 21.2 %32 0.36 26
%20 771.7 812.5 730.8 17.5 824.9 862.0 781.6 18.7 %56 0.38 28
%26 771.3 808.7 732.7 17.0 813.5 847.9 773.0 17.9 %78 0.32 28
%34 771.1 806.1 734.0 16.7 805.4 838.0 766.8 17.3 %105 0.28 17
%43 771.0 804.0 735.0 16.5 798.9 830.0 761.6 16.9 %138 0.24 15
%53 770.8 802.4 735.8 16.4 793.6 823.7 757.7 16.7 %179 0.22 15
%64 770.7 801.0 736.7 16.3 788.6 818.7 753.7 16.5 %242 0.17 15
%76 770.6 801.7 737.4 16.2 783.8 814.9 750.1 16.3 %347 0.13 15
%92 770.5 802.7 737.2 16.1 777.6 809.8 743.6 16.1 %695 0.08 13

Table 3: Shipment Problem Train Data Set Statistical Values between True Objective
and IPPO Objective

Correlation
between X and Y

True Objective Values IPPO Performance Optimal Regularization
Parameter

Optimal Neighbors
for kNNMean Max Min S.Dev. Mean Max Min S.Dev.

%7 792.6 903.0 691.6 51.3 944.6 1089.4 821.4 67.6 %15 0.49 50
%13 773.8 857.3 690.3 40.0 859.6 932.8 766.6 46.8 %34 0.36 26
%20 772.6 845.3 695.1 36.3 834.6 901.8 751.0 40.0 %57 0.38 28
%26 772.4 838.6 697.9 34.5 821.6 886.0 742.4 37.2 %80 0.32 28
%34 772.4 834.8 700.3 33.4 812.4 874.8 736.5 35.4 %105 0.28 17
%43 772.3 833.2 702.3 32.5 804.8 865.6 731.1 34.0 %138 0.24 15
%53 772.3 831.9 703.6 31.9 798.9 858.5 728.0 33.0 %178 0.22 15
%64 772.3 830.6 704.1 31.4 793.2 851.4 724.3 32.1 %238 0.17 15
%76 772.2 829.4 704.6 30.9 787.7 844.8 720.9 31.4 %343 0.13 15
%92 772.2 827.8 705.3 30.4 780.6 836.1 714.4 30.6 %691 0.08 13

Table 4: Shipment Problem Test Data Set Statistical Values between True Objective
and IPPO Objective
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(a) R-Square=%7 (b) R-Square=%13 (c) R-Square=%26

(d) R-Square=%34 (e) R-Square=%43 (f) R-Square=%53

(g) R-Square=%64 (h) R-Square=%76 (i) R-Square=%92

Figure 7: Shipment Problem Train and Validation Performance Over Regularization
Parameter λ1 For Different R-Square Values Between X and Y
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2.6 Conclusion

This work provides an integrated framework that fully utilizes feature data to

predict responses to take the best actions in a prescriptive task. This methodology

can be employed in any prescriptive task whose parameters are uncertain with fea-

ture data as long as the prescriptive model is convex since KKT optimality conditions

require duality, hence limited to convexity. However, it still can be approximated

to integer programming. In order to optimize predictive and prescriptive tasks si-

multaneously, the predictive task should appear in a linear form, so this limits the

complexity of the prediction task. However, alternative methods can be used to cap-

ture non-linearity outside of the proposed framework. Our purpose is to train the

predictive model based on the not predictive error but also based on a prescriptive

error that assesses decision variables provided by predicted responses with respect to

true responses. Bilevel models are NP-hard problems, and it is not easy to solve, but

our framework is a special case, where all decision variables are based on scenarios

except the parameters of the predictive model. Thus, this formulation can be easily

decomposed by decoupling the predictive model parameters and solved by PHA step

by step. Also, we demonstrate the behavior of our and other frameworks under dif-

ferent correlations of feature and response data. Finally, we provide our results and

compare them to traditional and recently introduced methods, and we perform well

with and even without controlling generalization error.
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CHAPTER 3 INTEGRATED LEARNING OF PREDICTIVE AND
PRESCRIPTIVE TASKS

3.1 Introduction

In recent years, a growing number of businesses in the same industry or service

area create a competitive environment, and this competition leads parties to search

for new and feasible strategies. These strategies aim to lower costs and improve busi-

ness outcomes by making proper decisions to survive. Typical decision problems rely

on solving constrained optimization problems. However, most real-world problems

contain uncertain parameters. At this point, traditional optimization methods mini-

mizing expected cost step in to handle uncertainty. Alternatively, in the presence of

feature data pairs for uncertain parameters, a decision-maker can make prescriptions

by solving the optimization problem with the estimated parameters.

In a data-rich world, machine learning algorithms are more involving in improv-

ing the quality of decisions. Machine learning is considered a branch of artificial

intelligence and a method of data analysis. Machine learning algorithms are explic-

itly programmed to build algorithms and neural network models based on sample

data to learn from data. Although machine learning may seem like a very recent

research area, the history and the theory of machine learning date back to the 1950s.

One of the approaches used in machine learning algorithms is a neural network that

translates the input into the desired output using a computational learning system

based on a sequence of network functions.
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The recent developments and computing technology behind neural networks pro-

vided practical solutions in predictive analytics, from regression tasks to classifica-

tion tasks. Classic neural networks use feed-forward network architectures such as

the multi-layer perceptron inspired by studies of biological networks. In the general

framework of feed-forward network architectures, data travel over hidden layers and

transform to another shape in neurons with the help of different activation functions

(changes based on needs). The output layer contains a loss function that minimizes

the error between predicted and actual responses to make predicted and actual val-

ues similar. With this, neural networks establish a non-linear mapping between input

variables and a set of output variables. As for the learning process, the loss function

calculates the error and forwards it to previous layers to update weights via the back-

propagation algorithm. This update process resumes until no further improvement is

achieved. Recently proposed methods on successful applications show the power of

the learning capability of neural networks. Therefore, this chapter aims to develop

an integrated neural network framework that combines predictive and prescriptive

tasks in a machine learning environment to provide high-quality decisions.

We propose different neural network frameworks for integrating predictive and

prescriptive tasks. Our first proposed method is interested in incorporating a pre-

dictive task and a prescriptive task where objective function and constraints of the

prescriptive task are well defined and known to decision-makers. We explicitly min-

imize the objective function, satisfy all the constraints within the neural network

model, and prescribe the best decisions based on the fed predictions from the predic-
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tive task. Our other proposed framework is interested in integrating two predictive

models. As in most of the common predictive tasks, neural networks are trained over

specific input parameters. However, in some business models, not all of the predic-

tive algorithms have particular input values. Some may require full or partial inputs

from other predictive models. For instance, there are uncontrollable factors affecting

customer’s demand, and customer demand’s along with some other parameters effect

retailer’s demand. There are two tasks in these models: one model between uncon-

trollable factors and customer demands, and the other is between customer demands

and retailer demands. Moreover, our second proposed framework is also interested

in some prescriptive models involving an objective function and constraints which

are unknown or not well established where decision-makers make the calls based on

past experiences.

3.2 Related Work

In recent years, research interest in machine learning algorithms has grown at

a significant rate. Machine learning as a branch of artificial intelligence extracts

meaningful information and predicts the output of a system by processing historical

data. Most of the machine learning algorithms are built on top of optimization mod-

els based on a training criterion to find the parameters of learning algorithms. The

performance of these learning parameters depends on the power of the optimization

models. On the other hand, real-world optimization problems mostly contain un-

certain parameters that machine learning models mostly predict. In this literature
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review, we focus on proposed works that handle the uncertainty in decision prob-

lems by leveraging machine learning models. These methods are that a predictive

algorithm produces the uncertain parameters of a decision problem as a point es-

timate or set of estimates, optimize the decision problem over the point estimate,

or directly integrate predictive algorithm under decision problem to learn uncertain

parameters with respect to optimal decisions. In a typical machine learning model,

train performance is measured based on either classifications rate or mean squared

error. The proposition of that the predictive tasks should be trained based on a pre-

scriptive criterion was recommended almost 25 years ago. Although some earlier

works recommended that the right criteria of predictive learning should be derived

from the decision stage, there has been practically no contribution in this field since

then. Bengio [5] is one of the first works considering this gap and building an in-

tegrated framework for both prediction and prescription tasks. He emphasized the

importance of the evaluation criteria of predictive tasks. His neural network model

was not designed to minimize prediction error but instead to maximize a financial

task where those noisy predictions are used as input. Maza et al. [10] propose a

similar work to find optimal trading decisions via neural network. As an extension

of Ban and Rudin’s work[2], Oroojlooyjadid et al. [17], and Zhang and Gao [25]

propose a neural network methodology to predict demand while minimizing holding

and shortage cost to capture the non-linearity between auxiliary data and demand.

However, the most common integrated approach is applying the financial training of

neural networks to make trading decisions and newsvendor problems to find optimal
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quantity. Another neural network-based integrated task is proposed by Donti et al.

[11], and primarily they focus on quadratic stochastic optimization problems since

they are tuning neural network parameters by differentiating the optimization solu-

tion to a stochastic programming problem. On the other hand, Wang [24] shows that

neural networks are capable of generating optimal decisions to convex programming

problems, and Lv et al. [16] also proposes a neural network frame to show how

non-linear bilevel problems can be solved.

3.3 Integrated Predictive and Prescriptive Learning

In recent years, several applications have been employed to solve different classes

of constrained optimization problems. It is shown that these artificial neural net-

works can solve such optimization problems efficiently. In this section, we briefly

overview the artificial neural networks (ANN) and their elements. Then, we illus-

trate how an optimization problem with inequality constraint can be solved within

an artificial neural network environment. Last, we present the integrated predictive

and prescriptive algorithm to find optimal decisions by mapping feature data to the

prescriptive model.

3.3.1 Theoretical Background of Artificial Neural Network

An artificial neural network is a branch of machine learning that can be used

either for regression or classification purposes by aiming to find an optimal map

between given an input set of data and an output. Artificial neural networks have
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Figure 8: Artificial Neural Network Structure

broad application areas such as solving abstract business problems, sales forecasting,

speech and image recognition, customer research, data validation, healthcare, time-

series predictions, and more. However, since these artificial neural networks can be

thought of as “black box” devices that accept inputs and produce outputs, humans

suffer from understanding these models. They require careful hyperparameter tuning

with a complicated training process.

We categorize the structure of a typical artificial neural network into three layers,

those are input, hidden, and output layers shown in Figure 8. The input layer receives

the data from external systems and delivers it to hidden layers. The hidden layer

processes the coming information independently from external systems and passes

the processed information to the output layer. Finally, the last layer of an artificial

neural network, the output layer, produces given outputs for the program. From
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Figure 9: Common Activation Functions

the input layer to the output layer, information travels and transforms via neurons

by simply calculating the weighted sum of inputs and weights, adding the bias, and

executing an activation function. Activation functions transform the information in

a linear or non-linear manner by using a mathematical operation. Most commonly

used activation functions are shown in Figure 9.

Back-propagation is the most commonly used method for training an artificial

neural network. The back-propagation algorithm constitutes the essence of the train-

ing process of an artificial neural network. Based on the error rate obtained in the

previous iteration, this method calculates the gradient of a loss function with respect

to all the weights in the network and trains the weights of an artificial neural network

until there is no weight improvement in terms of loss.
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3.3.2 Neural Network for Solving Constrained Linear Programming

In this part, we present the construction of how an artificial neural network can

solve an optimization problem with inequality constraints. We begin with the basics

of linear programming and its general form. The Formulation from 3.1a to 3.1c

defines the standard form of a linear optimization problem. The standard form of

linear programming indicates that all inequality constraints are converted to equality

constraints by adding slack or subtracting surplus variable sets. The general form of

the problem to be solved within an artificial neural network is

min
Z

∑
j∈J

cjZj (3.1a)

s.t.
∑
j∈J

ai,jZj − bi = 0 ∀i ∈ I (3.1b)

Zj ≥ 0 ∀j ∈ J (3.1c)

We rewrite the standard form of optimization model as presented in Equation

3.2. The input layer has a unit vector as feature data with the size of a number

of variables in the optimization model drafted in Figure 10. Feature data is multi-

plied by a square weight matrix in the first layer where all the optimization problem

variables laying on-diagonal entries of this weight matrix and off-diagonal entries of

weight matrix are equalized to zero with a non-trainable feature.
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Figure 10: Neural Network Structure for Linear Programming

We use the ReLU activation function in the first layer to satisfy the non-negativity

constraint if there is one. The second layer of artificial neural networks consists of

neurons representing objective function and constraints. We fix the weights of the

second layer of the neural network with the cost vector of the optimization prob-

lem and coefficients of constraints. Neurons representing constraints have square

activation function and output of constraints multiplied by sufficiently large penalty

parameter sets. These parameters might be equal to each other or different for each

constraint if the constraints’ importance is different. Finally, the cost function defined

in Equation 3.2 as summation of the objective function and penalized quadratic loss

function of constraints is minimized over decision variables of the optimization prob-
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lem. With proper initialization and penalty parameter sets, neural networks converge

to optimal decisions.

Cost = min
Z

∑
j∈J

cjZj +
∑
i∈I

∑
j∈J

Mi(ai,jZj − bi)2 (3.2)

In order to show the performance of the neural network solution, we use a toy

example in Equations from 3.3a to 3.3c which is the linear optimization model of

the famous Dakota problem with given cost, constraint coefficients, and right-hand-

side values. We also show how variables converge to true solutions, how constraint

violation goes to zero, and how objective value improves in Figure 11.

max
Z

∑
j∈J

cTj Zj (3.3a)

s.t.
∑
j∈J

ai,jZj ≤ bi ∀i ∈ I (3.3b)

Zj ≥ 0 ∀j ∈ J (3.3c)

Initially, the first three optimization variables are set to 1000, and the rest are set

to 100 before starting the training process. This initialization process depends on the

user, but the initial variables should be chosen in a logical way. The training result

of this sample Dakota problem is shown in Figure 11 and Table 5. We clearly see

that artificial neural network converges to true variables and objective value without

violating any constraints.
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c =



−2.0

−4.0

−5.2

60.0

40.0

15.0


a =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

−1 0 0 8.0 6.0 1.0
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0 0 −1 2.0 1.5 0.5

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1



b =



3500
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0

0

0
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

Z =



Z1

Z2

Z3

Z4

Z5

Z6



As we can see that neural network initially focuses on improving the constraint

violation in Figure 11h because of the given large penalty term, and in a fast way,

it converges to zero violation in early iterations compared to convergence iteration

of decision variables, then it starts to improve objective function value by keeping

constraint violation at the same level.

Decision Variable True Optimal
Decision Variables

Neural Network Initial
Decision Variables

Neural Network Optimal
Decision Variables

Z1 2050 1000 2050.189
Z2 1175 1000 1175.082
Z3 575 1000 575.039
Z4 150 100 150.022
Z5 100 100 100.017
Z6 250 100 250.010

Table 5: Neural Network and True Solution Comparison of Dakota Optimization
Problem
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(a) Convergence for Z1 (b) Convergence for Z2 (c) Convergence for Z3

(d) Convergence for Z4 (e) Convergence for Z5 (f) Convergence for Z6

(g) Convergence for Objective Function (h) Convergence for Constraint Violation

Figure 11: Neural Network Convergence of Dakota Optimization Problem

3.3.3 Prescriptive Model Mapped by Feature Data

In this section, we present the details of our integrated predictive and prescriptive

learning algorithm. In practice, a decision-maker can use a sample average approxi-

mation approach using historical observations to solve an optimization problem with

uncertain parameters in the absence of feature data and when true distribution is un-
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known to the decision-maker. With the rapid growth of interest in machine learning,

all parties started to collect the data available to them in a structured or unstruc-

tured manner to support their decision systems. One of the approaches that tackle

the uncertainty in the optimization model in the availability of feature data is the

feature-based optimization proposed by Ban and Rudin [2].

This approach rewrites the "here-and-now" decisions as a linear combination of

the feature data. We showed the performance and power of this approach in Chapter

2, and this method was the most competitive one to our proposed integrated predic-

tive and prescriptive optimization method. Furthermore, Oroojlooyjadid et al. [17]

and Zhang and Gao [25] extended this method in Deep Learning Neural Network to

capture non-linearity between feature data and decision variables more excellently

or effectively.

These two neural network methods, which are an extension of feature-based

optimization proposed by Ban and Rudin [2], focus on newsvendor problems with the

only objective function and no mention of constraints. At this point, we generalize

these two extended methods to tackle constraints too.

We form the standard formulation of an optimization problem. We replace this

constrained optimization problem with an unconstrained problem by converting equal-

ity constraints into quadratic loss functions and adding them to objective with a

sufficiently large penalty term. In Figure 12, we present the integrated predictive

and prescriptive learning structure, first artificial neural network, which produces
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the "here-and-now" decision variables using proper linear or non-linear activation

functions with an optimized number of hidden layers, then feed the decision to the

prescriptive stage to evaluate the quality for each scenario.
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(a) Predictive Network (b) Prescriptive Network

Figure 12: Neural Network Structure for Integrated Predictive and Prescriptive
Learning
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3.3.4 Preprocess and Setup of Prescriptive Neural Network Model

As we see in Figure 12, we have two different sets of weights. The first stage

weights help predict "here-and-now" (Zf) decisions and forward them to respective

scenarios in the second stage. The second stage fixes the provided "here-and-now"

decisions and optimizes the scenarios via recourse decisions (Zs) by minimizing the

cost. In this part, we describe how we obtain the initial weights for predictive and

prescriptive neural networks.

The key idea for a good weight initialization is to train the first neural network

separately and optimize the second neural network using an optimization solver. We

begin our initialization process by setting our epoch (iteration) number to zero in

Step 2. In Step 3, we optimize prescriptive part to find true "here-and-now" decision

variables (Zf ∗) using problem formulation from Equation 3.4a to Equation 3.4c with

respect to true parameters. Then, we train an accurate predictive neural network

function that maps feature data to true "here-and-now" decisions using the formu-

lation given in Step 4 by minimizing loss function in Equation 3.5. Weights of this

optimized neural network will be set to initial weights of the predictive stage in the

integrated predictive and prescriptive neural network in Step 7. Next, we calculate

the predicted "here-and-now" decisions using this trained neural network in Step 5.
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min
Zf ,Zs

∑
n∈N

cfZf
n + csZs

n (3.4a)

s.t. aZf
n ≥ b ∀n ∈ N (3.4b)

tnZ
f
n + wnZ

s
n ≥ rn ∀n ∈ N (3.4c)

Zf
n − Ẑf

n = 0 ∀n ∈ N (3.4d)

We fix these predicted "here-and-now" decisions in constraint 3.4d to find the pre-

dicted recourse decision variables of the prescription stage in Step 6, and optimized

predicted recourse decisions will be set to initial weights of the prescriptive stage in

the integrated predictive and prescriptive neural network in Step 8. We ensure that

the integrated predictive and prescriptive neural network stars an approximate solu-

tion and with a zero constraint violation by applying this weight initialization pro-

cess. Our experiments show that setting initial predictive and prescriptive weights

with this initialization process yields a better convergence than randomizing the pre-

dictive and prescriptive weights.

min
β

1

|N |
∑
n∈N

L(υ(X̃, β), Zf ∗) (3.5)

3.3.5 Proposed Decomposition Method

The proposed integrated neural network methodology in Figure 12 jointly trains

predictive and prescriptive stages. The predictive stage has only one neural network
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that processes input features to create "here-and-now" decision variables, and this

neural network forwards the decision variables to the prescriptive stage. However,

the prescriptive neural network stage is a combination of multiple neural networks,

and each neural network represents a different scenario for the optimization part.

Each neural network consists of one input, one hidden layer, and one output layer.

While the input layer takes care of non-negativity for eligible variables, the hidden

layer controls the objective function and constraint violations. The output layer com-

bines objective function and constraint violations as a sum to minimize. The number

of neurons in the input layer has a number of total decision variables. The num-

ber of neurons in the hidden layer equals the number of constraints plus one term,

which calculates the objective function of the optimization problem. Although hid-

den and output layer weights come from optimization parameters and are set as

non-trainable, increasing the scenario size adds more complexity to this methodology

since each added scenario will bring more decision variables and constraints.

As seen in Figure 12, the predictive neural network is shared by all scenarios in

the prescriptive neural network. This property gives us the opportunity to solve all

scenario problems in parallel and to decompose the prescriptive task. The general

idea behind the decomposition algorithm is to solve each scenario in the prescriptive

stage and calculate the scenario cost by a given predictive neural network in Step 12,

then find the derivatives for the given scenario with respect to predictive and pre-

scriptive neural network weights in Step 13 and 14, respectively. While, prescriptive

neural network weights are updated one by one for each scenario after calculating



55

respective derivative in Step 15, predictive neural network weights are updated via

summation of derivatives and a learning rate η after computing all derivatives for

each scenario in Step 17. This process continues until reaching max epoch number

within a loop from Step 10 to 18. The details and steps of the decomposition al-

gorithm are given in Algorithm 2. Initialization steps prepare the integrated neural

network for best performance as described in Section 3.3.4. With a proper weight

initialization, the neural network accelerates the convergence and prescribes a better

solution set.
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Algorithm 2: Decomposition Algorithm for Integrated Learning

1 Initialization

2 Set epoch e=0

3 Zf,e
n
∗

= argmin
Zf ,Zs

cfZf
n + csnZ

s
n s.t. Constraints 3.4a-3.4c ∀n ∈ N

4 β̂e = argmin
β

1
|N |
∑
n∈N

L(υ(X̃n, β), Zf,e
n
∗
)

5 Ẑf,e
n = υ(X̃n, β̂e)

6 Ẑs,e
n = argmin

Zf ,Zs

cfZf
n + csnZ

s
n s.t. Constraints 3.4a-3.4d ∀n ∈ N

7 Initialize predictive weights with β̂e

8 Initialize prescriptive weights with Ẑs,e
n

9 Decomposition

10 for epoch e ∈ E;

11 for scenario n ∈ N ;

12 Costn = φ(X̃n, βe−1, Ẑ
s,e−1
n )

13 ∆βe
n = ∂Costn

∂β

14 ∆Zs,e
n

n = ∂Costn
∂Zs

n

15 Ẑs,e
n = Ẑs,e−1

n − η∆Zs,e
n

n

16 end for

17 βe = βe−1 − η
∑
n∈N

∆βe
n

18 end for
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3.4 Integrated Learning of Nested Neural Networks

The central concept in this part is to build a method to better capture the non-

linearity between uncertain parameters of the optimization problem and feature

data. So far, we have assumed that the objective function and constraints are well-

known to decision-makers. However, there are cases where the elements of the opti-

mization problem are not known to decision-makers, or there might be cases where

some of the feature data of the predictive algorithm should be also predicted from

a different predictive algorithm. At this point, we offer a nested neural network

structure where a primary predictive neural network generates inputs for the second

network. We discuss four different integration types between two predictive models

or between a predictive and a black-box prescriptive model considered as a second

predictive model. As we see in Figure 13, there are two predictive model represen-

tation, some inputs for the second neural network comes from the output of the first

neural network.
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(a) Predictive Task (b) Prescriptive Task

Figure 13: Sequential Neural Networks

3.4.1 NN1 Model Separate Learning

We start with the simplest and most common case of network integration. Train

both networks separately with respect to their own loss functions, and save them

for future use. Training criteria can be the same or different, but it is shown in

Equations 3.6 and 3.7. Whenever a new observation occurs, first predict using the

first trained model, then feed output as input to the second network to make the final

prescription.
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min
ψ

1

|N |
∑
n∈N

L(Ŷ = ψ(X), Y ) (3.6)

min
υ

1

|N |
∑
n∈N

L(Ẑ = υ(Y ), Z) (3.7)

3.4.2 NN2 Model Direct Learning

The second proposed network integration is based on direct training from end

to end. Since the output of the first network and input of the second network is the

same, we can establish an indirect function between the input of the first network and

the output of the second network. The foundation of this methodology is the same

as what Ban and Rudin [2] propose in the optimization environment, and what we

build in Section 3.3. The training function of this end-to-end training methodology

is given in Equation 3.8.

min
φ

1

|N |
∑
n∈N

L(Ẑ = φ(X), Z) (3.8)

3.4.3 NN3 Model "First Learn then Integrate" Learning

In this framework, first, we train the second network and save the optimal weights.

Then, we add this network to the end portion of the first network by fixing the opti-
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mal weights of the trained network so that we can train the whole network together

as shown in Figure 14. The second network acts as a custom loss function for the

first one. We evaluate the prediction quality of the first network based on the effect

in the second one. Moreover, we can add a second loss function to the end based on

the output of the connection layer with a penalty coefficient where 0 ≤ λ ≤ 1. Since

this hidden layer represents the first network’s output, the additional loss ensures the

quality of the prediction model in the external data set and controls the generaliza-

tion error. The training function of this end-to-end training methodology is given in

Equation 3.10.

υ∗ = argmin
υ

1

|N |
∑
n∈N

L(Ẑ = υ(Y ), Z) (3.9)

min
ψ,φ

1

|N |
∑
n∈N

(λ)L(Ẑ = φ(X, υ∗), Z) + (1− λ)L(Ŷ = ψ(X), Y ) (3.10)

3.4.4 NN4 Model Weighted Joint Loss Learning

The last methodology is an extension of the second proposed method. We train

the integrated network from end to end as performed in NN2 Model, but addition-

ally, we control the output of the first network by a loss function at the end of the

integrated network. We train both networks at the same time based on a weighted

loss combination of both networks as seen in Figure 14. This framework is a neu-

ral network approximation version of the bilevel optimization methodology that we
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propose in Chapter 2. The penalty coefficient where 0 ≤ λ ≤ 1 ensures the balance

between predictive and prescriptive loss. When λ = 1, this method converges to NN2

Model-Direct Learning defined in Equation 3.8, and when λ = 0, we ignore the pre-

scription part and train directly predictive task solely, and that leads us to Equation

3.6.

min
φ,ψ

1

|N |
∑
n∈N

(λ)L(Ẑ = φ(X), Z) + (1− λ)L(Ŷ = ψ(X), Y ) (3.11)

Figure 14: Nested Neural Networks
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3.5 Experiment for Integrated Predictive and Prescriptive Learn-

ing

This section provides an experimental study to show the proposed integrated pre-

dictive and prescriptive learning model results.

3.5.1 Prescriptive Model

The optimization problem we use as a showcase is the two-stage shipment plan-

ning problem which we introduce in Chapter 2 provided by Bertsimas and Kallus

[7]. We create a network between dw = 3 warehouses and dl = 6 locations. Since the

uncertain demand of locations affects warehouses’ production, the response variable

of the predictive neural network will be the amount of production in warehouses

to satisfy uncertain demand in locations. For the two-stage shipment problem, the

predictive task in Figure 12a establishes a connection between side information and

"here-and-now" decision variables. The prescriptive task in Figure 12b evaluates the

quality of a forwarded decision set by minimizing over cost for each iteration. In-

tegrated predictive and prescriptive optimization model is given in Equation from

3.12a to 3.12e, where ψ(X̃n, β)i represents the output of predictive neural network

for each warehouse.
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min
Ẑ,T,S,β

1

|N |
∑
n∈N

[∑
i∈I

p1Ẑn,i +
∑
i∈I

p2Tn,i +
∑
i∈I

∑
j∈J

cn,i,jSn,i,j

]
(3.12a)

s.t.
∑
i∈I

Sn,i,j ≥ Ỹn,j ∀j ∈ J,∀n ∈ N (3.12b)

∑
j∈J

Sn,i,j ≤ Ẑn,i + Tn,i ∀i ∈ I,∀n ∈ N (3.12c)

Ẑn,i = ψ(X̃n, β)i ∀i ∈ I,∀n ∈ N (3.12d)

Ẑn,i, Tn,i, Sn,i,j ≥ 0 ∀i ∈ I,∀j ∈ J,∀n ∈ N (3.12e)

Decision Variables for Two-Stage Shipment Problem

β Weight sets of predictive neural network

Ẑn,i Amount of predicted production done in advance at warehouse i in scenario n

Tn,i Amount of production done last minute at warehouse i in scenario n

Sn,i,j Amount of shipment from warehouse i to location j in scenario n

Parameters for Two-Stage Shipment Problem

p1 Cost of production done in advance at warehouse

p2 Cost of production done last minute at warehouses

cn,i,j Cost of shipment from warehouse i to location j in scenario n

Ỹn,j Amount of observed demand at location j in scenario n

3.5.2 Data Generation

The main idea of building an integrated predictive and prescriptive algorithm in

neural network environment is to better capture the relationship between feature

data and uncertain parameters of prescriptive model. In order to show performance
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of neural network based optimization, we generate the feature variables in a non-

linear way. First, we create feature variables based on a dx = 3 dimensional mul-

tivariate normal distribution with size of n = 2000 observations, X̃ ∈ Rn×dx, i.e.,

X̃ ∼ N(µ,Σ), where µ = [0, 0, 0] and Σ = [[1, 0, 0], [0, 1, 0], [0, 0, 1]]. In Figure 15a,

sorted version of one of the feature variables is plotted and we name it as Data Set 0.

We use square value of this distribution as source of our other non-linear data sets.

We generate other non-linear feature variables based on (X̃2)
Power

10 where Power is

an integer value from 2 to 10, and we name these distributions as Non-Linear Fea-

ture Data Set 1 to Non-Linear Feature Data Set 9. When Power goes from 10 to 2,

the degree of non-linearity decreases, and distribution curve becomes more flat as

seen in Figures from 15b to 15j. Then, we choose the true parameters of our predic-

tive side of integrated neural network model as β ∈ Rdx×dl matrix for slopes. Next,

we calculated demand according to the model Ỹ = X̃β + ε, where ε is indepen-

dently generated noise term and follows normal distribution, i.e., ε ∼ N(0, σ). As for

cost parameters, we randomly simulate its matrix as from warehouse i to location

j based on uniform distribution cn,i,j ∼ U(0, 30) for each scenario. Out of created

n = 2000 observations, we randomly choose train, validation, and test sets with size

of 70, 15, 15, respectively. This splitting process is repeated by 20 times, and we report

all results based on the average cost of these replications.
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(a) Non-Linear Feature Data Set 0 (b) Non-Linear Feature Data Set 1

(c) Non-Linear Feature Data Set 2 (d) Non-Linear Feature Data Set 3

(e) Non-Linear Feature Data Set 4 (f) Non-Linear Feature Data Set 5

(g) Non-Linear Feature Data Set 6 (h) Non-Linear Feature Data Set 7

(i) Non-Linear Feature Data Set 8 (j) Non-Linear Feature Data Set 9

Figure 15: Distribution of Different Non-Linear Feature Data Sets
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3.5.3 Weight Initialization

Initialization of weights is one of the crucial steps when designing an artificial

neural network model. The simplest way to initialize network weights is to assign

random numbers, but there have been some heuristic developments for better initial-

ization. As we discuss the steps of weight initialization in Section 3.3.4, using Gurobi

optimization solver via python API [13], we optimize the true decision variables sub-

ject to true parameters of the optimization model in the first place.

In the next step, we train a neural network in Tensorflow [1] to find the best rep-

resentation of "here-and-now" decisions via feature data. The weights of this trained

neural network initialize the weights of our predictive side of the integrated method.

In the last step, we fix the predicted "here-and-now" decisions and optimize the ship-

ment model to find optimal recourse variables. Optimal recourse variables based

on predicted "here-and-now" decisions become the weights of the prescriptive side

of the integrated method. We start training integrated predictive and prescriptive

neural networks with an approximation solution and a zero constraint violation in

this initialization process. We report the effect of different initialization for a given

sample problem model in Figure 16. The different weight initialization leads us to

the different prescriptions and cost values.



67

Figure 16: Effect of Different Weight Initialization in Convergence of Cost

3.5.4 Computational Results

This section discusses the performance of the proposed integrated predictive and

prescriptive neural network model. All results for this experiment are obtained from

Gurobi [13] python API and Tensorflow [1]. The idea of building an integrated neu-

ral network model is to better capture the non-linearity between feature data and

prescription task. The Feature-Based Optimization developed by Ban and Rudin [2]

proposes the linear connection between feature data and prescription task. There-

fore, we basically compare the results of the feature-based optimization and neural

network-based optimization to prove our claim. We show the performance of inte-

grated neural network-based optimization and the feature-based optimization under

different data sets.
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As we introduce data sets in Section 3.5.2, we create different non-linear feature

data sets at different non-linearity levels. We expect to see a closing gap in perfor-

mance between the feature-based and neural network-based optimization when the

non-linearity level goes from high to low. In Figure 17, train and test performance

of two-stage shipment problem are given based on different non-linear data sets be-

tween feature values and demand. Data sets are labeled from 1 to 9, where Set 1

represents the highly no-linear data set while Set 9 represents a slightly non-linear

data set. Section 3.5.2 contains detailed and more information about how we create

non-linear data sets at different levels.

For better graphical purposes, we scale objective function values based on true

objective values of an average of replications for each data set. The actual values for

objective values of both optimization models and true objective values are reported

in Table 7, and scaled results are reported in Table 6 for each data sets. As we see in

Figure 17, when we go from highly to slightly non-linear, the gap of objective values

decreases since feature-based optimization starts to capture better. However, neural

network-based optimization has consistent objective values across all data sets. Re-

ported results for neural network-based optimization are optimized over validation

data sets; instead of choosing the best train performance, we choose the best train

and validation performance to achieve the best performance in out of sample data

sets.
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(a) Train Data Set (b) Test Data Set

Figure 17: Comparison of Feature-Based and Neural Network-Based Optimization
for Shipment Problem

Data Set ID Train Data
True Objective Value

Neural Network Based
Train Data Objective Value

Feature-Based
Train Data Objective Value

Test Data
True Objective Value

Neural Network Based
Test Data Objective Value

Feature-Based
Test Data Objective Value

Set 1 100.0 116.2 172.9 100.0 122.4 204.2
Set 2 100.0 116.8 163.8 100.0 121.2 190.9
Set 3 100.0 119.4 156.2 100.0 123.6 180.2
Set 4 100.0 121.7 148.6 100.0 125.1 170.8
Set 5 100.0 122.4 141.7 100.0 127.4 155.9
Set 6 100.0 123.9 135.1 100.0 128.7 146.0
Set 7 100.0 122.8 127.8 100.0 126.2 140.9
Set 8 100.0 119.3 123.3 100.0 124.2 132.2
Set 9 100.0 116.3 117.6 100.0 117.5 123.8

Table 6: Comparison of Neural Network and Feature Based Optimization with
Scaled Objective Values

Data Set ID Train Data
True Objective Value

Neural Network Based
Train Data Objective Value

Feature-Based
Train Data Objective Value

Test Data
True Objective Value

Neural Network Based
Test Data Objective Value

Feature-Based
Test Data Objective Value

Set 1 897.4 1044.2 1549.2 903.2 1107.7 1836.3
Set 2 838.3 979.5 1371.3 839.9 1016.8 1592.2
Set 3 793.6 947.6 1237.9 794.5 982.6 1420.4
Set 4 761.1 926.1 1130.4 752.5 943.1 1278.7
Set 5 744.8 911.9 1055.3 725.5 925.8 1132.5
Set 6 732.5 907.8 989.3 722.6 930.4 1054.9
Set 7 731.2 898.5 934.8 684.2 862.9 963.0
Set 8 731.9 873.0 901.9 735.4 912.2 971.9
Set 9 772.8 899.1 908.9 745.6 875.1 921.1

Table 7: Comparison of Neural Network and Feature Based Optimization with Un-
scaled Objective Values
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3.6 Experiment for Integrated Learning of Nested Neural Net-

works

This section provides an experimental study to show the results of the proposed

integrated learning of nested neural network models. We want to show the imple-

mentability of the proposed integrated neural network model when objective func-

tion or constraints are not known to decision-makers.

3.6.1 Prescriptive Model

The optimization problem we use as a showcase is the two-stage shipment plan-

ning problem that we introduce in Chapter 2. The response variable will be the

amount of production in warehouses to satisfy uncertain demand in locations. For

two-stage shipment problem, predictive task in Figure 13a will establish a connection

between side information and demand. Prescriptive task in Figure 13b will establish

a connection between demand and observed production amount.

We evaluate all of the proposed nested neural network models under the same

conditions. The predictive task will not have a hidden layer, so there will be only

input and output layer. As for the prescriptive task, there will be one hidden layer

with 200 neurons. Initially, these parameters are optimized for NN1 Model-Separate

Learning, then applied for integrated neural networks in order to satisfy homogene-

ity between proposed models. Of course, each model may give a better result for a

different set of parameters. However, we intend to see the performance of the mod-
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els under the same conditions instead of optimizing the parameters of each model

individually.

3.6.2 Data Generation

The data generation process for the two-stage shipment problem is presented in

Section 2.4.2 with a train, validation, and test sizes of 70k, 15k, and 15k, respec-

tively. We follow the same steps to generate data presented in Section 2.4.2, but

with more sizes. We select train, validation, and test sets out of created n = 2000000

observations.

3.6.3 Computational Results

This section discusses the performance of proposed nested neural networks under

different training sizes and different levels of observed X̃, Ỹ correlations. All results

for these experiments are obtained from Gurobi python API [13] and Tensorflow [1].

We compared the results of different types of neural network integration.
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(a) Train Data Set (b) Test Data Set

Figure 18: Comparison of Different Neural Network Methods for Shipment Problem

3.7 Conclusion

In real-world problems, parameter distribution of the optimization problems is

known for all feature data points, and there is no need to handle uncertainty to find

an exact solution. However, most of the parameters either are unknown or follow

an irregular form. In the presence of feature data, most of the historical proposed

methods propose to predict uncertain parameters, then prescribe the decisions. We

proposed an exact and scalable algorithm in Chapter 2 integrating the predictive

and prescriptive tasks to prescribe decisions efficiently, but the proposed method has

limitations to linear predictive models. This chapter considers a new approach to

increase the quality of decisions in the presence of feature data related to uncertain

parameters in a non-linear way. The proposed algorithm works in a neural network

environment to better capture the non-linearity between feature data and optimal

decisions, and it is scalable. The algorithm integrates predictive and prescriptive
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tasks under one neural network instead of building a predictive task and separately

optimizing the prescription task. Predictive task maps feature data to decisions, and

prescriptive task evaluates the quality of these decisions, then prescriptive task sends

feedback to predictive task to improve the quality of decisions. We also proposed dif-

ferent neural network integration models where there is a need for nested predictive

models or elements of an optimization problem is not known or well defined, such

as constraints and objective function. In the final part of this chapter, we perform

our computational studies to demonstrate the power of the proposed model using

synthetic on two-stage shipment problem.
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CHAPTER 4 CONCLUSION AND FUTURE RESEARCH

As we discuss in introduction sections of each chapter, our motivation mainly de-

rives from prescription ignorance of training criteria of predictive algorithms despite

wide data availability and excess accessibility in computational power. This disserta-

tion introduces different data-driven frameworks for integrating the predictive and

prescriptive tasks to prescribe optimal decisions by effectively leveraging feature data

and closes the gap between predictive and prescriptive tasks. We develop two main

frameworks. While the first proposed framework in Chapter 2 jointly optimizes the

predictive and prescriptive tasks, the second framework proposed in Chapter 3 jointly

learns the predictive and prescriptive tasks.

4.1 Summary of Contributions

In Chapter 2, we build a framework called "Integrated Predictive and Prescriptive

Optimization" (IPPO) for a predictive regression model caring for the characteristics

of the prescriptive model and providing the best decisions. While IPPO is seeking the

most accurate predictive regression model, the desired predictive regression model

will tackle uncertainty by delivering the best actions in the prescription stage. In the

classical approach, the predictive and prescriptive tasks are often treated indepen-

dently and often in a sequence, i.e., "first predict, then optimize". However, our pro-

posed integrated framework joining the predictive and prescriptive combines three

steps: a predictive regression model generating responses to the optimization model,

the optimization model prescribing decisions based on the generated responses, and
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another optimization model evaluating the quality of prescribed decisions subject

to actual parameters. We model this three-step framework as a bilevel optimization

problem because of involved nested optimization models. While the lower-level prob-

lem makes decisions with the help of predicted parameters, the upper-level problem

jointly determines the regression parameters. It evaluates these decisions subject to

actual parameters. Since the integrated method directly focuses on finding the best

prescriptions for "in-sample" data, we also propose different techniques to achieve the

same level of quality for "out-of-sample" data. Conversion of bilevel problem to single

level increases the number of constraints and the variables; we propose a decompo-

sition algorithm based on progressive hedging algorithm for scalability. However, the

conversion of the bilevel optimization problem to a single-level problem leverages

Karush–Kuhn–Tucker (KKT) conditions that require convexity; this method is limited

o linear predictive and prescriptive tasks.

In Chapter 3, we develop an artificial neural network-based framework to in-

tegrate predictive and prescriptive tasks because of the linearity limitation of the

proposed algorithm in Chapter 2. The two artificial neural network trains simultane-

ously to prescribe best decisions via feature data. The first neural network serves as

a predictive task and predicts decision variables based on feature data and forward

decisions for quality check. The second neural network uses predicted decision vari-

ables, the output of the first neural network. It optimizes the prescription stage based

on minimization of cost, which is the sum of the objective function and quadratic

term of penalized constraints. The second neural network is a stack of independent
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neural networks presenting each scenario for prescriptive problems. Hence, the in-

crease in the number of scenarios explodes the number of neurons in the prescriptive

neural network. We also develop a decomposition method for scalability. The pro-

posed decomposition algorithm solves each scenario in a prescriptive neural network

by using the same predictive neural network weights, then updates these weights by

aggregating derivatives from each scenario with respect to scenario cost. To obtain

the best performance, we also propose a weight initialization process for predictive

and prescriptive neural networks.

Our results for the example problems validate the performance of our proposed

integrated predictive and prescriptive optimization and training frameworks. With

customarily generated synthetic data sets, proposed methods surpass all of the "first

predict, then optimize" approaches and recently developed approximate integration

methods for both "in-sample" and "out of sample" data sets. We also observe how

the proposed generalization error controlling approach improves results in "out of

sample" data sets. Customarily generated synthetic data pairs at different levels of

correlation and non-linearity graphically show us how different methods converge to

each other.

4.2 Future Research

Despite our significant contributions in Chapter 2 and 3, the exploration of prescription-

based predictive algorithms is still open to development, and there still exist several
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opportunities. The proposed two integrated algorithms in Chapter 2 and 3 com-

pletes each other in terms of linearity and non-linearity. Although the first proposed

method solves the integration of predictive and prescriptive tasks in an exact way, it

is limited to the linearity of both tasks. We demonstrate how to overcome this lin-

earity limitation in the second proposed algorithm by leveraging the artificial neural

network models. However, we approximate decision variables by directly mapping

them from feature data using a predictive neural network in the second proposed

method. In other words, we predict decision variables rather than predicting uncer-

tain parameters of the optimization problem. Predicting decision variables approxi-

mates the solution of the model. Therefore, this brings us to the intersection of our

two contributions in this dissertation: to learn the bilevel optimization framework in

a neural network environment to predict uncertain parameters of the optimization

problem in a non-linear manner and prescribe decisions based on parameter pre-

diction. However, this proposition may require more effort to tune the integrated

neural network since the bilevel formulation produces four constraint types: upper-

level constraints, lover level constraints, duality constraints, and complementarity

constraints. Although all these constraints increase the complexity of the integrated

learning framework, there is still an opportunity to decompose the problem since all

scenario problems share the same predictive neural network. Another proposition to

solve integrated predictive and prescriptive tasks in a bilevel optimization framework

to capture non-linearity is to apply a separate artificial neural network. The separate

neural network algorithm trains from feature data to uncertain parameters. The out-
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put of the last hidden layer can be used as feature data in the bilevel optimization as

linear regression. However, this proposition still lacks full integration of predictive

and prescriptive tasks since the separate artificial neural network handles the non-

linearity outside of the integration as a preprocess to integrated optimization.
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A typical decision problem optimizes one or more objectives subject to a set of

constraints on its decision variables. Most real-world decision problems contain un-

certain parameters. The exponential growth of data availability, ease of accessibil-

ity in computational power, and more efficient optimization techniques have paved

the way for machine learning tools to effectively predict these uncertain parame-

ters. Traditional machine learning models measure the quality of predictions based

on the closeness between true and predicted values and ignore decision problems

involving uncertain parameters for which predicted values are treated as the true

values. Standard approaches passing point estimates of machine learning models

into decision problems as replacement of uncertain parameters lose the connection

between predictive and prescriptive tasks. Recently developed methods to strengthen

the bond between predictive and prescriptive tasks still rely on either "first predict,

then optimize" strategy or use approximation techniques in integrating predictive

and prescriptive tasks.
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We develop an integrated framework for performing predictive and prescriptive

analytics concurrently to realize the best prescriptive performance under uncertainty.

This framework is applicable to all prescriptive tasks involving uncertainty. Further,

it is scalable to handle integrated predictive and prescriptive tasks with reasonable

computational effort and enables users to apply decomposition algorithms for large-

scale problems. The framework also accommodates prediction tasks ranging from

simple regression to more complex black-box neural network models.

The integrated optimization framework is composed of two integration approaches.

The first approach integrates regression-based prediction and mathematical programming-

based prescription tasks as a bilevel program. While the lower-level problem pre-

scribes decisions based on the predicted outcome for a specific observation, the

upper-level evaluates the quality of decisions with respect to true values. The upper-

level problem can be considered as a prescriptive error, and the goal is to minimize

this prescriptive error. In order to achieve the same performance in external data sets

(test) compared to internal data sets (train), we offer different approaches to con-

trol the "prescription generalization error" associated with out-of-sample observation.

We develop a decomposition algorithm for large-scale problems by leveraging a pro-

gressive hedging algorithm to solve the resulting bilevel formulation. The second

approach integrates the learning of neural network-based prediction and optimiza-

tion tasks as a nested neural network. While the predictive neural network promotes

decisions based on predicted outcomes, the prescriptive neural network evaluates

the quality of predicted decisions with respect to true values. We also propose a
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weight initialization process for nested neural networks and build a decomposition

algorithm for large-scale problems.

Our results for the example problems validate the performance of our proposed

integrated predictive and prescriptive optimization and training frameworks. With

customarily generated synthetic data sets, proposed methods surpass all of the "first

predict, then optimize" approaches and recently developed approximate integration

methods for both "in-sample" and "out of sample" data sets. We also observe how

the proposed generalization error controlling approach improves results in "out of

sample" data sets. Customarily generated synthetic data pairs at different levels of

correlation and non-linearity graphically show us how different methods converge to

each other.
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