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1

CHAPTER 1 INTRODUCTION

1.1 Definition and Some Literature of Finite Elements

In brief, finite elements are piecewise functions with certain global continuity imposed

by local degrees of freedom (DOFs). The finite element method (FEM) approximates

the solutions of differential equations by these piecewise functions. The FEM has been

widely used for numerically solving partial differential equations (PDEs) in a variety of

engineering disciplines, e.g., heat transfer, electromagnetism, and fluid dynamics. The

history of the FEM can be traced back to early 1940s when Courant [26] proposed the

idea of the minimization of a functional by linear approximation over a set of subdomains.

A literature survey of some earlier years of FEMs can be found in Babuska’s article

“Courant element: before and after” in the book [42].

The following definition of a finite element was first introduced by Ciarlet in his

lecture notes and became popular after his 1978 book [23].

Definition 1.1.1 (Finite element [23]). A finite element is defined by a triple (K,P, L),

where

• the domain K is a bounded, closed subset of Rd (for d = 1, 2, 3, . . .) with nonempty

interior and piecewise smooth boundary;

• the space P = P (K) is a finite dimensional function space on K of dimension n;

• the set of DOFs L = {`1, `2, . . . , `n} is a basis for the dual space P ′, that is, the

space of bounded linear functionals on P .

The domain K is called the element domain. It might be a triangle, a rectangle, or a

general polygon in two space dimensions (2D), or a tetrahedron, a cube, a prism, etc. in

three space dimensions (3D). In FEM, we partition the domain of the problem into a set
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of element domains, which is known as the finite element mesh. We obtain approximation

by refining the mesh. The space P is local function space with approximation property.

It is known as the space of shape functions. A popular choice of P is polynomial spaces.

The set of DOFs can determine the basis functions of P uniquely. It connects the local

function spaces on different element domains to become a global finite element space.

By different choices of the DOFs, we can impose different continuity to the global finite

element space.

1.2 The Development of Scalar and Vector Finite Elements

According to the dimension of finite element function, the finite elements can be

classified into scalar finite elements, vector finite elements, and tensor finite elements.

The scalar finite elements are actually polynomial splines. They may have extra

orders of smoothness on lower-dimensional simplices of the mesh, which is known as

supersmoothness suggested by Sorokina [60]. This is a trouble of constructing finite

elements with high regularity, e.g., the C1 element (or H2-conforming element). The

study of C1 element can be dated back to 1960s, when Argyris et al [5] constructed

a triangular element, which has 21 DOFs. Bell [15] simplified the Argyris element by

removing the three edge DOFs. In 3D, Ženíšek [65] constructed the first C1 element

and later Shangyou Zhang [70] simplified his element and extended it to an arbitrary

order. All these elements involve supersmoothness at vertices and/or edges of the meshes,

which leads to a large number of DOFs. A way to mitigate this issue is to construct C1

elements on a split of a given simplex. The Clough-Tocher element [24] and the Hsieh-

Clough-Tocher element (the three edge DOFs are removed) [22] are defined on a split of

a triangle, which is obtained by connecting each vertex of the triangle to its barycenter.

Even if the two elements involve no supersmoothness at vertices of the mesh, they are

C2 at the barycenter, which is first observed by Farin [29]. Alfeld [1] constructed the

3D counterpart of the Clough-Tocher element, which still involves supersmoothness at
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vertices of the mesh. There are also some conforming elements defined on other splits,

see, e.g., [31, 32, 55, 64, 43].

One application of vector finite elements is computational electromagnetics, where

the Sobolev spaces H(div) and H(curl) play a vital role in the variational theory. In [51],

by using incomplete polynomial spaces, Nédélec proposed two families of finite elements:

one is H(div)-conforming, the other is H(curl)-conforming. These elements are known

as Nédélec curl-conforming elements and div-conforming elements of the first kind. The

div-conforming elements are also referred to as Raviart-Thomas elements since they

are the 3D extension of the elements introduced in [56] by Raviart and Thomas. Later

in [52], Nédélec proposed two more families of elements by using complete polynomial

spaces, which are known as the Nédélec elements of the second kind. The div-conforming

elements therein are the 3D extension of the elements [17] introduced by Brezzi, Dou-

glas, and Marini, and hence are also referred to as Brezzi-Douglas-Marini elements. The

tetrahedral elements of the two kinds and the cubical elements of the first kind can be

unified as discrete differential forms and fit into discrete complexes [37, 10], which are

subcomplexes of the de Rham complex:

0 R H1 H(curl) H(div) L2 0.
⊂ grad curl div (1.2.1)

Here we dropped the domain Ω in the notation of the function spaces. See Section 2.1.4

for the precise definition of the spaces H(D; Ω). In [8], Arnold and Awanou developed

a new family of discrete differential forms on cubical meshes. The discrete 0-forms are

the serendipity finite elements. A periodic table of finite elements [13] has been devel-

oped to include the discrete k-forms of arbitrary polynomial degree for simplices and

n-dimensional boxes in any dimension. The discrete differential forms together with

mixed formulations that respect the underlying cohomological structures of the complex

provide a remedy for notorious trouble of spurious solutions [6]. It is also worth men-
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tioning that the lowest-order discrete differential forms on tetrahedra, also known as

Whitney forms [63], are highly geometric: the Whitney k-forms have one DOF on each

k-dimensional subsimplex, as shown in the following figure.

-grad -curl -div

Another application of vector finite elements is incompressible flows. A related com-

plex is the following de Rham complex with enhanced smoothness (also referred to as

the Stokes complex):

0 R H2 H1(curl) H1 ⊗ V L2 0,
⊂ grad curl div (1.2.2)

where H1(curl) = {u ∈ H1 ⊗ V : curlu ∈ H1 ⊗ V}. Three desirable properties of a finite

element Stokes pair Xh,0 × Yh,0 are:

• conformity, i.e., Xh,0 ⊂ H1
0 ⊗ V and Yh,0 ⊂ L2

0;

• stability, i.e., the Ladyzenskaja-Babuska-Brezzi (LBB) condition

sup
v∈Xh,0\{0}

´
Ω
div vqdx

∥v∥H1(Ω)

≥ C∥q∥L2(Ω) ∀q ∈ Yh,0

is satisfied with C independent of h;

• divergence-free velocity approximation [41], i.e., divXh,0 ⊂ Yh,0.

However, constructing a finite element velocity-pressure pair that satisfies the three

properties is a challenging task drawing decades of attention. In 2D, the Scott-Vogelius

finite elements are stable only in the high-order case with certain restrictions on the mesh

[58], while the stability in 3D is still an open problem. Motivated by the construction of a

stable Stokes pair on general shape-regular triangular meshs [28], Neilan [53] constructed
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a finite element subcomplex of (1.2.2) on tetrahedral meshes, which includes a stable

Stokes pair. Since this construction involves supersmoothness, the number of DOFs is

large. In another direction, to fix the stability issue, we may use barycentric refined

meshes (see, e.g., [34, 69]) or enrich finite element spaces on general shape-regular meshes

by rational bubbles or macro-element bubbles [33, 34].

From the two applications, we can see the construction of vector finite elements is

more delicate: they should reproduce some essential structures of the continuous prob-

lems.

1.3 Main Work of the Dissertation

The above-mentioned vector finite elements are for low-order differential equations.

In this dissertation, we consider the construction of the vector elements for the high-

order differential equations which involve the operator (D∗◦D)∗◦(D∗◦D) with D = curl

or div. The fourth-order operators have many science and engineering applications. The

operator (curl curl)2 (when D = curl) is applied in inverse electromagnetic scattering

theory [18, 50] and magnetohydrodynamics [19]. A variant of (curl curl)2, the opera-

tor − curl∆ curl, appears in models of continuum mechanics to incorporate size ef-

fects or the coupled stress, see [48, (3.27)], [54, (35)]. The operator grad∆div (when

D = div) has important applications in linear elasticity [3, 46, 47], where the integra-

tion of grad∆divu represents the shear strain energy with u being the displacement of

the elasticity body.

The vector finite elements for the two fourth-order operators are grad curl-conforming

elements (curl curl-conforming elements are automatically grad curl-conforming) and

grad div-conforming elements, respectively. It bears the both difficulties—high regularity

and delicate structures—to construct the grad curl- and grad div-conforming elements.

The grad curl-conforming elements are not available until very recently. In [66], the au-

thor and her collaborators developed, for the first time, a family of grad rot-conforming
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(2D version of curl is rot) finite elements in 2D. To reduce the number of DOFs, they

used incomplete polynomials. The polynomial degree k starts from 4 for triangular el-

ements and 3 for rectangular elements, respectively, and the lowest-order elements of

both shapes have 24 DOFs. With a rotation, the grad rot-conforming elements can yield

grad div-conforming elements. In 3D, there are still no available grad curl- or grad div-

conforming elements.

In a broader sense, the existingH2-conforming elements are both grad curl-conforming

and grad div-conforming. In addition, Neilan [53] constructed an H1(curl)-conforming

finite element space on tetrahedral meshes, which is the the 3D extension of the H1(rot)-

conforming element space in [28]. However, it is still not clear whether we can use these

elements to solve the fourth-order problems. In computational electromagnetics, the for-

mulations and elements that violate the delicate structure of the continuous problems

might lead to spurious solutions [6]. Will we suffer from the same issue as in computa-

tional electromagnetics? If so, when? To answer the questions, we consider the Hodge

Laplacian problems of the 2D grad rot complex:

0 H1 H(grad rot) H(rot) L2 0.
grad grad rot rot (1.3.1)

We apply the grad rot-conforming element [66], the H1(rot)-conforming element [28], and

the Argyris element [5] to the primal and/or mixed formulations of the Hodge Laplacian.

We observe that the primal formulations with the H1(rot)-conforming element and the

H2-conforming element will produce spurious solutions in certain cases, while the mixed

formulations with finite elements that fit into complexes would not. Therefore, in this

dissertation, we will design some grad curl-conforming elements and grad div-conforming

elements both in 2D and 3D by constructing discrete complexes.

The discrete de Rham complex is now an important tool for the construction of finite

elements and analysis of numerical schemes [6, 11, 10, 36, 20]. Motivated by problems
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in fluid and solid mechanics, there is an increased interest in constructing finite ele-

ment de Rham complexes with enhanced smoothness [21, 62, 28]. In this dissertation,

we will consider several variants of the de Rham complex and construct discrete sub-

complexes for them. The discrete complex offers several useful tools, which includes the

dimension count and the Poincaré operators. The dimension count motivate us to use

bubbles. The Poincaré operators enable us to tailor the shape function spaces to our

needs (not necessarily the existing incomplete polynomial spaces which were used be-

fore). Therefore, some of our new finite elements will have no restrictions on polynomial

degrees like the previous construction. From the complex perspective, we can also fit the

curl∆ curl, (curl curl)2, and grad∆div problems and their finite element approximations

in the framework of the finite element exterior calculus (FEEC) [6, 10]. Thus a number

of tools from FEEC can be used for the numerical analysis.

The content of this dissertation is based on the results reported in [40, 67, 39, 68]

and some new results which have not yet been reported.

1.4 Outline of the Dissertation

The dissertation is organized as follows:

In Chapter 2, we introduce some basic notions of differential complexes and Bernstein-

Gelfand-Gelfand (BGG) construction.

In Chapter 3, we introduce the grad curl, grad rot, and grad div complexes derived by

the BGG construction. Applying the theoretical framework in [12], we obtain the coho-

mology of the three complexes. Moreover, we define bounded and surjective trace opera-

tors forH(grad rot; Ω) andH(grad div; Ω), and a bounded trace operator forH(grad curl; Ω).

We also prove the density of C∞(Ω)⊗V inH(grad curl; Ω),H(grad rot; Ω), andH(grad div; Ω).

As a result, we characterize the boundary conditions for all the Hodge Laplacian prob-

lems of the grad rot and grad div complexes and one Hodge Laplacian problem of the

grad curl complex.
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In Chapter 4, we investigate the spurious solutions of the curl∆ rot problems. We

consider two Hodge Laplacian problems of the 2D grad rot-complex. We apply different

formulations and finite elements to solve the Hodge Laplacian source or eigenvalue prob-

lems. We find that the mixed formulations with finite elements that fit into complexes

leads to correct solutions, while other combinations may produce spurious solutions.

We provide a convergence analysis for both the source and the eigenvalue problems on

simply-connected domains. We also provide a theoretical explanation for the numerical

phenomena.

In Chapter 5, to construct 2D grad rot-conforming elements, we consider the following

variant of the de Rham complex:

0 R H1 H(grad rot) H1 0.
⊂ grad rot (1.4.1)

We consider the space H(grad rot) instead of H(curl rot) because H(grad curl) fits into

the complex (1.4.1) naturally. In particular, as we have mentioned earlier, any curl rot-

conforming finite element (or curl curl-conforming in 3D) is automatically grad rot-

conforming (or grad curl-conforming). Therefore, we will focus on the construction of

grad rot-conforming (grad curl-conforming) finite elements in the following. The new fi-

nite elements fit into a subcomplex of (1.4.1):

0 R Σh Vh Σ+
h 0.

⊂ grad curl (1.4.2)

In (1.4.2), we choose Lagrange finite element spaces for Σh and Lagrange elements en-

riched with an interior bubble on each element for Σ+
h . The space Vh ⊂ H(grad rot) is

thus obtained as the gradient of Σh plus a complementary part, the Poincaré operator

acting on Σ+
h . Among the three versions of Vh which we will construct in this disserta-

tion, one of them is consistent with the previous construction [66]. Here we extend it

by removing the restriction of the polynomial degree. The simplest elements have only

6 DOFs for a triangle and 8 DOFs for a rectangle. To the best of our knowledge, these
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elements have the smallest number of DOFs among all the existing grad rot-conforming

finite elements.

In Chapter 6 and Chapter 7, to construct 3D grad curl-conforming elements, we

consider the following complex:

0 R H1 H(grad curl) H1 ⊗ V L2 0,
⊂ grad curl div (1.4.3)

Here, the first two spaces are less smoother than those in (1.2.2), whereas the last

two spaces stay the same. This complex is also referred to as the Stokes complex. The

complex (1.4.3) relates the construction of the grad curl-conforming elements to the

incompressible flows.

Chapter 6 is devoted to constructing the first grad curl-conforming element in 3D.

In [53], Neilan constructed a subcomplex for the different Stokes complex (1.2.2), which

contains a stable Stokes pair. In this chapter, we apply Poincaré operators and the Stokes

pair in [53] to construct a finite element subcomplex of (1.4.3):

0 R Σh Vh Zh Wh 0.
⊂ grad curl div (1.4.4)

By changing the polynomial degree of Σh, this complex leads to three families of grad curl-

conforming elements. Since the construction involves supersmoothness, the number of

DOFs is large and the lowest-order element has 279 DOFs.

Chapter 7 is devoted to developing a new finite element subcomplex of (1.4.3) with

fewer DOFs:

0 R Σh Vh Σ+
h Wh 0.

⊂ grad curl div (1.4.5)

Recently, Guzmán and Neilan [34] enriched the first-order vector-valued Lagrange finite

element space with modified Bernardi-Raugel bubbles and constructed a stable Stokes

pair. This construction is somewhere between the classic finite elements and the finite

elements defined on splits. It does not involve a large number of DOFs or an extensive
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use of macroelement structures. Therefore, it is a good candidate for Σ+
h -Wh. However,

the extension to high-order cases is still not available yet. Our construction in this

chapter starts by extending Guzmán and Neilan’s result in [34] to high-order cases, which

is realized by enriching the vector-valued Lagrange finite elements with the modified

Bernardi-Raugel bubbles and/or suitable interior bubbles. Then we will apply Poincaré

operator and construct a new finite element subcomplex of (1.4.3). The restriction of

the new subcomplex to each face coincides with the sequences in 2D construction. In

the lowest order case, the spaces in (1.4.5) have 4, 18, 16, and 1 DOFs on each element,

respectively. The DOFs are those of the Whitney forms plus vertex evaluation for the 1-

and 2-forms (Vh and Σ+
h ).

In Chapter 8, to construct grad div-conforming elements, we consider the complex

0 R H1 H(curl) H(grad div) H1 0.
⊂ grad curl div (1.4.6)

The 2D version of the complex (1.4.6) is

0 R H1 H(grad div) H1 0.
⊂ curl div (1.4.7)

If we rotate the complex (1.4.7) by π
2
, we will get the complex (1.4.1). Therefore we will

focus only on the complex (1.4.6) to construct 3D grad div-conforming elements. Our

new finite elements fit into a subcomplex of (1.4.6):

0 R Σh Vh Wh Σ+
h 0,

⊂ grad curl div (1.4.8)

A starting point is to take Σh as the Lagrange finite element spaces. This leads to a

natural choice of Vh, which is the Nédélec elements of the first kind. In addition, we choose

Lagrange elements enriched with an interior bubble for Σ+
h . The space Wh ⊂ H(grad div)

is hence obtained as the curl of Vh plus a complementary part, the Poincaré operator

acting on Σ+
h . Different orders of Σh can yield different versions of Wh. Among the three

versions of Wh which we will construct in this dissertation, the simplest element has only
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8 DOFs for a tetrahedron and 14 DOFs for a cube.

In Chapter 9, we summarize our work and provide some promising future directions.

1.5 General Notation

In this section, we recall some basic notation about domains, differential operators,

function spaces, and meshes. Throughout the paper, we use C to denote a generic positive

h-independent constant.

1.5.1 Domain

Unless otherwise specified, throughout the paper we assume that Ω ∈ Rd, d = 2, 3 is a

bounded Lipschitz domain. A domain Ω ∈ Rd is called a Lipschitz domain if its boundary

∂Ω is locally a graph of a Lipschitz continuous function, i.e., for all x ∈ ∂Ω, there exists

a neighborhood N(x, r) of x and a Lipschitz continuous function φ : Rd−1 → R such

that

∂Ω ∩N(x, r) = {y = (y1, y2, · · · , yd) : φ(y1, y2, · · · , yd−1) = yd}

and

Ω ∩N(x, r) = {y = (y1, y2, · · · , yd) : φ(y1, y2, · · · , yd−1) < yd}

under a proper local coordinate system.

We say a domain has C1,1 boundary if ∂Ω is locally a graph of a Lipschitz continuous

function with Lipschitz continuous derivative.

We define the following Betti numbers for the domain Ω:

• the zeroth Betti number b0 is the number of connected components of the domain;

• the first Betti number b1 is the number of holes through the domain;

• the second Betti number b2 is 0 for any bounded in 2D, and it is the number of

voids enclosed by the domain in 3D;

• the third Betti number b3 is 0 for any domain in 2D and 3D.
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For simply-connected domain, the first Betti number b1 = 0. The domain Ω is con-

tractable if it is homomorphic to a closed unit ball or all the Betti numbers are 0.

For U ⊆ Ω, denote by n∂U (resp. τ∂U) the unit outward normal vector (resp. the

unit tangential vector) to the boundary ∂U . When U = Ω, we drop the subscript ∂Ω.

1.5.2 Sobolev spaces

We adopt conventional notations for Sobolev spaces. For any sub-domain U ⊂ Ω and

any integer 1 ≤ p <∞, the space of functions which are pth-power Lebesgue integrable

on U is denoted by

Lp(U) =

{
v :

ˆ
U

|v|pdV <∞
}
,

which is equipped with the norm

∥v∥p,U =

(ˆ
U

|v|pdV
)1/2

.

When p = 2, we drop the subscript 2 in ∥v∥2,U and equip the space L2(U) with the

following inner product

(u, v)U =

ˆ
U

uvdV.

When U = Ω, we drop the subscript U in ∥v∥p,U and (u, v)U . We denote by L2
0(U) the

space of L2 functions with vanishing mean:

L2
0(U) =

{
v ∈ L2(U) :

ˆ
U

vdV = 0

}
,

Let m be a non-negative integer, then the Sobolev space Hm(U) is defined by

Hm(U) =
{
v ∈ L2(U) : Dαv ∈ L2(U) for all α with |α| ≤ m

}
.

This space is equipped with the norm

∥v∥m,U =

∑
|α|≤k

∥Dαv∥U

1/2
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and the semi-norm

|v|m,U =

∑
|α|=k

∥Dαv∥U

1/2

.

We denote by Hm
0 (U) the space of Hm(U) functions with trivial trace. In the case of

m = 0, the space H0(U) and H0
0 (U) coincide with L2(U) and L2

0(U).

When m = k + σ with an integer k ≥ 0 and a real number σ ∈ (0, 1),

Hm(U) =
{
v ∈ Hk(U) : Dαv ∈ Hσ(U) for all α with |α| ≤ k

}
,

where

Hσ(U) =

{
v ∈ L2(U) :

ˆ
U

ˆ
U

|v(x)− v(y)|2

|x− y|d+2σ
dxdy <∞

}
.

In this case, the space Hm(U) is equipped with the norm

∥v∥m,U =

∑
|α|≤k

∥Dαv∥σ,U

1/2

and the semi-norm

|v|m,U =

∑
|α|=k

∥Dαv∥σ,U

1/2

,

where ∥v∥2σ,U = ∥v∥2U +
´
U

´
U

|v(x)−v(y)|2
|x−y|d+2σ dxdy.

For 0 ≤ k ≤ ∞, we define Ck(U) and Ck(U) to be the spaces of functions with k-th

order continuous derivatives on U and U , respectively. We also define C∞
0 (U) to be the

space of infinitely differentiable functions with compact support on U .

Let V and M stand for the spaces of vectors and matrices, respectively. For a function

space H, we use H ⊗V (resp. H ⊗M) to denote the vector-valued (resp. matrix-valued)

function spaces.

1.5.3 Meshes and Polynomial Spaces

For a Lipschitz polygon or polyhedron, let Th = {K} be a finite element mesh

consisting of triangles or parallelograms in 2D or tetrahedra in 3D. For each element
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K ∈ Th, we denote by hK the diameter of K and ρK the diameter of the largest circle or

ball contained in K. Let h = maxK∈Th hK be the mesh size of Th. We assume the mesh

is regular, i.e., there is a constant σ0 > 0 such that

hK
ρK

≥ σ0, for all K ∈ Th.

Let Vh, Eh, and Fh be the sets of vertices, edges, and faces in Th. Also let Vh(K),

Eh(K), and Fh(K) be the set of vertices, edges, and faces in the element K.

In 2D, we define a reference triangle to be the triangle with vertices (0, 0), (1, 0), and

(0, 1), and a reference rectangle to be the rectangle (−1, 1)× (−1, 1). In 3D, a reference

tetrahedron is the tetrahedron with vertices (0, 0, 0), (1, 0, 0), (0, 1, 0), and (0, 0, 1), and

a reference cube is the cube (−1, 1) × (−1, 1) × (−1, 1). Each element K ∈ Th can be

obtained by mapping the reference element K̂ using the following affine mapping:

FK(x̂) = BKx̂+ bK . (1.5.1)

With the affine mapping,

ni ◦ FK =
B−T

K n̂i∣∣B−T
K n̂i

∣∣ , (1.5.2)

τi ◦ FK =
BK τ̂i
|BK τ̂i|

, (1.5.3)

where ni and n̂i are the unit normal vectors to fi ∈ Fh(K) and f̂i ∈ Fh(K̂) (or ei ∈

Eh(K) and êi ∈ Eh(K̂) in 2D), and τi and τ̂i are the unit tangential vectors to ei ∈ Eh(K)

and êi ∈ Eh(K̂). We denote a variable on K̂ by putting a hat notation above it. For an

operator T , we use Tx̂ to denote the operator is with respect to x̂.

We use Pk to denote the space of polynomials with degree at most k, and use P̃k to

denote the space of homogeneous polynomials with degree k. We denote by Qi,j,k the

space of polynomials with the degrees of the variables x1, x2, x3 no more than i, j, k.

Correspondingly, we have Qi,j in 2D. For simplicity, we drop the subscripts i, j when

i = j = k in 3D and drop the subscript i when i = j in 2D. Denote Pk = Pk ⊗ V and



15

P̃k = P̃k ⊗ V. We define

Rk = Pk−1 ⊕ {p ∈ P̃k : x · p = 0}. (1.5.4)
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CHAPTER 2 DIFFERENTIAL COMPLEXES AND THE BERNSTEIN-
GELFAND-GELFAND CONSTRUCTION

In this chapter, we introduce some basic notions of differential complexes and BGG

construction, which will be used in the subsequent chapters.

2.1 Differential Complexes

2.1.1 Homological Algebra

Given vector spaces V k, k = 0, 1, · · · , n, and operators dk : V k → V k+1, k =

0, 1, · · · , n− 1, a complex or a cochain complex is a sequence

0 V 0 · · · V k V k+1 · · · V n 0d0 dk−1 dk dk+1 dn−1

(2.1.1)

such that dk+1dk = 0, k = 0, 1, · · · , n − 2. If dk, k = 0, 1, · · · , n − 1, are differential

operators, then the sequence (2.1.1) is called a differential complex.

The complex (2.1.1) gives rise to three spaces at each level k:

• the cocycle space Zk: the null space of the operator dk;

• the coboundary space Bk: the range space of the operator dk−1;

• the cohomology space Hk = Zk/Bk;

Due to the complex property dkdk−1 = 0, we have Bk ⊂ Zk for each 1 ≤ k ≤ n− 1.

Furthermore, if Zk = Bk, we say that the complex (2.1.1) is exact at V k. At the two

ends of the sequence, the complex is exact at V 0 if d0 is injective (with trivial kernel),

and is exact at V n if dn−1 is surjective (with trivial cokernel). The complex (2.1.1) is

called exact if it is exact at all the spaces V k, k = 0, 1, · · · , n.

If each space in (2.1.1) has finite dimensions, then a necessary (but not sufficient)

condition for the exactness of (2.1.1) is the following dimension condition:
n∑

k=0

(−1)k dim(V k) = 0.
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The dimension condition is sufficient if the complex is exact at each level k but i for

some 0 ≤ i ≤ n.

2.1.2 Hilbert Complexes

A Hilbert complex is a sequence of Hilbert spaces W k, k = 0, 1, · · · , n, and a sequence

of closed densely defined unbounded linear operators dk : W k → W k+1, k = 0, 1, · · ·, n−1,

0 W 0 · · · W k W k+1 · · · W n 0d0 dk−1 dk dk+1 dn−1

(2.1.2)

such that dk+1dk = 0.

Denote V k := D(dk). The operators dk can be viewed as bounded operators from V k

to V k+1. We equip V k with the inner product

(u, v)V k := (u, v)Wk + (dku, dkv)Wk+1 .

Suppose dkV k ⊂ V k+1. The complex

0 V 0 · · · V k V k+1 · · · V n 0d0 dk−1 dk dk+1 dn−1

(2.1.3)

is called the domain complex.

We now recall the definition of the adjoint operator. Let X,Y be Hilbert spaces

with inner products (·, ·)X and (·, ·)Y . Let T : X → Y be an unbounded operator with

domain D(T ) ⊂ X. We assume D(T ) is dense in X. Then we define an unbounded linear

operator T ∗ : Y → X, and define

D(T ∗) = {y ∈ Y : there exists z ∈ X s.t. (Tx, y)Y = (x, z)X , ∀x ∈ D(T ) ⊂ X}.

When y ∈ D(T ∗) and (Tx, y)Y = (x, z)X , ∀x ∈ D(T ), we define

T ∗y := z.

Denote by δk+1 : W k+1 → W k the adjoint operator of dk. If u ∈ D(δk+1), we have

(δkδk+1u,w) = (δk+1u, dk−1w) = (u, dkdk−1w) = 0,
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and hence δkδk+1u = 0. Thus, the sequence

0 W 0 · · · W k W k+1 · · · W n 0δ1 δk δk+1 δk+2 δn (2.1.4)

is also a Hilbert complex with domain complex

0 U0 · · · Uk Uk+1 · · · Un 0.δ1 δk δk+1 δk+2 δn (2.1.5)

Here Uk := D(δk+1).

2.1.3 Hodge Decomposition

Define the k-coboundary

Bk := dk−1V k−1,

and the k-cocycle

Zk := {u ∈ V k : dku = 0}.

From the definition of the complex, we have Bk ⊂ Zk. We also define

B∗
k := δk+1Uk+1 and Z∗

k := {u ∈ Uk : δku = 0}.

In the following, we assume Bk and B∗
k, k = 0, 1, · · · , n, are closed.

We have the following decomposition

W k = Zk ⊕ Zk,⊥.

Define the space of harmonic k-forms

Hk = Zk ∩ Z∗
k.

For a closed Hilbert space, we have

Hk ∼= Hk.

It holds the following Hodge decomposition:

W k = Bk ⊕ (Bk,⊥ ∩ Zk)⊕ Zk,⊥
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= Bk ⊕ (Z∗
k ∩ Zk)⊕ Zk,⊥

= Bk ⊕ Hk ⊕ Zk,⊥.

Since we assume B∗
k is closed, we have, by the definition of the adjoint operator,

Zk,⊥ = B∗
k.

Therefore,

W k = Bk ⊕ Hk ⊕ Zk,⊥ = Bk ⊕ Hk ⊕B∗
k.

From the domain complexes (2.1.3), we have

V k = Bk ⊕ Hk ⊕ (B∗
k ∩ V k).

2.1.4 The De Rham Complex

The de Rham complex is the cochain complex of differential forms a domain in

Rn with the exterior derivative as the differential operators. The de Rham complex of

smooth differential forms is

R C∞Λ0 C∞Λ1 · · · C∞Λn 0.d0 d1 dn−1

(2.1.6)

The sobolev de Rham complex is

R HqΛ0 Hq−1Λ1 · · · Hq−nΛn 0.d0 d1 dn−1

(2.1.7)

The L2 de Rham complex is

R L2Λ0 L2Λ1 · · · L2Λn 0.d0 d1 dn−1

(2.1.8)

whose domain complex without boundary conditions is

R HΛ0 HΛ1 · · · HΛn 0d0 d1 dn−1

(2.1.9)

with HΛk = {u ∈ L2Λk : dku ∈ L2Λk+1}. The Sobolev de Rham complex (2.1.7) satisfies

the following properties.
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Theorem 2.1.1 ([25]). For any real number q and on any bounded Lipschitz domain

in Rn, the dimension of the cohomology of the Sobolev de Rham complex (2.1.7) is

finite and independent of q. Moreover, the cohomology can be represented by smooth

functions, again independent of q. In other words, there exists a finite-dimensional space

H k
∞ ⊂ C∞Λk such that

N
(
dk, HqΛk

)
= R

(
dk−1, Hq+1Λk−1

)
⊕ H k

∞, k = 0, 1, · · · , n.

According to [12, Theorem 1], H k
∞, k = 0, 1, · · · , n are also the spaces of cohomology

representatives of the complex (2.1.9), i.e.,

N
(
dk, HΛk

)
= R

(
dk−1, HΛk−1

)
⊕ H k

∞, k = 0, 1, · · · , n. (2.1.10)

Lemma 2.1.2 ([25]). For the complex (2.1.7), there exist P i : Hq−iΛi → Hq−i+1Λi−1

and Li : Hq−iΛi → C∞Λi with finite dimensional range, for i = 1, 2, · · · , n, satisfying

di−1P i + P i+1di = id− Li, i = 1, 2, · · · , n.

In 3D, using vector proxies, for a scalar function u and a vector function u =

(u1, u2, u3)
T,

d0u = grad u = (∂x1u, ∂x2u, ∂x3u)
T,

d1u = curlu = (∂x2u3 − ∂x3u2, ∂x3u1 − ∂x1u3, ∂x1u2 − ∂x2u1)
T,

d2u = divu =
3∑

i=1

∂xi
ui.

In 2D, for a scalar function u and a vector function u = (u1, u2)
T,

d0u = grad u = (∂x1u, ∂x2u)
T,

d1u = rot u = ∂x1u2 − ∂x2u1,

or

d0u = curl u = (∂x2u,−∂x1u)
T,
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d1u = divu = ∂x1u1 + ∂x2u2.

We define

H(D; Ω) := {u ∈ L2(Ω)⊗ V : Du ∈ L2(Ω), L2(Ω)⊗ V, or L2(Ω)⊗M.}

with D = div, curl, grad curl, or grad div in 3D and D = div, rot, grad rot, or grad div

in 2D. We furnish the the space H(D; Ω) with the inner product

(u,v)H(D;Ω) = (u,v) + (Du, Dv)

and the norm

∥u∥H(D;Ω) = ∥u∥+ ∥Du∥.

We define

H0(div; Ω) := {u ∈ H(div; Ω) : u · n = 0},

H0(curl; Ω) := {u ∈ H(curl; Ω) : u× n = 0},

H0(rot; Ω) := {u ∈ H(rot; Ω) : u · τ = 0}.

The 2D domain complex on the domain Ω is

R H1(Ω) H(div; Ω) L2(Ω) 0,
⊂ curl div (2.1.11)

or

R H1(Ω) H(rot; Ω) L2(Ω) 0.
⊂ grad rot (2.1.12)

The 3D domain complex is

R H1(Ω) H(curl; Ω) H(div; Ω) L2(Ω) 0.
⊂ grad curl div (2.1.13)

We also have the following complexes with vanishing boundary conditions:

R H1
0 (Ω) H0(div; Ω) L2

0(Ω) 0,
⊂ curl div (2.1.14)
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R H1
0 (Ω) H0(rot; Ω) L2

0(Ω) 0,
⊂ grad rot (2.1.15)

and

R H1
0 (Ω) H0(curl; Ω) H0(div; Ω) L2

0(Ω) 0.
⊂ grad curl div (2.1.16)

Motivated by problems in fluid and solid mechanics, there is an increased interest

in the de Rham complexes with enhanced smoothness. In this dissertation, to construct

grad curl-conforming and grad div-conforming elements, we will consider the complexes

(1.4.1), (1.4.3), and (1.4.6).

It is also worth to address the relationship betweenH(grad curl; Ω) andH(curl curl; Ω)

= {u ∈ L2(Ω) ⊗ V : curlu ∈ L2(Ω) ⊗ V and curl curlu ∈ L2(Ω) ⊗ V}. In 2D, we have

H(grad rot; Ω) = H(curl rot; Ω) = {u ∈ L2(Ω) ⊗ V : curl rotu ∈ L2(Ω) ⊗ V} since curl

is a rotation of grad. In 3D, we have H(grad curl; Ω) ⊆ H(curl curl; Ω). If Ω is convex

or has C1,1 boundary, then for any function u ∈ H(curl curl; Ω) with certain bound-

ary conditions, e.g., u × n = 0 on ∂Ω, we have curlu ∈ H1(Ω) ⊗ V since curlu ∈

H(curl; Ω) ∩ H0(div; Ω) ↪→ H1(Ω) ⊗ V [30, Theorem 3.8]. This implies that for these

domains we actually have H(grad curl; Ω) ∩H0(curl; Ω) = H(curl curl; Ω) ∩H0(curl; Ω).

In particular, for polynomial spaces, H(grad curl; Ω) = H(curl curl; Ω).

For D = grad div, grad curl, or grad rot, we define another norm for H(D; Ω):

|||u|||H(grad rot;Ω) = ∥u∥+ ∥ rotu∥+ ∥ grad rotu∥ when D = grad rot,

|||u|||H(grad div;Ω) = ∥u∥+ ∥ divu∥+ ∥ grad divu∥ when D = grad div,

|||u|||H(grad curl;Ω) = ∥u∥+ ∥ curlu∥+ ∥ grad curlu∥ when D = grad curl .

It is easy to check that H(D; Ω) is a Banach space under the two norms ||| · |||H(D;Ω) and

∥ · ∥H(D;Ω). Applying the bounded inverse theorem, the two norms are equivalent.
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2.1.5 Poincaré Operators

For any complex (2.1.1), we call graded operators pk : V k → V k−1 Poincaré operators

if they satisfy

• the null-homotopy property:

dk−1pk + pk+1dk = idV k ; (2.1.17)

• the complex property:

pk−1 ◦ pk = 0.

Lemma 2.1.3. If there exist Poincaré operators p• for (2.1.1), then (2.1.1) is exact.

Proof. Assume that dku = 0 for u ∈ V k. From the null-homotopy identity, u =

dk−1(pku). This implies the exactness of (2.1.1) at V k.

For the de Rham complex (2.1.6), there exist Poincaré operators, and their explicit

forms in 2D are [36, 44, 21]:

p1u =

ˆ 1

0

u(W + t(x−W )) · (x−W )dt, ∀u ∈ C∞Λ1(Ω), (2.1.18)

p2u =

ˆ 1

0

tu(W + t(x−W ))(x−W )⊥dt, ∀u ∈ C∞Λ2(Ω), (2.1.19)

where x⊥ = (x2,−x1). In 3D,

p1u =

ˆ 1

0

u(W + t(x−W )) · (x−W )dt, ∀u ∈ C∞Λ1(Ω), (2.1.20)

p2u =

ˆ 1

0

tu(W + t(x−W ))× (x−W )dt, ∀u ∈ C∞Λ2(Ω), (2.1.21)

p3u =

ˆ 1

0

t2u(W + t(x−W ))(x−W )dt, ∀u ∈ C∞Λ3(Ω), (2.1.22)

where W is a base point.

In addition to the complex property and the null-homotopy identity, these operators

further satisfy
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• the polynomial preserving property: if u is a polynomial of degree r, then pu is a

polynomial of degree at most r + 1.

Koszul operators κk : V k → V k−1 restricting on homogeneous polynomials have

similar properties to the Poincaré operators:

• the homotopy formula:

dk−1κku+ κk+1dku = (k + r)u if u ∈ V k ∩ P̃r;

• the complex property:

κk−1 ◦ κk = 0;

• the polynomial preserving property: if u is a polynomial of degree r, then κu is a

polynomial of degree at most r + 1.

The explicit forms of Koszul operators in 2D are [6]:

κ1u = u · x, ∀u ∈ C∞Λ1(Ω), (2.1.23)

κ2u = ux⊥, ∀u ∈ C∞Λ2(Ω). (2.1.24)

In 3D,

κ1u = u · x, ∀u ∈ C∞Λ1(Ω), (2.1.25)

κ2u = u× x, ∀u ∈ C∞Λ2(Ω), (2.1.26)

κ3u = ux, ∀u ∈ C∞Λ3(Ω). (2.1.27)

2.2 Bernstein-Gelfand-Gelfand Construction

We can use the BGG construction to derive new differential complexes from the

known ones. It is shown in [12] that the cohomology of the output complex of BGG can

be related to that of the input complexes. We recall the process of BGG construction

and the main conclusion of [12].
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Suppose (Z•, d•) and (Z̃•, d̃•) are two bounded Hilbert complexes. Suppose also Si :

Z̃i → Zi+1, i = −1, 0, · · · , n are bounded connecting maps that connects the two Hilbert

complexes:

0 Z0 Z1 · · · ZJ · · · Zn 0

0 Z̃0 Z̃1 · · · Z̃J · · · Z̃n 0.

d0 d1 dJ−1 dJ dn−1

S−1

d̃0

S0

d̃1

S1

d̃J−1

SJ−1

d̃J

SJ

d̃n−1

Sn−1 Sn (2.2.1)

The two complexes (Z•, d•) and (Z̃•, d̃•) can not be arbitrary. They are of the form

Zi := V i ⊗ Ei and Z̃i := V i+1 ⊗ Ẽi,

where V i is a Hilbert space and Ei, Ẽi might be space of scalars R, vectors V, matrices

M, etc.

In addition, the connecting operators Si are of the form

Si = id ⊗ si,

where si : Ẽi → Ei+1 is a linear operator. They satisfy the following two properties:

• Anticommutativity, Si+1d̃i = −di+1Si, i = 0, 1, ·, n− 2;

• The J-injectivity/surjectivity condition, i.e., for some J with 0 ≤ J < n,

si is


injective, 0 ≤ i < J,

bijective, i = J,

surjective, J < i < n.

We are now in a position to define the output complex of the BGG construction:

0 Z0 · · · Zk ZJ · · · Zn 0D0 Dk−1 DJ−1 DJ Dn−1

(2.2.2)

with

Z i =


V i ⊗R(si−1)⊥, 0 ≤ i ≤ J,

V i+1 ⊗N (si)⊥, J < i ≤ n,
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and

Di =


id ⊗ PR⊥di, i < J,

d̃i(Si)−1di, i = J,

d̃i, i > J.

Here R(s) and N (s) represent the range and the kernel of the operator s, and PR⊥

represents the L2 projection to R⊥.

The output complex (2.2.2) can be read from the input complexes (Z•, d•) and

(Z̃•, d̃•) in the following way. We start from the left end of the top complex of (2.2.1),

and go right along the complex, at each step restricting to the orthogonal complement

of the range of the incoming S operator. When we reach the space ZJ , we go to Z̃J+1

in the bottom complex by following the connecting map SJ in the reverse direction and

d̃J , and then continue rightwards along the bottom complex, restricting to the kernels

of the S operators.

Denote by Hi (Z•, d•) the i-th cohomology space of the complex (Z•, d•). Then the

cohomology of the output complex can be related to the cohomology of the input com-

plexes by the following theorem.

Theorem 2.2.1 ([12]). Suppose the given bounded Hilbert complexes (Z•, d•) and (Z̃•, d̃•)

and bounded connecting maps Si : Z̃i → Zi+1 satisfying the required properties. Then

the output complex (2.2.2) is a bounded Hilbert complex. Moreover,

dimHi (Z•, D•) ⩽ dimHi (Z•, d•) + dimHi(Z̃•, d̃•), ∀i = 0, 1, · · · , n.

The equality holds if and only if Si induces the zero maps on cohomology, i.e., if and

only if

SiN (d̃i) ⊂ R(di), ∀i = 0, 1, · · · , n− 1. (2.2.3)
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If there exist bounded operators Ki : Z̃i → Zi, i = 0, 1, · · · , n, such that

Si = diKi −Ki+1d̃i, i = 0, 1, · · · , n− 1,

then the condition (2.2.3) holds. Moreover, the space of cohomology representatives of

(Z•, D•) can be represented by the spaces of cohomology representatives of (Z•, d•) and

(Z̃•, d̃•).
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CHAPTER 3 Gradcurl Complex, Gradrot Complex, and Graddiv Complex

The grad curl complex, grad rot complex, and grad div complex can be derived by

the BGG construction [12]. In this chapter, we will investigate these complexes and the

involved spaces in terms of trace theorems, density, Hodge Laplacian, characterization

of boundary conditions of the Hodge Laplacian, etc.

3.1 Gradcurl Complex and Hodge Laplacian

For any real number q, we consider the diagram with two de Rham complexes as the

input:

0 Hq Hq−1 ⊗ V Hq−2 ⊗ V Hq−3 0 0

0 0 Hq−2 ⊗ V Hq−3 ⊗M Hq−4 ⊗M Hq−5 ⊗ V 0.

grad curl div

0

grad

id

curl

− tr

div

0 (3.1.1)

Here and after, to ease the presentation, we drop the domain Ω in the function spaces

in complexes. The connecting operators satisfy that id is bijective and tr is surjective,

and they anti-commute with the differential operators, i.e.,

div ◦ id = tr ◦ grad .

From the general framework presented in the above chapter, we can derive the fol-

lowing grad curl complex from (3.1.1):

0 Hq Hq−1 ⊗ V Hq−3 ⊗ T Hq−4 ⊗M Hq−5 ⊗ V 0,
grad grad curl curl div (3.1.2)

where T is the space of trace-free matrices and the differential operators grad, curl, and

div are applied row-rise.

Note that the dimension of cohomology at Hq−1(Ω)⊗V in the first row of (3.1.1) is

the first Betti number b1 of the domain, and the dimension of cohomology at Hq−2(Ω)⊗V

in the second row is 3 (kernel of grad is constants). If we can verify the condition (2.2.3),
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then, according to Theorem 2.2.1 and Theorem 2.1.1, we have

N (grad curl, Hq−1(Ω)⊗ V) = R(grad, Hq(Ω))⊕ H 1
∞, (3.1.3)

where H 1
∞ is a set of smooth cohomology representatives (independent of q) with di-

mension dimH 1
∞ = 3 + b1.

Next we verify the condition (2.2.3). We have a bijection between vectors and skew

symmetric matrices defined by

mskw



v1

v2

v3


:=



0 −v3 v2

v3 0 −v1

−v2 v1 0


.

We define K̃1 : Hq−2(Ω)⊗ V → Hq−2(Ω)⊗ V, K̃2 : Hq−3(Ω)⊗M → Hq−3(Ω)⊗ V, and

K̃3 : Hq−4(Ω)⊗M → Hq−4(Ω) by

K̃1u : =
1

2
u× x,

K̃2U : =
1

2

(
U − tr(U)

)
x,

K̃3U : = vskwU · x,

with vskw = mskw−1 ◦ skw : M → V. Then

diK̃i − K̃i+1d̃i = Si.

Recalling the operators P i+1 and Li introduced in Lemma 2.1.2, we define

Ki = P i+1Si + LiK̃i. (3.1.4)

Then

dK −Kd = d(PS + LK̃)− (PS + LK̃)d = dPS + PdS + dLK̃ − LK̃d

= (id− L)S + LdK̃ − LK̃d = S.
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The L2 version of (3.1.2) with unbounded linear operators, i.e.,

0 L2 L2 ⊗ V L2 ⊗ T L2 ⊗M L2 ⊗ V 0
grad grad curl curl div (3.1.5)

is closely related to the PDEs.

3.1.1 Gradcurl Complex Without Boundary Conditions

We consider the following domain complex of the L2 complex (3.1.5):

0 H1 H(grad curl) H(curl,T) H(div,M) L2 ⊗ V 0,
grad grad curl curl div

(3.1.6)

where H(curl,T; Ω) = {U ∈ L2(Ω) ⊗ T : curlU ∈ L2(Ω) ⊗ M} and H(div,M; Ω) =

{U ∈ L2(Ω)⊗M : divU ∈ L2(Ω)⊗ V}.

According to Theorem 2.2.1 and (2.1.10), we have

N (grad curl, H(grad curl; Ω)) = R(grad, H1(Ω))⊕ H 1
∞, (3.1.7)

where H 1
∞ is defined in (3.1.3).

Define

H0(curl,M; Ω) := {U ∈ H(curl,M; Ω) : n×U = 0},

where the cross product in n×U is applied row-wise. The dual complex of (3.1.6) is

0 L2
0 H0(div) H0(curl div,T) H0(curl,M) H1

0 ⊗ V 0,
− div − curl div dev curl − grad

where H0(curl div,T; Ω) is a formal notation for the domain of the adjoint of the operator

(grad curl, H(grad curl; Ω)). We will not characterize H0(curl div,T; Ω) in this disserta-

tion.

From general results on Hilbert complexes (see Section 2.1.3), we have the Hodge

decomposition at H(grad curl; Ω):

L2(Ω)⊗ V = gradH1(Ω)⊕ curl divH0(curl div,T; Ω)⊕ H1,

where H1 is the space of harmonic forms with dimH1 = dimH 1
∞.
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Define

X := H(grad curl; Ω) ∩H0(div; Ω).

The Hodge Laplacian operator follows from the abstract definition:

L 1 := −(curl div) grad curl− grad div = − curl∆ curl− grad div,

with the domain DL 1 = {u ∈ X : grad curlu ∈ H0(curl div,T; Ω), divu ∈ H1(Ω)}. For

f ∈ L2(Ω)⊗V, the strong formulation of the Hodge Laplacian boundary value problem

seeks u ∈ DL 1 and u ⊥ H1 such that

− curl∆ curlu− grad divu = f − PH1f in Ω.

3.1.2 Gradcurl Complex with Boundary Conditions

Define

H0(div,M; Ω) := {U ∈ H(div,M; Ω) : Un = 0},

H0(grad curl; Ω) := closure of C∞
0 (Ω)⊗ V in the sense of H(grad curl) norm.

We will show in Section 3.1.4 that H0(grad curl; Ω) has the following characterization:

H0(grad curl; Ω) := {u ∈ H(grad curl; Ω) : u× n = 0 and curlu = 0}.

Consider the domain complex of (3.1.5) with vanishing boundary conditions:

0 H1
0 H0(grad curl) H0(curl,T) H0(div,M) L2

0 ⊗ V 0,
grad grad curl curl div

(3.1.8)

which is derived from the following diagram:

0 H1
0 H0(grad curl) H1

0 ⊗ V L2
0 0 0

0 0 H1
0 ⊗ V H0(curl,M) H0(div,M) L2

0 ⊗ V 0.

grad curl div

0

grad

id

curl

− tr

div

0 (3.1.9)

The dimension of the cohomology at H0(grad curl; Ω) in the first row of (3.1.9) is b2,

and the dimension of the cohomology at H1
0 (Ω) ⊗ V in the second row of (3.1.9) is 0.
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Therefore, we have

N (grad curl, H0(grad curl; Ω)) = R(grad, H1
0 (Ω))⊕ H 1,0

∞ ,

where H 1,0
∞ is a set of smooth cohomology representatives with dimH 1,0

∞ = b2.

The dual complex of (3.1.8) is

0 L2 H(div) H(curl div,T) H(curl,M) H1 ⊗ V 0,
− div − curl div dev curl − grad

where H(curl div,T; Ω) = {U ∈ L2(Ω) ⊗ T : curl divU ∈ L2(Ω) ⊗ V}. The Hodge

decomposition at H0(grad rot) reads:

L2(Ω)⊗ V = gradH1
0 (Ω)⊕ curl divH(curl div,T; Ω)⊕ H1

0

with dimH1
0 = dimH 1,0

∞ = b2.

Define

X0 := H0(grad rot; Ω) ∩H(div; Ω).

We define the Hodge Laplacian operator L 1 in the previous way but with the domain

DL 1,0 = {u ∈ X0 : grad curlu ∈ H(curl div,T; Ω), divu ∈ H1
0 (Ω)}. For f ∈ L2(Ω)⊗ V,

the strong formulation of the Hodge Laplacian boundary value problem seeks u ∈ DL 1,0

and u ⊥ H1
0 such that

− curl∆ curlu− grad divu = f − PH1
0
f in Ω. (3.1.10)

In the case of f ∈ curl divH(curl div,T; Ω), the problem (3.1.10) is then to find u such

that u ⊥ H1
0 and

− curl∆ curlu = f in Ω,

divu = 0 in Ω,

u× n = 0 on ∂Ω,

curlu = 0 on ∂Ω.

(3.1.11)
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3.1.3 Gradcurl Complex with Partial Boundary Conditions

Define

Hcurl(grad curl; Ω) := {u ∈ H(grad curl; Ω) : curlu = 0}

We consider a domain complex of (3.1.5) with partial vanishing boundary conditions:

0 H1 Hcurl(grad curl) H0(curl,T) H0(div,M) L2
0 ⊗ V 0,

grad grad curl curl div

(3.1.12)

which is somewhere between the complexes (3.1.6) and (3.1.8). The above complex is

derived from the following diagram:

0 H1 Hcurl(grad curl) H1
0 ⊗ V L2

0 0 0

0 0 H1
0 ⊗ V H0(curl,M) H0(div,M) L2

0 ⊗ V 0.

grad curl div

0

grad

id

curl

− tr

div

0

The dimension of the de Rham complex cohomology at Hcurl(grad rot; Ω) in the first row

of the above diagram is b1, and the dimension of the de Rham complex cohomology at

H1
0 (Ω) in the second row is 0. Consequently,

N (grad curl, Hcurl(grad curl; Ω)) = R(grad, H1(Ω))⊕ H 1,curl
∞ ,

where H 1,curl
∞ is a set of smooth cohomology representatives with dimH 1,curl

∞ = b1.

The dual complex of (3.1.12) is:

0 L2
0 H0(div) Hdiv(curl div,T) H(curl,M) H1 ⊗ V 0,

−div − curl div dev curl − grad

Here Hdiv(curl div,T; Ω) is a formal notation for the domain of the adjoint of the operator

(grad curl, Hcurl(grad curl; Ω)). Again, we will not characterize Hdiv(curl div,T; Ω) in this

dissertation.

The Hodge decomposition at Hcurl(grad curl) reads:

L2(Ω)⊗ V = gradH1(Ω)⊕ curl divHdiv(curl div,T; Ω)⊕ H1
curl
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with dimH1
curl = dimH 1,curl

∞ = b1. The space H1
curl is trivial if Ω is simply-connected.

Define

Xcurl := Hcurl(grad curl; Ω) ∩H0(div; Ω).

The domain of the Hodge Laplacian operator L 1 is

DL 1,curl = {u ∈ Xcurl : grad curlu ∈ Hdiv(curl div,T; Ω), divu ∈ H1(Ω)}.

For f ∈ L2(Ω) ⊗ V, the strong formulation of the Hodge Laplacian boundary value

problem seeks u ∈ DL 1,curl and u ⊥ H1
curl such that

− curl∆ curlu− grad divu = f − PH1
curl
f in Ω.

3.1.4 Characterization of H0(grad curl)

In this section, we characterize the space H0(grad curl; Ω).

Theorem 3.1.1. Define γτ,curlu = {u × n, curlu}. Then γτ,curl is a linear bounded

operator from H(grad curl; Ω) to H−1/2(∂Ω)⊗ V×H1/2(∂Ω)⊗ V with the bound:

∥γτ,curlu∥H−1/2(∂Ω)×H1/2(∂Ω) ≤ C∥u∥H(grad curl;Ω).

Proof. Since γτu = u×n is a linear bounded operator from H(curl; Ω) to H−1/2(∂Ω)⊗V

and trv = v|∂Ω is a linear bounded operator from H1(Ω)⊗V to H1/2(∂Ω)⊗V, we have

∥γτ,curlu∥2H−1/2(∂Ω)×H1/2(∂Ω)

=∥u× n∥2H−1/2(∂Ω) + ∥ curlu∥2H1/2(∂Ω)

≤C∥u∥2H(curl;Ω) + C∥ curlu∥2H1(Ω)

≤C∥u∥2H(grad curl;Ω),

where we have used the equivalence between the norms ∥·∥H(grad curl;Ω) and |||·|||H(grad curl;Ω),

see Section 2.1.4.
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Lemma 3.1.2. If a function u ∈ H(grad curl; Ω) satisfies

(grad curlu,Φ) + (u, curl divΦ) = 0 for all Φ ∈ C∞(Ω)⊗ T, (3.1.13)

then u ∈ H0(grad curl; Ω).

Proof. We follow the proof of [49, Lemma 3.27]. Denote Du = grad curlu. Let ũ and

D̃u be the extension of u and Du by zero outside Ω. Then (3.1.13) can be rewritten as

(D̃u,Φ) + (ũ, curl divΦ) = 0 for all Φ ∈ C∞(R3)⊗ T,

which implies ũ ∈ H(grad curl;R3). If we can construct a sequence of functions in

C∞
0 (Ω)⊗ V that converges to u in H(grad curl) norm, then u ∈ H0(grad curl; Ω).

1). Suppose that Ω is a strictly star-shaped with respect to a point in Ω, say y.

Without loss of generality, we suppose y is the origin of the coordinate system. For

θ ∈ (0, 1), define the function

ũθ(x) = ũ(x/θ), ∀x ∈ R3.

Obviously, ũθ ∈ H(grad curl;R3) and limθ→1 ũθ = ũ in H(grad curl;R3). Since Ω is

strictly star-shaped, the function ũθ has a compact support in Ω. Let ηε be the mollifier

ηε(x) = ε−3η(x/ε),

where

η(x) =


C1 exp

(
1

|x|2−1

)
, |x| < 1,

0, |x| ≥ 1

with C1 =
( ´

R2 exp
(

1
|x|2−1

)
dx

)−1

. There exists a εθ > 0 such that, for 0 < ε < εθ,

ηε ∗ ũθ belongs to C∞
0 (Ω)⊗ V and

lim
ε→0

ηε ∗ ũθ = ũθ in H(grad curl; Ω).

As a result, there exists {θk, εk}∞k=1 with 0 < θk < 1 and 0 < εk < εθk such that θk → 1
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and εk → 0. Then

lim
k→∞

ηεk ∗ ũθk = ũ in H(grad curl; Ω).

2). In the general case, there exit finite open sets Oi, i = 1, 2, · · · , q such that

Ω ⊂ ∪1≤i≤qOi and each Ωi := Ω ∩ Oi is Lipschitz, bounded, and strictly star-shaped.

Let {αi}qi=1 be a partition of unity subordinate to {Oi}qi=1, i.e.,

αi ∈ C∞
0 (Oi), 0 ≤ αi(x) ≤ 1, and

q∑
i=1

αi(x) ≡ 1 in Ω.

Then ũ =
∑q

i=1 αiũ in R3 with αiũ ∈ H(grad curl; Ω) and supp(αiũ) ⊂ Ωi. We can

complete the proof by applying 1) to each αiũ.

By a modification of the proof of Lemma 3.1.2, we can prove the counterpart for

H(curl div,T; Ω).

Lemma 3.1.3. If a function U ∈ H(curl div,T; Ω) satisfies

(curl divU ,ϕ) + (U , grad curlϕ) = 0 for all ϕ ∈ C∞(Ω)⊗ V, (3.1.14)

then U ∈ H0(curl div,T; Ω) = closure of C∞
0 (Ω)⊗ T in H(curl div,T; Ω) norm.

Theorem 3.1.4. C∞(Ω)⊗ V is dense in H(grad curl; Ω).

Proof. We follow the proof of [49, Theorem 3.26]. Rewrite

H(grad curl; Ω) = C∞(Ω)⊗ V⊕
(
C∞(Ω)⊗ V

)⊥
.

Suppose u ∈
(
C∞(Ω)⊗ V

)⊥, then

(u,ϕ) + (grad curlu, grad curlϕ) = 0 for all ϕ ∈ C∞(Ω)⊗ V. (3.1.15)

We shall show u = 0. Let V = grad curlu ∈ L2(Ω) ⊗ V. The equality (3.1.15) implies,

in the sense of distributions,

u = curl divV ∈ L2(Ω)⊗ V.
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Then V ∈ H(curl div,T; Ω). From the equality (3.1.15), V satisfies

(curl divV ,ϕ) + (V , grad curlϕ) = 0 for all ϕ ∈ C∞(Ω)⊗ V.

It follows from Lemma 3.1.3 that V ∈ H0(curl div,T; Ω). Since C∞
0 (Ω) ⊗ T is dense

in H0(curl div,T; Ω), there is a sequence {Vn}∞n=1 ⊂ C∞
0 (Ω) ⊗ T such that Vn → V

in H0(curl div,T; Ω) as n → ∞. Then by (3.1.15) and the distributional definition of

grad curlu, we have

(u,u) + (grad curlu, grad curlu) = (u, curl divV ) + (V , grad curlu)

= lim
n→∞

(u, curl divVn) + (Vn, grad curlu) = 0,

which completes the proof.

Now we are in a position to characterize H0(grad curl; Ω).

Theorem 3.1.5. The space H0(grad curl; Ω) can be characterized as

H0(grad curl; Ω) = N (γτ,curl) := {w ∈ H(grad curl; Ω) : γτ,curlw = 0 on ∂Ω}.

Proof. It follows from Theorem 3.1.1 that N (γτ,curl) is closed. Then it is clear that

H0(grad curl; Ω) ⊂ N (γτ,curl) since C∞
0 (Ω) ⊗ V ⊂ N (γτ,curl) and N (γτ,curl) is closed. To

prove the opposite, we first have

{u ∈ H(grad curl; Ω) : (grad curlu,Φ) + (u, curl divΦ) = 0 for all Φ ∈ C∞(Ω)⊗ T}

is a subset of H0(grad curl; Ω) from Lemma 3.1.2. If u ∈ N (γτ,curl) and u ∈ C∞(Ω)⊗V,

then

(grad curlu,Φ) + (u, curl divΦ) = 0.

Since C∞(Ω) ⊗ V is dense in H(grad curl; Ω) (Theorem 3.1.4), the equality also holds

for u ∈ H(grad curl; Ω). Therefore N (γτ,curl) is a subset of

{u ∈ H(grad curl; Ω) : (grad curlu,Φ) + (u, curl divΦ) = 0 for all Φ ∈ C∞(Ω)⊗ T}.
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3.2 Gradrot Complex and Hodge Laplacian

In this section, we present the grad rot complex in 2D. For any real number q, the

grad rot complex reads:

0 Hq(Ω) Hq−1(Ω)⊗ V Hq−3(Ω)⊗ V Hq−4(Ω) 0,
grad grad rot rot (3.2.1)

which is derived from the following diagram:

0 Hq(Ω) Hq−1(Ω)⊗ V Hq−2(Ω) 0 0

0 0 Hq−2(Ω) Hq−3(Ω)⊗ V Hq−4(Ω) 0.

grad rot

0

grad

id

rot

0 0 (3.2.2)

Note that the dimension of cohomology at Hq−1(Ω)⊗V in the first row of (3.2.2) is the

first Betti number b1 of the domain, and the dimension of cohomology at Hq−2 in the

second row is 1 (kernel of grad is constants). According to Theorem 2.2.1 and Theorem

2.1.1

N (grad rot, Hq−1(Ω)⊗ V) = R(grad, Hq(Ω))⊕ H 1
∞, (3.2.3)

where H 1
∞ is a set of smooth cohomology representatives (independent of q) with di-

mension dimH 1
∞ = 1 + b1.

Remark 3.2.1. Define K̃1u := 1/2ux⊥ and K̃2v := 1/2v · x. Then we can verify the

condition (2.2.3) by defining K1, K2 in the way of (3.1.4).

The L2 version of (3.2.1) with unbounded linear operators is as follows:

0 L2(Ω) L2(Ω)⊗ V L2(Ω)⊗ V L2(Ω) 0.
grad grad rot rot (3.2.4)

3.2.1 Gradrot Complex without Boundary Conditions

Consider the following domain complex of (3.2.4)

0 H1(Ω) H(grad rot; Ω) H(rot; Ω) L2(Ω) 0,
grad grad rot rot (3.2.5)
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and its dual complex

0 L2
0(Ω) H0(div; Ω) H0(curl div; Ω) H1

0 (Ω) 0.
− div − curl div curl (3.2.6)

Here H0(curl div; Ω) is the closure of C∞
0 (Ω) ⊗ V in H(curl div; Ω) = {u ∈ L2 ⊗ V :

curl divu ∈ L2 ⊗ V}. We will show in Section 3.2.4 that

H0(curl div; Ω) = {u ∈ H(curl div; Ω) : divu = 0 and u · n = 0 on ∂Ω},

and the adjoint of (grad rot, H(grad rot; Ω)) is (− curl div, H0(curl div; Ω)).

Similar to (3.2.3), we have

N (grad rot, H(grad rot; Ω)) = R(grad, H1(Ω))⊕ H 1
∞ (3.2.7)

with H 1
∞ defined in (3.2.3).

The Hodge decomposition at H(grad rot; Ω) reads

L2(Ω)⊗ V = gradH1(Ω)⊕ curl divH0(curl div; Ω)⊕ H1,

where H1 is the space of harmonic forms with dimH1 = dimH 1
∞. In addition to the

harmonic forms of the de Rham complex, i.e., the functions satisfying rotu = 0 and

divu = 0, the function u = grad p with p solving

∆p = 1 in Ω, p = 0 on ∂Ω

is also a harmonic form in H.

The Hodge Laplacian operator follows from the abstract definition:

L 1 := −(curl div) grad rot− grad div = − curl∆ rot− grad div,

with the domain DL 1 = {u ∈ X : grad rotu ∈ H0(curl div; Ω), divu ∈ H1(Ω)}. For

f ∈ L2(Ω)⊗V, the strong formulation of the Hodge Laplacian boundary value problem

seeks u ∈ DL 1 and u ⊥ H1 such that

− curl∆ rotu− grad divu = f − PH1f in Ω. (3.2.8)
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3.2.2 Gradrot Complex with Boundary Conditions

Define

H0(grad rot; Ω) := closure of C∞
0 (Ω)⊗ V in the sense of H(grad rot) norm.

We will show in Section 3.2.4 that

H0(grad rot; Ω) := {u ∈ H(grad rot; Ω) : u · τ = 0 and rotu = 0}.

Consider the domain complex of (3.2.4) with vanishing boundary conditions:

0 H1
0 (Ω) H0(grad rot; Ω) H0(rot; Ω) L2

0(Ω) 0,
grad grad rot rot (3.2.9)

which is derived from the following diagram:

0 H1
0 (Ω) H0(grad rot; Ω) H1

0 (Ω) 0 0

0 0 H1
0 (Ω) H0(rot; Ω) L2

0(Ω) 0.

grad rot

0

grad

id

rot

0 0 (3.2.10)

The dimension of the cohomology at H0(grad rot; Ω) in the first row of (3.2.10) is b2, and

the dimension of the cohomology at H1
0 (Ω) in the second row of (3.2.10) is 0. Therefore,

we have

N (grad rot, H0(grad rot; Ω)) = R(grad, H1
0 (Ω))⊕ H 1,0

∞ ,

where H 1,0
∞ is a set of smooth cohomology representatives with dimH 1,0

∞ = b2.

The dual complex of (3.2.9) is:

0 L2(Ω) H(div; Ω) H(curl div; Ω) H1(Ω) 0.
− div − curl div curl (3.2.11)

The Hodge decomposition at H0(grad rot) reads:

L2(Ω)⊗ V = gradH1
0 (Ω)⊕ curl divH(curl div; Ω)⊕ H1

0 (3.2.12)

with dimH1
0 = dimH 1,0

∞ = b2. The space H1
0 is vanishing for any bounded domain in

2D.
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Define

X0 := H0(grad rot; Ω) ∩H(div; Ω).

We define the Hodge Laplacian operator L 1 in the previous way but with the domain

DL 1,0 = {u ∈ X0 : grad rotu ∈ H(curl div; Ω), divu ∈ H1
0 (Ω)}.

For f ∈ L2(Ω) ⊗ V, the strong formulation of the Hodge Laplacian boundary value

problem seeks u ∈ DL 1,0 and u ⊥ H1
0 such that

− curl∆ rotu− grad divu = f − PH1
0
f in Ω. (3.2.13)

This problem is related to the problem considered in the following chapter, especially

when f ∈ curl divH(curl div; Ω).

In the case of f ∈ curl divH(curl div; Ω), the problem (3.2.13) is then to find u such

that u ⊥ H1
0 and

− curl∆ rotu = f in Ω,

divu = 0 in Ω,

u · τ = 0 on ∂Ω,

rotu = 0 on ∂Ω.

(3.2.14)

3.2.3 Gradrot Complex with Partial Boundary Conditions

Define

Hrot(grad rot; Ω) := {u ∈ H(grad rot; Ω) : rotu = 0}

We consider a domain complex of (3.2.4) with partial vanishing boundary conditions:

0 H1(Ω) Hrot(grad rot; Ω) H0(rot; Ω) L2
0(Ω) 0,

grad grad rot rot (3.2.15)
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which is somewhere between the complexes (3.2.5) and (3.2.9). The above complex is

derived from the following diagram:

0 H1(Ω) Hrot(grad rot; Ω) H1
0 (Ω) 0 0

0 0 H1
0 (Ω) H0(rot; Ω) L2

0(Ω) 0.

grad rot

0

grad

id

rot

0 0 (3.2.16)

The dimension of the de Rham complex cohomology at Hrot(grad rot; Ω) in the first row

of (3.2.16) is b1, and the dimension of the de Rham complex cohomology at H1
0 (Ω) in

the second row of (3.2.16) is 0. Consequently,

N (grad rot, Hrot(grad rot; Ω)) = R(grad, H1(Ω))⊕ H 1,rot
∞ ,

where H 1,rot
∞ is a set of smooth cohomology representatives with dimH 1,rot

∞ = b1.

The dual complex of (3.2.15) is:

0 L2
0(Ω) H0(div; Ω) Hdiv(curl div; Ω) H1(Ω) 0.

− div − curl div curl (3.2.17)

Here Hdiv(curl div; Ω) is a formal notation for the domain of the adjoint of the operator

(grad rot, Hrot(grad rot; Ω)). We will provide a characterization for this space in Section

3.2.4 to show that it is a subspace of H(curl div; Ω) with the boundary condition divu =

0.

The Hodge decomposition at Hrot(grad rot) reads:

L2(Ω)⊗ V = gradH1(Ω)⊕ curl divHdiv(curl div; Ω)⊕ H1
rot (3.2.18)

with dimH1
rot = dimH 1,rot

∞ = b1. The space H1
rot is trivial if Ω is simply-connected.

Define

Xrot := Hrot(grad rot; Ω) ∩H0(div; Ω).

The domain of the Hodge Laplacian operator L 1 is

DL 1,rot = {u ∈ Xrot : grad rotu ∈ Hdiv(curl div; Ω), divu ∈ H1(Ω)}.
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For f ∈ L2(Ω) ⊗ V, the strong formulation of the Hodge Laplacian boundary value

problem seeks u ∈ DL 1,rot and u ⊥ H1
rot such that

− curl∆ rotu− grad divu = f − PH1
rot
f in Ω. (3.2.19)

3.2.4 Characterization of H0(grad rot), H0(curl div) and Hdiv(curl div)

In this section, we provide a characterization for the spacesH0(grad rot; Ω),H0(curl div; Ω),

and Hdiv(curl div; Ω).

Theorem 3.2.1. Define γτ,rotu = {u ·τ , rotu}. Then γτ,rot is a linear bounded operator

from H(grad rot; Ω) to H−1/2(∂Ω)×H1/2(∂Ω) with the bound:

∥γτ,rotu∥H−1/2(∂Ω)×H1/2(∂Ω) ≤ C∥u∥H(grad rot;Ω).

Proof. Since γτu = u · τ is a linear bounded operator from H(rot; Ω) to H−1/2(∂Ω) and

trv = v|∂Ω is a linear bounded operator from H1(Ω) to H1/2(∂Ω), we obtain

∥γτ,rotu∥2H−1/2(∂Ω)×H1/2(∂Ω) ≤ C∥u∥2H(rot;Ω) + C∥ rotu∥2H1(Ω),

which completes the proof by the equivalence between the norms ∥ · ∥H(grad rot;Ω) and

||| · |||H(grad rot;Ω), see Section 2.1.4.

Similarly, we have

Theorem 3.2.2. Define γn,divu = {u·n, divu}. Then γn,div is a linear bounded operator

from H(curl div; Ω) to H−1/2(∂Ω)×H1/2(∂Ω) with the bound:

∥γn,divu∥H−1/2(∂Ω)×H1/2(∂Ω) ≤ C∥u∥H(curl div;Ω).

Theorem 3.2.3. The trace operator γτ,rot is surjective from H(grad rot; Ω) to H−1/2(∂Ω)×

H1/2(∂Ω). That is, for any g1 ∈ H−1/2(∂Ω) and g2 ∈ H1/2(∂Ω), there exists u ∈

H(grad rot; Ω) such that u · τ |∂Ω = g1, rotu|∂Ω = g2, and

∥u∥H(grad rot;Ω) ≤ C
(
∥g1∥H−1/2(∂Ω) + ∥g2∥H1/2(∂Ω)

)
.
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Proof. For g2 ∈ H1/2(∂Ω), there exists v ∈ H1(Ω) such that v|∂Ω = g2 and

∥v∥H1(Ω) ≤ C∥g2∥H1/2(∂Ω).

Take x0 and r such that B(x0, r) ⊂ Ω and define

ηr,x0(x) =
1

r2
η
(x− x0

r

)
with η defined in the proof of Theorem 3.1.2. Then we have ηr,x0(x) ∈ C∞

0 (Ω) and
´
Ω
ηr,x0(x)dx = 1. Let C0 = ⟨g1, 1⟩∂Ω − (v, 1) and ṽ = v + C0ηr,x0 . Then we have

(ṽ, 1) = (v, 1) + C0(ηr,x0 , 1) = ⟨g1, 1⟩∂Ω,

and

∥ṽ∥H1(Ω) ≤ ∥v∥H1(Ω) + C
(
⟨g1, 1⟩∂Ω − (v, 1)

)
≤ C

(
∥v∥H1(Ω) + ∥g1∥H−1/2(∂Ω)

)
≤ C

(
∥g2∥H1/2(∂Ω) + ∥g1∥H−1/2(∂Ω)

)
. (3.2.20)

Now we seek w ∈ H1(Ω) such that

−∆w = −ṽ in Ω,

∂w

∂n
= g1 on ∂Ω,

where ṽ and g1 satisfy

−(ṽ, 1) + ⟨g1, 1⟩∂Ω = 0.

By virtual of the regularity result of the elliptic problem [49, Theorem 3.18], we have

∥w∥H1(Ω) ≤ C
(
∥ṽ∥+ ∥g1∥H−1/2(∂Ω)

)
. (3.2.21)

Take u = curlw. Then u ∈ L2(Ω) and rotu = ∆w = ṽ ∈ H1(Ω), and hence u ∈

H(grad rot; Ω). Restricted on ∂Ω, u satisfies

u · τ = curlw · τ = gradw · n = g1,
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rotu = ∆w = ṽ = v = g2.

Combining (3.2.20) and (3.2.21), we obtain

∥u∥H(grad rot;Ω) = ∥u∥+ ∥ grad rotu∥

= ∥ curlw∥+ ∥ grad ṽ∥

≤ ∥w∥H1(Ω) + ∥ṽ∥H1(Ω)

≤ C
(
∥ṽ∥+ ∥g1∥H−1/2(∂Ω)

)
+ ∥ṽ∥H1(Ω)

≤ C
(
∥g1∥H−1/2(∂Ω) + ∥g2∥H1/2(∂Ω)

)
.

Proceeding as the proof of Theorem 3.1.4, we can show the following density.

Theorem 3.2.4. C∞(Ω)⊗ V is dense in H(grad rot; Ω).

Theorem 3.2.5. C∞(Ω)⊗ V is dense in H(curl div; Ω).

Lemma 3.2.6. For u ∈ H(grad rot; Ω) and w ∈ H(curl div; Ω), the following identity

holds

(u, curl divw) + (grad rotu,w) = ⟨u · τ , divw⟩∂Ω + ⟨w · n, rotu⟩∂Ω. (3.2.22)

Proof. It is easy to check that (3.2.22) holds for smooth functions u,w. By Theorems

3.2.1, 3.2.2, 3.2.4, and 3.2.5, we can prove (3.2.22) for u ∈ H(grad rot; Ω) and w ∈

H(curl div; Ω).

Now we are in a position to characterize H0(grad rot; Ω) and H0(curl div; Ω).

Theorem 3.2.7. The space H0(grad rot; Ω) can be characterized as

H0(grad rot; Ω) = {w ∈ H(grad rot; Ω) : γτ,rotw = 0 on ∂Ω}.
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Proof. Recalling H0(grad rot; Ω) = closure of C∞
0 (Ω) ⊗ V in the sense of H(grad rot)

norm, we write

H(grad rot; Ω) = H0(grad rot; Ω)⊕
(
H0(grad rot; Ω)

)⊥
.

We then show w = 0 if w ∈
(
H0(grad rot; Ω)

)⊥ and γτ,rotw = {w · τ , rotw} = 0. Since

w ∈
(
H0(grad rot; Ω)

)⊥,

(w,v) + (grad rotw, grad rotv) = 0 for all v ∈ C∞
0 (Ω)⊗ V,

which implies w = curl div grad rotw. Denote u = grad rotw, then u ∈ H(curl div; Ω).

Applying (3.2.22), we obtain

(w,w) + (grad rotw, grad rotw) = (w, curl divu) + (grad rotw,u)

=⟨w · τ , divu⟩∂Ω + ⟨u · n, rotw⟩∂Ω = 0,

which yields w = 0.

Similarly, we can show

Theorem 3.2.8. The space H0(curl div; Ω) can be characterized as

H0(curl div; Ω) = {w ∈ H(curl div; Ω) : γn,divw = 0 on ∂Ω}.

Next we compute the adjoint operators of grad rot with domains H(grad rot; Ω)) and

Hrot(grad rot; Ω)).

Theorem 3.2.9. The adjoint of (grad rot, H(grad rot; Ω)) is (− curl div, H0(curl div; Ω)).

Proof. If w belongs to the domain of the adjoint of (grad rot, H(grad rot; Ω)), then there

exists v ∈ L2(Ω)⊗ V such that

(grad rotu,w) = −(u,v), u ∈ H(grad rot; Ω).

Such a function w must be in H(curl div; Ω) and satisfies curl divw = v. Therefore, w



47

belongs to the domain of the adjoint of (grad rot, H(grad rot; Ω)) if and only if

(grad rotu,w) = −(u, curl divw), u ∈ H(grad rot; Ω).

From Lemma 3.2.6, the above identity holds if and only if

⟨u · τ , divw⟩∂Ω + ⟨w · n, rotu⟩∂Ω = 0.

which holds when γn,divw = {w·n, divw} = 0 since γτ,rot is surjective fromH(grad rot; Ω)

to H−1/2(∂Ω)×H1/2(∂Ω) (see Theorem 3.2.3).

Theorem 3.2.10. Denote

Hdiv(curl div; Ω) = {w ∈ H(curl div; Ω) : divw = 0 on ∂Ω}.

Then the adjoint of (grad rot, Hrot(grad rot; Ω)) is (− curl div, Hdiv(curl div; Ω)).

Proof. The proof is similar to that of Theorem 3.2.9.

3.3 Graddiv Complex and Hodge Laplacian

In this section, we present the grad div complex. For any real number q, the grad div

complex reads:

0 Hq Hq−1 ⊗ V Hq−2 ⊗ V Hq−4 ⊗ V Hq−5 ⊗ V Hq−6 0,
grad curl grad div curl div

which is derived from the following diagram:

0 Hq Hq−1 ⊗ V Hq−2 ⊗ V Hq−3 0 0 0

0 0 0 Hq−3 Hq−4 ⊗ V Hq−5 ⊗ V Hq−6 0.

grad curl div

0 0

grad

id

curl

0

div

0

Note that the dimension of cohomology at Hq−2(Ω) ⊗ V in the first row of the above

diagram is b2 of the domain, and the dimension of cohomology at Hq−3 in the second

row is 1. According to Theorem 2.2.1 and Theorem 2.1.1

N (grad div, Hq−2(Ω)⊗ V) = R(curl, Hq−1(Ω))⊕ H 2
∞, (3.3.1)



48

where H 2
∞ is a set of smooth cohomology representatives (independent of q) with di-

mension dimH 2
∞ = 1 + b2.

Remark 3.3.1. Define K̃1u := 1/3ux and K̃2v := 1/3v · x. Then we can verify the

condition (2.2.3) by defining K1, K2 in the way of (3.1.4).

The L2 version of the grad div complex with unbounded linear operators is as follows:

0 L2 L2 ⊗ V L2 ⊗ V L2 ⊗ V L2 ⊗ V L2 0.
grad curl grad div curl div (3.3.2)

3.3.1 Graddiv Complex without Boundary Conditions

Consider the following domain complex of (3.3.2)

0 H1 H(curl) H(grad div) H(curl) H(div) L2 0.
grad curl grad div curl div

and its dual complex

0 L2
0 H0(div) H0(curl) H0(grad div) H0(curl) H1

0 0.
− div curl grad div curl − grad

Here H0(grad div; Ω) := closure of C∞
0 (Ω) ⊗ V in the sense of H(grad div) norm. We

will show in Section 3.3.4 that

H0(grad div; Ω) := {u ∈ H(grad div; Ω) : u · n = 0 and divu = 0},

and the adjoint of (grad div, H(grad div; Ω)) is (grad div, H0(grad div; Ω)).

Similar to (3.3.1), we have

N (grad div, H(grad div; Ω)) = R(curl, H(curl; Ω))⊕ H 2
∞ (3.3.3)

with H 2
∞ defined in (3.3.1).

The Hodge decomposition at H(grad div; Ω) is as follows:

L2(Ω)⊗ V = curlH(curl; Ω)⊕ grad divH0(grad div; Ω)⊕ H2,

where H2 is the space of harmonic forms with dimH2 = dimH 2
∞.
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Denote

Y = H(grad div; Ω) ∩H0(curl).

The Hodge Laplacian operator follows from the abstract definition:

L 2 := (grad div) grad div+ curl curl = grad∆div+ curl curl,

with the domain DL 2 = {u ∈ Y : grad divu ∈ H0(grad div; Ω), curlu ∈ H0(div; Ω)}.

For f ∈ L2(Ω) ⊗ V, the strong formulation of the Hodge Laplacian boundary value

problem seeks u ∈ DL 2 and u ⊥ H2 such that

grad∆div− curl curl = f − PH2f in Ω.

3.3.2 Graddiv Complex with Boundary Conditions

Consider the domain complex of (3.3.2) with vanishing boundary conditions:

0 H1
0 H0(curl) H0(grad div) H0(curl) H0(div) L2

0 0.
grad curl grad div curl div

and its dual complex

0 L2 H(div) H(curl) H(grad div) H(curl) H1 0.
− div curl grad div curl − grad

The Hodge decomposition at H0(grad div) reads:

L2(Ω)⊗ V = curlH0(curl; Ω)⊕ grad divH(grad div; Ω)⊕ H2
0 (3.3.4)

with dimH2
0 = b1.

Define

Y0 := H0(grad div; Ω) ∩H(curl; Ω).

We define the Hodge Laplacian operator L 2 in the previous way but with the domain

DL 2,0 = {u ∈ Y0 : grad divu ∈ H(grad div; Ω), curlu ∈ H0(curl; Ω)}.

For f ∈ L2(Ω) ⊗ V, the strong formulation of the Hodge Laplacian boundary value
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problem seeks u ∈ DL 2,0 and u ⊥ H2
0 such that

grad∆div− curl curl = f − PH2
0
f in Ω. (3.3.5)

This problem is related to the problem considered in Chapter 8, especially when f ∈

grad divH(grad div; Ω).

In the case of f ∈ grad divH(grad div; Ω), the problem (3.3.5) is then to find u such

that u ⊥ H2
0 and

grad∆divu = f in Ω,

curlu = 0 in Ω,

u · n = 0 on ∂Ω,

divu = 0 on ∂Ω.

(3.3.6)

3.3.3 Graddiv Complex with Partial Boundary Conditions

Define

Hdiv(grad div; Ω) := {u ∈ H(grad div; Ω) : divu = 0}.

Consider the domain complex of (3.3.2) with partial boundary conditions:

0 H1 H(curl) Hdiv(grad div) H0(curl) H0(div) L2
0 0.

grad curl grad div curl div

and its dual complex

0 L2
0 H0(div) H0(curl) Hdiv(grad div) H(curl) H1 0.

− div curl grad div curl − grad

We will show in Section 3.3.4 that the adjoint of (grad div;Hdiv(grad div; Ω)) is itself.

The Hodge decomposition at Hdiv(grad div) reads:

L2(Ω)⊗ V = curlH(curl; Ω)⊕ grad divHdiv(grad div; Ω)⊕ H2
div (3.3.7)

with dimH2
div = b2.
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Define

Ydiv := Hdiv(grad div; Ω) ∩H0(curl; Ω).

We define the Hodge Laplacian operator L 2 in the previous way but with the domain

DL 2,div = {u ∈ Ydiv : grad divu ∈ Hdiv(grad div; Ω), curlu ∈ H0(div; Ω)}.

For f ∈ L2(Ω) ⊗ V, the strong formulation of the Hodge Laplacian boundary value

problem seeks u ∈ DL 2,div and u ⊥ H2
div such that

grad∆div− curl curl = f − PH2
div
f in Ω. (3.3.8)

3.3.4 Characterization of H0(grad div)

In this section, we characterize the spaces H0(grad div; Ω).

Theorem 3.3.1. Define γn,divu = {u·n, divu}. Then γn,div is a linear bounded operator

from H(grad div; Ω) to H−1/2(∂Ω)×H1/2(∂Ω) with the bound:

∥γn,divu∥H−1/2(∂Ω)×H1/2(∂Ω) ≤ C∥u∥H(grad div;Ω).

Proof. Since γnu = u ·n is a linear bounded operator from H(div; Ω) to H−1/2(∂Ω) and

trv = v|∂Ω is a linear bounded operator from H1(Ω) to H1/2(∂Ω), we have

∥γn,divu∥2H−1/2(∂Ω)×H1/2(∂Ω) ≤ C∥u∥2H(div;Ω) + C∥ divu∥2H1(Ω) ≤ C∥u∥2H(grad div;Ω),

where we have used the equivalence between the norms ∥·∥H(grad div;Ω) and |||·|||H(grad div;Ω),

see Section 2.1.4.

Theorem 3.3.2. For any g1 ∈ H−1/2(∂Ω) and g2 ∈ H1/2(∂Ω), there exists u ∈

H(grad div; Ω) such that u · n|∂Ω = g1, divu|∂Ω = g2, and

∥u∥H(grad div;Ω) ≤ C
(
∥g1∥H−1/2(∂Ω) + ∥g2∥H1/2(∂Ω)

)
.

Proof. The theorem can be proved by taking u = gradw in the proof of Theorem

3.2.3.
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Theorem 3.3.3. C∞(Ω)⊗ V is dense in H(grad div; Ω).

Proof. By a suitable modification to the proof of Theorem 3.1.4, we can complete the

proof.

Lemma 3.3.4. For u ∈ H(grad div; Ω) and w ∈ H(grad div; Ω), the following identity

holds

(u, grad divw)− (grad divu,w) = ⟨u · n, divw⟩∂Ω − ⟨w · n, divu⟩∂Ω. (3.3.9)

Proof. It is easy to check that (3.3.9) holds for smooth functions u,w. By Theorem 3.3.3

and Theorem 3.3.1, we can prove (3.3.9) for u ∈ H(grad div; Ω) and w ∈ H(grad div; Ω).

Theorem 3.3.5. The space H0(grad div; Ω) can be characterized as

H0(grad div; Ω) = {w ∈ H(grad div; Ω) : γn,div = 0}.

Proof. Proceeding as the proof of Theorem 3.2.7, we can complete the proof.

Theorem 3.3.6. The adjoint of (grad div, H(grad div; Ω)) is (grad div, H0(grad div; Ω)).

Proof. According to the proof of Theorem 3.2.9, w belongs to the domain of the adjoint

of (grad div, H(grad div; Ω)) if and only if w ∈ H(grad div; Ω) and

(grad divu,w) = (u, grad divw), for all u ∈ H(grad div; Ω).

From Lemma 3.3.4, the above identity holds if and only if

⟨u · n, divw⟩∂Ω − ⟨w · n, divu⟩∂Ω = 0.

which holds when γn,divw = {w·n, divw} = 0 since γn,div is surjective fromH(grad div; Ω)

to H−1/2(∂Ω)×H1/2(∂Ω) (see Theorem 3.3.2).

Theorem 3.3.7. The adjoint of the operator (grad div, Hdiv(grad div; Ω)) is itself.

Proof. The proof is similar to that of Theorem 3.3.6.
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CHAPTER 4 SPURIOUS SOLUTIONS

It is notorious that spurious solutions would occur when attempting to solve Maxwell’s

equations by the finite elements smoother than necessary [6]. There is usually no visible

sign such as non-convergence or instability to tell them from the correct solutions, which

makes the occurrence of spurious solutions dangerous for applications. Because of the

similarity shared by the Maxwell equations and the high-order curl problems, we have

the reason to doubt spurious solutions would also occur when solving the curl∆ curl

problems by inappropriate elements.

In this chapter, we focus on the 2D case and investigate spurious solutions of the

curl∆ rot problems. To this end, we consider the source problem (3.2.19) on a simply-

connected domain. The explicit boundary conditions are

∆rotu = 0, rotu = 0, and u · n = 0 on ∂Ω. (4.0.1)

The primal variational formulation of the problem (3.2.19) is to seek u ∈ Xrot such that

(grad rotu, grad rotv) + (divu, div v) = (f ,v), ∀v ∈ Xrot. (4.0.2)

Let σ = − divu. Then the mixed variational formulation seeks (u, σ) ∈ Hrot(grad rot; Ω)×

H1(Ω) such that

(grad rotu, grad rotv) + (grad σ,v) = (f ,v), ∀v ∈ Hrot(grad rot; Ω),

(u, grad τ)− (σ, τ) = 0, ∀τ ∈ H1(Ω).

(4.0.3)

We also consider the corresponding eigenvalue problem on a general domain: find

(λ,u) ∈ R×DL 1,rot such that

− curl∆ rotu− grad divu = λu in Ω (4.0.4)

with the same explicit boundary conditions (4.0.1). The primal variational formulation
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is to seek (λ,u) ∈ R×Xrot such that

(grad rotu, grad rotv) + (divu, div v) = λ(u,v), ∀v ∈ Xrot. (4.0.5)

The mixed variational formulation seeks (λ,u, σ) ∈ R×Hrot(grad rot; Ω)×H1(Ω) such

that

(grad rotu, grad rotv) + (grad σ,v) = λ(u,v), ∀v ∈ Hrot(grad rot; Ω),

(u, grad τ)− (σ, τ) = 0, ∀τ ∈ H1(Ω).

(4.0.6)

We also consider the eigenvalue problem corresponding to (3.2.8): find (λ,u) ∈ R×

DL 1 such that

− curl∆ rotu− grad divu = λu in Ω (4.0.7)

with the explicit boundary conditions:

∆rotu = 0, grad rotu · n = 0, and u · n = 0 on ∂Ω.

The primal variational formulation is to find (λ,u) ∈ R×X such that

(grad rotu, grad rotv) + (divu, div v) = λ(u,v), ∀v ∈ X. (4.0.8)

The mixed variational formulation is to find (λ,u, σ) ∈ R ×H(grad rot; Ω) ×H1(Ω) such

that

(grad rotu, grad rotv) + (grad σ,v) = λ(u,v), ∀v ∈ H(grad rot; Ω),

(u, grad τ)− (σ, τ) = 0, ∀τ ∈ H1(Ω).

(4.0.9)

4.1 Spurious Numerical Solutions

We apply four FEMs to solve the problems (3.2.19), (4.0.4), and (4.0.7): a primal

formulation with the H2-conforming (Argyris) element, a mixed formulation with the

existing grad rot-conforming element [66], and mixed and primal formulations with the

H1(rot)-conforming element [28]. Suppose in this chapter Th is a partition of the domain
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Ω consisting of shape regular triangles. For K ∈ Th and k ≥ 4, define

Wk(K) :=
{
v ∈ Pk(K) : rotv ∈ Pk−3(K) ∪

[
Pk−1(K) ∩H1

0 (K)
] }
.

Remark 4.1.1. We can use the Poincaré operator p2 to construct Wk(K). For example,

when k = 4, Wk(K) = gradP5(K)⊕ P1(K)x⊥ ⊕
{
p2(λ1λ2λ3)

}
.

The grad rot-conforming and H1(rot)-conforming finite element spaces [66, 28] on Th

are defined for k ≥ 4 as follows:

Vh =
{
vh ∈ Hrot(grad rot; Ω) : vh|K ∈ Rk(K), ∀K ∈ Th

}
,

V 1
h =

{
vh ∈ H1(rot; Ω) ∩Hrot(grad rot; Ω) : vh|K ∈ Wk(K), ∀K ∈ Th

}
,

where Rk is defined in (1.5.4).

We also define the following two finite element spaces for the mixed schemes.

Sh = {wh ∈ H1(Ω) : wh|K ∈ Pk(K), ∀K ∈ Th} for k ≥ 4,

S1
h ={wh ∈ H2(Ω) : wh|K ∈ Pk(K), ∀K ∈ Th, wh ∈ C2(Vh)} for k ≥ 5.

The vector-valued H2-conforming finite element space is defined as

V Arg
h = S1

h ⊗ V.

We define the following spaces for the primal schemes.

V̊ 1
h = {vh ∈ V 1

h : vh · n = 0 on ∂Ω},

V̊ Arg
h = {vh ∈ V Arg

h : vh · n = 0 and rotvh = 0 on ∂Ω}.

4.1.1 Source Problem

We are in a position to present the four finite element schemes for the problem

(3.2.19).
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Scheme 1. Mixed formulation with the grad rot-conforming element:

Find (uh, σh) ∈ Vh × Sh such that

(grad rotuh, grad rotvh) + (grad σh,vh) = (f ,vh), ∀vh ∈ Vh,

(uh, grad τh)− (σh, τh) = 0, ∀τh ∈ Sh.

Scheme 2. Mixed formulation with the H1(rot)-conforming element:

Find (uh, σh) ∈ V 1
h × S1

h such that

(grad rotuh, grad rotvh) + (grad σh,vh) = (f ,vh), ∀vh ∈ V 1
h ,

(uh, grad τh)− (σh, τh) = 0, ∀τh ∈ S1
h.

Scheme 3. Primal formulation with the H1(rot)-conforming element:

Find uh ∈ V̊ 1
h such that

(grad rotuh, grad rotvh) + (divuh, div vh) = (f ,vh), ∀vh ∈ V̊ 1
h .

Scheme 4. Primal formulation with the Argyris element:

Find uh ∈ V̊ Arg
h such that

(grad rotuh, grad rotvh) + (divuh, div vh) = (f ,vh), ∀vh ∈ V̊ Arg
h .

The numerical results for the Hodge Laplacian boundary value problem with f =

(1, 0)T on an L-shape domain are shown in Figure 4.1.1. As we can see in Figure 4.1.1,

the primal formulations with the H1(rot)-conforming element and the Argyris element

(Schemes 3 and 4) show different solutions compared with the mixed formulations with

the grad rot- and H1(rot)-conforming elements (Schemes 1 and 2). In fact, the primal

formulations produce spurious solutions. We will provide a theoretical explanation on

this numerical phenomenon in Section 4.2.

4.1.2 Eigenvalue Problem

Similar to the source problem, we consider the following four numerical schemes for

the eigenvalue problem (4.0.4).
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(a) Scheme 1 (b) Scheme 2

(c) Scheme 3 (d) Scheme 4

Figure 4.1.1: Finite element solutions to the problem (3.2.19) on an L-shape domain
with f = (1, 0)T.

Scheme 5. Mixed formulation with the grad rot-conforming element:

Find (λh,uh, σh) ∈ R× Vh × Sh such that

(grad rotuh, grad rotvh) + (gradσh,vh) = λh(uh,vh), ∀vh ∈ Vh,

(uh, grad τh)− (σh, τh) = 0, ∀τh ∈ Sh.



58

Scheme 6. Mixed formulation with the H1(rot)-conforming element:

Find (λh,uh, σh) ∈ R× V 1
h × S1

h such that

(grad rotuh, grad rotvh) + (grad σh,vh) = λh(uh,vh), ∀vh ∈ V 1
h ,

(uh, grad τh)− (σh, τh) = 0, ∀τh ∈ S1
h.

Scheme 7. Primal formulation with the H1(rot)-conforming element:

Find (λh,uh) ∈ R× V̊ 1
h such that

(grad rotuh, grad rotvh) + (divuh, div vh) = λh(uh,vh), ∀vh ∈ V̊ 1
h .

Scheme 8. Primal formulation with the Argyris element:

Find (λh,uh) ∈ R× V̊ Arg
h such that

(grad rotuh, grad rotvh) + (divuh, div vh) = λh(uh,vh), ∀vh ∈ V̊ Arg
h .

We apply Schemes 5 – 8 to solve the eigenvalue problem (4.0.4) on three different

domains (see Figure 4.1.2):

• Ω1 = (0, 1)× (0, 1).

• Ω2 = (0, 1)× (0, 1)/[1/3, 3/4]× [1/4, 2/3].

• Ω3 = (−1, 1)× (−1, 1)/[0, 1)× (−1, 0].
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Figure 4.1.2: Initial meshes (n = 0) for Ω1, Ω2, and Ω3

We observe from Tables 4.1.1 – 4.1.12 that the four schemes lead to the same numerical

eigenvalues on Ω1 and different numerical eigenvalues on Ω2 and Ω3. We will prove in
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Section 4.2 that Scheme 5 yields correctly convergent numerical eigenvalues on simply-

connected domains. Therefore, Scheme 7 and Scheme 8 lead to spurious eigenvalues on

Ω3.

Table 4.1.1: Numerical eigenvalues with units π2 on Ω1 obtained by Scheme 5 with
k = 4 for (4.0.4)

n λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8

0 1.000000 1.000000 2.000000 4.000001 4.000001 5.000002 5.000002 8.000011

1 1.000000 1.000000 2.000000 4.000000 4.000000 5.000000 5.000000 8.000000

2 1.000000 1.000000 2.000000 4.000000 4.000000 5.000000 5.000000 8.000000

Table 4.1.2: Numerical eigenvalues with units π2 on Ω1 obtained by Scheme 6 with
k = 4 for (4.0.4)

n λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8

0 1.000000 1.000000 2.000000 4.000000 4.000000 5.000000 5.000000 8.000001

1 1.000000 1.000000 2.000000 4.000000 4.000000 5.000000 5.000000 8.000000

2 1.000000 1.000000 2.000000 4.000000 4.000000 5.000000 5.000000 8.000000

Table 4.1.3: Numerical eigenvalues with units π2 on Ω1 obtained by Scheme 7 with
k = 4 for (4.0.4)

n λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8

0 1.000000 1.000000 2.000000 4.000001 4.000001 5.000004 5.000004 8.000077

1 1.000000 1.000000 2.000000 4.000000 4.000000 5.000000 5.000000 8.000000

2 1.000000 1.000000 2.000000 4.000000 4.000000 5.000000 5.000000 8.000000

4.1.3 Eigenvalue Problem with Different Boundary Conditions

We consider four numerical schemes similar to Schemes 5 – 8 but without the bound-

ary condition rotuh = 0 on the three domains. Again, we observe that the four schemes

lead to different numerical eigenvalues. In particular, the mixed formulations produce
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Table 4.1.4: Numerical eigenvalues with units π2 on Ω1 obtained by Scheme 8 with
k = 5 for (4.0.4)

n λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8

0 1.000000 1.000000 2.000000 4.000000 4.000000 5.000000 5.000000 8.000003

1 1.000000 1.000000 2.000000 4.000000 4.000000 5.000000 5.000000 8.000000

2 1.000000 1.000000 2.000000 4.000000 4.000000 5.000000 5.000000 8.000000

Table 4.1.5: Numerical eigenvalues with units π2 on Ω2 obtained by Scheme 5 with
k = 4 for (4.0.4)

n λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8

0 0.000000 0.594212 0.595733 1.802009 2.843750 4.460286 4.495899 5.463774

1 0.000000 0.593616 0.595336 1.801970 2.839489 4.458673 4.493247 5.463500

2 0.000000 0.593379 0.595179 1.801959 2.837796 4.458048 4.492200 5.463407

Table 4.1.6: Numerical eigenvalues with units π2 on Ω2 obtained by Scheme 6 with
k = 4 for (4.0.4)

n λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8

0 0.000000 0.596944 0.597564 1.802182 2.863546 4.467690 4.508052 5.465057

1 0.000000 0.594698 0.596060 1.802016 2.847332 4.461544 4.498047 5.463929

2 0.000000 0.593808 0.595466 1.801975 2.840909 4.459177 4.494100 5.463565

Table 4.1.7: Numerical eigenvalues with units π2 on Ω2 obtained by Scheme 7 with
k = 4 for (4.0.4)

n λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8

0 2.645076 3.202686 3.607223 4.369787 6.145767 7.964110 8.167482 8.213072

1 2.269742 2.874862 3.141026 4.063906 5.846892 7.677691 7.894476 7.971607

2 2.065438 2.689171 2.882076 3.886972 5.659409 7.489803 7.694887 7.864160

3 1.947637 2.579732 2.731537 3.781333 5.542562 7.373284 7.571471 7.797919
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Table 4.1.8: Numerical eigenvalues with units π2 on Ω2 obtained by Scheme 8 with
k = 5 for (4.0.4)

n λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8

0 2.996956 3.517662 3.946885 4.626899 6.440491 8.154377 8.449486 8.484641

1 2.462447 3.063195 3.349072 4.229950 6.010834 7.860474 8.069506 8.098664

2 2.178163 2.802148 3.008808 3.990078 5.760831 7.614372 7.802093 7.935650

3 2.015498 2.648156 2.808560 3.844587 5.606347 7.451910 7.636857 7.841693

Table 4.1.9: Numerical eigenvalues with units π2 on Ω3 obtained by Scheme 5 with
k = 4 for (4.0.4)

n λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8

0 0.149678 0.358073 1.000000 1.000000 1.153997 1.274383 2.000000 2.172031

1 0.149578 0.358072 1.000000 1.000000 1.153996 1.274062 2.000000 2.171278

2 0.149538 0.358072 1.000000 1.000000 1.153996 1.273934 2.000000 2.170978

Table 4.1.10: Numerical eigenvalues with units π2 on Ω3 obtained by Scheme 6 with
k = 4 for (4.0.4)

n λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8

0 0.150209 0.358082 1.000000 1.000000 1.154010 1.276086 2.000000 2.176030

1 0.149788 0.358074 1.000000 1.000000 1.153998 1.274741 2.000000 2.172873

2 0.149621 0.358072 1.000000 1.000000 1.153996 1.274203 2.000000 2.171612

Table 4.1.11: Numerical eigenvalues with units π2 on Ω3 obtained by Scheme 7 with
k = 4 for (4.0.4)

n λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8

0 0.416285 0.665296 1.000000 1.000000 1.181067 1.558700 2.000000 2.447851

1 0.393230 0.635841 1.000000 1.000000 1.170019 1.536785 2.000000 2.416211

2 0.379644 0.618841 1.000000 1.000000 1.163726 1.524513 2.000000 2.396893
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Table 4.1.12: Numerical eigenvalues with units π2 on Ω3 obtained by Scheme 8 with
k = 5 for (4.0.4)

n λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8

0 0.431506 0.667232 1.000000 1.000000 1.185750 1.559335 2.000000 2.471656

1 0.401863 0.638780 1.000000 1.000000 1.173429 1.538747 2.000000 2.429102

2 0.384768 0.621402 1.000000 1.000000 1.165924 1.526300 2.000000 2.404445

one zero eigenvalue on Ω1, Ω3 and two zero eigenvalues on Ω2, whereas the primal for-

mulations do not produce zero numerical eigenvalues. We will explain this difference in

Section 4.2.

Table 4.1.13: Numerical eigenvalues with units π2 on Ω1 obtained by Scheme 5 with
k = 4 for (4.0.7)

n λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8

0 0.000000 1.000000 1.000000 2.000000 4.000000 4.000001 5.000002 5.000002

1 0.000000 1.000000 1.000000 2.000000 4.000000 4.000000 5.000000 5.000000

2 -0.000000 1.000000 1.000000 2.000000 4.000000 4.000000 5.000000 5.000000

Table 4.1.14: Numerical eigenvalues with units π2 on Ω1 obtained by Scheme 6 with
k = 4 for (4.0.7)

n λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8

0 0.000000 1.000000 1.000000 2.000000 4.000000 4.000000 5.0000001 5.0000001

1 0.000000 1.000000 1.000000 2.000000 4.000000 4.000000 5.0000000 5.0000000

2 -0.000000 1.000000 1.000000 2.000000 4.000000 4.000000 5.0000000 5.0000000

4.2 Convergence Analysis and Explanations of Spurious Solutions

We prove that the mixed formulations provide correct solutions for both the source

(3.2.19) and the eigenvalue problem (4.0.4) on simply-connected domains. Therefore the

different solutions by the primal formulations in Section 4.1 are spurious. Since Ω is
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Table 4.1.15: Numerical eigenvalues with units π2 on Ω1 obtained by Scheme 7 with
k = 4 for (4.0.7)

n λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8

0 1.000000 1.000000 2.000000 4.000002 4.000002 5.000004 5.000004 7.762197

1 1.000000 1.000000 2.000000 4.000000 4.000000 5.000000 5.000000 5.940076

2 1.000000 1.000000 2.000000 4.000000 4.000000 4.833375 5.000000 5.000000

3 1.000000 1.000000 2.000000 4.000000 4.000000 4.078384 5.000000 5.000000

Table 4.1.16: Numerical eigenvalues with units π2 on Ω1 obtained by Scheme 8 with
k = 5 for (4.0.7)

n λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8

0 1.000000 1.000000 2.000000 4.000000 4.000000 4.353529 5.000000 5.000000

1 1.000000 1.000000 2.000000 3.732480 4.000000 4.000000 5.000000 5.000000

2 1.000000 1.000000 2.000000 3.266372 4.000000 4.000000 5.000000 5.000000

3 1.000000 1.000000 2.000000 2.903702 4.000000 4.000000 5.000000 5.000000

Table 4.1.17: Numerical eigenvalues with units π2 on Ω2 obtained by Scheme 5 with
k = 4 for (4.0.7)

n λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8

0 0.000000 -0.000000 0.594212 0.595733 1.802009 2.843750 4.460286 4.495899

1 0.000000 -0.000000 0.593616 0.595336 1.801970 2.839489 4.458673 4.493248

2 0.000000 -0.000000 0.593379 0.595179 1.801960 2.837797 4.458049 4.492195

Table 4.1.18: Numerical eigenvalues with units π2 on Ω2 obtained by Scheme 6 with
k = 4 for (4.0.7)

n λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8

0 0.000000 -0.000000 0.596944 0.597564 1.802182 2.863546 4.467690 4.508052

1 0.000000 -0.000000 0.594698 0.596060 1.802016 2.847329 4.461542 4.498048

2 0.000000 -0.000000 0.593808 0.595465 1.801975 2.840909 4.459231 4.494105
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Table 4.1.19: Numerical eigenvalues with units π2 on Ω2 obtained by Scheme 7 with
k = 4 for (4.0.7)

n λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8

0 2.640174 3.189826 3.594658 4.335878 6.144269 7.950591 8.156921 8.201252

1 2.267177 2.860417 3.128707 4.010749 5.845370 7.650719 7.875648 7.961485

2 2.063909 2.673185 2.869503 3.813822 5.657945 7.452232 7.668946 7.852054

3 1.946566 2.562122 2.718412 3.687886 5.541129 7.326460 7.539070 7.783510

Table 4.1.20: Numerical eigenvalues with units π2 on Ω2 obtained by Scheme 8 with
k = 5 for (4.0.7)

n λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8

0 2.987390 3.489137 3.927939 4.570472 6.438141 8.140561 8.420141 8.469386

1 2.457624 3.037089 3.331364 4.148755 6.008541 7.823479 8.045921 8.078550

2 2.175539 2.777434 2.992092 3.886997 5.758800 7.562974 7.770874 7.918637

3 2.013865 2.623800 2.792272 3.720863 5.604514 7.391764 7.599227 7.823772

Table 4.1.21: Numerical eigenvalues with units π2 on Ω3 obtained by Scheme 5 with
k = 4 for (4.0.7)

n λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8

0 0.000000 0.149678 0.358073 1.000000 1.000000 1.153996 1.274383 2.000000

1 0.000000 0.149578 0.358072 1.000000 1.000000 1.153996 1.274062 2.000000

2 0.000000 0.149538 0.358072 1.000000 1.000000 1.153996 1.273934 2.000000

Table 4.1.22: Numerical eigenvalues with units π2 on Ω3 obtained by Scheme 6 with
k = 4 for (4.0.7)

n λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8

0 0.000000 0.150209 0.358082 1.000000 1.000000 1.154010 1.276086 2.000000

1 0.000000 0.149788 0.358074 1.000000 1.000000 1.153998 1.274741 2.000000

2 -0.000000 0.149621 0.358072 1.000000 1.000000 1.153996 1.274203 2.000000
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Table 4.1.23: Numerical eigenvalues with units π2 on Ω3 obtained by Scheme 7 with
k = 4 for (4.0.7)

n λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8

0 0.415525 0.607103 1.000000 1.000000 1.180641 1.471030 2.000000 2.203868

1 0.392873 0.556247 1.000000 1.000000 1.169824 1.399646 1.989572 2.000000

2 0.379489 0.518223 1.000000 1.000000 1.163642 1.330472 1.856537 2.000000

3 0.371374 0.487486 1.000000 1.000000 1.159955 1.265016 1.776840 2.000000

Table 4.1.24: Numerical eigenvalues with units π2 on Ω3 obtained by Scheme 8 with
k = 4 for (4.0.7)

n λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8

0 0.429946 0.569639 1.000000 1.000000 1.184886 1.369446 1.913935 2.000000

1 0.401203 0.520021 1.000000 1.000000 1.173065 1.292529 1.813290 2.000000

2 0.384498 0.482939 1.000000 1.000000 1.165775 1.227369 1.751382 2.000000

3 0.374438 0.453274 1.000000 1.000000 1.161302 1.172738 1.711802 2.000000

assumed simply-connected, H1
rot vanishes. Define

Zh = {vh ∈ Vh : grad rotvh = 0}.

Because of the vanishing H1
rot and the boundary condition of Vh, Zh = gradSh.

4.2.1 Source Problem

We show the convergence for the source problem.

We first apply the theoretical framework of FEEC to show the problem (3.2.19) is

well-posed. According to Theorem 4.7 in [6], the strong formulation (3.2.19), the primal

formulation (4.0.2), and the mixed formulation (4.0.3) are equivalent. The well-posedness

of (3.2.19) follows from standard results on the Hodge Laplacian problems of Hilbert

complexes (see [6, Theorem 4.8]). It holds the following estimate

∥u∥+ ∥ grad rotu∥+ ∥ divu∥1 + ∥ curl∆ rotu∥ ≤ C∥f∥. (4.2.1)
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Since u ∈ DL 1,rot, by the Poincaré inequality, we have

∥∆rotu∥ ≤ C∥f∥. (4.2.2)

Since the two norms ||| · |||H(grad rot;Ω) and ∥ · ∥H(grad rot;Ω) are equivalent, we have

∥ rotu∥ ≤ |||u|||H(grad rot;Ω) ≤ C∥u∥H(grad rot;Ω) ≤ C∥f∥. (4.2.3)

Next we investigate the regularity of the solutions.

Theorem 4.2.1. In addition to the assumptions on Ω, we further assume that Ω is a

polygon. There exists a constant α > 1/2 such that the solution u of (3.2.19) satisfies

u ∈ Hα(Ω)⊗ V and rotu ∈ H1+α(Ω),

and it holds

∥u∥α + ∥ rotu∥1+α ≤ C∥f∥.

Moreover, if f ∈ H(div; Ω) and f ·n ∈ Hα−1/2(∂Ω), then divu ∈ H1+α(Ω) and it holds

∥ divu∥1+α ≤ C
(
∥divf∥+ ∥f · n∥α−1/2,∂Ω

)
.

Proof. It follows from the embedding H(rot; Ω)∩H0(div; Ω) ↪→ Hα(Ω)⊗V with α > 1/2

[4] that u ∈ Hα(Ω)⊗ V, and

∥u∥α ≤ C (∥u∥+ ∥ divu∥+ ∥ rotu∥) ≤ C∥f∥,

where we have used (4.2.1) and (4.2.3). Therefore it suffices to show that rotu ∈

H1+α(Ω). Since curl∆ rotu ∈ L2(Ω)⊗ V, we have

−∆rotu ∈ H1(Ω).

Moreover, rotu satisfies the boundary condition rotu = 0. By the regularity of the

Laplace problem [49, Theorem 3.18], there exists an α > 1/2 such that rotu ∈ H1+α(Ω),

and

∥ rotu∥1+α ≤ C∥∆rotu∥ ≤ C∥f∥,
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where we have used (4.2.2).

Multiplying both sides of (3.2.19) by − grad q ∈ gradH1(Ω) and integrating over Ω,

we obtain

(grad divu, grad q) = (div f , q)− ⟨f · n, q⟩,

Applying the regularity of the Laplace problem [49, Theorem 3.18] again, there exists a

constant α > 1/2 such that

∥ divu∥1+α ≤ C
(
∥divf∥+ ∥f · n∥α−1/2,∂Ω

)
.

Remark 4.2.1. If Ω is a convex polygon, then α in Theorem 4.2.1 can be 1.

According to [6, Theorem 5.4], Scheme 1 is stable if the following discrete Poincaré

inequality holds. The discrete Poincaré inequality for Vh is due to special structures of

the grad rot-conforming elements.

Lemma 4.2.2 (discrete Poincaré inequality for Vh). For vh ∈ Vh ∩ Z⊥
h , we have

∥vh∥H(grad rot;Ω) ≤ C∥ grad rotvh∥, (4.2.4)

where C is a constant independent of h.

Proof. Let P−
k Λl be the standard finite element differential l-forms on triangles [6], i.e.,

l = 0 corresponds to the Lagrange element and l = 1 corresponds to the Nédélec

elements of the first kind. Due to the interelement continuity, Vh ⊂ P−
k Λ1. Moreover,

Zh = gradSh = gradP−
k Λ0. Then (4.2.4) follows from the discrete Poincaré inequalities

of P−
k Λ1 and P−

k Λ0.

Theorem 4.2.3. Under the domain assumptions of Theorem 4.2.1. Suppose also f is

sufficiently smooth. Let (uh, σh) be the numerical solution of Scheme 1 and (u, σ) be the
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exact solution of the problem (3.2.19). Then

∥u− uh∥H(grad rot;Ω) + ∥σ − σh∥1 ≤ Chα(∥u∥α + ∥ rotu∥1+α + ∥σ∥1+α).

Proof. From [6, Theorem 5.5] for the case where the harmonic function space vanishes,

we have

∥u− uh∥H(grad rot;Ω) + ∥σ − σh∥1 ≤ C
(

inf
τh∈Sh

∥σ − τh∥+ C inf
vh∈Vh

∥u− vh∥
)
.

Let πh and Πh be the canonical interpolations to Sh and Vh. From their approximation

properties [66] and Theorem 4.2.1, we have

∥u− uh∥H(grad rot;Ω) + ∥σ − σh∥1 ≤ Chα(∥u∥α + ∥ rotu∥1+α + ∥σ∥1+α).

4.2.2 Eigenvalue Problem

To obtain the convergence estimate for Scheme 5, we rewrite (4.0.6) and Scheme 5

as follows.

Seek (λ̃,u, σ) ∈ R×Hrot(grad rot; Ω)×H1(Ω) such that

(grad rotu, grad rotv) + (u,v) + (gradσ,v) = λ̃(u,v), ∀v ∈ Hrot(grad rot; Ω),

(u, grad τ)− (σ, τ) = 0, ∀τ ∈ H1(Ω).

(4.2.5)

Find (λ̃h,uh, σh) ∈ R× Vh × Sh, such that

(grad rotuh, grad rotvh) + (uh,vh) + (grad σh,vh) = λ̃h(uh,vh), ∀vh ∈ Vh,

(uh, grad τh)− (σh, τh) = 0, ∀τh ∈ Sh.

(4.2.6)

Note that λ̃ = λ + 1 and λ̃h = λh + 1. We also consider the corresponding source

problem and its finite element discretization.

Seek (u, σ) ∈ Hrot(grad rot; Ω)×H1(Ω) such that

(grad rotu, grad rotv) + (u,v) + (grad σ,v) = (f ,v), ∀v ∈ Hrot(grad rot; Ω),

(u, grad τ)− (σ, τ) = 0, ∀τ ∈ H1(Ω).

(4.2.7)
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Find (uh, σh) ∈ Vh × Sh, such that

(grad rotuh, grad rotvh) + (uh,vh) + (grad σh,vh) = (f ,vh), ∀vh ∈ Vh,

(uh, grad τh)− (σh, τh) = 0, ∀τh ∈ Sh.

(4.2.8)

By suitable modification to the proof of [6, Theorem 4.8]) and [6, Theorem 4.9]), we

can show the problem (4.2.7) is well-posed, and (4.2.1) holds. Similar to the problem

(3.2.19), we can get the same regularity estimate as in Theorem 4.2.1.

Define the solution operators T : L2(Ω)⊗V → L2(Ω)⊗V and S : L2(Ω)⊗V → H1(Ω)

by

Tf := u and Sf := σ.

We also define the discrete solution operators Th : L2(Ω) ⊗ V → L2(Ω) ⊗ V and Sh :

L2(Ω)⊗ V → H1(Ω) by

Thf := uh and Shf := σh.

From (4.2.7) and (4.2.8), these operators are bounded and satisfy

∥Tf∥H(grad rot;Ω) ≤ ∥f∥, ∥Thf∥H(grad rot;Ω) ≤ ∥f∥,

∥Sf∥1 ≤ ∥f∥, and ∥Shf∥1 ≤ ∥f∥.
(4.2.9)

We have the following orthogonality:

(Tf − Thf ,vh)H(grad rot;Ω) + (grad(Sf − Shf),vh) = 0, ∀ vh ∈ Vh,

(Tf − Thf , grad τh)− (Sf − Shf , τh) = 0, ∀ τh ∈ Sh.

(4.2.10)

Taking vh = grad τh in the first equation of (4.2.10) and subtracting the second equation

from the first one, we obtain

(grad(Sf − Shf), grad τh) + (Sf − Shf , τh) = 0. (4.2.11)

If we can prove ∥T − Th∥L(L2⊗V,L2⊗V) → 0, then from the spectral approximation

theory in [14], the eigenvalues of (4.2.6) converge to the eigenvalues of (4.2.5), and

hence, the eigenvalues of Scheme 5 converge to the eigenvalues of (4.0.6).
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Theorem 4.2.4. Under the domain assumptions of Theorem 4.2.1, the eigenvalues of

Scheme 5 converge to the eigenvalues of (4.0.6).

To obtain the uniform convergence, we present some preliminary results. First, we

will need the Hodge mapping Hqh of qh [35, 38]. In fact, for any qh ∈ Z⊥
h ∩ Vh, there

exists Hqh ∈ H(rot; Ω) ∩H0(div; Ω) satisfying rot qh = rotHqh and divHqh = 0.

Lemma 4.2.5. There exists a constant C independent of qh and h such that

∥Hqh − qh∥ ≤ Chα∥ rot qh∥, ∀qh ∈ Z⊥
h ∩ Vh.

Proof. Proceeding as the proof of [49, Lemma 7.6] or [38, Lemma 4.5], we can complete

the proof.

Lemma 4.2.6. Under the domain assumptions of Theorem 4.2.1, the solutions of (4.2.7)

and (4.2.8) satisfy

∥σ − σh∥ ≤ Chα∥f∥.

Proof. We introduce the following auxiliary problem: find σ̌ ∈ H1(Ω) such that

(grad σ̌, grad τ) + (σ̌, τ) = (σ − σh, τ) , ∀τ ∈ H1(Ω). (4.2.12)

The discrete problem is to find σ̌h ∈ Sh such that

(grad σ̌h, grad τh) + (σ̌h, τh) = (σ − σh, τh) , ∀τh ∈ Sh.

According to Theorem 3.18 in [49] again, there exists the same constant α > 1/2 such

that

∥σ̌∥1+α ≤ C ∥σ − σh∥ .

From the Ceá lemma, we have

∥σ̌ − σ̌h∥1 ≤ Chα∥σ̌∥1+α ≤ Chα ∥σ − σh∥ .
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Taking τ = σ − σh in (4.2.12) and applying (4.2.11), we obtain

(σ − σh, σ − σh) = (σ̌, σ − σh) + (grad σ̌, grad (σ − σh))

= (σ̌ − σ̌h, σ − σh) + (grad (σ̌ − σ̌h) , grad (σ − σh))

≤ ∥σ̌ − σ̌h∥1 ∥σ − σh∥1 ≤ Chα ∥σ − σh∥ ∥σ − σh∥1 ,

which together with (4.2.9) leads to

∥σ − σh∥ ≤ Chα ∥σ − σh∥1 ≤ Chα∥f∥.

We are now in a position to estimate ∥T − Th∥L(L2⊗V,L2⊗V).

Theorem 4.2.7. Under the domain assumptions of Theorem 4.2.1, we have

∥T − Th∥L(L2⊗V,L2⊗V) ≤ Chα.

Proof. We shall prove ∥u− uh∥ ≤ Chα∥f∥. Denote ũ = T (u− uh), ũh = Th(u− uh),

σ̃ = S(u− uh), and σ̃h = Sh(u− uh). Proceeding as the dual argument, we have

(u− uh,u− uh) = (ũ,u− uh)H(grad rot;Ω) + (grad σ̃,u− uh)

= (ũ− ũh,u− uh)H(grad rot;Ω) + (grad σ̃,u− uh)− (grad(σ − σh), ũh) by (4.2.10)

=(ũ− ũh,u− Πhu)H(grad rot;Ω) + (grad (σ̃ − σ̃h) ,u− Πhu) by (4.2.10), (4.2.11)

+ (σ − σh, σ̃h)− (grad(σ − σh), ũh) =: I + II + III + IV.

Applying (4.2.9) and the approximation property of Πh [66], we have

I + II ≤ ∥u− Πhu∥H(grad rot;Ω)

(
∥ũ− ũh∥H(grad rot;Ω) + ∥ grad (σ̃ − σ̃h) ∥

)
≤ C∥u− Πhu∥H(grad rot;Ω)∥u− uh∥

≤ Chα∥u− uh∥ (∥u∥α + ∥ rotu∥1+α)

≤ Chα∥f∥∥u− uh∥.
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Using Lemma 4.2.6, we get

III ≤ Chα∥f∥∥σ̃h∥ ≤ Chα∥f∥∥u− uh∥.

Now it remains to estimate IV. We decompose ũh = ph + qh with ph ∈ Zh and qh ∈

Z⊥
h ∩ Vh. Then

IV = (grad(σ − σh), ũh) = (grad(σ − σh), qh) + (grad(σ − σh),ph) =: IVI + IVII.

Applying Lemma 4.2.5, we obtain

IVI = (grad(σ − σh), qh −Hqh) ≤ Chα∥ rot qh∥∥f∥

≤ Chα∥ rot ũh∥∥f∥ ≤ Chα∥u− uh∥∥f∥.

Since Zh = gradSh, there exists a function φh ∈ Sh satisfying (φh, 1) = 0 and ph =

gradφh. By (4.2.11), we get

IVII =
(
grad(σ − σh), gradφh

)
= −

(
σ − σh, φh

)
≤ C∥σ − σh∥∥ gradφh∥

=C∥σ − σh∥∥ph∥ ≤ C∥σ − σh∥∥ũh∥ ≤ Chα∥f∥∥u− uh∥.

Collecting all the estimates, we complete the proof.

4.2.3 Theoretical Explanation of the Numerical Phenomena

Let H1
n,rot(rot; Ω) = H1(rot; Ω) ∩ Xrot denote the space of H1(rot; Ω) vector fields

with vanishing normal components and rot on the boundary, which is a closed subspaces

of H1(rot; Ω). Clearly, H1
n,rot(rot; Ω) ⊂ Xrot. For u ∈ H1

n,rot(rot; Ω), by the Poincaré

inequality and the identity ∥ gradu∥2 = ∥ rotu∥2 + ∥ divu∥2 [6], we have

C(∥ grad rotu∥2 + ∥ gradu∥2) ≤ ∥ grad rotu∥2 + ∥ divu∥2 ≤ ∥ grad rotu∥2 + ∥ gradu∥2.

Therefore, the restriction of the X-norm to H1
n,rot(rot; Ω) is equivalent to the full norm of

H1(rot; Ω). It follows from the factH1
n,rot(rot; Ω) is closed inH1(rot; Ω) thatH1

n,rot(rot; Ω)

is a closed subspace of Xrot. To prove Xrot ̸= H1
n,rot(rot; Ω), it suffices to find a function

in Xrot which is not in H1
n,rot(rot; Ω). Consider the function φ ∈ H1(Ω) such that ∆φ ∈
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L2(Ω) and ∂ϕ
∂n

= 0 on ∂Ω. When Ω is a nonconvex polygonal domain, we have φ /∈ H2(Ω).

Setting u = gradφ, we see that u ∈ Xrot but u /∈ H1
n,rot(rot; Ω). For any such function

u, we have infv∈H1
n,rot(rot;Ω) ∥u − v∥X = δu > 0, where δu is the distance of u from

H1
n,rot(rot; Ω). Therefore, if the finite element space Vh is contained in H1

n,rot(rot; Ω), then

the numerical solution uh ∈ Vh can not converge to u in general. The mixed variational

formulation, however, does not suffer from this restriction, and hence does not lead to

spurious solutions. On the other hand, the choice of finite elements are crucial for the

success of the mixed formulations. The grad rot- and H1(rot)-conforming finite elements

are stable as they fit into complexes.

Since dimH1
rot = b1 = 1 on Ω2, there is a zero eigenvalue on Ω2 corresponding to

the harmonic forms in H1
rot. However, Scheme 7 and Scheme 8 fail to capture this zero

eigenmode. The same issue occurs for the numerical solutions of the problem (4.0.7).

The harmonic forms are generally smooth functions but not polynomials. Therefore, the

finite element spaces V 1
h and V Arg

h do not contain any harmonic forms. That is why

Scheme 7 and Scheme 8 can not capture the vanishing eigenvalue.
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CHAPTER 5 2D GRADROT-CONFORMING ELEMENTS

Chapter 4 tells us the importance of constructing finite elements that fit into com-

plexes. From this chapter on, we will construct grad rot-conforming elements, grad curl-

conforming elements, and grad div-conforming elements by designing discrete complexes.

In this chapter, we focus on the construction of grad rot-conforming elements. To

this end, we consider the de Rham complex with enhanced smoothness (1.4.1). To make

this chapter more readable, we put the complex (1.4.1) here

0 R H1 H(grad rot) H1 0.
⊂ grad rot (5.0.1)

From the complex, we can see the grad rot-conforming elements satisfy that

• the tangential component of uh is continuous across two adjacent elements;

• rotuh is continuous across two adjacent elements.

In [66], the author and her collaborators combine the first kind of Nédélec elements and

the Lagrange elements to define grad rot-conforming elements that satisfy the above

continuity conditions. The construction is based on the existing polynomial spaces,

Qk−1,k × Qk,k−1 or Rk (see (1.5.4) for its definition). The restriction of k ≥ 4 for the

triangular elements or k ≥ 3 for the rectangular elements has to be imposed since an

interior bubble should be included in the finite element space of rotu. Therefore the

lowest-order element has 24 DOFs on both a triangular and rectangular element.

We will construct the following finite element subcomplexes of (5.0.1):

0 R Σr
h V r−1,k+1

h Σk,+
h 0.

⊂ grad rot (5.0.2)

Here we introduce two parameters r and k with r = k, r = k+1, or r = k+2 to specify

degrees of spaces, which lead to several versions of complexes. The complexes (5.0.2)

include two new grad rot-conforming element spaces V k−1,k+1
h and V k+1,k+1

h . We also fit
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the existing finite element space into the complex and extend it to lower-order cases.

Among the three versions of Vh, the new finite element space V k−1,k+1
h has fewest DOFs.

5.1 Local Shape Function Spaces and Polynomial Complexes

To define a finite element space, we must supply, for each element K ∈ Th, the space

of shape functions and the DOFs. In this section, we will define the local complex of the

local shape function spaces on each K ∈ Th for (5.0.2):

0 R Σr
h(K) V r−1,k+1

h (K) Σk,+
h (K) 0.

⊂ grad rot (5.1.1)

To this end, we first consider the following local complex on the reference element

K̂:

0 R Σ̂r
h(K̂) V̂ r−1,k+1

h (K̂) Σ̂k,+
h (K̂) 0.

⊂ gradx̂ rotx̂ (5.1.2)

Let Σ̂r
h(K̂) be Pr(K̂) for the triangular element K̂ or Qr(K̂) for the rectangular element

K̂. For the triangular element K̂, we set

Σ̂k,+
h (K̂) =


Pk(K̂), k ≥ 3,

Pk(K̂)⊕ span{B̂t}, k = 1, 2,

where B̂t = x̂1x̂2(1− x̂1 − x̂2). For the rectangular element K̂, we set

Σ̂k,+
h (K̂) =


Qk(K̂), k ≥ 2,

Qk(K̂)⊕ span{B̂r}, k = 1,

where B̂r = (x̂1 + 1) (x̂1 − 1) (x̂2 + 1) (x̂2 − 1). We define

V̂ r−1,k+1
h (K̂) = gradx̂ Σ̂

r
h(K̂)⊕ p2x̂Σ̂

k,+
h (K̂), (5.1.3)

where the Poincaré operator p2x̂ is defined by (2.1.19) with the base point W = 0. As a

special case of Poincaré operators, p2x̂ satisfies the following null-homotopy identities:

rotx̂ p
2
x̂û = û, ∀û ∈ C∞Λ2(K̂), (5.1.4)

gradx̂ p
1
x̂û+ p2x̂ rotx̂ û = û, ∀û ∈ C∞Λ1(K̂). (5.1.5)
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By the null-homotopy identity (5.1.4), the right hand side of (5.1.3) is a direct sum.

Remark 5.1.1. For the reference rectangle K̂, we can also use the serendipity elements

Sr(K̂) := Pr(K̂)⊕span{x̂r1x̂2, x̂1x̂r2} [7] for Σ̂r
h(K̂) and use Sk(K̂) when k ≥ 4 or Sk(K̂)⊕

span{B̂r} when k < 4 for Σ̂k,+
h (K̂). This leads to another three families of rectangular

elements with fewer DOFs and the same accuracy.

Remark 5.1.2. For polynomial bases in Σ̂k,+
h (K̂) other than the bubbles B̂t or B̂r, we

can replace the Poincaré operator p2x̂ by the Koszul operator κ2x̂. It seems necessary to

use the Poincaré operator for the bubbles to get the complex property. For the bubble

function B̂t or B̂r, we have

p2x̂B̂t =
x̂1x̂2(4x̂1 + 4x̂2 − 5)

20
x̂⊥,

p2x̂B̂r =− 2x̂21x̂
2
2 − 3x̂21 − 3x̂22 + 6

12
x̂⊥.

By the definition of the shape function spaces, it is easy to show that the sequence

(5.1.2) is a complex. By the properties of the Poincaré operators, we can verify that the

sequence

0 R Σ̂r
h(K̂) V̂ r−1,k+1

h (K̂) Σ̂k,+
h (K̂) 0

p1x̂ p2x̂ (5.1.6)

is also a complex with the Poincaré operators in (2.1.18) – (2.1.19). From Lemma 2.1.3,

we obtain the exactness.

Lemma 5.1.1. The complex (5.1.2) is exact.

Lemma 5.1.2. The inclusion Pr−1(K̂) ⊆ V̂ r−1,k+1
h (K̂) holds. More precisely, we have

V̂ k,k+1
h (K̂) =


Rk+1(K̂) when k ≥ 3 and K̂is a triangle,

Qk,k+1(K̂)×Qk+1,k(K̂) when k ≥ 2 and K̂ is a rectangle.

Proof. From the null-homotopy property (5.1.5),

Pr−1(K̂) = gradx̂ p
1
x̂Pr−1(K̂) + p2x̂ rotx̂Pr−1(K̂).
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By definition, V̂ r−1,k+1
h (K̂) = gradx̂ Σ̂

r
h(K̂)+p2x̂Σ̂

k,+
h (K̂). We have p1x̂Pr−1(K̂) ⊆ Pr(K̂) ⊆

Σ̂r
h(K̂) and rotx̂Pr−1(K̂) ⊆ Pk(K̂) ⊆ Σ̂k,+

h (K̂). Therefore the desired inclusion holds.

Now we show Rk+1(K̂) = gradx̂ Pk+1(K̂) + p2x̂Pk(K̂) which is exactly V̂ k,k+1
h (K̂)

when k ≥ 3 and K̂ is a triangle. Since gradx̂ Pk+1(K̂) + p2x̂Pk−1(K̂) ⊆ Pk(K̂) and

p2x̂P̃k(K̂) ⊆ {û ∈ P̃k+1(K̂) : x̂ · û = 0}, we have gradx̂ Pk+1(K̂) + p2x̂Pk(K̂) ⊆ Rk+1(K̂).

It suffices to show that they have the some dimension. From the exactness of (5.1.2),

dim V̂ k,k+1
h (K̂) = dimPk+1(K̂) + dimPk(K̂)− 1 = (k + 1)(k + 3) = dimRk+1(K̂) when

k ≥ 3.

Similarly, we can prove V̂ k,k+1
h (K̂) = Qk,k+1(K̂)×Qk+1,k(K̂) when k ≥ 2 and K̂ is a

rectangle.

We adopt the following transformation to relate the function û ∈ V̂ r−1,k+1
h (K̂) to a

function u ∈ V r−1,k+1
h (K):

u ◦ FK = B−T
K û, (5.1.7)

where the affine mapping FK is defined in (1.5.1). By a simple computation, we have

rotu ◦ FK =
1

det(BK)
rotx̂ û. (5.1.8)

We are now in a position to define the spaces in (5.1.1):

Σr
h(K) =

{
u : u ◦ FK ∈ Σ̂r

h(K̂)
}
,

V r−1,k+1
h (K) =

{
u : BT

Ku ◦ FK ∈ V̂ r−1,k+1
h (K̂)

}
,

Σk,+
h (K) =

{
u : u ◦ FK ∈ Σ̂k,+

h (K̂)
}
.

Remark 5.1.3. We do not use gradΣr
h(K) ⊕ p2Σk,+

h (K) to define V r−1,k+1
h (K) because

gradΣr
h(K)⊕ p2Σk,+

h (K) can not be related to V̂ r−1,k+1
h (K̂) via (5.1.7) when r = k.

By the definition of the spaces and Lemma 5.1.1, we can show (5.1.1) is also an exact
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complex.

5.2 Degrees of Freedom

In this section, we define DOFs for each space in (5.1.1). Taking r = k, k + 1, and

k+2 in (5.1.1) yields three versions of grad rot-conforming element spaces V k−1,k+1
h (K),

V k,k+1
h (K), and V k+1,k+1

h (K). Fig. 5.2.1 demonstrates the complex (5.1.1) for the case

k = 1.

Among the three versions of Vh(K), the simplest elements have only 6 DOFs for a

triangle and 8 DOFs for a rectangle. To the best of our knowledge, these elements have

the smallest number of DOFs among all the existing grad rot-conforming finite elements.

The DOFs for the Lagrange element Σr
h(K) can be given as follows.

• Vertex DOFs Mv(u) at all the vertices vi ∈ Vh(K):

Mv(u) = {u (vi)} .

• Edge DOFs Me(u) on all the edges ei ∈ Eh(K):

Me(u) =

{ˆ
ei

uvds for all v ∈ Pr−2(ei)

}
.

• Interior DOFs MK(u) in the element K:

MK(u) =

{ˆ
K

uvdA for all v ∈ Pr−3(K)

}
, when K is a triangular element;

MK(u) =

{ˆ
K

uvdA for all v ∈ Qr−2(K)

}
, when K is a rectangular element.

For u ∈ H1+δ(K) with δ > 0, we can define an H1 interpolation operator πK :

H1+δ(K) → Σr
h(K) by the above DOFs such that

Mv(u− πKu) = {0}, Me(u− πKu) = {0}, and MK(u− πKu) = {0}. (5.2.1)

The DOFs for Σk,+
h (K) can be given similarly, with only one additional interior inte-

gration DOF to take care of the interior bubble. We denote π̃K as the H1 interpolation
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operator to Σk,+
h (K) by these DOFs.

We define the following DOFs for V r−1,k+1
h (K):

• Vertex DOFs Mv(u) at all the vertices vi ∈ Vh(K):

Mv(u) = {rotu(vi)} . (5.2.2)

• Edge DOFs Me(u) on all the edges ei ∈ Eh(K) with the unit tangential vector τi:

Me(u) =

{ˆ
ei

u · τiqds for all q ∈ Pr−1(ei)

}
∪
{ˆ

ei

rotuqds for all q ∈ Pk−2(ei)

}
. (5.2.3)

• Interior DOFs MK(u) in the element K:

MK(u) =

{ˆ
K

u · qdA for all q ◦ FK = BK q̂, q̂ ∈ Pr−3(K̂)x̂

}
∪
{ˆ

K

rotuqdA for all q ∈ Pk−3(K)/R
}
, (5.2.4)

when K is a triangular element;

MK(u) =

{ˆ
K

u · qdA for all q ◦ FK = BK q̂, q̂ ∈ Qr−2(K̂)x̂

}
∪
{ˆ

K

rotuqdA for all q ∈ Qk−2(K)/R
}
, (5.2.5)

when K is a rectangular element.

Here BK is defined in (1.5.1), Pk(K̂)x̂ =
{
q̂ : q̂ = ϕ̂x̂, ∀ϕ̂ ∈ Pk(K̂)

}
, and

Qk(K̂)x̂ =
{
q̂ : q̂ = ϕ̂x̂, ∀ϕ̂ ∈ Qk(K̂)

}
.

Remark 5.2.1. The DOFs in MK(u) can also be given by{ˆ
K

u · qdA for all q ◦ FK = BK q̂, q̂ ∈ P(K̂)

}
, when K is a triangular element;{ˆ

K

u · qdA for all q ◦ FK = BK q̂, q̂ ∈ Q(K̂)

}
, when K is a rectangular element,
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Figure 5.2.1: The lowest-order finite element complexes (5.1.1) in 2D with r = k in the
first two rows, r = k + 1 in the middle two rows, and r = k + 2 in the last two rows.
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where P(K̂) = Pk−4(K̂)⊕ P̃k−4(K̂)x̂⊕ · · · ⊕ P̃r−3(K̂)x̂ and Q(K̂) = Qr−2(K̂)x̂⊕
{
q̂ :

q̂ = curlx̂ ϕ̂, ∀ϕ̂ ∈ Qk−2(K̂)/R
}

.

Remark 5.2.2. By Lemma 5.1.2 and the definition of V k,k+1
h , we have

V k,k+1
h (K) =


Rk+1(K) when k ≥ 3 and K is a triangle,

Qk,k+1(K)×Qk+1,k(K) when k ≥ 2 and K is a rectangle.

Therefore V k,k+1
h (K) coincides with the finite elements constructed in [66]. Here we

extend these finite elements to lower-order cases by allowing k = 1 and/or 2.

Lemma 5.2.1. The DOFs (5.2.2) – (5.2.5) are well-defined for any u ∈ H1/2+δ(K)⊗V

and rotu ∈ H1+δ(K) with δ > 0.

Proof. By the embedding theorem in [27], we have rotu ∈ H1+δ(K) ⊂ C0,δ(K), then

the DOFs about rotu are well-defined. It follows Cauchy-Schwarz inequality that other

DOFs defined in Me(u) and MK(u) are well-defined since u ∈ H1/2+δ(K) ⊗ V and

u|∂K ∈ Hδ(∂K)⊗ V.

Lemma 5.2.2. The DOFs for V r−1,k+1
h (K) are unisolvent.

Proof. Since the decomposition (5.1.3) is a direct sum, dimV r−1,k+1
h (K) = dimΣk,+

h (K)

+dim gradΣr
h(K). By counting the number of DOFs, the DOF set has the same dimen-

sion. Then it suffices to show that if all the DOFs vanish on a function u ∈ V r−1,k+1
h (K),

then u = 0. To see this, we first show that rotu = 0. By integration by parts, the

following DOF for Σk,+
h (K) vanishes on rotu:

ˆ
K

rotudA =

ˆ
∂K

u · τ∂Kds = 0.

It follows from rotV r−1,k+1
h (K) ⊂ Σk,+

h (K) and the unisolvence of the DOFs for Σk,+
h (K)

that rotu = 0. Then u = gradφ for some φ ∈ Σr
h(K). By the edge DOFs of V r−1,k+1

h (K),

u·τi = 0 on the edge ei. Then there exists a ψ ∈ Pr−3(K) or Qr−2(K) such that φ = B⋆ψ
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with B⋆ = Br or Bt. By the property of 2D Koszul operator (see Chapter 2), there exists

q such that B−1
K q ◦ FK ∈ q̂ ∈ Pr−3(K̂)x̂ or Qr−2(K̂)x̂ and div q = ψ. By the interior

DOFs, we have

0 = (u, q) = (gradφ, q) = − (φ, div q) = (B⋆ψ, ψ) .

This implies that ψ = 0 and hence u = 0.

For δ > 0, provided u ∈ H1/2+δ(K) ⊗ V with rotu ∈ H1+δ(K) (see Lemma 5.2.1),

we can define an H(grad rot) interpolation operator ΠKu ∈ V r−1,k+1
h (K) such that

Mv(u− ΠKu) = {0}, Me(u− ΠKu) = {0}, and MK(u− ΠKu) = {0},

where Mv, Me and MK are the sets of DOFs in (5.2.2) – (5.2.5).

5.3 Global Finite Element Complexes

For all K ∈ Th, we glue V r−1,k+1
h (K) together by the DOFs (5.2.2) – (5.2.5) to get

the global finite element space V r−1,k+1
h . Similarly, we can get Σr

h and Σk,+
h . The global

finite element spaces lead to the complex (5.0.2).

Lemma 5.3.1. The following conformity holds:

V r−1,k+1
h ⊂ H(grad rot; Ω).

Proof. To verify V r−1,k+1
h ⊂ H(grad rot; Ω), we must show u·τi = 0 and rotu = 0 on each

ei ∈ Eh(K) if the DOFs (5.2.2) – (5.2.3) vanish on u ∈ V r−1,k+1
h (K). It is easy to see that

(rotu)|ei ∈ Pk(ei). Since x̂⊥τ̂i = 0 on êi, u·τi = (û·τ̂i)◦F−1
K

|BK τ̂i| =
(gradx̂ p1x̂û·τ̂i+p2x̂ rotx̂ û·τ̂i)◦F−1

K

|BK τ̂i| =

(gradx̂ p1x̂û·τ̂i)◦F
−1
K

|BK τ̂i| ∈ Pr−1(ei). From the vanishing DOFs in (5.2.2) –(5.2.3), we have u ·τi =

0 and rotu = 0 on ei.

Theorem 5.3.2. The complex (5.0.2) is exact on contractible domains.

Proof. We first show the exactness at V r−1,k+1
h . To this end, we show that, for any

vh ∈ V r−1,k+1
h ⊂ H(grad rot; Ω) satisfying rotvh = 0, there exists p ∈ Σr

h such that
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vh = grad p. On one hand, from the exactness of the complex (5.0.1), we have vh = grad p

for some p ∈ H1(Ω). On the other hand, from Lemma 5.1.1, there exists pK ∈ Σr
h(K)

such that vh|K = grad p|K = grad pK for all K ∈ Th. Comparing the two aspects, we

have vh = grad p with p ∈ H1 and p|K ∈ Σr
h(K) which implies p ∈ Σr

h. To prove the

exactness at Σk,+
h , that is to prove the operator rot from V r−1,k+1

h to Σk,+
h is surjective, we

count the dimensions. Take the triangular element as an example, the dimension count

of the Lagrange elements reads:

dimΣr
h = V + (r − 1)E +

1

2
(r − 2)(r − 1)K,

where V , E , and K denote the number of vertices, edges, and 2D cells, respectively.

Moreover, dimΣk,+
h = dimΣk

h for k ≥ 3 and dimΣk,+
h = dimΣk

h + K for k = 1, 2. From

the DOFs (5.2.2) – (5.2.4),

dimV r−1,k+1
h = V + (r + k − 1)E +

(r − 2)(r − 1) + (k − 2)(k − 1)− 2

2
K for k ≥ 3,

dimV r−1,k+1
h = V + (r + k − 1)E +

(r − 2)(r − 1) + (k − 2)(k − 1)

2
K for k = 1, 2.

From the above dimension count, we have

dimV r−1,k+1
h = dimΣk,+

h + dimΣr
h − 1,

where we have used Euler’s formula V − E +K = 1. This completes the proof.

For δ > 0, denote Σ = H1+δ(Ω) and V = {u ∈ H1/2+δ(Ω)⊗V : rotu ∈ H1+δ(Ω)}. We

define three global interpolations πh : Σ → Σr
h, π̃h : Σ → Σk,+

h , and Πh : V → V r−1,k+1
h

in the following way:

(πhu)|K = πKu, (π̃hu)|K = π̃Ku, and (Πhu)|K = ΠKu, ∀K ∈ Th,

where the interpolations πK , π̃K , and ΠK are defined in Section 5.2.
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We summarize the interpolations in the following diagram.

0 R H1(Ω) H(grad rot; Ω) H1(Ω) 0

0 R Σ V Σ 0

0 R Σr
h V r−1,k+1

h Σk,+
h 0,

⊂ grad rot

⊂

πh

grad rot

Πh π̃h

⊂ grad rot

(5.3.1)

Now we show that the interpolations in (5.3.1) commute with the differential oper-

ators. This result will play a key role in the error analysis of the interpolation Πh.

Lemma 5.3.3. The last two rows of the complex (5.3.1) form a commuting diagram,

i.e.,

gradπhu = Πh gradu for all u ∈ Σ, (5.3.2)

rotΠhu = π̃h rotu for all u ∈ V. (5.3.3)

Proof. We only prove (5.3.2). A similar trick can be used to prove (5.3.3). From the

diagram (5.3.1), we know both Πh gradu and gradπhu are in the space V r−1,k+1
h . It

suffices to prove that the DOFs (5.2.2) – (5.2.5) for Πh gradu and gradπhu agree for

each element K ∈ Th. For each vi ∈ V(K), we have

rot
(
Πh gradu− grad πhu

)
(vi) = rot

(
gradu− gradπhu

)
(vi) = 0.

On each edge ei ∈ E(K) with a tangent vector τi and two endpoints v1 and v2, we have
ˆ
ei

(
Πh gradu− gradπhu

)
· τiqds =

ˆ
ei

(
gradu− gradπhu

)
· τiqds

= q(v2)(u− πhu)(v2)− q(v1)(u− πhu)(v1)−
ˆ
ei

(
u− πhu

) ∂q
∂τi

ds = 0, ∀q ∈ Pr−1(ei).

Here we used integration by parts and the definition of the interpolations. By the defi-

nition of Πh, we have
ˆ
ei

rot
(
Πh gradu− gradπhu

)
qds = 0, ∀q ∈ Pk−2(K).
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For the interior DOFs, we see that for any q satisfying B−1
K q ◦ FK ∈ P(K̂) or Q(K̂),

ˆ
K

(
Πh gradu− gradπhu

)
· qdS =

ˆ
K

(
gradu− gradπhu

)
· qdS

=−
ˆ
K

(
u− πhu

)
div qdS +

ˆ
∂K

(
u− πhu

)
q · nds = 0.

This completes the proof.

Lemma 5.3.4. Suppose u ∈ V . Under the transformation (5.1.7), we have

ΠKu ◦ FK = B−T
K ΠK̂û.

Proof. We will show that Π̂Ku = BT
KΠKu ◦ FK as an interpolation on K̂ is equal to

ΠK̂û. Suppose ΠKu =
∑

i di(u)Ni where the DOFs {di(u)} are defined in (5.2.2) –

(5.2.5) and {Ni} is the corresponding dual basis, then Π̂Ku =
∑

i di(u)B
T
KNi ◦ FK .

According to Proposition 3.4.7 in [16], it suffices to show that each DOF di(u) is a linear

combination of the DOFs di(û) to define ΠK̂û.

We now check all the DOFs in (5.2.2) – (5.2.5) one by one:

rotu(vi) =
rotx̂ û(v̂i)

det(BK)
,

ˆ
ei

rotuqds = |ei|
|êi|

´
êi
rotx̂ ûq̂dŝ
det(BK)

,

ˆ
ei

u · τiqds =
ˆ
êi

B−T
K û · BK τ̂i

|BK τ̂i|
|ei|
|êi|

q̂dŝ =
ˆ
êi

û · τ̂iq̂dŝ,
ˆ
K

u · qdA =

ˆ
K̂

B−T
K û ·BKx̂q̂ det(BK)dÂ = det(BK)

ˆ
K̂

û · x̂q̂dÂ,
ˆ
K

rotuqdA =

ˆ
K̂

rotx̂ û

det(BK)
q̂ det(BK)dÂ =

ˆ
K̂

rotx̂ ûq̂dÂ.

Here |ei| is the length of ei.

Lemma 5.3.5 ([49, 2]). Suppose that v and v̂ are related by the transformation (5.1.7).

Then for any s ≥ 0, we have

|v̂|s,K̂ ≤ ChsK ∥v∥s,K ,∣∣ rotx̂ v̂∣∣s,K̂ ≤ Chs+1
K ∥rotv∥s,K .
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Theorem 5.3.6. Suppose u ∈ Hmax{s+(r−k−1),1/2+δ}(Ω) ⊗ V and rotu ∈ Hs(Ω) with

s ≥ 1 + δ, then we have the following error estimates for the interpolation Πh,

∥u− Πhu∥ ≤ Chr1(∥u∥max{s+(r−k−1),1/2+δ} + ∥rotu∥s), (5.3.4)

∥rot(u− Πhu)∥ ≤ Chr2 ∥rotu∥s , (5.3.5)

∥grad rot(u− Πhu)∥ ≤ Chr2−1 ∥rotu∥s . (5.3.6)

Here r1 = min{max{s+ (r − k − 1), 1/2 + δ}, r} and r2 = min{s, k + 1}.

Proof. (i). We divide our proof in three steps. We apply the transformation (5.1.7) and

Lemma 5.3.4 to derive

∥u− ΠKu∥K

=

(ˆ
K̂

∣∣∣B−T
K (û− Π̂Ku)

∣∣∣2 |det(BK)| dV̂
) 1

2

≤ |det(BK)|
1
2

∥∥B−1
K

∥∥ ∥û− ΠK̂û∥K̂ . (5.3.7)

Denote by r̃1 the largest integer strictly less than r1. Noting the fact that ΠK̂p̂ = p̂

when p̂ ∈ Pr̃1(K̂) ⊆ Pr−1(K̂) ⊆ V r−1,k+1
h (K̂) (see Lemma 5.1.2), we obtain, with the

help of Lemma 5.2.1

∥û− ΠK̂û∥K̂ = ∥(I − ΠK̂) (û+ p̂)∥K̂

≤C
(
∥û+ p̂∥1/2+δ,K̂ + ∥rotx̂(û+ p̂)∥1+δ,K̂

)
≤C

(
∥û+ p̂∥r1,K̂ + ∥rotx̂(û+ p̂)∥r2,K̂

)
.

Denote by [s] the integer part of s. Applying Theorem 5.5 in [49], we have when r = k

(in this case r1 + 1 = r2),

∥û− ΠK̂û∥K̂ = inf
p̂∈Pr̃1

(K̂)
∥(I − ΠK̂) (û+ p̂)∥K̂

≤ inf
p̂∈Pr̃1

(K̂)
C
(
∥û+ p̂∥r1,K̂ + ∥rotx̂(û+ p̂)∥r1,K̂ + |rotx̂ û|r2,K̂ + |rotx̂ û|[r2],K̂

)
≤C

(
|û|r1,K̂ + |rotx̂ û|[r1],K̂ + |rotx̂ û|r1,K̂ + |rotx̂ û|[r2],K̂ + |rotx̂ û|r2,K̂

)
,
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when r = k + 1 (in this case r1 = r2),

∥û− ΠK̂û∥K̂ = inf
p̂∈Pr̃1

(K̂)
∥(I − ΠK̂) (û+ p̂)∥K̂

≤ inf
p̂∈Pr̃1

(K̂)
C
(
∥û+ p̂∥r1,K̂ + ∥rotx̂(û+ p̂)∥r1,K̂

)
≤C

(
|û|r1,K̂ + |rotx̂ û|[r1],K̂ + |rotx̂ û|r1,K̂

)
,

and when r = k + 2 (in this case r1 = r2 + 1),

∥û− ΠK̂û∥K̂ = inf
p̂∈Pr̃1

(K̂)
∥(I − ΠK̂) (û+ p̂)∥K̂

≤ inf
p̂∈Pr̃1

(K̂)
C ∥û+ p̂∥r1,K̂ ≤ C |û|r1,K̂ .

Collecting the above two equations with (5.3.7), using Lemma 5.3.5, and summing

over K ∈ Th leads to

∥u− Πhu∥ =
∑
K∈Th

∥u− ΠKu∥K ≤ Chr1(∥u∥max{s+(r−k−1),1/2+δ},K + ∥rotu∥s,K).

(ii). From (5.3.3), we have for i = 0, 1,

∥rot(u− Πhu)∥i = ∥(I − π̃h) rotu∥i

which, together with the error estimate of Lagrange interpolation [49, Theorem 5.48],

leads to

∥rot(u− Πhu)∥i ≤ Chr2−i ∥rotu∥s,K .

5.4 Applications to − curl∆ rot Problems

In this section, we use the three families of the grad rot-conforming finite elements

to solve a problem slightly different from the problem (3.2.14).
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For f ∈ H(div0; Ω), find u, such that

− curl∆ rotu+ u = f in Ω,

divu = 0 in Ω,

u× n = 0 on ∂Ω,

rotu = 0 on ∂Ω.

(5.4.1)

Here H(div0; Ω) is the space of L2(Ω)⊗ V functions with vanishing divergence, i.e.,

H(div0; Ω) := {u ∈ L2(Ω)⊗ V : divu = 0}.

Taking divergence on both sides of the first equation of (5.4.1), we see that the divergence-

free condition divu = 0 holds automatically.

We define H0(grad rot; Ω) with vanishing boundary conditions:

H0(grad rot; Ω) := {u ∈ H(grad rot; Ω) : n× u = 0 and rotu = 0 on ∂Ω}.

The variational formulation reads: find u ∈ H0(grad rot; Ω) such that

a(u,v) = (f ,v), ∀v ∈ H0(grad rot; Ω) (5.4.2)

with a(u,v) := (grad rotu, grad rotv) + (u,v). Taking v = grad p with p ∈ H1
0 (Ω) in

(5.4.2), we see that (u,∇p) = (f ,∇p) = (div f , p) = 0, which implies divu = 0.

The strong formulation (5.4.1) and the weak formulation (5.4.2) are equivalent. By

suitable modification to the proof of [6, Theorem 4.8]) and [6, Theorem 4.9]), we can

show the problem (5.4.1) is well-posed, and it holds

∥u∥+ ∥ grad rotu∥+ ∥ curl∆ rotu∥ ≤ C∥f∥. (5.4.3)

We assume further Ω is a polygon. If we have (4.2.2), proceeding as the proof of Theorem

4.2.1, we can show that

∥u∥α + ∥ rotu∥1+α ≤ C∥f∥, (5.4.4)
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with the constant α defined in Theorem 4.2.1. When Ω is convex, α = 1.

Now we prove (4.2.2) for the problem (5.4.1).

Lemma 5.4.1. It holds the following estimate

∥∆rotu∥ ≤ C∥f∥.

Proof. Let q = ∆rotu− (∆ rotu,1)
|Ω| , then (q, 1) = 0, and hence

∥q∥ ≤ C∥ curl q∥.

Using the triangle inequality, we have

∥∆rotu∥ ≤ ∥q∥+ |(∆ rotu, 1)|
|Ω|1/2

≤ C∥ curl q∥+ |(∆ rotu, 1)|
|Ω|1/2

(5.4.5)

Since C∞
0 (Ω) is dense in L2(Ω), there exists a function ρ ∈ C∞

0 (Ω) ⊂ H1
0 (Ω) satisfying

∥1− ρ∥ < 1/2|Ω|1/2,

and hence,

|(∆ rotu, 1)| ≤ |(∆ rotu, ρ)|+ |(∆ rotu, 1− ρ)|

≤ ∥∆rotu∥−1∥ρ∥1 + ∥∆rotu∥∥1− ρ∥.

Taking (5.4.5) into consideration, we get

∥∆rotu∥ ≤ C (∥ curl q∥+ ∥∆rotu∥−1) +
1

2
∥∆rotu∥,

which leads to

∥∆rotu∥ ≤ C (∥ curl q∥+ ∥∆rotu∥−1) . (5.4.6)

According to the definition of the negative norm, we have

∥∆rotu∥−1 = sup
0̸=p∈H1

0 (Ω)

(∆ rotu, p)

∥p∥1
= sup

0̸=p∈H1
0 (Ω)

(grad rotu, grad p)

∥p∥1
≤ ∥ grad rotu∥.

Plugging the above estimate to (5.4.6) and applying (5.4.3), we obtain

∥∆rotu∥ ≤ C (∥ curl q∥+ ∥ grad rotu∥) = C (∥ curl∆ rotu∥+ ∥ grad rotu∥) ≤ C∥f∥.
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We define the finite element space with vanishing boundary conditions

V̊ r−1,k+1
h = {vh ∈ V r−1,k+1

h , n× vh = 0 and rotvh = 0 on ∂Ω}.

Remark 5.4.1. To enforce the vanishing boundary conditions, we only need to set all the

DOFs on ∂Ω to be 0.

The grad rot-conforming finite element method reads: seek uh ∈ V̊ r−1,k+1
h such that

a(uh,vh) = (f ,vh), ∀vh ∈ V̊ r−1,k+1
h . (5.4.7)

Taking vh = grad ph with ph ∈ Σ̊r
h = {q ∈ Σr

h : q = 0 on ∂Ω} in (5.4.7), we have

(uh,∇ph) = 0. The div-free condition holds in a weak sense. If there is no term u in

the problem (5.4.1), we usually introduce a Lagrange multiplier to enforce the div-free

condition.

To get the error estimate in the sense of H(rot)-norm, we introduce the following

auxiliary problem. Find w such that

− curl∆ rotw +w = curl rot(u− uh) in Ω,

divw = 0 in Ω,

w × n = 0 on ∂Ω,

rotw = 0 on ∂Ω.

(5.4.8)

Due to the special form of the right-hand side in the auxiliary problem, we can have a

better result than (5.4.4). This result will play an important role in the dual argument

in the approximation analysis below.

Theorem 5.4.2. In addition to the assumptions on Ω, we further assume that Ω is a

polygon. The solution w of (5.4.8) satisfies

∥w∥α + ∥ rotw∥1+α ≤ C∥ rot(u− uh)∥.
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Proof. Multiplying both sides of the first equation in (7.4.5) by w, integrating over Ω,

and dividing by ∥w∥H(grad rot;Ω) lead to

∥w∥H(grad rot;Ω) ≤ ∥ rot(u− uh)∥. (5.4.9)

Since H0(grad rot; Ω)∩H(div0; Ω) ⊂ H0(rot; Ω)∩H(div; Ω) ↪→ Hα(Ω)⊗V with α > 1/2

[4], it holds

∥w∥α ≤ C (∥w∥+ ∥ rotw∥) ≤ C∥w∥H(grad rot;Ω) ≤ C∥ rot(u− uh)∥.

Rewriting the first equation of (7.4.5) gives

w = curl (rot(u− uh) + ∆ rotw) ∈ L2(Ω)⊗ V.

Let q = rot(u− uh) + ∆ rotw − (∆ rotw,1)
|Ω| , then we have (q, 1) = 0 and hence

∥q∥ ≤ C∥ curl q∥ = C∥w∥. (5.4.10)

The definition of q gives

−∆rotw = rot(u− uh)− q − (∆ rotw, 1)

|Ω|
∈ L2(Ω).

Moreover, rotw satisfies the boundary condition

rotw = 0.

By the regularity of the Laplace problem [49], there exists a constant α > 1/2 such that

∥ rotw∥1+α ≤ C∥∆rotw∥. (5.4.11)

It remains to show

∥∆rotw∥ ≤ C∥ rot(u− uh)∥.

By the triangle inequality,

∥∆rotw∥ ≤ ∥ rot(u− uh)∥+ ∥q∥+ |(∆ rotw, 1)|
|Ω|1/2

.
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Proceeding as the proof of Lemma 5.4.1, we obtain

∥∆rotw∥ ≤ C (∥ rot(u− uh)∥+ ∥ curl q∥+ grad rotw∥)

≤ C
(
∥ rot(u− uh)∥+ ∥w∥H(grad rot;Ω)

)
≤ C∥ rot(u− uh)∥.

Theorem 5.4.3. Suppose u ∈ Hs+(r−k−1)(Ω) ⊗ V and rotu ∈ Hs(Ω) with s ≥ 1 + α,

we have the following error estimates for the numerical solution uh:

∥u− uh∥H(grad rot;Ω) ≤ Chr2−1
(
∥u∥s+(r−k−1) + ∥rotu∥s

)
, (5.4.12)

∥rot(u− uh)∥ ≤ Chmin{r2,2α}
(
∥u∥s+(r−k−1) + ∥rotu∥s

)
, (5.4.13)

∥u− uh∥ ≤ Chmin{r2,2α} (∥u∥s + ∥rotu∥s) when r = k + 1, k + 2, (5.4.14)

where r2 = min{s, k + 1}.

Remark 5.4.2. The estimate for ∥u− uh∥ is not optimal for the family r = k + 2. In

the numerical experiment, we can observe one-order higher accuracy when k ≥ 2 if u is

sufficiently smooth.

Proof. The estimates (5.4.12) and (5.4.13) follow immediately from the Céa’s lemma,

dual argument, and Theorem 5.3.6. Proceeding as in the proof of [61, Theorem 6], we

can show that (5.4.14) holds.

5.5 Numerical Experiments

We now turn to a concrete example. We consider the problem (5.4.1) on a unit square

Ω = (0, 1)× (0, 1) with an exact solution

u =


3π sin3(πx1) sin

2(πx2) cos(πx2)

−3π sin3(πx2) sin
2(πx1) cos(πx1)

 . (5.5.1)

Then the source term f can be obtained by a simple calculation.
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To measure the error between the exact solution and the finite element solution, we

denote

eh = u− uh.

5.5.1 The New Family of Elements with r = k

We first use the lowest-order element in the new family with r = k to solve the

problem (5.4.1). In this test, we use uniform triangular meshes and uniform rectangular

meshes with the mesh size h varying from 1/20 to 1/320 by the bisection strategy. For

u = (u1, u2)
T, we define two discrete norms:

|||u|||2V =
∑
K∈Th

2hK1

ˆ xK
2 +hK

2

xK
2 −hK

2

u21(x
K
1 , x2)dx2 +

∑
K∈Th

2hK2

ˆ xK
1 +hK

1

xK
1 −hK

1

u22(x1, x
K
2 )dx1,

|||u|||2W =
∑
K∈Th

4hK1 h
K
2

(
u21(x

K
1 , x

K
2 ) + u22(x

K
1 , x

K
2 )

)
,

where K = (xK1 − hK1 , x
K
1 + hK1 )× (xK2 − hK2 , x

K
2 + hK2 ) with the center (xK1 , xK2 ) and the

side length 2hK1 , 2h
K
2 .

Table 5.5.1 illustrates various errors and convergence rates for triangular elements.

Table 5.5.2 shows errors measured in various norms for rectangular elements. We also

depict error curves for rectangular elements with a log-log scale in Fig. 5.5.1. We observe

that the numerical solution converges to the exact solution with convergence order 1 in

the L2-norm, 2 in the H(rot)-norm, and 1 in the H(grad rot)-norm, respectively. From

Fig. 5.5.1, we also observe some superconvergence phenomena of eh and grad rot eh

measured in the sense of ||| · |||V and ||| · |||W , respectively. Using these superconvergent

results, together with some recovery techniques, we can construct a solution with higher

accuracy if needed.

5.5.2 The Family of Elements with r = k + 1

We then use the lowest-order element V k,k+1
h in the family with r = k + 1.

Again, we use the uniform mesh. Table 5.5.3 and Table 5.5.4 demonstrate the numer-
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Table 5.5.1: Numerical results of the triangular element with r = k and k = 1

h ∥eh∥ rates ∥rot eh∥ rates ∥grad rot eh∥ rates

1/20 2.099367e-01 7.598390e-01 2.510488e+01

1/40 9.736039e-02 1.1085 1.960868e-01 1.9542 1.258823e+01 0.9959

1/80 4.759381e-02 1.0326 4.941757e-02 1.9884 6.297909e+00 0.9991

1/160 2.365626e-02 1.0086 1.237934e-02 1.9971 3.149406e+00 0.9998

1/320 1.183872e-02 0.9987 3.096531e-03 1.9992 1.574759e+00 0.9999

Table 5.5.2: Numerical results of the rectangular element with r = k and k = 1

h ∥eh∥ ∥eh∥V ∥rot eh∥ ∥grad rot eh∥ ∥grad rot eh∥W
1/20 1.56953e-01 3.83651e-02 2.63065e-01 1.48431e+01 3.23332e+00

1/40 5.76799e-02 9.62913e-03 6.58847e-02 7.41177e+00 8.08779e-01

1/80 2.84156e-02 2.40963e-03 1.64788e-02 3.70484e+00 2.02224e-01

1/160 1.41756e-02 6.02611e-04 4.12019e-03 1.85230e+00 5.05578e-02

1/320 7.08507e-03 2.08784e-04 1.03009e-03 9.26132e-01 1.26397e-02

ical results with h varying from 1/10 to 1/160. We observe a second-order convergence in

the sense of H(rot)-norm and a first-order convergence in the sense of H(grad rot)-norm.

Table 5.5.3: Numerical results of the triangular element with r = k + 1 and k = 1

h ∥eh∥ rates ∥rot eh∥ rates ∥grad rot eh∥ rates

1/10 1.924001e-01 1.836748e+00 4.822043e+01

1/20 5.037761e-02 1.9333 4.924701e-01 1.8990 2.491412e+01 0.9527

1/40 1.275089e-02 1.9822 1.253756e-01 1.9738 1.256258e+01 0.9878

1/80 3.197749e-03 1.9955 3.148802e-02 1.9934 6.294644e+00 0.9969

1/160 8.016954e-04 1.9959 7.881059e-03 1.9983 3.148996e+00 0.9992
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Figure 5.5.1: Error curves in different norms

Table 5.5.4: Numerical results of the rectangular element with r = k + 1 and k = 1

h ∥eh∥ rates ∥rot eh∥ rates ∥grad rot eh∥ rates

1/10 8.545193e-02 7.742300e-01 3.116513e+01

1/20 2.117547e-02 2.0127 1.924503e-01 2.0083 1.556844e+01 1.0013

1/40 5.283250e-03 2.0029 4.804726e-02 2.0020 7.782876e+00 1.0002

1/80 1.320165e-03 2.0007 1.200780e-02 2.0005 3.891283e+00 1.0001

1/160 3.301818e-04 1.9994 3.001698e-03 2.0001 1.945622e+00 1.0000

5.5.3 The Family of Elements with r = k + 2

We now test elements in the family with r = k + 2. We apply the same mesh

as before. Tables 5.5.5, 5.5.6, and 5.5.7 show the numerical results for various mesh

sizes and elements. We observe one-order higher convergence rate than the estimate in

Theorem 8.4.2 when k ≥ 2.

We conclude this section by pointing out that the three families of elements bear
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Table 5.5.5: Numerical results of the triangular element with r = k + 2 and k = 1

h ∥eh∥ rates ∥rot eh∥ rates ∥grad rot eh∥ rates

1/10 1.916204e-01 1.831377e+00 4.821773e+01

1/20 4.953536e-02 1.9517 4.921121e-01 1.8959 2.491403e+01 0.9526

1/40 1.254233e-02 1.9817 1.253529e-01 1.9730 1.256258e+01 0.9878

1/80 3.145763e-03 1.9953 3.148659e-02 1.9932 6.294644e+00 0.9969

1/160 7.897003e-04 1.9940 7.880958e-03 1.9983 3.148996e+00 0.9992

Table 5.5.6: Numerical results of the rectangular element with r = k + 2 and k = 1

h ∥eh∥ rates ∥rot eh∥ rates ∥grad rot eh∥ rates

1/10 8.399241e-02 7.736407e-01 3.117602e+01

1/20 2.055671e-02 2.0306 1.924122e-01 2.0075 1.556987e+01 1.0017

1/40 5.125523e-03 2.0038 4.804486e-02 2.0017 7.783057e+00 1.0003

1/80 1.280556e-03 2.0009 1.200764e-02 2.0004 3.891305e+00 1.0001

1/160 3.203172e-04 1.9992 3.001689e-03 2.0001 1.945625e+00 1.0000

Table 5.5.7: Numerical results of the rectangular element with r = k + 2 and k = 2

h ∥eh∥ rates ∥rot eh∥ rates ∥grad rot eh∥ rates

1/4 6.482470e-02 9.955505e-01 2.796216e+01

1/8 4.580398e-03 3.8230 1.388809e-01 2.8416 7.337119e+00 1.9302

1/16 2.927226e-04 3.9679 1.780427e-02 2.9636 1.854476e+00 1.9842

1/32 1.838464e-05 3.9930 2.239038e-03 2.9913 4.648552e-01 1.9962

1/64 1.166284e-06 3.9785 2.802981e-04 2.9978 1.162907e-01 1.9990

their own advantages. The family with r = k can be the best choice if we pursue a low

computational cost, while the family with r = k + 2 stands out for its higher accuracy

in the sense of L2-norm.
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CHAPTER 6 3D GRADCURL-CONFORMING ELEMENTS I

In this chapter, to construct the grad curl-conforming elements, we consider the

Stokes complex (1.4.3). We present it here again:

0 R H1(Ω) H(grad curl; Ω) H1(Ω)⊗ V L2(Ω) 0.
⊂ grad curl div (6.0.1)

From the complex, we can see the construction of the grad curl-conforming elements is

related to the incompressible flows since the last two spaces H1(Ω)⊗ V – L2(Ω) in the

complex is actually a Stokes pair.

We will construct the following finite element subcomplexes of (6.0.1) on tetrahedral

meshes:

0 R Σr
h V r−1,k+1

h Zk
h W k−1

h 0.
⊂ grad curl div (6.0.2)

Same as Chapter 5, we take r = k, k + 1, or k + 2. In [53], Neilan constructed a finite

element subcomplex for another Stokes complex:

0 R H2(Ω) H1(curl; Ω) H1(Ω)⊗ V L2(Ω) 0,
⊂ grad curl div

where H1(curl; Ω) = {u ∈ H1(Ω) ⊗ V : curlu ∈ H1(Ω) ⊗ V}. This discrete complex

contains a finite element Stokes pair, but the first two spaces in the complex have higher

smoothness. We will apply the Stokes pair in [53] to construct the whole complex (6.0.2).

6.1 Local Shape Function Spaces and Polynomial Complexes

On each K ∈ Th, we construct the local complex of the shape function spaces of

(6.0.2):

0 R Σr
h(K) V r−1,k+1

h (K) Zk
h(K) W k−1

h (K) 0.
⊂ grad curl div (6.1.1)

To this end, we first consider the following local complex on the reference element



98

K̂:

0 R Σ̂r
h(K̂) V̂ r−1,k+1

h (K̂) Ẑk
h(K̂) Ŵ k−1

h (K̂) 0.
⊂ gradx̂ curlx̂ divx̂ (6.1.2)

We choose Σ̂r
h(K̂) := Pr(K̂), Ŵ k−1

h (K̂) := Pk−1(K̂), and Ẑk
h(K̂) := Pk(K̂). Define

V̂ r−1,k+1
h (K̂) = gradx̂ Σ̂

r
h(K̂)⊕ p2x̂Ẑ

k
h(K), (6.1.3)

where p2x̂ is defined in (2.1.21) with W = 0.

As a special case of the Poincaré operators, p2x̂ satisfies the following null-homotopy

identities:

p2x̂ curlx̂ û+ gradx̂ p
1
x̂û = û, ∀û ∈ C∞Λ1(K̂); (6.1.4)

curlx̂ p
2
x̂û+ p3x̂ divx̂ û = û, ∀û ∈ C∞Λ2(K̂). (6.1.5)

Remark 6.1.1. We can replace p2x̂ in (6.1.3) with κ2x̂.

The right-hand side of (6.1.3) is a direct sum. In fact, if û ∈ gradx̂ Σ̂
r
h(K̂)∩p2x̂Ẑ

k
h(K̂),

then curlx̂ û = 0 and p1x̂û = 0. By the null-homotopy identity (6.1.4), û = p2x̂ curlx̂ û+

gradx̂ p
1
x̂û = 0.

By the definitions of the shape function spaces, it is easy to show that the sequence

(6.1.2) is a complex. By the properties of the Poincaré operators, we can verify that the

sequence

0 Σ̂r
h(K̂) V̂ r−1,k+1

h (K̂) Ẑk
h(K̂) Ŵ k−1

h (K̂) 0
p1x̂ p2x̂ p3x̂ (6.1.6)

is also a complex with the Poincaré operators in (2.1.20) – (2.1.22). From Lemma 2.1.3,

we obtain the exactness.

Lemma 6.1.1. The complex (6.1.2) is exact.

We demonstrate that V̂ r−1,k+1
h (K̂) contains polynomials of certain degree.

Lemma 6.1.2. The inclusion Pr−1(K̂) ⊆ V̂ r−1,k+1
h (K̂) holds.
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Proof. From the null-homotopy property (6.1.4),

Pr−1(K̂) = gradx̂ p
1
x̂Pr−1(K̂) + p2x̂ curlx̂Pr−1(K̂).

By definition, V̂ r−1,k+1
h (K̂) = gradx̂ Σ̂

r
h(K̂)⊕ p2x̂Ẑ

k
h(K̂). We have p1x̂Pr−1(K̂) ⊆ Pr(K̂) =

Σ̂r
h(K̂) and curlx̂Pr−1(K̂) ⊆ Pk(K̂) = Ẑk

h(K̂). Therefore the desired inclusion holds.

We adopt the transformation (5.1.7) to relate the function û ∈ V̂ r−1,k+1
h (K̂) to a

function u ∈ V r−1,k+1
h (K). By a simple computation, we have

curlu ◦ FK =
BK

det(BK)
curlx̂ û. (6.1.7)

We are now in a position to define the spaces in (6.1.1):

Σr
h(K) =

{
u : u ◦ FK ∈ Σ̂r

h(K̂)
}
,

V r−1,k+1
h (K) =

{
u : BT

Ku ◦ FK ∈ V̂ r−1,k+1
h (K̂)

}
,

Zk
h(K) =

{
u : B−1

K u ◦ FK ∈ Ẑk
h(K̂)

}
.

(6.1.8)

By the definition of the spaces and Lemma 6.1.1, we can show (6.1.1) is also an exact

complex.

6.2 Degrees of Freedom

In this section, we define DOFs for each space in (6.1.1). Taking r = k, k + 1, and

k+2 in (6.1.1) yields three versions of grad curl-conforming element spaces V k−1,k+1
h (K),

V k,k+1
h (K), and V k+1,k+1

h (K).

The DOFs for the Lagrange element Σr
h(K) (r ≥ 1) can be given as follows.

• Vertex DOFs Mv(u) at all the vertices vi ∈ Vh(K):

Mv(u) = {u (vi)} . (6.2.1)

• Edge DOFs Me(u) on all the edges ei ∈ Eh(K):

Me(u) =

{ˆ
ei

uvds for all v ∈ Pr−2(ei)

}
. (6.2.2)



100

• Face DOFs Mf (u) on all the faces fi ∈ Fh(K):

Mf (u) =

{ˆ
fi

uvdA for all v ∈ Pr−3(fi)

}
. (6.2.3)

• Interior DOFs MK(u) in the element K ∈ Th:

MK(u) =

{ˆ
K

uvdV for all v ∈ Pr−4(K)

}
. (6.2.4)

We equip the space V r−1,k+1
h (K) (r ≥ 1, k ≥ 6) with the following DOFs:

• Vertex DOFs Mv(u) at all the vertices vi ∈ Vh(K):

Mv(u) = {Dα(curlu)(vi) for all |α| ≤ 2 except for ∂x3(curlu)3(vi),

∂2x1x1
(curlu)1(vi), ∂

2
x2x2

(curlu)2(vi), ∂
2
x3x3

(curlu)3(vi)
}
. (6.2.5)

• Edge DOFs Me(u) at all edges ei ∈ Eh(K) (with two mutually orthogonal unit

normal vector ni and mi to the edge ei and the unit tangential vector τi):

Me(u) =

{ˆ
ei

u · τiqds for all q ∈ Pr−1(ei)

}
∪
{ˆ

ei

curlu · qds for all q ∈ Pk−6(ei)

}
(6.2.6)

∪
{ˆ

ei

grad(curlu · li) · niqds with li = τi,ni,mi, for all q ∈ Pk−5(ei)

}
∪
{ˆ

ei

grad(curlu · li) ·miqds with li = τi,ni, for all q ∈ Pk−5(ei)

}
.

• Face DOFs Mf (u) at all faces fi ∈ Fh(K) (with two mutually orthogonal unit

vector τ 1
i and τ 2

i in the face fi and the unit normal vector ni):

Mf (u) =

{ˆ
fi

curlu · niqdA for all q ∈ Pk−6(fi)/R
}

∪
{ˆ

fi

curlu · τ 1
i qdA for all q ∈ Pk−6(fi)

}
∪
{ˆ

fi

curlu · τ 2
i qdA for all q ∈ Pk−6(fi)

}
(6.2.7)

∪
{ˆ

fi

u · qdA for all q = BK q̂, q̂ ∈ Pr−3(f̂i)x̂f̂i

}
,
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where x̂f̂i
= [x̂− (x̂ · n̂i) n̂i] |f̂i .

• Interior DOFs MK(u) in the element K ∈ Th:

MK(u) =

{ˆ
K

curlu · qdV for all q ◦ FK = B−T
K q̂, q̂ ∈ Pk−6(K̂)× x̂

}
∪
{ˆ

K

u · qdV for all q ◦ FK = BK q̂, q̂ ∈ Pr−4(K̂)x̂

}
, (6.2.8)

We choose the finite element Stokes pair proposed in [53] for Zk
h(K)−W k−1

h (K) (k ≥

5). The DOFs for Zk
h(K) are given as follows.

• Vertex DOFs Mv(u) at all the vertices vi ∈ Vh(K):

Mv(u) = {Dαu(vi) for all |α| ≤ 2} . (6.2.9)

• Edge DOFs Me(u) at all edges ei ∈ Eh(K) (with two mutually orthogonal unit

normal vector ni and mi to the edge ei):

Me(u) =

{ˆ
ei

u · qds for all q ∈ Pk−6(ei)

}
∪
{ˆ

ei

(gradu)ni · qds for all q ∈ Pk−5(ei)

}
∪
{ˆ

ei

(gradu)mi · qds for all q ∈ Pk−5(ei)

}
, (6.2.10)

where grad is applied rowwise.

• Face DOFs Mf (u) at all faces fi ∈ Fh(K):

Mf (u) =

{ˆ
fi

u · qdA for all q ∈ Pk−6(fi)

}
. (6.2.11)

• Interior DOFs MK(u) in the element K ∈ Th:

MK(u) =

{ˆ
K

u · qdV for all q ∈ Pk−4(K)

}
. (6.2.12)

The DOFs for W k−1
h (K) are given as follows.
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• Vertex DOFs Mv(u) at all faces vi ∈ Vh(K):

Mv(u) = {Dαu(vi) for all |α| ≤ 1} .

• Edge DOFs Me(u) at all edges ei ∈ Eh(K):

Me(u) =

{ˆ
ei

uqds for all q ∈ Pk−5(ei)

}
.

• Interior DOFs MK(u) in the element K ∈ Th:

MK(u) =

{ˆ
K

uvdV for all v ∈ Pk−1(K) such that v|∂K = 0

}
.

Lemma 6.2.1. The DOFs (6.2.9) – (6.2.12) are well-defined for any u ∈ H1/2+δ(Ω)⊗V

and curlu ∈ H7/2+δ(Ω)⊗ V with δ > 0.

Proof. By the embedding theorem, we have curlu ∈ H7/2+δ(Ω)⊗V ↪→ C2,δ(Ω)⊗V, then

the DOFs involving curlu are well-defined. Proceeding as in the proof of [49, Lemma

5.38], we see that the remaining DOFs are well-defined since u ∈ H1/2+δ(Ω) ⊗ V and

curlu ∈ H7/2+δ(Ω)⊗ V ↪→ C2,δ(Ω)⊗ V ⊂ Lp(Ω)⊗ V with p > 2.

Lemma 6.2.2. The DOFs for V r−1,k+1
h (K) are unisolvent.

Proof. Since the complex (6.1.1) is exact, we have

dimV r−1,k+1
h (K) = dimZk

h(K) + dimΣr
h(K)− dimW k−1

h (K)− 1. (6.2.13)

We can check that the DOF set has the same dimension. Then it suffices to show that

if all the DOFs vanish on u ∈ V r−1,k+1
h (K), then u = 0. To see this, we first show that

curlu = 0. Since the sequence (6.1.1) is a complex, we have curlV r−1,k+1
h (K) ⊂ Zk

h(K).

By integration by parts, the following face DOFs for Zk
h(K) vanish on curlu:

ˆ
fi

curlu · nidA =

ˆ
∂fi

u · τ∂fids = 0.

The conformity of Zk
h(K) leads to curlu = 0 on ∂K. We relate u to û via (5.1.7), and
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then curlx̂ û = 0 on ∂K̂. We can rewrite curlx̂ û as:

curlx̂ û = x̂1x̂2x̂3(1− x̂1 − x̂2 − x̂3)Φ̂ with Φ̂ = (Φ̂1, Φ̂2, Φ̂3)
T ∈ Pk−4(K̂),

and hence

∂x̂1(curlx̂ û)1 = x̂2x̂3[(1− 2x1 − x̂2 − x̂3)Φ̂1 + (1− x̂1 − x̂2 − x̂3)x̂1∂x̂1Φ̂1],

∂x̂2(curlx̂ û)2 = x̂1x̂3[(1− 2x̂2 − x̂1 − x̂3)Φ̂2 + (1− x̂1 − x̂2 − x̂3)x̂2∂x̂2Φ̂2],

∂x̂3(curlx̂ û)3 = x̂1x̂2[(1− 2x̂3 − x̂1 − x̂2)Φ̂3 + (1− x̂1 − x̂2 − x̂3)x̂3∂x̂3Φ̂3].

When x̂1 = 0, ∂x̂2(curlx̂ û)2+∂x̂3(curlx̂ û)3 = 0 which leads to ∂x̂1(curlx̂ û)1 = 0 because

div curlx̂ û = ∂x̂1(curlx̂ û)1+∂x̂2(curlx̂ û)2+∂x̂3(curlx̂ û)3 = 0. It implies Φ̂1 has a factor

x̂1. Similarly, Φ̂2 has a factor x̂2 and Φ̂3 has a factor x̂3. Then

curlx̂ û = x̂1x̂2x̂3(1− x̂1 − x̂2 − x̂3)[x̂1Φ̃1, x̂2Φ̃2, x̂3Φ̃3]
T

with Φ̃ = [Φ̃1, Φ̃2, Φ̃3] ∈ Pk−5(K̂). By integration by parts,
ˆ
K

curlu · grad vdV =

ˆ
∂K

curlu · n∂KvdA = 0 for any v ∈ Pk−4(K),

which together with the vanishing interior DOFs involving curlu leads to

0 =

ˆ
K

curlu ·B−T
K Φ̃ ◦ F−1

K dV =

ˆ
K̂

curlx̂ û · Φ̃dV̂ .

Then curlu = BK

det(BK)
curlx̂ û = 0 since Φ̃ = 0.

Since curlu ·ni = 0 on each fi, there exists a φi ∈ Pr(fi) such that ni ×u|fi ×ni =

gradfi
φi. Here gradfi

is the face gradient on fi. By the edge DOFs of V r−1,k+1
h (K),

we get u · τi = 0 on each edge ei. Therefore φi is a constant on the boundary of fi.

Without loss of generality, we can choose this constant to be zero. Then φi has the form

φi = Bi|fiψi with ψi ∈ Pr−3(fi). By the property of Koszul operators in 2D (see Chapter

2), for any function ψi ∈ Pr−3(fi), there exists qi ∈ Pr−3(fi)BKx̂f̂i
satisfying qi ⊥ ni

and divfi qi = ψi. By the DOFs in (6.2.9), we have

0 = (u, qi)fi = −(φi, divfi qi)fi = − (Bi|fiψi, ψi)fi .
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This implies that ψi = 0, i.e., u× ni = 0 on fi.

Therefore there exists φ = B0ψ with ψ ∈ Pr−4(K) such that u = gradφ. We choose

q ∈ Pr−4(K)BKx̂ such that div q = ψ. Then

0 = (u, q) = (gradφ, q) = − (φ, div q) = − (B0ψ, ψ) .

This implies that ψ = 0 and hence φ = 0 and u = 0.

6.3 Global Finite Element Complexes

Equipping the local spaces with the above DOFs, we obtain the global finite element

spaces Σr
h, V r−1,k+1

h , Zk
h , and W k−1

h with k ≥ 6 in the complex (6.0.2). The number of

DOFs of the space V r−1,k+1
h (K) is at least 279.

Lemma 6.3.1. The following conformity holds:

V r−1,k+1
h ⊂ H(grad curl; Ω).

Proof. To prove the conformity, we must show u × ni = 0 and curlu = 0 for all

fi ∈ Fh(K) if the DOFs (6.2.9) – (6.2.11) vanish on u ∈ V r−1,k+1
h (K). Proceeding as in

the proof of Lemma 6.2.2, we can show that curlu = 0 and u× ni = 0 on each fi.

Theorem 6.3.2. The complex (6.0.2) is exact on contractible domains.

Proof. The exactness at Σr
h is trivial. The exactness at V r−1,k+1

h follows from the exact-

ness of the standard finite element differential forms (see Theorem 5.3.2). The exactness

at W k−1
h , i.e., the surjectivity of div : Zk

h → W k−1
h has been verified in [53, Lemma 4.5].

Finally, the exactness at Zk
h follows from a dimension count. Let V , E , F , and K

denote the number of vertices, edges, faces, and 3D cells, respectively. Then we have

dimΣr
h = V + (r − 1)E +

1

2
(r − 2)(r − 1)F +

1

6
(r − 3)(r − 2)(r − 1)K,

dimW k−1
h =

k(k + 1)(k + 2)

6
K − 16K − 6(k − 4)K + 4V + (k − 4)E .
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From the DOFs (6.2.9) – (6.2.9),

dimV r−1,k+1
h − dimZk

h = −4V + rE − (k − 4)E +
1

2
(r − 2)(r − 1)F − F+

1

6

[
(r − 3)(r − 2)(r − 1) + (k − 5)(k − 4)(4k − 15)− 3(k − 3)(k − 2)(k − 1)

]
K.

From the above dimension count, we have

−1 + dimΣr
h − dimV r−1,k+1

h + dimZk
h − dimW k−1

h = 0,

where we have used Euler’s formula V − E + F −K = 1. This completes the proof.

We now consider the following complex with vanishing boundary conditions:

0 H1
0 (Ω) H0(grad curl; Ω) H1

0 (Ω)⊗ V L2
0(Ω) 0,

grad curl div (6.3.1)

where H0(grad curl; Ω) = {u ∈ H(grad curl; Ω) : u × n = 0 and curlu = 0 on ∂Ω}.

By a standard argument, the sequence (6.3.1) is a complex and is exact on contractible

domains, see, e.g., [25].

However, if we simply take Σ̊r
h = Σr

h∩H1
0 (Ω), V̊

r−1,k+1
h = V r−1,k+1

h ∩H0(grad curl; Ω),

Z̊k
h = Zk

h ∩H1
0 (Ω)⊗ V, and W̊ k−1

h = W k−1
h ∩ L2

0(Ω), the complex

0 Σ̊r
h V̊ r−1,k+1

h Z̊k
h W̊ k−1

h 0
⊂ grad curl div (6.3.2)

is not exact. This is because the construction in this chapter involves supersmoothness

on lower-dimensional simplices of the mesh. Actually it is a non-trivial issue to construct

such finite element spaces with homogeneous boundary conditions that can fit into an

exact complex. We will not discuss this issue here, but only mention that the construction

in the next chapter will not suffer from this issue.

6.4 Approximation Property of Vh

Denote V (D) = {u ∈ H1/2+δ(D) ⊗ V : curlu ∈ H7/2+δ(D) ⊗ V} (see Lemma

6.2.1). We define an H(grad curl) interpolation operator ΠK : V (K) → V r−1,k+1
h (K)

by the DOFs for V r−1,k+1
h (K). Similarly, we can define an interpolation operator π̃K :
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H7/2+δ(K) ⊗ V → Zk
h(K) by the DOFs for Zk

h(K). The global interpolation operators

Πh and π̃h are defined piecewisely by

Πh|K = ΠK and π̃h|K = π̃K .

The DOFs for V r−1,k+1
h (K) involve normal derivatives to edges, we can not relate

the interpolation ΠK on a general element K to ΠK̂ on the reference element K̂ by the

mapping (5.1.7). To estimate the interpolation error, we follow the method in [23]. We

define a new element by replacing the DOFs Me(u) for V r−1,k+1
h (K) with the following

DOFs:

M̃e(u) =

{ˆ
ei

u · τiqds for all q ∈ Pr−1(ei)

}
∪
{ˆ

ei

curlu · qds for all q ∈ Pk−6(ei)

}
∪
{

1

|ei|

ˆ
ei

grad(curlu · lji ) · t
j
iqds with lji ∈ L

j
i , j = 1, 2, for all q ∈ Pk−5(ei)

}
,

where |ei| = length(ei), t1i and t2i are the vectors connecting the midpoint of edge ei and

the other two vertices other than the endpoints of ei, and

Lj
i =


{
t1i × t3i , t2i × t3i

}
j = 1,{

t1i × t3i , t2i × t3i , t1i × t2i
}

j = 2,

with t3i = |ei|τi.

With these DOFs, the element is no longer grad curl-conforming.

We denote the interpolation defined by the above DOFs as ΛK . Now we show that

ΛK and ΛK̂ can be related via the mapping (5.1.7).

Lemma 6.4.1. Assume that ΛK is well-defined. Then under the transformation (5.1.7),

we have ΛKu ◦ FK = B−T
K ΛK̂û.

Proof. Under the transformation (5.1.7), the new DOFs satisfy

1

|ei|

ˆ
ei

grad(curlu · lji ) · t
j
iqds =

1

|êi|

ˆ
êi

gradx̂(curlx̂ û · l̂ji ) · t̂
j
i q̂dŝ,

since lji =
B−T

K

det(B−T
K )
l̂ji . Therefore, the DOFs to define ΛK are either identical with or linear
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combinations of those to define ΛK̂ . According to Proposition 3.4.7 in [16], we complete

the proof.

Correspondingly, we define a new interpolation IK by replacing the DOFs Me(u) to

define π̃K with the following:

M̃e(u) =

{ˆ
ei

u · qds for all q ∈ Pk−6(ei)

}
∪
{

1

|ei|

ˆ
ei

grad(u · li) · t1i qds with li ∈ L2
i for all q ∈ Pk−5(ei)

}
∪
{

1

|ei|

ˆ
ei

grad(u · li) · t2i qds with li ∈ L2
i for all q ∈ Pk−5(ei)

}
.

Lemma 6.4.2. If w ∈ Hs(K)⊗V with s > 7/2 and there exists a pair {m, q} such that

Hs(K) ↪→ Wm,q(K), then we have the following error estimates for the interpolation IK,

∥w − IKw∥m,q,K ≤ C|K|1/q−1/2h
min{s,k+1}−m
K ∥w∥s,K ,

where |K| is the volume of K.

Proof. The proof is standard, see, e.g., Theorem 3.1.4 in [23].

Lemma 6.4.3. If curlu ∈ Hs(K)⊗V with s > 7/2 and there exists a pair {m, q} such

that Hs(K) ↪→ Wm,q(K), then

∥IK curlu− curl ΛKu∥m,q,K ≤ C|K|1/q−1/2h
min{s,k+1}−m
K ∥curlu∥s,K .

Proof. For simplicity of notation, we let w = IK curlu − curl ΛKu. Since w ∈ Zk
h(K),

we have w = IKw =
∑

i di(w)Ni, where di(w) are the DOFs to define IKw and Ni

are the corresponding dual basis functions. It is easy to see all the DOFs di(w) vanish,

except for 1
|ei|

´
ei
grad(w · li) · t1i qds, li ∈ L2

i . We estimate only the non-vanishing term.

By the definition of IK , we have

1

|ei|

ˆ
ei

grad(w · li) · t1i qds =
1

|ei|

ˆ
ei

grad
(
curl(u− ΛKu) · li

)
· t1i qds

=
1

|ei|

ˆ
ei

grad
(
curl(u− ΛKu) · (t1i × t2i )

)
· t1i qds.
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Let L3
i = L2

i . Since the divergence of curl(u − ΛKu) is 0, we can find 8 constants Clji

with lji ∈ L
j
i for j = 1, 2, 3 independent of hK such that

1

|ei|

ˆ
ei

grad
(
curl(u− ΛKu) · (t1i × t2i )

)
· t1i qds

=
3∑

j=1

∑
l3i∈L

j
i

Clji

1

|ei|

ˆ
ei

grad
(
curl(u− ΛKu) · lji

)
· tjiqds,

which can be finished by mapping to the reference element, finding the constants and

then mapping back. Furthermore, by the definition of ΛKu, we have
3∑

j=1

∑
lji∈L

j
i

Clji

1

|ei|

ˆ
ei

grad
(
curl(u− ΛKu) · lji

)
· tjiqds

=
∑
l3i∈L3

i

Clji

1

|ei|

ˆ
ei

grad
(
curl(u− ΛKu) · l3i

)
· t3i qds.

Since curl ΛKu restricted on the edge ei is a polynomial of order k, it can be determined

by the vertex DOFs Dα
(
curl ΛKu

)
(vi) = Dα

(
IK curlu

)
(vi) for |α| ≤ 2 and the edge

DOFs
´
ei
curl ΛKu · qds =

´
ei
IK curlu · qds for q ∈ Pk−6(ei). By Lemma 6.4.2, we have∑

l3i∈L3
i

Cl3i

1

|ei|

ˆ
ei

grad
(
curl(u− ΛKu) · l3i

)
· t3i qds

=
∑
l3i∈L3

i

Cl3i

1

|ei|

ˆ
ei

grad
(
curlu− IK curlu) · l3i

)
· t3i qds

≤Ch3K |curlu− IK(curlu)|1,∞,K

≤C|K|−1/2h3Kh
min{s−1,k}
K |curlu|s,K . (6.4.1)

Suppose Ni are the basis functions associated with the non-vanishing DOFs. Then

∥Ni∥m,q,K ≤ Ch−2−m|K|1/q∥N̂i∥m,q,K̂ , (6.4.2)

where N̂i = det(BK)B
−1
K Ni are the basis functions on the reference element.

Combining (6.4.1) and (6.4.2), we complete the proof.

Theorem 6.4.4. If u ∈ Hs+(r−k−1)(K)⊗ V and curlu ∈ Hs(K)⊗ V with s > 7
2
, then
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we have the following error estimates for the interpolation ΛK,

∥u− ΛKu∥K ≤ Chr1K(∥u∥s+(r−k−1),K + ∥curlu∥s,K), (6.4.3)

∥curl(u− ΛKu)∥m,q,K ≤ C|K|1/q−1/2hr2−m
K ∥curlu∥s,K . (6.4.4)

where r1 = min{s+ (r − k − 1), r} and r2 = min{s, k + 1}.

Proof. Due to the relationship ΛKu ◦ FK = B−T
K ΛK̂û obtained in Lemma 7.3.8, the

proof of (6.4.3) is standard, see the proof of Theorem 5.3.6. Combining Lemma 6.4.2

and Lemma 6.4.3, we obtain

∥curl(u− ΛKu)∥m,q,K ≤ ∥curlu− IK curlu)∥m,q,K + ∥IK curlu− curl ΛKu)∥m,q,K

≤ C|K|1/q−1/2hs−m
K ∥curlu∥s,K .

Theorem 6.4.5. If u ∈ Hs+(r−k−1)(Ω) ⊗ V and curlu ∈ Hs(Ω) ⊗ V with s > 7
2
, then

we have the following error estimates for the interpolation Πh,

∥u− Πhu∥ ≤ Chr1K(∥u∥s+(r−k−1) + ∥curlu∥s), (6.4.5)

∥curl(u− Πhu)∥ ≤ Chr2K ∥curlu∥s , (6.4.6)

∥grad curl(u− Πhu)∥ ≤ Chr2−1
K ∥curlu∥s . (6.4.7)

Proof. We estimate ∥u− Πhu∥K and ∥curl(u− Πhu)∥i,K for i = 0, 1. Since u−ΠKu =

u − ΛKu + ΛKu − ΠKu, it remains to estimate ΛKu − ΠKu in three different norms

or semi-norms. We denote ∆ = ΛKu− ΠKu which is a polynomial with a degree of no

more than k + 1. The DOFs to define ΛK∆ vanish except for 1
|ei|

´
ei
grad(curl∆ · lji ) ·

tjiqds with lji ∈ L
j
i , j = 1, 2, and q ∈ Pk−5(ei). Then

∆ =
6∑

i=1

k−4∑
l=1

2∑
j=1

∑
lji∈L

j
i

1

|ei|

ˆ
ei

grad(curl∆ · lji ) · t
j
iqldsN

lji
ijl,

where N lji
ijl are the corresponding dual basis functions. Since curl∆ is a div-free polyno-
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mial, we can represent grad(curl∆ ·mi) ·mi as a linear combination of grad(curl∆ ·τi) ·

mi, grad(curl∆·τi)·ni, grad(curl∆·ni)·mi, grad(curl∆·ni)·ni, and grad(curl∆·mi)·ni

with weights independent of h. Therefore,

grad(curl∆ · lji ) · t
j
i

=grad
(
curl∆ ·

[
(lji · τi)τi + (lji · ni)ni + (lji ·mi)mi

])
·
[
(tji · τi)τi + (tji · ni)ni + (tji ·mi)mi

]
≤Ch3K

(∣∣ grad ( curl(u− ΛKu) · τi
)
· ni

∣∣+ ∣∣ grad ( curl(u− ΛKu) · τi
)
·mi

∣∣
+
∣∣ grad ( curl(u− ΛKu) · ni

)
· ni

∣∣+ ∣∣ grad ( curl(u− ΛKu) · ni

)
·mi

∣∣
+
∣∣ grad ( curl(u− ΛKu) ·mi

)
· ni

∣∣)
Each term has the following estimate. We show only the first term

grad
(
curl(u− ΛKu) · τi

)
· ni

≤C |curl(u− ΛKu)|1,∞,K

≤C|K|−1/2hr2−1
K |curlu|s,K .

According to the mapping (5.1.7), the basis functions N lji
ijl satisfy∥∥N lji

ijl

∥∥ ≤ Ch
1/2
K

∥∥N̂ lji
ijl

∥∥,∥∥ curlN lji
ijl

∥∥ ≤ Ch
−1/2
K

∥∥ curlx̂ N̂ lji
ijl

∥∥,∥∥ grad curlN lji
ijl

∥∥ ≤ Ch
−3/2
K

∥∥ gradx̂ curlx̂ N̂
lji
ijl

∥∥,
where N̂ lji

ijl are the corresponding basis functions on K̂ and satisfy N lji
ijl = B−T

K N̂
lji
ijl. By

combining the above estimates, we complete the proof.
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CHAPTER 7 3D GRADCURL-CONFORMING ELEMENTS II

The construction in the last chapter involves supersmoothness on lower-dimensional

simplices. As a consequence, the grad curl-conforming elements have a large number of

DOFs, and it is hard to construct exact discrete complexes with vanishing boundary

conditions.

In this chapter, we will construct finite element subcomplexes of (6.0.1) with fewer

DOFs:

0 R Σr
h V r−1,k+1

h Σk,+
h W k−1

h 0,
⊂ grad curl div (7.0.1)

where r = k, k + 1, or k + 2. To construct the discrete complex, we first need an inf-

sup stable finite element Stokes pair Σk,+
h – W k−1

h . To satisfy the complex property, the

Stokes pair should satisfy

divΣk,+
h ⊆ W k−1

h ,

which guarantees the divergence-free condition at the discrete level. Recently, Guzmán

and Neilan [34] constructed such a finite element Stokes pair by enriching the first-order

vector-valued Lagrange finite element space with modified Bernardi-Raugel bubbles. The

pair has only 16 and 1 DOFs on each element. Therefore, it is a good candidate for Σ+
h –

Wh. However, the extension to high-order cases is still not available yet. In this chapter,

we will first extend Guzmán and Neilan’s construction in [34] to high-order cases and

apply it to construct the whole complex (7.0.1).

7.1 Local Shape Function Spaces and Polynomial Complexes

7.1.1 Modified Bubble Functions

For each K ∈ Th, let xK be the barycenter of K. We denote Kr as the partition of

K by adjoining the vertices of K with the new vertex xK , known as the Alfeld split of



112

K [1]. We also denote

P c
k (K

r) = {v ∈ H1(K)⊗ V : v|T ∈ Pk(T ) for all T ∈ Kr},

P̊ c
k (K

r) = {v ∈ H1
0 (K)⊗ V : v|T ∈ Pk(T ) for all T ∈ Kr},

P̊k(K
r) = {q ∈ L2

0(K) : q|T ∈ Pk(T ) for all T ∈ Kr}.

Let x1, · · · , x4 be the four vertexes of the element K, and x0 = xK . Let λ0 be the

continuous piecewise linear function satisfying λ0(xj) = δ0j for 0 ≤ j ≤ 4. Denote

Mk(K
r) =

{
v ∈ P̊ c

k (K
r) : v =

k∑
j=1

λj0wk−j with wk−j ∈ P⊥
k−j(K)

}
, (7.1.1)

where P⊥
l (K) =

{
v ∈ Pl(K) :

´
K
v · κdV = 0 for all κ ∈ Rl−1

}
with Rl defined in (1.5.4)

for l ≥ 1 and Rl = 0 for l = 0,−1.

We will construct modified bubbles using the following properties of polynomial

spaces on Kr [34, Theorem 3.3].

Lemma 7.1.1. Let k ≥ 1. For any K ∈ Th and for any p ∈ P̊k−1(K
r), there exists a

unique v ∈ M̊k(K
r) satisfying

div v = p on K.

Let λi(i = 1, 2, 3, 4) be the barycentric coordinates of K, i.e., λi(xj) = δij. We define

the scalar face bubbles

Bi =
4∏

j=1,j ̸=i

λj for 1 ≤ i ≤ 4

and the scalar interior bubble

B0 =
4∏

j=1

λj.

The Bernardi-Raugel face bubbles are given as

bfi = Bini for 1 ≤ i ≤ 4,

where ni is the outward unit normal to fi ∈ Fh(K).
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According to [34, Propsition 4.2], we can modify the Bernardi-Raugel face bubbles

such that they have constant divergence.

Lemma 7.1.2 ([34]). There exists βf
i ∈ P c

3 (K
r) such that

βf
i |∂K = bfi |∂K , divβf

i ∈ P0(K). (7.1.2)

We refer to the functions βf
i ∈ P c

3 (K
r), i = 1, 2, 3, 4 which satisfy (7.1.2) as the modified

Bernardi-Raugel bubbles on a tetrahedron K (see [34]). Denote

B1 := span{βf
i , i = 1, 2, 3, 4},

To construct higher-order elements, we will use certain interior bubbles. Denote

Sk(K) =


P̃k(K), k = 1,

P̃k(K)⊕ P̃k−1(K), k ≥ 2,

and

S̊k(K) :=

{
u− 1

|K|

ˆ
K

udV : u ∈ Sk(K)

}
.

According to Lemma 7.1.1, for k ≥ 2, there exists a unique subspace Bk ⊂ Mk(K
r)

such that divBk = S̊k−1(K) and dimBk = dim S̊k−1(K). We refer to the functions in

Bk as modified interior bubbles on a tetrahedron K.

Remark 7.1.1. With the constructive proof of Lemma 7.1.1 (see [34, Theorem 3.3]), we

can obtain explicit forms of the interior bubbles in the implementation.

Lemma 7.1.3. For k ≥ 2, a function v ∈ Bk is uniquely determined by
ˆ
K

v · grad qdS for all q ∈ S̊k−1(K). (7.1.3)

Proof. From the construction, dimBk = dim S̊k−1(K). Suppose that the functionals in

(7.1.3) vanish on v. It suffices to show v = 0. Indeed, we have from integration by parts

0 =

ˆ
K

v · grad qdV =

ˆ
K

div vqdV.
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Taking q = div v, we obtain div v = 0 and therefore v = 0 since div : Bk → S̊k−1(K) is

bijective by the construction of Bk.

7.1.2 Local Shape Function Spaces

On each K ∈ Th, we construct the local complex of the shape function spaces of

(7.0.1) as follows:

0 R Σr
h(K) V r−1,k+1

h (K) Σk,+
h (K) W k−1

h (K) 0.
⊂ grad curl div (7.1.4)

As before, we first consider the following local complex on the reference element K̂:

0 R Σ̂r
h(K̂) V̂ r−1,k+1

h (K̂) Σ̂k,+
h (K̂) Ŵ k−1

h (K̂) 0
⊂ gradx̂ curlx̂ divx̂ (7.1.5)

We choose Σ̂r
h(K̂) := Pr(K̂) and W k−1

h (K̂) := Pk−1(K̂). Denote by B̂k the set of modified

bubbles on K̂. Set Σ̂k,+
h (K̂) = Pk(K̂)⊕ B̂, where

B̂ =


B̂1, k = 1,

B̂1 ⊕ B̂2, k = 2,

B̂k, k ≥ 3.

Note that for k = 1, we only supply P1(K̂) with modified Bernardi-Raugel face bubbles;

for k = 2, we supply P2(K̂) with both face and interior bubbles, while for k ≥ 3 we

only need supply Pk(K̂) with interior bubbles. It is easy to see that the face bubbles

{βf
i }4i=1 and P2(K̂) are linearly independent, and hence, P2(K̂)⊕ B̂1 and P1(K̂)⊕ B̂1

are direct sums. From the explicit form (7.1.1) of the functions in Mk(K̂
r), we see that

Mk(K̂
r)⊕ Pk(K̂) is a direct sum, and hence, B̂k ⊕ Pk(K̂) is also a direct sum.

Remark 7.1.2. The idea of enriching with modified bubbles is inspired by [34], where the

case of k = 1 is defined and used to construct a stable Stokes finite element pair. Here

we extend it to high-order cases.
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Define

V̂ r−1,k+1
h (K̂) = gradx̂ Σ̂

r
h(K̂)⊕ p2x̂Σ̂

k,+
h (K̂). (7.1.6)

The right-hand side of (7.1.6) is a direct sum.

Remark 7.1.3. For the modified bubble functions in Σ̂k,+
h (K̂), we choose the barycenter

xK̂ as the base point W in the definition of p2x̂ (see [21]). For other functions, we choose

W = 0.

Remark 7.1.4. For polynomial bases in Σ̂k,+
h (K̂) other than the bubbles, we can re-

place the Poincaré operator p2x̂ by the Koszul operator κ2x̂. However, to get the complex

property it seems necessary to use the Poincaré operator for the bubbles.

By the definitions of the shape function spaces, it is easy to show that the sequence

(7.1.5) is a complex. By the properties of the Poincaré operators, we can verify that the

sequence

0 Σ̂r
h(K̂) V̂ r−1,k+1

h (K̂) Σ̂k,+
h (K̂) Ŵ k−1

h (K̂) 0
p1x̂ p2x̂ p3x̂ (7.1.7)

is also a complex with the Poincaré operators in (2.1.20) – (2.1.22). From Lemma 2.1.3,

we obtain the exactness.

Lemma 7.1.4. The complex (7.1.4) is exact.

From the definition, we see that V̂ r−1,k+1
h (K̂) has two parts: one from the gradient on

Σ̂r
h(K̂) and the other from the Poincaré operator on Σ̂k,+

h (K̂). The first part is easy to

implement: we may remove the constant (kernel of gradient) from the bases of Σ̂r
h(K̂) and

apply gradient to the rest. The p2x̂Σ̂
k,+
h (K̂) part calls for more explanation as we cannot

obtain a basis by applying the Poincaré operator to a basis of Σ̂k,+
h (K̂) (as the results

are not linearly independent). Now we show how to obtain a basis for the p2x̂Σ̂
k,+
h (K̂)

part to implement V̂ r−1,k+1
h (K̂).
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We first claim Pk(K̂) = curlx̂Pk+1(K̂)⊕ p3x̂Pk−1(K̂). In fact, for all û ∈ Pk(K̂), the

null-homotopy identity (6.1.5) leads to û = curlx̂ p
2
x̂û + p3x̂ divx̂ û ∈ curlx̂Pk+1(K̂) +

p3x̂Pk−1(K̂). Moreover, if û ∈ curlx̂Pk+1(K̂)∩ p3x̂Pk−1(K̂), then divx̂ û = 0 and p2x̂û = 0,

which follows from (6.1.5) again that û = 0.

We then have the decomposition Σ̂k,+
h (K̂) = curlx̂Pk+1(K̂)⊕ p3x̂Pk−1(K̂)⊕ B̂, which

leads to

p2x̂Σ̂
k,+
h (K̂) =p2x̂ curlx̂Pk+1(K̂) + p2x̂B̂ + p2x̂p

3
x̂Pk−1(K̂)

=p2x̂ curlx̂Pk+1(K̂) + p2x̂B̂,

(7.1.8)

where we used p2x̂p
3
x̂ = 0.

From the exactness and the decomposition of Σ̂k,+
h (K̂), we obtain

dim p2x̂Σ̂
k,+
h = dim V̂ r−1,k+1

h (K̂)− dim gradx̂ Σ̂
r
h(K̂)

= dim Σ̂k,+
h (K̂)− dim Ŵ k−1

h (K̂)

= dim curlx̂Pk+1(K̂) + dim p3x̂Pk−1(K̂) + dim B̂ − dim Ŵ k−1
h (K̂)

= dim curlx̂Pk+1(K̂) + dim B̂

≥ dim p2x̂ curlx̂Pk+1(K̂) + dim p2x̂B̂,

which together with (7.1.8) leads to

p2x̂Σ̂
k,+
h (K̂) = p2x̂ curlx̂Pk+1(K̂)⊕ p2x̂B̂.

Therefore, to implement p2x̂V̂
r−1,k+1
h (K̂), we take the bases of B̂ and the bases of

curlx̂Pk+1(K̂), and apply the Poincaré operator on them.

We demonstrate that V̂ r−1,k+1
h (K̂) contains polynomials of certain degree.

Lemma 7.1.5. The inclusion Pr−1(K̂) ⊆ V r−1,k+1
h (K̂) holds.

Proof. Proceeding as the proof of Lemma 6.1.2, we can prove this lemma.

Define Σr
h(K), V r−1,k+1

h (K), and Σk,+
h as in (6.1.8). Then the complex (7.1.4) is an

exact complex.
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7.2 Degrees of Freedom

In this section, we define DOFs for each space in (7.1.4). Taking r = k, k + 1, and

k+2 in (7.1.4) yields three versions of grad curl-conforming element spaces V k−1,k+1
h (K),

V k,k+1
h (K), and V k+1,k+1

h (K).

The DOFs for the Lagrange element Σr
h(K) can be given as follows.

• Vertex DOFs Mv(u) at all the vertices vi ∈ Vh(K):

Mv(u) = {u (vi)} . (7.2.1)

• Edge DOFs Me(u) on all the edges ei ∈ Eh(K):

Me(u) =

{ˆ
ei

uvds for all v ∈ Pr−2(ei)

}
. (7.2.2)

• Face DOFs Mf (u) on all the faces fi ∈ Fh(K):

Mf (u) =

{ˆ
fi

uvdA for all v ∈ Pr−3(fi)

}
. (7.2.3)

• Interior DOFs MK(u) in the element K ∈ Th:

MK(u) =

{ˆ
K

uvdV for all v ∈ Pr−4(K)

}
. (7.2.4)

We equip the space V r−1,k+1
h (K) with the following DOFs:

• Vertex DOFs Mv(u) at all vertices vi ∈ Vh(K):

Mv(u) = {curlu(vi)} . (7.2.5)

• Edge DOFs Me(u) on all edges ei ∈ Eh(K):

Me(u) =

{ˆ
ei

u · τiqds for all q ∈ Pr−1(ei)

}
∪
{ˆ

ei

curlu · qds for all q ∈ Pk−2(ei)

}
. (7.2.6)

• Face DOFs Mf (u) at all faces fi ∈ Fh(K) (with two mutually orthogonal unit



118

vector τ 1
i and τ 2

i in the face fi and the unit normal vector ni):

Mf (u) =

{ˆ
fi

curlu · niqdA for all q ∈ Pk−3(fi)/R
}

∪
{ˆ

fi

curlu · τ 1
i qdA for all q ∈ Pk−3(fi)

}
∪
{ˆ

fi

curlu · τ 2
i qdA for all q ∈ Pk−3(fi)

}
(7.2.7)

∪
{ˆ

fi

u · qdA for all q = BK q̂, q̂ ∈ Pr−3(f̂i)x̂f̂i

}
,

where x̂f̂i
= [x̂− (x̂ · n̂i) n̂i] |f̂i .

• Interior DOFs MK(u) in the element K ∈ Th:

MK(u) =

{ˆ
K

curlu · qdV for all q ◦ FK = B−T
K q̂, q̂ ∈ curlx̂

˚̂
V r−1,k+1
h (K̂)

}
∪
{ˆ

K

u · qdV for all q ◦ FK = BK q̂, q̂ ∈ Pr−4(K̂)x̂

}
, (7.2.8)

where ˚̂
V r−1,k+1
h (K̂) = {u ∈ V̂ r−1,k+1

h (K̂) : DOFs (7.2.5) – (7.2.7) vanish on û}.

The DOFs for Σk,+
h (K) can be given similarly to Σr

h(K) with some additional face

or interior integration DOFs to take care of the bubble functions (see Lemma 7.1.2 and

Lemma 7.1.3).

• Vertex DOFs Mv(u) at all the vertices vi ∈ Vh(K):

Mv(u) = {u (vi)} . (7.2.9)

• Edge DOFs Me(u) on all the edges ei ∈ Eh(K):

Me(u) =

{ˆ
ei

u · vds for all v ∈ Pk−2(ei)

}
. (7.2.10)

• Face DOFs Mf (u) on all the faces fi ∈ Fh(K):

Mf (u) =

{ˆ
fi

u · vdA for all v ∈ Pk−3(fi)

}
∪
{ˆ

fi

u · nidA when k = 1, 2

}
. (7.2.11)
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Figure 7.2.1: The lowest-order (k = 1) finite element complex (7.1.4) on tetrahedra with
r = k in the first row, r = k + 1 in the second row, and r = k + 2 in the third row.

• Interior DOFs MK(u) in the element K ∈ Th:

MK(u) =

{ˆ
K

u · vdV for all v = B−T
K v̂, v̂ ∈ curlx̂

˚̂
V r−1,k+1
h (K̂)

}
∪
{ˆ

K

u · grad vdV for all v ∈ Pk−1(K)/R (k ≥ 2)

}
. (7.2.12)

The DOFs for W k−1
h (K) can be given as follows.

• Interior DOFs MK(u) in the element K ∈ Th:

MK(u) =

{ˆ
K

u · vdV for all v ∈ Pk−1(K)

}
.

Lemma 7.2.1. The DOFs for Σk,+
h (K) are unisolvent.
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Proof. The case of k = 1 is proved in [34, Lemma 4.3], and the case of k = 2 can

be proved similarly. We only prove the lemma for k ≥ 3. Denote Nk−1 = dimBk. For

u ∈ Σk,+
h (K), rewrite u = w +

∑Nk−1

i biβ̊i with bi ∈ R, w ∈ Pk(K), and β̊i ∈ Bk.

Suppose that the DOFs (7.2.9) – (7.2.12) vanish on u. We must show that u = 0. Since

β̊i vanish on ∂K, w vanishes on ∂K by the DOFs in (7.2.9) – (7.2.11). The DOFs in the

second set of (7.2.12) leads to divu = 0 since divu ∈ Pk−1(K)/R. Therefore u = curlv

with v ∈ V̊ r−1,k+1
h (K). Using the DOFs in the first set of (7.2.12), we obtain u = 0.

Lemma 7.2.2. The DOFs (7.2.5) – (7.2.8) are well-defined for any u ∈ H1/2+δ(Ω)⊗V

and curlu ∈ H3/2+δ(Ω)⊗ V with δ > 0.

Proof. By the embedding theorem, we have curlu ∈ H3/2+δ(Ω)⊗V ↪→ C0,δ(Ω)⊗V, then

the DOFs involving curlu are well-defined. Proceeding as in the proof of [49, Lemma

5.38], we see that the remaining DOFs are well-defined since u ∈ H1/2+δ(Ω) ⊗ V and

curlu ∈ H3/2+δ(Ω)⊗ V ↪→ C0,δ(Ω)⊗ V ⊂ Lp(Ω)⊗ V with p > 2.

Lemma 7.2.3. The DOFs for V r−1,k+1
h (K) are unisolvent.

Proof. Since the complex (7.1.4) is exact, we have

dimV r−1,k+1
h (K) = dimΣk,+

h (K) + dimΣr
h(K)− dimW k−1

h (K)− 1. (7.2.13)

We can check that the DOF set has the same dimension. Then it suffices to show that

if all the DOFs vanish on u ∈ V r−1,k+1
h (K), then u = 0. To see this, we first show that

curlu = 0. Using the properties of the Poincaré operators, we have curlV r−1,k+1
h (K) ⊂

Σk,+
h (K). By integration by parts, the following DOFs for Σk,+

h (K) vanish on curlu:
ˆ
fi

curlu · nidA =

ˆ
∂fi

u · τ∂fids = 0,

and
ˆ
K

curlu · grad vdV =

ˆ
∂K

curlu · n∂KvdA = 0 for any v ∈ Pk−1(K).
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By the unisolvence of the DOFs for Σk,+
h (K), we get curlu = 0 in K.

Therefore on each fi, there exists a φi ∈ Pr(fi) such that ni × u|fi × ni = gradfi
φi.

Here gradfi
is the face gradient on fi. By the edge DOFs of V r−1,k+1

h (K), we get u ·τi = 0

on the edge ei. Therefore φi is a constant on all the edges of fi. Without loss of generality,

we can choose this constant to be zero. Then φi has the form φi = Bi|fiψi with ψi ∈

Pr−3(fi). By the property of Koszul operators in 2D (see Chapter 2), for any function

ψi ∈ Pr−3(fi), there exists qi ∈ Pr−3(fi)BKx̂f̂i
satisfying qi ⊥ ni and divfi qi = ψi. By

the DOFs in (7.2.7), we have

0 = (u, qi)fi = −(φi, divfi qi)fi = − (Bi|fiψi, ψi)fi .

This implies that ψi = 0, i.e., u× ni = 0 on fi.

Therefore, there exists ψ ∈ Pr−4(K) such that φ = B0ψ. We choose q ∈ Pr−4(K)BKx̂

such that div q = ψ. Then

0 = (u, q) = (gradφ, q) = − (φ, div q) = − (B0ψ, ψ) .

This implies that ψ = 0 and hence φ = 0 and u = 0.

For δ > 0 and D ⊂ Ω, denote Σ(D) = H3/2+δ(D) and V (D) = {u ∈ H1/2+δ(D)⊗V :

curlu ∈ H3/2+δ(D)⊗ V}.

For u ∈ Σ(K), we can define an H1 interpolation operator πK : H3/2+δ(K) → Σr
h(K)

by the DOFs for Σr
h(K). We use π̃K to denote the interpolation operator to Σk,+

K .

Provided u ∈ V (K) (see Lemma 7.2.2), we can define an H(grad curl) interpolation

operator ΠK : V (K) → V r−1,k+1
h (K) by the DOFs for V r−1,k+1

h (K). We denote the

interpolation defined by the DOFs for W k−1
h (K) as rK .
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7.3 Global Finite Element Complexes

7.3.1 Complexes without Boundary Conditions

Equipping the local spaces with the above DOFs, we obtain the global finite element

spaces Σr
h, V r−1,k+1

h , Σk,+
h , and W k−1

h in the complex (7.0.1).

Lemma 7.3.1. The following conformity holds:

V r−1,k+1
h ⊂ H(grad curl; Ω).

Proof. To prove the conformity, we must show u × ni = 0 and curlu = 0 for all

fi ∈ Fh(K) if the DOFs (7.2.5) – (7.2.7) vanish on u ∈ V r−1,k+1
h (K). By integration by

parts,
ˆ
fi

curlu · nidA =

ˆ
∂fi

u · τ∂fids = 0,

which together with vanishing DOFs involving curlu leads to curlu = 0 on ∂K. Pro-

ceeding as in the proof of Lemma 7.2.3, we can show that u× ni = 0 on each fi.

We now present properties of the complex (7.0.1) with the global finite element

spaces. The first property we will show is the surjectivity of div : Σk,+
h → W k−1

h . To this

end, we need the following property for the local complex.

Lemma 7.3.2. For any q ∈ W k−1
h (K)∩L2

0(K), there exists v ∈ Σk,+
h (K)∩H1

0 (K)⊗V

such that div v = q and ∥v∥1,K ≤ C∥q∥K.

Proof. For a fixed q ∈ W k−1
h (K) ∩ L2

0(K), there exists w ∈ H1
0 (K) ⊗ V such that (see

e.g., [30, Corollary 2.4])

divw = q in Ω.

Let v ∈ Σk,+
h (K) be the unique function that satisfies

ˆ
K

v · grad pdV =

ˆ
K

w · grad pdV, ∀p ∈ Pk−1(K),
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with the remaining DOFs in (7.2.9) – (7.2.12) vanishing on v. Then v ∈ Σk,+
h (K) ∩

H1
0 (K)⊗ V. Moreover, integrating by parts, we have

(div v, p) = (v, grad p) = (w, grad p) = (divw, p) = (q, p), ∀p ∈ Pk−1(K)/R,

(div v, 1) = ⟨v · n, 1⟩ = 0 = (q, 1).

This implies div v − q = 0 since div v − q ∈ Pk−1(K).

We now prove ∥v∥1,K ≤ C∥q∥K by a scaling argument. Denote

nk−1 = dimPk−1(K),

we can express v as

v =

nk−1∑
i=2

(w, grad pi)Ni,

where {pi}nk−1

i=2 is a set of basis functions of Pk−1(K)/R andNi is the dual basis of pi with

respect to the DOFs (w, grad pi), i.e., (Ni, grad qj) = δij. Setting v̂ = det(BK)B
−1
K v◦FK

and p̂ = p ◦ FK with BK and FK defined in (1.5.1), we obtain

∥v∥21,K ≤ Ch−3
K ∥v̂∥2

1,K̂
≤ Ch−3

K sup
2≤i≤nk−1

|(ŵ, gradx̂ p̂i)|2

= Ch−3
K sup

2≤i≤nk−1

|(divx̂ ŵ, p̂i)|2 ≤ Ch−3
K ∥ divx̂ ŵ∥2

K̂
≤ C∥divw∥2K = C∥q∥2K .

Lemma 7.3.3. For any q ∈ W k−1
h , there exists v ∈ Σk,+

h such that div v = q and

∥v∥1 ≤ C∥q∥.

Proof. Given q ∈ W k−1
h ⊂ L2(Ω), according to [12, Theorem 2], there existsw ∈ H1(Ω)⊗

V satisfying divw = q and ∥w∥1 ≤ C∥q∥. Let Ihw ∈ Σk
h ⊗ V ⊂ Σk,+

h denote the Scott-

Zhang interpolation of w (see [59, (2.13)] for its definition). We also let v1 ∈ Σk,+
h be

the unique function that satisfies
ˆ
fi

v1 · nidA =

ˆ
fi

(w − Ihw) · nidA, ∀fi ∈ Fh,
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with other DOFs in (7.2.9) – (7.2.12) vanishing on v1. Then we have, for any K ∈ Th,

(div v1 + div Ihw, 1)K = ⟨v1 · n+ Ihw · n, 1⟩∂K = ⟨w · n, 1⟩∂K = (divw, 1)K = (q, 1)K ,

which means (q−div v1−div Ihw)|K ∈ W k−1
h (K)∩L2

0(K). By Lemma 7.3.2, there exists

v2,K ∈ Σk,+
h (K) ∩H1

0 (K)⊗ V such that

div v2,K = (q − div v1 − div Ihw)|K , ∀K ∈ Th

and

∥v2,K∥1,K ≤ C(∥v1∥1,K + ∥Ihw∥1,K + ∥q∥K).

Define v2 ∈ H1
0 (Ω)⊗ V ∩Σk,+

h by v2|K = v2,K . Setting v = v1 + v2 + Ihw, we have

div v = div(v1 + v2 + Ihw) = q and ∥v∥1 ≤ C(∥v1∥1 + ∥Ihw∥1 + ∥q∥).

We apply the same scaling argument as used in Lemma 7.3.2 and the approximation

property of the Scott-Zhang interpolation Ihw [59, (4.1)] to obtain

∥v1∥21,K ≤Ch−3
K ∥v̂1∥21,K̂ ≤ Ch−3

K

∣∣⟨(w − Ihw) · ni, 1⟩∂K
∣∣2 ≤ Ch−1

K ∥w − Ihw∥2∂K

≤ C
(
h−2
K ∥w − Ihw∥2K + ∥w − Ihw∥21,K

)
≤ C∥w∥21,ω(K)

with ω(K) = Int
{
Ki|Ki ∩K ̸= ∅, Ki ∈ Th

}
. Summing over K ∈ Th, we obtain

∥v1∥1 ≤ C∥w∥1,

which together with ∥Ihw∥1 ≤ C∥w∥1 [59, (4.5)] and ∥w∥1 ≤ C∥q∥ leads to

∥v∥1 ≤ C∥q∥.

Corollary 7.3.4. The inf-sup condition for the Stokes problem holds, i.e., there exists

a positive constant α > 0 not depending on h, such that

sup
0̸=v∈Σk,+

h

(div v, q)

∥v∥1
≥ α∥q∥, ∀q ∈ W k−1

h .



125

Corollary 7.3.4 implies that Σk,+
h −W k−1

h leads to convergent algorithms for solving

the Stokes problem with a precise divergence-free condition.

Theorem 7.3.5. The complex (7.0.1) is exact on contractible domains.

Proof. The exactness at Σr
h and V r−1,k+1

h follows from the exactness of the standard

finite element differential forms (e.g., [49]). The exactness at W k−1
h , i.e., the surjectivity

of div : Σk,+
h → W k−1

h is verified in Lemma 7.3.3.

Finally, the the exactness at Σk,+
h follows from a dimension count. Let V , E , F , and

K denote the number of vertices, edges, faces, and 3D cells, respectively. Then we have

dimΣr
h = V + (r − 1)E +

1

2
(r − 2)(r − 1)F +

1

6
(r − 3)(r − 2)(r − 1)K,

dimW k−1
h =

k(k + 1)(k + 2)

6
K.

From the DOFs (7.2.5) – (7.2.8),

dimV r−1,k+1
h − dimΣ+,k

h = rE +
1

2
(r − 2)(r − 1)F

− F +
1

6

[
(r − 3)(r − 2)(r − 1)− k(k + 1)(k + 2) + 6

]
K.

From the above dimension count, we have

−1 + dimΣr
h − dimV r−1,k+1

h + dimΣk,+
h − dimW k−1

h = 0,

where we have used Euler’s formula V − E + F −K = 1. This completes the proof.

To ease the notation, we drop Ω in Σ(Ω) and V (Ω), and denote Σ = Σ ⊗ V. We

define four global interpolations πh : Σ → Σr
h, π̃h : Σ → Σk,+

h , Πh : V → V r−1,k+1
h , and

rh : L2(Ω) → W k−1
h in the following way:

(πhu)|K = πKu, (π̃hu)|K = π̃Ku, (Πhu)|K = ΠKu, and (rhu)|K = rKu.

The interpolations πK , π̃K , ΠK , rK are defined in Section 7.2.
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We summarize the interpolations in the following diagram:

R H1(Ω) H(grad curl; Ω) H1(Ω)⊗ V L2(Ω) 0

R Σ V Σ L2(Ω) 0

R Σr
h V r−1,k+1

h Σ+,k
h W k−1

h 0.

⊂ grad curl div

⊂

πh

grad curl

Πh π̃h

div

rh

⊂ grad curl div

(7.3.1)

By a similar argument as Lemma 5.3.3, the interpolations in (7.3.1) commute with

the differential operators.

Lemma 7.3.6. The last two rows of the complex (7.3.1) are a commuting diagram, i.e.,

gradπhu = Πh gradu for all u ∈ Σ, (7.3.2)

curl Πhu = π̃h curlu for all u ∈ V, (7.3.3)

div π̃hu = rh divu for all u ∈ Σ. (7.3.4)

We adopt the Piola mapping (5.1.7) to transform the finite element function u on a

general element K to a function û on the reference element K̂.

Lemma 7.3.7 ([49, 2]). Suppose that v and v̂ are related by the transformation (5.1.7).

Then for any s ≥ 0, we have

|v̂|s,K̂ ≤ Ch
s−1/2
K ∥v∥s,K ,∣∣curlx̂v̂∣∣s,K̂ ≤ Ch

s+1/2
K ∥curlv∥s,K .

The following lemma relates the interpolation on K to that on K̂.

Lemma 7.3.8. For u ∈ V , we have Π̂Ku = ΠK̂û with the transformation (5.1.7).

Proof. As in the proof of Lemma 5.3.4, we show the DOFs in (7.2.5) – (7.2.8) are linear

combinations of those for defining ΠK̂û.
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By the transformations (5.1.7), (6.1.7), (1.5.2), and (1.5.3), we have that all the DOFs

in (7.2.5) – (7.2.8) are linear combinations of those for û on K̂. For instance,
ˆ
fi

curlu · τ 1
i dA =

|fi|
det(BK)|f̂i|

ˆ
f̂i

curlx̂ û ·BT
Kτ

1
i dÂ

=
|fi|

det(BK)|f̂i|

ˆ
f̂i

curlx̂ û ·
(
(BT

Kτ
1
i · τ̂ 1

i )τ̂
1
i + (BT

Kτ
1
i · τ̂ 2

i )τ̂
2
i + (BT

Kτ
1
i · n̂i)n̂i

)
dÂ

=
|fi|

det(BK)|f̂i|

ˆ
f̂i

curlx̂ û ·
(
(BT

Kτ
1
i · τ̂ 1

i )τ̂
1
i + (BT

Kτ
1
i · τ̂ 2

i )τ̂
2
i

)
dÂ

+
|fi|(BT

Kτ
1
i · n̂i)

|f̂i| det(BK)

ˆ
∂f̂i

û · τ̂∂fidŝ,

where |fi| = area(fi).

Next, we establish the approximation property of the interpolation operators.

Theorem 7.3.9. Assume that u ∈ Hs+(r−k−1)(Ω) ⊗ V and curlu ∈ Hs(Ω) ⊗ V, s ≥

3/2+ δ with δ > 0. Then we have the following error estimates for the interpolation Πh,

∥u− Πhu∥ ≤ Chmin{s+(r−k−1),r}(∥u∥s+(r−k−1) + ∥curlu∥s), (7.3.5)

∥curl(u− Πhu)∥ ≤ Chmin{s,k+1} ∥curlu∥s , (7.3.6)

|curl(u− Πhu)|1 ≤ Chmin{s−1,k} ∥curlu∥s . (7.3.7)

Proof. With the identity Π̂Ku = ΠK̂û and the inclusion Pr−1(K̂) ⊆ V̂ r−1,k+1
h (K̂)

(Lemma 7.3.8 and Lemma 7.1.5), the estimate (7.3.5) can be obtained by following

the proof of Theorem 5.3.6. To prove (7.3.6) and (7.3.7), we apply Lemma 7.3.6 and the

approximation property of the Lagrange interpolation.

7.3.2 Complexes with Homogeneous Boundary Conditions

We define the following finite element spaces with vanishing boundary conditions

Σ̊r
h = {vh ∈ Σr

h : vh = 0 on ∂Ω},

Σ̊k,+
h = {vh ∈ Σk,+

h : vh = 0 on ∂Ω},

W̊ k−1
h = {vh ∈ W k−1

h :

ˆ
Ω

vhdV = 0},
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V̊ r−1,k+1
h = {vh ∈V r−1,k+1

h : n× vh = 0 and curlvh = 0 on ∂Ω}.

We can impose the above vanishing boundary conditions by setting all the boundary

DOFs for the spaces Σ̊r
h, Σ̊k,+

h , and V̊ r−1,k+1
h to be 0. These finite element spaces form a

complex:

0 Σ̊r
h V̊ r−1,k+1

h Σ̊k,+
h W̊ k−1

h 0,
⊂ grad curl div (7.3.8)

We can show the exactness of (7.3.8).

Lemma 7.3.10. The discrete complex (7.3.8) is exact.

Proof. The exactness at Σ̊r
h and W̊ k−1

h is similar to Theorem 7.3.5. We only verify the

dimension condition to show the exactness of (7.3.8).

Let V∂, E∂, F∂ be the number of vertices, edges, and faces on the boundary, respec-

tively. We have the following dimension count:

dim Σ̊r
h = dimΣr

h − V∂ − (r − 1)E∂ −
(r − 2)(r − 1)

2
F∂,

dim Σ̊k,+
h = dimΣk,+

h − 3V∂ − 3(k − 1)E∂ −
3(k − 2)(k − 1)

2
F∂,

dim V̊ r−1,k+1
h = dimV r−1,k+1

h − 3V∂ − (r + 3k − 3)E∂

− (r − 2)(r − 1) + 3(k − 2)(k − 1)− 2

2
F∂,

dim W̊ k−1
h = dimW k−1

h − 1.

Therefore, we have

dim Σ̊r
h − dim V̊ r−1,k+1

h + dim Σ̊k,+
h − dim W̊ k−1

h

= dimΣr
h− dimV r−1,k+1

h + dimΣk,+
h − dimW k−1

h − V∂ + E∂ −F∂ + 1 = 0,

where we have used the relation −V∂+E∂−F∂ = −2. This shows the dimension condition

of exactness.
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7.4 Applications to − curl∆ curl Problems

In this section, we use the three grad curl-conforming finite element families to solve

a problem with the curl∆ curl operator: for f ∈ H(div0; Ω), find u, such that

− curl∆ curlu+ u = f in Ω,

divu = 0 in Ω,

u× n = 0 on ∂Ω,

curlu = 0 on ∂Ω.

(7.4.1)

Here H(div0; Ω) is defined in Section 5.4. Taking divergence on both sides of the first

equation of (7.4.1), we see that divu = 0 automatically holds with f ∈ H(div0; Ω).

The variational formulation reads: find u ∈ H0(grad curl; Ω), such that

a(u,v) = (f ,v) ∀v ∈ H0(grad curl; Ω), (7.4.2)

with a(u,v) := (grad curlu, grad curlv)+(u,v). The weak form (7.4.2) can be regarded

as a higher-order model problem in either MHD, e.g., [19, (1)] or continuum mechanics

with size effects, e.g., [48, (3.27)], [54, (35)].

Remark 7.4.1. The problem (7.4.2) is closely related to the Hodge Laplacian (3.1.11).

Remark 7.4.2. With the given boundary conditions and the identity for vector Laplacian

−∆u = − grad divu + curl curlu, the above weak form is equivalent to the quad-curl

problem, i.e., (grad curlu, grad curlv) = (curl curlu, curl curlv).

Theorem 7.4.1. We assume that Ω is a simply-connected Lipschitz polyhedral domain

with a connected boundary. There exists a constant α > 1/2 such that the solution u of

(7.4.1) satisfies

u ∈ Hα(Ω)⊗ V, curlu ∈ H1+α(Ω)⊗ V,
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and it holds

∥u∥α + ∥ curlu∥1+α ≤ C∥f∥.

Proof. The result will follow from the proof of Theorem 4.2.1 if ∆curlu belongs to

L2(Ω) ⊗ V and ∥∆curlu∥ ≤ C∥f∥. It suffices to show that curl3 u ∈ L2(Ω) ⊗ V and

∥ curl3 u∥ ≤ C∥f∥ since −∆curlu = − grad div curlu + curl3 u = curl3 u. If we can

prove

g(v) := (curl curlu, curlv) ≤ C0∥v∥, for all v ∈ H0(curl; Ω), (7.4.3)

then, by Hahn Banach theorem, there is a unique extension of the map g(v) for v ∈

H0(curl; Ω) to a bounded linear functional from all of L2(Ω)⊗V to R with the bound C0.

Moreover, by Riesz representation theorem, there exists a unique function ϕ ∈ L2(Ω)⊗V

such that

g(v) = (curl curlu, curlv) = (ϕ,v), for v ∈ H0(curl; Ω).

From the definition of the adjoint of curl operator, we have curl3 u = ϕ ∈ L2(Ω) ⊗ V

and ∥ϕ∥ = ∥g∥L(L2(Ω)⊗V,R) ≤ C0.

To prove (7.4.3), we first seek q ∈ H1
0 (Ω) such that

−∆q = div v ∈ H−1(Ω).

Then it holds ∥ grad q∥ ≤ ∥v∥. Applying [30, Theorem 3.6] to v − grad q, there exists a

divergence-free vector potential w ∈ H0(curl; Ω) satisfying

v − grad q = curlw and ⟨w · n, 1⟩∂Ω = 0. (7.4.4)

Since v−grad q ∈ H0(curl; Ω), then w ∈ H0(curl curl; Ω). From (7.4.4) and the Poincaré

inequality [6, Theorem 4.6], we have

(curl curlu, curlv) = (curl curlu, curl curlw)

=(f − u,w) ≤ ∥f − u∥∥w∥ ≤ C∥f − u∥∥ curlw∥
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≤ C∥f − u∥ (∥v∥+ ∥ grad q∥) ≤ C∥f − u∥∥v∥ ≤ C∥f∥∥v∥,

which leads to (7.4.3) with C0 = C∥f∥.

To estimate the error in the sense of H(curl)-norm, we introduce the following aux-

iliary problem. Find w such that

− curl∆ curlw +w = curl curl(u− uh) in Ω,

divw = 0 in Ω,

w × n = 0 on ∂Ω,

curlw = 0 on ∂Ω.

(7.4.5)

Due to the special form of the right-hand side in the auxiliary problem, we can have a

better regularity estimate by a suitable modification to the proof of Theorem 7.4.1. This

result will play an important role in the dual argument in the approximation analysis

below.

Theorem 7.4.2. We assume that Ω is a simply-connected Lipschitz polyhedral domain

with a connected boundary. The solution w of (7.4.5) satisfies

∥w∥α + ∥ curlw∥1+α ≤ C∥ curl(u− uh)∥.

Remark 7.4.3. Furthermore, if Ω is convex, then the constant α in Theorem 7.4.1 and

Theorem 7.4.2 can be 1.

The H(grad curl)-conforming finite element method for (7.4.2) reads: seek uh ∈

V̊ r−1,k+1
h , such that

a(uh,vh) = (f ,vh) ∀vh ∈ V̊ r−1,k+1
h . (7.4.6)

It follows immediately from Céa’s lemma and the duality argument that the following

approximation property of uh holds.
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Theorem 7.4.3. For r = k, r = k + 1, or r = k + 2, if u ∈ Hs+(r−k−1)(Ω) ⊗ V and

curlu ∈ Hs(Ω) ⊗ V, s ≥ 3/2 + δ with δ > 0, we have the following error estimates for

the numerical solution uh:

∥u− uh∥H(grad curl;Ω) ≤ Chr2−1
(
∥u∥s+(r−k−1) + ∥curlu∥s

)
, (7.4.7)

∥curl(u− uh)∥ ≤ Chmin{r2,2α}
(
∥u∥s+(r−k−1) + ∥curlu∥s

)
, (7.4.8)

∥u− uh∥ ≤ Chmin{r2,2α} (∥u∥s + ∥curlu∥s) when r = k + 1, k + 2, (7.4.9)

where r2 = min{k + 1, s}.

7.5 Numerical Experiments

We now carry out several numerical tests to validate our new elements. We consider

the problem (7.4.1) on a unit cube Ω = (0, 1)× (0, 1)× (0, 1) with an exact solution

u =



sin(πx1)
3 sin(πx2)

2 sin(πx3)
2 cos(πx2) cos(πx3)

sin(πx2)
3 sin(πx3)

2 sin(πx1)
2 cos(πx3) cos(πx1)

−2 sin(πx3)
3 sin(πx1)

2 sin(πx2)
2 cos(πx1) cos(πx2)


.

Then, by a simple calculation, we can obtain the source term f .

For the mesh, we partition the unit cube into N3 small cubes and then partition each

small cube into 6 congruent tetrahedra.

We first use the lowest-order (k = 1) elements in the families r = k and r = k + 1

to solve the problem (7.4.1) on the uniform tetrahedral mesh. Tables 8.5.1 and 8.5.2

illustrate errors and convergence rates for the two families. We observe that the numerical

solution converges to the exact one at rate h for the case r = k = 1, and at rate h2 for

r = k + 1 = 2 in the sense of the L2-norm. In addition, the two families have the same

convergence rate h2 in the H(curl)-norm and h in the H(grad curl)-norm, respectively.

All results agree with Theorem 8.4.2.
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We now test the third-order element (k = 3) in the family r = k. Tables 7.5.3

demonstrates numerical data, again they are consistent with Theorem 8.4.2.

Table 7.5.1: Numerical results of the tetrahedral element with r = k and k = 1

N ∥eh∥ rates ∥curl eh∥ rates ∥grad curl eh∥ rates

45 8.642113e-03 7.620755e-02 2.862735e+00

50 7.401715e-03 1.4705 6.317760e-02 1.7797 2.601358e+00 0.9087

55 6.443660e-03 1.4544 5.314638e-02 1.8141 2.382186e+00 0.9235

60 5.687783e-03 1.4340 4.527838e-02 1.8414 2.196043e+00 0.9351

Table 7.5.2: Numerical results of the tetrahedral element with r = k + 1 and k = 1

N ∥eh∥ rates ∥curl eh∥ rates ∥grad curl eh∥ rates

30 1.334051e-02 1.453615e-01 4.055510e+00

35 1.033747e-02 1.6544 1.135563e-01 1.6018 3.567777e+00 0.8312

40 8.212073e-03 1.7237 9.077071e-02 1.6772 3.178759e+00 0.8646

45 6.662599e-03 1.7753 7.399883e-02 1.7344 2.862553e+00 0.8896

Table 7.5.3: Numerical results of the tetrahedral element with r = k and k = 3

N ∥eh∥ rates ∥curl eh∥ rates ∥grad curl eh∥ rates

10 3.047288e-04 2.974941e-03 2.909078e-01

12 1.719285e-04 3.1392 1.403569e-03 4.1202 1.779005e-01 2.6973

14 1.070064e-04 3.0761 7.353798e-04 4.1932 1.162168e-01 2.7620

16 7.125639e-05 3.0450 4.174453e-04 4.2405 7.986321e-02 2.8094
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CHAPTER 8 3D GRADDIV-CONFORMING ELEMENTS

By a rotation, the 2D grad rot-conforming elements in Chapter 5 are grad div-conforming.

To construct 3D grad div-conforming elements, in this chapter, we consider the following

de Rham complex:

0 R H1(Ω) H(curl; Ω) H(grad div; Ω) H1(Ω) 0.
⊂ grad curl div (8.0.1)

We will construct finite element subcomplexes of (8.0.1):

0 R Σr
h V r

h W r−1,k+1
h Σk,+

h 0.
⊂ grad curl div (8.0.2)

As before, we take r = k, k + 1, or k + 2.

Through out the chapter, we denote Q−
k Λ

1(K) = Qk,k−1,k−1(K) × Qk−1,k,k−1(K) ×

Qk−1,k−1,k(K) and Q−
k Λ

2(K) = Qk−1,k,k(K̂)×Qk,k−1,k(K̂)×Qk,k−1,k−1(K̂).

8.1 Local Shape Function Spaces and Polynomial Complexes

In this section, we define the following local complex of the shape functions for each

space in (8.0.2):

0 R Σr
h(K) V r

h (K) W r−1,k+1(K) Σk,+
h (K) 0.

⊂ grad curl div (8.1.1)

We first consider the local complex on K̂:

0 R Σ̂r
h(K̂) V̂ r

h (K̂) Ŵ r−1,k+1(K̂) Σ̂k,+
h (K̂) 0.

⊂ gradx̂ curlx̂ divx̂ (8.1.2)

We let Σ̂r
h(K̂) be Pr(K̂) for a tetrahedral element or Qr(K̂) for a cubical element, and

let V̂ r
h (K) be Rr(K̂) for a tetrahedral element or Q−

r Λ
1(K̂) for a cubical element. Note

that Rk is defined in For a tetrahedral element K̂, we set

Σ̂k,+
h (K̂) =


Σ̂k

h(K̂), k ≥ 4,

Σ̂k
h(K̂)⊕ span{B̂t}, k = 1, 2, 3,
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where B̂t = x̂1x̂2x̂3(1− x̂1 − x̂2 − x̂3). For a cubical element K̂, we set

Σ̂k,+
h (K̂) =


Σ̂k

h(K̂), k ≥ 2,

Σ̂k
h(K̂)⊕ span{B̂c}, k = 1,

where B̂c = (1− x̂1)(1 + x̂1)(1− x̂2)(1 + x̂2)(1− x̂3)(1 + x̂3). We define

Ŵ r−1,k+1
h (K̂) = curlx̂ V̂

r
h (K̂)⊕ p3x̂Σ̂

k,+
h (K̂) (8.1.3)

with p3x̂ defined by (2.1.22). As a special case of the Poincaré operators, p3x̂ satisfies the

following the null-homotopy identity:

divx̂ p
3
x̂û = û, ∀û ∈ C∞Λ3(K̂). (8.1.4)

By the null-homotopy identity (8.1.4), the right hand side of (8.1.3) is a direct sum.

By the definitions of the shape function spaces on K̂, it is easy to show that the

sequence (8.1.2) is a complex. By the definitions and properties of the Poincaré operators,

we can verify that the sequence

0 Σ̂r
h(K̂) V̂ r

h (K̂) Ŵ r−1,k+1
h (K̂) Σ̂k,+

h (K̂) 0
p1x̂ p2x̂ p3x̂ (8.1.5)

is also a complex with the Poincaré operators in (2.1.20) – (2.1.22). By Lemma 2.1.3,

we obtain the exactness.

Lemma 8.1.1. The complex (8.1.2) is exact.

In the following lemma, we show that Ŵ r−1,k+1
h (K̂) contains some polynomial spaces.

It plays an essential role in analyzing the approximation properties of the finite element

space W r−1,k+1
h .

Lemma 8.1.2. The inclusion Pr−1(K̂) ⊆ Ŵ r−1,k+1
h (K̂) holds.

Proof. From the null-homotopy property (6.1.5),

Pr−1(K̂) = curlx̂ p
2
x̂Pr−1(K̂) + p3x̂ divx̂Pr−1(K̂).
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By definition, Ŵ r−1,k+1
h (K̂) = curlx̂ V̂

r
h (K̂)+p3x̂Σ̂

k,+
h (K̂). It is easy to check divx̂Pr−1(K̂) ⊆

Pr−2(K̂) ⊆ Σ̂k,+
h (K̂). If we can prove p2x̂Pr−1(K̂) ⊆ V̂ r

h (K̂), then the desired inclusion

holds.

To prove p2x̂Pr−1(K̂) ⊆ V̂ r
h (K̂), we claim that

V̂ r
h (K̂) = gradx̂ Σ̂

r
h(K̂)⊕ p2x̂Wr−1

h (K̂), (8.1.6)

where Wr−1
h (K̂) = Q−

r Λ
2(K̂) when K̂ is a cube, and Wr−1

h (K̂) = Pr−1(K̂) when K̂

is a tetrahedron. It is easy to check gradx̂ Σ̂
r
h(K̂) ⊕ p2x̂W

r−1
h (K̂) ⊆ V̂ r

h (K̂). For û ∈

V̂ r
h (K̂), from the null-homotopy identity (6.1.4), we have û ∈ gradx̂ Σ̂

r
h(K̂)+p2x̂W

r−1
h (K̂).

Therefore, V̂ r
h (K̂) ⊆ gradx̂ Σ̂

r
h(K̂)⊕p2x̂W

r−1
h (K̂). Moreover, the right hand side of (8.1.6)

is a direct sum since if û ∈ gradx̂ Σ̂
r
h(K̂) ∩ p2x̂W

r−1
h (K̂), then û = 0 from the null-

homotopy identity (6.1.4). From the claim (8.1.6), we have p2x̂Pr−1(K̂) ⊆ p2x̂W
r−1
h (K̂) ⊆

V̂ r
h (K̂).

We adopt the following transformation to relate the function û ∈ Ŵ r−1,k+1
h (K̂) to a

function u ∈ W r−1,k+1
h (K):

u ◦ FK =
BK

det(BK)
û, (8.1.7)

where the affine mapping FK is defined in (1.5.1). By a simple computation, we have

divu ◦ FK =
1

det(BK)
divx̂ û, (8.1.8)

Therefore, we define

Σr
h(K) =

{
u : u ◦ FK ∈ Σ̂r

h(K̂)
}
,

V r
h (K) =

{
u : BT

Ku ◦ FK ∈ V̂ r
h (K̂)

}
,

W r−1,k+1
h (K) =

{
u : B−1

K u ◦ FK ∈ Ŵ r−1,k+1
h (K̂)

}
,

Σk,+
h (K) =

{
u : u ◦ FK ∈ Σ̂k,+

h (K̂)
}
.
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By the definition of the spaces and Lemma 8.1.1, we can show (8.1.1) is also an exact

complex.

8.2 Degrees of Freedom

In this section, we define DOFs for each space in (8.1.1). Assigning r = k, k +

1, and k + 2 in (8.1.1) leads to three versions of grad div-conforming element spaces

W k−1,k+1
h (K), W k,k+1

h (K), and W k+1,k+1
h (K). Figure 8.2.1 demonstrates the complex

(8.1.1) for the case k = 1 when K is a tetrahedral element. Figure 8.2.2 demonstrates

the three versions of grad div-conforming elements on a cubical element.

The DOFs for the Lagrange element Σr
h(K) is shown as follows:

• Vertex DOFs Mv(u) at all the vertices vi ∈ Vh(K):

Mv(u) = {u (vi)} .

• Edge DOFs Me(u) on all the edges ei ∈ Eh(K):

Me(u) =

{ˆ
ei

uvds for all v ∈ Pr−2(ei)

}
.

• Face DOFs Mf (u) on all the faces fi ∈ Fh(K):

Mf (u) =

{ˆ
fi

uvdA for all v ∈ Pr−3(fi)

}
, when K is a tetrahedral element;

Mf (u) =

{ˆ
fi

uvdA for all v ∈ Qr−2(fi)

}
, when K is a cubical element.

• Interior DOFs MK(u) in the element K ∈ Th:

MK(u) =

{ˆ
K

uvdV for all v ∈ Pr−4(K)

}
, when K is a tetrahedral element;

MK(u) =

{ˆ
K

uvdV for all v ∈ Qr−2(K)

}
, when K is a cubical element.

For u ∈ H3/2+δ(K) with δ > 0, we can define an H1 interpolation operator πK :
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H3/2+δ(K) → Σr
h(K) by the above DOFs s.t.

Mv(u− πKu) = {0}, Me(u− πKu) = {0},

Mf (u− πKu) = {0}, and MK(u− πKu) = {0}.

The DOFs for Σk,+
h (K) can be given similarly, with only one additional interior

integration DOF on K to deal with the interior bubble function. We denote π̃K as the

H1 interpolation operator to Σk,+
h (K) by these DOFs.

We choose the space V r
h (K) as the first family of Nédélec elements, which has the

following DOFs:

• Edge DOFs Me(u) on all the edges ei ∈ Eh(K)(with a unit tangential vector τi):

Me(u) =

{ˆ
ei

u · τivds for all v ∈ Pr−1(ei)

}
.

• Face DOFs Mf (u) on all the faces fi ∈ Fh(K) (with a unit normal vector ni):

Mf (u) =

{ˆ
fi

u · vdA for all v ∈ Pr−2(fi) such that v · ni = 0

}
,

when K is a tetrahedral element;

Mf (u) =

{ˆ
fi

u× ni · vdA for all v ∈ Qr−2,r−1(fi)×Qr−1,r−2(fi)

}
,

when K is a cubical element.

• Interior DOFs MK(u) in the element K ∈ Th:

MK(u) =

{ˆ
K

u · vdV for all v ∈ Pr−3(K)

}
when K is a tetrahedral element,

MK(u) =

{ˆ
K

u · vdV for all v ∈ Q−
r−1Λ

2(K)

}
when K is a cubical element.

Assuming that u ∈ H1/2+δ(Ω) ⊗ V and curlu ∈ L2+δ(Ω) ⊗ V with δ > 0 [49, Lemma

5.38]. By the above DOFs, we define an H(curl) interpolation operator ΠK which maps

u to V r
h (K) and satisfies

Me(u− ΠKu) = {0},Mf (u− ΠKu) = {0}, and MK(u− ΠKu) = {0}.
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We now equip the space W r−1,k+1
h (K) with the following DOFs:

• Vertex DOFs Mv(u) at all vertices vi ∈ Vh(K):

Mv(u) = {divu(vi)} . (8.2.1)

• Edge DOFs Me(u) on all edges ei ∈ Eh(K):

Me(u) =

{ˆ
ei

divuqds for all q ∈ Pk−2(ei)

}
. (8.2.2)

• Face DOFs Mf (u) on all faces fi ∈ Fh(K) (with the unit normal vector ni):

Mf (u) =

{ˆ
fi

divuqdA, ∀q ∈ Pk−3(fi)

}
∪
{ˆ

fi

u · niqdA for all q ∈ Pr−1(fi)

}
, (8.2.3)

when K is a tetrahedral element;

Mf (u) =

{ˆ
fi

divuqdA for all q ∈ Qk−2,k−2(fi)

}
∪
{ˆ

fi

u · niqdA for all q ∈ Qr−1,r−1(fi)

}
, (8.2.4)

when K is a cubical element.

• Interior DOFs MK(u) for the element K ∈ Th:

MK(u) =

{ˆ
K

u · qdV for all q = B−T
K q̂, q̂ ∈ Pr−3(K̂)× x̂

}
∪
{ˆ

K

divuqdV for all q ∈ Pk−4(K)/R
}
, (8.2.5)

when K is a tetrahedral element;

MK(u) =

{ˆ
K

u · qdV for all q = B−T
K q̂, q̂ ∈ Q−

r−1Λ
2(K̂)× x̂

}
∪
{ˆ

K

divuqdV for all q ∈ Qk−2(K)/R
}
, (8.2.6)

when K is a tetrahedral element.
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Figure 8.2.1: The lowest-order (k = 1) finite element complex (8.1.1) on tetrahedra with
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Lemma 8.2.1. The DOFs for W r−1,k+1
h (K) are unisolvent.

Proof. Since the complex (8.1.1) is exact, dimW r−1,k+1
h (K) = dimV r

h − dimΣr
h + 1 +

dimΣk,+
h (K). By counting the number of DOFs, we find the DOF set has the same

dimension. Then it suffices to show that if all the DOFs vanish on a function u ∈

W r−1,k+1
h (K), then u = 0. To see this, we first show that divu = 0. By integration by

parts,

(divu, 1) = ⟨u · n∂K , 1⟩ = 0.

Since divW r−1,k+1
h (K) ⊆ Σk,+

h (K), the unisolvence of the DOFs of Σk,+
h (K) leads to

divu = 0.

There exists a ϕ ∈ V r
h (K) such that u = curlϕ, and hence u|fi · ni ∈ Pr−1(fi) or

Qr−1,r−1(fi). By the face DOFs (8.2.3) or (8.2.4), u · ni = 0 on the face fi. Recalling

that u and û are related by (8.1.7) , û = (x̂1ϕ̂1, x̂2ϕ̂2, x̂3ϕ̂3)
T when K is a tetrahedron,

and û =
(
(1− x̂1)(1+ x̂1)ϕ̂1, (1− x̂2)(1+ x̂2)ϕ̂2, (1− x̂3)(1+ x̂3)ϕ̂3

)T when K is a cube.

Here φ̂ = (ϕ̂1, ϕ̂2, ϕ̂3)
T ∈ Pr−2(K̂) or Q−

r−1Λ
1(K̂). By integration by parts, we have, for

any q ∈ Pr−1(K) or Qr−1(K)

(u, grad q)K = (curlϕ, grad q)K = ⟨curlϕ · n∂K , q⟩∂K = ⟨u · n∂K , q⟩∂K = 0,

which, together with the interior DOFs, leads to

(u, q)K = 0 for any q ◦ FK = B−T
K q̂, q̂ ∈ Q−

r−1Λ
1(K̂) or Pr−2(K̂). (8.2.7)

Choosing φ = B−T
K φ̂, we have

0 = (u,φ)K = (û, φ̂)K̂ .

This implies that φ̂ = 0 and hence u = 0.

Provided u ∈ H1/2+δ(K) ⊗ V and divu ∈ H3/2+δ(K) with δ > 0, we can define an
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H(grad div) interpolation rKu ∈ W r−1,k+1
h (K) by

Mv(u− rKu) = {0}, Me(u− rKu) = {0},

Mf (u− rKu) = {0}, and MK(u− rKu) = {0},

where Mv, Me, Mf , and MK are the sets of DOFs in (8.2.1) – (8.2.6).

8.3 Global Finite Element Complexes

Gluing the local spaces by the above DOFs, we obtain the global finite element spaces

Σr
h, V r

h , W r−1,k+1
h , and Σk,+

h in the complex (8.0.2). We now develop some properties of

the complex (8.0.2) containing these spaces.

Lemma 8.3.1. The following conformity holds:

W r−1,k+1
h ⊂ H(grad div; Ω).

Proof. To verify W r−1,k+1
h ⊂ H(grad div; Ω), we must show u · ni = 0 and divu = 0 on

each fi ∈ Fh(K) if the DOFs (8.2.1) – (8.2.4) vanish on u ∈ W r−1,k+1
h (K). It is easy

to see that (divu)|fi ∈ Qk,k(K) or Pk(fi). Restricted on fi, u · ni =
(û·n̂i)◦F−1

K

det(BK)|B−T
K n̂i|

=

(curlx̂ p2x̂û·n̂i+p3x̂ divx̂ û·n̂i)◦F−1
K

det(BK)|B−T
K n̂i|

=
(curlx̂ p2x̂û·n̂i)◦F−1

K

det(BK)|B−T
K n̂i|

∈ Qr−1,r−1(fi) or Pr−1(fi) since x̂ · n̂i = 0

on f̂i. From the vanishing DOFs in (8.2.1) – (8.2.4), we have u · ni = 0 and divu = 0

on fi.

Theorem 8.3.2. The complex (8.0.2) is exact on contractible domains.

Proof. We first show the exactness at V r
h and W r−1,k+1

h . To this end, we show that for

any vh ∈ V r
h ⊂ H(curl; Ω) and uh ∈ W r−1,k+1

h ⊂ H(grad div; Ω) ⊂ H(div; Ω) satisfying

curlvh = 0 and divuh = 0, there exists ph ∈ Σr
h and ϕh ∈ V r

h such that vh = grad ph

and uh = curlϕh. Actually, this follows from the exactness of the standard finite element

differential forms (e.g., [49]). To prove the exactness at Σk,+
h , that is to prove the operator

div from W r−1,k+1
h to Σk,+

h is surjective, we count the dimensions. We take the complex

(8.0.2) on tetrahedral meshes as an example. The dimension count of the Lagrange
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elements reads:

dimΣr
h = V + (r − 1)E +

1

2
(r − 2)(r − 1)F +

1

6
(r − 3)(r − 2)(r − 1)K,

where V , E , F , and K denote the number of vertices, edges, faces, and 3D cells, respec-

tively. The dimension count of the space V r
h reads:

dimV r
h = rE + r(r − 1)F +

1

2
r(r − 1)(r − 2)K.

From the DOFs (8.2.1) – (8.2.6),

dimW r−1,k+1
h − dimΣk,+

h =
1

2
r(r + 1)F +

1

6
r(r + 1)(2r − 5)K.

From the above dimension count, we have

−1 + dimΣr
h − dimV r

h + dimW r−1,k+1
h − dimΣk,+

h = 0,

where we have used Euler’s formula V − E + F −K = 1. This completes the proof.

For δ > 0, denote Σ = H3/2+δ(Ω), V = {u ∈ H1/2+δ(Ω)⊗V : curlu ∈ L2+δ(Ω)⊗V},

and W = {u ∈ H1/2+δ(Ω)⊗V : divu ∈ H3/2+δ(Ω)}. We define four global interpolations

πh : Σ → Σr
h, π̃h : Σ → Σk,+

h , Πh : V → V r
h , and rh : W → W r−1,k+1

h in the following

way:

(πhu)|K = πKu, (π̃hu)|K = π̃Ku, (Πhu)|K = ΠKu, and (rhu)|K = rKu.

The interpolations πK , π̃K , ΠK , rK are defined in Section 8.2.

We summarize these interpolations in the following diagram:

R H1(Ω) H(curl; Ω) H(grad div; Ω) H1(Ω) 0

R Σ V W Σ 0

R Σr
h V r

h W r−1,k+1
h Σk,+

h 0.

⊂ grad curl div

⊂

πh

grad curl

Πh
rh

div

π̃h

⊂ grad curl div

(8.3.1)

Now we show that the interpolations in (8.3.1) commute with the differential oper-
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ators. In addition to Lemma 8.1.2, this result also plays a key role in the error analysis

below for the interpolations.

Lemma 8.3.3. The last two rows of the complex (8.3.1) are a commuting diagram, i.e.,

gradπhu = Πh gradu for all u ∈ Σ, (8.3.2)

curl Πhu = rh curlu for all u ∈ V, (8.3.3)

div rhu = π̃h divu for all u ∈ W. (8.3.4)

Proof. A similar trick as Lemma 5.3.3 can be used to prove this lemma. For simplicity

of presentation, we omit it.

The following lemma relates the interpolation on K to that on K̂.

Lemma 8.3.4. For u ∈ W , under the transformation (8.1.7), we have r̂Ku = rK̂û.

Next, we establish the approximation property of the interpolation operator.

Theorem 8.3.5. Assume that u ∈ Hs+(r−k−1)(Ω)⊗ V and divu ∈ Hs(Ω), s ≥ 3/2 + δ

with δ > 0. Then we have the following error estimates for the interpolation rh,

∥u− rhu∥ ≤ Chmin{s+(r−k−1),r}(∥u∥s+(r−k−1) + ∥divu∥s), (8.3.5)

∥div(u− rhu)∥ ≤ Chmin{s,k+1} ∥divu∥s , (8.3.6)

|div(u− rhu)|1 ≤ Chmin{s−1,k} ∥divu∥s . (8.3.7)

Proof. With the identity r̂Ku = rK̂û and the inclusion Pr−1(K̂) ⊆ Ŵ r−1,k+1
h (K̂)

(Lemma 8.3.4 and Lemma 8.1.2), the estimate (8.3.5) can be obtained by following

the proof of Theorem 5.3.6. To prove (8.3.6) and (8.3.7), we apply Lemma 8.3.3 and the

approximation property of the Lagrange interpolation.

8.4 Applications to grad∆div Problems

In this section, we use the grad div-conforming finite elements to solve the following

grad∆div problem which is closely related to the Hodge Laplacian problem (3.3.6).
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For f ∈ H(curl; Ω) and g ∈ L2(Ω)⊗ V, find u such that

grad∆divu+ u = f in Ω,

curlu = g in Ω,

u · n = 0 on ∂Ω,

divu = 0 on ∂Ω.

(8.4.1)

Here, to make the problem consistent, g = curlf . By taking curl on both sides of the

first equation of (8.4.1), we see that the condition curlu = g holds automatically.

We define H0(grad div; Ω) with vanishing boundary conditions:

H0(grad div; Ω) := {u ∈ H(grad div; Ω) : u · n = 0 and divu = 0 on ∂Ω}.

The variational formulation is to seek u ∈ H0(grad div; Ω) such that

a(u,v) = (f ,v) ∀v ∈ H0(grad div; Ω), (8.4.2)

with a(u,v) :=
(
grad divu, grad div v

)
+ (u,v).

It follows from Lax-Milgram Lemma that (8.4.2) is well-posedness. Taking v = curlψ

with ψ ∈ H0(curl; Ω) in (8.4.2) leads to

(u, curlψ) = (f , curlψ) = (g,ψ),

which implies curlu = g holds in the sense of L2(Ω) ⊗ V. Since the regularity of the

solution plays a crucial role in the error analysis, we will first derive a regularity result

for the grad∆div problem before proceeding further.

Theorem 8.4.1. Assume Ω is Lipschitz polyhedron. There exist a constant α > 1/2 such

that the solution u of (8.4.1) satisfies u ∈ Hα(Ω)⊗V and divu ∈ H1+α(Ω). Moreover,

∥u∥α + ∥ divu∥1+α ≤ C(∥f∥+ ∥g∥).

Proof. Since u ∈ H0(div; Ω) ∩ H(curl; Ω) ↪→ Hα(Ω) ⊗ V [4, Proposition 3.7], we have
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u ∈ Hα(Ω)⊗ V, and

∥u∥α ≤ C(∥u∥+ ∥ divu∥+ ∥ curlu∥)

≤ C(∥u∥+ ∥ grad divu∥+ ∥ curlu∥) ≤ C(∥f∥+ ∥g∥).

Proceeding similarly to the proof of 5.4.1, we can get

∥∆divu∥ ≤ C∥f∥.

From the regularity estimate of the Laplace problem [49], we have divu ∈ H1+α(Ω) and

∥ divu∥1+α ≤ C∥∆divu∥ ≤ C∥f∥.

We now present the finite element scheme. We define the finite element space with

vanishing boundary conditions

W̊ r−1,k+1
h = {vh ∈ W r−1,k+1

h , n · vh = 0 and div vh = 0 on ∂Ω}.

The grad div-conforming finite element method reads: seek uh ∈ W̊ r−1,k+1
h such that

a(uh,vh) = (f ,vh) ∀vh ∈ W̊ r−1,k+1
h . (8.4.3)

By suitable modification to the proof of Theorem 5.4.3, we have the following ap-

proximation property.

Theorem 8.4.2. Suppose u ∈ Hs+(r−k−1)(Ω) ⊗ V and divu ∈ Hs(Ω) with s ≥ 1 + α,

we have the following error estimates for the numerical solution uh:

∥u− uh∥H(grad div;Ω) ≤ Chr2−1
(
∥u∥s+(r−k−1) + ∥divu∥s

)
, (8.4.4)

∥div(u− uh)∥ ≤ Chmin{r2,2α}
(
∥u∥s+(r−k−1) + ∥divu∥s

)
, (8.4.5)

∥u− uh∥ ≤ Chmin{r2,2α} (∥u∥s + ∥divu∥s) when r = k + 1, k + 2, (8.4.6)

where r2 = min{s, k + 1}.
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8.5 Numerical Experiments

We now turn to a concrete example to test our new elements. We consider the problem

(8.4.1) on a unit cube Ω = (0, 1)× (0, 1)× (0, 1) with an exact solution

u = grad
(
x31x

3
2x

3
3(x1 − 1)3(x2 − 1)3(x3 − 1)3

)
. (8.5.1)

The source term f can be derived by a simple calculation. Note that in this case g = 0.

Example 8.5.1. In this example, we test the tetrahedral elements. To this end, we

partition the unit cube into N3 small cubes and then partition each small cubes into

6 congruent tetrahedra. We use the lowest-order elements in three families to solve the

problem (8.4.1) on the uniform tetrahedral mesh.

Tables 8.5.1, 8.5.2, and 8.5.3 illustrate various errors and convergence rates for three

families. We observe from the tables that the numerical solution converges to the exact

solution with a convergence order 1 for the family r = k, 2 for the family r = k + 1,

and 2 for the family r = k + 2 in the sense of L2-norm. In addition, the three families

have the same convergence order 2 in the H(div)-norm and 1 in the H(grad div)-norm,

respectively. All the results coincide with Theorem 8.4.2, which confirms the correctness

of the elements and their properties.

Table 8.5.1: Numerical results of the tetrahedral grad div-conforming element with r = k
and k = 1

N ∥eh∥ rates ∥div eh∥ rates ∥grad div eh∥ rates

16 7.338806e-07 3.773907e-06 1.261805e-04

20 5.585337e-07 1.2236 2.462834e-06 1.9127 1.016297e-04 0.9697

24 4.511530e-07 1.1711 1.728736e-06 1.9412 8.500500e-05 0.9797

28 3.788654e-07 1.1328 1.278389e-06 1.9578 7.302452e-05 0.9855

32 3.268841e-07 1.1052 9.829309e-07 1.9682 6.398944e-05 0.9891

Example 8.5.2. In this example, we test the cubical grad div-conforming elements. We
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Table 8.5.2: Numerical results of the tetrahedral grad div-conforming element with r =
k + 1 and k = 1

N ∥eh∥ rates ∥div eh∥ rates ∥grad div eh∥ rates

8 1.232033e-06 1.150197e-05 3.902786e-04

12 5.905553e-07 1.8136 5.614381e-06 1.7688 1.654137e-04 0.8952

16 3.416300e-07 1.9026 3.269987e-06 1.8790 1.259942e-04 0.9462

20 2.215699e-07 1.9404 2.127621e-06 1.9260 1.015312e-04 0.9674

24 1.549977e-07 1.9599 1.490982e-06 1.9502 8.494707e-05 0.9782

Table 8.5.3: Numerical results of the tetrahedral grad div-conforming element with r =
k + 2 and k = 1

N ∥eh∥ rates ∥div eh∥ rates ∥grad div eh∥ rates

8 1.224295e-06 1.149723e-05 2.377994e-04

10 8.220074e-07 1.7853 7.812974e-06 1.7313 1.954954e-04 0.8779

12 5.864916e-07 1.8516 5.613355e-06 1.8135 1.654135e-04 0.9165

14 4.381462e-07 1.8917 4.211742e-06 1.8636 1.431136e-04 0.9394

16 3.391664e-07 1.9176 3.269652e-06 1.8961 1.259941e-04 0.9541

use uniform cubical meshes with the mesh size h varying from 1/12 to 1/20. Unlike

tetrahedral elements, in this test, we explore superconvergence of the cubical elements.

To this end, we denote {wn}pn=1 and {gn}pn=1 as the weights and nodes of Legendre-Gauss

quadrature rule of order p. We also denote {wl
n}

p
n=1 and {ln}pn=1 as the weights and nodes

of Legendre-Gauss-Lobbato quadrature rule of order p. For u = (u1, u2, u3)
T, we define

three discrete norms.

|||u|||2U =
∑
K∈Th

k+1∑
r,s,t=1

ωl
rω

l
sω

l
t

(
hK1 h

K
2 h

K
3

∣∣u(xK1 + hK1 lr, x
K
2 + hK2 ls, x

K
3 + hK3 lt)

∣∣2),
|||u|||2V =

∑
K∈Th

k+r−1∑
m,n=1

ωmωn

(
hK2 h

K
3

∥∥u1(·, xK2 + hK2 gm, x
K
3 + hK3 gn)

∥∥2
+hK1 h

K
3

∥∥u2(xK1 +hK1 gm, ·, xK3 +hK3 gn)
∥∥2

+hK1 h
K
2

∥∥u3(xK1 +hK1 gm, x
K
2 +hK2 gn, ·)

∥∥2
)
,
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and

|||u|||2W =
∑
K∈Th

k∑
n=1

ωl

(
hK1

∥∥u1(xK1 + hK1 gn, ·, ·)
∥∥2

+ hK2
∥∥u2(·, xK2 + hK2 gn, ·)

∥∥2

+ hK3
∥∥u3(·, ·, xK3 + hK3 gn)

∥∥2
)
,

where K = (xK1 − hK1 , x
K
1 + hK1 )× (xK2 − hK2 , x

K
2 + hK2 )× (xK3 − hK3 , x

K
3 + hK3 ) with the

center (xK1 , x
K
2 , x

K
3 ) and the side length 2hK1 , 2h

K
2 , 2h

K
3 .

Tables 8.5.4, 8.5.5, and 8.5.6 show errors measured in various norms for the lowest-

order cubical elements in the three familes. We also depict error curves with a log-log

scale in Figure 8.5.1. From Figure 8.5.1 (A), we can observe superconvergence phenomena

that ||| grad div eh|||W and |||eh|||V converge to 0 with one order higher than ∥grad div eh∥

and ∥eh∥. In addition, from Figure 8.5.1 (B)(C), we can observe superconvergence of

||| grad div eh|||W .

When k = 1, we can not observe any superconvergence of |||eh|||V for r = 2, 3 and

||| div eh|||U for all the 3 families. To further investigate the superconvergence of div eh,

we test the element with k = 2 and r = k. The results are shown in Table 8.5.7 and

Figure 8.5.1(D). In this case, we can observe superconvergence of div eh.

Using these superconvergent results, together with some recovery techniques, we can

construct a solution with higher accuracy if needed, which is one of the reasons that we

explore the superconvergence of cubical elements.
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Table 8.5.4: Numerical results of the cubical grad div-conforming element with r = k
and k = 1

h ∥eh∥ ∥eh∥V ∥div eh∥ ∥div eh∥U ∥grad div eh∥ ∥grad div eheh∥W
1/8 1.2939e-06 8.2349e-07 6.6566e-06 2.7601e-06 1.5795e-04 6.2427e-05

1/16 5.6099e-07 2.1371e-07 1.7020e-06 6.6734e-07 7.6700e-05 1.5975e-05

1/24 3.6063e-07 9.5663e-08 7.5957e-07 2.9471e-07 5.0814e-05 7.1306e-06

1/32 2.6677e-07 5.3946e-08 4.2787e-07 1.6541e-07 3.8025e-05 4.0170e-06

1/40 2.1201e-07 3.4566e-08 2.7402e-07 1.0575e-07 3.0388e-05 2.5726e-06

Table 8.5.5: Numerical results of the cubical grad div-conforming element with r = k+1
and k = 1

h ∥eh∥ ∥eh∥V ∥div eh∥ ∥div eh∥U ∥grad div eh∥ ∥grad div eheh∥W
1/4 2.2275e-06 2.1791e-06 2.0877e-05 1.4226e-05 3.2323e-04 2.0116e-04

1/10 3.2909e-07 3.2124e-07 3.2354e-06 2.4023e-06 1.2317e-04 3.1825e-05

1/16 1.2730e-07 1.2419e-07 1.2547e-06 9.2031e-07 7.6282e-05 1.2340e-05

1/22 6.7137e-08 6.5485e-08 6.6217e-07 4.8348e-07 5.5322e-05 6.5115e-06

1/28 4.1395e-08 4.0373e-08 4.0839e-07 2.9756e-07 4.3414e-05 4.0157e-06

Table 8.5.6: Numerical results of the cubical grad div-conforming element with r = k+2
and k = 1

h ∥eh∥ ∥eh∥V ∥div eh∥ ∥div eh∥U ∥grad div eh∥ ∥grad div eheh∥W
1/4 2.5839e-06 2.5818e-06 2.0796e-05 1.4263e-05 3.2318e-04 2.0132e-04

1/10 3.2119e-07 3.2115e-07 3.2315e-06 2.4030e-06 1.2317e-04 3.1829e-05

1/16 1.2417e-07 1.2416e-07 1.2541e-06 9.2042e-07 7.6282e-05 1.2340e-05

1/22 6.5478e-08 6.5476e-08 6.6200e-07 4.8351e-07 5.5322e-05 6.5117e-06



151

Table 8.5.7: Numerical results of the cubical grad div-conforming element with r = k
and k = 2

h ∥eh∥ ∥eh∥V ∥div eh∥ ∥div eh∥U ∥grad div eh∥ ∥grad div eheh∥W
1/4 6.3209e-07 2.2806e-07 2.9623e-06 8.8580e-07 7.8540e-05 2.5723e-05

1/10 7.6991e-08 1.1031e-08 1.8971e-07 2.8011e-08 1.2378e-05 1.9063e-06

1/16 2.8833e-08 2.5640e-09 4.6416e-08 4.3703e-09 4.8272e-06 4.7467e-07

1/22 1.5050e-08 9.7038e-10 1.7869e-08 1.2319e-09 2.5519e-06 1.8377e-07

(a) r = k, k = 1 (b) r = k + 1, k = 1

(c) r = k + 2, k = 1 (d) r = k, k = 2

Figure 8.5.1: Error curves in different norms
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CHAPTER 9 CONCLUSION

In this dissertation, we considered the construction of grad curl-conforming and

grad div-conforming finite elements in both 2D and 3D based on discrete de Rham com-

plexes. We briefly summarize our work below:

• By theoretical framework in [12], we derived the cohomology of the grad curl com-

plex, the grad rot complex, and the grad div complex. We proved the density of

C∞(Ω) ⊗ V in H(grad curl; Ω), H(grad rot; Ω), and H(grad div; Ω). We defined

the trace operators γτ,curl : H(grad curl; Ω) → H−1/2(∂Ω) ⊗ V × H1/2(∂Ω) ⊗ V,

γτ,rot : H(grad rot; Ω) → H−1/2(∂Ω) × H1/2(∂Ω) and γn,div : H(grad div; Ω) →

H−1/2(∂Ω)×H1/2(∂Ω), and proved their boundedness. We also proved the surjec-

tivity of γτ,rot and γn,div. With these theoretical basis, we provided characterizations

for H0(grad curl; Ω) and spaces in the dual complexes of the grad rot complex and

the grad div complex. As a result, we obtain the explicit boundary conditions of

the Hodge Laplacian problems.

• We investigated the spurious solutions of the curl∆ rot problems. We applied four

finite element schemes to solve Hodge Laplacian source and eigenvalue problems

of the grad rot complex. We found the primal formulations with the Argyris el-

ement and the H1(rot)-conforming element lead to spurious solutions in certain

cases, whereas the mixed formulations with the grad rot-conforming element and

the H1(rot)-conforming elements lead to the correct solutions. We provided a the-

oretical explanation for the numerical phenomena and a convergence analysis on

simply-connected domains for the mixed formulation with the grad rot-conforming

finite element.

• We constructed a smooth finite element de Rham complex in 2D. This leads to
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three families of grad rot-conforming elements, among which one family is consis-

tent with our previous construction in high-order cases. We extended the existing

family of elements by removing the restriction on the polynomial degree and fit it

into the discrete complex. Among the three families, the simplest elements have

only 6 DOFs for a triangle and 8 DOFs for a rectangle.

• We constructed a finite element Stokes complex on tetrahedral meshes, which

contains three families of grad curl-conforming elements. Since the construction

involves supersmoothness on lower-dimensional simplices of the tetrahedral mesh,

the number of DOFs is at least 279. We proved that the discrete complex is exact

on contractable domains. However, it is hard to construct an exact complex with

vanishing boundary conditions. In addition, the canonical interpolations defined

by the DOFs can not fit into a commuting diagram.

• We constructed another finite element Stokes complex, which contains three fam-

ilies of grad curl-conforming elements with fewer DOFs. The simplest element has

only 18 DOFs, which, compared with the 279 DOFs in our previous construction,

is a huge step forward. Besides, the discrete complex is exact on contractable do-

mains, and hence it also contains a family of inf-sup stable finite element Stokes

pairs which is the extension of the lower-order Stokes pair in [34]. Unlike our previ-

ous construction, we can show the finite element spaces with vanishing traces can

form an exact complex and the canonical interpolations can fit into a commuting

diagram.

• We constructed a finite element de Rham complex with enhanced smoothness,

which leads to the first grad div-conforming elements in 3D. The simplest element

has only 8 DOFs for a tetrahedron and 14 DOFs for a cube. We can also prove the

exactness and the commuting diagram property of the proposed complex.
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This dissertation inspires some new research directions:

• For the Hodge Laplacian problems of the grad curl complex, we obtained the ex-

plicit boundary conditions for only (3.1.8). We will characterize the boundary

conditions for other Hodge Laplacian problems.

• The construction of discrete grad rot and grad div complexes is trivial, which can

be realized by combining two finite elements de Rham complexes. However, it is not

the case for the grad curl complex. We will construct a finite element subcomplex

for the grad curl complex (3.1.6).

• In Chapter 4, we proved only the convergence on simply-connected domains. To

obtain the convergence on general domains, we can apply the theoretical framework

in FEEC [9], which requires the bounded cochain projections. Therefore, in the

future, we will construct bounded cochain projections for the discrete grad rot,

grad div, and even grad curl complexes.

• Only tetrahedral grad curl-conforming elements were considered in this disserta-

tion. We will extend the construction in Chapter 7 to cubical meshes in the future.

• Despite the significant progress in the construction of the H2-conforming finite

elements mentioned in Introduction, the large number of DOFs makes it hard to

implement these elements in practice. We will apply the idea of enriching with

modified bubbles to construct new H2-conforming elements with fewer DOFs.

• A discrete subcomplex provides an explicit characterization for the kernel of differ-

ential operators, which is crucial for the construction of robust preconditioners in

the framework of the subspace correction methods [45, 57]. With an explicit char-

acterization of the kernel spaces in the discrete complex in Chapter 7, one may
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construct parameter robust preconditioners for solving the Navier-Stokes equa-

tions.



156

REFERENCES

[1] P. Alfeld. A trivariate Clough-Tocher scheme for tetrahedral data. Computer Aided

Geometric Design, 1(2):169–181, 1984.

[2] A. Alonso and A. Valli. An optimal domain decomposition preconditioner for

low-frequency time-harmonic Maxwell equations. Mathematics of Computation,

68(226):607–631, 1999.

[3] S. Altan and E. Aifantis. On the structure of the mode III crack-tip in gradient

elasticity. Scripta Metallurgica et Materialia, 26(2):319–324, 1992.

[4] C. Amrouche, C. Bernardi, M. Dauge, and V. Girault. Vector potentials in three-

dimensional non-smooth domains. Mathematical Methods in the Applied Sciences,

21(9):823–864, 1998.

[5] J. Argyris, I. Fried, and D. Scharpf. The TUBA family of plate elements for the

matrix displacement method. The Aeronautical Journal, 72(692):701–709, 1968.

[6] D. N. Arnold. Finite Element Exterior Calculus, volume 93. SIAM, 2018.

[7] D. N. Arnold and G. Awanou. The serendipity family of finite elements. Foundations

of Computational Mathematics, 11(3):337–344, 2011.

[8] D. N. Arnold and G. Awanou. Finite element differential forms on cubical meshes.

Mathematics of Computation, 83(288):1551–1570, 2014.

[9] D. N. Arnold, G. Awanou, and R. Winther. Finite elements for symmetric tensors

in three dimensions. Mathematics of Computation, 77(263):1229–1251, 2008.

[10] D. N. Arnold, R. Falk, and R. Winther. Finite element exterior calculus, homological

techniques, and applications. Acta Numerica, 15:1–155, 2006.

[11] D. N. Arnold, R. Falk, and R. Winther. Finite element exterior calculus: from

hodge theory to numerical stability. Bulletin of the American Mathematical Society,

47(2):281–354, 2010.



157

[12] D. N. Arnold and K. Hu. Complexes from complexes. arXiv preprint:

arXiv:2005.12437, 2020.

[13] D. N. Arnold and A. Logg. Periodic table of the finite elements. SIAM News,

47(9):212, 2014.

[14] I. Babuška and J. Osborn. Eigenvalue problems. Elsevier, 2:641–787, 1991.

[15] K. Bell. A refined triangular plate bending finite element. International journal for

numerical methods in engineering, 1(1):101–122, 1969.

[16] S. C. Brenner and L. R. Scott. The Mathematical Theory of Finite Element Methods,

volume 15. Springer Science & Business Media, 2008.

[17] F. Brezzi, J. Douglas, and L. D. Marini. Two families of mixed finite elements for

second order elliptic problems. Numerische Mathematik, 47(2):217–235, 1985.

[18] F. Cakoni and H. Haddar. A variational approach for the solution of the electro-

magnetic interior transmission problem for anisotropic media. Inverse Problems

and Imaging, 1(3):443–456, 2017.

[19] L. Chacón, A. N. Simakov, and A. Zocco. Steady-state properties of driven mag-

netic reconnection in 2D electron magnetohydrodynamics. Physical review letters,

99(23):235001, 2007.

[20] S. Christiansen, J. Hu, and K. Hu. Nodal finite element de Rham complexes.

Numerische Mathematik, 139(2):411–446, 2018.

[21] S. Christiansen and K. Hu. Generalized finite element systems for smooth differen-

tial forms and stokes problem. Numerische Mathematik, 140(2):327–371, 2018.

[22] P. G. Ciarlet. Interpolation error estimates for the reduced Hsieh-Clough-Tocher

triangle. Mathematics of Computation, 32(142):335–344, 1978.

[23] P. G. Ciarlet. The finite element method for elliptic problems. SIAM, 2002.

[24] R. Clough and J. Tocher. Finite element stiffness matrices for analysis of plates

in bending. In Proceedings of the Conference on Matrix Methods in Structural



158

Mechanics, Wright-Patterson Air Force Base, OH, pages 515 – 547.

[25] M. Costabel and A. McIntosh. On Bogovskiĭ and regularized Poincaré integral

operators for de Rham complexes on Lipschitz domains. Mathematische Zeitschrift,

265(2):297–320, 2010.

[26] R. Courant. Variational methods for the solution of problems of equilibrium and

vibrations. Bulletin of the American Mathematical Society, 49:1–23, 1943.

[27] F. Demengel, G. Demengel, and R. Erné. Functional spaces for the theory of elliptic

partial differential equations. Springer, 2012.

[28] R. Falk and M. Neilan. Stokes complexes and the construction of stable finite

elements with pointwise mass conservation. SIAM Journal on Numerical Analysis,

51(2):1308–1326, 2013.

[29] G. Farin. Bézier polynomials over triangles and the construction of piecewise cr

polynomials. Brunel University Mathematics Technical Papers collection, 1980.

[30] V. Girault and P. Raviart. Finite element methods for Navier-Stokes equations:

theory and algorithms, volume 5. Springer Science & Business Media, 2012.

[31] J. Guzmán, A. Lischke, and M. Neilan. Exact sequences on Powell-Sabin splits.

Calcolo, 57(2):1–25, 2020.

[32] J. Guzmán, A. Lischke, and M. Neilan. Exact sequences on Worsey-Farin splits.

arXiv preprint, arXiv:2008.05431, 2020.

[33] J. Guzmán and M. Neilan. Conforming and divergence-free stokes elements in three

dimensions. IMA Journal of Numerical Analysis, 34(4):1489–1508, 2014.

[34] J. Guzmán and M. Neilan. Inf-sup stable finite elements on barycentric refinements

producing divergence-free approximations in arbitrary dimensions. SIAM Journal

on Numerical Analysis, 56(5):2826–2844, 2018.

[35] J. He, K. Hu, and J. Xu. Generalized Gaffney inequality and discrete compactness

for discrete differential forms. Numerische Mathematik, 143(4):781–795, 2019.



159

[36] R. Hiptmair. Canonical construction of finite elements. Mathematics of Computa-

tion, 68(228):1325–1346, 1999.

[37] R. Hiptmair. Higher order whitney forms. Progress in Electromagnetics Research,

32:271–299, 2001.

[38] R. Hiptmair. Finite elements in computational electromagnetism. Acta Numerica,

11:237, 2002.

[39] K. Hu, Q. Zhang, and Z. Zhang. A family of finite element Stokes complexes in

three dimensions. arXiv preprint arXiv:2008.03793, 2020.

[40] K. Hu, Q. Zhang, and Z. Zhang. Simple curl-curl-conforming finite elements in two

dimensions. SIAM Journal on Scientific Computing, 42(6):A3859–A3877, 2020.

[41] V. John, A. Linke, C. Merdon, M. Neilan, and L. Rebholz. On the divergence

constraint in mixed finite element methods for incompressible flows. SIAM review,

59(3):492–544, 2017.

[42] M. Krizek, P. Neittaanmaki, and R. Stenberg. Finite element methods: fifty years

of the Courant element. CRC Press, 2016.

[43] M. J. Lai and L. L. Schumaker. Spline functions on triangulations, volume 110.

Cambridge University Press, 2007.

[44] S. Lang. Fundamentals of differential geometry, volume 191. Springer Science &

Business Media, 2012.

[45] Y. Lee, J. Wu, J. Xu, and L. Zikatanov. Robust subspace correction methods for

nearly singular systems. Mathematical Models and Methods in Applied Sciences,

17(11):1937–1963, 2007.

[46] R. Mindlin. Micro-structure in linear elasticity. Arch. Ration. Mech. Anal., 16:51–

78, 1964.

[47] R. Mindlin. Second gradient of strain and surface-tension in linear elasticity. In-

ternational Journal of Solids and Structures, 1(4):417–438, 1965.



160

[48] R. D. Mindlin and H. F. Tiersten. Effects of couple-stresses in linear elasticity.

Archive for Rational Mechanics and Analysis, 11(1):415–448, 1962.

[49] P. Monk. Finite Element Methods for Maxwell’s Equations. Oxford University

Press, 2003.

[50] P. Monk and J. Sun. Finite element methods for Maxwell’s transmission eigenvalues.

SIAM Journal on Scientific Computing, 34(3):B247–B264, 2012.

[51] J. C. Nédélec. Mixed finite elements in r3. Numerische Mathematik, 35(3):315–341,

1980.

[52] J. C. Nédélec. A new family of mixed finite elements in r3. Numerische Mathematik,

50(1):57–81, 1986.

[53] M. Neilan. Discrete and conforming smooth de Rham complexes in three dimen-

sions. Mathematics of Computation, 84(295):2059–2081, 2015.

[54] S. K. Park and X. Gao. Variational formulation of a modified couple stress theory

and its application to a simple shear problem. Zeitschrift für angewandte Mathe-

matik und Physik, 59(5):904–917, 2008.

[55] M. J. D. Powell and M.A. Sabin. Piecewise quadratic approximations on triangles.

ACM Transactions on Mathematical Software (TOMS), 3(4):316–325, 1977.

[56] P. A. Raviart and J. M. Thomas. Primal hybrid finite element methods for 2nd

order elliptic equations. Mathematics of computation, 31(138):391–413, 1977.

[57] J. Schöberl. Robust multigrid methods for parameter dependent problems. PhD

thesis, Johannes Kepler Universität Linz, 1999.

[58] L. R. Scott and Michael Vogelius. Norm estimates for a maximal right inverse of

the divergence operator in spaces of piecewise polynomials. ESAIM: Mathematical

Modelling and Numerical Analysis, 19(1):111–143, 1985.

[59] L. R. Scott and S. Zhang. Finite element interpolation of nonsmooth functions

satisfying boundary conditions. Mathematics of Computation, 54(190):483–493,



161

1990.

[60] T. Sorokina. Intrinsic supersmoothness of multivariate splines. Numerische Math-

ematik, 116(3):421–434, 2010.

[61] J. Sun. A mixed FEM for the quad-curl eigenvalue problem. Numerische Mathe-

matik, 132(1):185–200, 2016.

[62] X. C. Tai and R. Winther. A discrete de Rham complex with enhanced smoothness.

Calcolo, 43(4):287–306, 2006.

[63] H. Whitney. Geometric integration theory. Princeton university press, 2015.

[64] A. J. Worsey and B. Piper. A trivariate Powell-Sabin interpolant. Computer Aided

Geometric Design, 5(3):177–186, 1988.

[65] A. Ženíšek. Polynomial approximation on tetrahedrons in the finite element method.

Journal of Approximation Theory, 7(4):334–351, 1973.

[66] Q. Zhang, L. Wang, and Z. Zhang. H(curl2)-conforming finite elements in 2 di-

mensions and applications to the quad-curl problem. SIAM Journal on Scientific

Computing, 41(3):A1527–A1547, 2019.

[67] Q. Zhang and Z. Zhang. A family of curl-curl conforming finite elements on tetra-

hedral meshes. CSIAM Transactions on Applied Mathematics, 1(4):639–663, 2020.

[68] Q. Zhang and Z. Zhang. Three families of grad-div-conforming finite elements.

arXiv preprint arXiv:2007.10856, 2020.

[69] Shangyou Zhang. A new family of stable mixed finite elements for the 3D Stokes

equations. Mathematics of computation, 74(250):543–554, 2005.

[70] Shangyou Zhang. A family of 3D continuously differentiable finite elements on

tetrahedral grids. Applied Numerical Mathematics, 59(1):219–233, 2009.



162

ABSTRACT

NEW CONFORMING FINITE ELEMENTS
BASED ON THE DE RHAM COMPLEXES
FOR SOME FOURTH-ORDER PROBLEMS

by

QIAN ZHANG

August 2021

Advisor: Dr. Zhimin Zhang

Major: Mathematics

Degree: Doctor of Philosophy

In this dissertation, we discuss the conforming finite element discretization of high-

order equations involving operators such as (curl curl)2, grad∆div, and − curl∆ curl.

These operators appear in various models, such as continuum mechanics, inverse elec-

tromagnetic scattering theory, magnetohydrodynamics, and linear elasticity. Naively dis-

cretizing these operators and their corresponding eigenvalue problems using the existing

H2-conforming element would lead to spurious solutions in certain cases. Therefore, it is

desirable to design conforming finite elements for equations containing these high-order

differential operators.

The curl curl-conformity or grad curl-conformity requires that the tangential compo-

nent of curluh is continuous. Recall that the Nédélec element requires only the con-

tinuity of the tangential component of uh. Due to the continuity requirement and the

naturally divergence-free property of the curl operator, it is challenging to construct

grad curl-conforming elements. We start from the two dimensional case, where curluh

is a scalar. Our previous construction [66] is based on the existing polynomial spaces

Qk−1,k × Qk,k−1 and Rk. The restriction of k ≥ 4 for a triangular element or k ≥ 3 for
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a rectangular element has to be imposed since an interior bubble should be included

in the shape function space of curluh, and hence the simplest triangular or rectangu-

lar element has 24 degrees of freedom. To reduce the degrees of freedom, we resort to

the discrete de Rham complex to construct elements. The Poincaré operator enables

us to tailor the shape function space to our needs (not necessarily the existing polyno-

mial spaces). As a result, we construct a finite element complex, which contains three

families of grad curl-conforming elements without the restriction on polynomial degrees.

One of three families is consistent with the previous construction in high-order cases.

The lowest-order triangular and rectangular finite elements have only 6 and 8 degrees

of freedom, respectively.

Unlike the two-dimensional case, curluh in three dimensions should be a divergence-

free vector in the space H1⊗V, which relates the curl∆ curl problems to the Stokes prob-

lem. However, it is challenging to construct an inf-sup stable finite element Stokes pair

that preserves the divergence-free condition at the discrete level. Neilan [53] constructed

a finite element complex that includes a stable Stokes pair and an H1(curl)-conforming

element on tetrahedral meshes. Based on the same Stokes pair, we construct a finite ele-

ment complex which contains three families of grad curl-conforming elements. Compared

to the H1(curl)-conforming elements [53] which have at least 360 DOFs, our grad curl-

conforming elements have weaker continuity (uh is in H(curl) instead of H1 ⊗ V) and

thus fewer degrees of freedom. However, our elements still have at least 279 degrees of

freedom. Recently, Guzmán and Neilan stabilized the lowest-order three dimensional

Scott-Vogelius pair by enriching the velocity space with modified Bernardi-Raugel bub-

bles [34], which inspires us to use it to construct grad curl-conforming elements with fewer

degrees of freedom. To obtain a family of elements, we first generalize their construction

to an arbitrary order by enriching the velocity space with modified face or/and interior

bubbles. Then we construct the whole finite element complex which contains three fam-
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ilies of grad curl-conforming elements on tetrahedral meshes. The lowest-order element

has only 18 degrees of freedom.

The grad div-conformity requires that the normal component and divergent of the

finite element function uh are continuous. Since divuh is a scalar, the construction of the

finite element complex and the grad div-conforming elements is similar to the grad curl

elements in two dimensions. The simplest tetrahedral and cubical elements have only 8

and 14 degrees of freedom, respectively.
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