DIGITALCOMMONS

— @WAYNESTATE— Wayne State University

Wayne State University Dissertations

January 2021

New Conforming Finite Elements Based On The De Rham
Complexes For Some Fourth-Order Problems

Qian Zhang
Wayne State University

Follow this and additional works at: https://digitalcommons.wayne.edu/oa_dissertations

6‘ Part of the Applied Mathematics Commons

Recommended Citation

Zhang, Qian, "New Conforming Finite Elements Based On The De Rham Complexes For Some Fourth-
Order Problems" (2021). Wayne State University Dissertations. 3454.
https://digitalcommons.wayne.edu/oa_dissertations/3454

This Open Access Dissertation is brought to you for free and open access by DigitalCommons@WayneState. It has
been accepted for inclusion in Wayne State University Dissertations by an authorized administrator of
DigitalCommons@WayneState.


http://digitalcommons.wayne.edu/
http://digitalcommons.wayne.edu/
https://digitalcommons.wayne.edu/oa_dissertations
https://digitalcommons.wayne.edu/oa_dissertations?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F3454&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/115?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F3454&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wayne.edu/oa_dissertations/3454?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F3454&utm_medium=PDF&utm_campaign=PDFCoverPages

NEW CONFORMING FINITE ELEMENTS
BASED ON THE DE RHAM COMPLEXES
FOR SOME FOURTH-ORDER PROBLEMS

by
QIAN ZHANG
DISSERTATION
Submitted to the Graduate School
of Wayne State University,
Detroit, Michigan
in partial fulfillment of the requirements
for the degree of
DOCTOR OF PHILOSOPHY

2021

MAJOR: MATHEMATICS

Approved By:

Advisor Date




© COPYRIGHT BY
QIAN ZHANG
2021

All Rights Reserved



DEDICATION

To My Parents

i



ACKNOWLEDGEMENTS

Many people helped me along the way on this journey. I would like to take a moment
to thank them.

First, I wish to express my greatest gratitude to my advisor, Prof. Zhimin Zhang.
When he first gave me the problem of constructing grad curl-conforming elements, I never
expected I could come this far on this journey. He is always there, providing support and
help to me. Everytime I feel frustrated, it is his constant support that keeps me going
forward. He is always very confident at me. Everytime I feel I have solved the problem,
he would encourage me to do better. From two dimensions to three dimensions, from
315 degrees of freedom to 18, from grad curl-conforming elements to grad div-conforming
elements, we are achieving more and more along this way. For me, he is more than just
an advisor; he is also a beacon light in my life.

I would like to thank my collaborator Dr. Kaibo Hu. He brought us the idea of
constructing discrete complexes and enriching with bubbles so that we can simplify
our elements. Most of this dissertation is based on the collaborations with him. I am
impressed by his wide knowledge. Whenever 1 have a problem, he can always get my
point and respond to it promptly. I appreciate every piece of his message, from which I
can always learn something new.

I'm truly grateful to Prof. Jiguang Sun from Michigan Technological University. I
heard from him the quad-curl problem for the first time. Without him, I could not have
found such a great subject that I have enjoyed so much. I appreciate all the helpful
discussions we had at Beijing Computational Science Research Center (CSRC) or on
Skype, which have helped me understand this problem well.

If it was not for Prof. Ran Zhang recommending me to CSRC, I would never have
the chance to meet Prof. Zhimin Zhang. In the last year of my undergraduate program,

I went to the fork in the road of my life. She offered me the opportunity to go to Beijing

il



for my master degree study. What I gained from her is not only an opportunity but
also some valuable experience. I learned Calculus and the Weak Galerkin method from
her; I finished my first paper with her. All of these play a cornerstone role in my future
research path.

I would like to thank my collaborator Prof. Jiwei Zhang from Wuhan University. I
am so lucky to have him as my co-advisor for my master program. The experience of
working with him built up my confidence in research. I would also like to thank my
senior, my collaborator, and my friend, Dr. Lixiu Wang. Without her, this journey could
have been less colorful.

I wish to express my gratitude to my friends at Wayne State University: Nguyen-
Truc-Dao Nguyen, Thi Dai Trang Nguyen, Hongjiang Qian, Handan Shu, Yuxin Wang,
Zhexin Wen, and Lewei Zhao. I really enjoyed the time when we went grocery shopping
together.

[ would like to thank Department of Mathematics at Wayne State University for offer-
ing me Graduate Teaching Assistantship, Thomas C. Rumble University Graduate Fel-
lowship, M.F. Janowitz Endowed Mathematics Scholarship, and Outstanding Graduate
Award. I could not have come this far without these financial supports. I appreciate all
the trainings I received from the department. I learned a lot from the courses instructed
by Prof. Peiyong Wang, Prof. George Yin, Prof. Boris Mordukhovich, Prof. Luca Cande-
lori, Prof. Robert Bruner, Mr. Christopher Leirstein, and Ms. Shereen Schultz. I appreci-
ate all the help provided by Carla Sylvester, Maria Vujic, JoAnne Lewan, Barbara Mal-
icke, and Doris E. King. I also appreciate my colleagues, particularly Bakhyt Aitzhanova,
Fatemah Alhamede, Priyanka Ahire, Mohammad Kang, Nkechi Nnadi, Oanh Nguyen,
Xiang Wan, Charuka Wickramasinghe, Diego Yepez, and Peimeng Yin, for the happy
times we have spent together and for the help they have ever provided.

I would like to thank Prof. Peiyong Wang, Prof. Hengguang Li, Prof. Fatih Celiker,

v



and Prof. Weisong Shi for serving as my dissertation committee.

Finally, I would like to thank my parents for their unconditional love and support.
I would also like to thank my boyfriend, Hang Du. He is always accompanying me in
person or via FaceTime, no matter when I need someone to talk to or I stay up late to
figure out a problem. Without them, this journey would not have been filled with such

joy, love, and fun.



TABLE OF CONTENTS

DEDICATION . . . . . .

ACKNOWLEDGEMENTS . . . . .. ... ..

LIST OF TABLES . . . . . . . . e

LIST OF FIGURES . . . . . . . . e

Chapter 1: INTRODUCTION . . . ... .. ... ... ... ........

1.1
1.2
1.3
1.4
1.5

The Development of Scalar and Vector Finite Elements . . . . . . . . ..
Main Work of the Dissertation . . . . . . . ... ... ... ... ... ..
Outline of the Dissertation . . . . . . . . . . .. .. ... ... ... ...
General Notation . . . . . . .. ...
1.5.1 Domain . . . . . ...
1.5.2  Sobolev spaces . . . . . . ...

i
i
!
i
Definition and Some Literature of Finite Elements . . . . . . . . ... .. i
E
H
i
i
i
13
E

1.5.3 Meshes and Polynomial Spaces . . . . ... ... ... .. ....

Chapter 2: DIFFERENTIAL COMPLEXES AND THE BERNSTEIN-

2.1

2.2

GELFAND-GELFAND CONSTRUCTION . . . . .. .. ..
Differential Complexes . . . . . . . . ... ... ... L. @
2.1.1 Homological Algebra . . . . . . .. .. ... ... @
2.1.2 Hilbert Complexes . . . .. ... ... ... ... ... ... @
2.1.3 Hodge Decomposition . . . . . ... ... ... .. @
2.1.4 The De Rham Complex . . . . . .. ... ... ... ... .... @
2.1.5  Poincaré Operators . . . . . . . . . . . . . . ... ... @
Bernstein-Gelfand-Gelfand Construction . . . . ... ... ... ... .. @

Chapter 3: Gradcurl Complex, Gradrot Complex, and Graddiv Com-

pPlex . . .

Gradcurl Complex and Hodge Laplacian . . . . . . ... ... ... ... @

3.1

vi



3.1.1 Gradcurl Complex Without Boundary Conditions . . . . . . . ..
3.1.2  Gradcurl Complex with Boundary Conditions . . . . . ... . ..
3.1.3  Gradcurl Complex with Partial Boundary Conditions . . . . . . .
3.1.4  Characterization of Hy(gradcurl) . . . . .. ... ... ... ...

3.2 Gradrot Complex and Hodge Laplacian . . . . . . . ... ... ... ...
3.2.1 Gradrot Complex without Boundary Conditions . . . . . . . . ..
3.2.2  Gradrot Complex with Boundary Conditions . . . . .. ... ..
3.2.3 Gradrot Complex with Partial Boundary Conditions . . . . . ..
3.2.4  Characterization of Hy(gradrot), Hy(curldiv) and Hg;,(curldiv) .

3.3 Graddiv Complex and Hodge Laplacian . . . .. . ... ... ... ...
3.3.1 Graddiv Complex without Boundary Conditions . . . . . . . . ..
3.3.2 Graddiv Complex with Boundary Conditions . . . . . ... . ..
3.3.3 Graddiv Complex with Partial Boundary Conditions . . . . . . .
3.3.4 Characterization of Hyo(graddiv) . . . ... ... ... ... ...
Chapter 4: SPURIOUS SOLUTIONS . .. ... ... ... ........
4.1 Spurious Numerical Solutions . . . . . . . .. .. ... ... .. .....
4.1.1 Source Problem . . . . . . .. ...
4.1.2 FEigenvalue Problem . . . . ... ... ... ... ... ...
4.1.3 Eigenvalue Problem with Different Boundary Conditions . . . . .

4.2 Convergence Analysis and Explanations of Spurious Solutions . . . . . .
4.2.1 Source Problem . . . . . .. ...
4.2.2 FEigenvalue Problem . . . . . .. .. ... ... 00
4.2.3 Theoretical Explanation of the Numerical Phenomena . . . . . .
Chapter 5: 2D GRADROT-CONFORMING ELEMENTS ... .. ..
5.1 Local Shape Function Spaces and Polynomial Complexes . . . . . . . ..

5.2 Degrees of Freedom . . . . . . . . ... oL

vii



5.3 Global Finite Element Complexes . . . . . . . .. .. .. ... .. .... @
5.4 Applications to —curl Arot Problems . . . . . .. . .. ... ... .. .. @
5.5 Numerical Experiments . . . . . . . . . .. . ... L @
5.5.1 The New Family of Elements withr =% . . . ... ... ... .. @

5.5.2 The Family of Elements withr=k+1. .. ... ... ... ... @

5.5.3 The Family of Elements withr=k+2. . .. ... ... .. ... @
Chapter 6: 3D GRADCURL-CONFORMING ELEMENTSI ... .. @
6.1 Local Shape Function Spaces and Polynomial Complexes . . . . . . . .. @
6.2 Degrees of Freedom . . . . . . . . ... Eg

6.3 Global Finite Element Complexes . . . . . . . . . . .. ... ... .... 104
6.4 Approximation Property of Vi, . . . . . . ... 105
Chapter 7: 3D GRADCURL-CONFORMING ELEMENTS IT . . . . .
7.1 Local Shape Function Spaces and Polynomial Complexes . . . . . . . ..
7.1.1 Modified Bubble Functions . . . . ... .. ... ... ......

7.1.2 Local Shape Function Spaces . . . . . . . ... ... ... .... 114

7.2 Degrees of Freedom . . . . . . . . . ... L
7.3 Global Finite Element Complexes . . . . . . . .. .. .. ... .. ....
7.3.1 Complexes without Boundary Conditions . . . .. .. ... ... 122

7.3.2 Complexes with Homogeneous Boundary Conditions . . . . . . .

7.4 Applications to — curl A curl Problems . . . . ... ... ... .. ... .. 129
7.5 Numerical Experiments . . . . . . . . . .. . ... o0 132
Chapter 8: 3D GRADDIV-CONFORMING ELEMENTS . . . .. . ..
8.1 Local Shape Function Spaces and Polynomial Complexes . . . . . . . .. 134
8.2 Degrees of Freedom . . . . . . . . ... ...
8.3 Global Finite Element Complexes . . . . . . . .. ... ... ... ....
8.4 Applications to grad Adiv Problems . . . . . .. ... ... ... .. .. 144

viil



8.5 Numerical Experiments . . . . . . . . . .. ... o

Chapter 9: CONCLUSION . . . ... .. . .

REFERENCES
ABSTRACT .

AUTOBIOGRAPHICAL STATEMENT . . . .. ... ... ... ... ...

X



Table 4.1.1

Table 4.1.2

Table 4.1.3

Table 4.1.4

Table 4.1.5

Table 4.1.6

Table 4.1.7

Table 4.1.8

Table 4.1.9

Table 4.1.10

Table 4.1.11

Table 4.1.12

Table 4.1.13

Table 4.1.14

Table 4.1.15

Numerical eigen
with k = 4 for (

Numerical eigen

with & =4 for (

values with units 7

1.0.4)

values with units 7

1.0.4)

LIST OF TABLES

2

o1}

on {); obtained by Scheme

= u|

on {2y obtained by Scheme

Numerical eigen
with k = 4 for (

Numerical eigen

with k£ =5 for (

Numerical eigen
with k = 4 for (

Numerical eigen

with k = 4 for (

Numerical eigen
with k = 4 for (

Numerical eigen

with k =5 for (

Numerical eigen
with k = 4 for (

Numerical eigen
with k = 4 for (

Numerical eigen
with k = 4 for (

Numerical eigen
with k =5 for (

Numerical eigen
with k = 4 for (

Numerical eigen
with k = 4 for (

Numerical eigen

1.0.7)

values with units 7

with &k = 4 for (

1.0.7)

values with units 72 on €2; obtained by Scheme E
4.0.%) ..........................
values with units 72 on €2; obtained by Scheme E
4.0.4) ..........................
values with units 72 on €, obtained by Scheme E
4.0.%) ..........................
values with units 72 on €2, obtained by Scheme E
4.0.4) ..........................
values with units 72 on €, obtained by Scheme E
4.0.%) ..........................
values with units 72 on {2, obtained by Scheme E
4.0.4) ..........................
values with units 72 on €3 obtained by Scheme E
4.0.%) ..........................
values with units 72 on 3 obtained by Scheme E
4.0.%) ..........................
values with units 72 on €3 obtained by Scheme E
4.0.%) ..........................
values with units 72 on 3 obtained by Scheme E
4.0.%) ..........................
values with units 72 on €2; obtained by Scheme E
40/) ..........................
values with units 72 on €; obtained by Scheme E

=0

on (2; obtained by Scheme



Table 4.1.16

Table 4.1.17

Table 4.1.18

Table 4.1.19

Table 4.1.20

Table 4.1.21

Table 4.1.22

Table 4.1.23

Table 4.1.24

Table 5.5.1
Table 5.5.2
Table 5.5.3
Table 5.5.4
Table 5.5.5
Table 5.5.6
Table 5.5.7
Table 7.5.1
Table 7.5.2
Table 7.5.3
Table 8.5.1

with units 7

o]

Numerical eigenvalues on {2y obtained by Scheme

with & =5 for (40() ..........................
Numerical eigenvalues with units 72 on 2, obtained by Scheme E

with k = 4 for (40() ..........................
Numerical eigenvalues with units 72 on €y obtained by Scheme E

with k = 4 for (40() ..........................
Numerical eigenvalues with units 72 on {2y obtained by Scheme E

with k=4 for (LOA) . ... .. b4
Numerical eigenvalues with units 72 on €y obtained by Scheme E

with & =5 for (40() ..........................
Numerical eigenvalues with units 72 on 23 obtained by Scheme E

with k=4 for (LOA) . ... .. b4
Numerical eigenvalues with units 72 on €3 obtained by Scheme E

with k& =4 for (40() ..........................
Numerical eigenvalues with units 72 on 3 obtained by Scheme E

with k = 4 for (40() ..........................
Numerical eigenvalues with units 72 on 3 obtained by Scheme E

with k& =4 for (40() ..........................

b4
b4

Numerical results of the triangular element with r =k + 1 and k =1 @

Numerical results of the triangular element with r =k and k =1

Numerical results of the rectangular element with » = k and £k =1

Numerical results of the rectangular element with r =k + 1 and k=1 @
Numerical results of the triangular element with r =k +2 and £k =1 @
Numerical results of the rectangular element with r =k +2 and k=1 @
Numerical results of the rectangular element with r = k + 2 and k = 2 @
Numerical results of the tetrahedral element with r = k and k=1 . .
Numerical results of the tetrahedral element with »r =k + 1 and & = 1[133
Numerical results of the tetrahedral element with r =k and k=3 . .

Numerical results of the tetrahedral grad div-conforming element with
r=kand k=1

X1



Table 8.5.2

Table 8.5.3

Table 8.5.4

Table 8.5.5

Table 8.5.6

Table 8.5.7

Numerical results of the tetrahedral grad div-conforming element with
r=k+land k=1 ... . . ... ...

Numerical results of the tetrahedral grad div-conforming element with
r=k+2andk=1 ... .. . ...

Numerical results of the cubical grad div-conforming element with

r=kand k=1 . . . . . . .,

Numerical results of the cubical grad div-conforming element with
r=k+landk=1 .. ... .. ...

Numerical results of the cubical grad div-conforming element with
r=k+2and k=1 ... . . ...

Numerical results of the cubical grad div-conforming element with
r=kand k=2 . . ...

xii



Figure 4.1.1

Figure 4.1.2

Figure 5.2.1

Figure 5.5.1

Figure 7.2.1

Figure 8.2.1

Figure 8.2.2

Figure 8.5.1

LIST OF FIGURES

Finite element solutions to the problem () on an L-shape do-
main with f = (1,0)T. . . . ... .

Initial meshes (n =0) for @y, Qo,and Q3. . . . . . ...

The lowest-order finite element complexes () in 2D with r = k
in the first two rows, r = k+ 1 in the middle two rows, and r = k +2
in the last tworows. . . . . . . ... L oL

Error curves in different norms . . . . . . .. ...

The lowest-order (k = 1) finite element complex () on tetrahedra
with r = k in the first row, » = k+1 in the second row, and r = k+2
in the third row. . . . . . . ... oo

The lowest-order (k = 1) finite element complex (8.1.1)) on tetrahedra
with » = k—1 in the first row, r = k in the second row, and r = k+1
in the thirdrow. . . . . .. ... oo

The three versions of lowest-order (k = 1) grad-div finite elements on
cubes . ..o

Error curves in different norms . . . . . . . . ... ...

xiil

B



CHAPTER 1 INTRODUCTION

1.1 Definition and Some Literature of Finite Elements

In brief, finite elements are piecewise functions with certain global continuity imposed
by local degrees of freedom (DOFs). The finite element method (FEM) approximates
the solutions of differential equations by these piecewise functions. The FEM has been
widely used for numerically solving partial differential equations (PDEs) in a variety of
engineering disciplines, e.g., heat transfer, electromagnetism, and fluid dynamics. The
history of the FEM can be traced back to early 1940s when Courant [26] proposed the
idea of the minimization of a functional by linear approximation over a set of subdomains.
A literature survey of some earlier years of FEMs can be found in Babuska’s article
“Courant element: before and after” in the book [42].

The following definition of a finite element was first introduced by Ciarlet in his

lecture notes and became popular after his 1978 book [23].

Definition 1.1.1 (Finite element [23]). A finite element is defined by a triple (K, P, L),

where

e the domain K is a bounded, closed subset of R? (for d = 1,2,3,...) with nonempty

interior and piecewise smooth boundary;

e the space P = P(K) is a finite dimensional function space on K of dimension n;

e the set of DOFs L = {{1,ls,...,0,} is a basis for the dual space P', that is, the

space of bounded linear functionals on P.

The domain K is called the element domain. It might be a triangle, a rectangle, or a
general polygon in two space dimensions (2D), or a tetrahedron, a cube, a prism, etc. in

three space dimensions (3D). In FEM, we partition the domain of the problem into a set



of element domains, which is known as the finite element mesh. We obtain approximation
by refining the mesh. The space P is local function space with approximation property.
It is known as the space of shape functions. A popular choice of P is polynomial spaces.
The set of DOFs can determine the basis functions of P uniquely. It connects the local
function spaces on different element domains to become a global finite element space.
By different choices of the DOFs, we can impose different continuity to the global finite
element space.
1.2 The Development of Scalar and Vector Finite Elements

According to the dimension of finite element function, the finite elements can be
classified into scalar finite elements, vector finite elements, and tensor finite elements.

The scalar finite elements are actually polynomial splines. They may have extra
orders of smoothness on lower-dimensional simplices of the mesh, which is known as
supersmoothness suggested by Sorokina [60]. This is a trouble of constructing finite
elements with high regularity, e.g., the C! element (or H?-conforming element). The
study of C! element can be dated back to 1960s, when Argyris et al [5] constructed
a triangular element, which has 21 DOFs. Bell [15] simplified the Argyris element by
removing the three edge DOFs. In 3D, Zenisek [65] constructed the first C' element
and later Shangyou Zhang [[70] simplified his element and extended it to an arbitrary
order. All these elements involve supersmoothness at vertices and/or edges of the meshes,
which leads to a large number of DOFs. A way to mitigate this issue is to construct C*
elements on a split of a given simplex. The Clough-Tocher element [24] and the Hsieh-
Clough-Tocher element (the three edge DOFs are removed) [22] are defined on a split of
a triangle, which is obtained by connecting each vertex of the triangle to its barycenter.
Even if the two elements involve no supersmoothness at vertices of the mesh, they are
C? at the barycenter, which is first observed by Farin [29]. Alfeld [1] constructed the

3D counterpart of the Clough-Tocher element, which still involves supersmoothness at



vertices of the mesh. There are also some conforming elements defined on other splits,
see, e.g., [B1, B2, b5, 64, 43].

One application of vector finite elements is computational electromagnetics, where
the Sobolev spaces H(div) and H (curl) play a vital role in the variational theory. In [51],
by using incomplete polynomial spaces, Nédélec proposed two families of finite elements:
one is H(div)-conforming, the other is H (curl)-conforming. These elements are known
as Nédélec curl-conforming elements and div-conforming elements of the first kind. The
div-conforming elements are also referred to as Raviart-Thomas elements since they
are the 3D extension of the elements introduced in [b6] by Raviart and Thomas. Later
in [62], Nédélec proposed two more families of elements by using complete polynomial
spaces, which are known as the Nédélec elements of the second kind. The div-conforming
elements therein are the 3D extension of the elements [[17] introduced by Brezzi, Dou-
glas, and Marini, and hence are also referred to as Brezzi-Douglas-Marini elements. The
tetrahedral elements of the two kinds and the cubical elements of the first kind can be
unified as discrete differential forms and fit into discrete complexes [37, 10], which are
subcomplexes of the de Rham complex:

grad .

0 sy R —— H! s H(curl) <2 H(div) —2 2 > 0. (1.2.1)

Here we dropped the domain 2 in the notation of the function spaces. See Section
for the precise definition of the spaces H(D;2). In [8], Arnold and Awanou developed
a new family of discrete differential forms on cubical meshes. The discrete 0-forms are
the serendipity finite elements. A periodic table of finite elements [[13] has been devel-
oped to include the discrete k-forms of arbitrary polynomial degree for simplices and
n-dimensional boxes in any dimension. The discrete differential forms together with
mixed formulations that respect the underlying cohomological structures of the complex

provide a remedy for notorious trouble of spurious solutions [6]. It is also worth men-



tioning that the lowest-order discrete differential forms on tetrahedra, also known as
Whitney forms [63], are highly geometric: the Whitney k-forms have one DOF on each

k-dimensional subsimplex, as shown in the following figure.

‘&d @% ‘% ‘

Another application of vector finite elements is incompressible flows. A related com-
plex is the following de Rham complex with enhanced smoothness (also referred to as
the Stokes complex):

grad

0 y R —S— H? y H' (curl) <2 H' @V -2, 2 >0, (1.2.2)

where H'(curl) = {u € H* ® V : curlu € H' ® V}. Three desirable properties of a finite

element Stokes pair X}, o x Y}, o are:
o conformity, i.e., X, o C Hj ® V and Yio C L3

o stability, i.e., the Ladyzenskaja-Babuska-Brezzi (LBB) condition

o divvgda
sup S —_———

> Cllallzz@) Vg € Yao
’UGth()\{O} HUHHI(Q)

is satisfied with C' independent of h;
« divergence-free velocity approximation [41], i.e., div X} o C Y.

However, constructing a finite element velocity-pressure pair that satisfies the three
properties is a challenging task drawing decades of attention. In 2D, the Scott-Vogelius
finite elements are stable only in the high-order case with certain restrictions on the mesh
(58], while the stability in 3D is still an open problem. Motivated by the construction of a

stable Stokes pair on general shape-regular triangular meshs [2§8], Neilan [53] constructed



a finite element subcomplex of () on tetrahedral meshes, which includes a stable
Stokes pair. Since this construction involves supersmoothness, the number of DOFs is
large. In another direction, to fix the stability issue, we may use barycentric refined
meshes (see, e.g., [34, 69]) or enrich finite element spaces on general shape-regular meshes
by rational bubbles or macro-element bubbles [33, B4].

From the two applications, we can see the construction of vector finite elements is
more delicate: they should reproduce some essential structures of the continuous prob-
lems.

1.3 Main Work of the Dissertation

The above-mentioned vector finite elements are for low-order differential equations.
In this dissertation, we consider the construction of the vector elements for the high-
order differential equations which involve the operator (D*o D)*o(D*o D) with D = curl
or div. The fourth-order operators have many science and engineering applications. The
operator (curlcurl)? (when D = curl) is applied in inverse electromagnetic scattering
theory [18, 50] and magnetohydrodynamics [19]. A variant of (curlcurl)?, the opera-
tor — curl A curl, appears in models of continuum mechanics to incorporate size ef-
fects or the coupled stress, see [48, (3.27)], [64, (35)]. The operator grad A div (when
D = div) has important applications in linear elasticity [3, 46, 47], where the integra-
tion of grad A div w represents the shear strain energy with u being the displacement of
the elasticity body.

The vector finite elements for the two fourth-order operators are grad curl-conforming
elements (curl curl-conforming elements are automatically grad curl-conforming) and
grad div-conforming elements, respectively. It bears the both difficulties—high regularity
and delicate structures—to construct the grad curl- and grad div-conforming elements.
The grad curl-conforming elements are not available until very recently. In [66], the au-

thor and her collaborators developed, for the first time, a family of grad rot-conforming



(2D version of curl is rot) finite elements in 2D. To reduce the number of DOFs, they
used incomplete polynomials. The polynomial degree k starts from 4 for triangular el-
ements and 3 for rectangular elements, respectively, and the lowest-order elements of
both shapes have 24 DOFs. With a rotation, the grad rot-conforming elements can yield
grad div-conforming elements. In 3D, there are still no available grad curl- or grad div-
conforming elements.

In a broader sense, the existing H?-conforming elements are both grad curl-conforming
and grad div-conforming. In addition, Neilan [53] constructed an H'(curl)-conforming
finite element space on tetrahedral meshes, which is the the 3D extension of the H!(rot)-
conforming element space in [28]. However, it is still not clear whether we can use these
elements to solve the fourth-order problems. In computational electromagnetics, the for-
mulations and elements that violate the delicate structure of the continuous problems
might lead to spurious solutions [6]. Will we suffer from the same issue as in computa-
tional electromagnetics? If so, when? To answer the questions, we consider the Hodge
Laplacian problems of the 2D grad rot complex:

grad . grad rot

0 > H! > H(gradrot) =% H(rot) —*> 2 > 0. (1.3.1)

We apply the grad rot-conforming element [66], the H'(rot)-conforming element [28], and
the Argyris element [b] to the primal and/or mixed formulations of the Hodge Laplacian.
We observe that the primal formulations with the H'(rot)-conforming element and the
H?-conforming element will produce spurious solutions in certain cases, while the mixed
formulations with finite elements that fit into complexes would not. Therefore, in this
dissertation, we will design some grad curl-conforming elements and grad div-conforming
elements both in 2D and 3D by constructing discrete complexes.

The discrete de Rham complex is now an important tool for the construction of finite

elements and analysis of numerical schemes [6, 11, 10, B6, 20]. Motivated by problems



in fluid and solid mechanics, there is an increased interest in constructing finite ele-
ment de Rham complexes with enhanced smoothness [21, 62, 28]. In this dissertation,
we will consider several variants of the de Rham complex and construct discrete sub-
complexes for them. The discrete complex offers several useful tools, which includes the
dimension count and the Poincaré operators. The dimension count motivate us to use
bubbles. The Poincaré operators enable us to tailor the shape function spaces to our
needs (not necessarily the existing incomplete polynomial spaces which were used be-
fore). Therefore, some of our new finite elements will have no restrictions on polynomial
degrees like the previous construction. From the complex perspective, we can also fit the
curl A curl, (curl curl)?, and grad A div problems and their finite element approximations
in the framework of the finite element exterior calculus (FEEC) [6, [L0]. Thus a number
of tools from FEEC can be used for the numerical analysis.

The content of this dissertation is based on the results reported in [40, 67, B9, 6§]
and some new results which have not yet been reported.

1.4 Outline of the Dissertation

The dissertation is organized as follows:

In Chapter E, we introduce some basic notions of differential complexes and Bernstein-
Gelfand-Gelfand (BGG) construction.

In Chapter B, we introduce the grad curl, grad rot, and grad div complexes derived by
the BGG construction. Applying the theoretical framework in [12], we obtain the coho-
mology of the three complexes. Moreover, we define bounded and surjective trace opera-
tors for H (gradrot; Q) and H (grad div; 2), and a bounded trace operator for H(grad curl; 2).
We also prove the density of C=(Q)®V in H (grad curl; Q), H (grad rot; ), and H (grad div; Q).
As a result, we characterize the boundary conditions for all the Hodge Laplacian prob-
lems of the gradrot and grad div complexes and one Hodge Laplacian problem of the

grad curl complex.



In Chapter @, we investigate the spurious solutions of the curl Arot problems. We
consider two Hodge Laplacian problems of the 2D grad rot-complex. We apply different
formulations and finite elements to solve the Hodge Laplacian source or eigenvalue prob-
lems. We find that the mixed formulations with finite elements that fit into complexes
leads to correct solutions, while other combinations may produce spurious solutions.
We provide a convergence analysis for both the source and the eigenvalue problems on
simply-connected domains. We also provide a theoretical explanation for the numerical
phenomena.

In Chapter E, to construct 2D grad rot-conforming elements, we consider the following
variant of the de Rham complex:

grad .

0 »y R —=— H' > H(gradrot) —2 H! > 0. (1.4.1)

We consider the space H (gradrot) instead of H(curlrot) because H(grad curl) fits into
the complex () naturally. In particular, as we have mentioned earlier, any curl rot-
conforming finite element (or curlcurl-conforming in 3D) is automatically grad rot-
conforming (or grad curl-conforming). Therefore, we will focus on the construction of
grad rot-conforming (grad curl-conforming) finite elements in the following. The new fi-

nite elements fit into a subcomplex of ()

grad .
7

0 s R —=— %, v, —l, et > 0. (1.4.2)

In (), we choose Lagrange finite element spaces for ¥, and Lagrange elements en-
riched with an interior bubble on each element for ;. The space Vj, C H(gradrot) is
thus obtained as the gradient of ¥, plus a complementary part, the Poincaré operator
acting on ¥, Among the three versions of V}, which we will construct in this disserta-
tion, one of them is consistent with the previous construction [66]. Here we extend it
by removing the restriction of the polynomial degree. The simplest elements have only

6 DOFs for a triangle and 8 DOFs for a rectangle. To the best of our knowledge, these



elements have the smallest number of DOFs among all the existing grad rot-conforming
finite elements.

In Chapter B and Chapter H, to construct 3D grad curl-conforming elements, we
consider the following complex:

grad .

0 y R —S— H! s H(grad curl) -4 H' @V &, 12 0, (1.4.3)

Here, the first two spaces are less smoother than those in ([1.2.9), whereas the last
two spaces stay the same. This complex is also referred to as the Stokes complex. The
complex () relates the construction of the grad curl-conforming elements to the
incompressible flows.

Chapter B is devoted to constructing the first grad curl-conforming element in 3D.
In [63], Neilan constructed a subcomplex for the different Stokes complex (), which
contains a stable Stokes pair. In this chapter, we apply Poincaré operators and the Stokes

pair in [b3] to construct a finite element subcomplex of ()

grad .
4

0 sy R —— % v, =z, s W, > 0. (1.4.4)

By changing the polynomial degree of ¥, this complex leads to three families of grad curl-
conforming elements. Since the construction involves supersmoothness, the number of
DOFs is large and the lowest-order element has 279 DOFs.

Chapter B is devoted to developing a new finite element subcomplex of () with
fewer DOFs:

grad .

c 1 di
0 > R » Y > Vi —— X S W,

e

(1.4.5)

Recently, Guzmén and Neilan [34] enriched the first-order vector-valued Lagrange finite
element space with modified Bernardi-Raugel bubbles and constructed a stable Stokes
pair. This construction is somewhere between the classic finite elements and the finite

elements defined on splits. It does not involve a large number of DOFs or an extensive
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use of macroelement structures. Therefore, it is a good candidate for 3, -W),. However,
the extension to high-order cases is still not available yet. Our construction in this
chapter starts by extending Guzméan and Neilan’s result in [34] to high-order cases, which
is realized by enriching the vector-valued Lagrange finite elements with the modified
Bernardi-Raugel bubbles and/or suitable interior bubbles. Then we will apply Poincaré
operator and construct a new finite element subcomplex of () The restriction of
the new subcomplex to each face coincides with the sequences in 2D construction. In
the lowest order case, the spaces in () have 4, 18, 16, and 1 DOFs on each element,
respectively. The DOFs are those of the Whitney forms plus vertex evaluation for the 1-
and 2-forms (V}, and ).
In Chapter 57 to construct grad div-conforming elements, we consider the complex

grad .

0 y R—S— H! > H(curl) =L H(graddiv) - H'——0.  (1.4.6)

The 2D version of the complex () is

0 s R —— H'— H(graddiv) — H! > 0. (1.4.7)

If we rotate the complex ([L.4.7) by 7, we will get the complex ([L.4.1]). Therefore we will
focus only on the complex ([1.4.6) to construct 3D grad div-conforming elements. Our
new finite elements fit into a subcomplex of ([L.4.6):

grad .
7

0 y R —S— %, v, = gy, Y, sf > 0, (1.4.8)

A starting point is to take ¥, as the Lagrange finite element spaces. This leads to a
natural choice of V},, which is the Nédélec elements of the first kind. In addition, we choose
Lagrange elements enriched with an interior bubble for 3. The space W), C H(grad div)
is hence obtained as the curl of V}, plus a complementary part, the Poincaré operator
acting on ;. Different orders of 3, can yield different versions of 1},. Among the three

versions of W), which we will construct in this dissertation, the simplest element has only
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8 DOFs for a tetrahedron and 14 DOFs for a cube.

In Chapter g, we summarize our work and provide some promising future directions.
1.5 General Notation

In this section, we recall some basic notation about domains, differential operators,
function spaces, and meshes. Throughout the paper, we use C' to denote a generic positive
h-independent constant.
1.5.1 Domain

Unless otherwise specified, throughout the paper we assume that € R?, d = 2,3 is a
bounded Lipschitz domain. A domain 2 € R is called a Lipschitz domain if its boundary
0€) is locally a graph of a Lipschitz continuous function, i.e., for all & € 0f2, there exists
a neighborhood N(z,r) of & and a Lipschitz continuous function ¢ : R¥~* — R such

that

6QﬂN(m,r) = {y = (ylay27"' ayd) : ¢(y1>y27"' 7yd—1) = yd}

and

QQN(CU,T) :{y: (y17y27"' 7yd) : ¢(y17y27“' 7yd71) <yd}

under a proper local coordinate system.
We say a domain has C1! boundary if N is locally a graph of a Lipschitz continuous
function with Lipschitz continuous derivative.

We define the following Betti numbers for the domain 2:

the zeroth Betti number by is the number of connected components of the domain;
o the first Betti number b; is the number of holes through the domain;

» the second Betti number by is 0 for any bounded in 2D, and it is the number of

voids enclosed by the domain in 3D;

o the third Betti number b3 is 0 for any domain in 2D and 3D.
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For simply-connected domain, the first Betti number 6; = 0. The domain €2 is con-
tractable if it is homomorphic to a closed unit ball or all the Betti numbers are 0.

For U C Q, denote by ngy (resp. Toy) the unit outward normal vector (resp. the
unit tangential vector) to the boundary OU. When U = Q, we drop the subscript 0.
1.5.2 Sobolev spaces

We adopt conventional notations for Sobolev spaces. For any sub-domain U C €2 and

any integer 1 < p < oo, the space of functions which are pth-power Lebesgue integrable

() = {v ; /U PdV < oo},

which is equipped with the norm

1/2
ol = ( / |v|pdv) .
U

When p = 2, we drop the subscript 2 in ||v]j2,y and equip the space L*(U) with the

on U is denoted by

following inner product

(u,v)U:/uvdV.
U

When U = Q, we drop the subscript U in |[v||, and (u,v)y. We denote by Lg(U) the

space of L? functions with vanishing mean:

L3(U) = {v € L*(U): / vdV = 0},
U
Let m be a non-negative integer, then the Sobolev space H™(U) is defined by
H™U) ={ve L*(U): D*v € L*(U) for all a with || <m}.

This space is equipped with the norm
1/2

lollmo = | D 1Dy

| <k
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and the semi-norm
1/2

[l = | D 1Dl

|laf=k

We denote by H{'(U) the space of H™(U) functions with trivial trace. In the case of
m = 0, the space H*(U) and H{(U) coincide with L?(U) and LZ(U).

When m = k + o with an integer & > 0 and a real number o € (0, 1),
H™U) = {ve H*(U): D*v € H°(U) for all  with |a| <k},

where

H(U) = {v e L*(U): /U g %dxdy < oo} :

In this case, the space H™(U) is equipped with the norm

1/2

ollme = | > ID0llow

| <k

and the semi-norm
1/2

[l = | D I1D%0llow |

lal=k
where [[v]|2 = o][3 + fi; [,y MmO  dady.

For 0 < k < oo, we define C*(U) and C*(U) to be the spaces of functions with k-th
order continuous derivatives on U and U, respectively. We also define C5°(U) to be the
space of infinitely differentiable functions with compact support on U.

Let V and M stand for the spaces of vectors and matrices, respectively. For a function
space H, we use H ®V (resp. H ® M) to denote the vector-valued (resp. matrix-valued)
function spaces.

1.5.3 Meshes and Polynomial Spaces
For a Lipschitz polygon or polyhedron, let 7, = {K} be a finite element mesh

consisting of triangles or parallelograms in 2D or tetrahedra in 3D. For each element
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K € Ty, we denote by hg the diameter of K and pg the diameter of the largest circle or
ball contained in K. Let h = maxgeT, hx be the mesh size of 7,. We assume the mesh

is regular, i.e., there is a constant oy > 0 such that

h
£ > gy, forall K € 7y,
PK

Let Vi, &, and Fy, be the sets of vertices, edges, and faces in 7. Also let V,(K),
En(K), and F,(K) be the set of vertices, edges, and faces in the element K.

In 2D, we define a reference triangle to be the triangle with vertices (0, 0), (1,0), and
(0,1), and a reference rectangle to be the rectangle (—1,1) x (=1, 1). In 3D, a reference
tetrahedron is the tetrahedron with vertices (0,0, 0), (1,0,0), (0,1,0), and (0,0, 1), and
a reference cube is the cube (—1,1) x (=1,1) x (—1,1). Each element K € T, can be

obtained by mapping the reference element K using the following affine mapping:
Fx(%) = Bk + by. (1.5.1)

With the affine mapping,

Bg'n,
K Ty
Bk
| Bi il

Tio 'k = (1.5.3)

where n; and n; are the unit normal vectors to f; € F,(K) and fl € Fh(f( ) (or e; €
En(K) and é; € 5h(ff) in 2D), and 7; and 7; are the unit tangential vectors to e; € &,(K)
and é; € £,(K). We denote a variable on K by putting a hat notation above it. For an
operator T, we use T3 to denote the operator is with respect to .

We use P, to denote the space of polynomials with degree at most k, and use ﬁk to
denote the space of homogeneous polynomials with degree k. We denote by @; ;x the
space of polynomials with the degrees of the variables 1, x5, x3 no more than ¢, j, k.
Correspondingly, we have @);; in 2D. For simplicity, we drop the subscripts 7, j when

1 = j = k in 3D and drop the subscript ¢ when ¢ = j in 2D. Denote P, = P, ® V and
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15k = ﬁk ® V. We define
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CHAPTER 2 DIFFERENTIAL COMPLEXES AND THE BERNSTEIN-
GELFAND-GELFAND CONSTRUCTION

In this chapter, we introduce some basic notions of differential complexes and BGG
construction, which will be used in the subsequent chapters.
2.1 Differential Complexes

2.1.1 Homological Algebra

Given vector spaces V¥, k = 0,1,---,n, and operators d* : V¥ — VKl | =
0,1,--- ,n— 1, a complex or a cochain complez is a sequence
dO dkfl dk dk+1 dnfl
0 > VO > > VE y VRt > > VT >0 (2.1.1)

such that **'d* = 0, k = 0,1,--- ,n —2. If d*, k = 0,1,--- ,n — 1, are differential
operators, then the sequence (R.1.1)) is called a differential complex.

The complex (R.1.1)) gives rise to three spaces at each level k:

« the cocycle space 3¥: the null space of the operator d*;

« the coboundary space BF: the range space of the operator d*~1;
o the cohomology space HF = 3k /B*;

Due to the complex property d*d*~! = 0, we have 8% C 3* for each 1 < k <n — 1.
Furthermore, if 3* = B* we say that the complex () is exact at V*. At the two
ends of the sequence, the complex is exact at VO if d° is injective (with trivial kernel),
and is exact at V™ if d"~! is surjective (with trivial cokernel). The complex () is
called exact if it is exact at all the spaces V¥, k=0,1,--- ,n.

If each space in (R.1.1)) has finite dimensions, then a necessary (but not sufficient)

condition for the exactness of () is the following dimension condition:

n

> (=1Fdim(VF) =0.

k=0
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The dimension condition is sufficient if the complex is exact at each level k but 7 for
some 0 <7 < n.
2.1.2 Hilbert Complexes

A Hilbert complex is a sequence of Hilbert spaces W* k=0,1,--- ,n, and a sequence
of closed densely defined unbounded linear operators d* : W* — W+t k =0,1,---,n—1,

k+1 —1
a1 n

0 y WO 4y gk 4 ke > W >0 (2.1.2)

such that d*t'd* = 0.

Denote V¥ := D(d*). The operators d* can be viewed as bounded operators from V*
to V1. We equip V* with the inner product
(w, )y = (u, 0) e + (d¥u, d¥v)pyes .
Suppose d*V* c VF*+1. The complex

k+1 —1
a1 dar

0 . /0 d° o dk*l} vk d* y kL N VAL > 0 (2.1.3)

is called the domain complex.

We now recall the definition of the adjoint operator. Let X,Y be Hilbert spaces
with inner products (-,-)x and (+,-)y. Let T : X — Y be an unbounded operator with
domain D(T") C X. We assume D(T') is dense in X. Then we define an unbounded linear

operator 7% : ' Y — X, and define
D(T*) ={y €Y : there exists z € X s.t. (Tx,y)y = (v,2)x, Ve € D(T) C X}.
When y € D(T*) and (Tx,y)y = (z,2)x, Yo € D(T), we define
Ty = z.
Denote by 6¥*1 : Wkt — W* the adjoint operator of d*. If u € D(6*!), we have

(686" u, w) = (6w, d"w) = (u, d*d*w) = 0,
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and hence §%§*+1y = 0. Thus, the sequence

0 < Wo 2 gk S gk 0 LR 7 VA3
is also a Hilbert complex with domain complex
04— U0« o 8k O ket SR g,
Here U* := D(5**1).
2.1.3 Hodge Decomposition
Define the k-coboundary
%k = dk—lvk—l

and the k-cocycle

3F={uecV*: d"u =0}

From the definition of the complex, we have B* C 3*. We also define

B = FUM and 37 = {u € U* : 6Fu = 0}.

In the following, we assume B, and B}, £ =0,1,--- ,n, are closed.

We have the following decomposition
Wk = 3k g 3k
Define the space of harmonic k-forms
9" =3"n3;.
For a closed Hilbert space, we have
Gk ok,

It holds the following Hodge decomposition:

Wk — B* o (%k,L N 3k> @ 3t

0

(2.1.4)

(2.1.5)
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=B 3 (3:N35) @30t

=B' o H" o 3"

Since we assume B} is closed, we have, by the definition of the adjoint operator,

354 = ;.

Therefore,

From the domain complexes (), we have

VF =83 aF e (B;n V.

2.1.4 The De Rham Complex

The de Rham complex is the cochain complex of differential forms a domain in

R™ with the exterior derivative as the differential operators. The de Rham complex of

smooth differential forms is

R—— CN° — goopt 2

"l oA ),

2\

The sobolev de Rham complex is

R— s HIN Ly paipt &y

m—1
" gAY ),

The L? de Rham complex is

R— [2A0 — &, rap1 &

" T2 ).

whose domain complex without boundary conditions is

R— HAO — 5 Al &

T HAT —5 0

(2.1.6)

(2.1.7)

(2.1.8)

(2.1.9)

with HA® = {u € L?A* : d*u € L2A**1}. The Sobolev de Rham complex (R.1.7) satisfies

the following properties.
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Theorem 2.1.1 ([25]). For any real number q and on any bounded Lipschitz domain
in R™, the dimension of the cohomology of the Sobolev de Rham complex () 1S
finite and independent of q. Moreover, the cohomology can be represented by smooth
functions, again independent of q. In other words, there exists a finite-dimensional space

A C C®AF such that

N(dk,Hqu) =R (dk_l,Hq+1Ak_1) @jfolé, k= 0,1,--- ,m.

According to [12, Theorem 1], 5% k =0,1,--- ,n are also the spaces of cohomology

representatives of the complex (), ie.,
N (d*, HA*) =R (" " HN"" Y@ sk, k=0,1,-- ,n (2.1.10)
Lemma 2.1.2 ([25]). For the complexr (R.1.7), there exist P* : HI'A* — HI7HIATT
and L' : HI7'A* — O A? with finite dimensional range, for i =1,2,--- ,n, satisfying
AP PP =id - L', i=1,2,---,n.

In 3D, using vector proxies, for a scalar function u and a vector function uw =

(ulau27u3)T7
d®u = gradu = (0,1, Opytt, Opyut)

1 T
d'u = curlu = (0p,u3 — Oy, Opytty — Oz, Uz, Op, Uy — Opytiy)

3
d*u = divu = Z@xuz

i=1
In 2D, for a scalar function u and a vector function u = (uy,us)T,
d’u = gradu = (0, u, Opyu)?t,
d'u = 1ot u = Oy, uy — Opyus,

or

d"u = curlu = (9p,u, —0,,u)",
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d'u = divu = 0y, u1 + Oy, us.
We define
H(D;Q) :={uel*(Q®V: Duc L*Q), L*(Q)®V, or L*(Q) ® M.}

with D = div, curl, grad curl, or grad div in 3D and D = div, rot, grad rot, or grad div

in 2D. We furnish the the space H(D:;{2) with the inner product
(w,v)up0) = (u,v) + (Du, Dv)
and the norm
[ellzwio) = [lu] + [[Dul].
We define
Hy(div; Q) := {u € H(div; Q) : u-n =0},
Hy(curl; ) := {u € H(curl;2) : u x n =0},
Hy(rot; ) := {u € H(rot; Q) : u-7 =0}.

The 2D domain complex on the domain €2 is

R —— H'(Q) -4 H(div; Q) -2 £2(Q) —— 0, (2.1.11)
or
R —S HY(Q) 2% H(rot; Q) —2 L3(Q) —— 0. (2.1.12)

The 3D domain complex is
R —S HY(Q) -4 H(cwl; Q) - H(div; Q) — L2(Q) —— 0. (2.1.13)
We also have the following complexes with vanishing boundary conditions:

R —— HNQ) -5 Hy(div; Q) -2 12(Q) —— 0, (2.1.14)
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R —S HYQ) 224 Hy(rot; Q) —2s L2(Q) —— 0, (2.1.15)

and

R—S HIQ) 2% Hy(cwrl; Q) — Hy(div; Q) —3s L2(Q) —— 0. (2.1.16)

Motivated by problems in fluid and solid mechanics, there is an increased interest
in the de Rham complexes with enhanced smoothness. In this dissertation, to construct
grad curl-conforming and grad div-conforming elements, we will consider the complexes
(1.4.1), (1.4.9), and ([.4.6).

It is also worth to address the relationship between H (grad curl; Q) and H (curl curl; 2)
={u e *(Q)@V:culu € L*(Q) ® Vand curlcurlu € L*(Q) ® V}. In 2D, we have
H(gradrot; ) = H(curlrot; Q) = {u € L?*(Q) @ V : curlrotu € L?(Q) ® V} since curl
is a rotation of grad. In 3D, we have H(grad curl;Q) C H(curlcurl; Q). If Q is convex
or has C™!' boundary, then for any function w € H(curlcurl; Q) with certain bound-
ary conditions, e.g., u x n = 0 on 99, we have curlu € H'(Q) ® V since curlu €
H(curl; Q) N Hy(div; Q) — HY(Q) ® V [B0, Theorem 3.8]. This implies that for these
domains we actually have H (grad curl; Q) N Hy(curl; Q) = H(curl curl; Q) N Hy(curl; §2).
In particular, for polynomial spaces, H(grad curl; Q) = H(curl curl; 2).

For D = grad div, grad curl, or grad rot, we define another norm for H(D;):
”’umH(gradrot;Q) = HU’H + H rotuH + H gradrotu” when D = gradrOtv
H|U’H|H(graddiv;ﬂ) = HU’H + H dlqu + H grad leU’H When D = graddiv?

llelll g grad curty = 1wl + [ curlw|| + || grad curl w|| when D = grad curl.

It is easy to check that H(D;(2) is a Banach space under the two norms || - [ p.q) and

| - | zz(ps0)- Applying the bounded inverse theorem, the two norms are equivalent.
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2.1.5 Poincaré Operators
For any complex (), we call graded operators p¥ : V¥ — V¥~ Poincaré operators

if they satisfy
o the null-homotopy property:

d" P 4+ pP Lk = idya; (2.1.17)

o the complex property:

Lemma 2.1.3. If there exist Poincaré operators p* for (), then () is exact.

Proof. Assume that d*u = 0 for u € V*. From the null-homotopy identity, u =
d"(pFu). This implies the exactness of (2.1.1) at V. O

For the de Rham complex (), there exist Poincaré operators, and their explicit

forms in 2D are [36, 44, 21]:

plu = /01 u(W +t(x —W)) - (x — W)dt, Yu € CA(Q), (2.1.18)
ol = /01 tu(W + ta — W) (@ — W)hdt, Yu € C¥A2(Q), (2.1.19)
where @ = (25, —21). In 3D,
plu = /01 u(W +t(x —W)) - (x — W)dt, Yu € CA(Q), (2.1.20)
pPu = /01 tu(W +t(x — W) x (x — W)dt, Yu € C¥A*(Q), (2.1.21)
pdu = /01 u(W + t(x — W) (x — W)dt, Yu € CA*(Q), (2.1.22)

where W is a base point.
In addition to the complex property and the null-homotopy identity, these operators

further satisfy
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o the polynomial preserving property: if u is a polynomial of degree r, then pu is a

polynomial of degree at most r + 1.

Koszul operators x* : V¥ — V* =1 restricting on homogeneous polynomials have

similar properties to the Poincaré operators:
o the homotopy formula:
"R+ P P = (k+ r)uifu e VEN By

o the complex property:

o the polynomial preserving property: if u is a polynomial of degree r, then ku is a

polynomial of degree at most r + 1.

The explicit forms of Koszul operators in 2D are [6]:

klu=u-x, Yu € C°A(Q), (2.1.23)

K*u = uxt, Yu € CA*(Q). (2.1.24)
In 3D,

klu=u-x, Yu € CA(Q), (2.1.25)

Ku=u x x, Yu € CCA*(Q), (2.1.26)

KPu = ux, Yu € CCA*(Q). (2.1.27)

2.2 Bernstein-Gelfand-Gelfand Construction

We can use the BGG construction to derive new differential complexes from the
known ones. It is shown in [12] that the cohomology of the output complex of BGG can
be related to that of the input complexes. We recall the process of BGG construction

and the main conclusion of [12].
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Suppose (Z°*,d*) and (2 . 67‘) are two bounded Hilbert complexes. Suppose also S° :

A Z i =—1,0,---,n are bounded connecting maps that connects the two Hilbert
complexes:
> /" —— 0
/ / / / / / / (2.2.1)
y Z! > > 7" — 0.

The two complexes (Z°,d*) and (Z*,d*) can not be arbitrary. They are of the form
Zl=V'@E and Z' =V @K,

where V' is a Hilbert space and E?, Ei might be space of scalars R, vectors V, matrices

M, etc.

In addition, the connecting operators S* are of the form
St =id ® s,

where st : Ef — E™*! is a linear operator. They satisfy the following two properties:

o Anticommutativity, SiHli = —qi+1Gl i =0,1,-,n— 2;

o The J-injectivity /surjectivity condition, i.e., for some J with 0 < J < n,
(

injective, 0 <1 < J,

s"is < bijective, i =J,

surjective, J <1 <n.

\

We are now in a position to define the output complex of the BGG construction:

0 y 20 D0, DU gk DT gy DY DUz 0 (2.2.2)

with
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and
.

1d®PRLdl, Z< J,

Di

d'(SH7 ', 0=,

d’, i>J.

\

Here R(s) and N (s) represent the range and the kernel of the operator s, and Py
represents the L? projection to R*:.

The output complex () can be read from the input complexes (Z° d®) and
(Z*,d*) in the following way. We start from the left end of the top complex of (),
and go right along the complex, at each step restricting to the orthogonal complement
of the range of the incoming S operator. When we reach the space Z”, we go to Z7+1
in the bottom complex by following the connecting map S” in the reverse direction and
d’ , and then continue rightwards along the bottom complex, restricting to the kernels
of the S operators.

Denote by H' (Z*,d®) the i-th cohomology space of the complex (Z°,d®*). Then the
cohomology of the output complex can be related to the cohomology of the input com-

plexes by the following theorem.

Theorem 2.2.1 ([12]). Suppose the given bounded Hilbert complexes (Z*,d*) and (Z°,d*)
and bounded connecting maps S' : Z' — Z* satisfying the required properties. Then

the output complex () 1s a bounded Hilbert complex. Moreover,

dimH' (2°, D*) < dimH (Z°,d*) + dim H'(Z*,d*), Vi=0,1,--- ,n.
The equality holds if and only if S* induces the zero maps on cohomology, i.e., if and
only if

SIN(d) C R(d), Vi=0,1,--- ,n—1. (2.2.3)



27

If there exist bounded operators K' : Zi — Zi.i = 0,1,--- ,n, such that
Si=d'K' — KMd', i=01,--,n—1,
then the condition () holds. Moreover, the space of cohomology representatives of

(Z°, D*) can be represented by the spaces of cohomology representatives of (Z°,d®) and
(Z*,d*).
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CHAPTER 3 Gradcurl Complex, Gradrot Complex, and Graddiv Complex
The grad curl complex, gradrot complex, and grad div complex can be derived by
the BGG construction [12]. In this chapter, we will investigate these complexes and the
involved spaces in terms of trace theorems, density, Hodge Laplacian, characterization
of boundary conditions of the Hodge Laplacian, etc.
3.1 Gradcurl Complex and Hodge Laplacian
For any real number ¢, we consider the diagram with two de Rham complexes as the
input:

0— HI S gty @ ge2gy 4V, gos

/ / / / (3.1.1)

0—5 00 HI 2V & gedgM @ grigoM 9% Heb gV — 0.

e}

Here and after, to ease the presentation, we drop the domain €2 in the function spaces
in complexes. The connecting operators satisfy that id is bijective and tr is surjective,

and they anti-commute with the differential operators, i.e.,
divo id = trograd.

From the general framework presented in the above chapter, we can derive the fol-
lowing grad curl complex from ()

grad grad curl

0 — HIES grigVE N ged3oT ™ grigM & HI 5@V — 0, (3.1.2)

where T is the space of trace-free matrices and the differential operators grad, curl, and
div are applied row-rise.

Note that the dimension of cohomology at H47*(Q2) ® V in the first row of () is
the first Betti number b; of the domain, and the dimension of cohomology at H~2(Q)®@V

in the second row is 3 (kernel of grad is constants). If we can verify the condition (),
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then, according to Theorem and Theorem , we have

N (grad curl, H"(Q) ® V) = R(grad, H1(Q)) & ., (3.1.3)
where 7! is a set of smooth cohomology representatives (independent of ¢q) with di-
mension dim £ = 3 + b;.

Next we verify the condition () We have a bijection between vectors and skew

symmetric matrices defined by

(%1 0 —7Us3 (%)
mskw v | = ws 0 —u
V3 —V2 U1 0

We define K!': H™2(Q) @V — HT2(Q) @V, K2: H13(Q) @ M — H93(Q) ® V, and

K% H Q) @ M — Ho(Q) by
Flu:i=tuxa
=3 :
~ 1
KU : = 5(U —tr(U))x,
KU : = vskw U - x,
with vskw = mskw ™' oskw : M — V. Then
IK — Kt J = .
Recalling the operators P! and L introduced in Lemma , we define
K= P*5 4+ K, (3.1.4)
Then

dK — Kd = d(PS + LK) — (PS + LK)d = dPS + PdS + dLK — LKd

= (id — L)S + LdK — LKd = S.
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The L? version of () with unbounded linear operators, i.e.,
0— 2 ES 2V 2T @ r2oM 4% 120V — 0 (3.1.5)

is closely related to the PDEs.
3.1.1 Gradcurl Complex Without Boundary Conditions
We consider the following domain complex of the L? complex ()

grad curl

0 — H' 2% H(gradcurl) 2% H(cwrl, T) <% H(div,M) 4% 120V — 0,
(3.1.6)
where H(curl, T;Q) = {U € L*(Q) ® T : curlU € L*(Q) ® M} and H(div,M;Q) =
{Uel*(QeM:divU € L*(Q) @ V}.
According to Theorem and (), we have

N (grad curl, H (grad curl; 2)) = R(grad, H'(Q2)) & ., (3.1.7)

where 2} is defined in ()
Define
Ho(curl,M; Q) :={U € H(cur, M;Q) : n x U = 0},

A

where the cross product in n x U is applied row-wise. The dual complex of (B.1.6) is
0« L2 & Hy(div) <Y fy (curl div, T) < 7y (cwrl, M) €2 Hl @ V «— 0,

where Hy(curldiv, T; ) is a formal notation for the domain of the adjoint of the operator
(grad curl, H (grad curl; 2)). We will not characterize Hy(curldiv, T;€2) in this disserta-
tion.

From general results on Hilbert complexes (see Section ), we have the Hodge

decomposition at H (grad curl; 2):
L*(Q) ® V = grad H'(Q) @ curldiv Hy(curldiv, T; Q) @ $*,

where $! is the space of harmonic forms with dim $! = dim 27} .



31

Define
X = H(grad curl; Q) N Hy(div; Q).
The Hodge Laplacian operator follows from the abstract definition:
£t .= —(curldiv) grad curl — grad div = — curl A curl — grad div,

with the domain Dg1 = {u € X : grad curlu € Hy(curldiv, T;Q),diva € H(Q2)}. For
f € L*(Q) @V, the strong formulation of the Hodge Laplacian boundary value problem

seeks u € D1 and uw L $H' such that

—curl Acurlu — graddivu = f — Py f  in Q.
3.1.2 Gradcurl Complex with Boundary Conditions
Define
Ho(div,M; Q) :={U € H(div,M;Q): Un = 0},
Hy(grad curl; ) := closure of C5°(€2) ® V in the sense of H(grad curl) norm.
We will show in Section that Hy(grad curl; Q) has the following characterization:
Hy(grad curl; ) := {u € H(gradcurl;2) : u x n =0 and curlu = 0}.

Consider the domain complex of () with vanishing boundary conditions:

grad curl

0 — HI 5% Hy(grad curl) 229 Hy(curl, T) <% Ho(div,M) 4% 12 @V —s 0,
(3.1.8)

which is derived from the following diagram:

2\

0 — Hg gl Hy(grad curl) <% gl @V —& 4 12 > 0

/ / / / (3.1.9)

0— 07— oV 2% Hy(curl, M) % Hy(div,M) & 120V — 0.
The dimension of the cohomology at Hy(grad curl; 2) in the first row of () is by,

and the dimension of the cohomology at Hj(2) ® V in the second row of () is 0.
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Therefore, we have
N (grad curl, Hy(grad curl; ) = R(grad, Hy () @& L0,
where 210 is a set of smooth cohomology representatives with dim 210 = by.
The dual complex of () is
0 +— L2 ¢ H(div) <Y H(curldiv, T) £ F(curl, M) <2 H! @ V «— 0,
where H(curldiv,T;Q) = {U € L*(Q) @ T : curldivU € L*(Q) ® V}. The Hodge
decomposition at Hy(grad rot) reads:
L*(Q) ®V = grad Hj (Q) @ curldiv H (curl div, T; Q) & $;

with dim fj(l) = dim e%”oé’o = by.
Define
Xo := Hp(gradrot; Q) N H(div; ).
We define the Hodge Laplacian operator .#! in the previous way but with the domain
Dgig={u € X, : gradcurlu € H(curldiv, T; Q),divu € H}(2)}. For f € L*(Q) ® V,
the strong formulation of the Hodge Laplacian boundary value problem seeks uw € D1
and w L $} such that
—curl Acurlu — graddivu = f — Py f in Q. (3.1.10)
In the case of f € curldiv H(curldiv, T; ), the problem () is then to find w such
that w L 9} and
—curlAcurlu = f in Q,
divu =0 in ),
(3.1.11)

uxn=0 onodf,

curlu =0 on 9.
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3.1.3 Gradcurl Complex with Partial Boundary Conditions
Define

Heu(grad curl; Q) := {u € H(grad curl; Q) : curlu = 0}

We consider a domain complex of () with partial vanishing boundary conditions:

grad grad curl

0 — H' = Hu(grad curl) =—— Hy(curl, T) curl Hy(div, M) div, LoV — 0,
(3.1.12)
which is somewhere between the complexes (B.1.6) and () The above complex is

derived from the following diagram:

0 — H' &% Ho(gradcurl) <% Hl @V —9v 5 12 > 0 >
1 grad cur, . div, 2
0—0 y H @ V 22 Hy(curl, M) <5 Hy(div,M) <% 2@V — 0.

The dimension of the de Rham complex cohomology at H..1(grad rot; §2) in the first row
of the above diagram is b;, and the dimension of the de Rham complex cohomology at

Hi(Q2) in the second row is 0. Consequently,
N (grad curl, Hon(grad curl; Q) = R(grad, H'(Q2)) @ 25

where 21" is a set of smooth cohomology representatives with dim 25w = p,.

The dual complex of () is:
0+— L3 i Hy(div) ~Curldiv Hgiy(curldiv, T) gov curl H(curl, M) plaiay el RV +— 0,

Here Hg;y(curldiv, T; €2) is a formal notation for the domain of the adjoint of the operator
(grad curl, Hey(grad curl; Q). Again, we will not characterize Hg;, (curldiv, T; Q) in this
dissertation.

The Hodge decomposition at H,(grad curl) reads:

L*(Q) ®V = grad H'(Q) @ curldiv Hg, (curl div, T; Q) & $

curl
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with dim $!, = dim 52! = b,. The space 9!, is trivial if Q is simply-connected.

curl curl

Define
Xewnt := Heun(grad curl; Q) N Hy(div; ).
The domain of the Hodge Laplacian operator ! is
D g1 ey = {u € Xy @ grad curlu € Hgy(curldiv, T; Q), divu € H'(Q)}.

For f € L*(Q) ® V, the strong formulation of the Hodge Laplacian boundary value

problem seeks u € D g1 oy and u L H! ; such that

—curl Acurlu — graddivu = f — P;n  f in Q.

curl

3.1.4 Characterization of Hy(grad curl)

In this section, we characterize the space Hy(grad curl; §2).

Theorem 3.1.1. Define vt = {u X n,curlu}. Then vcun is a linear bounded

operator from H(grad curl; Q) to H=/2(0Q) @ V x H'/2(0Q) @ V with the bound:
[V cunte|| -17200) < m1200) < Cllwl|Higad cartio)-

Proof. Since y,u = u xn is a linear bounded operator from H (curl; Q) to H~'/2(0Q)®@V

and trv = v|yq is a linear bounded operator from H'(Q) @ V to H'/?(092) ® V, we have

”fyT,CurluH?‘_]—l/Q(aQ)XHI/Z(@Q)
=/|u x n“?{%ﬂ(ag) + | Curlu”i]l/?(ag)
SCHUH?‘I(CUFI;Q) + CH CUI'IU||§{1(Q)

SCfHU’H?—I(gradcurl;ﬂ)7

where we have used the equivalence between the norms || || z(grad curt;) and [|[ll g (grad curt:)-

see Section . O]
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Lemma 3.1.2. If a function uw € H(grad curl; Q) satisfies
(grad curlu, @) + (u, curldiv®) = 0 for all ® € C°(Q) @ T, (3.1.13)
then u € Hy(grad curl; Q).
Proof. We follow the proof of [49, Lemma 3.27]. Denote Du = grad curlu. Let w and
Du be the extension of w and Du by zero outside (2. Then () can be rewritten as
(Du, ®) + (w, curl div®) = 0 for all ® € C®(R*) ® T,

which implies w € H(grad curl;R?). If we can construct a sequence of functions in
C5° () ® V that converges to uw in H (grad curl) norm, then w € Hy(grad curl; 2).

1). Suppose that € is a strictly star-shaped with respect to a point in €, say y.
Without loss of generality, we suppose y is the origin of the coordinate system. For

6 € (0,1), define the function
ug(x) = u(x/0), Va € R
Obviously, @y € H(gradcurl; R?) and limy_,; wy = @ in H(grad curl; R?). Since Q) is
strictly star-shaped, the function uy has a compact support in 2. Let 1. be the mollifier
ne(x) = e~*n(x/e),
where

Crexp (o), |z <1,

o[> -1

(@) =
0, x| > 1

~1
with C; = (fRz exp (W%l)da:) . There exists a g9 > 0 such that, for 0 < ¢ < &y,

- * up belongs to C3°(N2) ® V and
lir% Ne * g = wy in H(grad curl; Q).
e—

As a result, there exists {0, e }72, with 0 < 6, < 1 and 0 < ¢, < g, such that 6, — 1
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and g, — 0. Then
klim N, * g, = w in H(grad curl; Q).
—00
2). In the general case, there exit finite open sets O;, i = 1,2,--- ¢ such that
2 C Ui<i<qO; and each Q; := QN O; is Lipschitz, bounded, and strictly star-shaped.

Let {a;}1; be a partition of unity subordinate to {O;}L,, i.e.,
q
a; € C3°(0;), 0 < a;(x) <1, and Zai(w) =1in Q.
i=1

Then @ = Y.  a;u in R® with a;u € H(grad curl; Q) and supp(aya) C ;. We can

complete the proof by applying 1) to each a;u. Il

By a modification of the proof of Lemma , we can prove the counterpart for
H(curldiv, T; Q).

Lemma 3.1.3. If a function U € H(curldiv, T; Q) satisfies

(curldivU, @) + (U, grad curl ¢) = 0 for all ¢ € C*(Q) @V, (3.1.14)
then U € Ho(curldiv, T; Q) = closure of C§°(2) ® T in H(curldiv, T; Q) norm.
Theorem 3.1.4. C*(Q) ® V is dense in H(grad curl; ().

Proof. We follow the proof of [49, Theorem 3.26]. Rewrite
H(gradewl; Q) = C*(Q) @ Ve (C*(Q) @ V)L.
Suppose u € (C*(Q) ® V)L, then
(u, @) + (grad curl u, grad curl @) = 0 for all p € C*°(Q) @ V. (3.1.15)

We shall show u = 0. Let V = gradcurlu € L?(Q) ® V. The equality () implies,

in the sense of distributions,

u=curldivV € L*(Q) ® V.
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Then V' € H(curldiv, T; 2). From the equality (), V satisfies
(curldiv V', @) + (V, grad curl ¢) = 0 for all ¢ € C°(Q) @ V.

It follows from Lemma that V' € Hy(curldiv, T; ). Since C§°(Q2) ® T is dense
in Hy(curldiv, T;Q), there is a sequence {V,}>*, C C5°(2) ® T such that V,, - V
in Hy(curldiv, T; Q) as n — oo. Then by () and the distributional definition of

grad curl u, we have

(u,u) + (grad curl u, grad curl u) = (u, curldiv V') + (V' grad curl u)

= lim (u, curldiv V,)) + (V,,, grad curlu) = 0,

n—oo

which completes the proof. [
Now we are in a position to characterize Hy(grad curl; Q).

Theorem 3.1.5. The space Hy(grad curl; Q) can be characterized as

Hy(grad curl; Q) = N (7r.cun) := {w € H(grad curl; Q) : v, conw = 0 on 9Q}.

Proof. 1t follows from Theorem that N (7Vrcun) is closed. Then it is clear that
Hy(grad curl; Q) C N (Vrcun) since C5°(2) @ V. C N (Yrcunt) and N (7, cun) is closed. To

prove the opposite, we first have
{u € H(grad curl; Q) : (grad curlu, ®) + (u, curl div ®) = 0 for all ® € C*>°(Q) @ T}

is a subset of Hy(grad curl; 2) from Lemma . Ifu €N ) and u € C*(Q) RV,

then

(grad curl u, ®) + (u, curldiv®) = 0.

Since C*(2) ® V is dense in H(grad curl; 2) (Theorem ), the equality also holds

for u € H(grad curl; Q). Therefore N (7, cun) is a subset of

{u € H(grad curl; Q) : (grad curlu, ®) + (u, curldiv®) = 0 for all ® € C*(Q) @ T}.
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3.2 Gradrot Complex and Hodge Laplacian
In this section, we present the gradrot complex in 2D. For any real number ¢, the
grad rot compler reads:

grad

0 — HIQ) 22 HoY(Q) @V 2285 ge3(Q) @V 2% gi4(Q) — 0, (3.2.1)

which is derived from the following diagram:

grad 1

Q) V 2 H2(Q

S

0 y Hi2(Q) 22 ge3(Q) @V 2% Ha-4(Q

0 — H9(

Note that the dimension of cohomology at H? () ® V in the first row of () is the
first Betti number b; of the domain, and the dimension of cohomology at H?"2 in the

second row is 1 (kernel of grad is constants). According to Theorem and Theorem

N (gradrot, H* () ® V) = R(grad, H1(Q)) @ A, (3.2.3)
where 7. is a set of smooth cohomology representatives (independent of ¢q) with di-
mension dim 2. =1+ b;.

Remark 3.2.1. Define Kju = 1/2ua* and Kyv := 1/2v - 2. Then we can verify the
condition () by defining K7, Ks in the way of ()

The L? version of () with unbounded linear operators is as follows:
0 — L3(Q) 22 12(0) oV 22 12(0) @ V 2% L2(Q) — 0. (3.2.4)
3.2.1 Gradrot Complex without Boundary Conditions

Consider the following domain complex of ()

grad grad rot

0 — HY(Q) &5 H(gradrot; Q) 22225 H(rot; Q) =% L2(Q) — 0, (3.2.5)
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and its dual complex
0 +— L2(Q) «&¥ Hy(div; Q) <Y Ho(curldiv: Q) €L HL(Q) +— 0. (3.2.6)

Here Hy(curldiv;2) is the closure of C5°(Q) @ V in H(curldiv;Q) = {u € L? @ V :
curldivu € L? ® V}. We will show in Section that

Hy(curldiv; Q) = {u € H(curldiv;Q2) : dive =0 and w - n = 0 on 00},

and the adjoint of (gradrot, H(gradrot; 2)) is (— curldiv, Hy(curl div; €2)).

Similar to (), we have

N (gradrot, H(grad rot; Q) = R(grad, H'(Q)) ® s, (3.2.7)

with 2} defined in ()

The Hodge decomposition at H(grad rot; §2) reads
L*(Q) ® V = grad H'(Q) @ curldiv Hy(curl div; Q) @ H°,

where $! is the space of harmonic forms with dim $' = dim %ﬂo}) In addition to the
harmonic forms of the de Rham complex, i.e., the functions satisfying rotw = 0 and
divu = 0, the function u = grad p with p solving

Ap=1inQ, p=20on 02
is also a harmonic form in $).

The Hodge Laplacian operator follows from the abstract definition:
£t .= —(curldiv) grad rot — grad div = — curl A rot — grad div,

with the domain D¢ = {u € X : gradrotu € Hy(curldiv;Q),diva € H'(Q)}. For
f € L*(Q) @V, the strong formulation of the Hodge Laplacian boundary value problem

seeks u € D1 and w L H' such that

—curl Arotu — graddivu = f — P f  in Q. (3.2.8)
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3.2.2 Gradrot Complex with Boundary Conditions
Define

Hy(gradrot; ) := closure of C5°(€2) ® V in the sense of H(gradrot) norm.
We will show in Section that
Hy(gradrot; Q) := {u € H(gradrot;2) : w-7 =0 and rotu = 0}.

Consider the domain complex of () with vanishing boundary conditions:

grad

=— Hy(gradrot; Q)

grad rot
_—

0 — Hy(Q) Ho(rot; Q) =% 12(Q) — 0,  (3.2.9)

which is derived from the following diagram:

grad

0 — H}(Q) &5 Hy(gradrot; Q) — HN(Q

/ ' / / (3.2.10)

0 > 0 » H3(Q) Lad> Hy(rot; Q) =%

The dimension of the cohomology at Hy(grad rot; €2) in the first row of () is bg, and
the dimension of the cohomology at H}(f2) in the second row of () is 0. Therefore,

we have
N (gradrot, Hy(grad rot; ) = R(grad, Hy(2)) & S2°,

where J210 is a set of smooth cohomology representatives with dim 2.0 = by.

The dual complex of () is:

0 +— L2(Q) «& H(div; Q) <Y Hewldiv; Q) &2 HY(Q) «— 0. (3.2.11)
The Hodge decomposition at Hy(gradrot) reads:
L*(Q) ® V = grad Hy (Q) @ curldiv H (curl div; Q) & 9 (3.2.12)

with dim 5’)(1) = dim %”O};O = by. The space 5’)(1) is vanishing for any bounded domain in

2D.
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Define
Xo := Ho(grad rot; ) N H(div; ).
We define the Hodge Laplacian operator £ in the previous way but with the domain
Dyig={u € X, : gradrotu € H(curldiv;Q),divu € Hy(Q)}.

For f € L*(Q) ® V, the strong formulation of the Hodge Laplacian boundary value

problem seeks u € D41y and u L £ such that
—curl Arotu — graddivu = f — Pqi f in Q. (3.2.13)

This problem is related to the problem considered in the following chapter, especially
when f € curldiv H(curldiv; Q).
In the case of f € curldiv H (curldiv; ), the problem () is then to find u such

that u L $H) and
—curl Arotu = f in (,
divu =0 in ,
(3.2.14)
u-7=0 ondf,

robuw =0 on 0.

3.2.3 Gradrot Complex with Partial Boundary Conditions
Define

H,(gradrot; Q) := {u € H(gradrot;2) : rotu = 0}

We consider a domain complex of () with partial vanishing boundary conditions:

grad

0 — HY(Q) —

grad rot

H,o(gradrot; Q) 2 Hy(rot; Q) =% L2(Q) — 0,  (3.2.15)



42

which is somewhere between the complexes () and () The above complex is

derived from the following diagram:

0 — HY( grad H,(gradrot; 2) oty H}(
0 LN Hy(rot; Q) =%

The dimension of the de Rham complex cohomology at H,.(gradrot; 2) in the first row
of (B.2.16) is by, and the dimension of the de Rham complex cohomology at H{(£2) in
the second row of () is 0. Consequently,

N (grad rot, Hy(grad rot; Q) = R(grad, H'(2)) & S,

where S22 is a set of smooth cohomology representatives with dim 217 = b,.

The dual complex of () is:

0 +— L2(Q) €& Hy(div; Q) 28 o (curl div; Q) €51 H1(Q) «+— 0. (3.2.17)

Here Hgiy(curldiv; ) is a formal notation for the domain of the adjoint of the operator
(grad rot, Hyot(grad rot; 2)). We will provide a characterization for this space in Section
to show that it is a subspace of H (curldiv; ) with the boundary condition divu =
0.

The Hodge decomposition at H,.(grad rot) reads:

L*(Q) ® V = grad H'(Q) @ curl div Hg;, (curl div; Q) @ $H; (3.2.18)

rot

with dim ), = dim #.™" = b;. The space H), is trivial if Q is simply-connected.

rot

Define
Xrot 1= Hyot(gradrot; Q) N Hy(div; 2).
The domain of the Hodge Laplacian operator £ is

Dyt yor = {u € Xyor : gradrot u € Hy;, (curldiv; Q), divu € H'(Q)}.
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For f € L*(Q) ® V, the strong formulation of the Hodge Laplacian boundary value

problem seeks u € D g1, and w L $]  such that

—curl Arotu — graddive = f — P f  in Q. (3.2.19)

rot

3.2.4 Characterization of Hy(gradrot), Hy(curldiv) and Hg;y(curldiv)
In this section, we provide a characterization for the spaces Hy(grad rot; Q2), Ho(curl div; ),

and H gy, (curldiv; Q).

Theorem 3.2.1. Define v, ot = {w-7,rot u}. Then v, 0 @S a linear bounded operator

from H(gradrot; Q) to H=/2(02) x HY2(9SY) with the bound:
”,yﬂrOtuHH*1/2(8Q)><H1/2(BQ) < CHUHH(gradrot;Q)'

Proof. Since ,u = u - T is a linear bounded operator from H (rot; ) to H~'/2(99) and

trv = v|aq is a linear bounded operator from H'(2) to H'/2(952), we obtain

||%Jot“”ftrl/?(aﬂ)le/z(aQ) < CH’U’”%I(rot;Q) +C rOtqu%—Il(Q)v

which completes the proof by the equivalence between the norms || - || g(gradrot;0) and

|” ) H|H(gradrot;Q)’ see Section ' [

Similarly, we have

Theorem 3.2.2. Define v, avtt = {u-n,divu}. Then v, 4y s a linear bounded operator

from H(curldiv; Q) to H=Y2(0Q) x HY?(0Q) with the bound:
”’Vn,diquHflﬂ(aQ)><H1/2(89) < CHuHH(curldiV;Q)-

Theorem 3.2.3. The trace operator v, .o s surjective from H(grad rot; ) to H~/2(982) x
HY2(0Q). That is, for any g € HY?(0Q) and g, € HY?(0R), there exists u €

H(gradrot; Q) such that w - T|sq = g1, rot u|ag = g2, and

||u||H(gradr0t;Q) <C (||gl||H—1/2(8Q) + ||92||H1/2(BQ)) .



44

Proof. For g, € H'/2(09), there exists v € H'(Q) such that v|gq = g» and

H’UHHl(Q) < CHQ2HH1/2(89)-

Take xy and r such that B(xg,r) C 2 and define

1 /rx—x
77r,mo<m> = ﬁ”( , >

with 7 defined in the proof of Theorem . Then we have 7, 4,(z) € C°(Q2) and
Jo o (2)de = 1. Let Cy = (g1, 1)aq — (v,1) and ¥ = v 4 Cyijy.z,- Then we have
(v,1) = (v, 1) + Co(Mrzo, 1) = (91, 1o,
and
[0l (@) < [0l ) + C({91: Dae — (v, 1))
< C (vl + loilln-1r200))
< C (llg2ll 200y + 91l ir-12(00)) - (3.2.20)

Now we seek w € H'(Q) such that

—Aw = —v in ,
g—:: = g; on 0f),

where v and ¢; satisfy
—(0,1) 4+ (g1, L)oo = 0.
By virtual of the regularity result of the elliptic problem [49, Theorem 3.18|, we have
lwllme) < C (011 + lgull 1200 - (3.2.21)

Take u = curlw. Then w € L*(Q) and rotw = Aw = v € H'(Q), and hence u €

H(gradrot; €2). Restricted on 0%, u satisfies

u-1T=curlw- -17=gradw-n = g,



rotu =Aw=0v=1v = gs.

Combining (522(1) and (EQQI), we obtain

1wl 1 (grad rots) = [lwl| + || grad rot u|
= || curlw|| + || grad ||
< Nwlla@) + 0]l
< C (101l + Nlgrll -2 (00) + 1011 a1

< C (gl g-1/2(00) + g2l m1r2a0) -

Proceeding as the proof of Theorem , we can show the following density.
Theorem 3.2.4. C*(Q) ® V is dense in H(gradrot; ().
Theorem 3.2.5. C>®(Q) ® V is dense in H(curldiv; ().

Lemma 3.2.6. For u € H(gradrot; Q) and w € H(curldiv;Q), the following identity
holds

(u, curldivw) + (gradrot w, w) = (u - 7, divw) s + (w - i, rot u)gq. (3.2.22)

Proof. 1t is easy to check that () holds for smooth functions w,w. By Theorems

B.Q.]J, |3.2.ﬂ, |3.2.4I, and , we can prove () for u € H(gradrot; ) and w €

H(curldiv; 2). O

Now we are in a position to characterize Hy(gradrot;Q2) and Hy(curldiv;2).

Theorem 3.2.7. The space Hy(gradrot; Q) can be characterized as

Hy(gradrot; ) = {w € H(gradrot; Q) : v ,0ew = 0 on 00},
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Proof. Recalling Hy(gradrot; Q) = closure of C§°(2) ® V in the sense of H(gradrot)

norm, we write
H (gradrot; Q) = Hy(grad rot; Q) @& (Ho(grad rot; Q))L

We then show w = 0 if w € (Hy(gradrot; Q))L and v, ppw = {w - T, rot w} = 0. Since
w € (Ho(gradrot;Q))L,

(w,v) + (grad rot w, gradrot v) = 0 for all v € C°(N) @V,

which implies w = curl div grad rot w. Denote u = grad rot w, then w € H(curldiv; ).
Applying (), we obtain

(w,w) + (grad rot w, grad rot w) = (w, curl divu) + (grad rot w, u)

=(w - 1,divu)gn + (u - n,rotw)gg =0,
which yields w = 0. O

Similarly, we can show

Theorem 3.2.8. The space Hy(curldiv; Q) can be characterized as
Hy(curldiv; Q) = {w € H(curldiv; Q) : v,avw = 0 on 0Q}.

Next we compute the adjoint operators of grad rot with domains H (grad rot; 2)) and

H,o(grad rot; 2)).
Theorem 3.2.9. The adjoint of (grad rot, H(grad rot; 2)) is (— curl div, Hy(curl div; 2)).

Proof. If w belongs to the domain of the adjoint of (grad rot, H(grad rot;(2)), then there

exists v € L*(Q) ® V such that
(gradrot u,w) = —(u,v), wu € H(gradrot; ).

Such a function w must be in H(curldiv; ) and satisfies curl divw = v. Therefore, w
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belongs to the domain of the adjoint of (gradrot, H(gradrot; 2)) if and only if
(gradrot u, w) = —(u, curldivw), w € H(gradrot; ().
From Lemma , the above identity holds if and only if
(u-7,divw)gg + (w - n,rot u)sq = 0.

which holds when 7, giyw = {w-n, divw} = 0 since 7, ;01 is surjective from H (grad rot; §2)

to H='/2(0Q) x H'?(09) (see Theorem ) O
Theorem 3.2.10. Denote
Hgaiy(curldiv; Q) = {w € H(curldiv; ) : divw = 0 on 0Q}.
Then the adjoint of (gradrot, H,o(gradrot; Q)) is (— curl div, Hg;y (curl div; £2)).
Proof. The proof is similar to that of Theorem . ]

3.3 Graddiv Complex and Hodge Laplacian
In this section, we present the grad div complex. For any real number ¢, the grad div
complex reads:

0— HIZS golgy @ g2 gy 2y gt gy o gos gy &Y oo
which is derived from the following diagram:

grad

0 — H1¥ golgy e go2gy 4V, o3

0— 0 > 0 y o3 & et gy el pre-s gy 4y pre—s ().

~

Note that the dimension of cohomology at H972(2) ® V in the first row of the above

diagram is by of the domain, and the dimension of cohomology at H93 in the second

row is 1. According to Theorem and Theorem

N (grad div, H7 () ® V) = R(curl, H" 1(Q)) @ 772, (3.3.1)
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where 2 is a set of smooth cohomology representatives (independent of ¢q) with di-

mension dim 2 = 1 + by.

Remark 3.3.1. Define Kju := 1/3ux and Kyv := 1/3v - . Then we can verify the
condition () by defining K7, K> in the way of ()

The L? version of the grad div complex with unbounded linear operators is as follows:

0— 28 2V e 2eved gy r2gy 4% 72 o (3.3.2)
3.3.1 Graddiv Complex without Boundary Conditions

Consider the following domain complex of ()

0 — H' &% H(curl) <2 H(grad div) graddiy H(curl) <% H(div) 4% 12 — 0.

and its dual complex

0 «— L3 #™ Hy(div) €% Hy(cmrl) & Hy(graddiv) £ Ho(curl) < Hi <— 0.

Here Hy(graddiv;2) := closure of C§°(€2) ® V in the sense of H(grad div) norm. We

will show in Section that
Ho(grad div; 2) := {u € H(graddiv;Q) : v -n =0 and divu = 0},

and the adjoint of (grad div, H(grad div; Q)) is (grad div, Hy(grad div; 2)).

Similar to (B.3.1)), we have
N (grad div, H(grad div; Q)) = R(curl, H(curl; Q)) @ 772 (3.3.3)

with 22 defined in ()

The Hodge decomposition at H(grad div; (2) is as follows:
L*(Q) ® V = curl H(curl; Q) @ grad div Hy(grad div; Q) @ 2,

where $? is the space of harmonic forms with dim $? = dim %ﬁ%
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Denote
Y = H(grad div; ) N Hy(curl).
The Hodge Laplacian operator follows from the abstract definition:
£? .= (grad div) grad div + curl curl = grad A div + curl curl,

with the domain Dg2 = {u € Y : graddivu € Hy(graddiv; Q), curlu € Hy(div;Q)}.
For f € L*(Q) ® V, the strong formulation of the Hodge Laplacian boundary value

problem seeks u € D2 and u L $? such that
grad Adiv —curlcurl = f — Py f  in

3.3.2 Graddiv Complex with Boundary Conditions
Consider the domain complex of () with vanishing boundary conditions:
0 — HY 2% Hy(curl) <% Hy(grad div) £ Hy(curl) <83 Hy(div) 9% 22 — 0.
and its dual complex
0 +— L2 % g(div) & H(curl) £ H(grad div) €% H(curl) <2 H! «— 0.
The Hodge decomposition at Hy(grad div) reads:

L*(Q) ® V = curl Hy(curl; Q) @ grad div H(grad div; Q) & (3.3.4)

with dimf_)% = b.
Define

Yy := Ho(grad div; Q) N H(curl; Q).
We define the Hodge Laplacian operator .£2 in the previous way but with the domain
Dyrg={u €Y, : graddivu € H(graddiv; ), curlu € Hy(curl; Q2)}.

For f € L*(Q) ® V, the strong formulation of the Hodge Laplacian boundary value
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problem seeks u € D2y and u L $?2 such that
grad Adiv — curlcurl = f — P f in €. (3.3.5)

This problem is related to the problem considered in Chapter B, especially when f €
grad div H (grad div; Q).
In the case of f € grad div H(grad div; 2), the problem () is then to find w such
that u L $H2 and
grad Adivu = f in €,
curlu =0 in €,
(3.3.6)
u-n=0 ondf),
divu =0 on 0.
3.3.3 Graddiv Complex with Partial Boundary Conditions
Define
Haiy(grad div; Q) := {u € H(graddiv; Q) : divu = 0}.

Consider the domain complex of () with partial boundary conditions:
0 — H' 25 H(curl) ©% Hy,(grad div) £ Hy(curl) <5 Ho(div) 4% 12 — 0.
and its dual complex

0 +— L2t fy(div) &L Hy(ewl) £ Hy(grad div) 55 H(curl) 2 H «— 0.

We will show in Section that the adjoint of (grad div; Haiy(grad div; §2)) is itself.

The Hodge decomposition at Hgiy(grad div) reads:
L*(Q) ® V = curl H(curl; Q) ® grad div Hy;, (grad div; Q) © H3;, (3.3.7)

with dim 2, = bs.
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Define
Yaiv := Haiw(grad div; Q) N Hy(curl; ).
We define the Hodge Laplacian operator .#2 in the previous way but with the domain
D g2 4iy = {u € Yy, : grad divu € Hy(grad div; Q), curlu € Hy(div; Q) }.

For f € L*(Q) ® V, the strong formulation of the Hodge Laplacian boundary value

problem seeks u € D g2 4, and u L ﬁ?hv such that
grad Adiv —curlcurl = f — Pgz f in (0. (3.3.8)

3.3.4 Characterization of Hy(grad div)

In this section, we characterize the spaces Hy(grad div; ().

Theorem 3.3.1. Define v, anvtt = {u-n,divu}. Then v, @s a linear bounded operator

from H(graddiv; Q) to H='/2(0Q) x HY?(98) with the bound:
[ vn.aivtell 17200 xm1/2(00) < Cllul| H(grad divio)-

Proof. Since v,u = u-n is a linear bounded operator from H(div; Q) to H~/2(9Q) and

trv = v|sq is a linear bounded operator from H'(2) to H'/?(982), we have

H’Yn,div’u”?1—1/2(39»&1/2(39) < CllulFaivny + Cll div g < Cllwlfgad v

where we have used the equivalence between the norms ||| z(grad divi2) and ||| 7 (grad aiv:0)-

see Section . O]

Theorem 3.3.2. For any gi € H Y?(0Q) and go € HY?(00Q), there exists u €

H(grad div; ) such that w - n|ag = g1, divulsg = g2, and
] b graaaivi) < C (91 11a-1200) + 921l 1200y -

Proof. The theorem can be proved by taking w = gradw in the proof of Theorem

b2 m
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Theorem 3.3.3. C>(Q) ® V is dense in H(grad div; ).

Proof. By a suitable modification to the proof of Theorem , we can complete the

proof. [

Lemma 3.3.4. For u € H(grad div;Q) and w € H(grad div;Q), the following identity
holds

(u, grad divw) — (grad divu, w) = (u - n,divw)sg — (w - n, div u)sg. (3.3.9)

Proof. 1t is easy to check that () holds for smooth functions u, w. By Theorem
and Theorem , we can prove () for u € H(grad div; Q) and w € H(grad div; Q).

O
Theorem 3.3.5. The space Hy(grad div; Q) can be characterized as
Hy(grad div; Q) = {w € H(grad div; Q) : v,.aiv = 0}.
Proof. Proceeding as the proof of Theorem , we can complete the proof. O

Theorem 3.3.6. The adjoint of (grad div, H (grad div; Q)) is (grad div, Hy(grad div; 2)).

Proof. According to the proof of Theorem , w belongs to the domain of the adjoint
of (grad div, H(grad div; Q)) if and only if w € H(grad div; Q) and

(graddivu, w) = (u,graddivw), for all w € H(grad div;2).
From Lemma , the above identity holds if and only if
(u-n,divw)sg — (w - n,divu)sg = 0.

which holds when 7, giyw = {w-n, divw} = 0 since 7, qiy is surjective from H (grad div; )

to H=1/2(0Q) x H'?(99) (see Theorem ) O
Theorem 3.3.7. The adjoint of the operator (grad div, Hy, (grad div; 2)) is itself.

Proof. The proof is similar to that of Theorem . O
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CHAPTER 4 SPURIOUS SOLUTIONS

It is notorious that spurious solutions would occur when attempting to solve Maxwell’s
equations by the finite elements smoother than necessary [6]. There is usually no visible
sign such as non-convergence or instability to tell them from the correct solutions, which
makes the occurrence of spurious solutions dangerous for applications. Because of the
similarity shared by the Maxwell equations and the high-order curl problems, we have
the reason to doubt spurious solutions would also occur when solving the curl A curl
problems by inappropriate elements.

In this chapter, we focus on the 2D case and investigate spurious solutions of the
curl Arot problems. To this end, we consider the source problem () on a simply-

connected domain. The explicit boundary conditions are
Arotu =0, rotu =0, and u-n =0 on 0. (4.0.1)

The primal variational formulation of the problem () is to seek u € X, such that

(grad rot u, gradrot v) + (divu, dive) = (f,v), Yo € Xi. (4.0.2)
Let 0 = — div w. Then the mixed variational formulation seeks (u, o) € H,o(grad rot; ) x
H'(Q) such that
(gradrot u, gradrot v) + (grad o, v) = (f,v), Vv € H,(gradrot;Q), 03
(w,grad7) — (0,7) =0, V7€ HY(Q). 409
We also consider the corresponding eigenvalue problem on a general domain: find
(A, u) € R X Dg1 4 such that

— curl Arot u — graddivu = Au in (4.0.4)

with the same explicit boundary conditions () The primal variational formulation
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is to seek (A, u) € R x X,o such that

(grad rot u, grad rot v) + (div u, dive) = A(u,v), Yo € X, (4.0.5)
The mixed variational formulation seeks (A, u,0) € R x Hy(gradrot; Q) x H'() such
that
(grad rot u, gradrot v) + (grad o, v) = A(u, v), Yv € H,x(gradrot; ), L0
(u,grad ) — (0,7) = 0, V7 € H' (). 00
We also consider the eigenvalue problem corresponding to () find (\,u) € R x

D 41 such that
— curl Arot u — grad divu = A\u in () (4.0.7)
with the explicit boundary conditions:
Arotu =0, gradrotu-n =0, and uw-n = 0 on 0f2.

The primal variational formulation is to find (A, u) € R x X such that

(grad rot u, gradrot v) + (divu, dive) = A(u,v), Vv € X. (4.0.8)

The mixed variational formulation is to find (A, u,0) € R x H(grad rot; ) x H'(Q2) such
that

(grad rot w, gradrot v) + (grad o, v) = A(u,v), Vv € H(gradrot; (2), : )
4.0.9

(u,grad 1) — (0,7) = 0, V7 € H'(Q).

4.1 Spurious Numerical Solutions

We apply four FEMs to solve the problems (E.Q.la), (EOZIJ), and () a primal

formulation with the H?-conforming (Argyris) element, a mixed formulation with the

existing grad rot-conforming element [66], and mixed and primal formulations with the

H'(rot)-conforming element [28]. Suppose in this chapter 7 is a partition of the domain
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Q consisting of shape regular triangles. For K € T, and k > 4, define

Wi(K) = {v € Py(K) : rotv € Py_3(K) U [Peoy(K) N Hy(K)] }.
Remark 4.1.1. We can use the Poincaré operator p? to construct Wj,(K). For example,
when k = 4, Wj,(K) = grad P5(K) ® Pi(K)z™ ® {p*(MA2)s) }-

The grad rot-conforming and H'(rot)-conforming finite element spaces [66, 28] on Ty,

are defined for k£ > 4 as follows:
Vi, = {vn € Hip(gradrot; Q) : vy|x € Ry(K), VK € T},
Vi = {v;, € H'(rot; Q) N Hyo(gradrot; Q) : vy|x € Wi(K), VK € Ty},

where Ry, is defined in ()
We also define the following two finite element spaces for the mixed schemes.
Sy = {w, € HY(Q) : wy|x € P(K), VK € Ty} for k > 4,
S} ={w, € H*(Q) : wy|x € Pu(K), VK € Ty, wy, € C*(Wy)} for k > 5.
The vector-valued H2-conforming finite element space is defined as
Vi =5l®V.
We define the following spaces for the primal schemes.
V6 ={v, €V}l 1oy -n=0on 00},
f/hATg ={v, € VhATg cvp-n =0 and rotv, =0 on 0Q}.

4.1.1 Source Problem

We are in a position to present the four finite element schemes for the problem

(B2.19).
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Scheme 1. Mixed formulation with the grad rot-conforming element:

Find (up,0p) € Vi, X Sy, such that
(grad rot uy, grad rot vy,) + (grad oy, vy) = (f,vp), Yo, € Vi,
(uh,gradTh) — (O‘h,Th) =0, V1, € Sh.

Scheme 2. Mixed formulation with the H!(rot)-conforming element:

Find (up,04) € V! x S} such that
(grad rot uy, grad rot v,) + (grad oy, v,) = (f,vy), Yo, € V),
(uh,gradTh) — (Uh,Th) = O, VTh S S;ll

Scheme 3. Primal formulation with the H'(rot)-conforming element:

Find w, € V;' such that

(grad rot wy, grad rot vy) + (div uy, dive,) = (f,vp), Vo, € V).

Scheme 4. Primal formulation with the Argyris element:

Find uy, € ‘O/hArg such that

(grad rot uy,, gradrot v,) + (divuy, dive,) = (f,vn), Yo, € f/hArg.

The numerical results for the Hodge Laplacian boundary value problem with f =

(1,0)T on an L-shape domain are shown in Figure . As we can see in Figure ,

the primal formulations with the H(rot)-conforming element and the Argyris element

(Schemes a and @) show different solutions compared with the mixed formulations with

the gradrot- and H'!(rot)-conforming elements (Schemes m and E) In fact, the primal

formulations produce spurious solutions. We will provide a theoretical explanation on

this numerical phenomenon in Section .

4.1.2 Eigenvalue Problem

Similar to the source problem, we consider the following four numerical schemes for

the eigenvalue problem ()
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(a) Scheme 1 (b) Scheme 2

(c) Scheme 3 (d) Scheme 4

Figure 4.1.1: Finite element solutions to the problem () on an L-shape domain
with f = (1,0)T.

Scheme 5. Mixed formulation with the grad rot-conforming element:
Find (Ap, up,01) € R x Vj, X Sy, such that

(grad rot uy, grad rot vy,) + (grad oy, vy) = Ay (up, vy), Yo, € Vi,

(wn, grad 7,) — (on, ) =0, V7 € Sp.
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Scheme 6. Mixed formulation with the H'(rot)-conforming element:

Find (Ap,up,04) € R X V! x S} such that
(grad rot uy, grad rot vy,) + (grad oy, vi) = A (up, vp), Yo, € Vi,
(uh,gradTh) — (O’h,Th) = O, V’/’h < S;ll

Scheme 7. Primal formulation with the H'!(rot)-conforming element:
Find (A, up) € R x Vi such that

(grad rot uy, grad rot vy,) + (div up, div vy) = Ay (up,vp), Vop € ‘O/hl.
Scheme 8. Primal formulation with the Argyris element:
Find (A, up) € R x VA such that

(grad rot uy, grad rot vy,) + (div wy, divvg) = Ap(up, vy), Yo, € ‘O/hArg.

We apply Schemes H - B to solve the eigenvalue problem () on three different

domains (see Figure ):
o O = (0, ].) X (0, 1)
e (5 =1(0,1) x(0,1)/[1/3,3/4] x [1/4,2/3].

e Q= (—11)x (=1,1)/[0,1) x (—1,0).

Figure 4.1.2: Initial meshes (n = 0) for Qy, Q9, and Q3

We observe from Tables - that the four schemes lead to the same numerical

eigenvalues on € and different numerical eigenvalues on {2, and 23. We will prove in
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Section @ that Scheme B yields correctly convergent numerical eigenvalues on simply-
connected domains. Therefore, Scheme H and Scheme E lead to spurious eigenvalues on
Q.

Table 4.1.1: Numerical eigenvalues with units 72 on Q; obtained by Scheme H with
k = 4 for (@.0.4)

n A1 A2 A3 A4 As A6 A7 A

0 1.000000 1.000000 2.000000 4.000001 4.000001 5.000002 5.000002 8&8.000011
1 1.000000 1.000000 2.000000 4.000000 4.000000 5.000000 5.000000 8.000000
2 1.000000 1.000000 2.000000 4.000000 4.000000 5.000000 5.000000 8.000000

Table 4.1.2: Numerical eigenvalues with units 72 on 2; obtained by Scheme E with
k =4 for (1.0.4)

n A1 A2 A3 A4 As A6 A7 As

0 1.000000 1.000000 2.000000 4.000000 4.000000 5.000000 5.000000 8.000001
1 1.000000 1.000000 2.000000 4.000000 4.000000 5.000000 5.000000 8&.000000
2 1.000000 1.000000 2.000000 4.000000 4.000000 5.000000 5.000000 8.000000

Table 4.1.3: Numerical eigenvalues with units 72 on 2; obtained by Scheme B with
k =4 for (4.0.4)

n A1 A2 A3 A4 A5 A6 A7 As

0 1.000000 1.000000 2.000000 4.000001 4.000001 5.000004 5.000004 8.000077
1 1.000000 1.000000 2.000000 4.000000 4.000000 5.000000 5.000000 8&.000000
2 1.000000 1.000000 2.000000 4.000000 4.000000 5.000000 5.000000 8.000000

4.1.3 Eigenvalue Problem with Different Boundary Conditions
We consider four numerical schemes similar to Schemes B - a but without the bound-
ary condition rot u, = 0 on the three domains. Again, we observe that the four schemes

lead to different numerical eigenvalues. In particular, the mixed formulations produce
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Table 4.1.4: Numerical eigenvalues with units 72 on 2; obtained by Scheme B with
k =5 for (@.0.4)

n A1 A2 A3 A4 As A6 A7 As

0 1.000000 1.000000 2.000000 4.000000 4.000000 5.000000 5.000000 8.000003
1 1.000000 1.000000 2.000000 4.000000 4.000000 5.000000 5.000000 8.000000
2 1.000000 1.000000 2.000000 4.000000 4.000000 5.000000 5.000000 8&.000000

Table 4.1.5: Numerical eigenvalues with units 72 on {2, obtained by Scheme H with
k=4 for (£0.4)

n A1 A2 A3 A4 A5 A6 A7 As

0 0.000000 0.594212 0.595733 1.802009 2.843750 4.460286 4.495899 5.463774
1 0.000000 0.593616 0.595336 1.801970 2.839489 4.458673 4.493247 5.463500
2 0.000000 0.593379 0.595179 1.801959 2.837796 4.458048 4.492200 5.463407

Table 4.1.6: Numerical eigenvalues with units 72 on Qy obtained by Scheme H with
k =4 for (1.0.4)

n A A2 A3 A4 As A6 A7 Ag

0 0.000000 0.596944 0.597564 1.802182 2.863546 4.467690 4.508052 5.465057
1 0.000000 0.594698 0.596060 1.802016 2.847332 4.461544 4.498047 5.463929
2 0.000000 0.593808 0.595466 1.801975 2.840909 4.459177 4.494100 5.463565

Table 4.1.7: Numerical eigenvalues with units 72 on {2, obtained by Scheme B with
k =4 for (

~

n A1 A2 A3 A4 A5 A6 A7 As

0 2.645076 3.202686 3.607223 4.369787 6.145767 7.964110 8.167482 8.213072
1 2269742 2.874862 3.141026 4.063906 5.846892 7.677691 7.894476 7.971607
2 2.065438 2.689171 2.882076 3.886972 5.659409 7.489803 7.694887 7.864160
3 1.947637 2579732 2.731537 3.781333 5.542562 7.373284 7.571471 7.797919
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Table 4.1.8: Numerical eigenvalues with units 72 on ), obtained by Scheme B with
k =5 for (@.0.4)

A1 A2 A3 A1 As A6 A7 A8
2.996956 3.517662 3.946885 4.626899 6.440491 8.154377 8.449486 8.484641
2.462447 3.063195 3.349072 4.229950 6.010834 7.860474 8.069506 8.098664
2.178163 2.802148 3.008808 3.990078 5.760831 7.614372 7.802093 7.935650
2.015498 2.648156 2.808560 3.844587 5.606347 7.451910 7.636857 7.841693

w NN = o |3

Table 4.1.9: Numerical eigenvalues with units 72 on {3 obtained by Scheme H with
k =4 for (4.0.4)

n A1 A2 A3 A4 A5 A6 A7 As

0 0.149678 0.358073 1.000000 1.000000 1.153997 1.274383 2.000000 2.172031
1 0.149578 0.358072 1.000000 1.000000 1.153996 1.274062 2.000000 2.171278
2 0.149538 0.358072 1.000000 1.000000 1.153996 1.273934 2.000000 2.170978

Table 4.1.10: Numerical eigenvalues with units 7 on Q3 obtained by Scheme B with
k=4 for (L0.4)

n A1 A2 A3 A4 As A6 A7 A8

0 0.150209 0.358082 1.000000 1.000000 1.154010 1.276086 2.000000 2.176030
1 0.149788 0.358074 1.000000 1.000000 1.153998 1.274741 2.000000 2.172873
2 0.149621 0.358072 1.000000 1.000000 1.153996 1.274203 2.000000 2.171612

Table 4.1.11: Numerical eigenvalues with units 72 on {23 obtained by Scheme B with
k = 4 for (4.0.%)

n A1 A2 A3 A4 As A6 A7 As

0 0.416285 0.665296 1.000000 1.000000 1.181067 1.558700 2.000000 2.447851
1 0.393230 0.635841 1.000000 1.000000 1.170019 1.536785 2.000000 2.416211
2 0.379644 0.618841 1.000000 1.000000 1.163726 1.524513 2.000000 2.396893
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Table 4.1.12: Numerical eigenvalues with units 72 on {23 obtained by Scheme E with
k=5 for (L0.4)

n A1 A2 A3 A4 As A6 A7 As

0 0.431506 0.667232 1.000000 1.000000 1.185750 1.559335 2.000000 2.471656
1 0.401863 0.638780 1.000000 1.000000 1.173429 1.538747 2.000000 2.429102
2 0.384768 0.621402 1.000000 1.000000 1.165924 1.526300 2.000000 2.404445

one zero eigenvalue on €21, €23 and two zero eigenvalues on €2y, whereas the primal for-
mulations do not produce zero numerical eigenvalues. We will explain this difference in

Section @

Table 4.1.13: Numerical eigenvalues with units 7 on Q; obtained by Scheme B with
k=4 for (L0

n A A2 A3 A4 As A6 A7 Ag

0 0.000000 1.000000 1.000000 2.000000 4.000000 4.000001 5.000002 5.000002
1 0.000000 1.000000 1.000000 2.000000 4.000000 4.000000 5.000000 5.000000
2 -0.000000 1.000000 1.000000 2.000000 4.000000 4.000000 5.000000 5.000000

Table 4.1.14: Numerical eigenvalues with units 72 on §; obtained by Scheme E with
k =4 for (40{)

n A1 A2 A3 A As A6 A7 As

0 0.000000 1.000000 1.000000 2.000000 4.000000 4.000000 5.0000001 5.0000001
1 0.000000 1.000000 1.000000 2.000000 4.000000 4.000000 5.0000000 5.0000000
2 -0.000000 1.000000 1.000000 2.000000 4.000000 4.000000 5.0000000 5.0000000

4.2 Convergence Analysis and Explanations of Spurious Solutions
We prove that the mixed formulations provide correct solutions for both the source
() and the eigenvalue problem () on simply-connected domains. Therefore the

different solutions by the primal formulations in Section [ll are spurious. Since (2 is



63

Table 4.1.15: Numerical eigenvalues with units 72 on €; obtained by Scheme B with

k=4 for (1.0.7)

A1 A2 A3 A1 As A6 A7 A8
1.000000 1.000000 2.000000 4.000002 4.000002 5.000004 5.000004 7.762197
1.000000 1.000000 2.000000 4.000000 4.000000 5.000000 5.000000 5.940076
1.000000 1.000000 2.000000 4.000000 4.000000 4.833375 5.000000 5.000000
1.000000 1.000000 2.000000 4.000000 4.000000 4.078384 5.000000 5.000000

w NN = o |3

Table 4.1.16: Numerical eigenvalues with units 72 on €; obtained by Scheme E with

k =5 for (@)

n A1 A2 A3 A4 As A6 A7 A8

0 1.000000 1.000000 2.000000 4.000000 4.000000 4.353529 5.000000 5.000000
1.000000 1.000000 2.000000 3.732480 4.000000 4.000000 5.000000 5.000000
1.000000 1.000000 2.000000 3.266372 4.000000 4.000000 5.000000 5.000000
1.000000 1.000000 2.000000 2.903702 4.000000 4.000000 5.000000 5.000000

—_

w N

Table 4.1.17: Numerical eigenvalues with units 72 on €, obtained by Scheme E with
k=4 for (L0.7)

n A1 A2 A3 A4 A5 A6 A7 As

0 0.000000 -0.000000 0.594212 0.595733 1.802009 2.843750 4.460286 4.495899
1 0.000000 -0.000000 0.593616 0.595336 1.801970 2.839489 4.458673 4.493248
2 0.000000 -0.000000 0.593379 0.595179 1.801960 2.837797 4.458049 4.492195

Table 4.1.18: Numerical eigenvalues with units 7 on Q obtained by Scheme B with
k=4 for (L0

n A A2 A3 A4 As A6 A7 A

0 0.000000 -0.000000 0.596944 0.597564 1.802182 2.863546 4.467690 4.508052
1 0.000000 -0.000000 0.594698 0.596060 1.802016 2.847329 4.461542 4.498048
2 0.000000 -0.000000 0.593808 0.595465 1.801975 2.840909 4.459231 4.494105




64

Table 4.1.19: Numerical eigenvalues with units 72 on €y obtained by Scheme B with

k=4 for (1.0.7)

A1 A2 A3 oV A5

A6

A7

As

2.640174 3.189826 3.594658 4.335878 6.144269
2267177 2.860417 3.128707 4.010749 5.845370
2.063909 2.673185 2.869503 3.813822 5.657945
1.946566 2.562122 2.718412 3.687886 5.541129

w NN = o |3

7.950591
7.650719
7.452232
7.326460

8.156921
7.875648
7.668946
7.539070

8.201252
7.961485
7.852054
7.783510

Table 4.1.20: Numerical eigenvalues with units 72 on

k =5 for (@)

()5 obtained by Scheme E with

n )\1 )\2 )\3 )\4 )\5

A6

A7

As

0 2987390 3.489137 3.927939 4.570472 6.438141
2.457624 3.037089 3.331364 4.148755 6.008541
2175539 2.777434  2.992092 3.886997 5.758800
2.013865 2.623800 2.792272 3.720863 5.604514

—_

w N

8.140561
7.823479
7.562974
7.391764

8.420141
8.045921
7.770874
7.599227

8.469386
8.078550
7.918637
7.823772

Table 4.1.21: Numerical eigenvalues with units 72 on

k =4 for ()

Qs obtained by Scheme B with

n /\1 )\2 )\3 /\4 )‘5

As

A7

As

0 0.000000 0.149678 0.358073 1.000000 1.000000
1 0.000000 0.149578 0.358072 1.000000 1.000000
2 0.000000 0.149538 0.358072 1.000000 1.000000

1.153996 1.274383 2.000000
1.153996 1.274062 2.000000
1.153996 1.273934 2.000000

Table 4.1.22: Numerical eigenvalues with units 7 on Q3 obtained by Scheme B with

k=4 for (1.0.7)

n )\1 )\2 )\3 >\4 )\5

A

A7

As

0 0.000000 0.150209 0.358082 1.000000 1.000000 1.154010

2 -0.000000 0.149621 0.358072 1.000000 1.000000 1.153996

1.276086  2.000000
1 0.000000 0.149788 0.358074 1.000000 1.000000 1.153998 1.274741 2.000000
1.274203  2.000000
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Table 4.1.23: Numerical eigenvalues with units 72 on {23 obtained by Scheme B with
k =4 for (40()

A1 A2 A3 A1 As A6 A7 A8
0.415525 0.607103 1.000000 1.000000 1.180641 1.471030 2.000000 2.203868
0.392873 0.556247 1.000000 1.000000 1.169824 1.399646 1.989572 2.000000
0.379489 0.518223 1.000000 1.000000 1.163642 1.330472 1.856537 2.000000
0.371374 0.487486 1.000000 1.000000 1.159955 1.265016 1.776840 2.000000

w NN = o |3

Table 4.1.24: Numerical eigenvalues with units 72 on €23 obtained by Scheme E with
k =4 for (40()

n A1 A2 A3 A4 As A6 A7 A8

0 0.429946 0.569639 1.000000 1.000000 1.184886 1.369446 1.913935 2.000000
0.401203 0.520021 1.000000 1.000000 1.173065 1.292529 1.813290 2.000000
0.384498 0.482939 1.000000 1.000000 1.165775 1.227369 1.751382 2.000000
0.374438 0.453274 1.000000 1.000000 1.161302 1.172738 1.711802 2.000000

—_

w N

assumed simply-connected, £);,, vanishes. Define
3n ={v, € V), : gradrot v, = 0}.

Because of the vanishing $)!, and the boundary condition of V},, 3 = grad Sj,.
4.2.1 Source Problem

We show the convergence for the source problem.

We first apply the theoretical framework of FEEC to show the problem () is
well-posed. According to Theorem 4.7 in [6], the strong formulation (), the primal
formulation (), and the mixed formulation () are equivalent. The well-posedness
of () follows from standard results on the Hodge Laplacian problems of Hilbert

complexes (see [0, Theorem 4.8]). It holds the following estimate

|lul| + || grad rot w|| + || divull; + || curl Arot ul| < C|| f]|. (4.2.1)
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Since u € D g1 .4, by the Poincaré inequality, we have

|Arotul| < C f]]. (4.2.2)
Since the two norms [ + || y(gradror0) 204 || - || #(gradror0) are equivalent, we have
I ot ]l < el guagronsy < Cllellagraroney < CIFIL (123

Next we investigate the regularity of the solutions.

Theorem 4.2.1. In addition to the assumptions on §2, we further assume that  is a

polygon. There exists a constant o > 1/2 such that the solution uw of () satisfies
u € H*(Q)®V and rotu € HT*(Q),
and it holds
[ufla + [ rot wllipa < Ol
Moreover, if f € H(div;Q) and f-n € H*Y2(0Q), then divu € H'**(Q) and it holds
[divufia < C([dvE] + 1 - nlla-1/200) -

Proof. 1t follows from the embedding H (rot; Q)N Hy(div; Q) — H*(Q)®V with a > 1/2
4] that w € H*(Q2) ® V, and

[ullo < € (ull + || dival + [ rot ul|) < Clf]],

where we have used () and () Therefore it suffices to show that rotu €
H'(Q). Since curl Arotu € L*(Q) ® V, we have

—Arotu € H(Q).

Moreover, rot uw satisfies the boundary condition rotw = 0. By the regularity of the
Laplace problem [49, Theorem 3.18], there exists an o > 1/2 such that rot u € H**(Q),

and

| rot w|l14a < C||Arotul| < C|| £,
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where we have used ()
Multiplying both sides of () by —grad ¢ € grad H'(€2) and integrating over 2,

we obtain

(grad divuvgrad Q> = (lef7 Q) - <.f "M, Q>7

Applying the regularity of the Laplace problem [49, Theorem 3.18] again, there exists a

constant « > 1/2 such that

divauico < € (Idiv A+ 1f - nlai/2om)

Remark 4.2.1. If  is a convex polygon, then « in Theorem can be 1.

According to [6, Theorem 5.4], Scheme EI is stable if the following discrete Poincaré
inequality holds. The discrete Poincaré inequality for V}, is due to special structures of

the grad rot-conforming elements.

Lemma 4.2.2 (discrete Poincaré inequality for V},). For v, € Vj, N 35, we have

o marony < € grad rot v, (4.2.4)
where C' is a constant independent of h.
Proof. Let P A' be the standard finite element differential [-forms on triangles [6], i.e.,
[l = 0 corresponds to the Lagrange element and [ = 1 corresponds to the Nédélec
elements of the first kind. Due to the interelement continuity, Vj, C P, A'. Moreover,

n = grad S;, = grad P,” A°. Then () follows from the discrete Poincaré inequalities
of P A' and P, A°. O

Theorem 4.2.3. Under the domain assumptions of Theorem . Suppose also f is

sufficiently smooth. Let (wy,op,) be the numerical solution of Schemea and (u, o) be the
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exact solution of the problem () Then
[ = wnl mgradrone) + llo = onlly < Ch(ulla + | rot wlfira + [loflta)-
Proof. From [, Theorem 5.5] for the case where the harmonic function space vanishes,
we have
1w — || fr(graarot:) + lo — onlls < C( inf [lo — 7] + C inf [Ju — wvyl]).
THhESH VRLEV)

Let m, and II;, be the canonical interpolations to S, and V},. From their approximation

properties [66] and Theorem , we have

llu — uhHH(gradrot;Q) + llo = onlli < Ch(JJulla + [[rot ull1ra + [|o]14a)-

4.2.2 Eigenvalue Problem
To obtain the convergence estimate for Scheme B, we rewrite (4.0.6) and Scheme B
as follows.

Seek (X, u,0) € R x Hyo(gradrot; Q) x H'(€) such that

(grad rot w, grad rot v) + (u,v) + (grad o, v) = A(u, v), Vo € H,o(grad rot; Q),

(4.2.5)
(u,grad ) — (0,7) =0, V7 € H'(Q).
Find (Xh,uh,ah) ceR xV, x Sh, such that
(grad rot uy, grad rot vy,) + (wp, v,) + (grad o, vp) = Xh(uh, vp), Yo, € Vp, : )
4.2.6

(uhagrad Th) - (Uha Th) = 07 vTh € Sh-
Note that A = A + 1 and Xh = A, + 1. We also consider the corresponding source
problem and its finite element discretization.

Seek (u,0) € H,o(gradrot; Q) x H(Q2) such that

(grad rot u, grad rot v) + (u,v) + (grad o, v) = (f,v), Vv € H,x(gradrot; ), : )
4.2.7

(u,grad7) — (0,7) =0, ¥7 € H'(Q).
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Find (up,0p) € Vi, X Sy, such that
(grad rot uy, grad rot v,) + (wy, vy) + (grad op, vy) = (f,vp), Yo, € Vi,

(4.2.8)
(wp, grad 7,) — (o4, 1) = 0, V73, € S).

By suitable modification to the proof of [6, Theorem 4.8]) and [6, Theorem 4.9]), we

can show the problem () is well-posed, and (#.2.1) holds. Similar to the problem

(), we can get the same regularity estimate as in Theorem .
Define the solution operators T': L*(Q)®@V — L*(Q)®@V and S : L?*(Q)®V — H'(Q)
by

Tf:=wuwand Sf:=o0.

We also define the discrete solution operators T}, : L*(Q) ® V. — L*(Q) @ V and S, :
[2(Q) ® V — HY(Q) by

Thf :=wuy, and S, f := oy,.
From (4.2.7) and (), these operators are bounded and satisfy

”Tf”H(gradrot;Q) < H.f”7 ”TthH(gradrot;Q) < ”f“7

(4.2.9)
1SFle < IF1s and [|Seflle < (£
We have the following orthogonality:
(Tf - Tnf, vh)H(gradrot;Q) + (grad(Sf — Suf),vn) =0, Vv, € Vj, (4.2.10)

(Tf —Tnf,gradm) — (Sf — Spf, ™) =0, ¥V 75, € Sp.
Taking v;, = grad 73, in the first equation of () and subtracting the second equation

from the first one, we obtain
(grad(Sf — Spf),grad ) + (Sf — Spf, ™) = 0. (4.2.11)

If we can prove ||T' — Th|| z(r2ev,12ev) — 0, then from the spectral approximation
theory in [14], the eigenvalues of (4.2.G) converge to the eigenvalues of ()7 and

hence, the eigenvalues of Scheme B converge to the eigenvalues of (4.0.6).
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Theorem 4.2.4. Under the domain assumptions of Theorem , the eigenvalues of

Scheme@ converge to the eigenvalues of (4.0.G).

To obtain the uniform convergence, we present some preliminary results. First, we
will need the Hodge mapping H gy, of g5, [35, B8]. In fact, for any g, € 3;- N Vj, there

exists Hq, € H(rot; Q) N Hy(div; ) satisfying rot g, = rot Hqy, and div Hgj, = 0.

Lemma 4.2.5. There exists a constant C' independent of q; and h such that

|Hgq, — qn| < Ch*||rot qul, Yqn € 35 N Vi.

Proof. Proceeding as the proof of [49, Lemma 7.6] or [38, Lemma 4.5], we can complete

the proof. N

Lemma 4.2.6. Under the domain assumptions of Theorem , the solutions of ()

and (4.2.8) satisfy
lo — anll < CRY[|£].
Proof. We introduce the following auxiliary problem: find & € H*(£2) such that
(grad &, grad 1) + (5,7) = (0 — op,7), V7€ H'(Q). (4.2.12)
The discrete problem is to find &, € S}, such that
(grad o, grad 7)) + (63, 1) = (0 — OB, 1), V7H € Sh.

According to Theorem 3.18 in [49] again, there exists the same constant o > 1/2 such

that
[6]14a < Cllo—anll-
From the Ced lemma, we have

16 = Gnlly < Ch|6]l14a < Ch [lo = on] -
1



71

Taking 7 = 0 — o0, in () and applying (), we obtain

(0 —op,0 —oy) = (6,0 —0y) + (grad g, grad (o — o))
= (0 = 0n,0 —on) + (grad (6 — &4) , grad (o — on))

< o =anllyllo = onlly < Ch*|lo = anl| lo = anll, ,
which together with (4.2.9) leads to

o —oull < Ch*[lo — onll, < CR|| .

We are now in a position to estimate || 7" — T} || z(z20v, L20v)-
Theorem 4.2.7. Under the domain assumptions of Theorem , we have
||T - Th||£(L2®V7L2®V) < Ch".

Proof. We shall prove ||u — uy|| < Ch®||f||. Denote u = T'(u — uy), up = Th(u — uyp),

o =S(u—wuy), and 75, = Sp(u — uy,). Proceeding as the dual argument, we have

(u — Up, U — uh) = (ﬂﬂ u — uh)H(gradrot;Q) + (grad?f, u— uh)

= (T — T, U — W) gy gradnory + (8720 T, w0 — wy) — (grad(o — o), ) by (4.2.10)
= (@ — n, w0 — TI) gy vonioy + (872d (7 — 74) , u — ) by (1.2.10), (4.2.11)

+ (0 — on,0n) — (grad(o — op), up) = 1+ 1T+ 11T + IV.
Applying () and the approximation property of Il [66], we have
[+ 11 < [lu — Iyw| g(gradrots0) (| — @n | #(grad rots) + || grad (6 —a4) |)
< Cllu — HhuHH(gradrot;Q)Hu — up|
< Ch®flu — up|| (Jlulla + [ rot wl1+a)

< Ch%|[ flllle — wnl|
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Using Lemma , we get
UL < Che[|fllllonll < Ch[ flllwe — wunll-

Now it remains to estimate IV. We decompose u;, = pp + q, with p, € 3, and g, €

35 N'Vj,. Then
IV = (grad(o — o), un) = (grad(o — ou), qn) + (grad(c — o), pn) =: Vi + Vi1
Applying Lemma , we obtain

IVi = (grad(c — o3,),q, — Hgqy) < Ch®||rot gy ||| £

< Ch||rotup ||| £ < Ch[lu — wa || £]

Since 35 = grad Sy, there exists a function ¢, € S, satisfying (¢p,1) = 0 and p, =

grad ¢y, By ([1.2.11), we get

IV =(grad(o — o3,), grad ¢) = — (0 — o1, @) < Cllo — o4 ||[| grad ¢y ||

=Cllo = onllllpnll < Cllo — onllllwnll < CA%[| flllw — wall.
Collecting all the estimates, we complete the proof. [

4.2.3 Theoretical Explanation of the Numerical Phenomena

Let H!

n,rot

(rot; Q) = H'(rot; Q) N X, denote the space of H'(rot; Q) vector fields
with vanishing normal components and rot on the boundary, which is a closed subspaces

of H'(rot; ). Clearly, H}

n,rot

(rot; Q) C Xio. For w € H) (rot;Q), by the Poincaré

inequality and the identity || grad w||* = || rot u||* + || div u||* [6], we have
C(|| gradrot u||* + || grad w|*) < || gradrot u||* + || divu|® < || grad rot u||* + || grad w||*.

Therefore, the restriction of the X-norm to H}

ot (TOE; ) is equivalent to the full norm of

H'(rot; Q). It follows from the fact H} (rot; 2)

n,rot

(rot; Q) is closed in H*(rot; Q) that H!

n,rot

is a closed subspace of X,,. To prove X, # Hijrot(rot; 2), it suffices to find a function

in X,o¢ which is not in H, ., (rot; ). Consider the function ¢ € H'(Q) such that A¢ €



73

L?(2) and % = 0 on 992. When () is a nonconvex polygonal domain, we have ¢ ¢ H?(12).

Setting u = grad ¢, we see that u € X, but w ¢ H! ., (rot; Q). For any such function

,rot

u, we have inf,ep  on) |l — v|x = du > 0, where 4, is the distance of w from
n,ro ’

Hl

n,rot

(rot; 2). Therefore, if the finite element space V}, is contained in Hirot(rot; ), then
the numerical solution u;, € V}, can not converge to w in general. The mixed variational
formulation, however, does not suffer from this restriction, and hence does not lead to
spurious solutions. On the other hand, the choice of finite elements are crucial for the
success of the mixed formulations. The grad rot- and H'(rot)-conforming finite elements
are stable as they fit into complexes.

Since dim $)}, = b; = 1 on )y, there is a zero eigenvalue on Qy corresponding to

1

the harmonic forms in $,,.

However, Scheme H and Scheme B fail to capture this zero
eigenmode. The same issue occurs for the numerical solutions of the problem ()
The harmonic forms are generally smooth functions but not polynomials. Therefore, the

finite element spaces V;! and VhATg do not contain any harmonic forms. That is why

Scheme H and Scheme E can not capture the vanishing eigenvalue.
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CHAPTER 5 2D GRADROT-CONFORMING ELEMENTS
Chapter @ tells us the importance of constructing finite elements that fit into com-
plexes. From this chapter on, we will construct grad rot-conforming elements, grad curl-
conforming elements, and grad div-conforming elements by designing discrete complexes.
In this chapter, we focus on the construction of grad rot-conforming elements. To
this end, we consider the de Rham complex with enhanced smoothness ([1.4.1). To make
this chapter more readable, we put the complex ([L.4.1]) here

grad .

0 »y R —~— H' » H(gradrot) —2 H! > 0. (5.0.1)

From the complex, we can see the grad rot-conforming elements satisfy that
« the tangential component of u;, is continuous across two adjacent elements;
e rotuy, is continuous across two adjacent elements.

In [66], the author and her collaborators combine the first kind of Nédélec elements and
the Lagrange elements to define gradrot-conforming elements that satisfy the above
continuity conditions. The construction is based on the existing polynomial spaces,
Q-1 X Qi1 or Ry (see () for its definition). The restriction of k£ > 4 for the
triangular elements or £ > 3 for the rectangular elements has to be imposed since an
interior bubble should be included in the finite element space of rot w. Therefore the
lowest-order element has 24 DOFs on both a triangular and rectangular element.

We will construct the following finite element subcomplexes of ()

0 — > R —CS 3y Ed, prothdl st gkt g (5.0.2)

Here we introduce two parameters r and k with r =k, r = k+ 1, or r = k+ 2 to specify
degrees of spaces, which lead to several versions of complexes. The complexes ()

include two new grad rot-conforming element spaces thfl’kﬂ and thH’kH. We also fit
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the existing finite element space into the complex and extend it to lower-order cases.
Among the three versions of V},, the new finite element space th_l’kH has fewest DOFs.
5.1 Local Shape Function Spaces and Polynomial Complexes

To define a finite element space, we must supply, for each element K € 7Ty, the space
of shape functions and the DOFs. In this section, we will define the local complex of the

local shape function spaces on each K € 7T, for ()

grad

0 » R —— X1 (K) 225y (K) 22 s Y(K) —— 0, (5.1.1)

To this end, we first consider the following local complex on the reference element

~

K:

~ gradg

0 s R —<— 37 (K)

V}:—l,kz—i—l(k) rots i’;*(f() — 0. (5.1.2)

Let 37 (K) be P,(K) for the triangular element K or Q,(K) for the rectangular element

K. For the triangular element K, we set
Py(K), k >3,
P.(K) @ span{B,}, k=1,2,

where B, = T129(1 — &1 — Z2). For the rectangular element K, we set

~

Skt Qr(K), k> 2,
Qu(K) @span{B,}, k=1,
where B, = (21 4+ 1) (&1 — 1) (22 + 1) (&5 — 1). We define
VimHHE) = gradg S5 (K) @ pay (K, (5.1.3)
where the Poincaré operator p3 is defined by () with the base point W = 0. As a
special case of Poincaré operators, p2 satisfies the following null-homotopy identities:
rotg p2i = 4, Vi € CCA*(K), (5.1.4)

grad, pLa + p2rotg 4 = 4, Ya € CPAY(K). (5.1.5)
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By the null-homotopy identity (), the right hand side of () is a direct sum.

Remark 5.1.1. For the reference rectangle K, we can also use the serendipity elements
S, (K) := P.(K)@span{i’ iy, 2125} [7] for X7 (K) and use Sy (K) when k > 4 or Sp(K) &
span{B,} when k < 4 for 37" (K). This leads to another three families of rectangular

elements with fewer DOFs and the same accuracy.

Remark 5.1.2. For polynomial bases in ZAJQJF(IA( ) other than the bubbles B, or B,, we
can replace the Poincaré operator pZ by the Koszul operator xZ. It seems necessary to
use the Poincaré operator for the bubbles to get the complex property. For the bubble

function B; or B,, we have

Piét :ilzi"g(lla?l;o 429 — 5)§:L7

23332 — 373 — 333 +6 |
12 '

PiB, =

By the definition of the shape function spaces, it is easy to show that the sequence
() is a complex. By the properties of the Poincaré operators, we can verify that the

sequence

~

0— R+ SI(K) <2 VW Ry L2 SRRy 0 (5.1.6)

is also a complex with the Poincaré operators in (bllé) - (blld) From Lemma ,

we obtain the exactness.
Lemma 5.1.1. The complex (p.1.2) is ezact.

Lemma 5.1.2. The inclusion P,_i(K) C V" ""*Y(K) holds. More precisely, we have

~

R A Riv1(K) when k > 3 and Kis a triangle,
th,k+1 (K) — ) )

Qrit1(K) X Qrirx(K)  when k> 2 and K is a rectangle.

Proof. From the null-homotopy property (),

Prfl(k) = grady pzlaPr—l(k) + pZi rots Pr—l(f()-
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By definition, V""" (K) = grad, 37 (K)+p2SPt (K). We have pL P,_1(K) C P.(K) C
31 (K) and rotg P,_y(K) C Po(K) C X0 (K). Therefore the desired inclusion holds,

Now we show Ry.1(K) = grad, Pey1(K) + p2Py(K) which is exactly Vo*(K)
when k& > 3 and K is a triangle. Since grad, Pe1(K) + p2Pr_1(K) C Pp(K) and
p2Py(K) C {t € Pyt (K) : @ - @ = 0}, we have grady Py (K) + p2Py(K) C Rysr (K).
It suffices to show that they have the some dimension. From the exactness of (),
dim VF*(K) = dim Py (K) 4 dim Py(K) — 1 = (k + 1)(k + 3) = dim R4y (K) when
k> 3.

Similarly, we can prove th’k+1(k) = Qkkﬂ(f() X Qkﬂk(f() when k > 2 and K is a
rectangle.

O
We adopt the following transformation to relate the function u € f/,f LK) to a
function w € VY (K):
wo Fy = B4, (5.1.7)
where the affine mapping Fx is defined in (E) By a simple computation, we have

1
rotu o FK = Wroti 'ljl; (518)
K

We are now in a position to define the spaces in ()
S (K) = {u o Fy € ig(f()} ,
Vi ) = {us BRuo B e ) |
SEH () = {u .wo Fy € iﬁ*(f()} .

Remark 5.1.3. We do not use grad ¥y (K) @ p>Sp " (K) to define V' "*(K) because

~

grad X7 (K) @ p225 " (K) can not be related to V;/ ¥ (K) via (-) when r = k.

By the definition of the spaces and Lemma , we can show () is also an exact
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complex.
5.2 Degrees of Freedom

In this section, we define DOFs for each space in () Taking r = k, k4 1, and
k+2in (n) yields three versions of grad rot-conforming element spaces th_l’kH(K ),

VYK, and VITYMTY(K). Fig. demonstrates the complex () for the case
k=1.

Among the three versions of V,(K), the simplest elements have only 6 DOFs for a
triangle and 8 DOFs for a rectangle. To the best of our knowledge, these elements have
the smallest number of DOFs among all the existing grad rot-conforming finite elements.

The DOFs for the Lagrange element ¥} (K) can be given as follows.
» Vertex DOFs M, (u) at all the vertices v; € V,,(K):

My(u) = {u(vi) } -
« Edge DOFs M, (u) on all the edges e; € &,(K):

M, (u) = { / uvds for all v € P,,_2(ei)} .

€

o Interior DOFs Mg (u) in the element K:

Mg (u) = {/ uvdA for all v € Pr_g(K>} , when K is a triangular element;
K

Mg (u) = { / uvdA for all v € Q,_o(K )} , when K is a rectangular element.
K

For u € H'Y(K) with § > 0, we can define an H' interpolation operator mx :
H*(K) — ¥ (K) by the above DOFs such that

M,(u — mgu) = {0}, M.(u—mru) = {0}, and Mg (u — mru) = {0}. (5.2.1)

The DOFs for E’fﬁ(K ) can be given similarly, with only one additional interior inte-

gration DOF to take care of the interior bubble. We denote 7 as the H! interpolation
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operator to X" (K) by these DOFs.

We define the following DOFs for V" *!(K):

» Vertex DOFs M, (u) at all the vertices v; € Vj,(K):

M, (u) = {rotu(v;)} . (5.2.2)

« Edge DOFs M, (u) on all the edges e; € &,(K) with the unit tangential vector 7;:

M. (u) = {/ u - 1;qds for all ¢ € Pr_l(ei)}

(3

U {/ rot ugds for all ¢ € Pk_g(ez‘)} . (5.2.3)

o Interior DOFs Mg (u) in the element K:
Mg (u) = {/ u-qdA for all o Fx = Bkq, q € PT_3(K)ﬁ:}
K
U {/ rot ugdA for all ¢ € Pk_g(K)/R} : (5.2.4)
K

when K is a triangular element;
Mg (u) = {/ u - qdA for all go Fx = Biq, q € Qr_g(k)i}
K

U {/ rot uqdA for all ¢ € ng(K)/R} ) (5.2.5)
K
when K is a rectangular element.

Here By is defined in (), P,(K)

T
QuK)E ={q: ¢= ¢z, V€ Qu(K)}.

Remark 5.2.1. The DOFs in Mk (u) can also be given by
{/ u - qdA for all go Fx = Byq, q € @(K)} , when K is a triangular element;
K

{/ u - qdA for all go Fxy = Biq, q € Q(K)} , when K is a rectangular element,
K
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Figure 5.2.1: The lowest-order finite element complexes () in 2D with » = k in the
first two rows, r = k + 1 in the middle two rows, and r = k£ + 2 in the last two rows.
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where 2(K) = P,_4(K) ® P, 4(K)2 @ -+ @ P_3(K)2 and 2(K) = Q, o(K)z @ {q :
G = curly ¢, V¢ € Qp_2(K)/R}.
Remark 5.2.2. By Lemma and the definition of th’kﬂ, we have
Ri41(K) when k£ > 3 and K is a triangle,
Qrp+1(K) X Qpr15(K)  when k> 2 and K is a rectangle.
Therefore V¥ (K) coincides with the finite elements constructed in [66]. Here we

extend these finite elements to lower-order cases by allowing k = 1 and/or 2.

Lemma 5.2.1. The DOFs (EZE) - (EQa) are well-defined for any u € H'/*(K)@V

and rotw € H(K) with § > 0.

Proof. By the embedding theorem in [27], we have rotu € H'*(K) C C%°(K), then
the DOFs about rot u are well-defined. It follows Cauchy-Schwarz inequality that other
DOFs defined in M,(u) and Mg (u) are well-defined since u € H'/**(K) ® V and
ulpx € H°(OK) ® V. O

Lemma 5.2.2. The DOFs for V" "**'(K) are unisolvent.

Proof. Since the decomposition () is a direct sum, dim V""" (K) = dim £} (K)
+ dim grad ¥ (K'). By counting the number of DOFs, the DOF set has the same dimen-
sion. Then it suffices to show that if all the DOFs vanish on a function u € Vhr_l’kH(K),
then w = 0. To see this, we first show that rotw = 0. By integration by parts, the

following DOF for " (K) vanishes on rot u:

/ rotudA = / u - Toyrds = 0.
K oK

It follows from rot V;, —"*(K) ¢ ¥F"(K) and the unisolvence of the DOFs for X (K)
that rot w = 0. Then u = grad ¢ for some ¢ € %7 (K). By the edge DOFs of V""" (K),
u-T; = 0 on the edge e;. Then there exists a 1) € P._3(K) or Q,_o(K) such that ¢ = B,
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with B, = B, or B;. By the property of 2D Koszul operator (see Chapter E), there exists
q such that Bz!qo Fx € ¢ € P._3(K)& or Q,_y(K)& and divq = 1. By the interior
DOFs, we have

0= (u7 q) = (grad ¢7 q) - - (¢7 div q) = (B*'(pu W :

This implies that ¥ = 0 and hence u = 0. [

For § > 0, provided w € H'/**(K) ® V with rotu € H'*(K) (see Lemma ),

we can define an H (gradrot) interpolation operator Ixu € V;"**!(K) such that
M,(u —llgu) = {0}, M.(u —lgu) = {0}, and Mg(u — Ilgu) = {0},

where M, M, and M are the sets of DOFs in (523) - (BQa)

5.3 Global Finite Element Complexes
For all K € T, we glue V,ffl’kH(K) together by the DOFs (525) - (E2a) to get

the global finite element space V}/ ~Lk+L Similarly, we can get ¥} and Efﬁ. The global

finite element spaces lead to the complex ()

Lemma 5.3.1. The following conformity holds:

V7Y © H(gradrot; Q).

Proof. To verify V;_l’kﬂ C H(gradrot; Q2), we must show u-7; = 0 and rot w = 0 on each

e; € E(K) if the DOFs () - () vanish on w € V" ""*1(K). Tt is easy to see that

. N . _ (w#)oFR'  (gradg pLa-fi+pd rotg we)oF !

(rotu)le, € Pr(e;). Since -7, = 0on é;, u-71; = Bl = Bg] =
(gradg plh'll-ﬁ-)oFgl c 1. . .
DAl € P,_1(e;). From the vanishing DOFs in () —(), we have u-1; =

0 and rotu = 0 on e;. O

Theorem 5.3.2. The complex () is exact on contractible domains.

r—1,k+1
Vh

Proof. We first show the exactness at . To this end, we show that, for any

v, € V,:fl’kﬂ C H(gradrot; () satisfying rotv, = 0, there exists p € ¥} such that
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v, = grad p. On one hand, from the exactness of the complex (), we have v, = gradp
for some p € H'(Q). On the other hand, from Lemma , there exists px € X} (K)
such that v,|x = gradp|x = gradpg for all K € 7T,. Comparing the two aspects, we
have v, = gradp with p € H' and p|x € X7 (K) which implies p € 3;. To prove the
exactness at EZ’JF, that is to prove the operator rot from V}/ L o ZZ’+ is surjective, we
count the dimensions. Take the triangular element as an example, the dimension count

of the Lagrange elements reads:
1
dim¥; =V+ (r—1)E+ 5(7“ —-2)(r - 1)K,

where V, £, and K denote the number of vertices, edges, and 2D cells, respectively.
Moreover, dim 25" = dim ¥¥ for £ > 3 and dim )" = dim & + K for k = 1,2. From

the DOFs (5.2.9) — (5.2.4),

dim V" =V 4 (r+ k- 1)E + (r=2r=1+ (2k —2k 1) - 2/C for k > 3,
dim V" =V 4 (r+ k- 1)E + (r=2)(r = 1) ; =20 = 1) e o g, 1,2.
From the above dimension count, we have
dim V" = dim Pt 4 dim 2 — 1,
where we have used Euler’s formula V — & + K = 1. This completes the proof. [

For § > 0, denote ¥ = H'™(Q) and V = {u € H/*(Q)®V : rotu € H'*(Q)}. We
define three global interpolations 7, : ¥ — X}, 7, : ¥ — E’fﬁ, and I, : V — Vhr_l’kJrl

in the following way:
(mpu)| g = Tru, (Thu)|x = Txu, and (Mu)|x = Hgu, VK € Ty,

where the interpolations 7, Tk, and Il are defined in Section @
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We summarize the interpolations in the following diagram.

0 —— R —S HYQ) 224 H(gradrot; Q) —s HY(Q) —— 0

0 sy R —=—— % grad s V rot y 3 s 0 (5.3.1)
lﬂh lnh l%h
O , R C , EZ grad N Vhrfl,k+l rot EZJF 07

Now we show that the interpolations in () commute with the differential oper-

ators. This result will play a key role in the error analysis of the interpolation IIj.
Lemma 5.3.3. The last two rows of the complex () form a commuting diagram,
i.e.,

grad mpu = I, grad u for all u € X, (5.3.2)

rot Il,u = 7T rotw for allu € V. (5.3.3)

Proof. We only prove () A similar trick can be used to prove () From the
diagram (), we know both I, gradu and grad 7m,u are in the space V;_l’kﬂ. It

suffices to prove that the DOFs (|522i) - (1525) for IIj, grad u and grad mpu agree for

each element K € 7Tj,. For each v; € V(K), we have
rot (Hh grad u — grad Whu) (v;) = rot (gradu — grad ﬂhu) (v;) = 0.
On each edge ¢; € £(K) with a tangent vector 7; and two endpoints v; and vq, we have

/ (Hh grad u — grad 7rhu) - T;qds = / (gradu — grad Whu) - T;qds

9
45 =0, Vg € Pr_y(e:).

= q(v9)(u — mpu)(ve) — q(v1)(u — ) (v1) — / (u — mpu) i

€

Here we used integration by parts and the definition of the interpolations. By the defi-

nition of II;, we have

/ rot (Hh grad u — grad Whu) qds =0, Vg € P,_o(K).

€
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For the interior DOFs, we see that for any q satisfying By'q o Fx € @(K) or Q(K),
/ (Hh grad u — grad Whu) -qdS = / (gradu — grad ﬂhu) -qdS
K K

:—/ (u—ﬂhu)diqu5+/ (u—ﬁhu)q-nds:o.
K

oK

This completes the proof. O

Lemma 5.3.4. Suppose w € V. Under the transformation (), we have
lxuo Fx = B Tl 4.

Proof. We will show that ﬁK\u = BIT<H xu o Fi as an interpolation on K is equal to
I a. Suppose Hxu = ). d;i(u)N; where the DOFs {d;(u)} are defined in () -
() and {N;} is the corresponding dual basis, then Meu = > di(u)BEN; o Fi.
According to Proposition 3.4.7 in [16], it suffices to show that each DOF d;(u) is a linear
combination of the DOFs d;(w) to define I ..

We now check all the DOFs in (M) - (M) one by one:

rots (0;) / le;| [, Tots ugds
_— rotugds = — ———————,
det(BK) e |61| det(BK)

1. BgTilel. .. o aga
u~7’-qu:/ B Tu~—AA—qu: u - 7;qds
/e; ' o 7 |Brmil el P o

rot u(v;) =

i @

/ w-qdA = / By 4 - B det(By)dA = det(Bg) / Q- 2GdA,
K

K K

rotz o R R
rotuw dA:/ —= __Gdet(B dA:/ rotz wqdA.
/K q - det(Br) (Bxk) R q

Here |e;| is the length of e;.
U]

Lemma 5.3.5 ([49, 2]). Suppose that v and v are related by the transformation (b.1.7).

Then for any s > 0, we have

’/ﬁls,f( < Ch;( Hv“s,K’

|I‘Ot§3 ﬁ|s,f( S Chiérl HrOths,K :
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Theorem 5.3.6. Suppose u € H™>s+r=k=D1244(Q) @ V and rotuw € H*(Q) with

s > 1+ 9, then we have the following error estimates for the interpolation 11,

||U’ - Hhu” < Chrl(||u||max{s+(r—k—1),1/2+§} + ||I'Ot’U,||s), (534)
|rot(u — IIu)|| < Ch™ |rotul|,, (5.3.5)
|grad rot(u — Myu)|| < Ch™ ! |lrotul, . (5.3.6)

Here 1y = min{max{s + (r —k —1),1/2+d},r} and ro = min{s, k + 1}.

Proof. (i). We divide our proof in three steps. We apply the transformation (5.1.7) and

Lemma to derive

lu— HKUHK

- ([ |- T ez av )

< [det(Bic)|* || B[ & — Mg (5.3.7)
Denote by r; the largest integer strictly less than 7. Noting the fact that II;p = p
when p € Ps(K) C P,_1(K) C Vi """ (K) (see Lemma ), we obtain, with the
help of Lemma

o —za|z = [[(I - 1g) (@ + D)l g

<C (Jli+ Bllyjaya + lIrote(i+ Pl )

<C (1 + B, & + lIrota(@ + Bl ) -
Denote by [s] the integer part of s. Applying Theorem 5.5 in [49], we have when r = k

(in this case 1 + 1 = 13),

o —gull, = inf |[|(I -1lg)(a+ D)l
pePr (K)

< inf C (||a +Pll,, & + lrota(a + P)|,, g + [rotz @, z + [rots ra,|[r2]j()
PEP; (K)

<C (Iﬁlrl,k + [rots wl,,) g + [rots wl,, i + [rots aly, 4 + [rots ﬁ|r2,k> :
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when r = k + 1 (in this case 1 = r9),

a—Teal, = inf ||(I—T)(@+p)|,
=Tl = it 10 = T1g) G+ D)l

< inf C (Ha +l,, Hrot@(ﬁ—i—ﬁ)mlﬁ)
PEPr (K)

<C (Jal, & + Irots @l & + Irota @l ¢ )
and when r = k + 2 (in this case 1 =13 + 1),

[a —Tgal; = inf [(I-Tg)(a+p)g
PEPF (K)

< inf Cla+pl, z <Clal, ;-
peP; (K)

Collecting the above two equations with (), using Lemma , and summing

over K € T, leads to

|u — Mpul| = Z lw — Tkulxr < Ch™ (|6f] yaqss rmro1)1/0467, 5 T+ ITOt Rl 1)
KeT

(ii). From (), we have for i =0, 1,

[rot(w — Mpw)ll; = [|(I =) rot wll;

which, together with the error estimate of Lagrange interpolation [49, Theorem 5.48],

leads to

[rot(u — ITyu)||, < CR™™" ||rot uH&K .

5.4 Applications to — curl A rot Problems
In this section, we use the three families of the grad rot-conforming finite elements

to solve a problem slightly different from the problem ()
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For f € H(div"; (), find u, such that
—curl Arotu +w = f in Q,
divu =0 in ,
(5.4.1)

uxn=0 ondf,
rotw =0 on 0f).
Here H (divo; Q) is the space of L*(Q) ® V functions with vanishing divergence, i.e.,
H(div’; Q) :=={u € L*(Q) @V : divu = 0}.

Taking divergence on both sides of the first equation of (5.4.1]), we see that the divergence-
free condition divu = 0 holds automatically.

We define Hy(gradrot; §2) with vanishing boundary conditions:
Hy(gradrot; Q) := {u € H(gradrot;2) : m x u=0and rotu =0 on 0}.

The variational formulation reads: find u € Hy(grad rot; 2) such that

a(u,v) = (f,v), VYo € Hy(gradrot; ) (5.4.2)

with a(u,v) := (gradrot u, gradrot v) + (u,v). Taking v = gradp with p € H}(Q) in
(p.4.2), we see that (u, Vp) = (f, Vp) = (div f,p) = 0, which implies divu = 0.

The strong formulation () and the weak formulation () are equivalent. By
suitable modification to the proof of [, Theorem 4.8]) and [6, Theorem 4.9]), we can
show the problem () is well-posed, and it holds

|lu|| + || grad rot u|| + || curl Arot u|| < C|| £l (5.4.3)

We assume further € is a polygon. If we have (), proceeding as the proof of Theorem

, we can show that

[wlla + [Irot wllira < CIIF, (5.4.4)
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with the constant o defined in Theorem . When 2 is convex, a = 1.

Now we prove () for the problem ()

Lemma 5.4.1. [t holds the following estimate

[Arot ul| < CIIf].

Proof. Let ¢ = Arotu — (Arfgf"l), then (¢,1) = 0, and hence

gl < Cl| curlg]|.

Using the triangle inequality, we have

|(Arotu,1)| |(Arotu,1)|
Q|12 EE

Since C5°() is dense in L*((2), there exists a function p € C§°(Q) C H} () satisfying

|Arotul|| < ¢l + < C| curlq|| + (5.4.5)
11— pl| < 1/2|9Q"2,

and hence,

(Arotu,1)| < [(Arotu, p)| + |(Arotu,1 - p)|

< [[Arotuf-1l[plly + |Arot ull[[1 = pf.
Taking (5.4.5) into consideration, we get
|Arotu|| < C (|| curlq|| + ||Arot w||_;) + %HArot ul,
which leads to
|Arotul|| < C (|| curlq| + ||[Arot wl|—q). (5.4.6)
According to the definition of the negative norm, we have

Arot drot d
HAI‘OtuH,1 — sup M — sup (gl”a rotu, gra p) S ||gradr0t’u,H.

0£peHE () Ipll1 0#£pe HE () Pl

Plugging the above estimate to () and applying (), we obtain

|Arot u|| < C (|| curlq| + || gradrot u||) = C (]| curl Arot w|| + || gradrot u||) < C|| f]].
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We define the finite element space with vanishing boundary conditions
VIR — Ly, € VMR s v, = 0 and rot v, = 0 on 90}

Remark 5.4.1. To enforce the vanishing boundary conditions, we only need to set all the

DOFs on 91 to be 0.

The grad rot-conforming finite element method reads: seek w; € V,: U+ quch that

a(un,vp) = (fyvn), Vo, € VU (5.4.7)

Taking v, = gradp, with p, € Z}“L ={qg € X} :q=00n00} in (), we have
(up, Vpr) = 0. The div-free condition holds in a weak sense. If there is no term w in
the problem (), we usually introduce a Lagrange multiplier to enforce the div-free
condition.

To get the error estimate in the sense of H(rot)-norm, we introduce the following

auxiliary problem. Find w such that
—curl Arot w + w = curlrot(u — uy) in Q,
divw = 0 in 2,

(5.4.8)
w xn =0 on 0,

rot w = 0 on 0S2.
Due to the special form of the right-hand side in the auxiliary problem, we can have a
better result than () This result will play an important role in the dual argument

in the approximation analysis below.

Theorem 5.4.2. In addition to the assumptions on §), we further assume that Q is a

polygon. The solution w of () satisfies

[wlle + [ rot wllia < Cflrot(w — us)|.
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Proof. Multiplying both sides of the first equation in () by w, integrating over {2,

and dividing by ||w|| #(gradrot;0) lead to

[l (gradrot) < [[rot(w — ). (5.4.9)

Since Hy(gradrot; Q)N H(div"; Q) C Hy(rot; Q)N H(div; Q) — H*(Q)®V with o > 1/2
[4], it holds

[wlle < C([lwll + [[rot w]]) < Cllw] agraarone) < Cllrot(w —w)|.
Rewriting the first equation of (m) gives

w = curl (rot(u — u,) + Arotw) € L*(Q) @ V.

Let ¢ = rot(u — uy) + Arotw — %, then we have (¢, 1) = 0 and hence
lgll < Cllcurlg] = Cfjaw]. (5.4.10)

The definition of ¢ gives

(Arotw, 1)

Q) c L*(Q).

—Arotw = rot(u —up) — ¢ —
Moreover, rot w satisfies the boundary condition
rotw = 0.
By the regularity of the Laplace problem [49], there exists a constant o > 1/2 such that
| rot w110 < C||Arot w]|. (5.4.11)
It remains to show

|Arot w| < O rot(uw — up,)||.

By the triangle inequality;,

|(Arotw,1)|

[Arot w]| < [[rot(w —wy)|| + (gl + BIRE
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Proceeding as the proof of Lemma , we obtain
|Arot w|| < C(||rot(w — up)|| + || curl g|| 4+ grad rot w)|)
< C (|lrot(u — un)l| + l[wl m(gradrons)) < Cllrot(w — up)].
O

Theorem 5.4.3. Suppose uw € H**'*D(Q) @ V and rotu € H*(Q) with s > 1 +

we have the following error estimates for the numerical solution wy,:

ot gty < O (Il iy + lrotul,) (5412
[rot(u — )| < Cp™n{r20d (||u||s+(r_k_1) + IIrotuHs) , (5.4.13)
Ju —wp|| < CR™2220) (|lu||, + ||rotwl|,) whenr =k + 1,k + 2, (5.4.14)

where ro = min{s, k + 1}.

Remark 5.4.2. The estimate for ||u — uy| is not optimal for the family » = k£ + 2. In
the numerical experiment, we can observe one-order higher accuracy when k£ > 2 if u is

sufficiently smooth.

Proof. The estimates () and () follow immediately from the Céa’s lemma,
dual argument, and Theorem . Proceeding as in the proof of [61, Theorem 6], we

can show that () holds. O

5.5 Numerical Experiments
We now turn to a concrete example. We consider the problem (n) on a unit square
2= (0,1) x (0,1) with an exact solution
3 sin® (w1 sin?(ma,) cos(mas)
u = . (5.5.1)

—3m sin®(may) sin? (72, cos(mx)

Then the source term f can be obtained by a simple calculation.
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To measure the error between the exact solution and the finite element solution, we

denote
€L = U — Uy.

5.5.1 The New Family of Elements with r =k

We first use the lowest-order element in the new family with » = k to solve the
problem (n) In this test, we use uniform triangular meshes and uniform rectangular
meshes with the mesh size h varying from 1/20 to 1/320 by the bisection strategy. For

u = (uy,uz)T, we define two discrete norms:

z{<+h{<

) z§+h§
el = 30 2t [l e+ 30 20 [Tt
CCK—hK IK—hK
KeT, 2 2 KeTy, 1 1
lalliy = Y 4p s (ui(ef, 25) + izl 25))
KeTy,

where K = (2 — bl 28 + pI) x (2 — b 2X + hI) with the center (2, 2X) and the
side length 211 2hi.

Table illustrates various errors and convergence rates for triangular elements.
Table shows errors measured in various norms for rectangular elements. We also
depict error curves for rectangular elements with a log-log scale in Fig. . We observe
that the numerical solution converges to the exact solution with convergence order 1 in
the L*mnorm, 2 in the H(rot)-norm, and 1 in the H (grad rot)-norm, respectively. From
Fig. , we also observe some superconvergence phenomena of e, and gradrotey,
measured in the sense of || - ||, and || - ||;, respectively. Using these superconvergent
results, together with some recovery techniques, we can construct a solution with higher
accuracy if needed.

5.5.2 The Family of Elements with r =k + 1
We then use the lowest-order element th’kH in the family with r =k + 1.

Again, we use the uniform mesh. Table and Table demonstrate the numer-
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Table 5.5.1: Numerical results of the triangular element with r = k and k£ =1

h lexll
1/20  2.099367e-01
1/40  9.736039¢-02
1/80  4.759381e-02
1/160  2.365626e-02

1/320 1.183872e-02

rates ||rot ey || rates rates
7.598390e-01
1.960868e-01
4.941757e-02
1.237934e-02

3.096531e-03

|lerad rot ey, ||

2.510488e+01
1.258823e+-01
6.297909e+00
3.149406e+00
1.574759e4-00

1.1085
1.0326
1.0086
0.9987

1.9542
1.9884
1.9971
1.9992

0.9959
0.9991
0.9998
0.9999

Table 5.5.2: Numerical results of the rectangular element with r =k and £k =1

h lexll lenlly [rotex| llgradrotes|| |[lgradrot enlly,
1/20  1.56953¢-01 3.83651e-02 2.63065¢-01 1.48431e+01  3.23332¢-+00
1/40  5.76799¢-02  9.62913¢-03 6.58847¢-02 T7.41177e+00  8.08779¢-01
1/80  2.84156¢-02 2.40963e-03 1.64788¢-02 3.70484e+00  2.02224e-01
1/160 1.41756¢-02 6.02611e-04 4.12019¢-03 1.85230e+00  5.05578e-02
1/320 7.08507¢-03 2.08784e-04 1.03009¢-03  9.26132e-01  1.26397¢-02

ical results with h varying from 1/10 to 1/160. We observe a second-order convergence in

the sense of H(rot)-norm and a first-order convergence in the sense of H(grad rot)-norm.

Table 5.5.3: Numerical results of the triangular element with r =k + 1 and k =1

h lenll
1/10  1.924001e-01
1/20  5.037761e-02
1/40  1.275089¢-02
1/80  3.197749¢-03
1/160  8.016954e-04

rates |rot ex|| rates  |lgradrotey|  rates
1.836748e+00
4.924701e-01
1.253756e-01
3.148802e-02

7.881059¢-03

4.822043e+01
2.491412e+01
1.256258e+-01
6.294644e+00
3.148996e+00

1.9333
1.9822
1.9955
1.9959

1.8990
1.9738
1.9934
1.9983

0.9527
0.9878
0.9969
0.9992
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Figure 5.5.1: Error curves in different norms

Table 5.5.4: Numerical results of the rectangular element with r =k + 1 and k =1

h lenl| rates ||rot ey || rates  |lgradrotey|  rates

1/10  8.545193e-02 7.742300e-01 3.116513e+01

1/20  2.117547e-02 2.0127 1.924503e-01 2.0083 1.556844e+01 1.0013
1/40  5.283250e-03 2.0029 4.804726e-02 2.0020 7.782876e+00 1.0002
1/80 1.320165e-03 2.0007 1.200780e-02 2.0005 3.891283e+00 1.0001
1/160 3.301818e-04 1.9994 3.001698e-03 2.0001 1.945622e¢+00 1.0000

5.5.3 The Family of Elements with r =k + 2

We now test elements in the family with » = k + 2. We apply the same mesh

as before. Tables , , and show the numerical results for various mesh

sizes and elements. We observe one-order higher convergence rate than the estimate in

Theorem when £ > 2.

We conclude this section by pointing out that the three families of elements bear
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Table 5.5.5: Numerical results of the triangular element with r =k 4+ 2 and £ =1

h llen|| rates ||rot ey || rates  ||gradrote,|  rates
1/10  1.916204e-01 1.831377e+00 4.821773e+01
1/20  4.953536e-02 1.9517 4.921121e-01 1.8959 2.491403e+01 0.9526
1/40  1.254233e-02 1.9817 1.253529e-01 1.9730 1.256258e+01 0.9878
1/80 3.145763e-03 1.9953  3.148659e-02  1.9932 6.294644e+00 0.9969
1/160 7.897003e-04 1.9940 7.880958e-03 1.9983 3.148996e+00 0.9992

Table 5.5.6: Numerical results of the rectangular element with r =k + 2 and £k =1

h lenl| rates ||rot ey || rates  ||gradrotey|  rates
1/10  8.399241e-02 7.736407e-01 3.117602e+01
1/20  2.055671e-02 2.0306 1.924122e-01 2.0075 1.556987e+01 1.0017
1/40  5.125523e-03 2.0038 4.804486e-02 2.0017 7.783057e+00 1.0003
1/80  1.280556e-03 2.0009 1.200764e-02 2.0004 3.891305e+00 1.0001
1/160 3.203172e-04 1.9992 3.001689¢-03 2.0001 1.945625e+00 1.0000

Table 5.5.7: Numerical results of the rectangular element with r =k + 2 and k = 2

h llen|] rates ||lrot en| rates |lgradrotey|  rates
1/4  6.482470e-02 9.955505e-01 2.796216e+01
1/8 4.580398e-03 3.8230 1.388809e-01 2.8416 7.337119e+00 1.9302
1/16  2.927226e-04 3.9679 1.780427e-02 2.9636 1.854476e+00 1.9842
1/32  1.838464e-05 3.9930 2.239038e-03 2.9913  4.648552e-01  1.9962
1/64 1.166284e-06 3.9785 2.802981e-04 2.9978 1.162907e-01  1.9990

their own advantages. The family with » = k can be the best choice if we pursue a low
computational cost, while the family with » = k + 2 stands out for its higher accuracy

in the sense of L2-norm.
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CHAPTER 6 3D GRADCURL-CONFORMING ELEMENTS I
In this chapter, to construct the grad curl-conforming elements, we consider the

Stokes complex () We present it here again:
0— R -5 HY(Q) &% H(gradcwrl; Q) <% HY(Q) @V 4% 12(Q) — 0. (6.0.1)

From the complex, we can see the construction of the grad curl-conforming elements is
related to the incompressible flows since the last two spaces H'(Q) @ V — L?() in the
complex is actually a Stokes pair.

We will construct the following finite element subcomplexes of () on tetrahedral

meshes:

C rad _ 1 i _
0 y R y s EEC, proberl _auly gk AV gpkel ), (6.0.2)

Same as Chapter B, we take r = k, k + 1, or k+ 2. In [b3], Neilan constructed a finite
element subcomplex for another Stokes complex:
0— R -5 F2(Q) &5 Hl(cw]; Q) <% HL(Q) oV 4% 12(0) — 0,

where H'(curl; Q) = {u € H'(Q) ® V : curlu € H'(Q)) ® V}. This discrete complex
contains a finite element Stokes pair, but the first two spaces in the complex have higher
smoothness. We will apply the Stokes pair in [53] to construct the whole complex ()
6.1 Local Shape Function Spaces and Polynomial Complexes

On each K € Ty, we construct the local complex of the shape function spaces of
(6.0.2):
0— RS ¥ (K) 22 pr—bht () culy 7k () v pph—Y () —— 0. (6.1.1)

To this end, we first consider the following local complex on the reference element
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~

K:

grad

0— R—S 37 (K) &858 prr-bhil( ) s,

ZH(K)-28 W (R)— 0. (6.1.2)
We choose 31 (K) := P.(K), WEY(K) := P,y (K), and Z}(K) := Py(K). Define
VYN K) = grad, 35 (K) @ p2 28 (K), (6.1.3)
where p2 is defined in () with W = 0.
As a special case of the Poincaré operators, p2 satisfies the following null-homotopy
identities:
p3 curly @ + grad, pra =, Va € CwAl(K); (6.1.4)
curlg 2 + pl divg @ = 4, Vi € CCA%(K). (6.1.5)
Remark 6.1.1. We can replace p2 in () with x2.

The right-hand side of () is a direct sum. In fact, if & € grad, 37 (K)Np2 ZF(K),
then curlz @ = 0 and pi@ = 0. By the null-homotopy identity (), u = p3curly u+
grad, piu = 0.

By the definitions of the shape function spaces, it is easy to show that the sequence
() is a complex. By the properties of the Poincaré operators, we can verify that the

sequence

A A pl A 3 A A
0 — 31 (K) = V7 HER) o ZHEK) <2 WEFYK) «— 0  (6.1.6)

is also a complex with the Poincaré operators in (led) — (ble) From Lemma ,

we obtain the exactness.
Lemma 6.1.1. The complex () is exact.
We demonstrate that V'~ "**!(K) contains polynomials of certain degree.

Lemma 6.1.2. The inclusion P,_i(K) C V""" (K) holds.
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Proof. From the null-homotopy property (),
P,,,l(f() = grad, pliPT,l(f() + p2 curly P,,,l(f().

By definition, Vi """ (K) = grad, ¥ (K) @ p%ZF(K). We have pLP,_(K) C P.(K) =

A

Sr(K) and curly Po_1(K) C Py(K) = ZF(K). Therefore the desired inclusion holds. [

We adopt the transformation () to relate the function @ € V' "*(K) to a
function u € V; 71’“1(}( ). By a simple computation, we have

B
curlu o Fg = Wg) curlg w. (6.1.7)
K

We are now in a position to define the spaces in ()
S (K) = {u Cwo Fy € i;(f%)} ,
V(R = {u . BLuo Fg € Vg*lv’fﬂ(k)} , (6.1.8)
ZFK) = {u . Biluo Fy € Z,‘;(f()} .
By the definition of the spaces and Lemma , we can show () is also an exact
complex.
6.2 Degrees of Freedom
In this section, we define DOFs for each space in (.1.1)). Taking r = k, k + 1, and
k+2in () yields three versions of grad curl-conforming element spaces V;"**!(K),
th,/cH(K)? and th+1,k+1<K)_

The DOFs for the Lagrange element ¥} (K') (r > 1) can be given as follows.
o Vertex DOFs M,(u) at all the vertices v; € V,,(K):

M,(u) = {u(v;)}. (6.2.1)
« Edge DOFs M, (u) on all the edges e; € &,(K):

M, (u) = { / uvds for all v € PTg(ei)} . (6.2.2)

€i
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« Face DOFs My (u) on all the faces f; € Fp(K):

M (u) = { / uvdA for all v € Pr_s( fi)} . (6.2.3)

f.

o Interior DOFs Mk (u) in the element K € Tp:

Mg (u) = {/K uvdV for all v € Pr_4(K)} . (6.2.4)
We equip the space V""" (K) (r > 1,k > 6) with the following DOFs:
» Vertex DOFs M, (u) at all the vertices v; € V,(K):

M,(u) = {D(curl u)(v;) for all |a| < 2 except for O, (curl w)s(v;),

D2 5, (curlw)i (v;), 02, (curlw)s(vy), 07, (curlw)s(v;) } . (6.2.5)

T1T1 7 T T2x2 ) r3x3

» Edge DOFs M, (u) at all edges e; € &,(K) (with two mutually orthogonal unit

normal vector n; and m; to the edge e; and the unit tangential vector 7;):

M. (u) = {/ u - 1;qds for all ¢ € Prl(ei)}

1

U {/ curlu - qds for all q € Pk_ﬁ(ei)} (6.2.6)

€

U {/ grad(curlw - ;) - n;qds with I; = 7, m;, m;, for all ¢ € Pk_5(e,~)}

€

U {/ grad(curlw - ;) - m;qds with I; = 7;,n;, for all ¢ € Pk_5(ez~)} )

o Face DOFs My (u) at all faces f; € F,(K) (with two mutually orthogonal unit

vector 7} and 77 in the face f; and the unit normal vector n;):

M;(u) = {/ curlu - n;qdA for all ¢ € Pk_ﬁ(fi)/R}
f.

U {/ curlu - 7 gd A for all ¢ € PkG(fi)}
f.

U {/ curlu - 77qdA for all ¢ € Pk_ﬁ(fi)} (6.2.7)
f.

U {/ u - qu for all g = Bkq,q € PT—3(ﬁ>ifi} )
f.
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A A A

where ﬁ:fi =z — (T n;) Ny

i
o Interior DOFs M (u) in the element K € Ty:
Mg (u) = {/ curlu - qdV for all go Fx = B q,q € Pk,6(f() X :i:}
K
U {/Ku .qdV for all go Fx = By, g € PT_4(K):%} , (6.2.8)

We choose the finite element Stokes pair proposed in [53] for ZF(K)— W} (K) (k >

5). The DOFs for ZF(K) are given as follows.
» Vertex DOFs M, (u) at all the vertices v; € Vi, (K):
M,(u) = {Du(v;) for all |o| < 2}. (6.2.9)

« Edge DOFs M., (u) at all edges e; € &,(K) (with two mutually orthogonal unit

normal vector n; and m; to the edge e;):

M (u) = {/ u - qds for all g € Pk—6(€i)}

€i

U {/ (gradu)n; - gqds for all q € Pk_5(ei)}

€

U {/ (grad u)m; - qds for all g € Pk_5(ei)} : (6.2.10)

€

where grad is applied rowwise.
o Face DOFs My(u) at all faces f; € Fp(K):
M;(u) = {/f u - qdA for all q € Pk—G(fi)} : (6.2.11)
o Interior DOFs M (u) in the element K € Ty:
Mg (u) = {/Ku -qdV for all g € Pk_4(K)} . (6.2.12)

The DOFs for W)~ (K) are given as follows.
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» Vertex DOFs M, (u) at all faces v; € V},(K):

M, (u) = {D%u(v;) for all |a|] < 1}.
« Edge DOFs M, (u) at all edges e; € &,(K):

M, (u) = { / ‘uqds for all g € P“,(ei)} .

€

o Interior DOFs Mk (u) in the element K € Tp:

Mg (u) = {/ wvdV for all v € Py_1(K) such that v|gx = O} .
K

Lemma 6.2.1. The DOFs (de) — (leﬂ) are well-defined for any uw € H'/*H(Q)@V

and curlu € H?*(Q) ® V with § > 0.

Proof. By the embedding theorem, we have curlu € H/?*(Q)®@V — C?9(Q)®V, then
the DOFs involving curlw are well-defined. Proceeding as in the proof of [49, Lemma
5.38], we see that the remaining DOFs are well-defined since uw € H'Y?*(Q) ® V and
curlu € H*(Q) @V — C?(Q) @V C LP(Q) ® V with p > 2. O

Lemma 6.2.2. The DOFs for V" "**Y(K) are unisolvent.

Proof. Since the complex () is exact, we have

dim VY Y(K) = dim ZF(K) + dim 2 (K) — dim WFH(K) — 1. (6.2.13)
We can check that the DOF set has the same dimension. Then it suffices to show that
if all the DOFs vanish on w € V" ""*!(K), then u = 0. To see this, we first show that

curlw = 0. Since the sequence () is a complex, we have curl V""" (K) ¢ ZF(K).

By integration by parts, the following face DOFs for ZF(K') vanish on curl u:

/ curlu - n;dA = / u - Tyrds = 0.
fi ofi

The conformity of ZF(K) leads to curlu = 0 on K. We relate u to @ via (5.1.7), and
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then curly w = 0 on 0K. We can rewrite curlg w as:

~

curly @ = 1d0@3(1 — &y — &y — &3)® with & = (B, Dy, B3)T € P_4(K),
and hence

Os, (curly @)y = Bo@3[(1 — 20y — &g — 23) D1 + (1 — &y — &g — &3)3105, 1),

Dz, (curly @)y = &123[(1 — 28y — &y — &3) Py + (1 — &y — &g — d3) 2205, D),

Dz, (curly @) = &1 29[(1 — 25 — &y — &9)P3 + (1 — &y — &g — d3) 2305, Ds).
When &, = 0, 0z, (curlg @)2+0;,(curlz @)3 = 0 which leads to 0z, (curls @); = 0 because
div curlg w = 95, (curlg @)y + Oz, (curlg @)s + 0z, (curlg )3 = 0. It implies ®, has a factor
Z1. Similarly, <i>2 has a factor 2, and <i>3 has a factor Z3. Then

curly @ = #12983(1 — &1 — &y — 23)[21P1, 22D, £3D3]T

with & = [51, D, 53] € Pk_g,(f(). By integration by parts,

/ curlu - grad vdV = / curlu - nggvdA = 0 for any v € Py_4(K),
K oK

which together with the vanishing interior DOFs involving curl w leads to

0= / curlu - B[}T:I; o FlgldV = / curlg u - odV.
K

K

Bk

Then curlu = Tt (51 curlg w = 0 since o = 0.

Since curlu - n; = 0 on each f;, there exists a ¢; € P,(f;) such that n; X u|y, x n; =
grad, ¢;. Here grad, is the face gradient on f;. By the edge DOFs of V,:_l’kH(K),
we get u - 7; = 0 on each edge e;. Therefore ¢; is a constant on the boundary of f;.
Without loss of generality, we can choose this constant to be zero. Then ¢; has the form
¢i = Bi| ¢ with ¢; € P._3(f;). By the property of Koszul operators in 2D (see Chapter
E), for any function v¢; € P._3(f;), there exists q; € P,_3(f;) Bx® i satisfying q; L n;
and divy, g; = v;. By the DOFs in (), we have
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This implies that ¥; =0, i.e., u x n; =0 on f;.
Therefore there exists ¢ = Bgy with ¢ € P,_4(K) such that u = grad ¢. We choose
q € P,_4(K)Bg such that divq = . Then
0= (u,q) = (grad ¢, q) = — (¢,divq) = = (B, ¥) -

This implies that 1 = 0 and hence ¢ = 0 and u = 0.

6.3 Global Finite Element Complexes

Equipping the local spaces with the above DOFs, we obtain the global finite element
spaces 27, V,f_l’kﬂ, 7k and WF™! with k > 6 in the complex () The number of
DOFs of the space V; """ (K) is at least 279.

Lemma 6.3.1. The following conformity holds:
VW < H(grad curl; Q).

Proof. To prove the conformity, we must show w x n; = 0 and curlu = 0 for all

fi € Fr(K) if the DOFs (b29‘) - (bZl]J) vanish on u € V,:_I’HI(K). Proceeding as in

the proof of Lemma , we can show that curlu = 0 and w x n; = 0 on each f;. [
Theorem 6.3.2. The complex () is exact on contractible domains.

Proof. The exactness at X} is trivial. The exactness at V UM follows from the exact-
ness of the standard finite element differential forms (see Theorem ) The exactness
at WF™! ie., the surjectivity of div : ZF — W}~ has been verified in [53, Lemma 4.5].

Finally, the exactness at ZF follows from a dimension count. Let V, £, F, and K

denote the number of vertices, edges, faces, and 3D cells, respectively. Then we have
1 1
dim>) =V + (r—1)&+ 5(7’ - 2)(r—1)F+ 6(7“ = 3)(r—2)(r — 1K,

k(k+1)(k+2)

dim W,’f‘l = 5

K — 16K — 6(k — 4)K + 4V + (k — 4)&.
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From the DOFs (M) - (M),

1
dim V7Y — dim ZF = —4V 1€ — (k — 4)E + =2 = D)F - F+

é[(r —3)(r—2)(r — 1) + (k — 5)(k — 4)(4k — 15) — 3(k — 3)(k — 2)(k — 1)] K.

From the above dimension count, we have
—1 +dim ¥}, — dim VY 4 dim ZF — dim WEL = 0,
where we have used Euler’s formula V — £ + F — K = 1. This completes the proof. [J

We now consider the following complex with vanishing boundary conditions:

grad

0 — HYQ) &5 Hy(grad curl; Q) <% HHQ) @V 2% 12(Q) — 0,  (6.3.1)

where Hy(grad curl; Q) = {u € H(gradcurl;Q) : uw xn = 0 and curlu = 0 on 00}.
By a standard argument, the sequence (f.3.1)) is a complex and is exact on contractible
domains, see, e.g., [25].

However, if we simply take 3.7 = YO H (), ‘7}:—1,“1 = V}:_l’kﬂ N Hy(grad curl; ),
ZF = ZF N HYQ) @V, and WF1 = WFE1 0 L2(Q), the complex

C S grad = o1 k41 1. 5 di T rk—
0 y r S A e A | (6.3.2)

is not exact. This is because the construction in this chapter involves supersmoothness
on lower-dimensional simplices of the mesh. Actually it is a non-trivial issue to construct
such finite element spaces with homogeneous boundary conditions that can fit into an
exact complex. We will not discuss this issue here, but only mention that the construction
in the next chapter will not suffer from this issue.
6.4 Approximation Property of V},

Denote V(D) = {u € HY?*(D)®V : curlu € H/>*°(D) ® V} (see Lemma
). We define an H(grad curl) interpolation operator Iy : V(K) — Vi " (K)

by the DOFs for V;’ _1’k+1(K ). Similarly, we can define an interpolation operator mx :
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H?Y(K)®V — ZF(K) by the DOFs for ZF(K). The global interpolation operators

I1;, and 7, are defined piecewisely by
Hh|K = HK and %h|K = %K-

The DOFs for V" ""*!(K) involve normal derivatives to edges, we can not relate
the interpolation IIx on a general element K to II; on the reference element K by the
mapping (n) To estimate the interpolation error, we follow the method in [23]. We
define a new element by replacing the DOFs M, (u) for Vi ~"**'(K) with the following
DOFs:

Me(u) = {/ u - T;qds for all ¢ € PT_l(ei)} U {/ curlu - qds for all g € Pk_ﬁ(ei)}

€; €

U { e / grad(curlw - I7) - tlqds with I] € L], 5 = 1,2, forall ¢ € Pk5(€@-)} :
€;

€

where |e;| = length(e;), t! and t? are the vectors connecting the midpoint of edge e; and

the other two vertices other than the endpoints of e;, and

{t! x &8 x t}} j=1

1771

L =
{t! x 3,82 x 3, ¢} x 7} j=2,
With these DOFs, the element is no longer grad curl-conforming.

We denote the interpolation defined by the above DOFs as Agx. Now we show that

Ak and Ay can be related via the mapping ()

Lemma 6.4.1. Assume that Ag is well-defined. Then under the transformation (),

we have Agu o Fr = B;(TAKﬁ,.
Proof. Under the transformation (), the new DOFs satisfy

1 o 1 s
el / grad(curlw - I7) - tlqds = Tl / grad (curlg @ - I7) - t14ds,
€; e €; éi

. -T A~
since I = def(‘g,T)lg . Therefore, the DOFs to define Ak are either identical with or linear
K
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combinations of those to define Ag. According to Proposition 3.4.7 in [L6], we complete

the proof. O

Correspondingly, we define a new interpolation I by replacing the DOFs M, (u) to

define 7y with the following:

M, (u) = {/ u - qds for all g € PkG(ei)}

€q

1
U { / grad(u - I;) - t;qds with I; € L7 for all ¢ € Pk_5(ei)}

‘e’i’ e;
{

Lemma 6.4.2. Ifw € H*(K)®V with s > 7/2 and there exists a pair {m,q} such that

—_

/ grad(u - I;) - t2qds with I; € L7 for all ¢ € Pk_5(ez~)} )

le;

H*(K) — W™4(K), then we have the following error estimates for the interpolation I,

[ = Ticaw] g < CLR 2D o]

where | K| is the volume of K.
Proof. The proof is standard, see, e.g., Theorem 3.1.4 in [23]. O

Lemma 6.4.3. [fcurlu € H*(K) ® V with s > 7/2 and there ezists a pair {m,q} such

that H*(K) — W™4(K), then

”IK curlu — curl AKUHm,q’K S C|K|1/q—1/2h;in{s,k+1}*m chrluns’K )

Proof. For simplicity of notation, we let w = I curlu — curl Agw. Since w € ZF(K),
we have w = Ixw = ) . d;(w)N;, where d;(w) are the DOFs to define Ixw and N;
are the corresponding dual basis functions. It is easy to see all the DOFs d;(w) vanish,
except for ﬁ fe grad(w - l;) - tlqds,l; € L?. We estimate only the non-vanishing term.

By the definition of Iy, we have

1 1
el / grad(w - I;) - t;qds = m/ grad (curl(u — Agu) - 1;) - tiqds
€; e; €i €5
1
= el / grad (curl(u — Agu) - (¢ X £7)) - t;qds.
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Let L} = L?. Since the divergence of curl(u — Agu) is 0, we can find 8 constants Cj;

with I/ € L7 for j = 1,2,3 independent of hg such that

1
el / grad (curl(u — Agu) - (t] x £7)) - t;qds
€il Je;
3 1 .
= Z Z Clze_'| / grad (curl(u — Agu) - 1)) - tqds,
J=13eL’ e

which can be finished by mapping to the reference element, finding the constants and

then mapping back. Furthermore, by the definition of Axu, we have

3
Z Z CH-L/ grad (curl(u — Agu) lf) -tqus

- ; ) ei‘
i=lyer]
1
= Z Cp— / grad (curl(u — Agu) - 1) - t7qds.
ger il Je

Since curl Agu restricted on the edge e; is a polynomial of order k, it can be determined
by the vertex DOFs D(curl Agu)(v;) = D*(Ig curlu)(v;) for |a| < 2 and the edge
DOFs fei curl Axu - qds = fei I curlu - qds for g € P,_g(e;). By Lemma , we have

1
Z CZ?E/ grad (curl(u — Agu) - l?) -tlqds

13eL3
1
= Z Ci / grad (curlu — I curlu) - lf’) - t3qds
BeL? eil Je,

<Chy |eurlu — Ix(curlu)|; . 5

<C|K|~V2p3 pimis=th curl a4 . (6.4.1)

Suppose IN; are the basis functions associated with the non-vanishing DOFs. Then

NGl g < Ch2 KM NG g 2 (6.4.2)
where N; = det(Bg) By N; are the basis functions on the reference element.
Combining (6.4.1]) and (), we complete the proof. O

Theorem 6.4.4. If u € H*"" " D(K)®V and curlu € H*(K) ® V with s > I, then
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we have the following error estimates for the interpolation Ay,

lw = Axul o < Chig(llullyy gy i + llewrlall; ), (6.4.3)

[eurl(w — Agu)l],, . x < C|K|Ya=1/2prz—m [earlwlf, & - (6.4.4)

where 11 = min{s + (r — k — 1),r} and ro = min{s, k + 1}.

Proof. Due to the relationship Agu o Fi = By Agzu obtained in Lemma , the

proof of () is standard, see the proof of Theorem . Combining Lemma

and Lemma , we obtain

||curl(uw — Agu)|| < [[ewrlw — I curlw)|],, . s + [k curlu — curl Agu)||

m7q7K - quvK

< CIKY5 P hie™ el .
O]

Theorem 6.4.5. If u € H***D(Q) @ V and curlu € H*(Q) ® V with s > L, then

we have the following error estimates for the interpolation 11y,

o~ Wyl < CHG (ul sy + el ull), (6.4.5)
|curl(w — pu)|| < ChE [|curlul, , (6.4.6)
|grad curl(w — Iyu)|| < CRR ™" ||curl wl], . (6.4.7)

Proof. We estimate [|u — Il u|| ;- and [lcurl(w — ITyu)|[; 4 for i = 0,1. Since u — IIgu =
u — Agu + Agu — Ilxu, it remains to estimate Agu — Ilgw in three different norms
or semi-norms. We denote A = Agu — Ilxu which is a polynomial with a degree of no
more than k 4+ 1. The DOFs to define Ax A vanish except for ﬁ fei grad(curl A - I7) -

tqus with lf € Lg,j = 1,2, and ¢q € P;_5(e;). Then

6 k-4 2

1 L J
Z Z el / grad(curl A - 17) -tgqldsNZ?j?l,

1 =1 j=1j
7 =137 lgELg

A =

5
where N.¢

.1 are the corresponding dual basis functions. Since curl A is a div-free polyno-
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mial, we can represent grad(curl A -m;)-m, as a linear combination of grad(curl A-7;) -
m,;, grad(curl A-7;)-n,;, grad(curl A-n;)-m;, grad(curl A-n;)-n;, and grad(curl A-m;)-n;
with weights independent of h. Therefore,
grad(curl A - 17) - ]
=grad (curl A - [(lf )T A (- m)ng 4 (1 m;)my;])
@ T+ (- n)ng + (- m)my)
<Ch% ({ grad (curl(u — Agu) - TZ') . n,} + ’ grad (curl(u — Agu) - Ti) . mz|
+ } grad (curl(u — Agu) - ni) . nl| + ‘ grad (curl(u — Agu) - nz) . ml‘
+ } grad (curl(u — Agu) - mz) . nl|>
Each term has the following estimate. We show only the first term
grad (curl(u — Agu) - 1) - n;
<C'lewrl(u — Agu)|, o x
<C|K|'2np2t |curlal, g .

According to the mapping (), the basis functions Ngl satisfy

v 1/2)| nrt
HNz‘jl < Chg | Nijl ’
i . i
[ ewrl N3y || < COhil’? | cunls, Ny |,
i —3/2 NG
H grad curl N || < Chy H gradg curly N, ||,
7 % ! v
where N, ll 4 are the corresponding basis functions on K and satisfy Nlljl = BN, 7,ljl By

combining the above estimates, we complete the proof. O
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CHAPTER 7 3D GRADCURL-CONFORMING ELEMENTS II

The construction in the last chapter involves supersmoothness on lower-dimensional
simplices. As a consequence, the grad curl-conforming elements have a large number of
DOFs, and it is hard to construct exact discrete complexes with vanishing boundary
conditions.

In this chapter, we will construct finite element subcomplexes of () with fewer
DOFs:

C rad _ 1 i _
0 >y R sy BOC, proberl _aul et AV gkl 50, (7.0.0)

where r = k, k+ 1, or k + 2. To construct the discrete complex, we first need an inf-
sup stable finite element Stokes pair E’fL’+ - W}’f_l. To satisfy the complex property, the

Stokes pair should satisfy
.kt k—1
div, " C W, 7,

which guarantees the divergence-free condition at the discrete level. Recently, Guzméan
and Neilan [34] constructed such a finite element Stokes pair by enriching the first-order
vector-valued Lagrange finite element space with modified Bernardi-Raugel bubbles. The
pair has only 16 and 1 DOFs on each element. Therefore, it is a good candidate for 3 —
Wy. However, the extension to high-order cases is still not available yet. In this chapter,
we will first extend Guzman and Neilan’s construction in [34] to high-order cases and
apply it to construct the whole complex ()
7.1 Local Shape Function Spaces and Polynomial Complexes
7.1.1 Modified Bubble Functions

For each K € Ty, let xx be the barycenter of K. We denote K" as the partition of

K by adjoining the vertices of K with the new vertex zy, known as the Alfeld split of
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K [1I]. We also denote
P{(K)={ve H(K)®V :v|r € P(T) forall T € K"},
PYK")={ve H(K)®V :v|y € Py(T) for all T € K"},
Pu(K") ={qe LK) : qlr € P(T) for all T € K"}.

Let xq,---,x4 be the four vertexes of the element K, and xqg = zx. Let Ay be the

continuous piecewise linear function satisfying A\o(z;) = dg; for 0 < j < 4. Denote

k
My(K") ={ve P{(K"):v =Y Mw; with w,_; € P~ ;(K)}, (7.1.1)

j=1
where PH(K) = {v € P(K): [, v-kdV =0 for all K € R,_; } with R, defined in ([L.5.4)
for{>1and R, =0 for Il =0,—1.

We will construct modified bubbles using the following properties of polynomial

spaces on K" [34, Theorem 3.3].
Lemma 7.1.1. Let k > 1. For any K € T, and for any p € ]Ojk_l(K”), there exists a
unique v € My(K™) satisfying

divv =p on K.

Let A\;(i = 1,2,3,4) be the barycentric coordinates of K, i.e., \;(z;) = d;;. We define

the scalar face bubbles
4
j=1j#i

and the scalar interior bubble

4
j=1
The Bernardi-Raugel face bubbles are given as
b/ = Bn,; for 1 <i <4,

where mn; is the outward unit normal to f; € Fp(K).



113

According to [34, Propsition 4.2], we can modify the Bernardi-Raugel face bubbles

such that they have constant divergence.

Lemma 7.1.2 ([34]). There exists 3] € P¢(K") such that
Bllox = bllox, divp] € Ry(K). (7.1.2)

We refer to the functions @f € P§{(K"), i=1,2,3,4 which satisfy () as the modified
Bernardi-Raugel bubbles on a tetrahedron K (see [34]). Denote

B! :=span{B/, i =1,2,3,4},

To construct higher-order elements, we will use certain interior bubbles. Denote

and

According to Lemma , for k > 2, there exists a unique subspace B¥ C M, (K")
such that div B¥ = 8,_1(K) and dim B* = dim S;_1(K). We refer to the functions in

B* as modified interior bubbles on a tetrahedron K.

Remark 7.1.1. With the constructive proof of Lemma (see [B4, Theorem 3.3]), we

can obtain explicit forms of the interior bubbles in the implementation.
Lemma 7.1.3. For k > 2, a function v € B* is uniquely determined by
/ v - grad ¢dS for all q € S_(K). (7.1.3)
K

Proof. From the construction, dim B* = dim Sok_l(K ). Suppose that the functionals in

() vanish on v. It suffices to show v = 0. Indeed, we have from integration by parts

0 :/ v - grad qdV :/ divvqdV.
K K
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Taking ¢ = div v, we obtain divv = 0 and therefore v = 0 since div : B¥ — Sok,l(K) is

bijective by the construction of B*. O

7.1.2 Local Shape Function Spaces

On each K € 7T,, we construct the local complex of the shape function spaces of

() as follows:
0—— R—S Xy (k)22 yy bkt gy culy sk ey vy ppk—t(gry 50, (7.1.4)

As before, we first consider the following local complex on the reference element K:

~ . gradg

0—— R—Cs Sy (K) 2258 prrtht gy S, sikotfry ey g1y 50 (7.1.5)

We choose ¥}, (K) := P.(K) and WF(K) := P,_,(K). Denote by B* the set of modified
bubbles on K. Set 35" (K) = P,(K) ® B, where

/

~

B! k=1,

o
I

B'e B2, k=2,

B*, k> 3.
\

~

Note that for k£ = 1, we only supply P;(K) with modified Bernardi-Raugel face bubbles;

A

for k = 2, we supply P5(K) with both face and interior bubbles, while for k£ > 3 we
only need supply Py(K) with interior bubbles. It is easy to see that the face bubbles
{B/YL | and Py(K) are linearly independent, and hence, Py(K) @ B' and P,(K) & B!
are direct sums. From the explicit form () of the functions in My (K"), we see that

M, (K") & P,(K) is a direct sum, and hence, B* @ P,,(K) is also a direct sum.

Remark 7.1.2. The idea of enriching with modified bubbles is inspired by [B4], where the
case of k = 1 is defined and used to construct a stable Stokes finite element pair. Here

we extend it to high-order cases.
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Define
VU (R = grad, 5 (K) @ p2 S (R). (7.1.6)
The right-hand side of () is a direct sum.

Remark 7.1.3. For the modified bubble functions in 3" (K), we choose the barycenter
T as the base point W in the definition of p2 (see [21]). For other functions, we choose

W =0.

Remark 7.1.4. For polynomial bases in 2fb+(f( ) other than the bubbles, we can re-
place the Poincaré operator p2 by the Koszul operator x%. However, to get the complex

property it seems necessary to use the Poincaré operator for the bubbles.

By the definitions of the shape function spaces, it is easy to show that the sequence
(F.1.5) is a complex. By the properties of the Poincaré operators, we can verify that the

sequence

1 . R 2 N N 3 N N
0 «— SI(K) 2 rte Ry Lo sk gy L2 R «—— 0 (T.L7)

is also a complex with the Poincaré operators in (led) - (leﬂ) From Lemma ,

we obtain the exactness.
Lemma 7.1.4. The complex () is exact.

From the definition, we see that ‘A/,f 71””1([%' ) has two parts: one from the gradient on
7 (K) and the other from the Poincaré operator on 3" (K). The first part is easy to
implement: we may remove the constant (kernel of gradient) from the bases of 3 (K) and
apply gradient to the rest. The piﬁ]iﬂf( ) part calls for more explanation as we cannot
obtain a basis by applying the Poincaré operator to a basis of 2]Z+(K ) (as the results
are not linearly independent). Now we show how to obtain a basis for the p235(K)

part to implement V""" *!(K).
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We first claim Py (K) = curlg Poyy (K) @ p2 Po_1(K). In fact, for all 4 € Py(K), the
null-homotopy identity () leads to @ = curlg p2a + p2 divg @ € curly Poyy (K) +
ngk,l(f(). Moreover, if 4 € curly Ppyq(K) Np3 P,_1(K), then divz @ = 0 and p2a = 0,
which follows from (p.1.5) again that u = 0.
We then have the decomposition 35 (K) = curly Pyyi(K) @ p2 Pr_1(K) ® B, which
leads to
P33 (K) =pj curls Py (K) + 935 + pipi P (K)
A A (7.1.8)
=p3 curly Py (K) + p3B,
where we used p2p3 = 0.
From the exactness and the decomposition of f):ﬂf( ), we obtain
dim p2 3" = dim VYK — dim grad,, 35 (K)

= dim 2P (K) — dim WFY(K)
— dim curlg Py (K) + dim p2 Py (K) + dim B — dim W}~ }(K)
= dim curlyg Pk+1(f() + dim B
> dim p curly Ppyq (K) + dim p2 B,

which together with () leads to

PaS T (K) = pj curly Py (K) @ p3B.

Therefore, to implement p2 Vhr 71””1(}% ), we take the bases of B and the bases of

T

~

curlg Py11(K), and apply the Poincaré operator on them.

We demonstrate that V,f _l’kH(K ) contains polynomials of certain degree.

Lemma 7.1.5. The inclusion P,_1(K) C Vi """ (K) holds.
Proof. Proceeding as the proof of Lemma , we can prove this lemma. 0

Define ¥ (K), Vi """ (K), and =} as in () Then the complex () is an

exact complex.
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7.2 Degrees of Freedom

In this section, we define DOFs for each space in () Taking r = k, k + 1, and
k+2in () yields three versions of grad curl-conforming element spaces thfl’kH(K ),
th,k—l-l(K)’ and th—&-l,k—l—l(K).

The DOFs for the Lagrange element ¥} (K) can be given as follows.

Vertex DOFs M, (u) at all the vertices v; € V,,(K):

M, (u) = {u(v)}. (7.2.1)

Edge DOFs M, (u) on all the edges e; € &,(K):

M. (u) = {/ uvds for all v € P,,_g(ei)} : (7.2.2)
« Face DOFs M/(u) on all the faces f; € F(K):
My (u) = {/ uvdA for all v € PT_3(fZ-)} : (7.2.3)
f.

Interior DOFs Mg (u) in the element K € Tp:
Mic(u) = { / wdV for all v € PT_4(K)} | (7.2.4)
K
We equip the space V} 71’k+1(K ) with the following DOFs:

« Vertex DOFs M, (u) at all vertices v; € Vj,(K):

M,(u) = {curlu(v;)}. (7.2.5)

« Edge DOFs M. (u) on all edges e; € &,(K):

M. (u) = {/ u - 1;qds for all g € Pr_l(ei)}

€

U {/ curlu - gds for all g € Pk_g(ei)} . (7.2.6)

€i

o Face DOFs My (u) at all faces f; € F,(K) (with two mutually orthogonal unit
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vector 7! and 772 in the face f; and the unit normal vector n;):

My(u) = {/ curlu - n;qdA for all ¢ € Pkg(f,L')/R}
f.

U {/ curlu - 7} gd A for all ¢ € Pk_g(fi)}
f.

U {/ curlu - 77qdA for all ¢ € Pk_g(fi)} (7.2.7)
f,
U {/ u - qdA for all g = Bxq,q € Pr_g(fi)ifi} ,
f.

fi

where &; = [ — (- 7;) N
« Interior DOFs M (u) in the element K € Ty:
My (u) = {/ curlu - qdV for all go Fx = B q, g € curl, ‘g/,f_l’kﬂ(f()}
K
U {/K'u, .qdV for all go Fix = Bgq,q € PT_4(K)i:} , (7.2.8)

where V' Y (K) = {u € V7 VY(K) : DOFs (1.2.4) — (7.2.7) vanish on 4}

The DOFs for " (K) can be given similarly to 3 (K) with some additional face

or interior integration DOFs to take care of the bubble functions (see Lemma and

Lemma )

» Vertex DOFs M, (u) at all the vertices v; € V,(K):

M,(u) ={u(v;)}. (7.2.9)
« Edge DOFs M, (u) on all the edges ¢; € &,(K):

M. (u) = {/ u - vds for all v € PkQ(ei)} : (7.2.10)

€i

« Face DOFs M/(u) on all the faces f; € F,(K):

My (u) = {/ u - vdA for all v € Pk_g(fi)}
f.
U {/ u - n;dA when k = 1,2} . (7.2.11)
f,
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>

sr(K) grad  yrobERLg) cwrl o sk (g div W (K

Figure 7.2.1: The lowest-order (k = 1) finite element complex () on tetrahedra with
r = k in the first row, » = k + 1 in the second row, and » = k£ 4 2 in the third row.

« Interior DOFs M (u) in the element K € Ty:
Mg (u) = {/K'u, -vdV for all v = B9, € curlg Xi/}:_l’kﬂ(f()}
U {/Ku -gradvdV for all v € P,_1(K)/R (k > 2)} . (7.2.12)
The DOFs for W}~ !(K) can be given as follows.

o Interior DOFs Mk (u) in the element K € Tp:

My (u) = {/Ku ~pdV for all v € Pk_l(K)} .

Lemma 7.2.1. The DOFs for /"7 (K) are unisolvent.
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Proof. The case of k = 1 is proved in [34, Lemma 4.3], and the case of k = 2 can
be proved similarly. We only prove the lemma for & > 3. Denote Ny_; = dim B*. For
u € SFT(K), rewrite u = w + Y7 b,8; with b; € R, w € Py(K), and 3; € B*.

Suppose that the DOFs (t?Qd) - (t?21d) vanish on w. We must show that «w = 0. Since

3; vanish on K, w vanishes on 9K by the DOFs in (f?2d) - (t721]J) The DOFs in the

second set of () leads to divu = 0 since divu € Py_1(K)/R. Therefore u = curlv
with v € \D/,:_I’HI(K). Using the DOFs in the first set of (), we obtain w =0. O

Lemma 7.2.2. The DOFs (I(QH) — (I{QQ) are well-defined for any uw € H'/?Y(Q) @V

and curlu € H*?%(Q) ® V with § > 0.

Proof. By the embedding theorem, we have curlu € H*?*(Q)®@V — C%(Q)®V, then
the DOFs involving curlu are well-defined. Proceeding as in the proof of [49, Lemma
5.38], we see that the remaining DOFs are well-defined since u € HY?*(Q) ® V and
curlu € H¥*(Q) @V — C%(Q) @V C LP(Q) ® V with p > 2. O

Lemma 7.2.3. The DOFs for V" "**Y(K) are unisolvent.

Proof. Since the complex ([7.1.4)) is exact, we have
dim VY Y(K) = dim 0T (K) + dim 35 (K) — dim WFH(K) — 1. (7.2.13)

We can check that the DOF set has the same dimension. Then it suffices to show that
if all the DOFs vanish on u € V;'""*™(K), then w = 0. To see this, we first show that
curlw = 0. Using the properties of the Poincaré operators, we have curl V;’ 71””1([( ) C

EZ’JF(K). By integration by parts, the following DOFs for Efl”L(K) vanish on curl u:

/ curlu - n;dA = / u - Typds =0,
fi ofi

and

/ curlu - gradvdV = / curlu - nggvdA = 0 for any v € P (K).
K oK
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By the unisolvence of the DOFs for £"%(K), we get curlu = 0 in K.

Therefore on each f;, there exists a ¢; € P.(f;) such that n; x u|y, x n; = grad;, ¢;.
Here grad,, is the face gradient on f;. By the edge DOFs of V}ffl’kH(K), weget u-1; =0
on the edge e;. Therefore ¢; is a constant on all the edges of f;. Without loss of generality,
7,0 with 9, €

P,_5(fi). By the property of Koszul operators in 2D (see Chapter E), for any function

we can choose this constant to be zero. Then ¢; has the form ¢; = B;

¥; € P._3(fi), there exists q; € Pr_g(fi)BK:%fi satisfying q; L mn; and divy, q; = ;. By
the DOFs in (n), we have

0= (’U/? qi)fi - _<¢i7 dinZ. qi)fi - - (BZ fil/Jia wl)fz .

This implies that ¢; =0, i.e., u X n; = 0 on f;.
Therefore, there exists i) € P._4(K) such that ¢ = Byi. We choose q € P,_4(K)Bg®
such that divg = v¢. Then

0= (u,q) = (grad ¢,q) = — (¢, divq) = — (Bot), ¥) .

This implies that ¢ = 0 and hence ¢ =0 and u = 0.
O

For § > 0 and D C , denote ¥(D) = H¥?*°(D) and V(D) = {u € H/>***(D)®V :
curlu € H3?%(D) @ V}.

For u € ¥(K), we can define an H' interpolation operator 7 : H3/*7(K) — X7 (K)
by the DOFs for ¥} (K). We use g to denote the interpolation operator to X'
Provided v € V(K) (see Lemma ), we can define an H(grad curl) interpolation
operator Iy : V(K) — V' "*(K) by the DOFs for V" """!(K). We denote the

interpolation defined by the DOFs for W} (K) as 7.
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7.3 Global Finite Element Complexes
7.3.1 Complexes without Boundary Conditions

Equipping the local spaces with the above DOFs, we obtain the global finite element
spaces X7, VPR SRt and W in the complex ()

Lemma 7.3.1. The following conformity holds:

VU < H(grad curl; Q).

Proof. To prove the conformity, we must show v x n; = 0 and curlu = 0 for all

fi € Fn(K) if the DOFs (/2&) - (/2/) vanish on u € V}:_I’HI(K). By integration by

parts,

/ curlu - n;dA = / u - Tyf,ds =0,
fi af;

which together with vanishing DOFs involving curl w leads to curlu = 0 on K. Pro-

ceeding as in the proof of Lemma , we can show that u x n; = 0 on each f;. [

We now present properties of the complex () with the global finite element
spaces. The first property we will show is the surjectivity of div : ZZ’+ — W,’f‘l. To this

end, we need the following property for the local complex.

Lemma 7.3.2. For any g € WF(K) N L2(K), there ezists v € Iy (K)NHYK) @V

such that divv = q and ||v]|1x < Cl|¢|/x-

Proof. For a fixed ¢ € WF™(K) N L3(K), there exists w € H}(K) ® V such that (see
e.g., [30, Corollary 2.4])

divw = ¢ in €.
Let v € 377 (K) be the unique function that satisfies

/'v~gradpdV:/w‘gradpdV, Vp € Pp_1(K),
K K
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with the remaining DOFs in (th) — (i721j) vanishing on v. Then v € Xy (K) N

H}(K) ® V. Moreover, integrating by parts, we have

(divw, p) = (v, grad p) = (w, grad p) = (divw, p) = (¢,p), Vp € Pr_1(K)/R,

(dive,1) =(v-n,1) =0= (¢, 1).

This implies divw — ¢ = 0 since divv — ¢ € Pr_1(K).

We now prove ||v||1.x < C||q|]|x by a scaling argument. Denote
Ng_1 = dim Pk_l(K),

we can express v as

Nk—1

v = Z (w, grad p;)IN;,

1=2

where {p;}.55" is a set of basis functions of P,_;(K)/R and Nj is the dual basis of p; with
respect to the DOFs (w, grad p;), i.e., (IN;, grad ¢;) = &;;. Setting © = det(By)Bg'vo Fx

and p = p o Fx with Bx and Fi defined in ([L.5.1)), we obtain

[0l < Chilllll} < Chy® sup  |(w, gradg ;)|
2<i<ng 1

= Chi? sup [(diva . 5)f* < Chg!l| dive v < Clldival[f = Clalfk.
SISNE—1

]

Lemma 7.3.3. For any q € W,lf_l, there exists v € ZZ’+ such that divev = q and

lolly < Clgll-

Proof. Given q € WF™ c L?(Q), according to [12, Theorem 2], there exists w € H'(Q)®
V satisfying divw = ¢ and |Jw]|; < C||q|. Let Iw € Xf @ V € 2P" denote the Scott-
Zhang interpolation of w (see [59, (2.13)] for its definition). We also let v; € 3" be

the unique function that satisfies

/vl-nidA:/('w—Ihw)-nidA, Vfi € Fn,
fi fi
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with other DOFs in (I?2d) — (thj) vanishing on v;. Then we have, for any K € T,

(divoy +divw, ) g = (v - n+ Liw - -n, 1)y = (w-n, )y = (divw, 1)k = (¢, 1)k,

which means (¢ —divv, —div [w)|x € WF ' (K)NL3(K). By Lemma 7.3.9, there exists
vy € EPH(K) N HY(K) ® V such that

divvg g = (¢ — divoy; — divIw) |k, VK € T,
and
[va, k|l < Cllorll + [Hrwlli e + llgllx)-
Define v, € H}(Q) @ VN Efﬁ by va|x = Vo k. Setting v = vy + vy + I, w, we have
dive = div(v; + vy + Lhw) = ¢ and ||v]|; < C(||v1]j1 + [[Thw]l1 + |I¢]])-

We apply the same scaling argument as used in Lemma and the approximation

property of the Scott-Zhang interpolation Inw [59, (4.1)] to obtain
loill} i« SChENo112 1 < ChiZ[{(w = Tyw) - ni, ok | < Chill|w — w3
< C (hi’llw — L + [lw — Dwlf; i) < Cllwlff )
with w(K) = Int { K;|K; N K # 0, K; € T, }. Summing over K € 7y, we obtain
[villy < Cllwlls,
which together with ||[I,wl|; < C|lw||; [B9, (4.5)] and |Jw][; < C||q|| leads to
[v]ly < Cllgll.

O

Corollary 7.3.4. The inf-sup condition for the Stokes problem holds, i.e., there exists

a positive constant a > 0 not depending on h, such that

divw, g _
sp VD) allgll, Vg e Wi

O£venE+ vl
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Corollary implies that Efﬁ — W;f_l leads to convergent algorithms for solving

the Stokes problem with a precise divergence-free condition.

Theorem 7.3.5. The complex () is exact on contractible domains.

Proof. The exactness at X5 and V; """ follows from the exactness of the standard

finite element differential forms (e.g., [49]). The exactness at W}, i.e., the surjectivity

of div : EZ’JF — W,’ffl is verified in Lemma .

Finally, the the exactness at EIZ’+ follows from a dimension count. Let V), £, F, and

IC denote the number of vertices, edges, faces, and 3D cells, respectively. Then we have

dim>) =V + (r—1)€+ %(T —2)(r—1)F+ é(r —3)(r—2)(r — 1K,

k(k+1)(k+2)

5 K.

dim Wrt =

From the DOFs (M) — (M),

1
dim VY — dim P = € + S =20 -1)F

—f+%[(r—3)(r—2)(r—1)—k;(k;+1)(k+2)+6]lc.

From the above dimension count, we have

1+ dim %) — dim V"M 4 dim B — dim W = 0,

where we have used Euler’s formula V — & + F — KL = 1. This completes the proof.

To ease the notation, we drop 2 in 3(2) and V(Q2), and denote ¥ = ¥ ® V. We

define four global interpolations 7, : ¥ — ¥}, 7, : ¥ — EZ*, I, : V — V,:fl’kﬂ, and

s L2(Q) — WF in the following way:
(mhu) |k = Tru, (Thu)|x = Tru, (u)|x = lgu, and (ru)|x = rru.

The interpolations 7g, g, g, rix are defined in Section @

O
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We summarize the interpolations in the following diagram:

R —S HY(Q) 2% H(gradcwl; Q) —% HY(Q) @V~ 12(Q) —— 0

R—CS 45 ged Ly curl y Y — I r20) —— 0
P S
R SN 22 grad , Vhr—l,k+1 curl N EZ,I@ div , W}l:—l 0.
(7.3.1)

By a similar argument as Lemma , the interpolations in () commute with

the differential operators.

Lemma 7.3.6. The last two rows of the complex () are a commuting diagram, i.e.,

grad mpu = I, grad u for all u € 3, (7.3.2)
curl Il,u = 7, curlw for all uw €'V, (7.3.3)
divmpu = rpdivu for all u € . (7.3.4)

We adopt the Piola mapping (n) to transform the finite element function w on a

general element K to a function w on the reference element K.

Lemma 7.3.7 ([49, 2]). Suppose that v and v are related by the transformation (p.1.7).

Then for any s > 0, we have

N —1/2
0], 5 < Chi 2 |vll, g

|curlyd| o < ChiTY? el . .
The following lemma relates the interpolation on K to that on K.
Lemma 7.3.8. For u € V, we have ITKTL = [l 4 with the transformation ()

Proof. As in the proof of Lemma , we show the DOFs in (I{Qa) - (|(2§) are linear

combinations of those for defining II ;1.




127

By the transformations (l517|), (bl?l), (|1.5.j), and (), we have that all the DOFs

in (I(QQ) - (/QQ) are linear combinations of those for & on K. For instance,

/ curlu - 7'dA = L curly @ - Bigr!'dA
f; det(BK)]fZ] fz
:LA curlg @ - ((B};Til : +i1)+i1 + (B;F(Til ) 721'2)7:7;2 + (BIFETil ) 'f"l)rﬁ’l) d/Al
det(Bx)|fil /7
| fil A

. LA — curlg o - ((BIT(Til . fil)f‘il + (B;Tﬂ'il : +i2)+i2) dA
det(Bx)|fil /i
(BTl . f.

BER ) [ s

where |f;| = area(f;). O

Next, we establish the approximation property of the interpolation operators.

Theorem 7.3.9. Assume that w € H**U*D(Q) @V and curlu € H(Q) @V, s >

3/2+ 9 with 6 > 0. Then we have the following error estimates for the interpolation 11,

lu — M| < CR™ECEDD (lu| )+ leurla), (7.3.5)
[eurl(u — Myw)|| < CR™™M5H1jcurl ||, (7.3.6)
|curl(w — MMu)|, < CR™ME=1E ||curl ||, . (7.3.7)

Proof. With the identity ﬁK\u = Il;a and the inclusion PT_I(K) C V,ffl’kﬂ(l%)
(Lemma and Lemma ), the estimate (7.3.5) can be obtained by following
the proof of Theorem . To prove () and (m), we apply Lemma and the

approximation property of the Lagrange interpolation. Il

7.3.2 Complexes with Homogeneous Boundary Conditions
We define the following finite element spaces with vanishing boundary conditions
S = {u, €55 v, =0 on 90},
Eolff ={v, € Efﬁ : v, = 0 on 00},

WEt = {v, e WFL: /thdv =0},
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‘O/,f_l’kﬂ ={vp EVg_l’kH : n X v, =0and curlv, =0 on 90}.

We can impose the above vanishing boundary conditions by setting all the boundary
DOFs for the spaces Z};, EO]Z’JF, and \O/}:_l’k+1 to be 0. These finite element spaces form a

complex:

C : grad -1 k+1 1 <k di 2 rk—
0 > Xr y VTN Sy et S W 0, (7.3.8)

Q

We can show the exactness of ([7.3.§).
Lemma 7.3.10. The discrete complex ([(.3.8) is ezact.

Proof. The exactness at E}; and W,’f‘l is similar to Theorem . We only verify the
dimension condition to show the exactness of ([7.3.§).
Let Vj, £y, Fo be the number of vertices, edges, and faces on the boundary, respec-

tively. We have the following dimension count:

(r—2)(r—1)

dim Y, = dim &) — Vo — (r — 1) — T,
° 3(k —2)(k—1
a5~z o~y =20,

dim V7R = dim VIR 3V, — (r 43k — 3)&

=21 +3(k—2)(k—1) 2
2

dim W}~ = dim WF=! — 1.

]:37

Therefore, we have
dim 22 — dim ‘7}:71,k+1 + dim EZJF — dim W,’ffl
= dim ¥, — dim V; T L dim P — dim W — vy + &y — Fo +1 =0,

where we have used the relation —Vy+E&y— Fy = —2. This shows the dimension condition

of exactness. [
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7.4 Applications to — curl A curl Problems
In this section, we use the three grad curl-conforming finite element families to solve

a problem with the curl A curl operator: for f € H(div"; ), find u, such that
—curl Acurlu +uw = f in (),
divu =0 in €,
(7.4.1)

uxn=0 ondf,

curlu =0 on 0f.
Here H(div’;€) is defined in Section @ Taking divergence on both sides of the first
equation of (), we see that divu = 0 automatically holds with f € H(div"; ).

The variational formulation reads: find w € Hy(grad curl; 2), such that

a(u,v) = (f,v) Vv € Hy(grad curl; Q), (7.4.2)

with a(u, v) := (grad curl u, grad curl v) + (u, v). The weak form ([7.4.2) can be regarded
as a higher-order model problem in either MHD, e.g., [19, (1)] or continuum mechanics

with size effects, e.g., 48, (3.27)], [b4, (35)].
Remark 7.4.1. The problem () is closely related to the Hodge Laplacian ()

Remark 7.4.2. With the given boundary conditions and the identity for vector Laplacian
—Awu = —graddivu + curl curl w, the above weak form is equivalent to the quad-curl

problem, i.e., (grad curl u, grad curl v) = (curl curl w, curl curl v).

Theorem 7.4.1. We assume that ) is a simply-connected Lipschitz polyhedral domain

with a connected boundary. There exists a constant o > 1/2 such that the solution uw of

() satisfies

u€ H*(Q)®V, curlu € H'(Q)®V,
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and it holds

[wlla + [ curluflira < O £l

Proof. The result will follow from the proof of Theorem if Acurlu belongs to
L*(Q) @V and ||Acurlu|| < C||f]|. It suffices to show that curl>w € L*(Q) ® V and
| curl® w|| < C|f| since —Acurlu = — graddivcurlu + curl> u = curl® w. If we can

prove
g(v) := (curl curl u, curlv) < Cy||v||, for all v € Hy(curl; ), (7.4.3)

then, by Hahn Banach theorem, there is a unique extension of the map g(v) for v €
Hy(curl; Q) to a bounded linear functional from all of L*(2) ®V to R with the bound Cj.
Moreover, by Riesz representation theorem, there exists a unique function ¢ € L?(Q)@V

such that
g(v) = (curl curl w, curl v) = (¢, v), for v € Hy(curl; ).

From the definition of the adjoint of curl operator, we have curl’u = ¢ € L*(Q) ® V

and ||@|| = (|9l 2@ evr) < Co.
To prove (), we first seek ¢ € Hy(€) such that

~Ag =dive € H1(Q).

Then it holds || grad ¢|| < ||v||. Applying [30, Theorem 3.6] to v — grad ¢, there exists a

divergence-free vector potential w € Hy(curl; ) satisfying
v—gradg =curlw and (w-n,l)sy =0. (7.4.4)

Since v — grad ¢ € Hy(curl; ), then w € Hy(curl curl; Q). From () and the Poincaré

inequality [6, Theorem 4.6], we have

(curl curl w, curl v) = (curl curl u, curl curl w)

=(f —uw,w) <||f — ufl[|w]| < C[[f — ull]| curl w]|
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< ONf —ull (vl + l[gradqll) < Cllf = ulll[v]| < Clfv],

which leads to ([.4.3) with Cy = C/|| f]]. O

To estimate the error in the sense of H(curl)-norm, we introduce the following aux-

iliary problem. Find w such that
—curl A curlw + w = curl curl(u — uy,) in €,
divw =0 in €,
(7.4.5)

w x n =0 on 0N,

curlw = 0 on 9.
Due to the special form of the right-hand side in the auxiliary problem, we can have a
better regularity estimate by a suitable modification to the proof of Theorem . This
result will play an important role in the dual argument in the approximation analysis

below.

Theorem 7.4.2. We assume that ) is a simply-connected Lipschitz polyhedral domain
with a connected boundary. The solution w of () satisfies

|lw|la + || curl w140 < C|| curl(u — wy)||.

Remark 7.4.3. Furthermore, if {2 is convex, then the constant « in Theorem and

Theorem can be 1.

The H(grad curl)-conforming finite element method for () reads: seek u, €

\O/,f*l’kﬂ, such that

a(un,vp) = (fyon) Vo, € VWL (7.4.6)

It follows immediately from Céa’s lemma and the duality argument that the following

approximation property of u; holds.
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Theorem 7.4.3. Forr =k, r=k+1, orr =k +2, ifu € H*0*D(Q)®V and
curlu € H*(Q) ®V, s > 3/2+ 0 with § > 0, we have the following error estimates for

the numerical solution wy:

Hu o uh”H(gradcurl;Q) < Ch’mil (||u”s+(r—k—1) + ||Cll1'1’l.l/||s) ) (747>
Jeurl(w — w,)| < CRm2 (ull ) + fleurlul,) (7.48)
Ju — wp|| < CR™220Y (Jlu|| | + [|curl ) when v =k + 1,k + 2, (7.4.9)

where ro = min{k + 1, s}.

7.5 Numerical Experiments
We now carry out several numerical tests to validate our new elements. We consider

the problem ([7.4.1)) on a unit cube = (0,1) x (0,1) x (0,1) with an exact solution
sin(mxy )3 sin(mxy)? sin(mrs)? cos(mwy) cos(ms)

sin(mxs)3 sin(mas)? sin(mry)? cos(mas) cos(my)

3sin(mxy)? sin(mwy)? cos(mzy) cos(mas)

—2sin(mzx3)
Then, by a simple calculation, we can obtain the source term f.

For the mesh, we partition the unit cube into N3 small cubes and then partition each
small cube into 6 congruent tetrahedra.

We first use the lowest-order (k = 1) elements in the families r = k and r = k + 1
to solve the problem () on the uniform tetrahedral mesh. Tables and
illustrate errors and convergence rates for the two families. We observe that the numerical
solution converges to the exact one at rate h for the case r = k = 1, and at rate h? for
r =k +1 =2 in the sense of the L?-norm. In addition, the two families have the same

convergence rate h? in the H(curl)-norm and h in the H(grad curl)-norm, respectively.

All results agree with Theorem .
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We now test the third-order element (k = 3) in the family » = k. Tables

demonstrates numerical data, again they are consistent with Theorem .

Table 7.5.1: Numerical results of the tetrahedral element with r = k and k = 1

N llen]] rates ||curl ey ]| rates |lgrad curleg| rates

45 8.642113e-03 7.620755e-02 2.862735e+00

50 7.401715e-03 1.4705 6.317760e-02 1.7797 2.601358e+00 0.9087
55 6.443660e-03 1.4544 5.314638e-02 1.8141 2.382186e+4-00 0.9235
60 5.687783e-03 1.4340 4.527838e-02 1.8414 2.196043e+00 0.9351

Table 7.5.2: Numerical results of the tetrahedral element with r =k +1and k=1

N llenl| rates ||curl ey, || rates ||grad curle,|| rates

30 1.334051e-02 1.453615e-01 4.055510e+00

35 1.033747e-02 1.6544 1.135563e-01 1.6018 3.567777e+00 0.8312
40 8.212073e-03 1.7237 9.077071e-02 1.6772 3.178759e+00 0.8646
45 6.662599e-03 1.7753 7.399883e-02 1.7344 2.862553e+00 0.8896

Table 7.5.3: Numerical results of the tetrahedral element with r = k and k =3

N llen]] rates ||curl ey || rates |lgrad curley| rates

10 3.047288e-04 2.974941e-03 2.909078e-01

12 1.719285e-04 3.1392 1.403569e-03 4.1202 1.779005e-01  2.6973
14 1.070064e-04 3.0761 7.353798e-04 4.1932 1.162168e-01 2.7620
16 7.125639e-05 3.0450 4.174453e-04 4.2405 7.986321e-02  2.8094
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CHAPTER 8 3D GRADDIV-CONFORMING ELEMENTS

By a rotation, the 2D grad rot-conforming elements in Chapter B are grad div-conforming.
To construct 3D grad div-conforming elements, in this chapter, we consider the following
de Rham complex:

grad

0 — R—5 HY(Q) 25 H(cwrl; Q)% H(grad div; Q) 2% H'(Q)— 0. (8.0.1)

We will construct finite element subcomplexes of ()

grad

=
N

0 N V}f Curl> W}:—Lk-H L Z — 0. (802)

2

As before, we take r =k, k+ 1, or k+ 2.

Through out the chapter, we denote Oy AY(K) = Qpr-14-1(K) X Qr-14x1-1(K) X
Qr1414(K) and Q7 A2(K) = Qr_144x(K) X Qri1.4(K) X Qri—151(K).
8.1 Local Shape Function Spaces and Polynomial Complexes

In this section, we define the following local complex of the shape functions for each
space in ()
0—— RS Y7 (K) 22y () -uly ppr—Lktd ()4, s+ ()50, (8.1.1)

We first consider the local complex on K

grad ~ o curlg
)—>

0—— R—S S (K) 2258 (i) <28y jir—Lhl () -8y bt () 0. (8.1.2)

We let 35 (K) be P.(K) for a tetrahedral element or Q,(K) for a cubical element, and
let V' (K) be R,(K) for a tetrahedral element or Q- A'(K) for a cubical element. Note

that R is defined in For a tetrahedral element K , we set

. SE(K), k>4,

Sh(i) =4 A
YH(K) @ span{B;}, k=1,2,3,
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where B; = T12923(1 — &1 — &9 — Z3). For a cubical element K, we set

e SHK), k>2,
SR =
zAji(‘f() ® SpaH{Bc}7 k=1,
where B, = (1 — &1)(1 4 &1)(1 — @3)(1 4 @2)(1 — 23)(1 4 @3). We define
W, MK = curly Vi(K) @ p2 it (K) (8.1.3)

with p3 defined by () As a special case of the Poincaré operators, p3 satisfies the

following the null-homotopy identity:
divg pla = 4, Vi € O°A*(K). (8.1.4)

By the null-homotopy identity (), the right hand side of () is a direct sum.

By the definitions of the shape function spaces on K, it is easy to show that the
sequence () is a complex. By the definitions and properties of the Poincaré operators,
we can verify that the sequence

1 2
A P ~ ~ pi ~

~ ~ ~ 3 ~
0 ¢—— SI(K) <2 Py (K) 22— WYKo SPHR) «—— 0 (8.1.5)

is also a complex with the Poincaré operators in (led) - (ble) By Lemma ,

we obtain the exactness.
Lemma 8.1.1. The complex () is exact.

In the following lemma, we show that W,’; _1’k+1(f( ) contains some polynomial spaces.
It plays an essential role in analyzing the approximation properties of the finite element

space W;;*l’kﬂ.
Lemma 8.1.2. The inclusion P,_(K) C W, "*™(K) holds.

Proof. From the null-homotopy property (),

P._(K) = curly p2 P,_1(K) + p2 divz P,_1(K).
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By definition, W/ """ (K) = curly, V7 (K)+p2 35" (K). It is easy to check divg Po_1(K) C
P._5(K) C SPF(K). If we can prove p2P._y(K) C Vy(K), then the desired inclusion
holds.

~

To prove p2P,_y(K) C V7' (K), we claim that
V' (K) = grad, 35 (K) @ p2 Wi Y(K), (8.1.6)

where WI™HK) = Q- A%(K) when K is a cube, and W/ (K) = P._;(K) when K
is a tetrahedron. It is easy to check grad, 3 (K) @ p2WI—Y(K) C Vi (K). For @ €
V7 (K), from the null-homotopy identity () we have @ € grad,, 3y (K)+p2 Wi L(K).
Therefore, V' (K) C grad, 35 (K) @ p2 Wi~ (K). Moreover, the right hand side of ()

is a direct sum since if @ € grad, 35 (K) N p2 Wi Y(K), then @ = 0 from the null-

homotopy identity () From the claim () we have p2P,_1(K) C p2WI"Y(K) C
Vi(K).
]

We adopt the following transformation to relate the function @ € W, "*"(K) to a
function w € W, "*(K):

Bk .
Frp=—"- 8.1.7
work det(BK)lu’7 ( )

where the affine mapping F is defined in () By a simple computation, we have
1

Therefore, we define

u:quKGf]Z(f()},

VI(K) = {u : B};’UJOFK S Vf:(k)}’
W) = {w s Bilue Fie e W)

) = fuwo Fy e iiv*(f()}.
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By the definition of the spaces and Lemma , we can show (B.1.1)) is also an exact
complex.
8.2 Degrees of Freedom

In this section, we define DOFs for each space in (B.1.1)). Assigning r = k, k +
1, and k + 2 in (B.1.1)) leads to three versions of grad div-conforming element spaces
WM R, WERTYK), and WYY, Figure demonstrates the complex
(B.1.1)) for the case k = 1 when K is a tetrahedral element. Figure demonstrates

the three versions of grad div-conforming elements on a cubical element.

The DOFs for the Lagrange element 7 (K) is shown as follows:

Vertex DOFs M, (u) at all the vertices v; € V,,(K):

My (u) = {u(v:)} -

Edge DOFs M, (u) on all the edges e; € &,(K):

M, (u) = { / uvds for all v € PTg(ei)} .

€i

Face DOFs My (u) on all the faces f; € Fp,(K):
My(u) = {/ uvdA for all v € Prg(fi)} , when K is a tetrahedral element;
f.

My(u) = {/ uvdA for all v € Q7-2<fi)} , when K is a cubical element.
i

Interior DOFs Mg (u) in the element K € Tp:

Mg (u) = {/ uvdV for all v € PT4(K)} , when K is a tetrahedral element;
K

Mg (u) = {/ uvdV for all v € QT_Q(K)} , when K is a cubical element.
K

For u € H*?%(K) with § > 0, we can define an H' interpolation operator 7y :
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H3?+(K) — %7 (K) by the above DOFs s.t.
M,(u — mgu) = {0}, M.(u— mru) = {0},
My(u — mgu) = {0}, and Mg (u — mxgu) = {0}.
The DOFs for ¥p"(K) can be given similarly, with only one additional interior
integration DOF on K to deal with the interior bubble function. We denote 7x as the
H" interpolation operator to X5 (K) by these DOFs.

We choose the space V) (K) as the first family of Nédélec elements, which has the

following DOFs:

« Edge DOFs M. (u) on all the edges e; € &,(K)(with a unit tangential vector 7;):

M. (u) = {/ u - T;vds for all v € Pr_l(ei)} .

€i

o Face DOFs M/(u) on all the faces f; € F,(K) (with a unit normal vector n;):
M;(u) = {/ u - vdA for all v € P,_(f;) such that v-n; = 0} :
f.
when K is a tetrahedral element;

M;(u) :{ /f u xn;-vdA for all v € Q,_2,—1(fi) X Qr—l,r—2(fi)}a

when K is a cubical element.

« Interior DOFs Mg (u) in the element K € Ty:

Mg (u) = {/ u-vdV for all v € Pr_3(K)} when K is a tetrahedral element,
K

Mg (u) = {/ u-vdV for all v € Qr__lAQ(K)} when K is a cubical element.
K

Assuming that w € H/?7(Q) ® V and curlu € L**°(Q) ® V with § > 0 [49, Lemma
5.38]. By the above DOFs, we define an H (curl) interpolation operator I1x which maps

u to V)'(K) and satisfies

M. (u —Igu) = {0}, Ms(u — IIxu) = {0}, and Mg (u — IIxu) = {0}.
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We now equip the space W;;_l’kH(K ) with the following DOFs:
« Vertex DOFs M, (u) at all vertices v; € V,,(K):

M,(u) = {divu(v;)} . (8.2.1)
« Edge DOFs M. (u) on all edges e; € &,(K):

M, (u) = { / divaugds for all g € PH(ei)} | (8.2.2)

« Face DOFs M/ (u) on all faces f; € F,,(K) (with the unit normal vector n;):
M;(u) = {/ divuqdA, Vq € Pk_3(fi)}
f.
U {/ u - n;qdA for all g € Prl(fi)} , (8.2.3)

f.

when K is a tetrahedral element;

Me(u) = {/f divugdA for all g € Qk_g,k_g(fi)}
U {/f u - n;qdA for all g € Q,,_M_l(fi)} : (8.2.4)
when K is a cubical element.
o Interior DOFs Mk (u) for the element K € Tj:

Mg (u) = {/ w-qdV for all q = B'q, q € P._4(K) x zic}
K

U { / divugdV for all g € Py_y(K) /R} | (8.2.5)
K

when K is a tetrahedral element;
Mg (u) = {/ w-qdV for all g = Bi'q, ¢ € Q- A*(K) x :i}
K

U {/ divugdV for all ¢ € Qk-_Q(K)/R} : (8.2.6)
K

when K is a tetrahedral element.
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>r grad 174 curl bk div it
Figure 8.2.1: The lowest-order (k = 1) finite element complex (B.1.1)) on tetrahedra with
r = k — 1 in the first row, » = k in the second row, and r = k£ + 1 in the third row.

w2 W22 W32
h h h
Figure 8.2.2: The three versions of lowest-order (k = 1) grad-div finite elements on cubes
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Lemma 8.2.1. The DOFs for W, """ (K) are unisolvent.

Proof. Since the complex (8.1.1) is exact, dim W, ""*'(K) = dim V} — dim ¥} + 1 +
dim Efﬁ(K). By counting the number of DOFs, we find the DOF set has the same
dimension. Then it suffices to show that if all the DOFs vanish on a function u €
W}:_l’kH(K), then w = 0. To see this, we first show that divu = 0. By integration by

parts,
(divu, 1) = (u - nyk, 1) = 0.

Since div W, """ (K) C %7 (K), the unisolvence of the DOFs of X" (K) leads to
divu = 0.

There exists a ¢ € V;'(K) such that u = curl ¢, and hence u

£, oM € Poy(fi) or

Qr—1,-1(f;). By the face DOFs (|82£j) or (|824I), u - n; = 0 on the face f;. Recalling

that w and @ are related by () , = (L1091, ToPa, T3¢3)" when K is a tetrahedron,
and @ = ((1—21)(1+21)@1, (1 — 2) (1 4+ 22)@a, (1 — 23)(1+ 23)@3) when K is a cube.
Here ¢ = (1, P2, $3)" € Po_o(K) or Q7 | A(K). By integration by parts, we have, for
any q € P,_1(K) or Q,_1(K)

(u, grad q)x = (curl @, grad q) x = (curl @ - nsk, Qo = (U - Nok, Qhox = 0,
which, together with the interior DOFs, leads to
(u,q)x = 0 for any qo Fx = Bg'q, G € Q- AY(K) or P,_y(K). (8.2.7)
Choosing ¢ = B ¢, we have
0 = (u,0)x = (i §)z
This implies that ¢ = 0 and hence u = 0. [l

Provided u € HY**(K) ® V and divu € H*?*(K) with § > 0, we can define an
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H (grad div) interpolation rxu € Wi~ "**1(K) by
M, (u —rgu) = {0}, M.(u —rgu) = {0},
My(u —rgu) = {0}, and Mg(u — rgu) = {0},

where M,,, M., M;, and M are the sets of DOFs in (EZI) - (EZa)

8.3 Global Finite Element Complexes

Gluing the local spaces by the above DOFs, we obtain the global finite element spaces
DI A W;;*l’kﬂ, and Ei’Jr in the complex (8.0.9). We now develop some properties of
the complex () containing these spaces.
Lemma 8.3.1. The following conformity holds:

W ¢ H(grad div; Q).

Proof. To verify W,’;fl’kﬂ C H(grad div; Q), we must show uw-n; =0 and divu = 0 on

each f; € Fu(K) if the DOFs (8.2.1)) — (B.2.4) vanish on u € WK, Tt is easy

Gf Yo =l
£, € Qri(K) or Py(f;). Restricted on f;, u-n; = _hioly

to see that (divw) det(Bg)|By T hi|

(curlg p2@-f;+p3 divg ﬁ-ﬁ,,‘)oFgl (curlg p%ﬁ-ﬁi)oFI;l . A~ A
= _1r-1(f;) or P._1(f;) sin “n; =

on f;. From the vanishing DOFs in (EQI) - (EQZ}I), we have u - n; = 0 and divu = 0

on f;. [
Theorem 8.3.2. The complex () is exact on contractible domains.

Proof. We first show the exactness at V; and W;;_l’kﬂ. To this end, we show that for
any v, € Vi € H(curl; Q) and w, € W, """ ¢ H(grad div; Q) C H(div; Q) satisfying
curlv, = 0 and divuy, = 0, there exists p, € X} and ¢ € V; such that v, = gradp,
and u;, = curl ¢p,. Actually, this follows from the exactness of the standard finite element
differential forms (e.g., [49]). To prove the exactness at E];’;’Jr, that is to prove the operator
div from W}:_l’kﬂ to Efﬁ is surjective, we count the dimensions. We take the complex

(B.0.2) on tetrahedral meshes as an example. The dimension count of the Lagrange
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elements reads:

dimS) = V+ (r = )€ + %(r - )F 4 %(r _ )= 2)(r — K.

where V, £, F, and K denote the number of vertices, edges, faces, and 3D cells, respec-

tively. The dimension count of the space V" reads:
1
dmV) =rE+r(r—1)F + 57’(7“ —1)(r —2)K.
From the DOFs (EQI) - (EQa),

1 1
dim W, — dim Xy = 57+ DF + or(r + 1)(2r = 5)K.

From the above dimension count, we have
—1 +dim ¥}, — dim V; + dim W, — dim 2t = 0,

where we have used Euler’s formula V — & + F — KL = 1. This completes the proof. [J

For § > 0, denote X = H3/2+3(Q), V = {u € HY*"(Q)®@V : curlu € L*(Q) @V},
and W = {u € H'/?Y(Q)®V : divu € H*?+9(Q)}. We define four global interpolations
Th @ 2 — X, Tp 0 28— Effr, I, : V=V, and r, : W — W}:_l’kﬂ in the following
way:

(Whu)’K = TKU, (%hu)h{ = %K’U,, (Hhu)|}( = HKU, and (rhu)]K =TKguU.

The interpolations 7, 7k, Ik, 1 are defined in Section @

We summarize these interpolations in the following diagram:

gra

R —S» HY(Q) 2% Hewl Q) L H(graddiv; Q) % HY(Q) —— 0

R C S grad NV curl . W div . 3 s 0 (831)
lm lﬂh l"h lﬂ
R C , ZZ grad , Vhr curl , W’:71,k+1 div Ei’+ 0.

Now we show that the interpolations in (B.3.1l) commute with the differential oper-



144

ators. In addition to Lemma , this result also plays a key role in the error analysis

below for the interpolations.

Lemma 8.3.3. The last two rows of the complex () are a commuting diagram, i.e.,

grad mpu = I, grad u for all u € 3, (8.3.2)
curl ITu = vy, curlu for all u €V, (8.3.3)
divr,u = 1, divu for all uw € W. (8.3.4)

Proof. A similar trick as Lemma can be used to prove this lemma. For simplicity

of presentation, we omit it. O
The following lemma relates the interpolation on K to that on K.
Lemma 8.3.4. For u € W, under the transformation (), we have Txu = 7.

Next, we establish the approximation property of the interpolation operator.

Theorem 8.3.5. Assume that w € H*U"%*D(Q) @V and divu € H*(Q), s > 3/2+ 4

with 0 > 0. Then we have the following error estimates for the interpolation Ty,

lw — rpul| < CR™EFCFDI (|| o+ (dival),), (8.3.5)
[div(u — rpw)|| < CR™™MSF | diva)| (8.3.6)
|div(u — rpu)|, < CR™™ELR || div | (8.3.7)

Proof. With the identity ¥gxu = 7% and the inclusion P,_,(K) € W/ ""!(K)
(Lemma and Lemma ), the estimate () can be obtained by following
the proof of Theorem . To prove () and (), we apply Lemma E and the

approximation property of the Lagrange interpolation. O

8.4 Applications to grad A div Problems
In this section, we use the grad div-conforming finite elements to solve the following

grad A div problem which is closely related to the Hodge Laplacian problem ()
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For f € H(curl; Q) and g € L*(Q) ® V, find w such that
grad Adivu+u = f in €,
curlu =g in Q,
(8.4.1)

u-n =0 on 0,

divu =0 on 0f2.
Here, to make the problem consistent, g = curl f. By taking curl on both sides of the
first equation of (), we see that the condition curlu = g holds automatically.

We define Hy(grad div; ) with vanishing boundary conditions:
Hy(grad div; Q) := {u € H(graddiv; Q) : v-n =0and divu =0 on 0Q}.
The variational formulation is to seek w € Hy(grad div; 2) such that
a(u,v) = (f,v) Vv € Hy(graddiv; ), (8.4.2)

with a(u,v) := (grad div u, grad divv) + (u,v).

It follows from Lax-Milgram Lemma that () is well-posedness. Taking v = curl ¥
with ¢ € Hy(curl; Q) in () leads to

(u, curlyp) = (f, curlep) = (g, ),

which implies curlu = g holds in the sense of L*(Q) ® V. Since the regularity of the
solution plays a crucial role in the error analysis, we will first derive a regularity result

for the grad A div problem before proceeding further.

Theorem 8.4.1. Assume € is Lipschitz polyhedron. There exist a constant o > 1/2 such

that the solution w of () satisfies w € H*(Q) ® V and divw € H'™(Q). Moreover,
[ulla + [ divauliva < C[FI+ lglD)-

Proof. Since w € Hy(div; Q) N H(curl; Q) — H*(Q) ® V [4, Proposition 3.7], we have
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u € H*(Q) ®V, and
[ulla < Clull + [ divul| + || curl u]))
< CO(lJull + [ grad div || + [ curlwl) < C([|F]] + [lgl])-
Proceeding similarly to the proof of , we can get

A diva| < C[If].

From the regularity estimate of the Laplace problem [49], we have divu € H*%(Q) and
[divaulliia < ClAdivaull < ClIf].
0

We now present the finite element scheme. We define the finite element space with

vanishing boundary conditions
W,:fl’kﬂ ={v, € W,:fl’kﬂ, n-v, =0 and dive, =0 on 90Q}.
The grad div-conforming finite element method reads: seek u; € Vi/,:_l’kﬂ such that
a(un,vp) = (f,vp) Vo, € Wi M (8.4.3)

By suitable modification to the proof of Theorem , we have the following ap-

proximation property.

Theorem 8.4.2. Suppose u € H*U=+D(Q) @V and divu € H*(Q) with s > 1 + a,

we have the following error estimates for the numerical solution wy,:

1 = wnll gy grad aivsy < Ch™ 7 (”uHs—l—(r—k—l) + ||diVU||5> : (8.4.4)
fdiv(u —wp)|| < CHP 020 (L divall). (845
|u — up|| < CR™™Mr220% (||| + ||dival],) when r =k 4+ 1,k + 2, (8.4.6)

where ro = min{s, k + 1}.
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8.5 Numerical Experiments
We now turn to a concrete example to test our new elements. We consider the problem

() on a unit cube Q = (0,1) x (0,1) x (0,1) with an exact solution
u = grad (zfz3z)(z1 — 1)° (22 — 1)% (25 — 1)°) . (8.5.1)
The source term f can be derived by a simple calculation. Note that in this case g = 0.

Example 8.5.1. In this example, we test the tetrahedral elements. To this end, we
partition the unit cube into N3 small cubes and then partition each small cubes into
6 congruent tetrahedra. We use the lowest-order elements in three families to solve the
problem (B.4.1)) on the uniform tetrahedral mesh.

Tables , , and illustrate various errors and convergence rates for three
families. We observe from the tables that the numerical solution converges to the exact
solution with a convergence order 1 for the family r = k, 2 for the family r = k£ + 1,
and 2 for the family r = k + 2 in the sense of L%norm. In addition, the three families
have the same convergence order 2 in the H(div)-norm and 1 in the H(grad div)-norm,
respectively. All the results coincide with Theorem , which confirms the correctness
of the elements and their properties.

Table 8.5.1: Numerical results of the tetrahedral grad div-conforming element with r = k
and k =1

N llen|| rates ||div en|| rates |lgraddivey| rates
16 7.338806e-07 3.773907e-06 1.261805e-04

20 5.585337e-07 1.2236 2.462834e-06 1.9127 1.016297e-04 0.9697
24 4.511530e-07 1.1711 1.728736e-06 1.9412 8.500500e-05 0.9797
28 3.788654e-07 1.1328 1.278389%-06 1.9578 7.302452¢-05 0.9855
32 3.268841e-07 1.1052 9.829309e-07 1.9682 6.398944e-05 0.9891

Example 8.5.2. In this example, we test the cubical grad div-conforming elements. We
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Table 8.5.2: Numerical results of the tetrahedral grad div-conforming element with r =
k+1land k=1

N llen]] rates ||div en|| rates |lgraddivey| rates
8  1.232033e-06 1.150197e-05 3.902786e-04

12 5.905553e-07 1.8136 5.614381e-06 1.7688 1.654137e-04 0.8952
16 3.416300e-07 1.9026 3.269987e-06 1.8790 1.259942e-04 0.9462
20 2.215699e-07 1.9404 2.127621e-06 1.9260 1.015312e-04 0.9674
24 1.549977e-07 1.9599 1.490982e-06 1.9502 8.494707e-05 0.9782

Table 8.5.3: Numerical results of the tetrahedral grad div-conforming element with r» =
kE+2and k=1

N llen]] rates ||div en|| rates |lgraddivey| rates
8  1.224295e-06 1.149723e-05 2.377994e-04

10 8.220074e-07 1.7853 7.812974e-06 1.7313 1.954954e-04 0.8779
12 5.864916e-07 1.8516 5.613355e-06 1.8135 1.654135e-04 0.9165
14 4.381462e-07 1.8917 4.211742e-06 1.8636 1.431136e-04 0.9394
16 3.391664e-07 1.9176 3.269652¢-06 1.8961 1.259941e-04 0.9541

use uniform cubical meshes with the mesh size h varying from 1/12 to 1/20. Unlike
tetrahedral elements, in this test, we explore superconvergence of the cubical elements.
To this end, we denote {w, }2_, and {g,}%._; as the weights and nodes of Legendre-Gauss
quadrature rule of order p. We also denote {w! }?_, and {l,,}’_, as the weights and nodes
of Legendre-Gauss-Lobbato quadrature rule of order p. For w = (uy,uq, u3)T, we define

three discrete norms.
k41
2
ally = 30D il (WS R el + AL 2 R 2+ R[).
KeTy, rys,t=1
k+r—1

mu|||v— Z Z men<h hKHu1 5+ g G, w5+ hy g H +hi by

KeTpmmn=1

|z (@t + 01 G, -, 5 + 5 gn H +hihy |Jus (2 +hy g, 25 405 gn, || )



149

and
k
luallty = 3= S (b ffual + nf g )+ 05 [fuac,f + RE g, )|
KETy, n=1
1 (g + R g ).
where K = (28 — i o + hE) x (2F — hE 2f + hE) x (25 — hE 2F + hE) with the
center (zf, X, ) and the side length 2n1 2nK 2RL.

Tables , , and E show errors measured in various norms for the lowest-
order cubical elements in the three familes. We also depict error curves with a log-log
scale in Figure . From Figure (A), we can observe superconvergence phenomena
that || grad div ey ||y, and [|es]|,, converge to 0 with one order higher than ||grad div e,||
and |len||. In addition, from Figure (B)(C), we can observe superconvergence of
Il grad div el

When k = 1, we can not observe any superconvergence of ||e||,, for » = 2,3 and
| div e ||, for all the 3 families. To further investigate the superconvergence of div ey,
we test the element with £ = 2 and » = k. The results are shown in Table and
Figure (D) In this case, we can observe superconvergence of div ey,.

Using these superconvergent results, together with some recovery techniques, we can
construct a solution with higher accuracy if needed, which is one of the reasons that we

explore the superconvergence of cubical elements.
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Table 8.5.4: Numerical results of the cubical grad div-conforming element with r = &
and k=1

B el lledlly  ldiven]  [diven], lgraddives| [lsraddivenes |y
1/8 1.2939¢-06 8.2349¢-07 6.6566e-06 2.7601e-06 1.5795e-04 6.2427e-05
1/16  5.6099¢-07 2.1371e-07 1.7020e-06 6.6734e-07 7.6700e-05 1.5975e-05
1/24 3.6063e-07 9.5663e-08 7.5957e-07 2.9471e-07  5.0814e-05 7.1306e-06
1/32 2.6677e-07 5.3946e-08 4.2787e-07 1.6541e-07 3.8025e-05 4.0170e-06
1/40 2.1201e-07 3.4566e-08 2.7402e-07 1.0575e-07 3.0388e-05 2.5726e-06

Table 8.5.5: Numerical results of the cubical grad div-conforming element with » = k+1

and k=1
B el lledly  ldiven]  [divesl, lzraddives| [erad divepenly
1/4  2.2275e-06 2.1791e-06 2.0877e-05 1.4226e-05  3.2323e-04 2.0116e-04
1/10 3.2909e-07 3.2124e-07 3.2354e-06 2.4023e-06  1.2317e-04 3.1825e-05
1/16 1.2730e-07 1.2419e-07 1.2547e-06 9.2031e-07  7.6282e-05 1.2340e-05
1/22 6.7137e-08 6.5485e-08 6.6217e-07 4.8348e-07  5.5322e-05 6.5115e-06
1/28 4.1395e-08 4.0373e-08 4.0839e-07 2.9756e-07  4.3414e-05 4.0157e-06

Table 8.5.6: Numerical results of the cubical grad div-conforming element with r = k42

and k=1
B el llenly  lldives]  [dives], llsraddives]| lsraddivenely
1/4  2.5839e-06 2.5818e-06 2.0796e-05 1.4263e-05  3.2318e-04 2.0132e-04
1/10  3.2119e-07 3.2115e-07 3.2315e-06 2.4030e-06 1.2317e-04 3.1829e-05
1/16 1.2417e-07 1.2416e-07 1.2541e-06 9.2042e-07  7.6282e-05 1.2340e-05
1/22  6.5478e-08 6.5476e-08 6.6200e-07 4.8351e-07  5.5322e-05 6.5117e-06
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Table 8.5.7: Numerical results of the cubical grad div-conforming element with r = &
and k = 2

B el ey ldiven]|  [dives], [sraddives]| [lsrad divenenly
1/4  6.3209e-07 2.2806e-07 2.9623e-06 8.8580e-07  7.8540e-05 2.5723e-05
1/10  7.6991e-08 1.1031e-08 1.8971e-07 2.8011e-08 1.2378e-05 1.9063e-06
1/16 2.8833e-08 2.5640e-09 4.6416e-08 4.3703e-09  4.8272e-06 4.7467e-07
1/22  1.5050e-08 9.7038e-10 1.7869e-08 1.2319e-09  2.5519e-06 1.8377e-07

errors in different norms
erors in different norms

10 15 20 25
1/h

b)r=k+1,k=1

—§— Bgaddn o,

errors in different norms
E
arrors in diffarent norms

4 a 8 10 12 14 18 18 2022
1/h

)r=k+2,k=1

Figure 8.5.1: Error curves in different norms
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CHAPTER 9 CONCLUSION
In this dissertation, we considered the construction of grad curl-conforming and
grad div-conforming finite elements in both 2D and 3D based on discrete de Rham com-

plexes. We briefly summarize our work below:

By theoretical framework in [12], we derived the cohomology of the grad curl com-
plex, the gradrot complex, and the grad div complex. We proved the density of
C>®(Q) ® V in H(grad curl;Q), H(gradrot;Q), and H(graddiv;Q). We defined
the trace operators v, @ H(gradcurl; Q) — H~Y2(0Q) @ V x HY/2(0Q) ® V,
Yrrot : H(gradrot; Q) — H~Y2(0Q) x HY?2(98) and 7p,q1v : H(graddiv; Q) —
H=Y2(0Q) x HY?(09), and proved their boundedness. We also proved the surjec-
tivity of v, yor and 7, 4iv. With these theoretical basis, we provided characterizations
for Hy(grad curl; Q) and spaces in the dual complexes of the grad rot complex and

the grad div complex. As a result, we obtain the explicit boundary conditions of

the Hodge Laplacian problems.

o We investigated the spurious solutions of the curl A rot problems. We applied four
finite element schemes to solve Hodge Laplacian source and eigenvalue problems
of the gradrot complex. We found the primal formulations with the Argyris el-
ement and the H'(rot)-conforming element lead to spurious solutions in certain
cases, whereas the mixed formulations with the grad rot-conforming element and
the H'(rot)-conforming elements lead to the correct solutions. We provided a the-
oretical explanation for the numerical phenomena and a convergence analysis on
simply-connected domains for the mixed formulation with the grad rot-conforming

finite element.

o We constructed a smooth finite element de Rham complex in 2D. This leads to
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three families of grad rot-conforming elements, among which one family is consis-
tent with our previous construction in high-order cases. We extended the existing
family of elements by removing the restriction on the polynomial degree and fit it
into the discrete complex. Among the three families, the simplest elements have

only 6 DOFs for a triangle and 8 DOFs for a rectangle.

We constructed a finite element Stokes complex on tetrahedral meshes, which
contains three families of grad curl-conforming elements. Since the construction
involves supersmoothness on lower-dimensional simplices of the tetrahedral mesh,
the number of DOFs is at least 279. We proved that the discrete complex is exact
on contractable domains. However, it is hard to construct an exact complex with
vanishing boundary conditions. In addition, the canonical interpolations defined

by the DOFs can not fit into a commuting diagram.

We constructed another finite element Stokes complex, which contains three fam-
ilies of grad curl-conforming elements with fewer DOFs. The simplest element has
only 18 DOFs, which, compared with the 279 DOFs in our previous construction,
is a huge step forward. Besides, the discrete complex is exact on contractable do-
mains, and hence it also contains a family of inf-sup stable finite element Stokes
pairs which is the extension of the lower-order Stokes pair in [34]. Unlike our previ-
ous construction, we can show the finite element spaces with vanishing traces can
form an exact complex and the canonical interpolations can fit into a commuting

diagram.

We constructed a finite element de Rham complex with enhanced smoothness,
which leads to the first grad div-conforming elements in 3D. The simplest element
has only 8 DOFs for a tetrahedron and 14 DOFs for a cube. We can also prove the

exactness and the commuting diagram property of the proposed complex.
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This dissertation inspires some new research directions:

o For the Hodge Laplacian problems of the grad curl complex, we obtained the ex-
plicit boundary conditions for only () We will characterize the boundary

conditions for other Hodge Laplacian problems.

o The construction of discrete grad rot and grad div complexes is trivial, which can
be realized by combining two finite elements de Rham complexes. However, it is not
the case for the grad curl complex. We will construct a finite element subcomplex

for the grad curl complex (B.1.6).

e In Chapter @, we proved only the convergence on simply-connected domains. To
obtain the convergence on general domains, we can apply the theoretical framework
in FEEC [9], which requires the bounded cochain projections. Therefore, in the
future, we will construct bounded cochain projections for the discrete grad rot,

grad div, and even grad curl complexes.

e Only tetrahedral grad curl-conforming elements were considered in this disserta-

tion. We will extend the construction in Chapter H to cubical meshes in the future.

o Despite the significant progress in the construction of the H?-conforming finite
elements mentioned in Introduction, the large number of DOFs makes it hard to
implement these elements in practice. We will apply the idea of enriching with

modified bubbles to construct new H>2-conforming elements with fewer DOFs.

o A discrete subcomplex provides an explicit characterization for the kernel of differ-
ential operators, which is crucial for the construction of robust preconditioners in
the framework of the subspace correction methods [45, 57]. With an explicit char-

acterization of the kernel spaces in the discrete complex in Chapter H, one may
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construct parameter robust preconditioners for solving the Navier-Stokes equa-

tions.
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In this dissertation, we discuss the conforming finite element discretization of high-
order equations involving operators such as (curlcurl)?, grad A div, and — curl A curl.
These operators appear in various models, such as continuum mechanics, inverse elec-
tromagnetic scattering theory, magnetohydrodynamics, and linear elasticity. Naively dis-
cretizing these operators and their corresponding eigenvalue problems using the existing
H?-conforming element would lead to spurious solutions in certain cases. Therefore, it is
desirable to design conforming finite elements for equations containing these high-order
differential operators.

The curl curl-conformity or grad curl-conformity requires that the tangential compo-
nent of curlw, is continuous. Recall that the Nédélec element requires only the con-
tinuity of the tangential component of u;,. Due to the continuity requirement and the
naturally divergence-free property of the curl operator, it is challenging to construct
grad curl-conforming elements. We start from the two dimensional case, where curluy,
is a scalar. Our previous construction [66] is based on the existing polynomial spaces

Qr-1 X Qi r—1 and Ry. The restriction of k > 4 for a triangular element or & > 3 for
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a rectangular element has to be imposed since an interior bubble should be included
in the shape function space of curl u,, and hence the simplest triangular or rectangu-
lar element has 24 degrees of freedom. To reduce the degrees of freedom, we resort to
the discrete de Rham complex to construct elements. The Poincaré operator enables
us to tailor the shape function space to our needs (not necessarily the existing polyno-
mial spaces). As a result, we construct a finite element complex, which contains three
families of grad curl-conforming elements without the restriction on polynomial degrees.
One of three families is consistent with the previous construction in high-order cases.
The lowest-order triangular and rectangular finite elements have only 6 and 8 degrees
of freedom, respectively.

Unlike the two-dimensional case, curl uy, in three dimensions should be a divergence-
free vector in the space H!®V, which relates the curl A curl problems to the Stokes prob-
lem. However, it is challenging to construct an inf-sup stable finite element Stokes pair
that preserves the divergence-free condition at the discrete level. Neilan [53] constructed
a finite element complex that includes a stable Stokes pair and an H'!(curl)-conforming
element on tetrahedral meshes. Based on the same Stokes pair, we construct a finite ele-
ment complex which contains three families of grad curl-conforming elements. Compared
to the H'(curl)-conforming elements [53] which have at least 360 DOFs, our grad curl-
conforming elements have weaker continuity (uy, is in H(curl) instead of H' ® V) and
thus fewer degrees of freedom. However, our elements still have at least 279 degrees of
freedom. Recently, Guzman and Neilan stabilized the lowest-order three dimensional
Scott-Vogelius pair by enriching the velocity space with modified Bernardi-Raugel bub-
bles [34], which inspires us to use it to construct grad curl-conforming elements with fewer
degrees of freedom. To obtain a family of elements, we first generalize their construction
to an arbitrary order by enriching the velocity space with modified face or/and interior

bubbles. Then we construct the whole finite element complex which contains three fam-
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ilies of grad curl-conforming elements on tetrahedral meshes. The lowest-order element
has only 18 degrees of freedom.

The grad div-conformity requires that the normal component and divergent of the
finite element function u,, are continuous. Since div uy, is a scalar, the construction of the
finite element complex and the grad div-conforming elements is similar to the grad curl
elements in two dimensions. The simplest tetrahedral and cubical elements have only 8

and 14 degrees of freedom, respectively.
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