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CHAPTER-1 

1. Introduction 

1.1 Current global health threats 

Worldwide, obesity has nearly tripled over the last four decades, in turn escalating 

numerous other metabolic ailments. In 2016, more than fifty percent of the world's adult population 

was overweight or obese [1]. In the United States, that is more than 71 percent [2]. The global 

prevalence of diabetes among adults has almost doubled since 1990 (National Center for Health 

Statistics 2017-2018). Moreover, obesity is associated with other serious health risks such as 

coronary heart disease, end-stage renal disease, certain types of cancer, and fatty liver disease. This 

epidemic of noncommunicable diseases was recognized as a new global health threat by the World 

Health Organization in 2018 [2, 3]. Overweight and obesity are linked with more deaths globally 

than malnutrition or underweight [1]. Obesity is preventable.  

The fundamental approach to prevent obesity is to maintain the energy balance between calorie 

intake and calorie output. Avoiding calorie-dense food and increasing physical activity are the gold 

standard approach to maintain caloric balance. However, other factors such as genetics or 

psychological conditions should also be considered. 

Despite much research and public health campaigns, obesity and associated metabolic 

complications keep rising worldwide. The advancement of next-generation sequencing technology 

and recent gnotobiotic mouse studies have revealed a strong connection between the gut 

microbiome and the host phenotype. It was found that germ-free mice are resistant to a high-fat 

diet, but once they were colonized with an obese microbiome, they developed obesity [4, 5]. This 

observation was quite analogous with fecal transplant studies in lean and obese human 
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volunteers[6]. The gut microbiome has attracted significant research interest recently regarding 

the etiology of obesity and associated comorbidities.  

1.2 Gut microbiome 

The human gut is a habitat for a very diverse range of symbiotic organisms and other 

microbes, collectively termed the gut microbiome. The microbiome and the host genome together 

produce a whole array of metabolites and signaling molecules such as secondary bile acids, short-

chain fatty acids (SCFA), choline, Gamma-aminobutyric acid (GABA), serotonin, and more that 

can determine the metabolic phenotype and disease condition in the host. While many gnotobiotic 

mouse studies suggest that the microbiome is an influential environmental factor for host 

metabolism, mounting evidence of its contribution to human physiology emphasizes that the gut 

microbiome is an essential metabolic organ for human existence. It contains 3.8 X 10 13 organisms, 

with thousands of different species [7]. Nearly half of all cells in the human body are microbial, 

and their collective genome includes one hundred and fifty times more genes than the entire human 

genome [8-10]. This ecosystem is an open and integrated unit composed of very diverse yet 

interactive indigenous microbes. These play a role in the community, contributing significantly to 

the whole microbiome ecosystem [11]. Functional communities exquisitely regulate biochemical 

pathways to determine the host metabolism. In the presence of non-native organisms, the 

inhabitants may amend their roles to keep the ecosystem balanced in the habitat.  Consequently, 

this leads to the invention of probiotic-mediated gut microbiome alterations with the aim of 

positive changes in the host metabolic pathways [10, 12, 13].  
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1.3 Probiotics 

Probiotics are "live microorganisms, which, when administered in adequate amounts, 

confer a health benefit on the host" [14]. Probiotic organisms are mainly sourced from the human 

gut and traditional fermented foods such as yogurt, cheese, pickles, or kefir grains. A narrow range 

of organisms, such as Lactobacillus and Bifidobacterium, mostly dominate probiotic research and 

the probiotic industry [15-18]. Other probiotics currently present in the field are Saccharomyces, 

Streptococcus, Enterococcus, Escherichia, and Bacillus. Though there is a vast diversity in the gut 

microbiome, novel probiotics are yet to be explored. Despite the unfavorable condition of the 

gastrointestinal tract (GIT), probiotics be live to perform their function(s). The major drawback of 

classical probiotics is their lack of persistence in the hostile environment of the GIT. In this context, 

the bacillus species, which are spore forming bacteria, have attracted more attention in the 

probiotic industry because of their ability to survive in unfavorable GIT conditions. There is 

evidence that vegetative cells, as well as spores, demonstrate probiotic activity. In spore formers, 

it was further found that some of the dynamic changing conditions such as acidity and bile 

concentrations immensely impact spore germination and outgrowth in the GI tract [19-21]. Though 

spore-forming probiotics are preferred, only several species exist from genus bacillus in the 

probiotic field [22]. 

With the development of metagenome sequencing and better culturing methods, probiotic 

research is stepping into a new era. So far, probiotics have only been in food supplements, yet 

soon, next-generation probiotics (NGPs) will likely come under a drug regulatory framework 

aimed at preventive and treatment measures. Faecalibacterium, or Akkermansia, are some of the 

uncommon genera classified for potential therapeutic species.  Recently, non-canonical probiotic 

families abundant in the colon, such as clostridiales and Bacteroidales, are being explored as 
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potential NGPs. Several species of Bacteroidetes such as Bacteroides fragilis strain ZY-312, 

Bacteroides xylanisolvens, and Bacteroides acidifacien have already been considered as potential 

probiotics[23-26]. However, the other common genus, Clostridium, has not been explored to the 

same extent as Bacteroides. Clostridium butyricum is the only species in that genus found to be 

reviewed for over 50 years to treat Clostridium difficile infections, Helicobacter pylori infections, 

high cholesterol levels, and cancer [27]. 

1.4 Clostridium cochlearium  

Nonpathogenic clostridium species, especially spore formers, could be potential 

therapeutic probiotics [28]. Clostridium cochlearium has shown various positive influences on gut 

physiology [28-30]. C. cochlearium is a gram-positive obligatory anaerobic spore-forming 

bacterium which usually presents in pairs and short chains [31]. C. cochlearium ferments 

glutamate via the methyl aspartate pathway to produce butyrate [28, 32]. Butyrate is frequently 

considered a health beneficial short-chain fatty acid. It is the primary energy source for the gut 

epithelial cells, and it involves regulating cellular metabolism and immune responses through gene 

expressions and cell signaling pathways [33-35]. Despite its close genetic relationship to the 

human pathogen C. tetani, C. cochlearium is a non-toxin-forming, nonpathogenic bacterium 

present in the human gut [36, 37]. It was identified to utilize glucose, galactose, glycerol, and 

ribose as a carbohydrate source [38], be able to ferment gelatin [39],  convert tyrosine to phenol 

[40],  and produce indole and H2S [38] in previous studies. Further, it utilizes serine, methionine, 

threonine, leucine, alanine, histidine, aspartate, and tyrosine, and produces amino butyrate [40]. A 

recent study reported that C. cochlearium showed significantly higher electroactivity compared to 

other pre-selected mouse gut bacteria, revealing its capability of extracellular electron transference 

based on either redox-active molecules or planktonic cells [41]. 
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However, there are few direct studies available on this species. The available literature only 

discusses the properties limited to its electrochemical activity [41] and amino acid metabolism 

[42-44]. Except for some genomic evaluations, in vivo study of its health effects on an animal 

model has never been performed. Specifically, information is lacking about its biological effects 

on the fundamental facts, such as growth conditions and viability in unfavorable gastrointestinal 

conditions, which are crucial for novel probiotic development.  

Therefore, the goal of the present study was to determine the properties of C. cochlearium 

for growth and survival in in vitro conditions and investigate the effects and underlying 

mechanisms of administration of C. cochlearium on obesity and host metabolic processes using a 

high-fat diet-induced obese mouse model. We hypothesized that C. cochlearium is a potential 

probiotic to prevent obesity and related metabolic complications.  
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1.5 Specific aims 

The existing literature does not provide essential preliminary data such as optimum growth 

conditions or in vivo viability potential in human gastrointestinal tract conditions and biological 

effects of C. cochlearium. Therefore, the specific aims were as follows. 

Specific Aim 1 

To determine the viability of Clostridium cochlearium in simulated gastrointestinal tract 

conditions and its optimal in-vitro growth conditions. 

Specific Aim 2 

To determine the potential anti-obesity effects of Clostridium cochlearium on a diet-induced obese 

mouse model. 

Specific Aim 3 

To determine the underlying mechanisms of the effects of Clostridium cochlearium on host 

metabolism. 
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CHAPTER-2- SPECIFIC AIM 1: TO DETERMINE THE VIABILITY OF 

CLOSTRIDIUM COCHLEARIUM IN SIMULATED GASTROINTESTINAL TRACT 

CONDITIONS AND ITS OPTIMAL IN-VITRO GROWTH CONDITIONS. 

2.1 Introduction 

2.1.1 Next-generation probiotics  

The global probiotic market is in high demand, one of the most dominant source of nutrition 

supplement production. The probiotic organisms featured in these products are mainly based on 

human gut commensals or traditional fermented food.  Probiotic research or commercial probiotic 

products are limited to two genera, which include Lactobacillus species and Bifidobacterium 

species [8]. Most of the probiotics in the market, including commonly exploited strains, are 

considered GRAS (generally regarded as safe) by food safety authorities. 

With the development of better culturing techniques, affordable metagenome sequencing, 

and analytical tools, probiotics research has recently been exposed to a new era. The human gut 

microbiome is unique to each individual. Probiotic therapeutics can be one of the innovative 

approaches for initializing personalized medicine. Next-generation probiotics are a new and 

promising direction to explore the connection between the microbiome and disease management 

[27].  Faecalibacterium, Akkermansia, Bacillus spp. are some of the uncommon genera identified 

as novel biotherapeutics [27].   

2.1.2 Spore forming bacteria 

One of the primary challenges of probiotic supplements is ensuring their viability in the 

GIT. Though classical probiotics show exciting health effects, their survival rate in the GIT can be 

substantially low.  Spore-forming bacteria attract greater attention due to their ability to produce 

spores in unfavorable GIT conditions. Sporulation is a survival strategy of bacteria to preserve the 

organism from hostile environments for vegetative cells [45]. Bacillus spp, have been thoroughly 



8 

 

  

investigated for both spores and vegetative cells and their cell cycles in the GIT [19, 22, 46]. It has 

been demonstrated that the bacilli spore can safely transit across the stomach, germinate, and grow 

in the upper intestines and sporulate in the lower intestines to be excreted as spores [46, 47].  The 

dynamic changing conditions of the upper GI tract, such as gastric acidity and bile concentration, 

are critical to trigger spore germination [47-49]. The most common spore-producing genus in the 

colon, Clostridium, has not been explored to the same extent as Bacillus spp. However, 

Clostridium butyricam, Clostridium difficile, and Clostridium perfringens spores have been 

studied previously [50]. 

2.1.3 Physiological conditions of the human gastrointestinal tract 

To survive in  GI transit, the probiotic must be resilient to the detrimental physiological 

conditions in the upper gastrointestinal track especially the stomach, duodenum, and proximal 

ileum. Hence,  low acidity and bile salt tolerance are critical factors for bacterial survival and 

colonization in the human gut. The tolerance capacity of the GI tract tolerance is usually analyzed 

by either the bacterial growth rate or bacterial growth curve under the presence of experimental 

conditions[51] .  

It is important to simulate the exact physiological condition for an in-vitro digestion model 

to understand the behavior of probiotics in in-vivo conditions. The pH, bile salts, and other 

digestive enzyme concentrations of the human GIT depend on the individual and the food ingested 

[52]. The physiological properties of the human GIT under normal condition are depicted in Figure 

1.  
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Figure1. The physiological conditions of the gastrointestinal tract [53]. 

The duration of the gastric phase is usually one to two hours. The intraluminal pH of the 

stomach in the fasting state is around 1-3, which rapidly increases to 5.5 - 6.5 in the small 

intestines. After entering the duodenum, chime mixed with bile salts, sodium bicarbonate, and 

enzymes causes the pH to increase as it reaches up to7.5 in the terminal ileum[54]. The pH drops 

to 5.7 in the cecum due to SCFA production from gut flora and gradually increases to 6.7 in the 

rectum. In the fed state, the bile salts in the duodenum are around 5-15 mM, while in the fasted 

state, it can be as low as 4.3-6.4 mM [53]. 
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2.1.4 Influence of prebiotics and cross-feeding interactions on host metabolism 

Prebiotics are non-digestible food ingredients that can benefit  host health by promoting 

the growth and activity of microflora in the gut. A food ingredient can be considered as a prebiotic 

if it cannot be hydrolyzed or absorbed in the upper part of the GIT, an energy substrate for 

beneficial commensal bacteria in the gut, or able to provide beneficial effects for host health. The 

most common prebiotic category is the non-digestible carbohydrates[55]. Prebiotics, mainly 

resistant starch (RS) and non-starch polysaccharides, have been revealed to increase in SCFA 

production. Fermentation of some RS such as insulin, Galactooligosaccharides (GOS), and 

fructooligosaccharides (FOS), are favored by the butyrate-producing bacterial groups [56-58]. 

They have been reported to increase immunoregulatory interleukins (adiponectin, IL-6) and 

improve leaky gut, decrease high-fat diet-induced lipopolysaccharides (LPS), and pro-

inflammatory cytokines (TNF-, IL-1) [59, 60]. Bacterial utilization of energy-rich substrates 

broken down by another species is called substrate cross-feeding. Similarly, utilization of the 

metabolic end products of one species by another species is called metabolic cross-feeding. Vuyst 

et al. (2015) proposed two distinct mechanisms of cross-feeding between the genus Bifidobacteria 

and butyrate producing colon bacteria. Butyrate-producing groups were observed to consume the 

end products (lactate and acetate) or partially broken down products released by the bifidobacterial 

metabolism [61] .  Bacterial cross-feeding has a huge impact on the net SCFA production in the 

colon and thus determines the diet-induced alterations in the microbiota and the host 

pathophysiology. Ultimately, these alterations generate a basis for developing multiple metabolic 

modifications.  
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2.1.5 Bacterial growth conditions 

The first step in probiotic development is to optimize in-vitro growth conditions. 

Commercial bacterial culture media are generally optimal, but modification of large-scale cell 

cultures is necessary to ensure cost-effectiveness. In addition, media pH, temperature, and other 

cross-feeding interactions should be considered to enhance the bacterial growth rate. 

In the current study we first determined the viability of C. cochlearium in simulated 

gastrointestinal tract conditions and its optimal in-vitro growth conditions. 

2.2 Methodology 

2.2.1 Bacterial culture 

C. cochlearium strain was purchased from ATCC (Manassas, VA). They were enumerated 

and cultured using anaerobic media and conditions according to the recommended method [62]. 

2.2.2 Culture media preparation 

Peptone Yeast Glucose (PYG) broth media was prepared according to the recipe, cooled 

under nitrogen gas, and glucose, tween 80 and cysteine were added before dispensing into Hungate 

tubes under the same gas-phase then autoclaved at 121 ℃. 0.1% w/v. Resazurin solution 

(Thermofisher Acros Organics, Morris Plains, NJ) was used to identify the presence of anaerobic 

conditions. 

2.2.3 Determine optimal pH  

The pH of the media was adjusted from pH 2 - 11 with 1M Na2CO3 and 1M HCl using a 

pH meter before preparing Hungate media tubes. Then media tubes were inoculated with 109 CFU 

C. cochlearium 100 μL, followed by transferring 500 μL of cultured media in duplicates into a 48-

well plate anaerobically, and optical density (OD) was recorded using HTS 7000 Biotek epoch 
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plate reader (PerkinElmer, Waltham, MA) every 30 minutes for twelve hours. All the readings 

were taken at 37 ℃ under anaerobic conditions. 

2.2.4 Determine bile salt tolerance  

Media tubes were prepared with corresponding amounts of bile salts to achieve the final 

concentration range 0.01% w/v, 0.05% w/v, 0.1% w/v, 0.2% w/v and 0.3% w/v desired for the 

experiment. Each tube (10 mL) was inoculated with 109 CFU C. cochlearium, and 500 μL of 

cultured media was transferred anaerobically into a 48-well plate, and optical density was recorded 

at 595 nm in duplicates every 30 minutes for fifteen hours using HTS 7000 Biotek epoch plate 

reader (PerkinElmer, Waltham, MA). All the readings were taken at 37 ℃ under anaerobic 

conditions.  

2.2.5 Determine optimal temperature 

Newly prepared PYG media tubes were inoculated with 109 CFU of C. cochlearium and 

incubated under different temperatures for 12 hours. Five hundred μL of culture was transferred 

from each Hungate tube into a 48-well microplate using an anoxic syringe, and optical density was 

recorded at 595 nm in duplicates in hourly intervals using HTS 7000 Biotek epoch plate reader 

(PerkinElmer, Waltham, MA).  

2.2.6 Prebiotic supplements 

The PYG media tubes were prepared without glucose, and sterile prebiotic solutions with 

final concentration 0.2% w/v were added to each Hungate tube before autoclaving. Each tube was 

inoculated with 109 CFU of C. cochlearium, and 500 μL of cultured media was transferred 

anaerobically into a 48-well plate, and optical density was recorded at 595 nm in duplicates every 

30 minutes for fifteen hours using HTS 7000 Biotek epoch plate reader (PerkinElmer, Waltham, 

MA). All the readings were taken at 37℃ under anaerobic conditions.  
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2.2.7 Viability in simulated gastrointestinal digestion model. 

Clostridium cochlearium was grown overnight to obtain 1010 CFU/mL, subsequently 

centrifuged to obtain the cell pellet, which was then washedwith PBS buffer, transferred to pH 2 

media tubes and incubated for two hours at 37℃. Then, the acidic media was removed, and enteric 

digestion fluid (EDF), which was formulated to simulate the digestion process of the intestinal 

phase, was added into the tubes. EDF was prepared with the following formula: 0.5% w/v 

pancreatin (Sigma, St Louis, MO), 1.5% w/v bile salt (LP0055 OXOID, Ontario, Canada), 0.5% 

w/v amylase (Sigma, St Louis, MO), 0.1% w/v trypsin (Sigma, St Louis, MO), and 0.5% w/v lipase 

(Sigma, St Louis, MO) [63].  Samples were incubated for another two hours at 37℃ under 

anaerobic conditions. 

After the four-hour digestion process, the bacterial pellets were transferred into regular 

PYG media tubes and incubated at 37℃, and optical density was recorded in duplicates every 6 

hours. After each digestion in pH-2 and EDF, the tubes were vortexed well, and 1 mL of sample 

was obtained to harvest bacteria cells. The bacteria cells were pelleted, washed with sterile PBS, 

and stained with malachite green for microscopic analysis.  

2.2.8 Clostridium cochlearium spore staining. 

A drop (107 CFU/ml -10uL) of bacterial suspension was mounted on a glass slide, allowed 

to air dry and heat fixed. The smear was covered with a piece of paper towel, flooded with a 5% 

Malachite green stain, and steamed for 5 minutes. Then the slides were rinsed with water, and the 

cells were counterstained with safranin-O for 30 seconds. Finally, the smear was rinsed with water, 

dried, and observed under the light microscope and the electron microscope. 
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2.3 Results and discussion 

2.3.1 Optimal growth conditions 

The aim of the experiment was to determine the optimum temperature for C. cochlearium 

growth. The general optimum growth temperature for gut bacteria is the human body temperature, 

which is 37 ℃, but it can vary in in-vitro conditions.  C. cochlearium grew in the range of 

temperature from 35 ℃ – 46 ℃ tested, as shown in Figure 2. The optimal temperature displayed 

was 43 ℃, and the best temperature range was 37℃ - 43℃. The bacterial growth rate decreased 

outside of that temperature range.  

No significant difference was observed in the growth rate of C. cochlearium under different 

prebiotic supplements (Figure 3), but the final yield was significantly different. Two percent 

glucose was the carbon source available in regular PYG media. Galacto-oligosaccharide (GOS) 

significantly improved the bacteria yield than glucose. Prebiotics are mainly dietary carbohydrates, 

and galacto-oligosaccharides and fructans are the most recognized categories within that [60]. 

Fructans contain several prebiotics such as inulin and fructo-oligosaccharide (FOS) [60];  for this 

study, only FOS was included.  Both GOS and FOS are oligosaccharides found in natural foods 

and have been shown to promote health-beneficial bacteria such as Bifidobacterium spp. and 

Lactobacillus spp. in the human gut [64]. There was no difference in the effect between glucose 

and FOS. The PYG media without adding any carbon substrate resulted in low bacterial yield yet 

gave a similar effect as IMO supplementation.  

C. cochlearium showed growth in pH 5 - 7 range, but pH 6 - 7 was the optimal range 

(Figure 4). C. cochlearium did not show substantial enumeration above pH 7 or below pH 4. While 

some bacteria such as lactobacillus spp., streptococcus spp., Helicobactor pylori are acidophiles 

several clostridiales such as C. dificille and C. sordellii have been identified as lacking several 
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proteins involved in acidic adaptation and broad range pH survival, which prevents them from 

growing under acidic environment. C. cochlearium displayed to be functional only in very narrow 

range of pH range indicating the incompetence of its acidic adaptability in the human GIT.  

The aim of bile salt tolerance test was to determine the bile tolerance capacity of C. 

cochlearium in human small intestines. The bile salt available in the growth media significantly 

impacted the C. cochlearium growth (Figure 5). Bile salt concentration above 0.05% w/v showed 

inhibitory effects on C. cochlearium growth. The growth rate as well as the yield of C. cochlearium 

were considerably higher in the media without or with very little of bile salts (0.01 % v/w). The 

concentration of bile salts in small intestines ranges from 0.2% to 2% w/v [65]. Bile salts are 

antibacterial compounds that disrupt cell membrane, denature proteins, cause oxidative DNA 

damage, and stimulate host immune responses. Some bacterial species have adapted to the 

mammalian gut and developed resistance to bile salts through the remodeling of cellular responses 

[66]. Instead, it showed that C. cochlearium could not replicate under regular physiological bile 

salt range indicating potential bile salt intolerance. 

3.3.2 Viability in simulated gastrointestinal digestion model. 

As spore-forming bacteria, clostridiales can produce endospores under unfavorable 

conditions. Temperature and pH are critical factors that trigger spore formation of clostridiales 

[67, 68]. Heat shock is a common method to trigger bacterial sporulation [46, 54, 69]. In our results 

(Figure 6), C. cochlearium growth was not significantly impacted by the heat treatment. Both the 

high and low heat generated a similar response. The heat treatment reduced the growth rate and 

yield, and caused a longer lag phase compared to no treatment sample. This indicates possible 

sporulation during the heat shock. Spores take longer duration and sometime require external 

stimuli to germinate and outgrow compared to vegetative cells [20]. 
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After determining the behavior of C. cochlearium in various pH, temperature, and bile salt 

concentrations, the responses were further analyzed under simulated GIT conditions. The 

incubation time and digestion media were selected according to the fasted condition of in-vitro 

digestion models mentioned in the literature [53, 54]. The gastric phase was tested with pH 2, and 

the intestinal phase was tested for addition of bile salts, pH 6.3, and digestive enzyme mixture. 

Live C. cochlearium bacteria and heat-treated bacteria were subjected to gastric digestion. The 

heat-treated sample was used under the assumption of that heat shock triggers sporulation, to 

distinguish the viability of spores and vegetative cells in the experimental conditions. There was 

no significant difference between heat-treated and none heat treated samples (Figure 7). The 

digestion treatment significantly lowered the yield of C. cochlearium compare to no treatment 

samples. However, C. cochlearium presented replication after 4-hour treatment of simulated GIT 

digestion. Analysis of spore formation under different pH ranges has revealed strain-dependent 

sporulation efficiency of genus clostridium previously. C. dificille and Bacillus spp. have depicted 

a low sporulation rate in an acidic environment. C. perfringens produces spores within a narrow 

range of pH 5.9-6.6, and C. cellulolyticum sporulated at pH 6.4 [21]. Moreover, C. botulinum 

spores shows an extended lag phase and decreased toxin production in the decreased temperature 

and  pH [68]. We assumed that the high acidic and high bile salt concentration in the experiential 

setting triggered sporulation of C. cochlearium despite heat shock effect. 

Spores can interact with bile acids along the GI tract. The spore germination is triggered 

by the assembly of small molecules called germinants with the membrane receptors of the spores. 

The germinants can be varied, including ions, amino acids, sugars, nucleotides, surfactants, which 

trigger irreversible germination to release Ca2+- dipicolinic acid of the cell wall, increase water 

uptake, degrade the cortex, and outgrow the vegetative cell [70]. The host bile acid concentration 
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and composition, especially cholate derivatives, including taurocholate, glycocholate, cholate, and 

deoxycholate, can determine the germination of C dificille spores. In contrast, the deoxycholic acid 

has been shown to inhibit the C. dificille vegetative growth [21]. Further, chenodeoxycholate and 

lithocholate have been shown to inhibit taurocholate-mediated germination [71]. Hence, previous 

findings implied the importance of exploring the interactions of spore forming probiotics with 

host’s bile acid metabolism. 

Upon sensing unfavorable environmental conditions, the vegetative cell of C. cochlearium 

begins process of cell differentiation and sporulation. It is revealed that the clostridial cells form 

cigar shaped long sporangium with accumulated granulose at the initiation of sporulation. Then 

asymmetric division forms to give rise to pre-spore. The spore cortex and walls are formed 

subsequently before releasing the mature spore. Figure 8 shows the morphological changes C. 

cochlearium cells underwent to form spores in unfavorable in-vitro digestion conditions. The 

environment mimicking the pH of the stomach shows initiation of sporangium formation with 

endospores and free spores collectively counted for 68 present spores formed while 50% of them 

were free spores. Successive exposure to the enteric digestion fluid increased the free spore by 

25% by increasing the number of total spores to 92%, suggesting the higher sustainability of C. 

cochlearium in the human gastrointestinal tract.   

2.4 Conclusion 

C. cochlearium cultures were tested in a variety of environmental settings to determine the 

optimum in-vitro growth conditions. C. cochlearium shows optimum growth at temperature range 

37 ℃ - 43 ℃, media pH range at pH 6 -7 and the presence of galactooligosaccharides in the media 

as the carbohydrate substrate. C. cochlearium do not replicate in extremely low pH (<pH 4) or 

high bile salt condition (> 0.1% w/v), indicating its incompetence to grow in the presence of 
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unfavorable conditions analogous to the upper part of the human small intestines. However, those 

unfavorable conditions trigger C. cochlearium endospore formation; thus, bacteria can survive in 

the GIT tract. Terminal ileum and colon is higher in pH and lower in bile concentration; thus, C. 

cochlearium might possibly colonize in the colon if it could survive throughout the stomach and 

the small intestines. The common challenge in probiotic development is to ensure the viability of 

probiotic in the GIT; hence, higher dosage or encapsulation techniques should be performed to 

confirm the probiotic travel to the colon safely to colonize in the gut. Current findings indicate C. 

cochlearium does not require extra preventive techniques to reinforce its viability in the GIT; thus, 

it is an ideal species for novel probiotic development.  
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CHAPTER-3- SPECIFIC AIM 2: TO DETERMINE POTENTIAL ANTI-OBESITY 

EFFECTS OF CLOSTRIDIUM COCHLEARIUM ON A DIET-INDUCED OBESE MOUSE 

MODEL. 

3.1 Introduction 

Multiple endogenous or environmental factors could contribute to obesity. There are 

complex deteriorations in metabolism over a period of time before presenting obesity and other 

noticeable health complications.   It is important to select a surrogate animal model to mimic the 

molecular aspects of disease development when studying the pathophysiological effects of obesity. 

The C57BL/6 mouse is a particularly good model mimicking human metabolic imbalances 

presented in obesity because they develop insulin resistance, hyperglycemia and obesity when fed 

with a high-fat diet ad libitum. Germ-free (GF) mice studies and fecal transplant studies have 

repeatedly shown that the gut microbiome has an influence on obesity-related phenotype [4, 5, 72] 

, implying the potential of probiotic intervention to manage host health disparities [73-75]. Bile 

acid (BA) metabolism appears to interplay a key role in microbiome host synergism [65, 76, 77]. 

Bile acids are a vital metabolic component in dietary fat digestion and cell signaling. After being 

released into the intestinal lumen, 95% of bile acids are reabsorbed into the enterohepatic 

circulation, resulting in around 5% of bile acids being eliminated with feces. That is replenished 

by de novo synthesis of bile acids, which is around 200-600 mg daily in the liver [78]. However, 

a small fraction of bile acids (1%) escapes hepatic uptake, enters the systemic circulation, and 

reaches the peripheral tissues where they exert peripheral effects [15].  The bile acid pool is defined 

as the bile acids in the liver, gall bladder, intestines, and enterohepatic circulation. Before being 

secreted into the intestines, primary bile acids, cholic acid (CA) and chenodeoxycholic acid 

(CDCA) are conjugated with glycine or taurine to enhance their utilization for dietary lipid 

digestion. Conjugation increases bile acid solubility, thus better emulsifying activity as well as the 
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reabsorption efficiency. Gut microbes convert primary bile acids to secondary bile acids through 

biotransformation that increases the bile acids excretion with feces [79]. In mice most bile acids 

are taurine conjugated, while in humans they are glycine conjugated. Specifically, in mice a 

significant amount of CDCA is converted to -muricholate (MCA) and - muricholate (MCA) 

[80]. Primary bile acids that reach the large intestine (~5%) are bio-transformed by specific 

members of the gut microbiota via enzymatic reactions, deconjugation, dihydroxylation, and 

epimerization into secondary bile acids. Secondary bile acids increase the hydrophobicity of the 

bile acid pool, which is associated with greater toxicity. If being absorbed, secondary bile acids 

should be rapidly conjugated or sulfated to limit the damage to hepatocytes. Hence, only small 

amounts are absorbed, and the majority are excreted with feces. A recent study showed bile acid 

composition notably affected the spore germination of spore forming clostridiales [50]. The 

interchange of host bile acid composition and the bioactivity of the several Clostridium species 

have been presented in recent literature [21, 81]. In particular, TCA triggers the germination and 

outgrowth of C. difficile. Gut microbiome derived secondary bile acids decreased TCA mediated 

spore germination and outgrowth, growth kinetics, and toxin activity [82]. Even though this gut 

microbiome derived colonization resistance could be species or strain dependent, the outcome can 

impact the whole microbiome.  
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3.2 Materials and methods 

3.2.1 C. cochlearium culture preparation 

C. cochlearium strain (ATCC 17787) was purchased from ATCC (Manassas, USA) and 

cultured according to the manufacturers instructions. Cultures were grown to the exponential 

phase, harvested using anaerobic centrifugation, and resuspended in 25% glycerol, and  then flash 

frozen to obtain samples and stored in -20˚C for use within one week. Prior to preparation of oral 

gavage samples, frozen bacteria were thawed and washed with phosphate-buffered saline and 

resuspended with sterile distilled water until the final concentration of 1010 colony-forming units 

per milliliter (CFU/mL) was reached.  

3.2.2 Animals and Diet  

This animal study was conducted with the approval of the Institutional Animal Care and 

Use Committee (IACUC) of Wayne State University. Six to eight-week-old male C57BL/6 DIO 

mice were purchased from Charles River Laboratories (Wilmington, MA). Mice were housed six 

animals per cage under constant temperature (24°C ± 1℃) and moisture of 40% ± 10% with 12-

hour light-dark cycles and fed ad libitum with either a high-fat diet (D12492M - 60% kcal from 

fat) or a low-fat diet (D12450J - 10% kcal from fat) purchased from Research Diets Inc. (New 

Brunswick, NJ). Details are shown in Table 1. 

3.2.3 Study Design 

 After seven days of acclimatization, all mice were randomly assigned into three 

experimental groups (n=12). Food and water were given ad libitum.  High-fat diet (HF) control 

and low-fat diet (LF) control groups were gavaged with the vehicle of 200 µL of sterile water, and 

the treatment group (CC) group were orally gavaged with 200 µL of C. cochlearium 1010 CFU/mL 

and fed with high fat diet for 13 weeks. The basal parameters were recorded (body weight and 
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food intake) weekly while blood analysis (by tail vein puncturing) was done at 4th 8th and 12th 

week. Upon termination, mice were fasted for 8 hours and euthanatized by exposure to CO2 and 

subsequent cervical dislocation. Blood samples were centrifuged to extract serum and flash frozen 

in liquid nitrogen, then intestinal content, and tissues (liver, intestines, cecum content, and fat) 

were obtained, rapidly snap-frozen in liquid nitrogen, and stored at -80°C for further analysis.  

3.2.4 Blood collection and serum sample preparation 

After each mouse was euthanized, and approximately 1 to 1.5 mL of blood was collected 

into a 1.5 mL microtube using heart puncture method. The blood sample was left undisturbed at 

room temperature for approximately 30 min and then centrifuged at 10 000 g for 10 minutes at 4 

°C; the supernatant was aliquoted into microtubes for long term storage. All microtubes were 

stored in a - 80 °C freezer for future testing.  

3.2.5 Fasting glucose and fasting insulin analysis 

Fasting blood glucose (FBS) analysis was done each month of the study period. After eight 

hours of food deprivation, FBS was measured in each mouse by tail vein piercing (Accu-check 

glucometer - Roche, Indianapolis, IN). Fasting insulin was analyzed according to the 

manufacturer’s instructions using Ultra-sensitive mouse insulin ELISA kit (#90080 Crystal Chem, 

Doners Grove, IL).  

3.2.6 Oral glucose tolerance test (OGTT) 

After eight hours of food deprivation, mice were given (oral gavage) 1 mg/kg body weight 

10% w/v sterile glucose solution, then blood samples were obtained by tail vein piercing, and 

blood glucose level was measured using Accu-check glucometer (Roche, Indianapolis, IN) at 0, 

15, 30, 60, and 120 minutes after glucose administration.  
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3.2.7 Serum cholesterol and triglycerides 

Serum cholesterol and triglycerides were assessed using serum cholesterol and triglyceride 

liquid reagent kits (Pointe Scientific, Canton, MI).  

3.2.8 Fecal calorie analysis 

Twenty-four-hour feces were collected, air-dried and fecal energy (Pooled feces) of 

each group was measured by combusting duplicate fecal samples using Bomb Calorimeter 

(Parr, Moline, IL).  

3.2.9 Body composition analysis 

In the last week of the treatment, body compositions of each mouse were measured using 

EchoMRI-100 analyzer (EchoMRI, Houston, TX). 

3.2.10 Statistical analysis 

Results are presented as means ± SD. GraphPad Prism (Prism 9; Graph Pad Software Inc.) 

was used to perform statistical analysis. Student’s t-test, one way or two-way ANOVA was used 

based on the number of independent variables involved, while repeated measure ANOVA was 

used to analyze means across one or more variables that are based on repeated measurements. For 

multiple comparisons, Tukey's post hoc test or Kruskal-Wallis test was performed according to 

data distribution. The significant difference is considered as P < 0.05.  

3.3 Results and discussion 

3.3.1 Effect on body weight gain & calorie intake 

C. cochlearium administration significantly reduced high-fat diet-induced body weight 

gain on DIO mice (Figure 9). After 13 weeks of oral administration, the C. cochlearium treated 

group (71.69±14.94 %) showed 18% lower body weight gain compared to the HF (90.14±9.35%) 

group. The significant reduction of body weight gain by CC administration was first observed as 
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early as the 2nd week of treatment. Previously administration of various lactobacilli strains [83, 

84] and Bifidobacterium strains [85, 86] have shown reduced body weight gain and adiposity in 

response to HFD on DIO mice. However, this is the first time that a potential probiotic showed 

such a weight-preventing activity after merely a week of dietary treatment. There was no 

significant difference in cumulative calorie intake between HF and CC groups (Figure 10), 

suggesting that the body weight reduction of CC supplementation could be due to its effect on 

energy expenditure.  The high fat treated groups (CC and HF) showed significantly higher weight 

gain versus the control diet group confirming the fattening effect of a high-fat diet on DIO mice.   

3.3.2 Effect on body composition and liver weight 

 Body composition analysis showed a significant reduction in fat mass (Figure 11-A) of the 

CC group compared to that of the HF group, while there was no significant difference in lean mass 

(Figure 11-B) between the two groups. The High-fat diet-fed mice (HF, CC) showed significantly 

higher fat mass than the low-fat diet-fed mice group, demonstrating the diet's effect on 

adipogenesis. No significant difference among the lean mass among the groups indicates the fat 

mass is the main contributor to the weight difference. There was no significant change in the liver 

mass (Figure 12-A) of the CC groups from the LF, but that was 35% lower than the HF group liver 

mass. Consistently the signs of lipid infiltration in CC group liver tissues (Figure 12-B) were less 

than that of the HF group, suggesting that high-fat diet-induced liver steatosis had been reversed 

by C. cochlearium intervention.  

3.3.3 Effect on fecal calorie output 

 To assess the C. cochlearium mediated effects on host energy metabolism, we collected 24-

hour feces, and fecal calorie output was determined. As expected, the LF (Figure 13) group fecal 

calorie output was significantly lower than the high fat diet fed groups. There was no significant 
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difference between the HF and CC groups. Weight gain reduction can be illustrated via the 

fundamentals of energy balance, such as low energy consumption, high-energy excretion, or high-

energy expenditure. As the calorie intake (Figure 10) and fecal calorie output (Figure 13) did not 

significantly differ between the HF and CC groups, it is important to analyze the energy 

expenditure between CC and HF groups. 

3.3.4 Effect on glucose metabolism 

Probiotic studies repeatedly have shown favorable metabolic outcomes on the host [87-

90].  The current study demonstrates the beneficial effects of C. cochlearium administration on 

lipid and glucose metabolism on high-fat diet-treated DIO mice.   

Previous probiotic studies showed bodyweight reduction was often associated with positive 

metabolic outcomes, including improvement in insulin resistance and glycemic control [18, 91, 

92]. The abundance of butyrate-producing bacteria in the gut has positively impacted insulin 

tolerance and type II diabetes mellitus [74, 93]. Correspondingly, our study shows that 

administration of butyrate-producing C. cochlearium significantly improved glucose homeostasis 

and insulin sensitivity in DIO mice (Figure 14). Fasting blood glucose was significantly lower in 

the CC group than that of the HF group from the 2nd month of the treatment. There was no 

significant difference in fasting blood glucose between CC and LF groups indicating that the high-

fat diet-induced deterioration in glycemic control was improved in the CC group. Fasting serum 

insulin concentration values (Figure 15) further confirmed this observation.  The CC group had a 

significantly lower plasma insulin concentration than that of the HF group but not significantly 

different from the LF group. Considering that the DIO mice model is severely insulin resistant, the 

data depicts insulin sensitivity and glucose tolerance improvement by C. cochlearium 

administration.  
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3.3.5 Effect on serum triglyceride and cholesterol 

High-fat diet feeding was reported to increase weight gain, fat mass, hypercholesteremia, 

and glucose intolerance in DIO mice models. In addition, rapid lipid accumulation is connected 

with the predominant fatty liver condition [94].  As expected, mice in the high-fat diet fed groups 

presented elevated serum cholesterol (HF: - 158 ± 26.23 mg/dl, CC: - 112.7±20.12 mg/dl) 

compared to the low-fat fed group (LF: - 88.05±19.70) (Fig 17). Interestingly, C. cochlearium 

treatment decreased serum cholesterol by 29% compared to HF group while no significant 

difference with LF group was observed.  No change in serum triglycerides levels was observed 

among groups (Figure 18). A recent probiotic study also noted that the short-term supplementation 

of probiotic consortium significantly reduced plasma cholesterol without changing the serum TG 

levels [95]. It was not clear why the high fat diet group serum triglycerides were not significantly 

different from those of the low-fat group. Probiotics have been identified to show 

hypocholesterolemic effects by altering cholesterol metabolism and transport [96-98]. 

Assimilation of cholesterol conversion of cholesterol to coprostanol or increase production of bile 

acids are identified mechanisms by which probiotics involve in impacting plasma cholesterol 

levels [98-100]. 

3.3.6 Effect on bile acid metabolism 

All the serum bile acids species, including total bile acids, were higher in the HF group 

than the CC group. Tauro-conjugated primary bile acids were significantly decreased in the CC 

mice, resulting in a significantly lower total conjugated bile acid pool. Both primary and secondary 

bile acids groups were also significantly lower in the CC group. The bile acid pool is defined as 

the bile acids in the liver, gall bladder, intestine, and enterohepatic circulation. In the normal 

physiological condition, around 1% of bile acids in the enterohepatic circulation is spillover into 
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the systemic circulation [78]. Though the serum bile acids are not counted in the bile acid pool, 

serum bile acids composition can represent the composition of enterohepatic circulation [101, 

102]. The significant reduction of serum bile acids level in the CC group could be due to low bile 

acid reabsorption through the intestinal wall. The hydrophobicity of bile acids as well as bile acid 

transporter expression levels could potentially affect the efficacy of bile acid reabsorption[103, 

104]. Conjugation increases the bile acids solubility, thus better emulsifying activity as well as the 

reabsorption efficiency.  Higher fecal excretion potentially lowered the bile acids in the entero-

hepatic circulation, thus decreasing total bile acid pool and resulting in higher demand for de novo 

synthesis of bile acids in hepatocytes, which subsequently leads to the reduction of serum 

cholesterol [105]. High fat feeding is known to increases taurine conjugated bile acids [101]. 

Conjugated bile acids are metabolized by the microbes inhabited in the upper small intestines. 

Hence, altered microbiome in the upper small intestine can significantly affect bile acid 

composition [106]. Non-alcoholic fatty liver disease and insulin resistance have been associated 

with increased taurine conjugated bile acids and secondary bile acids [107]. Serum taurine 

conjugated bile acid level positively correlated with elevated plasma glucose and insulin resistance 

[106]. Manipulation of bile acid metabolism has been applied to control systemic lipid 

concentrations for decades. Diversity of intestinal bile acids composition has revealed to interfere 

with the enterohepatic circulation of bile acids, lowering plasma LDL cholesterol while raising 

HDL cholesterol, and apoA1 [108]. 

Administration of C. cochlearium significantly increased fecal bile acid excretion (Figure 

21). Low level of tauro-conjugated bile acids indicates the bile acid deconjugation process is higher 

in the CC group. The total deconjugated bile acids are 10% higher in the CC group than the HF 

group. In the distal ilium, conjugated primary bile acids are deconjugated or dehydroxylated by 
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commensal gut bacteria with BSH activities, resulting in  increased secondary bile acids, 

deoxycholic acid (DCA), and lithocholic acid (LCA) [109]. Recent mice studies have suggested 

taurine conjugated bile acids, especially TCDCA associated with induction of FXR signaling, 

microbiome alteration, and bile acid deconjugation [106, 110-112]. Both deconjugated bile acids 

and secondary bile acids are higher in hydrophobicity than their conjugated counterparts leading 

to a higher fecal excretion of bile acids [113]. Significantly high free CA and DCA can contribute 

to increased hydrophobicity of CC bile acids leading to higher fecal excretion. This explains the 

low serum bile acids in the CC group, possibly caused by a reduction in intestinal bile acids uptake. 

The significant increase in secondary bile acid and unconjugated bile acids level demonstrated 

high microbial biotransformation of bile acid in the CC microbiome. Additionally, unconjugated 

bile acids are less efficient at FXR activation [114]. We then analyzed the gene expressions related 

to bile acid metabolism. 

3.4 Conclusion 

In conclusion, we saw that daily treatment of C. cochlearium for 13 weeks exerts anti-

obesity effects via reducing body fat mass. Obesity related other metabolic deteriorations, 

including hyperglycemia, impaired glucose tolerance, hypercholesteremia, and fatty liver 

condition, also improved, indicating the potency of C. cochlearium as a novel probiotic for treating 

obesity and associated metabolic complications. C. cochlearium treatment significantly alters bile 

acid composition, hence bile acid metabolism may play a role in C. cochlearium influence on host 

metabolism.  The beneficial effects of C. cochlearium did not appear to have occurred through 

calorie (food) intake or fecal calorie output; thus, it is important to observe the energy expenditure 

of these mice to understand the fundamentals of the weight reduction ability of C. cochlearium. 
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CHAPTER 4 - SPECIFIC AIM 3; TO DETERMINE THE UNDERLYING 

MECHANISMS OF THE EFFECTS OF CLOSTRIDIUM COCHLEARIUM ON HOST 

METABOLISM 

4.1 Introduction 

4.1.1 Energy balance  

Obesity is defined as a body mass index over thirty kg/m2 or excessive fat accumulation 

that causes health risks.  Obesity is often considered as being caused by excessive food intake and 

lack of physical activity. To be more precise, this concept should be viewed by using the 

terminology of energy balance. When the energy intake exceeds the energy expenditure, the 

positive energy balance results in energy storage increasing body mass, of which typically 60 to 

80 percent is body fat [115]. Body weight gain is the result of positive energy balance over a given 

period. Energy intake involves energy consumption and energy harvest through GIT, while energy 

expenditure counts through resting metabolic energy and the thermic effect of food (TEF), which 

is the energy cost of absorbing and metabolizing food consumed as well as the energy expended 

through physical activity. Any other factors such as genetic or environmental that impact body 

weight must occur through one or more these components of energy balance.  

 Indirect calorimetry measures the energy produced by a living organism by placing the 

subject in a calorimeter and recording its oxygen consumption, carbon dioxide production, and 

preferably nitrogen excretion. This produces a more reliable estimate of energy expenditure (EE) 

in mice, calculated by a formula made from the Weir equation [116]. 

EE = ((3941(VO2) + 1106 (VCO2)) *1.44 

VO2 = Volume of O2 consumption (ml/h/kg) 

VO2 = Volume of CO2 production (ml/h/kg) 
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4.1.2 Regulation of bile acid synthesis 

Bile acid synthesis involves dozens of enzymes through two major pathways, the classic 

pathway, which is the predominant pathway, and the alternative pathway. The major difference 

between these pathways is the chemical modification of steroid rings undergone in the production 

of bile acids from cholesterol. The rate limiting enzyme of the classic pathway is CYP-7-

1hydroxylase (CYP7A1). Bile acids are primarily ligands for both the nuclear farnesoid X 

receptor (FXR) and the membrane bound Takeda G protein-coupled receptor 5 (TGR5).  Bile acid 

activated TGR5 signaling associated with cAMP induced thyroxin (T4 to T3) and uncoupling 

protein-1 (UCP-1) activation thus increase energy expenditure in brown adipose tissues, as well as 

glucagon-like peptide (GLP-1) to improve glucose tolerance[117]. Murine studies have shown that 

bile acids induce TGR5 signaling in the order of TLCA > LCA > DCA > CDCA > CA  to increase 

energy expenditure in brown adipose tissue [108]. On the other hand, FXR, which is highly 

expressed in the liver and intestines, is activated by free and conjugated-bile acids, with CDCA 

being the most effective bile acid ligand of FXR, followed by LCA, DCA, and CA. Hydrophilic 

bile acids ursodeoxycholic acid (UDCA) and MCA and MCA are FXR antagonists.  

FXR is the key regulator of bile acid synthesis, biliary secretion, intestinal bile acids 

reabsorption, fecal excretion, and hepatic bile acid uptake from the portal vein, which consequently 

has an impact on cholesterol, lipids and glucose metabolism. Additionally, low FXR expression 

or absence of intestinal FXR shows increased level of serum and hepatic bile acids, cholesterol, 

triglycerides, and pro-atherogenic serum lipoproteins [118].Hepatic FXR activates small 

heterodimer partner (SHP) and liver receptor homolog-1 (LRH- 1) and subsequently represses the 

activation of CYP7A1, the rate limiting enzyme of bile acid synthesis. It was found that the 
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intestinal, but not hepatic, FXR signaling pathway involved in the bile acids derived metabolic 

changes [110, 119].  

4.1.3 FXR/FGDF15 Axis  

Intestinal FXR mediated bile acid regulation is reported to be significantly associated with 

the gut microbiome.  Intestinal bile acids trigger Intestinal FXR, which induces fibroblast growth 

factor 15 (FGF15) to activate FGF receptor 4 to inhibit CYP7A1 and ultimately to inhibit bile acid 

synthesis. FXR activation also induces bile acid transporter expression such as BSEP, OSTα/β and 

while inhibiting NTCP. The FXR-dependent FGF15/FGFR4 gut-liver signaling pathway 

maintains the bile acid synthesis and enterohepatic circulation, which consequently has an impact 

on cholesterol, lipid, and glucose metabolism. The reduction of intestinal FXR mediated bile acid 

uptake into portal blood circulation results in higher fecal excretion of bile acids. Low delivery of 

bile acids back to the liver lowers the intercellular bile acids, thus increasing liver bile acid 

synthesis [120, 121]. Studies conducted with various mouse models, such as gnotobiotic, anti-

biotic treated, FXR/ FGF15 ablated, have explored how gut microbiome influences the bile acid 

composition mediated FXR- FGF15 pathway to induce adipogenesis. A human study has shown 

that antibiotic treatment impacted FXR mediated alterations of gut microbiome, bile acid 

metabolism and insulin sensitivity [12]. It was found that intestinal FXR knock out mice decreased 

lactobacillus spp., and BSH activity in the intestinal content significantly and became resistant to 

high fat diet induced obesity [112]. FXR deletion is associated with protection against weight gain, 

glucose, and insulin intolerance despite higher plasma triglyceride levels. However, the precise 

role of FXR is still debatable, as conflicting findings report FXR signaling promotes [112] or 

protects [110, 122] against obesity. 
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Taurine conjugated bile acids such as TCA, TCDCA [119] were found to be better FXR 

agonist whereas T--MCA,UDCA [123] and Gly-MCA are strong FXR inhibitors. Though 

TCDCA is a weak activator of FXR, in the presence of TCA, it also can be a FXR inhibitor [112]. 

The resistance to adipogenesis and the beneficial lipid profile observed in germ free mice relates 

to higher TCA mediated FXR activation and CYP7A1 inhibition. Conventionally raised (CONV-

R) mice are dominated by T--MCA mediated FXR suppression, thus CYP7A1 activation. 

Additionally, FXR agonist TCA and TCDCA treatments activate intestinal FXR- FGF15 pathway 

[124]. 

4.1.4 Reverse Cholesterol Transport  

As an end product of cholesterol catabolism, a bile acid pool plays a major role in 

cholesterol homeostasis. The daily production of bile acids, which is approximately 500 mg, 

accounts for 50% of cholesterol turnover.   De-novo synthesis of cholesterol accounts for more 

than 50% of total cholesterol production by the liver, while others are derived from dietary sources. 

In addition to de-novo synthesis, the major source of cholesterol for cells is receptor mediated 

cholesterol uptake from lipoproteins. Excess CL that exceeds hepatic needs is usually packed into 

VLDL and then transported to peripheral tissues after conversion to LDL. Liver X receptors (LXRs 

– LXRα, LXRβ) are cholesterol sensing nuclear receptors activated by cholesterol derivatives. 

LXRα is expressed more in the liver, adipose tissue, and macrophages, while LXRβ is expressed 

ubiquitously. LXR promotes reverse cholesterol transport (RCT), the process of cholesterol 

delivery from peripheral tissues to liver for excretion. Elimination of excess cholesterol from the 

peripheral tissues and lipid laden macrophages occurs through the reverse cholesterol transport 

(RCT) pathway. RCT is an important preventive mechanism against atherosclerosis development 

[125]. LXR induces a cluster of lipo-proteins genes, including Apo A, and Apo E and number of 
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other genes involved in cellular CL efflux mechanism. Several studies have reported the different 

stages of reverse cholesterol transport, clarifying the formation of nascent HDL and their 

remodeling into mature HDL by receiving cholesterol esters through ABCA1 and SR-B1 [126]  

via LCAT before returning to the liver. SR-B1 and ABCA1 are key devices of cholesterol efflux 

from cholesterol laden arterial wall macrophages. After returning to the liver by HDL, cholesterol 

is further converted into bile acids. Mice lacking LXRα reported showing an accumulation of 

cholesterol in the liver when they were fed a high cholesterol diet. Moreover, LXR activation was 

identified to improve GLUT4 mediated insulin tolerance in both humans and mice [127, 128]. 

Overall, LXR is a key regulator of lipid and carbohydrate metabolism. In humans, mature HDL 

particles transfer CL to LDL-C catalyzed by the cholesteryl  ester  transfer  protein  (CETP) [125], 

which makes the human cholesterol metabolism differernt from rodents.  

4.1.5 Sterol regulatory element–binding proteins (SREBPs)  

SREBPs are key regulators of  lipid homeostasis, which can activate the expression of more 

than 30 gene-related pathways. The transcription factors SREBP1 and SREBP2 are the 

predominant isoforms within that family [129]. At normal physiological conditions, SREBP-1c 

favors fatty acid biosynthesis, which involves acetyl-CoA carboxylase (ACC) and fatty acid 

synthase FASN, while SREBP-2 favors cholesterol synthesis, including the rate limiting enzyme 

of indigenous cholesterol synthesis HMG-CoA reductase. Patients undergoing bile acid 

sequestrant therapy or ileum resection show derepression of CYP7A1 due to low bile acid 

absorption, thus depleting hepatic cholesterol and leading to increased SREBP2 activity [105]. 

Both the SREBP and CYP7A1 are found to be regulated by the liver X receptor (LXR) family of 

proteins [130, 131]. 



34 

 

  

4.1.6 Sphingolipid pathway 

 Furthermore, Intestinal FXR shows a correlation with serum and ileal ceramide levels. 

Endogenous FXR agonist also depicts the activation of ceramide and sphingolipids pathways 

[121]. Mice lacking certain species of ceramides have shown protection against diet induced 

obesity and insulin resistance. Conjugate bile acids also activate the sphingolipid pathway [132]. 

Activation of S1P2 by conjugated bile acids inhibit CYP7A1 and bile acid synthesis by activating 

SHP to inhibit  gene transcription [132].  

4.2 Materials and methods 

4.2.1 Metabolic Chamber-metabolic activity analysis 

 In the last week of the study, mice were housed individually in the TSE PhenoMaster 

metabolic cage system (TSE systems, Chesterfield, MO), and oxygen consumption (VO2), CO2 

production (VCO2) and total energy expenditure were recorded every 39 minutes (time points) for 

five days to generate the respiratory quotient, and total energy expenditure. Temperature in the 

metabolic chamber was kept constant at 24 °C, and animals had free access to food and water.  

4.2.2 Quantitative PCR 

Total RNA was extracted from liver tissues using the RNeasy Mini Kit (Invitrogen) 

following the manufacturer's protocol. Complementary DNA was synthesized using iScript 

reverse transcription supermix, and real-time quantitative PCR was performed using SsoAdvanced 

universal SYBR Green Supermix (Bio-Rad Laboratories, Hercules, CA). Targeted Gene-specific 

primers were used, and all the results were normalized with the housekeeping gene β-actin, and 

GAP-DH and relative gene expressions were determined using the Livac method.  



35 

 

  

4.2.3 Statistical analysis 

Results are presented as means ± SD. GraphPad Prism (Prism 9; Graph Pad Software Inc.) 

was used to perform statistical analysis. Student’s t-test, one way or two-way ANOVA was used 

based on the number of independent variables involved, while repeated measure ANOVA was 

used to analyze means across one or more variables that are based on repeated measurements. For 

multiple comparisons, Tukey's post hoc test or Kruskal-Wallis test was performed according to 

data distribution. The significant difference is considered as P < 0.05.  

4.3 Results and discussion 

4.3.1 Effects on metabolic activity 

 A diurnal comparison (3-4 full light/ dark cycles) was conducted to evaluate the energy 

expenditure of the mice. The metabolic activity of the mice in the CC group and the HF group 

were assessed every thirty-nine minutes for five days, and the data of the middle three-day were 

used to determine their metabolic activity. We observed significantly higher energy expenditure 

in the CC group versus the HF group both in the light and the dark cycles of the day as shown in 

Figure 25. The O2 consumption (Figure 23) and CO2 production (Figure 24) were also 

significantly higher in the treatment group. Interestingly, another Butyrate-producing bacterium, 

Eubacterium hallii, has recently been reported to increase energy expenditure in db/db mice[87].  

Butyrate supplementation was previously reported to improve insulin sensitivity and energy 

expenditure in DIO mice [133]. The observed improvement of insulin sensitivity, and bodyweight 

reduction, and the energy expenditure of DIO mice upon C. cochlearium treatment could be due 

to its ability of butyrate production [116]. In addition, the increased bile acid pool and individual 

bile acid species have shown a positive correlation with thermogenesis and protection against diet-

induced obesity previously via the TGR5 signaling pathway and UCP1 activated non-shivering 
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thermogenesis in brown adipose tissues[134, 135]. We found several genes related to 

thermogenesis (Figure 26-B & Figure 29-B) overexpressed in the C. cochlearium treated group, 

possibly implying the upregulation of cellular thermogenesis mechanisms. 

4.3.2 Effects on hepatic and intestinal gene expressions 

Hepatic bile acid receptor gene expressions (Figure 26) showed a trend of upregulation, 

but the differences were not significant. The rate-limiting enzyme of the bile acid synthesis in the 

liver, which is CYP7A1 (Figure 27-C), is significantly upregulated in the CC group. It is important 

to consider that the upregulation of hepatic bile acid synthesis is triggered by low intracellular bile 

acid concentration. Liver FXR/SHP axis activation requires high intracellular bile acid 

concentration to induce the feedback inhibition of the CYP7A1 reaction[136]. It was found that 

the effective engagement for CDCA to give a half-maximal response (EC50) to trigger FXR is 

around 17 μM, and more than 100 μM for TCA under normal physiological conditions [136]. 

However, the intestinal FXR-FGF15 axis is identified as a more physiologically relevant pathway 

to regulate the bile acid feedback mechanism via enterohepatic circulation. Importantly, this 

pathway is independent of the hepatic FXR. Significantly low intestinal FXR and reduced FGF15 

expression in the CC group indicate the absence of feedback inhibition of bile acid synthesis in the 

CC group. FGF15 is found in the ileum's absorptive cells ,which plays a major role in bile acid 

absorption[137]. Both the lowered intestinal FXR and FGF15 indicate bile acid absorption was 

reduced; thus, hepatic bile acid uptake through the enterohepatic circulation was low in the CC 

group. Previously, it has been reported that FXR-FGF15 axis is involved in modulate obesity 

[112]. Inhibition of intestinal FXR-FGF15 axis through probiotic treatment increased intraluminal 

retention of TCA, which was parallel to decreased absorption and low serum disposal [111]. 

Additionally, FXR-/-and FGF15-/- animals showed CYP7A1 de-repression and higher bile acid 
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excretion with feces [111, 138]. A similar observation was made by the FXR antagonism [120, 

123, 139]. Interestingly the phenotype was reversed with activation of the FXR transcriptional 

machinery by an FXR agonist [111]. This finding suggests that bile acid composition could play a 

critical role in FXR activation. In the CC group, we observed that CYP7A1 upregulation was 

driven by the inhibition of intestinal FXR mediated FGF15 signaling (Figure 27 - A, B) with no 

significant changes in SHP or other hepatic bile acids receptor expression (Figure 26 - B, C)   

levels. Different bile acids are endogenous FXR ligands with different affinities. Though both the 

conjugated and free bile acids can activate the intestinal FXR, there could be competitive inhibitory 

actions by the ligands with higher affinities. Thus, activation or repression of FXR has shown 

metabolic implications. 

Higher bile acid excretion is a counterpart to an increase in fecal cholesterol and other lipid 

species. Low bile acids returning to the liver directly affects cholesterol metabolism. Notably, a 

recent study reported FXR activation significantly affects intestinal cholesterol absorption, bile 

acid composition, and reverse cholesterol transport to prevent atherosclerosis development [140]. 

To observe the impact of cholesterol metabolism, we analyzed gene expressions related to reverse 

cholesterol transport.  

LXR, the critical regulator of RCT, induces a cluster of lipoproteins genes and several other 

genes involved in the cellular cholesterol efflux mechanism. C. cochlearium administration 

significantly upregulated the genes involved in RCT (Figure 28), including LXR, and target 

lipoproteins (Apo-A and Apo-E), and cholesterol transfer proteins ABCA1 and SR-B1. Hepatic 

LXR activation can be triggered by high cholesterol turnover to bile acids in the liver, stimulating 

other interconnected pathways to lipid and glucose metabolism. High cholesterol diet-fed mice, 

lacking LXRα, were reported to present reduced cellular cholesterol levels, demonstrating its 
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cholesterol clearance role. Overall, LXR is a crucial regulator of lipid and carbohydrate 

metabolism. Upregulation of reverse cholesterol clearance was an indication of improved serum 

lipid profile in the CC group, which could lead to lower lipid infiltration to hepatocytes. Lower 

serum cholesterol and lower hepatic steatosis in the CC group were compatible with the gene 

expression results involved in reverser cholesterol transport. Activation of LXR has been shown 

to increase β-oxidation and glucose oxidation in the white adipose tissues [141] as well as enhance 

energy expenditure in brown adipose tissues [142]. The lower fat mass and increased energy 

expenditure in the CC group might be triggered by LXR mediated metabolic modifications. 

Previous clinical studies supported the notion that regulation of SR-B1 and ABCA1 in humans is 

similar to that of rodents. Rodent models have shown that over expression of [125] SR-B1 

decreased atherosclerosis. We suggest that the genes we focused on in this study related to reverse 

cholesterol clearance can be comparable to humans.  

Sterol regulatory element–binding proteins (SREBPs) are key regulators of lipid 

homeostasis, activating more than 30 gene-related pathways. The transcription factors, SREBP1 

and SREBP2, are the predominant isoforms within that family [129]. At normal physiological 

conditions, SREBP-1 favors fatty acid biosynthesis while SREBP-2 favors cholesterol synthesis. 

We found that C. cochlearium administration significantly increased SREBP2 expression with no 

change in the SREBP1 (Figure 29-A, B). Conversion of cholesterol to bile acids reducing the 

intracellular sterol concentration can trigger SREBP2 activation. Patients undergoing bile acid 

sequestrant therapy or ileum resection have shown reduced intestinal bile acids absorption and de-

repression of CYP7A1, thus depleting hepatic cholesterol, leading to increased SREBP2 activity 

[105]. The lower serum bile acid in the CC group may be an indication of a reduction of 

enterohepatic bile acid uptake; thus, C. cochlearium treatment showed a similar outcome in DIO 
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mice by increasing both the SREBP-2 (Figure 29-B) and CYP7A1 (Figure 27). The rate-limiting 

enzyme of endogenous cholesterol biosynthesis, HMG-CoA reductase, was not upregulated in the 

CC group (Figure 29-C). Angiopoietin-like 4 (ANGPTL4) is a primary regulator of lipoprotein 

metabolism by inhibiting lipoprotein lipase (LPL) activity [143]. LPL is the rate-limiting enzyme 

of TG hydrolysis circulating lipoproteins in the blood such as VLDL and LDL. However, not the 

liver-derived but the adipose-derived ANGPTL4 has effects on triglyceride regulation, suggesting 

a tissue-specific functional role of ANGPTL4 [144]. Overexpression of ANGPTL4 was observed 

to decrease LPL depended plasma TG and cholesteryl ester clearance [145]. Conversely, hepatic 

ANGPTL4 deficiency and deletion has increased hepatic lipase action and significantly reduced 

circulating cholesterol and TG levels. Moreover, ANGPTL4 promotes hepatic FA and cholesteryl 

ester uptake and oxidation, suggesting that the inhibition of ANGPLT4 in the liver protects against 

diet-induced obesity, liver steatosis, atherosclerosis, and glucose intolerance [144-146]. The CC 

group showed considerably repressed ANGPTL4 gene expression (Figure 29-F). C. cochlearium 

treatment showed a compatible mechanism by decreasing ANGPLT4 expression, serum 

cholesterol, liver steatosis, but serum triglycerides clearance was not observed as expected. A 

study reported that germ-free mice are protected against diet-induced obesity through increased 

AMPK activity, which induces the downstream target of fatty acid oxidation and elevated 

ANGPTL4, which in turn induces PGC-1 [147]. We found markedly higher PPAR- and PGC-

1 expressions (Figure 29-D, E) in the CC group. Activation of PPAR- is associated with 

improved reverse cholesterol clearance and insulin sensitivity [148, 149]. Even though low 

adiposity in the CC group does not explain the function of PPAR- upregulation, activation of 

LXR and reverse cholesterol transport has been found to be associated with PPAR- activation 
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[150, 151]. PGC1- is coactivated with PPAR- as well as a broad range of nuclear receptors and 

transcription factors to regulate diverse metabolic pathways including cellular energy homeostasis 

[147], and  oxidative stress [148]. 

4.4 Conclusion 

Obesity is a leading risk factor for many adverse metabolic effects such as fatty liver, 

hypercholesteremia, and insulin resistance. Many studies have demonstrated that FXR activation 

is associated with anti-lipogenic anti-lipidemic effects [152-156]. However, the role of FXR is still 

controversial. Accumulating evidence suggests that FXR ablation or FXR antagonism lower the 

lipogenesis in rodent models [111, 139, 157, 158]. The intestinal FXR pathway is significantly 

involved in the activation of bile acid synthesis. We found that C. cochlearium administration did 

not affect hepatic FXR but instead downregulated intestinal FXR repressing the endocrine 

feedback regulatory action of intestinal FXR-FGF15 axis. Inhibition of intestinal FXR signaling 

has been demonstrated to reduce obesity and insulin resistance by modulating bile acid metabolism 

and ceramide synthesis [120, 121]. Additionally, FXR has been identified to counteract 

proatherogenic responses in cardiovascular diseases [159] by regulating the enterohepatic 

circulation of bile acids and cholesterol. The FXR-dependent FGF15/FGFR4 gut-liver signaling 

pathway maintains the bile acid synthesis and enterohepatic circulation, which consequently 

impacts cholesterol, lipid, and glucose metabolism. The reduction of intestinal FXR mediated bile 

acid uptake into portal blood circulation results in higher fecal excretion of bile acids. Low delivery 

of bile acids back to the liver lowers the intercellular bile acids, increasing liver bile acids synthesis 

[120, 121].  

Our data concludes that C. cochlearium administration increased bile acid deconjugation 

and fecal bile acid excretion; thus, reduced intestinal bile acid absorption consequently de-
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repressed FXR/FGF15 inhibition circuit of CYP7A1 increasing bile acid biosynthesis. Along with 

the modulation of bile acid metabolism, we observed parallel regulation of reverse cholesterol 

transport. As primary nuclear receptors of the RCT and BA synthesis pathway, LXR and FXR 

combine multiple pathways to regulate glucose and lipid metabolisms. LXR activation stimulates 

lipid efflux from peripheral cells back to the liver for excretion through the RCT pathway. FXR 

mediated CYP7A1 activation converts excess cholesterol to bile acids, thus promoting lipid 

excretion through feces. These two metabolic pathways are highly interdependent and integrated 

to give a complementary effect. We showed that C. cochlearium administration interactively de-

repressed bile acid absorption and activated RCT and bile acid biosynthesis to enhance lipid 

clearance. Thus, C. cochlearium could be a potential therapeutic probiotic for treating obesity and 

diabetes as well as hypercholesteremia. It was found that there is a strong regulatory relationship 

between the gut microbiome and bile acid biotransformation, such as deconjugation, 

dihydroxylation, or epimerization. Gut microbiome composition can alter the composition of 

individual bile acid species. Similarly, change in bile acid species can affect the gut microbiome 

composition.  

 However, further studies are needed to understand the impact of C. cochlearium on gut 

microbiome and the association of C. cochlearium mediated microbiome with bile acid 

composition and FXR/fgf15 singling pathway. 
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4.5 Tables and figures 

 

Table 1. Nutrient composition and caloric content of the diets used in the mouse study. 

  LF (D12450J) HF (D12492M)  

Ingredient gm kcal gm kcal  

Casein, 30 Mesh 200 800 200 800  

L-Cystine 3 12 3 12  

Corn Starch 506.2 2024.8 0 0  

Maltodextrin 10 125 500 125 500  

Sucrose 68.8 275.2 68.8 275  

Cellulose, BW200 50 0 50 0  

Soybean Oil 25 225 25 225  

Lard 20 180 245 2205  

Mineral Mix S10026 10 0 10 0  

DiCalcium Phosphate 13 0 13 0  

Calcium Carbonate 5.5 0 5.5 0  

Potassium Citrate, 1 

H2O 16.5 0 16.5 0 

 

Vitamin Mix V10001 10 40 10 40  

Choline Bitartrate 2 0 2 0  

      

Overall gm% kcal% gm% kcal%  

Protein 19.2 20 26 20  

Carbohydrate 67.3 70 26 20  

Fat 4.3 10 35 60  

Total  100  100  

kcal/gm 3.85   5.24    
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Figure 2. The optimum temperature of Clostridium cochlearium in-vitro growth. 

C. cochlearium growth under 35 ℃, 37 ℃, 40 ℃, 43 ℃, and 46 ℃ temperature conditions were 

tested. The OD values were obtained every 30 minutes in duplicates for 11 hours. A)  Growth 

curves of C. cochlearium B) Final colony forming units presented in experimented temperature 

samples. Results are expressed as the means ± SD. 
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Figure 3. Optimum prebiotic supplementation for Clostridium cochlearium in-vitro growth.     

C. cochlearium growth under different prebiotic supplementation was tested. Various media tubes 

were separately prepared containing 0.2% w/v prebiotic ingredients galactooligosaccharides 

(GOS), fructo-oligosaccharide (FOS), isomalto-oligosaccharide (IMO), glucose (GLU-positive 

control), and PYG media without glucose (PY-G negative control). These media tubes were 

inoculated with 109 CFU of C. cochlearium and incubated at 37℃. The absorbance values were 

recorded every 30 minutes in duplicates for 15 hours. A) growth curves of C. cochlearium. 

Statistical analysis was performed using repeated measure ANOVA. B)  area under the curve of 

the C. cochlearium growth curves. Statistical analysis was performed using One way ANOVA.  

Results are expressed as the means ± SD, *P< 0.05, ****P< 0.0001. 
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Figure 4. Optimum pH of Clostridium cochlearium in-vitro growth. 

C. cochlearium growth curves in media with different pH levels was tested. The media tubes were 

adjusted to pH of 2, 3, 4, 5, 6, 7, 8, and 9, then inoculated with 109 CFU of C. cochlearium and 

incubated at 37℃. The OD values were obtained every 30 minutes in duplicates for 15 hours. 

A) C. cochlearium growth curves in pH 2 - 9. B) C. cochlearium growth curves in pH 2 - 7. 
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Figure 5. Bile salt tolerance of Clostridium cochlearium. 

C. cochlearium growth under different bile salts concentrations was tested. The media tubes were 

prepared with 0.3%, 0.2%, 0.1% 0.05%, 0.01%, 0.0% w/v bile salts, inoculated with 109 CFU of 

C. cochlearium and incubated at 37℃. The OD values were obtained every 30 minutes in 

duplicates for 15 hours. The data are shown in means ± SD.  
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Figure 6. Effects of heat shock on Clostridium cochlearium growth.  

Clostridium cochlearium overnight cultures were treated with high temperature (75℃), Low 

temperature (55℃), and no heat treatment (25℃) for 20 minutes, then transferred anaerobically 

into regular PYG culture media, and incubated at 37 ℃. The OD values were obtained in duplicates 

for 60 hours.  Results are expressed as the means ± SD. Statistical analysis was performed using 

repeated measure ANOVA. *p< 0.05, **p<,0.01 and ***P< 0.001****P< 0.0001. 
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Figure 7. Effects of in-vitro digestion on Clostridium cochlearium growth.  

Heat treated (75℃ for 20 minutes HD (Heat + Digestion)) and non-heat-treated (D (Digestion 

only)) C. cochlearium samples were incubated in simulated gastrointestinal media (2 Hours in pH-

2 media and 2 Hours in enteric digestion fluid) for 4 hours at 37℃, then transferred anaerobically 

into regular culture media, and incubated at 37 ℃. No treatment was performed on the control 

(NT) sample. The absorbance was obtained in duplicates for 30 hours, and data is presented in 15-

hour intervals. Results are expressed as the means ± SD. Statistical analysis was performed using 

repeated measure ANOVA. *p< 0.05, **p<0.01. 
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Figure 8. Spore formation of Clostridium cochlearium under simulated in-vitro digestion 

Clostridium cochlearium cells were exposed to pH2 media treatment (B, E, ) followed by enteric 

digestion fluid (C, F, ) treatment. Images were taken under bright field (A, B, C), electron 

microscope (D, E, F). Cells of No treatment control (A, D). Percentage of C. cochlearium 

vegetative cells, endospore, free spore presented under no treatment (G) pH2 treatment (H) pH2 

treatment + enteric digestion fluid treatment (F). 
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Figure 9. Effect of C. cochlearium administration on percent weight gain in DIO mice.  

Male DIO mice (n=12 per group) were treated daily with vehicle or active C. cochlearium 

(CFU/mL=1010) for 13 weeks. Results are expressed as the means ± SD. Statistical analysis was 

performed using repeated measure ANOVA. Significant differences are indicated as  

* for P < 0.05, ** for P < 0.01, *** for P < 0.001 and **** for P < 0.0001.  
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Figure 10. Effect of C. cochlearium administration on cumulative calorie intake in DIO mice.  

Male DIO mice (n=12 per group) were treated daily with vehicle or active C. cochlearium 

(CFU/mL=1010) for 13 weeks. Results are expressed as the means ± SD. Statistical analysis was 

performed using repeated measure ANOVA.  
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Figure 11.  Effect of C. cochlearium on A) Fat mass B) Lean mass. 

 Male DIO mice (n=12 per group) were treated daily with vehicle or active C. cochlearium 

(CFU/mL=1010) for 13 weeks. Results are expressed as the means ± SD. Statistical analysis was 

performed using one-way ANOVA. and **** represents P< 0.0001. 
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Figure 12.  Effect of C. cochlearium on liver steatosis. 

 Male DIO mice (n=12 per group) were treated daily with vehicle or active C. cochlearium 

(CFU/mL=1010) for 13 weeks. A) Liver mass B) Histology of Liver tissues showing fatty 

infiltration in the hepatocytes. Hematoxylin-eosin (HE) staining with 5X magnification. Results 

are expressed as the means ± SD. Statistical analysis was performed using one-way ANOVA. and 

**** represents P< 0.0001. 
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Figure 13.  Effect of C. cochlearium on fecal calorie output. 

 Male DIO mice (n=12 per group) were treated daily with vehicle or active C. cochlearium 

(CFU/mL=1010) for 13 weeks. Results are expressed as the means ± SD. Statistical analysis was 

performed using one-way ANOVA. and * represents P< 0.05. 
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Figure 14. Effect of C. cochlearium on Fasting blood glucose  

Blood glucose concentrations of DIO mice (n=12 per group), treated with C. cochlearium (CC) or 

the vehicle (HF, LF) after 8 hours fasting. Results are expressed as means ± SD. Statistical analysis 

was performed using one-way ANOVA. * for P < 0.05, ** for P < 0.01, and **** for P < 0.0001.  
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Figure 15. Effect of C. cochlearium on Fasting serum insulin.  

Serum insulin concentration of DIO mice (n=12 per group), treated with C. cochlearium (CC) or 

the vehicle (HF, LF) after 8 hours fasting. Results are expressed as means ± SD. Statistical analysis 

was performed using one-way ANOVA. * for P < 0.05, ** for P < 0.001 and **** for P < 0.0001.  
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Figure 16. Effect of C. cochlearium on oral glucose tolerance test.  

Oral glucose tolerance test in DIO mice (n=12 per group) treated C. cochlearium (CC group) or 

the vehicle (HF, LF groups) after 8 hours fasting. Blood glucose concentrations are taken at t = 0, 

15, 30, 60 and 120-min after oral administration of (1 mg/kg BW) 10% w/v sterile glucose solution. 

B) The corresponding area under the curve (AUC) of oral glucose tolerance curve. Results were 

expressed as means ± SD.  

Statistical analysis was performed using one-way ANOVA. ** for P < 0.01, and **** for P < 

0.0001.  
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Figure 17. Effect of C. cochlearium on serum cholesterol 

 Serum cholesterol in LF, HF and CC groups after 8 hours fasting in DIO mice (n=12 per group) 

treated with C. cochlearium (CC group) or the vehicle (HF, LF groups). Results are expressed as 

the means ± SD. Statistical analysis was performed using one-way ANOVA. *** for P < 0.001 

and **** for P < 0.0001.  
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Figure 18. Effect of C. cochlearium on serum triglycerides 

Serum triglycerides in LF, HF and CC groups after 8 hours fasting in DIO mice (n=12 per group) 

treated with C. cochlearium (CC group) or the vehicle (HF, LF groups). Results are expressed as 

the means ± SD. Statistical analysis was performed using one-way ANOVA.  
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Figure 19. Effect of C. cochlearium on serum bile acids concentration (individual species)  

Figure depicts serum bile acids composition; Results are expressed as means ± SD. Statistical 

analysis was performed using the Student’s t-test. * for P < 0.05, ** for P < 0.01, *** for P < 0.001 

and **** for P < 0.0001.  
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Figure 20. Effect of C. cochlearium on serum bile acids concentration (summery)  

Figure depicts total conjugated, unconjugated, primary, and secondary bile acids in serum. Results 

are expressed as means ± SD. Statistical analysis was performed using the Student’s t-test. * for P 

< 0.05, ** for P < 0.01, *** for P < 0.001 and **** for P < 0.0001.  
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Figure 21. Effect of C. cochlearium on fecal bile acids concentration (individual species)  

Figure depicts fecal bile acids composition. Results are expressed as means ± SD. Statistical 

analysis was performed using the Student’s t-test. * for P < 0.05, ** for P < 0.01, *** for P < 0.001 

and **** for P < 0.0001. 
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Figure 22. Effect of C. cochlearium on fecal bile acids concentration (summery) 

 Figure depicts A) total primary and secondary bile acids in feces. (B) percentage of conjugated 

and unconjugated bile acids in feces of HF and CC groups. Results are expressed as means ± SD. 

Statistical analysis was performed using the Student’s t-test. * for P < 0.05, ** for P < 0.01, *** 

for P < 0.001 and **** for P < 0.0001. 
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Figure 23.  Effect of C. cochlearium on O2 consumption.  

energy expenditure DIO mice (n=12) were treated C. cochlearium (CC group) or the vehicle (HF 

group). Three-day data was averaged per time point per day; results are expressed as the means 

+SEM. Statistical analysis was performed using Student’s t test. *p<0.05, **p<0.01 and 

***p<.001. 
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Figure 24.  Effect of C. cochlearium on CO2 production 

DIO mice (n=12) were treated C. cochlearium (CC group) or the vehicle (HF group). Three-day 

data was averaged per time point per day; results are expressed as the means +SEM. Statistical 

analysis was performed using Student’s t test. *p<0.05, **p<0.01 and ***P< 0.001. 
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Figure 25.  Effect of C. cochlearium on total energy expenditure  

DIO mice (n=12) were treated C. cochlearium (CC group) or the vehicle (HF group). Three-day 

data was averaged per time point per day, and results are expressed as the means +SEM. Statistical 

analysis was performed using Student’s T test. *p,0.05, **p,0.01 and ***P, 0.001. 
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Figure. 26. Effect of C. cochlearium on hepatic bile acid receptor gene expressions. 

 Gene expression levels of bile acid receptors in liver tissues (A, B, C). Results are expressed as 

means ± SD. Statistical analysis was performed using the Student’s t-test. * for P < 0.05. 
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Figure. 27. Effect of C. cochlearium on intestinal bile acid receptor mediated feedback inhibition 

loop. 

Gene expressions involve in bile acid biosynthesis (A) and Feedback inhibition of bile acid 

synthesis in intestinal tissues (B, C). Results are expressed as means ± SD. Statistical analysis 

was performed using the Student’s t-test. * for P < 0.05. 
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Figure. 28. Effect of C. cochlearium on gene expression levels involved in reverse cholesterol 

transport.  

Figure depicts the gene expressions of lipoproteins (E, F), cholesterol transfer proteins (B, C) 

and catalyzers (A, D) involve in  reverse cholesterol transport . Results are expressed as means ± 

SD. Statistical analysis was performed using the Student’s t-test. * for P < 0.05, ** for P < 0.01, 

*** for P < 0.001 and **** for P < 0.0001. 
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Figure 29. Effect of C. cochlearium on hepatic gene expressions involved in lipid metabolism. 

Results are expressed as the mean ± SD. Statistical analysis was performed using the Student’s t-

test. * for P < 0.05. 
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CHARACTERIZATION OF CLOSTRIDIUM COCHLEARIUM AS A POTENTIAL 
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 Emerging evidence indicates that manipulation of gut microflora is a potential therapeutic 

approach for managing obesity. Probiotic effects on host weight reduction have repeatedly been 

revealed through previous studies. Clostridium cochlearium is a butyrate-producing, spore-

forming bacteria that have been reported to present in the mammalian gut. Our simulated Invitro 

digestion model revealed that C. cochlearium could survive in the unfavorable conditions of the 

human gastrointestinal tract, including low pH (pH2), high bile salts (1.5% w/v), and in the 

presence of enteric digestive enzymes. Daily Oral administration of C. cochlearium (109 CFU) for 

14 weeks showed 18% bodyweight reduction in DIO (C57BL/6) mice primarily via fat mass 

reduction. Obesity-related other metabolic deteriorations, including hyperglycemia, serum 

glucose, and insulin intolerance, hypercholesteremia, liver steatosis, were also improved. A 

significant decrease in host energy expenditure and alteration of hot bile acid composition were 

observed in the C. cochlearium treated group. In addition, C. cochlearium treatment significantly 

upregulated gene expressions related to reverse cholesterol clearance and bile acids synthesis. C. 

cochlearium administration increased bile acid deconjugation and fecal bile acid excretion, thus 
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reducing intestinal bile acid absorption consequently derepressed FXR/FGF15 inhibition circuit of 

CYP7A1. Along with the modulation of bile acid metabolism, we observed parallel regulation of 

reverse cholesterol transport.  These finding indicated that the anti-obesity activity of C. 

cochlearium occurred through altered bile acid composition, that increased energy expenditure and 

cholesterol turnover which ultimately improved host lipid and glucose metabolism. Thus, C. 

cochlearium could be a potential therapeutic probiotic for managing obesity, diabetes, and 

hypercholesteremia. Further studies are needed to understand the impact of C. cochlearium on the 

gut microbiome and the association of C. cochlearium mediated microbiome with bile acid 

composition and FXR/fgf15 singling pathway. 
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