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𝜎𝑓𝑢: tensile strength of fiber  

𝜎𝑛: average stress due to in-plane forces  

𝜎𝑡𝑓: fiber bridging stress  

𝜎𝑡𝑜𝑝: stress in topmost fiber of UHPC  

𝜎𝑏𝑜𝑡𝑡𝑜𝑚: stress in bottommost fiber of UHPC  

𝜎𝑐𝑟𝑎𝑐𝑘𝑖𝑛𝑔 (fcr): cracking stress of UHPC  

𝜏𝑏 : bond strength 

𝜒𝑇𝑆1 : decrease in curvature due to tension stiffening between cracking and yielding 

𝜒𝑇𝑆2 : decrease in curvature due to tension stiffening between yielding and ultimate 

Ψ : slab rotation outside column region 

Ψ′ : reduced rotation of slab 
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1. Chapter 1: Introduction 

Careful thinking about likely future realities is what civil engineers do every day when 

planning, designing, and implementing their projects (ASCE 2020). American Society of Civil 

Engineer’s Future World Vision Project examines a variety of plausible future outcomes in our 

built world, but at a scale much larger than civil engineers typically consider. This glimpse into an 

array of possible future world scenarios is intended to help civil engineers and the broader 

infrastructure industry, make decisions today that will lead to better outcomes tomorrow (ASCE 

2020). A total of four possible future world scenarios were developed and for each scenario, an in-

depth analysis was performed to understand the implications to the infrastructure industry over 

future timeframes (10, 25, and 50 years from today) (ASCE 2020). Scenario No. 2 is called 

Progressive Megacities and one of its characteristics is mass urbanization. There is an opportunity 

in this scenario for structural engineers to make a contribution by designing super slender  

structures that maximize the available rentable or usable space. This can be achieved by 

maximizing the number of floors that can be supported for a given structural footprint. This 

challenge cannot be met with traditional materials, the limitations of which are well known by the 

engineering community. ASCE’s Future World Vision Project alludes to the use of stronger 

materials among other things. While the development and utilization of stronger construction 

materials have been a focus of research for quite some time, there are some unique combinations 

of stronger and traditional materials that have yet to be explored. 

 The  purpose of this dissertation is to understand the mechanics of structural elements 

constructed with ultra-high-performance concrete (UHPC) and post-tensioned with unbonded 

prestressing strands so that this information can be used in the creation of super slender structures 

that meet the challenge stated above. Potential applications for such elements include super thin 
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and super slender floors in building structures, which help reduce the dead load at every level and 

result in significant reduction in overall building mass. This reduction in gravitational loads results 

in lower load demand on columns, walls, and foundations. This provides an opportunity to 

accommodate more floors for a given column or wall footprint. Additionally, the reduction in 

building mass results in lower seismic load demand on the lateral load resisting system making 

possible the utilization of low volume lateral load resisting systems. 

 The focus of this dissertation is understanding the mechanics of horizontal structural 

members such as beams, and flat plates constructed with UHPC and post-tensioned with unbonded 

tendons. This study deals primarily with two structural actions: flexure in beams and punching 

shear in flat plates. The understanding of one-way flexural behavior of PT UHPC elements can 

inform the design of two-way flat plates, since the design of these floor systems is typically 

simplified by considering equivalent frames in each orthogonal direction. The part of the study 

that focuses on flexure is divided into two chapters, namely Chapter 3 and Chapter 4, whereas 

Chapter 5 is concerned with the development of a methodology to predict the punching capacity 

of post-tensioned UHPC flat plates.  

Chapter 3 deals with the development of a methodology to determine the flexural strength 

of UHPC beams post-tensioned with unbonded tendons. A methodology for predicting strand 

stress at the ultimate limit state is proposed and a characterization of the flexural failure mode is 

conducted. The methodology for predicting strand stress at the ultimate limit state is based on a 

collapse mechanism approach and relies on the use of an empirically obtained formulation for the 

plastic hinge length.  

Chapter 4 is concerned with the development of an algorithm, which can be used to 

characterize the full moment curvature and load deformation response of UHPC beams post-
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tensioned with unbonded tendons. The methodology used to develop this algorithm is free of any 

empiricism other than the one used in the assumed material constitutive relationships.  

Chapter 5 is concerned with understanding the behavior of post-tensioned UHPC flat plates 

subject to concentrated loads. A failure criterion for predicting punching shear capacity of these 

plates is proposed. The failure criterion is a function of plate rotation, cross-sectional geometry, 

material properties including contribution of fibers, as well as post-tensioning force magnitude, 

and simultaneously supplies the punching load and rotation capacity of the plate thus providing 

insight about plate ductility. The punching capacity is determined by superimposing the failure 

criteria and a load-rotation relationship obtained from a moment curvature analysis of the plate in 

bending. The intersection of these two curves provides the punching and rotation capacity of the 

post-tensioned UHPC flat plate. Given that such plates are likely to provide significant ductility, a 

criterion for distinguishing between punching and flexural failures is developed for the numerical 

models as well as for the proposed prediction methodology. 

The dissertation is presented in a manuscript format in the sense that Chapters 3, 4, and 5 

are written as stand-alone chapters. The author believes that the presented work is pioneering effort 

since the behavior of PT UHPC elements appears to be unexamined in the scientific literature. 

Chapter 2 provides a literature review on topics that deal with the flexure and punching shear 

behavior of normal strength concrete (NSC) or fiber reinforced concrete (FRC) elements. Although 

the behavior of PT UHPC elements is believed to be different from that NSC or FRC elements a 

brief discussion of relevant topics is presented in Chapter 2 has well as in Chapters 3-5 in their 

introduction sections. Conclusions and recommendations are presented in Chapter 6.  
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2. Chapter 2: Literature Review 

As noted in the introduction chapter, the flexural and punching shear behavior of PT UHPC 

elements appears to be unexamined and provided the motivation to conduct this study. This chapter 

provides a brief summary of previous relevant studies as many of them provided the framework 

for developing prediction methodologies for the flexural and punching shear behavior of PT UHPC 

elements. 

2.1 Flexural capacity of beams post-tensioned with internal unbonded tendons 

The lack of bond between concrete and post-tensioned tendons creates an analytical 

problem in terms of developing a methodology for predicting the flexural strength of concrete 

beams post-tensioned with unbonded tendons because tendon stress at ultimate strength is system 

dependent rather than section dependent. The literature on strand stress increase of unbonded 

tendons in post-tensioned beams constructed with NSC contains many prediction methodologies 

with some based on phenomenological principles and others simply on statistics (AASHTO 2017, 

Roberts-Wollmann et al. 2005, MacGregor et al. 1989, BSI 2001, DIN 1980, SIA 1979, Tam and 

Pannel 1976, Harajli 2011, Naaman and Alkhairi 1991, He and Liu 2010, ACI 2014, Six et al. 

2019, Kim and Kang 2019, Peng and Xue 2019, Maguire et al. 2017, Maguire et al. 2016). A 

detailed discussion of these methodologies is provided in Peng and Xue (2019). The following is 

a summary of various approaches for calculating the strand stress at the ultimate limit state, fps, or 

the change in strand stress at the ultimate limit state, Δfps. 

The formulation presented in AASHTO LRFD Specifications (2020) for the calculation of 

strand stress at the ultimate limit state, provides a term that accounts for PT NSC beam continuity 

through the consideration of the number of potential plastic hinges.  Loaded and unloaded spans 
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are distinguished using the total plastic hinge number. Type of loading is not included in the 

formulation. The inclusion of neutral axis depth in the ultimate tendon stress equation accounts for 

the influence of nonprestressed reinforcement. The equation in AASHTO LRFD Specifications 

(2020) for predicting the change in strand stress was derived considering a collapse mechanism 

approach  based on the work conducted by Roberts-Wollman et al. (2005) and MacGregor (1989). 

The ratio of plastic hinge length to neutral axis depth is taken as a constant value of 10.5 for 

simplification, and is based on recommendations by Tam and Pannell (1976). Rotation at support 

hinges is taken equal to half of that at mid-span.  

The formulation presented in the British code (BSI 2001) for the calculation of strand stress 

is similar to that presented in AASHTO LRFD Specifications (2020), except that the ratio of plastic 

hinge length to neutral axis depth is taken equal to 10. The ratio of total tendon length to effective 

tendon depth, total tendon area, ultimate tendon stress, compressive strength of concrete, width of 

section, and effective tendon depth, are all parameters that are included in the calculation of strand 

stress increase at flexural failure.  

The approach presented in DIN (1980) and SIA (1979) for the calculation of strand stress 

at the ultimate limit state includes a calculation of rotation at plastic hinge location by utilizing 

deflection estimates for different span to depth ratios.  

Harajli (2011) introduced a loading parameter for calculating Δfps, where the loading 

parameter is a function of the number of positive and negative plastic hinges and a loading pattern 

coefficient. Neutral axis depth, effective depth of tendon, modulus of elasticity of tendon and 

ultimate compressive strain of concrete are the parameters included in the Δfps equation. Point 

load, two-point load, and distributed loading can be distinguished by a loading pattern coefficient.  
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Naaman and Alkhairi (1991) developed an approach for calculating fps that includes a bond 

reduction coefficient. Unbonded tendons, typically, have almost constant stress along the length 

of the member. Therefore, there is typically no stress concentration like the one exhibited by 

bonded tendons. The introduction of a reduction coefficient allows the treatment of unbonded 

tendons similar to that of bonded tendons and provides great analytical convenience. Depending 

on the configuration of the tendon (draped, straight, or harped) and loading type (point load, two-

point load, or distributed load), different bond reduction formulations were proposed for different 

stages of loading. For design at the ultimate limit state, a quadratic equation needs to be solved for 

the determination of the neutral axis depth and ultimate tendon stress. Member span to depth ratio 

is accounted for in a gradual manner unlike the stepwise approach used in ACI 318-19 (2019).  

He and Liu (2010) proposed an approach for calculating fps that accounts for second order 

effects, tendon configuration, and loading type. A deflection reduction coefficient was introduced 

as a function of loading type.  

ACI 318-19 (2019) offers two different ultimate tendon stress equations as a function of 

member span to depth ratio and accounts for the amount of prestressed reinforcement. The method 

presented in ACI 318-19 (2019) for the calculation of fps does not account for various loading 

configurations, continuity, or the presence of nonprestressed reinforcement, and is applicable for 

concretes with compressive strength up to 10 ksi.  

Six et al. (2019) conducted experiments on four three span continuous PT beams. The 

equation presented by Maguire et al. (2017) for the increase in tendon stress was found to be the 

most accurate. Nonprestressed reinforcement was reported to be an important parameter in terms 

of ductility and moment redistribution. Also, tendon stress increase was found to have marginal 

effect on the flexural strength of the beam.  
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Kim and Kang (2019) conducted seven experiments on two-span continuous beams where 

the variables of interest were effective tendon depth, prestressing magnitude and tendon strength. 

The use of strands with fpu = 350 ksi was investigated. The change in strand stress at the ultimate 

limit state was determined to be similar to that measured for strands with fpu = 270 ksi. 

Peng and Xue (2019) proposed  a simplified methodology for tendon stress increase where 

member level compatibility between tendon and beam was used. A large number of experimental 

results were compared with the proposed methodology with a mean value of measured over 

predicted change in strand stress equal to 1.13 and a standard deviation of 31%.  

Maguire et al. (2017) created an experimental database for simple and continuous beams 

to conduct a comparison of different methodologies for calculating the change in strand stress. A 

large scatter between predictions and experimental results was reported. Different plastic hinge 

length formulations for internally unbonded and externally unbonded tendons were proposed based 

on regression analysis.  

Maguire et al. (2016) conducted experiments on four post-tensioned two-span continuous 

slabs with unbonded tendons. A large scatter between various prediction methodologies and 

measured strains [stresses] was found. The method proposed by Naaman and Alkhairi (1991) was 

found to be the most accurate.  

All these methodologies are based on the assumption that concrete offers no strength in 

tension after cracking, which is not valid for UHPC for which the nonlinear domain in tension is 

an important part in the design of an UHPC structure. The behavior of precast pretensioned UHPC 

components reinforced with bonded strands was investigated by Chen and Graybeal (2012) for 

bridge I-girders. However, the interaction between UHPC and strands in this case is simpler 
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because strain compatibility between concrete and steel can be assumed, and a sectional analysis 

can be performed. 

2.2 Moment-curvature relationship of post-tensioned beams 

The determination of the complete flexural response of a PT member is related to the 

determination of unbonded strand stress at various stages of loading. Various approaches have 

been used to determine this stress and consequently the complete flexural response for normal 

strength concrete (NSC) members. Some (Balaguru 1981, Naaman and Alkhairi 1991, Harajli and 

Kanj 1992, Pannell 1969, Tam and Pannell 1976, Au and Du 2004, Harajli 2006, Harajli 1990, 

Lee et al. 1999, Harajli et al. 2002, van Weerdhuizen and Bartlett 2020, Au et al. 2005, Vega and 

Dotreppe 1988) include the determination of strand stress at discrete points and limited ranges 

such as ultimate limit state and service, respectively, whereas others (Alkhairi and Naaman 1993, 

Knight et al. 2014, Ariyawardena and Ghali 2002, Ozkul et al. 2008, Vu et al. 2010, Kim et al. 

2012) provide guidance for how to obtain the complete flexural response. 

 Balaguru (1981) proposed a methodology to predict strand stress at service and ultimate 

level loads for NSC beams post-tensioned with unbonded tendons. Change in strand strain at 

service was empirically expressed as a function of span-eccentricity and eccentricity-maximum 

deflection ratio.  To obtain the change in strand stress at the ultimate limit state, a maximum 

deflection at ultimate is assumed based on what would be acceptable for this stage, and the 

attainability of this deflection is checked using the rotation capacity of the beam.  

Naaman and Alkhairi (1991) proposed a simplified methodology to predict the stress in 

unbonded tendons in NSC beams under service and ultimate loading conditions by employing 

empirically obtained bond reduction coefficients, which facilitate the use of solutions based on 

strain compatibility while accounting for the lack of bond. This approach is attractive from a design 
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perspective, since it addresses critical loading stages for a member, such as behavior at service and 

at ultimate limit state. The concept of using a coefficient to account for the relative slip between 

concrete and tendons was also used by Harajli and Khanj (1992).  

Naaman and Alkhairi 1991, Pannell 1969, Tam and Pannell 1976, Au and Du 2004, Harajli 

2006, Harajli 1990, Lee et al. 1999, Harajli et al. 2002 developed empirical formulations for 

calculating an equivalent plastic hinge length, which is attractive not only for calculating strand 

strain at the ultimate limit state, 𝜀𝑝𝑠, but also nominal flexural capacity, 𝑀𝑛. 

Van Weerdhuizen and Bartlett (2020) discussed methods to calculate deflection at incipient 

failure, ∆𝑢, which was presented as a warning of failure metric. Deflection at incipient failure 

depends on the ductility of sections and plastic hinge length, where plastic hinge length is 

dependent on loading type and boundary conditions. Redundancies in structures were reported to 

reduce deflection at incipient failure. Deflections were normalized in terms of a warning factor as 

function of span length, nonprestressed reinforcement ratio and effective beam depth.  

Au et al. (2005) extended Pannell’s (1969) approach to investigate cracked PT NSC beam 

behavior under service loads. Au et al. (2005) compared stress predictions under service loads with 

available test data. Equivalent plastic hinge length to neutral axis depth ratio was reported to be a 

constant value. Using this constant value, a cubic function was proposed to predict tendon stress 

increase. Third point loading was determined to produce a tendon stress increase that was quite 

similar to that caused by distributed loading. The span to depth ratio had a very minor effect on 

increase in tendon stress at service level loads.  

Vega and Dotreppe (1988) investigated the moment-curvature response of NSC beams 

prestressed with unbonded tendons at service and ultimate level loads using linear elastic beam 

flexure theory and an assumption for the plastic hinge length, respectively.  
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These studies dealt primarily with understanding the behavior of NSC beams post-

tensioned with unbonded tendons under service and ultimate level loads. While these two stages 

of loading are of great importance to practicing engineers from the perspective of being able to 

calculate deflections at service and flexural capacities at the ultimate limit state, they provide 

limited insight about cross-section and member level ductility, the calculation of which is better 

informed by the availability of the full moment-curvature-deformation response. Additionally, as 

performance-based design transitions from being an exception to becoming a norm in structural 

design, approaches that provide the means to obtain the full response of the structural members 

under loading will be needed.  

Alkhairi and Naaman (1993) and Knight et al. (2014) used mechanics-based approaches to 

address analytically the complete range of behavior of NSC beams post-tensioned with unbonded 

tendons thus addressing this need for NSC members. Alkhairi and Naaman (1993) used force and 

moment equilibrium in various locations of a member. Member level deformation compatibility 

was assumed between the length of the concrete beam and the length of the tendon. Numerical 

integration was conducted to correlate the curvature diagram along the length of the member to 

tendon stress increase and computation of deflection. The proposed prediction methodology is 

applicable to internally bonded and unbonded tendons and externally unbonded tendons. The 

approach presented by Alkhairi and Naaman (1993) presented the basis for the formulation of the 

procedure to obtain the moment-curvature-deformation response of PT UHPC beams presented in 

Chapter 4. 

Ariyawardena and Ghali (2002) developed a computer model to predict the complete 

response of PT NSC members with internal or external tendons. In this method of analysis, the PT 

element is modeled as an assemblage of plane frame members connected at nodes. Tension 
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stiffening effects, material nonlinear behavior of concrete and reinforcement can be accounted in 

the proposed computer model. Slippage at deviation points of external tendons and change of 

eccentricity of external tendons were also considered in the proposed analysis procedure.  

Ozkul et al. (2008) proposed a methodology, which considers the beam and tendon as a 

trussed beam system that allows for the use of equilibrium and compatibility equations as well as 

the law of conservation of energy to predict behavior at various load levels. Compressive strength 

of concrete and nonprestressed reinforcement area were found to not influence the increase in 

tendon stress. The proposed method allows the analysis of  bonded and unbonded tendons. The 

number of cracks and plastic hinge length were found to be affected by the amount of 

nonprestressed reinforcement.   

Vu et al. (2010) proposed a model that allows the calculation of the structural response of 

PT NSC beams including deflections under service loading, before and after cracking, as well as 

at the ultimate limit state. The model uses a non-linear beam macro finite element, which is 

characterized mainly by its homogenous average moment of inertia (Vu et al. 2010). Monotonic 

and cycled load effects were considered in methodology. Tension stiffening effect was considered 

while calculating average inertia. Also, effect of corrosion on bond between mild steel and concrete 

can be accounted for using the proposed macro finite element model.  

Kim and Lee (2012) developed an algorithm for predicting the load deformation response 

of continuous PT NSC members including the ability to capture moment redistribution. Proposed 

methodology was compared with test results of continuous beams with internal and external 

tendons, different tendon configurations and section shapes.  Effect of loading type was captured 

through moment diagram and curvature values along  beam sections evaluated.  
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While the need to predict the complete flexural response of PT NSC members has been 

met, there is currently no efficient tool to predict the complete response of PT UHPC members 

whose behavior is significantly different from that of their NSC counterparts. For example, the 

studies mentioned above are based on the assumption that concrete is a material that resists 

primarily compression forces after cracking and flexural capacity is achieved when concrete 

ultimately crushes in compression. These assumptions do not reflect the behavior of UHPC as a 

material, which has unique compressive and tensile domains and do not represent the flexural 

failure mode of PT UHPC members as will be demonstrated in Chapter 3 and 4. As a result, the 

tensile domain of UHPC plays an important role in dictating the failure mode of such members. 

Nonlinear finite element analysis can be used to obtain the complete flexural response of PT UHPC 

beams, however, the creation and analysis of reliable models even for simple beams requires 

considerable time. 

2.3 Punching shear capacity of slabs 

The behavior of reinforced and post-tensioned concrete flat plates constructed with normal 

strength concrete (NSC) and fiber reinforced concrete (FRC) under concentrated loads has been 

investigated by Muttoni (2008), Clement et al. (2012; 2014), Maya et al. (2012); Neto et al. (2014); 

and Gouveia et al. (2017). Similarly, the behavior of unreinforced UHPC plates has been 

investigated by Harris (2004), Harris and Roberts-Wollmann (2005), and Joh et al. (2008). 

 Kinnunen and Nylander (1960) conducted experimental work on circular slabs without 

transverse reinforcement by varying the flexural reinforcement ratio. A truncated slab section was 

considered to establish force and moment equilibrium. The main failure mode was found to be 

tangential cracks at the slab to column connection. Similar work was conducted by Hallgreen 

(1996) and Broms (2006).  



13 

 

 

 

 

Muttoni (2008) developed a methodology to predict the punching shear capacity of NSC 

slabs based on critical shear crack theory and using a similar approach with that was used by 

Kinnunen and Nylander (1960), Hallgreen (1996) and Broms (2006). The proposed method is 

based on critical slab rotation and crack width at punching shear failure. The methodology is based 

on the concept that the larger the crack width the smaller the force transferred through the critical 

shear crack region. Crack width is related to slab rotation and effective slab depth. The load 

rotation relationship for the slab was derived using a quadrilinear moment curvature relationship 

for a typical plate strip. An empirical failure criterion which is a function of critical perimeter, 

effective depth of slab, compressive strength of concrete, slab rotation, reference aggregate size 

and maximum size of aggregate was proposed. The intersection of the curve representing the 

empirical failure criterion and the one representing the load rotation relationship provides the 

punching shear strength of the slab. Radial and tangential moments in a typical pie strip were 

equated to moments created by external loads. The shape of the slab was assumed to be conical 

outside of the column region and spherical inside of the column region. Slab rotation was 

calculated based on the conical slab shape assumption and was used to calculate curvature and 

corresponding moments at a given section. The proposed method was compared to experimental 

data resulting in an average value of measured over predicted punching shear strength of 1.02 and 

a coefficient of variation of 8%. 

Maya et al. (2012) extended the critical shear crack theory to fiber reinforced concrete 

where the contribution of fibers was accounted for by a separate term. The variable engagement 

model (VEM) proposed by Voo et al. (2010) was utilized to calculate the fiber term. To quantify 

the contribution of fibers the average fiber bridging stress along the crack region was assumed for 
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simplicity. Crack width was assumed to be correlated with slab rotation and effective depth. Fiber 

pullout was assumed to occur prior to fiber rupture while calculating the contribution of fibers to 

punching shear strength. Large number of test data were compared. The proposed method was 

compared to experimental data resulting in an average value of measured over predicted punching 

shear strength of 1.08 and a coefficient of variation of 9%. 

 Gouveia et al. (2017) conducted 5 experiments on steel fiber reinforced concrete slabs 

subject to concentrated loads. Parameters of interest included fiber percentage by volume and non-

prestressed reinforcement ratio. Experimentally obtained load-rotation relationships were 

compared with predicted ones and good agreement was observed. The average ratio of measured 

over predicted capacities was 1.12 and the COV was 3%.  

Clement et al. (2014) investigated the behavior of prestressed concrete slabs constructed 

with NSC under concentrated loads. A total of 15 specimens were tested for punching shear 

including different amounts of prestressing force and eccentricity, compressive strength and 

nonprestressed reinforcement. An expression for calculating a reduced rotation due to the effect of 

prestressing was developed.   Measured punching shear capacities were compared to predicted 

ones and featured an average ratio of measured over predicted capacity of 1.10 and a COV of 8%. 

The prediction methodologies presented in this section provided the framework for 

developing the prediction methodology presented in Chapter 5. The procedure presented in 

Chapter 4 for obtaining the moment curvature relationship of a PT UHPC beam or plate strip, 

together with results from FEA were used to develop a simplified method to obtain this 

relationship. The simplified method was then used in the proposed prediction methodology for 

punching shear. 
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Harris (2004) and Harris and Roberts-Wollmann (2005) conducted a series of punching 

shear tests on unreinforced UHPC plates. Different plate boundary conditions were investigated. 

Some plate specimens failed in flexure rather than punching shear. Measured flexural capacities 

were lower than predicted capacities based on the yield line method. One possible explanation for 

this discrepancy may be the lack of uniformity in fiber distribution in each orthogonal direction. It 

was concluded that the casting method has a strong influence on orientation of steel fibers, which 

also affects flexural strength in each orthogonal direction. Fibers tend to align in the direction of 

the flow of material and also formwork. A formulation for predicting punching shear capacity of 

unreinforced UHPC plates was proposed. 

Joh et al. (2008) conducted punching shear tests on unreinforced UHPC plates and 

compared measured capacities with predicted capacities using different prediction methods. It was 

concluded that the ratio of predicted over measured punching shear strength when the ACI 318-05 

formulation for NSC plates was used was 0.73 based on three tests. Average measured over 

predicted punching shear ratios when the formulations by Graddy et al. (2002) and Harris and 

Roberts-Wollmann (2005) were considered were 1.06 and 0.71, respectively. It was concluded that 

the formulation provided by Graddy et al. (2002) with an assumed failure angle of 38o resulted in 

good predictions for the considered boundary conditions.   

The studies summarized in this chapter addressed either the flexure or punching shear 

behavior of PT NSC or FRC elements. Additionally, studies that addressed the punching shear 

behavior of unreinforced UHPC plates were presented. The behavior of PT UHPC elements 

appeared unexamined during the course of this study and provided the motivation to conduct this 

work. 

 



16 

 

 

 

3. Chapter 3: A Flexural Design Methodology for UHPC Beams Post-tensioned with 

Unbonded Tendons 

3.1  INTRODUCTION 

Post-tensioned flexural members have the ability to maximize the available usable space by 

offering long spans and slender structures. This is achieved by combining the high compressive 

strength of concrete and the high tensile strength of post-tensioned tendons to create a system in 

which the layout of tendons is configured such that it can most efficiently counterbalance external 

effects. Research on unbonded post-tensioned beams has been mainly focused on understanding 

the behavior of normal strength concrete (NSC) beams post-tensioned with unbonded tendons at 

service and ultimate limit states. To the author’s knowledge, the behavior of post-tensioned beams 

constructed with ultra-high-performance concrete (UHPC) and unbonded tendons has not been 

investigated before and provided the motivation for this study. The combination of these two 

materials provides an opportunity for creating slender structures that further maximize the 

available usable space by capitalizing on the nonlinear domain of UHPC in tension.  

The lack of bond between concrete and post-tensioned tendons creates an analytical problem 

in terms of developing a methodology for predicting the flexural strength of concrete beams post-

tensioned with unbonded tendons because tendon stress at ultimate strength is system dependent 

rather than section dependent. The literature on strand stress increase of unbonded tendons in post-

tensioned beams constructed with NSC contains many prediction methodologies with some based 

on phenomenological principles and others simply on statistics (AASHTO 2017, Roberts-

Wollmann et al. 2005, MacGregor et al. 1989, BSI 2001, DIN 1980, SIA 1979, Tam and Pannel 

1976, Harajli 2011, Naaman and Alkhairi 1991, He and Liu 2010, ACI 2014, Six et al. 2019, Kim 

and Kang 2019, Peng and Xue 2019, Maguire et al. 2017, Maguire et al. 2016). A detailed 

discussion of these methodologies is provided in Peng and Xue (2019). All these methodologies 
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are based on the assumption that concrete offers no strength in tension after cracking, which is not 

valid for UHPC for which the nonlinear domain in tension is an important part in the design of an 

UHPC structure. The behavior of precast pretensioned UHPC components reinforced with bonded 

strands was investigated by Chen and Graybeal (2012) for bridge I-girders. However, the 

interaction between UHPC and strands in this case is simpler because strain compatibility between 

concrete and steel can be assumed, and a sectional analysis can be performed.  

The goal of the research presented in this paper is to provide a framework for predicting the 

flexural behavior of UHPC beams post-tensioned with unbonded tendons. A mechanics based 

phenomenological model is presented to predict flexural capacity, and a set of equations is 

proposed to predict the change in strand stress at the ultimate limit state, Δfps. The flexural design 

methodology is presented in terms of the failure mode observed when the considered specimens 

reach their ultimate load carrying capacity. The failure mode is characterized as either a fiber 

tension-controlled failure, or a concrete compression-controlled failure. Nonlinear numerical 

simulations based on validated submodels are used to investigate the behavior of 221 post-

tensioned UHPC beams from the onset of loading to failure. A sensitivity analysis is conducted to 

understand the influence of concrete compressive strength, area of tendons, effective depth of 

tendons, continuity, loading configuration, loading pattern, friction coefficient, area of mild steel, 

maximum usable UHPC tensile strain and cracking stress on the strand stress at ultimate strength. 

The considered beams feature rectangular as well as T cross-sections in simply supported as well 

as continuous configurations. 

The proposed flexural design methodology is general and provides numerous advantages: 1) it 

accounts for simply supported and continuous members featuring various loading configurations 

and loading patterns, 2) it accounts for rectangular and T-section behavior, 3) it captures the 
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influence of key parameters such as beam cross-sectional dimensions, effective depth of tendons 

and span over effective depth ratio,  area of tendons and mild steel, and different classes of UHPC 

exhibiting various compressive and tensile strengths and containing various percentages of fibers. 

3.2 INVESTIGATED POST-TENSIONED UHPC BEAMS WITH UNBONDED 

TENDONS 

 To develop a generalized flexural design methodology, including a set of equations for 

predicting the change in strand stress at the ultimate limit state in UHPC beams post-tensioned 

with unbonded strands, beams with a wide range of characteristics were considered (Table 3.1 and 

Fig. 3.1).  

    Table 3.1  Characteristics of investigated UHPC beams post-tensioned with unbonded strands  

 

The investigated beams feature rectangular and T cross-sections with the purpose of 

studying the behavior of beams with various failure modes in terms of the magnitude of top and 

bottom strains at failure. Simply supported as well as two-span continuous configurations were 

considered given that unbonded strand stress is system dependent rather than section dependent. 

The depth of beams varies from 305 mm to 610 mm and beam span varies from 4267 mm to 17069 

mm. Concrete compressive strength varies from 152 MPa to 207 MPa in 14 MPa increments to 

study the behavior of various classes of UHPC. The area of unbonded tendons varies from 198 

mm2 (2-13 mm diameter strands) to 1138 mm2 (6-18 mm diameter strands) to study the behavior 

of lightly and heavily post-tensioned beams. The area of mild steel varies from 63 mm2 to 568 

 
Cross-

section 

Depth  

(mm) 

Span 

(mm) 

'

cf
  

(MPa) 

Aps  

(mm2) 
Cont. 

𝑑𝑝  

(mm) 

As 

(mm2) 

εtu fcr 

(MPa) 
Loading 

pattern 

Range of 

variation 
R,T 

305-

610 

4267-

17069 

152-

207 

197-

1138 
S, C 

152 – 

559 

63-

568 

0.005-

0.015 

2.75-

9.65 
One point, 

two point, 

distributed 

R = rectangular, T = T-beam, S = simple span, C = Two-span continuous 
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mm2 to study its influence on the change in strand stress at the ultimate limit state, Δfps. The 

effective depth, dp, varies from 152 mm to 559 mm to study the behavior of beams with various 

tendon drape configurations and its influence on Δfps. All cases feature draped tendon 

configurations. For simply supported beams tendon eccentricities at the exterior support vary from 

0 mm to 51 mm and at mid-span from 51 mm  to 255 mm.  

 

Fig. 3.1  Characteristics of investigated UHPC beams post-tensioned with unbonded strands 

 

For two-span and three-span continuous specimens tendon eccentricity at the exterior 

support varies from 0 mm to 51 mm, at mid-span from 102 mm  to 122 mm, and at the interior 

support from 102 mm  to 122 mm (Fig. 3.1). The maximum usable tensile strain for UHPC varies 

from 0.005 to 0.015 to study the behavior of various classes of UHPC featuring various 
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percentages of fibers and their influence on Δfps. A similar exercise was conducted for the cracking 

stress of UHPC, which is typically expressed as a function of compressive strength.  

 

 

Fig. 3.2  Distribution of the number of specimens for several parameters 
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The cracking stress varies from 2.75 MPa to 9.65 MPa and is intended to represent a variety 

of classes of UHPC including cracking strengths that are lower and higher than those that would 

be expected for a given compressive strength. Three loading patterns were considered to study 

their influence on Δfps and they consist of: 1) one-point loading, 2) two-point loading, and 3) 

distributed loading. Effective prestress, fpe, varies from 1241 MPa to 1310 MPa. Table 3.1 

summarizes the range of parameters investigated and Fig. 3.1 illustrates the dimensions of the 

cross-sections considered. Additionally, Fig. 3.2 shows the distribution of the number of 

specimens for various parameters. Some of the beam cross-sections and dimensions were based 

on previous experimental work on normal strength concrete post-tensioned beams. Material 

properties for UHPC as well as key parameters were varied to create a large enough database (221 

specimens) to allow the derivation of a generalized flexural design methodology and the 

development of a set of equations for predicting strand stress at the ultimate limit state. It should 

be noted that the database includes a variety of beam cross-sections including beams with longer 

and deeper sections than those used in previous experimental work for normal strength concrete 

beams. All specimens were loaded monotonically to failure and the evolution of the applied load, 

most extreme concrete compressive and tensile stress, and unbonded tendon stress were monitored 

using high fidelity finite element analyses.  

3.3 FINITE ELEMENT ANALYSES 

3.3.1 Modeling Protocol 

A numerical study was undertaken with the purpose of characterizing the behavior of 

UHPC beams post-tensioned with unbonded tendons, developing a framework for flexural design, 

and informing future experimental work. The numerical simulations were conducted using the 
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commercially available finite element analyses software Abaqus Dassault. The numerical models 

consider material nonlinearities as well as the interaction between unbonded tendons and the 

surrounding concrete. Because experimental data on UHPC beams post-tensioned with unbonded 

tendons does not exist, the adopted modeling protocol was validated by considering two 

submodels. The first deals with the ability of the modeling protocol to capture the nonlinear 

behavior of reinforced and prestressed UHPC elements with bonded bars or strands and the second 

deals with its ability to properly capture the behavior of normal strength concrete beams post-

tensioned with unbonded tendons. The second is of utmost importance because the adopted 

modeling protocol needs to capture with good accuracy the change in strand stress, Δfps, after the 

beams are post-tensioned and loaded to failure so that a reliable approach can be developed to 

predict strand stress at ultimate, fps, and consequently the nominal moment capacity, Mn, of UHPC 

beams post-tensioned with unbonded tendons. As such, a total of 27 numerical models of tested 

post-tensioned beams constructed with normal strength concrete were created with the purpose of 

demonstrating that the adopted modeling protocol can capture with good accuracy the change in 

strand stress after the beams are post-tensioned and loaded to failure. The validation of both 

submodels is discussed later in this paper in detail in the validation section. 

An explicit dynamic analyses approach was used to conduct all numerical simulations to 

facilitate convergence due to the nonlinear material response, complex contact definitions, and 

relative component deformations during the analyses. Simulations were conducted using either a 

displacement control or load controlled approach and in all cases the displacement or load was 

applied in a long enough period of time to simulate quasi-static loading and avoid dynamic effects. 

Specimens that were subject to a single concentrated load at mid-span, or two point loads 

symmetrical about mid-span were loaded in a displacement-controlled mode whereas those that 
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featured uniformly distributed loading were loaded in a load-controlled mode. A displacement-

controlled approach is preferred in cases that feature concentrated loads because it helps with 

numerical convergence compared to a load-controlled approach in which the beam may experience 

sudden displacements especially when it is close to failure. When the beams are subject to a 

uniformly distributed load, a displacement-controlled approach is not appropriate because the load 

is uniformly distributed and there is no location along the span of the beam at which a displacement 

history could be provided without interfering with the natural deformation of the beam as a result 

of the uniformly distributed load. To account for some of the numerical challenges mentioned 

above, the number of time steps at which data was collected when a load-controlled approach was 

used was increased so that the peak load as well as the descending branch of the load displacement 

curve were properly captured. The relationship between the internal energy and kinetic energy 

during each time step was monitored to ensure a quasi-static behavior. 

3.3.1.1 Simulation of Unbonded Post-tensioning   

The simulation of unbonded post-tensioning was based on the robust contact penalty 

approach developed by Huang et al. (2010).Fig. 3.3 shows the three main components used in the 

simulation, which are the concrete beam, the sheathing around the tendons, and the unbonded 

tendons. The concrete beam and the sheathing around the tendon were modeled using first order 

8-node 3D continuum elements with reduced integration and hourglass control (C3D8R) (Fig. 3.3b 

and Fig. 3.3c). The tendons, mild longitudinal steel and stirrups were modeled using first order 2-

node 3D truss elements (T3D2). A perfect bond between stirrups, longitudinal mild steel, sheathing 

and the surrounding concrete is assumed, and this is enforced through the use of an embedded 

region constraint in which the host is the concrete beam. The layout of the sheathing followed the 

layout of the tendons. The interaction between the tendons and the surrounding sheathing was 
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specified using a hard contact definition in the normal direction to prevent penetration of tendon 

into the sheathing/concrete and a friction contact definition in the tangential direction. A surface-

to-surface contact was introduced between the tendon and the inside surface of the sheathing.  A 

friction coefficient of 0.05 was used between the tendon and sheathing. This number is the lower 

bound of what the PTI Manual (2006) suggests as coefficient of friction. This was done to simulate 

maximum slip and consequently to obtain minimum (conservative) estimates of tendon stress 

increase at the ultimate limit state. 

There is no interaction defined between the tendon and the concrete beam. As a result, the 

sheathing acts as a spatial constraint for the tendon and also as a medium for relating the behavior 

of the tendon to that of the concrete beam. A low modulus of elasticity (E = 200 MPa) was specified 

for the sheathing material to reduce its contribution to the overall stiffness of the post-tensioned 

beams.  

  
      a)                                               b)                                         c) 

Fig. 3.3 a) Modelling approach for simulating the behavior of unbonded post-tensioning tendons, 

b) finite element mesh for concrete, c) finite element mesh for sheathing, tendon, and mild steel 

 

3.3.1.2 Anchorage Zone Modeling 

A multipoint constraint (MPC) between the end of the tendon and a concrete area equal to 

the footprint of the anchorage device was used to simulate the behavior at the anchorage zones. 

The footprint of the anchorage device for each tendon was assumed to be centered on the tendon. 

The control point was set as the node at the end of the tendon element and the slaves nodes were 
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selected as the nodes of the solid elements in the concrete beam in the region equal to that of the 

anchorage. A MPC allows the imposition of constraints between different degrees of freedom of 

the model and consists of several types. In this case a beam type MPC was adopted because this 

type of constraint provides a rigid beam between the control and slave nodes, which constraint the 

displacement and rotation of the slave node to that of the control node, thus enforcing deformation 

compatibility between the end of the tendon and the anchorage zone.  

3.3.1.3 Simulation of Prestressing Force 

The prestressing force was simulated by iteratively cooling the tendon using a temperature 

type predefined field to achieve a target prestress of fjacking = 0.7fpu, which is the recommended 

value for the jacking stress in post-tensioned beams based on ACI 318 (2014) section 20.3.2.5. 

Also, Eq. 3.1 was used to determine the required temperature change, ΔT, to achieve the level of 

target prestress specified above. The modulus of elasticity for the tendon,  Eps, was taken equal to 

196,500 MPa and the coefficient of thermal expansion, c, was taken equal to unity. Therefore, the 

required  ΔT to create a jacking stress equal to 0.7fpu was determined by dividing the jacking stress 

with the modulus of elasticity for the prestressing strands.  Post-tensioning was created as a 

separate analysis step applied over an appropriate amount of time to minimize dynamic effects and 

simulate quasi-static loading. Beam self-weight was applied in the same analysis step. As 

described in the section that discusses the simulation of the unbonded post-tensioning, the 

numerical modeling protocol considers losses incurred due to elastic shortening and friction, 

therefore the effective prestress is automatically computed. 

𝑓𝑗𝑎𝑐𝑘𝑖𝑛𝑔 = 𝐸𝑝𝑠 𝑐 𝛥𝑇 Eq. 3.1 
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3.3.1.4 Concrete material model 

UHPC material nonlinearity was captured using Concrete Damage Plasticity (CDP) theory 

using the parameters shown in Table 3.2. The CDP model used in Abaqus is based on the models 

proposed by Lubliner et al. (1989) and Lee and Fenves (1998) and consists of the following main 

ingredients: strain rate decomposition, stress-strain relations, hardening variables, yield function, 

and flow rule. An additive strain rate decomposition is assumed and stress-strain relations are 

governed by scalar damaged elasticity. Damaged states in tension and compression are 

characterized independently by two hardening variables, which are referred to as equivalent plastic 

strains in tension and compression, respectively (Abaqus Dassault). Microcracking and crushing 

in the concrete are represented by increasing values of the hardening variables. These variables 

control the evolution of the yield surface and the degradation of the elastic stiffness (Abaqus 

Dassault). The damage parameters defined in the CDP model are intended to capture the elastic 

stiffness degradation during unloading and subsequent loading such as in cyclic loading conditions 

(Abaqus Dassault, Huang et al. 2010, PTI 2006, ACI 2019, Lubliner et al. 1989, Lee and Fenves 

1998, Esmaeeli 2015). Because all specimens investigated as part of this research are loaded 

monotonically to failure the damage variables were set equal to zero when calculating plastic 

strains since the specimens were neither unloaded nor were they subject to cyclic loading.  

The yield condition is based on the yield function proposed by Lubliner et al. (1989) and 

incorporates the modifications proposed by Lee and Fenves (1998) to account for different 

evolutions of strength under direct tension and compression. The CDP model assumes 

nonassociated potential flow and the flow potential is the Drucker-Prager hyperbolic function 

(Abaqus Dassault). In Table 3.2 the dilation angle represents concrete’s internal friction angle. The 

value of eccentricity is related to the ratio between the tensile strength and compressive strength 
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of concrete. The ratio of initial equibiaxial compressive yield stress to the initial uniaxial 

compressive yield stress is fbo/fco. K is the ratio of the second stress invariant on the tensile meridian 

to that on the compressive meridian at initial yield for any given value of the pressure invariant 

such that the maximum principal stress is negative. Baghi et al. (2017) gives a detailed explanation 

for the adoption of each plasticity parameter for simulations that involve UHPC. CDP theory 

assumes isotropic damage elasticity combined with isotropic compressive and tensile plasticity to 

represent the inelastic behavior of concrete. Formation of tensile microcracks is represented 

macroscopically with a softening stress-strain relationship and fracture is assumed to be distributed 

over a certain volume. Additional information on CDP model can be found in references (Abaqus 

Dassault, Lubliner et al. 1989, Lee and Fenves 1998). 

Table 3.2. Adopted Concrete Damage Plasticity parameters for NSC and UHPC 

Parameter NSC UHPC 

Dilation angle 31° 45° 

K 0.67 0.67 

Viscosity parameter 0 0 

Eccentricity 0.1 0.1 

fbo/fco 1.16 1.77 

 

The adopted stress-strain curves for UHPC in compression and tension are shown in Fig. 

3.4a. The stress-strain curve in compression that was used in the majority of simulations and which 

is labeled as the default curve was based on Graybeal’s (2007) recommendations. While it is 

generally accepted that the stress-strain behavior of UHPC is primarily linear with some softening 

taking place as the compressive strength is reached, there is currently no consensus regarding the 

numerical relationship between stress and strain especially after the attainment of the compressive 

strength. This lack of consensus can be partially attributed to the inherent variability that exists 

between different classes of UHPC and partially to the difficulties inherent in the process of 

experimentally capturing these behaviors (Graybeal 2007). For example, one key parameter is the 
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specification of the maximum usable compressive strain, which for normal strength concrete has 

served as the anchor point in the strain diagram at the ultimate limit state. The variability in the 

amount of fibers and the variety of classes of UHPC have led to different recommendations 

provided in various codes many of which require material testing in compression and tension to 

characterize the behavior of the material used. To account for this variability, the numerical 

relationship recommended by Graybeal (2007) for the ascending branch was complemented by 

three different descending branches to understand their influence on the behavior of UHPC beams 

post-tensioned with unbonded tendons. In Graybeal’s (2007) recommendations the relationship 

between compressive stress, fc, and compressive strain, εc, is expressed by Eq. 3.2, and is a function 

of the modulus of elasticity, E, and a coefficient α, which can be calculated using Eq. 3.3. In Eq. 

3.3, α is a function of two constants a and b, the modulus of elasticity, E, the compressive strain, 

εc, and specified compressive strength, f’c. Eq. 3.4 is used to express the modulus of elasticity, E, 

as a function of the specified compressive strength, f’c. The stress-strain curve for UHPC in 

compression was generally developed up until the point when the compressive stress, fc, reached 

the specified compressive strength, f’c. Therefore, for the majority of the cases, the ultimate 

compressive strain, εcu, was assumed to be equal to the compressive strain, εc, that corresponds 

with the specified compressive strength, f’c. The region in the stress-strain curve beyond the point 

of specified compressive strength is characterized by a steep descending branch up until a 

negligible compressive stress to capture the peak load and to avoid convergence problems during 

the nonlinear analyses. Such an idealization of the descending branch for the stress-strain curve 

was conducted since obtaining accurate and consistent experimental stress-strain data for the full 

range of compressive behavior is a difficult task, especially after the strain that corresponds with 

the compressive strength is reached. This is due to the fact that the collection of strain data for the 
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range of compressive behavior that corresponds with the attainment of compressive strength and 

beyond is very much dependent on the experimental loading and strain measurements techniques 

employed (Graybeal 2007). However, the influence of various shapes of descending branches for 

the stress-strain curve was investigated to determine the impact that it may have on the flexural 

behavior of UHPC beams post-tensioned with unbonded tendons. The shape of all considered 

stress-strain curves in compression is illustrated in Fig. 3.4a. 

The tensile stress-strain relationship for UHPC was assumed to be bilinear with the 

cracking stress, fcr, determined by Eq. 3.5 (Russel and Graybeal 2013) and the ultimate tensile 

strain was limited to 0.01 for the majority of simulations. The maximum usable tensile strain of 

0.01 for UHPC was based on the study conducted by Haber et al. (2018) who characterized the 

behavior of various classes of UHPC. This maximum usable tensile strain was varied by +/- 50%  

as part of a sensitivity analysis to study the influence that this parameter can have on strand stress 

at ultimate strength by considering other UHPC classes that may have enhanced or reduced tensile 

ductility compared to those studied by Haber et al. (2018). Similar to compressive stress-strain 

behavior the region in the stress-strain curve beyond the points of assumed ultimate tensile strain 

is characterized by a steep descending branch up until a negligible tensile stress to capture the peak 

load and to avoid convergence problems during the nonlinear analyses. While the bilinear stress-

strain relationship for UHPC in tension was used in the majority of simulations, the influence of 

various shapes of tensile stress-strain behavior was investigated as part of a sensitivity analysis to 

determine its impact on the flexural behavior of UHPC beams post-tensioned with unbonded 

tendons. The shape of all considered stress-strain curves in tension is illustrated in Fig. 3.4a.  The 

influence of key parameters in the stress-strain curve  for UHPC on the strand stress at the ultimate 
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limit state as well as on the flexural strength of the beams is presented later in this paper under the 

sensitivity analysis section. 

 𝑓𝑐
′ = 𝜀𝑐𝐸𝑐(1 − 𝛼) Eq. 3.2 

 

 
𝛼 = 𝑎𝑒

𝜀𝑐𝐸𝑐
𝑏𝑓𝑐

′
− 𝑎   , 𝑎 = 0.011, 𝑏 = 0.44 Eq. 3.3 

 𝐸𝑐 = 3840√𝑓𝑐′    𝑤ℎ𝑒𝑟𝑒 𝑓𝑐
′ 𝑖𝑛 𝑀𝑃𝑎 Eq. 3.4 

 𝑓𝑐𝑟 = 0.56√𝑓𝑐′    𝑤ℎ𝑒𝑟𝑒 𝑓𝑐
′ 𝑖𝑛 𝑀𝑃𝑎 Eq. 3.5 

 
a) 

 
b) 

 
c)                                                            d) 

Fig. 3.4 Assumed uniaxial stress-strain relationship for: a) UHPC, b) normal strength concrete, c) 

prestressing steel, d) mild steel  
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Fig. 3.4b shows the stress-strain curves for normal strength concrete (NSC) in compression 

and tension, which were used to validate the ability of the adopted modeling protocol to capture 

the behavior of NSC post-tensioned beams for which experimental data exists. The relationship 

between NSC stress and strain were based on Hognestad (1951) and Vecchio and Collins (1986) 

equations for the compressive and tensile domains, respectively. 

3.3.1.5 Prestressing Steel and Mild Steel Material Model 

The uniaxial stress-strain relationship for the post-tensioning tendons was defined based on 

Eq. 3.6 (Devalapura and Tadros 1992) and that of mild steel was assumed to be elastic perfectly 

plastic (Fig. 3.4c and 3.4d). These stress-strain relationships were entered into Abaqus and material 

nonlinearity was simulated with classical metal plasticity theory, including the assumption of a 

Von Mises yield surface. Young’s modulus, E, was set at 200,000 MPa for mild steel, and 196,500 

MPa for prestressing steel. Poisson’s ratio, ν, was set to 0.3. Mild steel was modeled as an 

embedded element in the concrete beam to simulate bonded behavior.  

 

𝑓𝑝𝑠 = 𝜀𝑝𝑠 ∗ 6.895 ∗ [𝐴 +
𝐵

{1 + (𝐶𝜀𝑝𝑠)
𝐷
}
1
𝐷⁄
 ] ≤ 𝑓𝑝𝑢 

where A = 887, B = 27613 , C= 112.4 , D = 7.36 for 1861.65 MPa tendon  
𝑓𝑝𝑦

𝑓𝑝𝑢
⁄ = 0.9   

Eq. 3.6 

3.3.2 Validation 

Because experimental data on UHPC beams post-tensioned with unbonded tendons do not 

exist, the adopted modeling protocol was validated by considering two submodels. The first deals 

with the ability of the modeling protocol to capture the nonlinear behavior of reinforced and 

prestressed UHPC elements with bonded bars or strands and the second deals its ability to properly 
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capture the behavior of normal strength concrete beams post-tensioned with unbonded tendons. 

The second is of particular importance because one of the objectives of this research is to develop 

a set of equations for predicting the change in strand stress at the ultimate limit state, Δfps, in UHPC 

beams post-tensioned with unbonded tendons. As such, the adopted modeling protocol needs to 

capture with good accuracy the change in strand stress after the beams are post-tensioned and 

loaded to failure.  

 
a)                                                                  b) 

   
c)                                                                  d) 

 
e)                                                                            f) 
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g)                                                                            h) 

 
i) 

Fig. 3.5 Validation of adopted modeling protocol: a) ability of CDP model to capture the behavior 

of UHPC members prestressed with bonded strands, b), c), d), e), f), g), h) and i) ability of adopted 

modeling protocol to capture the behavior of normal strength concrete beam 

Although UHPC exhibits significantly different mechanical properties from normal 

strength concrete, especially in the tensile domain, the ability of existing constitutive models with 

adjustable material parameters such as CDP theory to capture the behavior of reinforced and 

prestressed UHPC elements with bonded bars or strands has been proven by many researchers 

(Chen and Graybeal 2012, Baghi et al. 2017, Chen and Graybeal 2012, Solhmirzaei and Kodur 

2017, Mahmud et al. 2013, Meng and Khayat 2016). For brevity, only some of the results of the 

study conducted by Chen and Graybeal (2012) are shown in Fig. 3.5a to illustrate the ability of the 

CDP model to successfully capture the behavior of UHPC beams prestressed with bonded strands. 

Since there are small differences between the CDP model parameters used by Chen and Graybeal 
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(2012) and those adopted in this study, the beams tested by Chen and Graybeal (2012) were 

monotonically loaded to failure using the modeling protocol used in this study. The results in Fig. 

3.5a suggest that the adopted modeling protocol is able to capture with good accuracy the behavior 

of UHPC beams prestressed with bonded tendons.  

A total of 27 numerical models of tested post-tensioned beams constructed with normal 

strength concrete were created with the purpose of simulating the change in strand stress as these 

beams were loaded to failure. Experimental data on the tested beams were obtained from studies 

conducted by Mattock et al. (1971), Harajli and Kanj (1992), and Zheng and Zhou (2014). For 

brevity, Fig. 3.5b, 3.5c, 3.5d, 3.5e, 3.5f, 3.5g, 3.5h and 3.5i are provided to illustrate the ability of 

the adopted modeling protocol to capture the variation in tendon force and tendons stress for 18 of 

these beams. The similarity between experimental and numerical curves suggests that the adopted 

modeling protocol can predict with good accuracy not only the global behavior of UHPC beams 

post-tensioned with unbonded tendons but also the variation in tendon stress as these beams are 

loaded to failure. 

Using deductive reasoning in the absence of experimental data on UHPC beams post-

tensioned with unbonded tendons, it is concluded that since the modeling protocol is able to capture 

with good accuracy the behavior of UHPC beams prestressed with bonded tendons as well as the 

behavior of NSC beams with unbonded tendons, it should be able to capture with good accuracy 

the behavior of UHPC beam post-tensioned with unbonded tendons. 

3.4 RESULTS AND DISCUSSION 

3.4.1 Failure Mode 

The behavior of simply supported and two-span continuous rectangular beams when the  
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peak load was achieved was typically characterized by the attainment of the ultimate usable tensile 

strain, εtu, in the most extreme tensile fiber, while the maximum compressive strain in the most 

extreme compression fiber was below the ultimate usable compressive strain. This suggests that, 

in general, the failure mode of rectangular UHPC beams post-tensioned with unbonded tendons is 

a fiber tension-controlled failure, which is defined as a failure in which the fibers rupture before 

concrete crushes. This is illustrated in Fig. 3.6a which shows that the peak load is achieved at the 

point when the entire nonlinear domain of UHPC in tension is exhausted while the maximum 

compressive stress is well below the specified compressive strength. This is an indication that the 

potential of UHPC in terms of its compressive strength is not fully mobilized. For example, Fig. 

3.6a3 shows that the stress in the most extreme tension fiber is initially compressive due to 

prestressing and gradually switches to a tensile stress as the beam is loaded to failure. The stress 

in this fiber then reaches the cracking stress, remains constant, and finally drops to a negligible 

value for the case in which elastic perfectly plastic tensile region of UHPC assumed. This means 

that the stress in the most extreme fiber in tension precisely follows the specified stress-strain curve 

for UHPC in tension (Fig. 3.4a). The peak load is achieved when the entire tensile domain is 

exhausted (i.e. strain in most extreme tension fiber is equal to maximum usable tensile strain). 

Similarly, Fig. 3.5a2 illustrates that the stress in the most extreme compression fiber is 

initially tensile due to prestressing and then gradually switches to a compressive stress as the beam 

is loaded to failure. When the peak load is achieved, the stress in the most extreme fiber in 

compression is well below the specified compressive strength of UHPC, f’
c.  

As the total load drops as shown in Fig. 3.6a1, the stress in the most extreme fiber in 

compression continues to increase to make up for the shrinking of the UHPC tension block, but 

such an increase is not sufficient to increase the load carrying capacity of the beam.  
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            a)                                                                           b) 

Fig. 3.6 a) Flexural behavior of post-tensioned UHPC beams: a) rectangular beams, b) T-beams    
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Tendon stress continues to increase up as shown in Fig. 3.5a4 until the last time step as the 

beam continues to deflect and reaches values that are near the specified ultimate tensile stress, fpu 

(Fig. 3.6a4). The strand stress at ultimate, fps, was recorded at the point when the beam reaches its 

maximum load carrying capacity (Fig. 3.6a1 Peak Load - Stage 1). 

Fig. 3.7 shows the strain and stress diagrams for a rectangular beam for the three stages 

denoted as 1, 2, and 3 in Fig. 3.6a.  The stress diagram that corresponds with the attainment of the 

peak load is the one in which the entire nonlinear domain of UHPC in tension is utilized and the 

strain in the most extreme fiber in tension is equal to the maximum usable tensile strain, εtu. After 

stage 1, the beam continues to carry load because the stress in the strand is less than the ultimate 

stress, fpu, mild steel still offers the same tensile force, and the maximum concrete compressive 

stress is smaller than the specified compressive strength, f’
c. However, the combination of the 

tendon force and the force provided by mild steel in tension cannot compensate for the lost tension 

force that results due the reduction of the UHPC tension block (stages 2 and 3) since this force is 

significant. As a result, the total tension and compression forces in the section start to drop. 

Additionally, for the tendon stress to increase markedly beyond the value computed in stage 1, the 

strain in the tendon must increase considerably. Since the tendon is unbonded, this would result in 

very large beam deflection since a similar strain must be maintained throughout the length of the 

tendon, which may render the structure unusable after an ultimate load event. In any case, even if 

such large deflections at the ultimate limit state are considered acceptable considering that the 

main concern at that stage is life safety, the total load and consequently the moment capacity that 

the beam can provide in stages 2 and 3 is less than that computed for stage 1. Tendon stress at peak 

load, fps, was recorded to be between 1379-1724 MPa and is therefore in the vicinity of the 
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curvilinear portion in the stress-strain curve, which is past the linear portion, but before the region 

where the modulus is significantly reduced (Fig. 3.6a4 and 3.4c).  

 
Fig. 3.7 Stress diagrams at various stages for a fiber tension controlled rectangular specimen 

 

As will be shown later, heavily post-tensioned rectangular beams are an exception, and 

when the tendon area exceeds a certain number, the failure mode switches from a fiber tension-

controlled failure to a concrete compression-controlled failure. It should be noted that a 

compression-controlled failure in this case is characterized as one in which the ultimate 

compressive strain, εcu, in the most extreme compressive fiber is reached before the ultimate tensile 

strain, εtu, in the most extreme tensile fiber is attained (i.e. concrete crushes before fibers rupture). 

Tendon stress is still in the vicinity of the curvilinear portion in the stress-strain curve. 

Two-span continuous rectangular beam behavior was characterized by two sequential 

peaks in the total reaction versus time diagram, which correspond with the formation of two plastic 

hinges at mid-span(between supports)  and at intermediate support(at the top of middle support), 

respectively. Tendon stress at ultimate strength, fps, was recorded when the applied load reached 

its maximum value and is similar to that computed for simply supported specimens (Fig. 3.6a4). 

The failure mode for such beams is identical with that observed in simply supported configurations 

and is characterized as a fiber tension controlled failure, because, as can be seen from Fig. 3.6a, 

the attainment of the peak load corresponds with the point where the entire nonlinear domain of 
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UHPC in tension is exhausted while the maximum compressive stress is well below the specified 

compressive strength. 

The behavior of simply supported beams with a T cross-section was similar to that of 

rectangular beams (Fig. 3.6b1) except that the maximum compressive stress in the most extreme 

compressive fiber was much lower than that observed in rectangular beams and also much lower 

than the specified concrete compressive strength, f’
c, due to the greater compressive width offered 

by the top flange. This is illustrated in Fig. 3.6b2 and suggests that the compressive strength of 

UHPC in the top flange is not well mobilized. The failure mode of simply supported T-beams is 

the same with that observed in rectangular beams and is characterized as a fiber tension-controlled 

failure (Fig. 3.6b3). 

The behavior of two-span continuous T-beams was different from that of continuous 

rectangular beams in the sense that the failure mode switched from a fiber tensioned controlled 

failure to a concrete compression-controlled failure at the intermediate support (Figs. 3.6b2/3.6b3). 

Although the ultimate compressive strain, εcu, and the corresponding specified compressive 

strength, f’
c, at the intermediate support at the bottom most fiber was reached before the tensile 

strain in the top most fiber reached its ultimate value, εtu, the magnitude of the tensile strain in the 

uppermost tensile fiber at the intermediate support was very close to εtu.  This is illustrated in Fig. 

3.6b3, which shows that the tensile stress in the most extreme tension fiber is near the point where 

it drops to a negligible value, which corresponds with the attainment of the ultimate tensile strain, 

εtu, in the stress-strain curve shown in Fig. 3.4a.  This suggests that although the failure mode of 

two-span continuous T-beams is characterized as a concrete compression-controlled failure, it is 

very close to being classified as a balanced failure, in which the compressive and tensile strain in 

the most extreme fibers in concrete  reach their ultimate values simultaneously. In this case, both 
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the compressive strength and tensile strength of UHPC are fully mobilized. The reason why the 

failure mode in a two-span continuous member with a T cross-section switched to a concrete 

compression-controlled failure is due to the narrow compression block at the bottom of the web 

and the much wider tension block, which consists of the top flange and a portion of the web in 

addition to the tension force provided by the tendons. The strand stress at ultimate, fps, in simply 

supported and continuous T-beams was similar, this was recorded at the point when the beams 

reached their ultimate load carrying capacity and is illustrated in Fig. 3.6b4. 

Fig. 3.8 illustrates the two different failure modes using principal strain contours for a 

simply supported rectangular beam (Fig. 3.8a) and a two-span continuous T-beam subject to two-

point loading symmetrical about mid-span (Fig. 3.8b). In fiber tension-controlled specimens gray 

regions indicate areas in which the principal strain exceeds the assumed maximum usable tensile 

strain for UHPC, εtu = 0.01, and in compression-controlled specimens black regions indicate areas 

in which the principal strain exceeds the assumed maximum usable compressive strain, εcu = 

0.0038. Fig. 3.8a shows a fiber tension-controlled failure on the left and a concrete compression-

controlled failure on the right. The stress contours shown represent the time step when the peak 

load is achieved. To induce a concrete compression-controlled failure in the rectangular beam, 

tendon area was increased significantly. In both cases shown in Fig. 3.8a the plastic hinge is located 

either slightly offset from mid-span or under the concentrated load due to the boundary conditions 

of the beam in which one is pin and other end is roller support. Fig. 3.8b shows the formation of 

the first plastic hinge at mid-span due to fiber rupture and that of the second hinge at the 

intermediate support due to concrete crushing for a two-span continuous T-beam. The formation 

of the first and second plastic hinges occur at different time steps. As stated earlier, the failure 

mode for the two-span continuous T-beams was characterized as a concrete compression-
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controlled failure because the attainment of the peak load corresponded with the formation of the 

second plastic hinge, which occurred due to concrete crushing. 

 
a) 

 
b) 

Fig. 3.8 Illustration of fiber tension-controlled and concrete compression-controlled failures in: a) 

simply supported post-tensioned UHPC beams with a rectangular cross-section, b) continuous 

post-tensioned UHPC beams with a T cross-section  

3.4.2 Sensitivity Analysis 

The influence of various parameters on the change in strand stress at the ultimate limit 

state, Δfps, was investigated so that a generalized flexural design methodology as well as a set of 

equations for predicting strand stress at the ultimate limit state, fps, could be developed.  It should 

be noted that when evaluating prediction equations for fps for unbonded tendons, it would be 
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prudent to assess the increment of stress beyond effective prestress, that is, Δfps=fps-fpe, because 

the reference stress for all equations is the same, that is, fpe. Since Δfps is relatively small compared 

to fpe one can be misled by the accuracy of a given equation simply by checking the accuracy of 

its predicted value of fps (Naaman 2012).  

The investigated parameters include: 1) specified concrete compressive strength, f’
c, 2) area 

of tendons, Aps, 3) area of mild steel reinforcement, As, 4) UHPC cracking stress, fcr, 5) UHPC 

maximum usable tensile strain, εtu, 6) effective depth of tendons, dp, and span over effective depth 

ratio, L/dp, 7) continuity, 8) loading configuration, 9) loading pattern, and 10) friction coefficient. 

The effect of the first five parameters on the strand stress at ultimate strength can be captured by 

using equilibrium equations at a cross-sectional level, while the effect of the last five parameters 

can only be captured at a system level. The influence of each of these parameters on the change in 

strand stress at ultimate, Δfps, is discussed below. 

3.4.2.1 Effect of f’c,  on 𝜟𝒇𝒑𝒔 

The effect of the specified UHPC compressive strength, f’
c, on the change in strand stress 

at ultimate, Δfps, was studied by incrementally increasing f’
c from 152 MPa to 207 MPa in 14 MPa 

increments in compression controlled two-span continuous specimens (Table 3.3). To induce a 

concrete compression-controlled failure at the bottom of the web at the intermediate support, 

specimens with a T cross-section were chosen due to the substantial tension area that they provide 

at that location. It was generally difficult to induce a compression-controlled failure in rectangular 

specimens unless the tendon area and the number of tendon layers were increased beyond what 

may be considered practical. The T-beams considered had an overall depth of 305 mm and each 

span was 8530 mm. The width of the flange was 965 mm and the thickness of the flange was 51 

mm. Additional information about this set of specimens can be found in Table 3.3. 



43 

 

 

 

Table 3.3. Effect of f’c on 𝛥𝑓𝑝𝑠 
Specimen 

ID 
Specimen  

descriptiona 

Depth  

(mm) 

Span length 

(mm) 

Span  

config. 

'

cf

(MPa) 

𝑓𝑝𝑒 

(MPa) 

𝑓𝑝𝑠 

(MPa) 

𝛥𝑓𝑝𝑠 

(MPa) 

BF-1 152MPa254dp218CU1 305 8534 Cont. 152 1248 1462 207 

BF-2 165MPa254dp218CU1 305 8534 Cont. 165 1255 1462 207 

BF-3 179MPa254dp218CU1 305 8534 Cont. 179 1255 1469 214 

BF-4 193MPa254dp218CU1 305 8534 Cont. 193 1255 1462 207 

BF-5 207MPa254dp218CU1 305 8534 Cont. 207 1255 1462 207 
a152MPa = f’c, 254dp = effective depth of tendon at mid-span in mm, 218 = 2-18 mm diameter strands, CU1= two-

span continuous T-beam 

 

As shown in Table 3.3, the change in f’c had no marked effect on the strand stress at ultimate 

strength,  fps, as well as on the change in strand stress after the beams were post-tensioned and 

loaded to failure, Δfps. The strand stress at ultimate strength, fps, varied from 1462 MPa to 1469 

MPa and the change in strand stress, Δfps, varied from 193 MPa to 207 MPa. The insensitivity of 

the tendon stress to the increase in UHPC compressive strength is due to the fact that the increase 

in the compression force was counterbalanced by an increase in the tension force offered by UHPC. 

The increase in the tension force provided by UHPC was due to the fact that the sustained tensile 

strength after cracking was assumed to be a function of f’c  (Eq. 3.5) and also due to an upward 

shift of the neutral axis (decrease in neutral axis depth). As a result, it was decided to let the 

equilibrium equations determine the net effect of the variation in f’
c on the flexural capacity of 

UHPC beams post-tensioned with unbonded tendons, rather than include it as a variable in the 

proposed equation for the strand stress at ultimate. 

3.4.2.2 Effect of 𝑨𝒑𝒔 on 𝜟𝒇𝒑𝒔 and Failure Mode 

The influence of tendon area on the change in the strand stress at ultimate, Δfps, as well as 

on the failure mode of the beam specimens was investigated by increasing the area of the tendons 

in the 305 mm deep and 152 mm wide rectangular beams from 2-13 mm diameter strands to 4-18 

mm diameter strands. The results are shown in Table 3.4. The failure mode switches from a fiber 

tension-controlled failure to a concrete compression-controlled failure when the tendon’s area 
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transitions from 2-15 mm diameter strands to 4-15 mm diameter strands. Additionally, the strand 

stress at ultimate, fps, as well as the change in strand stress, Δfps, decreases as the tendon area 

increases; fps varied from 1462 MPa to 1407 MPa, and Δfps varied from 172 MPa to 124 MPa. This 

is intuitive and logical because the larger the area of the strands the lower the strand stress required 

to counterbalance a given compression force. For this reason, it was once again determined to let 

the equilibrium equations determine the net effect of the variation in Aps on the flexural capacity 

of UHPC beams post-tensioned with unbonded tendons, rather than include it as a variable in the 

proposed equation for the strand stress at ultimate, fps. 

Table 3.4. Effect of Aps on 𝛥𝑓𝑝𝑠 and on failure mode 

Specimen 

ID 

Specimen  

descriptiona 

Depth 

(mm) 

Span length 

(mm) 

Aps 

(mm2) 

𝑓𝑝𝑒 

(MPa) 

𝑓𝑝𝑠 

(MPa) 

Δfps 

(MPa) 

Failure  

Mode 

BP-1 152MPa229dp213RU1 305 8534 197 1289 1462 172 Tens. 

BP-2 152MPa229dp215RU1 305 8534 280 1276 1441 165 Tens. 

BP-3 152MPa229dp415RU1 305 8534 560 1289 1434 145 Comp. 

BP-4 152MPa229dp418RU1 305 8534 759 1282 1407 124 Comp.  
a152MPa = f’c, 229dp = effective depth of tendon at mid-span in mm, 213 = 2-13 mm diameter strands, RU1 = 

Rectangular simple span beam 

 

3.4.2.3 Effect of 𝑨𝒔 on 𝜟𝒇𝒑𝒔 

To understand the influence of the mild steel area, As, on Δfps, the area of mild steel was 

increased until the tension force provided by mild steel equaled the tension force provided by the 

tendons. All investigated beams had a certain amount of mild steel with the minimum area being 

equal to 63 mm2 and the maximum area equal to 568 mm2. The influence of the variation of mild 

steel area did not have a pronounced effect on the change in strand stress at ultimate, Δfps (Table 

3.5); Δfps varied from 334 MPa to 341 MPa. As a result, the area of mild steel was not considered 

as a key parameter to be explicitly included in the formulation of the equations for the 

determination of Δfps. The equations of equilibrium can capture its influence during the calculation 

of the depth to the neutral axis and flexural capacity. 

 



45 

 

 

 

Table 3.5. Effect of As on Δfps 

Specimen  

ID 

Specimen  

descriptiona 

Depth 

(mm) 

Span 

length 

(mm) 

𝐴𝑠 
(𝑚𝑚2) 

𝑓𝑝𝑒 

(MPa) 

𝑓𝑝𝑠 

(MPa) 

Δfps 

(MPa) 

Failure  

Mode 

BS-1 152MPa213bs2-2RU1 305 8534 63 1281 1622 341 Tens. 

BS-2 152MPa213bs2-3RU1 305 8534 142 1281 1620 339 Tens. 

BS-3 152MPa213bs2-4RU1 305 8534 258 1281 1615 334 Tens. 

BS-4 152MPa213bs2-5RU1 305 8534 400 1281 1618 337 Tens. 

BS-5 152MPa213bs2-6RU1 305 8534 568 1281 1619 338 Tens. 
a152MPa = f’c, All beams have effective depth of 254 mm  and have 0.01 maximum usable strain, 213 = 2-13 mm 

diameter strands,bs2-2 = 2 #2 bottom mild steel , RU1 = Rectangular simple span beam 

 

3.4.2.4 Effect of 𝒇𝒄𝒓  on 𝜟𝒇𝒑𝒔 

 The stress-strain curve for UHPC in tension was generally idealized as elastic perfectly 

plastic, with the cracking stress, fcr, being equal to the post-cracking stress (Fig. 3.4a). 

Additionally, the cracking stress, fcr, was expressed as a function of the specified compressive 

strength of UHPC, f’
c (Eq. 3.5). Realizing that determining the cracking stress in such a manner is 

an approximation, the influence of the magnitude of the cracking stress on the change in strand 

stress was investigated by varying the cracking stress from 2.75 MPa to 9.65 MPa. All specimens 

considered for this investigation were fiber tension-controlled specimens.  

Table 3.6. Effect of fcr on Δfps 

Specimen  

ID 

Specimen  

descriptiona 

Depth 

(mm) 

Span 

length 

(mm) 

𝜎𝑡𝑢 

(MPa) 

𝑓𝑝𝑒 

(MPa) 

𝑓𝑝𝑠 

(MPa) 

Δfps 

(MPa) 

Failure 

Mode 

BTP-1 152MPa213sut2.75RU1 305 8534 2.75 1281 1576 295 Tens. 

BTP-2 152MPa213sut4.15RU1 305 8534 4.15 1281 1620 339 Tens. 

BTP-3 152MPa213sut5.52RU1 305 8534 5.52 1281 1623 342 Tens. 

BTP-4 152MPa213sut6.89RU1 305 8534 6.89 1281 1620 339 Tens. 

BTP-5 152MPa213sut8.24RU1 305 8534 8.24 1281 1614 333 Tens. 

BTP-6 152MPa213sut9.65RU1 305 8534 9.65 1281 1617 336 Tens. 
a152MPa = f’c, All beams have effective depth of 254 mm  and have 0.01 maximum usable strain, 213 = 2-13 mm 

diameter strands,sut2.75 = maximum tensile stress of 2.75 MPa , RU1 = Rectangular simple span beam 

 

Table 3.6 shows that the influence of the variation of the magnitude of the cracking stress 

on the change in strand stress was minimal. The change in strand stress varied from 295 MPa to 

342 MPa. As a result, a change of 351% in the magnitude of the UHPC cracking stress resulted 

only in a 16% variation in the change in strand stress at ultimate strength. Therefore, it was decided 
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to let the equations of equilibrium capture the influence of the magnitude of the cracking stress of 

UHPC on the strand stress at ultimate and moment capacity of the member 

3.4.2.5 Effect of 𝜺𝒕𝒖 on 𝜟𝒇𝒑𝒔 

One of the advantages of UHPC is that it offers significant ductility in the tensile domain 

due to the presence of fibers. This tensile ductility, expressed as the ratio between the ultimate 

tensile strain, εtu, and cracking strain, εcr, depends primarily on the amount of fibers included in 

the mix as well as the class of UHPC materials used. As a result, it is paramount to study the 

influence that the assumed maximum usable tensile strain, εtu, has on the change in strand stress at 

ultimate, Δfps. To accomplish this, the ultimate tensile strain, εtu, was varied from 0.005 to 0.015. 

All the specimens included in this investigation were fiber tension-controlled specimens. Table 

3.7 shows that the assumed value for the ultimate tensile strain has a strong effect on the change 

in strand stress at ultimate, which varied from 204 MPa to 408 MPa. As a result, it was decided to 

explicitly include the direct proportionality of εtu to Δfps in the formulation for predicting Δfps. 

Table 3.7. Effect of εtu on Δfps 

Specimen  

ID 

Specimen  

descriptiona 

Depth 

(mm) 

Span 

length 

(mm) 

𝜀𝑡𝑢 

 

𝑓𝑝𝑒 

(MPa) 

𝑓𝑝𝑠 

(MPa) 

Δfps 

(MPa) 
Failure  

Mode 

BTU-1 152MPa213etu0.005RU1 305 8534 0.005 1281 1485 204 Tens. 

BTU-2 152MPa213etu0.007RU1 305 8534 0.007 1281 1535 254 Tens. 

BTU-3 152MPa213etu0.009RU1 305 8534 0.009 1281 1592 311 Tens. 

BTU-4 152MPa213etu0.01RU1 305 8534 0.01 1281 1620 339 Tens. 

BTU-5 152MPa213etu0.012RU1 305 8534 0.012 1281 1657 376 Tens. 

BTU-6 152MPa213etu0.015RU1 305 8534 0.015 1281 1689 408 Tens. 
a152MPa = f’c, All beams have effective depth of 254 mm  at mid-span, 213 = 2-13 mm diameter strands,  

etu0.005 = maximum usable tensile strain of 0.005, RU1 = Rectangular simple span beam 

 

3.4.2.6 Effect of Continuity on 𝜟𝒇𝒑𝒔 and Failure Mode 

Because strand stress at the ultimate limit state in concrete beams post-tensioned with 

unbonded strands is system dependent rather than section dependent, the effect of continuity on 

the change in strand stress, Δfps, was investigated for the beams with a rectangular cross-section. 
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The characteristics of the beams included in this investigation are shown in Table 3.8. The loading 

configuration for both single span and continuous specimens featured two-point loading 

symmetrical about mid-span similar to that shown in Fig. 3.8.  

Table 3.8. Effect of continuity on Δfps 
Specimen 

ID 

Specimen 

descriptiona 

Depth 

(mm) 

Span 

(mm) 

Continuity Aps 

(mm2) 

𝑓𝑝𝑒 

(MPa) 

𝑓𝑝𝑠 

(MPa) 

𝛥𝑓𝑝𝑠 

(MPa) 

Failure 

Mode 

BC-1 152MPa215A1 310 4000 Single 280 1303 1462 159 Tens. 

BC-2 152MPa215A1 310 4000 Cont. 280 1324 1503 179 Tens. 

BC-3 152MPa315A1 310 4000 Single 420 1282 1455 172 Comp. 

BC-4 152MPa315A1 310 4000 Cont. 420 1303 1482 179 Comp. 

BC-5 152MPa415A1 310 4000 Single 560 1289 1469 179 Comp. 

BC-6 152MPa415A1 310 4000 Cont. 560 1262 1462 200 Comp. 

BC-7 152MPa218A1 310 4000 Single 379 1297 1455 159 Tens. 

BC-8 152MPa218A1 310 4000 Cont. 379 1310 1489 179 Tens. 

BC-9 152MPa318A1 310 4000 Single 569 1269 1455 186 Comp. 

BC-10 152MPa318A1 310 4000 Cont. 569 1282 1476 193 Comp. 

BC-11 152MPa418A1 310 4000 Single 759 1269 1448 179 Comp. 

BC-12 152MPa418A1 310 4000 Cont. 759 1269 1476 207 Comp. 
a152 MPa = f’c, 215 = 2-15 mm diameter strands, A1: Rectangular beam  

 

Both spans in the continuous specimens were loaded simultaneously until failure.  The 

effect of loading configuration and patterned loading is discussed in the subsequent sections. As 

can be seen, the introduction of continuity generally resulted in an increase in the change in strand 

stress after the beams were post-tensioned and loaded to failure. However, this increase was 

minimal and varied from 7 MPa to 28 MPa. Also, the variation in strand stress at ultimate was no 

more than 2-3%. In addition, the influence of such a small increase in strand stress at ultimate due 

to continuity becomes even more negligible when the tension force provided by the UHPC block 

and that provided by any mild steel present are considered. As a result, it was decided not to 

explicitly include a variable or a coefficient that accounts for continuity in the equations for 

predicting strand stress at ultimate strength. The small increase in strand stress due to continuity 

can serve as reserve capacity when predicting the flexural strength of continuous UHPC beams 

post-tensioned with unbonded strands. 
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3.4.2.7 Effect of Loading Configuration on 𝜟𝒇𝒑𝒔 

To determine the effect of loading configuration on the change in strand stress after the 

UHPC beams were post-tensioned and loaded to failure, three different loading conditions were 

investigated: 1) one-point loading, 2) two-point loading, and 3) distributed loading. The distance 

between the two point loads, d, was incrementally increased until that distance became equal to 

L/3 where L is the span of the beam. The results are summarized in Table 3.9 and are illustrated in 

Fig. 3.9a. The two-point loading configurations represent the scenarios in which the distance 

between the concentrated loads, d, was equal to 0.1L and 0.33L. Changes in strand stress, Δfps, vary 

from 159 MPa to 338 MPa. As a result, loading pattern plays an important role in determining 

strand stress at ultimate flexural strength. It was determined that when the distance between the 

two-point loads became equal to L/3, there was not a significant difference in the change in strand 

stress between that case and what was obtained for a uniform load (Fig. 3.9a). Because the loading 

pattern had a strong effect on the change in strand stress at ultimate, this parameter was directly 

included in the formulation of equations for determining  the change in strand stress at ultimate, 

Δfps, by using a function, f, (Fig. 3.9b) the development of which is discussed later in the section 

titled plastic hinge length and patterned loading. 

Table 3.9. Effect of loading configuration on Δfps 

Specimen 

ID 

Specimen  

descriptiona 

Depth 

(mm) 

Span  

(mm) 

Δfps (MPa) 

One-

point  

Two-point 
Distributed  

d/Lb=0.1 d/Lb=0.33 

BL-1 152MPa254dp213RU1 305 8534 159 207 331 324 

BL-2 152MPa254dp213RU2 305 8534 165 221 331 331 

BL-3 165MPa254dp213RU1 305 8534 159 207 331 331 

BL-4 165MPa254dp213RU2 305 8534 165 214 331 338 

BL-5 179MPa254dp213RU1 305 8534 159 207 331 324 

BL-6 179MPa254dp213RU2 305 8534 165 200 317 310 
a152MPa = compressive strength, RU1 and RU2 = Rectangular simple span beam, 254dp = effective 

depth of tendon in mm at mid-span, 213 = 2-13 mm diameter strands, bd=distance between the 

concentrated loads, L=span length. 
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a)                                                                   b) 

Fig. 3.9 a) Influence of loading configuration on Δfps, b) Proposed relationship between loading 

configuration and function f included in Eq. 3.10 

 

3.4.2.8 Effect of 𝒅𝒑 and L/𝒅𝒑 on 𝜟𝒇𝒑𝒔 

The influence of the effective depth, dp, and L/dp ratio was investigated to continue 

capturing the system effect on the change in strand stress at ultimate in UHPC beams. This was 

accomplished by varying dp from 216 mm to 267 mm in simply supported rectangular beams with 

an overall depth of 305 mm and a span of 8534 mm. Concrete compressive strength and area of 

tendons were kept constant at 152 MPa and 2-13 mm diameter strands, respectively. L/dp was also 

varied from 16 to 56. The results are shown in Table 3.10 and Fig. 3.10. There is a direct 

relationship between the effective depth and change in strand stress. As the effective depth 

decreases the change in strand stress also decreases. Conversely, as the L/dp ratio increases, the 

change in strand stress at ultimate decreases. This relationship is common with that observed in 

NSC post-tensioned beams (Maguire et al. 2016). Because of the strong influence that dp and L/dp 

ratio had on the change in strand stress, it was decided to directly include both of these parameters 

on the formulation of Δfps.  
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Table 3.10. Effect of 𝑑𝑝 on 𝛥𝑓𝑝𝑠 
Specimen 

ID 

Specimen  

descriptiona 

Depth 

(mm) 

Span length 

(mm) 

Span 

config. 

dp 

(mm) 

Δfps 

(MPa) 

 

BH-1 152MPa267dp213RU1 305 8534 Single 267 232  

BH-2 152MPa254dp213RU1 305 8534 Single 254 209  

BH-3 152MPa241dp213RU1 305 8534 Single 241 194  

BH-4 152MPa229dp213RU1 305 8534 Single 229 176  

BH-5 152MPa216dp213RU1 305 8534 Single 216 164  
a152MPa = f’c, 267dp = effective depth of tendon at mid-span in mm, 213 = 2-13 mm diameter strands, RU1 = 

Rectangular simple span beam 

 

 

 

 

Fig. 3.10 Effect of dp on the change in strand stress at the ultimate limit state 

 

3.4.2.9 Effect of Patterned Loading on 𝜟𝒇𝒑𝒔  

The effect of patterned loading on the change in strand stress at ultimate was investigated 

by considering five different cases illustrated in Fig. 3.11. The default case is a simply supported 

beam, which represents the majority of the specimens. Case A represents a three span continuous 

beam in which all spans are loaded. Case B represents a three span continuous beam in which only 

the end span is loaded. Case C represents three span continuous beams in which only the middle 
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span is loaded, and Case D represents a three span continuous beam in which two out of three 

spans are loaded. The loading configurations featured a single concentrated load at mid-span as 

well as two point loading symmetrical about mid-span.  The number of plastic hinges anticipated 

in the collapse mechanism is denoted for each case and varies from 1.0 to 5.0. The relationship 

between the number of hinges and the change in strand stress at ultimate is illustrated in Fig. 3.12 

and summarized in Table 3.11. In the three span continuous beam specimens, the change in strand 

stress was lower when one span was loaded compared to cases when two or three spans were 

loaded. Similarly, in the three span continuous specimens, the change in strand stress was lower 

when two spans were loaded compared to when three spans were loaded. In general, the change in 

strand stress at ultimate was proportional to the ratio of the actual number of plastic hinges divided 

by the potential number of plastic hinges. This relationship is later in this paper included in the 

proposed formulation for determining Δfps to capture the influence of patterned loading. While 

there are a few exceptions to this rule, in general, this simple relationship was able to capture 

reasonably well the influence of patterned loading on the change in strand stress at the ultimate 

limit state, Δfps. For example, in the three span continuous beams the only exception is the case 

when 2.0 plastic hinges are formed, which results in a change in strand stress at ultimate that is 

either similar to or slightly smaller than the case when 1.5 plastic hinges are formed. In all other 

cases for the three span continuous beams, the described relationship properly characterizes the 

change in strand stress as a function of the number of plastic hinges. Another small deviation to 

the proposed relationship is the case between a single span beam and a three span continuous beam 

in which all spans are loaded. According to the proposed relationship, the change in strand stress 

for these two cases should be identical when in fact varies by 8% and 15% for one point and two-

point loading, respectively. However, such differences were considered small for design purposes. 
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Table 3.11. Effect of number of hinges on 𝛥𝑓𝑝𝑠 
Specimen 

ID 

Specimen  

descriptiona 

Loading type 

(Figure 3.11) 

No. of 

hinges 

Loading 

pattern 

Span 

config. 

Δfps 

(MPa) 

 

BN-1 152MPa254dp213RU Default Case 1.0 One point 1 span  156  

BN-2 152MPa254dp213RU Case A 5.0 One point 3 spans  145  

BN-3 152MPa254dp213RU Case B 1.5 One point 3 spans 69  

BN-4 152MPa254dp213RU Case C 2.0 One point 3 spans 55  

BN-5 152MPa254dp213RU Case D 3.5 One point 3 spans 117  

BN-6 152MPa254dp213RU Default Case 1.0 Two point 1 span 324  

BN-7 152MPa254dp213RU Case A 5.0 Two point 3 spans 372  

BN-8 152MPa254dp213RU Case B 1.5 Two point 3 spans 145  

BN-9 152MPa254dp213RU Case C 2.0 Two point 3 spans 138  

BN-10 152MPa254dp213RU Case D 3.5 Two point 3 spans 269  
a152MPa = f’c, 254dp = effective depth of tendon at mid-span in mm, 213 = 2-13 mm diameter strands, RU = 

Rectangular cross sectioned beam 

 

 
Fig. 3.11. Collapse mechanisms and total number of hinges for patterned loading (adapted after 

Harajli 2011) 

The potential number of plastic hinges in a given beam can be calculated assuming that 

plastic hinges can form in each span and over the interior supports. For example, in a simply 

supported beam the total number of potential plastic hinges is 1.0 and in a three span continuous 

beam it is 5.0. The actual number of plastic hinges is equal to the minimum number of hinges 

required to create a collapse mechanism and is denoted for each case in Fig. 3.11.  
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Case A and Case D require simultaneous formation of all hinges. These mechanisms may 

occur if the amount of nonprestressed reinforcement at midspan, and interior supports is 

determined such that it allows for such a simultaneous formation of hinges (assuming that effective 

depth and the amount of prestressed reinforcement is the same). Even if this is realized, the 

simultaneous formation of such hinges requires material homogeneity and load uniformity or 

symmetry. Therefore, in reality, the default case combined with Case B and Case C are more likely 

to occur. 

 

Fig. 3.12. Influence of the number of hinges on the change in strand stress at the ultimate limit 

state 

3.4.2.10 Effect of the friction coefficient on 𝜟𝒇𝒑𝒔 

The influence of the friction coefficient, μ, on the change in strand stress at the ultimate 

limit state was investigated by varying the friction coefficient from 0.05 to 0.15 in increments of 

0.025. This range represents the range for the friction coefficient reported in the PTI Manual 

(2006). As stated earlier, for the majority of cases the lower bound of this range (i.e. a friction 

coefficient of 0.05) was assumed to simulate maximum slip and consequently obtain minimum 

(conservative) estimates of tendon stress increase at the ultimate limit state. The results for the 

additional cases investigated featuring various friction coefficient are provided in Table 3.12. 
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Table 3.12. Effect of 𝜇 on 𝛥𝑓𝑝𝑠 

Specimen 

ID 

Specimen  

descriptiona 

Depth 

(mm) 

Span length 

(mm) 

Span 

config. 

μ Δfps 

(MPa) 

 

BFR-1 152MPa254dp213RU1 305 8534 Single 0.05 329  

BFR-2 152MPa254dp213RU1 305 8534 Single 0.075 331  

BFR-3 152MPa254dp213RU1 305 8534 Single 0.1 334  

BFR-4 152MPa254dp213RU1 305 8534 Single 0.125 335  

BFR-5 152MPa254dp213RU1 305 8534 Single 0.15 339  
a152MPa = f’c, 254dp = effective depth of tendon at mid-span in mm, 213 = 2-13 mm diameter strands, RU1 = 

Rectangular simple span beam 

  

The change in strand stress at the ultimate limit state varies from 329 MPa to 339 MPa 

when the friction coefficient is varied from 0.05 to 0.15. This is a very small and negligible change. 

As a result, it was concluded that the friction coefficient does not play a significant role in the 

determination of the strand stress at ultimate and consequently on the nominal moment capacity 

of the beam 

3.4.3 Flexural Design Methodology 

A flexural design methodology as well as a set of equations for predicting strand stress at 

ultimate is presented for UHPC beams post-tensioned with unbonded tendons. The proposed 

methodology is presented in terms of the failure modes exhibited by such members. The kinematic 

mechanism at failure for both cases is shown in Fig. 3.13 and considers a cracked section at mid-

span for a simply supported beam.  

This kinematic mechanism is similar to the one used by Roberts-Wollmann et al. (2005) 

for normal strength concrete members. The crack is modeled by an isosceles triangle with a height 

of h-c. The area near the crack is perturbed with respect to the elastic behavior and corresponds to 

a curvature equal to φ. In this zone the beam is modeled as if it were made of two regions; at the 

top, an uncracked beam following Navier’s hypothesis (linearity of strain), and at the bottom two 

rigid blocks connected by a hinge (perturbed region). The determination of the plastic hinge length 
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is required to conduct a kinematic analysis to relate the critical crack width, δ, plastic hinge length 

Lp, and the change in strand strain, Δεps. Such kinematic analyses as well as the methodology to 

calculate the nominal moment capacity of UHPC members post-tensioned with unbonded tendons 

is presented in the next sections for concrete compression-controlled failures and fiber tension-

controlled failures.  

 
a) 

 
b) 

Fig. 3.13 Failure mechanism in UHPC beams post-tensioned with unbonded tendons: a) concrete 

compression-controlled members, and b) fiber tension-controlled members 

3.4.3.1 Plastic Hinge Length and Patterned Loading 

One of the most important parameters when determining strand stress at the ultimate limit 

state, fps, using a mechanics based approach is the length of the plastic hinge.  Consider for example 

the kinematics based phenomenological model shown in Fig. 3.13a. The change in strand strain at 

failure in a simply supported beam, Δεps
o, is calculated using Eq. 3.7 by dividing the change in 

tendon length, δ, by the original length of the tendon, L. The change in tendon length is calculated 

by multiplying the distance from the neutral axis to the centroid of tendons (dp-c) by the total 

plastic rotation, θp, of the two beam portions at the considered crack. This total plastic rotation can 
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be calculated by integrating the curvature over the plastic hinge length, Lpr (Eq. 3.8). Because the 

integration of curvature over the plastic hinge length is cumbersome, the concept of an equivalent 

plastic hinge length has been introduced. The concept of equivalency is based on the condition that 

the product of the equivalent plastic hinge length and ultimate curvature will yield the same total 

plastic rotation as that obtained from the integration of the actual curvature diagram over the real 

plastic hinge length.  Therefore, the equivalent plastic hinge length is the length over which a given 

plastic curvature is assumed to be constant to facilitate the member’s flexural deflection and 

rotation capacity. The ultimate curvature, φu,  can be calculated by dividing the ultimate 

compressive strain, εcu, by the depth to the neutral axis, c, assuming that plane sections before 

bending remain plane after bending. When Eq. 3.8 is substituted into Eq. 3.7, Eq. 3.9 is obtained. 

The only unknowns in Eq. 3.9 are the equivalent plastic hinge length, Lp, and the depth to the 

neutral axis c. While the depth to the neutral axis can be determined using equations of equilibrium, 

some guidance is required to determine the length of the equivalent plastic hinge. 

 

𝛥𝜀𝑝𝑠
𝑜  =  

𝛿

𝐿
=
(𝑑𝑝 − 𝑐)𝜃

𝐿
 Eq. 3.7 

𝜃𝑝 = ∫ 𝜑(𝑥)𝑑𝑥 =  𝐿𝑝 𝜑𝑢

𝐿𝑝𝑟

0

 =  𝐿𝑝 
𝜀𝑐𝑢
𝑐
    ,0.0038 ≤ 𝜀𝑐𝑢  ≤  0.0044 Eq. 3.8 

 𝛥𝜀𝑝𝑠
𝑜 = 

(𝑑𝑝 − 𝑐)

𝐿
 
𝐿𝑝𝜀𝑐𝑢

𝑐
 Eq. 3.9 

 

The definition of the plastic hinge length is related to the definition of plasticity and what 

constitutes the beginning and extent of it. In normal strength reinforced concrete beams plasticity 

is typically defined by the yielding of the reinforcement, although in heavily loaded columns and 

compression-controlled beams, concrete may reach the inelastic range before tension steel yields. 
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One approach is to monitor the strains in both concrete and steel and designate the beginning of 

plasticity as the time step at which either concrete enters the inelastic range or tension steel 

commences to yield, whichever occurs first (Park and Pauley 1975). In general, the high 

nonlinearity of materials, interactions and relative movements between constituent materials in the 

plastic hinge zone greatly complicate the task of accurately calculating the length of the plastic 

hinge (Hines et al. 2004, Zhao et al 2011, Park and Pauley 1975). As a result, the equivalent plastic 

hinge length has been typically defined using closed form empirical equations with the ultimate 

validation of any proposed formulation being that the product of the equivalent plastic hinge length 

and ultimate curvature matches with the total plastic rotation obtained from experiments or 

validated numerical models.  

The problem becomes even more challenging in post-tensioned UHPC members, in which 

the strands are unbonded, mild steel could be present in addition to unbonded tendons, the tensile 

strength of concrete cannot be neglected and introduces another source of plasticity due to the 

tensile ductility of UHPC, and the stress-strain curve for UHPC in compression is different from 

that assumed for NSC, featuring high compressive strengths and resulting in failure modes that are 

different from NSC members. The spread of plasticity in post-tensioned UHPC beams with 

unbonded tendons could be based on the region over which concrete has cracked, or on the region 

over which the unbonded tendons or mild steel have yielded. In either case, to account for the 

variation and fluctuations in curvature in the inelastic region, empirical equations for the 

equivalent plastic hinge length and corresponding curvature would have to be developed to 

facilitate the integration of curvature to determine the rotational capacity of the member at the 

ultimate limit state.  
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As a result, while it is possible to develop various formulations for the equivalent plastic 

hinge length based on a given definition for the determining the spread of plasticity, by dividing 

the actual area under the curvature diagram by a given plastic curvature, the strength and utility of 

these formulations would be assessed by their ability to correctly capture the plastic rotation of the 

member and consequently the change in strand stress, which is the focus of this study. Therefore, 

in this study the results from numerical simulations were used to obtain the change in the strands 

stress, Δεps
o, which in turn was used to back calculate the equivalent plastic hinge length, Lp. Then, 

an empirical equation based on the formulation developed by Lee et al. (1999) and Harajli et al. 

(2002) is presented to calculate the equivalent plastic hinge length as a function of the loading 

configuration, f, L/dp ratio, and length of the tendon, L. These parameters are believed to be key 

parameters in determining the length of the plastic hinge and in capturing the system effect on the 

strand stress at the ultimate limit state. It is clear from Eq. 3.7 through 3.9 that the change in strand 

stress at ultimate is a function of effective depth, dp, neutral axis depth, c, plastic hinge length, Lp, 

span length, L, and  maximum usable compressive, εcu, or tensile strain, εtu, for UHPC depending 

on whether the member is concrete compression controlled or fiber tension controlled. Eq. 3.9 

supports the direct proportionality of dp to Δεps
o and consequently to Δfps. Eq. 3.9 and 3.10 support 

the indirect proportionality of the L/dp ratio on the change in strand stress at ultimate observed 

during the sensitivity analysis.  

Lp = (
1

f
+ 

1

L dp⁄
)𝐿   , 𝑓 = 10 𝑓𝑜𝑟 𝑜𝑛𝑒 𝑝𝑜𝑖𝑛𝑡 𝑙𝑜𝑎𝑑  

𝑓 ≥ 3 𝑓𝑜𝑟 𝑡𝑤𝑜 𝑝𝑜𝑖𝑛𝑡 𝑙𝑜𝑎𝑑 (𝑢𝑠𝑒 𝐹𝑖𝑔. 3.9𝑏) 

𝑓 = 3 𝑓𝑜𝑟 𝑢𝑛𝑖𝑓𝑜𝑟𝑚 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑 𝑙𝑜𝑎𝑑𝑖𝑛𝑔  

Eq. 3.10 

The proposed empirical equation for Lp was used to develop an idealized function, f, for 

capturing the effect of loading configuration on the strand stress at ultimate. The results from 
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numerical simulations were used to obtain Δεps
o, which in turn was used to back calculate Lp and 

to develop a relationship between the function f and the distance between the applied point loads 

(Fig. 3.9b). This idealized function features a relationship in which f decreases as the distance 

between the point loads increases until it becomes equal to L/3, at which point f remains constant. 

For simplicity, three values are included in the proposed flexural design methodology; f=10 for 

point load,  f ≥ 3 for two point loads and  f=3 for uniform distributed loading. Since the function 

f is in the denominator of Eq. 3.10, which is used to determine Lp, and since Lp is in the numerator 

of Eq. 3.9, which is used to determine 𝛥𝜀𝑝𝑠
𝑜 , this formulation is consistent with the results obtained 

from the sensitivity analysis, which showed that Δfps increased as the loading configuration 

changed from one point loading to two point loading and to distributed loading. 

The change in strand stress for a simply supported beam, Δεps
o, which can be calculated 

using Eq. 3.9, was adjusted to account for the effect of patterned loading in multi-span continuous 

beams discussed previously in this paper. As previously noted, the change in strand stress was 

generally proportional to the ratio of the actual number of plastic hinges over the potential number 

of plastic hinges as defined earlier. This simple adjustment is expressed in Eq. 3.11 and 3.12 and 

is deemed adequate for design purposes as demonstrated later in the section titled comparison of 

predicted and computed results. The previously noted observations regarding the fact that the 

change in strand stress in three span continuous specimens was lower for cases that featured partial 

loading compared to the cases in which all spans were loaded is consistent with Eq. 3.7 and with 

the derivation of the proposed design methodology. In Eq. 3.7, the change in strand strain in a 

simply supported beam is calculated as the change in strand length calculated at the location of the 

plastic hinge divided by the total length of the strand. For cases that feature multi-span continuous 

beams and partial loading, the ratio between the change in strand length and the total length of 
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strand is lower compared to cases that feature full loading, because the total length of the strand is 

the same whereas the change in strand length is assumed to take place at the location of the plastic 

hinges (i.e. it is a function of the number of plastic hinges).  

Once the plastic hinge length is calculated and adjustments for patterned loading are made, 

Eq. 3.9-3.12 can be used to calculate the change in strand strain and Eq. 3.13 and 3.14 can be used 

to calculate the effective prestrain, εpe, and strain in strand at ultimate, εps. Effective prestrain, εpe, 

is calculated using Hooke’s Law given that the effective prestress, fpe, is kept within the linear 

elastic branch of the stress-strain curve for the strand. (Tadros and Devalapura 1992) equation is 

then used to relate ultimate strand strain, εps, to ultimate strand stress, fps (Eq. 3.6). Calculating fps 

in such a manner eliminates errors introduced by the commonly used assumption in normal 

strength concrete members that the relationship between tendons stress and strain is linear elastic 

at all strain levels, including strains close to yield. 𝑁𝑎𝑐𝑡𝑢𝑎𝑙 is actual number of hinges depending 

on spans loaded. 𝑁𝑡𝑜𝑡𝑎𝑙 is total possible number of hinges when all spans are loaded. 

𝛥𝜀𝑝𝑠 = 𝛥𝜀𝑝𝑠
𝑜 𝜆                                                                   Eq. 3.11  

𝜆 =
𝑁𝑎𝑐𝑡𝑢𝑎𝑙

𝑁𝑡𝑜𝑡𝑎𝑙
                                                                           Eq. 3.12  

𝜀𝑝𝑒  =  
𝑓𝑝𝑒

𝐸𝑝𝑠
 𝑤ℎ𝑒𝑟𝑒 𝐸𝑝𝑠 = 196500 𝑀𝑃𝑎 Eq. 3.13 

𝜀𝑝𝑠  =  𝜀𝑝𝑒 + 𝛥𝜀𝑝𝑠 Eq. 3.14 

3.4.3.2 Concrete Compression-Controlled Failure 

The nominal moment capacity of a UHPC compression-controlled beam post-tensioned 

with unbonded tendons can be determined using the strain, stress, and force diagrams as well as 

the equations of equilibrium and assumed stress-strain curves shown in Fig. 3.14a. In this figure, 

the transition from the strain diagram to the stress diagram is based on the assumption that the 
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stress-strain diagram for UHPC in compression is linear elastic, which is a reasonable assumption 

because the stress-strain relationship for UHPC in compression is typically linear with some 

softening taking place as the specified compressive strength is achieved (Fig. 3.4a). As a result, 

the stress-strain curve for UHPC in compression that is recommended for design is a linear curve 

in which the maximum compressive stress is equal to the specified compressive strength, f’
c, and 

the ultimate compressive strain, εcu, may be obtained by dividing f’c, with the modulus of elasticity, 

Ec, which can be calculated using Eq. 3.4. In tension, the stress-strain relationship is assumed 

bilinear (elastic perfectly plastic) with the cracking stress, fcr, determined based on Eq. 3.5 and the 

ultimate tensile strain, εtu, set equal to 0.01 or some other value depending on the amount of fibers 

used (Haber et al. 2018). However, the linear elastic portion on the tension side can be ignored and 

the entire block can be idealized as rectangle without an appreciable loss in accuracy. 

Two approaches can be taken for the determining the depth to the neutral axis, c, and 

consequently the nominal moment capacity, Mn. The first is iterative in nature and the second is 

non-iterative. In the iterative approach an estimate for the depth to the neutral axis, c, is made and 

the change in strand strain at ultimate is calculated using Eq. 3.9-3.11. These equations are based 

on the assumption that the flexural failure is a concrete compression controlled failure because 

curvature is calculated as the ratio of the maximum usable concrete strain, εcu, to the depth of the 

neutral axis, c. Eq. 3.14 and 3.6 are then used to determine the strand stress at ultimate, fps. After 

strand stress at ultimate is determined, Eq. 3.15 and 3.16 can be used to check for internal 

equilibrium. If internal equilibrium exists, then the nominal moment capacity of the member can 

be calculated using Eq. 3.18. If it does not, then a different value for c is assumed and the procedure 

is repeated until internal equilibrium is reached. Alternatively, since the depth to the neutral axis, 
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c, is the only unknown in Eq. 3.16, a computer aided solver can be used to determine c without 

iteration. 

 
a) 

 
b) 

Fig. 3.14 Proposed methodology for the flexural design of UHPC beams post-tensioned with 

unbonded tendons: a) Concrete compression-controlled failure, b) Fiber tension-controlled 

failure  

 

The assumption that the considered member is indeed a concrete compression-controlled 

member is verified by using Eq. 3.17, which uses the ultimate compressive strain, εcu, as the anchor 

point in the strain diagram and provides the opportunity to check whether the  tensile strain, εt, is 

smaller than the ultimate tensile strain εtu, which could be assumed to be equal to 0.01 based on 

the study conducted by Haber et al. (2018), but can also take other values depending on the amount 

of fibers used.   
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𝐶 + 𝑇𝑆
′  =  𝑇𝐶 + 𝑇𝑃𝑆 + 𝑇𝑆 Eq. 3.15 

1

2
𝑐𝑏𝑓𝑐

′ + 𝐴𝑆
′ 𝑓𝑦

′ = 𝑏(ℎ − 𝑐)𝑓𝑡 + 𝑓𝑝𝑠𝐴𝑝𝑠+𝑓𝑦𝐴𝑠 Eq. 3.16 

𝜀𝑐𝑢
𝑐
=  

𝜀𝑡
ℎ − 𝑐

    , 𝜀𝑡 ≤ 0.01 Eq. 3.17 

𝑀𝑛 = 
1

2
𝑐𝑏𝑓𝑐

′ (ℎ −
𝑐

3
) + 𝐴𝑆

′ 𝑓𝑦
′(ℎ − 𝑑𝑠

′) −  𝑏(ℎ − 𝑐)𝑓𝑡 (
ℎ − 𝑐

2
) 

− 𝑓𝑝𝑠𝐴𝑝𝑠(ℎ − 𝑑𝑝) − 𝑓𝑦𝐴𝑠(ℎ − 𝑑𝑠) 

Eq. 3.18 

The procedure for determining the nominal moment capacity of a UHPC beam post-

tensioned with unbonded tendons can be summarized below in its iterative form: 

Step 1: Estimate c 

Step 2: Use Eq. 3.10 to determine Lp 

Step 3: Choose a value for εcu based on the class of UHPC material used 

Step 4: Use Eq. 3.11 to determine Δεps  

Step 5: Use Eq. 3.14 to determine εps 

Step 6: Use Eq. 3.6 to determine fps 

Step 7: Use strain compatibility and the assumed constitutive relationships for constructing strain 

and stress diagrams 

Step 8: Use Eq. 3.15 and 3.16 to check for internal equilibrium 

Step 9: If internal equilibrium is reached then proceed to Step 10. If not, return to Step 1. 

Step 10: Calculate the nominal moment capacity of the beam using Eq. 3.18 

3.4.3.3 Fiber Tension-Controlled Failure 

The procedure for calculating the nominal moment capacity of UHPC beams post-

tensioned with unbonded tendons whose failure mode is characterized as a fiber tension-controlled 

failure is similar to that of concrete compression controlled members except that the anchor point 
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in the strain diagram for calculating curvature is now the ultimate tensile strain for UHPC, εtu, and 

Eq. 3.8 and 3.9 are replaced with Eq. 3.19 and 3.20. Eq. 3.20 supports the direct proportionality of 

the ultimate tensile strain, εtu, on the change in strand stress at ultimate, Δfps, observed during the 

sensitivity analysis. The change in strand strain at ultimate, Δεps, plastic hinge length, Lp, ultimate 

strand stress, fps, the depth to the neutral axis, c, and nominal moment capacity, Mn, are calculated 

using the same procedure described above for concrete compression-controlled members.  The 

assumption that the member in question is a fiber tension controlled member is verified using Eq. 

3.21, where the ultimate tensile strain is taken equal to 0.01 or any other assumed value, depending 

on the amount of fibers included in the concrete mix, and the computed concrete compressive 

strain is limited to the ratio f’c/ Ec. The strain, stress, and force diagrams as well as the equations 

of equilibrium and assumed stress-strain curves for a fiber tension controlled UHPC beam post-

tensioned with unboned tendons are shown in Fig. 3.14b.Example can be seen in Appendix A. 

 
𝜃𝑝 = ∫ 𝜑(𝑥)𝑑𝑥 =  𝐿𝑝 𝜑𝑢

𝐿𝑝𝑟
0

 = 𝐿𝑝 
𝜀𝑡

ℎ−𝑐
  where 𝜀𝑡 = 0.01 Eq. 3.19 

 ∆𝜀𝑝𝑠
𝑜  =  

(𝑑𝑝 − 𝑐)

𝐿
 𝐿𝑝 

𝜀𝑡
ℎ − 𝑐

 Eq. 3.20 

 
𝜀𝑐
𝑐
=  

𝜀𝑡
ℎ − 𝑐

    𝑤ℎ𝑒𝑟𝑒  𝜀𝑡 = 0.01, 𝑎𝑛𝑑 𝜀𝑐 < 𝜀𝑐𝑢 Eq. 3.21 

3.4.4 Comparison of Predicted and Computed Results 

 The results obtained from the validated numerical analyses were compared with those 

obtained using the proposed flexural design methodology for calculating the change in strand stress 

at ultimate, Δfps, the strand stress at ultimate, fps, and nominal moment capacity, Mn. As stated 

earlier, when evaluating prediction equations for fps for unbonded tendons, it would be prudent to 

assess the increment of stress beyond effective prestress, that is, Δfps=fps-fpe, because the reference 
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stress for all equations is the same, that is, fpe. Since Δfps is relatively small compared to fpe one can 

be misled by the accuracy of a given equation simply by checking the accuracy of its predicted 

value of fps (Naaman 2012).  

Numerical results were not compared with existing equations for predicting strand stress 

at ultimate in normal strength concrete beams with unbonded tendons because these equations 

were developed for normal strength concrete beams, whose behavior is significantly different than 

that of post-tensioned UHPC beams. 

The numerical study described above resulted in a total of 221 nonlinear analyses. For each 

case Δfps, fps, and Mn obtained from the numerical models were compared with those obtained from 

the proposed flexural design methodology. The comparison was conducted using a variety of 

statistical indicators such as the minimum, maximum, and average ratio between computed and 

calculated values, standard deviation, coefficient of variation, and correlation coefficient. Table 

3.13 and Fig. 3.15 summarize and illustrate the results of such a comparison.  

The minimum and maximum ratio between predicted and computed Δfps is 0.75 and 1.66, 

respectively, average ratio is 1.03, the standard deviation is 0.13, the coefficient of variation is 

12.6%, and the correlation coefficient is 0.93. These statistics indicate that despite the fact the 

change in strand stress at ultimate is small, the proposed methodology is able to capture with good 

accuracy this change.  

When one examines the differences between predicted and computed fps, it becomes 

evident that these differences are very small. The minimum and maximum ratios between 

predicted and computed fps are 0.97 and 1.10, respectively, average ratio is 1.01, the standard 

deviation is 0.02, the coefficient of variation is 1.9%, and the correlation coefficient is 0.91.  
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Table 3.13. Comparison of predicted and computed Δfps, fps, Mn 

Number  

of cases 

Ratio 
Statistical indicators  

Min. Max. Avg. Std. Dev. COV % ra 

Shape of stress-strain curve for UHPC  

(Fig. 3.4 – Default Curves for Compression and Tension) 

205 

𝛥𝑓𝑝𝑠
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

𝛥𝑓𝑝𝑠
𝐹𝐸𝐴⁄  0.75 1.66 1.03 0.129 12.6 0.93 

𝑓𝑝𝑠
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

𝑓𝑝𝑠
𝐹𝐸𝐴⁄  0.97 1.10 1.01 0.019 1.9 0.91 

𝑀𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

𝑀𝐹𝐸𝐴⁄  0.95 1.10 1.02 0.031 3.0 1.00 

 Shape of stress-strain curve for UHPC 

(Fig. 3.4 – Other Curves for Compression) 

4 

𝛥𝑓𝑝𝑠
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

𝛥𝑓𝑝𝑠
𝐹𝐸𝐴⁄  0.81 1.19 0.99 0.168 16.9 0.99 

𝑓𝑝𝑠
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

𝑓𝑝𝑠
𝐹𝐸𝐴⁄  0.97 1.01 1.0 0.029 2.9 0.99 

𝑀𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

𝑀𝐹𝐸𝐴⁄  1.02 1.05 1.03 0.014 1.4 1.00 

 Shape of stress-strain curve for UHPC 

(Fig. 3.4 – Other Curves for Tension) 

12 

𝛥𝑓𝑝𝑠
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

𝛥𝑓𝑝𝑠
𝐹𝐸𝐴⁄  0.89 1.33 1.05 0.119 11.4 0.72 

𝑓𝑝𝑠
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

𝑓𝑝𝑠
𝐹𝐸𝐴⁄  0.99 1.02 1.01 0.017 1.7 0.72 

𝑀𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

𝑀𝐹𝐸𝐴⁄  1.00 1.04 1.02 0.011 1.1 0.98 

                         ar = correlation coefficient  (𝑓𝑝𝑠 in MPa, M in kN-m) 

The differences between predicted and computed Mn are also very small. The minimum 

and maximum ratios between predicted and computed nominal moment capacity are 0.95 and 1.10, 

respectively, average ratio is 1.02, standard deviation is 0.03, the coefficient of variation is 3.0%, 

and the correlation coefficient is 1.0.  

These results suggest that the proposed flexural design methodology for UHPC beams 

post-tensioned with unbonded strands is rather accurate, in terms of predicting the change in strand 

stress at ultimate, Δfps, the strand stress at ultimate, fps, and nominal moment capacity, Mn. In 

addition, the proposed methodology is general in the sense that it captures the influence of all 

relevant parameters on the change in strand stress at ultimate and consequently on the flexural 

capacity of post-tensioned UHPC beams. The proposed methodology accounts for various beam 
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cross-sectional shapes, various amounts and configurations of tendons, various amounts of mild 

steel, various loading configurations, patterned loading, simply supported and continuous 

configurations, and various classes of UHPC by directly capturing the influence of key parameters 

in the assumed stress-strain curve on the change in strand stress at ultimate. The influence of the 

most relevant parameters on the change in strand stress at ultimate such as loading configuration, 

patterned loading, effective tendon depth, dp, span to effective depth ratio, L/dp, and maximum 

usable UHPC tensile or compressive strain are included directly in the formulation of the proposed 

equations for determining Δfps. The influence of the rest of the parameters is captured by the 

equations of equilibrium through the calculation of the depth to the neutral axis, c.  

 
      a)                                                                     b) 

 
c) 

Fig. 3.15. Comparison of computed and predicted a) change in strand stress at ultimate limit state, 

b) strand stress at ultimate limit state, and c) nominal moment capacity of the member 
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3.4.5 Evaluation of the Proposed Methodology for Various Classes of UHPC Materials 

The proposed methodology was evaluated for a variety of UHPC class materials that may 

feature stress-strain relationships in compression and in tension that are different from the default 

compression and tension stress-strain curves used in the majority of simulations (Fig. 3.4a). The 

additional stress-strain curves in compression and tension that were considered as part of this 

evaluation are illustrated in Fig. 3.4a. The stress-strain curves in compression feature various 

shapes and slopes for the descending branches and those in tension feature various strain hardening 

characteristics. A total of four additional stress-strain curves in compression and twelve additional 

stress-strain curves in tension were considered provided that in most cases the failure mode of the 

specimens was determined to be a tension-controlled failure. The four additional cases for the 

stress-strain curve in compression featured two unique descending branches each of which was 

used in the analyses of two beams each featuring a unique tendon area. The twelve additional cases 

for the stress-strain curve in tension featured twelve unique multilinear inelastic stress-strain 

relationships. The beams used for these additional investigations are 152 mm wide, 305 mm deep, 

and are subject to two point loads at a distance of L/3 from the supports. The beams featured 2-13 

mm diameter strands and a dp of 254 mm. The span length of the beam is 8534 mm and the 

specified compressive strength of UHPC is 152 MPa. 

For UHPC classes whose material behavior could be characterized by the default stress-

strain curves in compression and tension the nominal moment capacity corresponds with the 

maximum usable tensile or compressive strain defined in Fig. 3.5a. As a result, for these cases the 

anchor point in the strain diagram is either the maximum usable tensile strain or maximum usable 

compressive strain depending on whether the failure mode is tension controlled or compression 

controlled.  
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However, for cases that feature other shapes of stress-strain curves such as those shown in 

Fig. 3.4a, the determination of the anchor point in the strain diagram requires an iterative procedure 

because the maximum moment capacity of a given beam section does not necessarily correspond 

with the maximum usable tensile or compressive strain in the most extreme fibers. This is due to 

the fact that as concrete fibers are strained into the inelastic region as the load increases the volume 

of the stress block increases, however, its centroid shifts towards the neutral axis thus reducing the 

moment arm. The strain that corresponds with the maximum moment capacity will be a value 

between the strain that corresponds with the peak compressive or tensile stress and the maximum 

usable tensile or compressive strain. It is therefore recommended that an iterative procedure is 

followed to determine the maximum moment capacity for UHPC classes that exhibit stress-strain 

relations that are different from the default curves in compression and tension. 

Once the anchor point in the strain diagram was determined, cross-sectional stresses in 

concrete were calculated using the corresponding stress-strain curves for each class of UHPC. 

Then, the change in strand stress at ultimate, the total strand stress at ultimate, as well as the 

nominal moment capacity were determined using the proposed methodology and were compared 

with values obtained from numerical models. The results of this comparison are shown in Table 

3.13.    

The average ratios of predicted over computed changes in strand stress, total strand stress 

at ultimate, and nominal moment capacity for the four additional cases in compression are 0.99, 

1.0, and 1.03, respectively. The corresponding COV are 16.9%, 2.9%, and 1.4%. Similarly,  the 

average ratios of  predicted over computed changes in strand stress, total strand stress at ultimate, 

and nominal moment capacity for the twelve additional cases in tension are 1.05, 1.01, and 1.02. 

The corresponding COV are 11.4%, 1.7%, and 1.1%. These results suggest that the proposed 
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prediction methodology can predict with good accuracy the change in strand stress, total strand 

stress at ultimate, and the nominal moment capacity for a variety of classes of UHPC. 

3.5 SUMMARY AND CONCLUSIONS 

A framework for predicting the flexural behavior of UHPC beams post-tensioned with 

unbonded tendons is proposed. A mechanics based phenomenological model is presented to 

predict flexural capacity, and a set of equations is proposed to predict the change in strand stress 

at the ultimate limit state, Δfps. The flexural design methodology is presented in terms of the failure 

mode observed when the considered specimens reach their ultimate load carrying capacity. The 

failure mode is characterized as either a fiber tension-controlled failure, or a concrete compression 

controlled failure. Nonlinear numerical simulations based on validated submodels are used to 

investigate the behavior of 221 post-tensioned UHPC beams from the onset of loading to failure. 

A sensitivity analysis is conducted to understand the influence of concrete compressive strength, 

area of tendons, effective depth of tendons, continuity, loading configuration, loading pattern, area 

of mild steel, maximum usable UHPC tensile strain and cracking stress, and friction coefficient on 

the strand stress at ultimate. The considered beams feature rectangular as well as T cross-sections 

in simply supported as well as continuous configurations. 

The following conclusions are drawn: 

1) The proposed flexural design methodology is general and provides numerous advantages: 

a) it accounts for simple span and continuous members featuring various loading 

configurations and loading patterns, b) it accounts for rectangular and T-section behavior, 

c) it captures the influence of key parameters such as beam cross-sectional dimensions, 

effective depth of tendons and span over effective depth ratio,  area of tendons and mild 

steel, and different classes of UHPC exhibiting various compressive and tensile properties. 
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2) The proposed methodology results in rather accurate predictions of the change in strand 

stress at ultimate, Δfps, the strand stress at ultimate, fps, and nominal moment capacity, Mn, 

of post-tensioned UHPC beams featuring average predicted values that are within 5% of 

computed ones and coefficients of variation no greater than 17%. 

3) The majority of investigated beams exhibited a fiber tension-controlled failure. The only 

exceptions were continuous T-beams and heavily post-tensioned beams, which exhibited 

UHPC compression-controlled failures. 

4) Loading configuration, patterned loading, effective depth, span to effective depth ratio, and 

maximum usable UHPC compressive and tensile strains, had a strong influence on the 

magnitude of the change in strand stress at ultimate and therefore were directly included in 

the calculation of Δfps. 

5) The influence of specified UHPC compressive strength, tendon area, mild steel area, UHPC 

cracking stress, and continuity on Δfps was considered small enough to allow the equations 

of equilibrium capture their effect through the calculation of the depth to the neutral axis.  

3.6 RECOMMENDATIONS FOR FUTURE WORK  

Although the modeling protocol used to generate the database of UHPC beams post-

tensioned with unbonded strands was based on two validated submodels and is believed to simulate 

the behavior of such beams rather accurately, experimental testing of post-tensioned UHPC beams 

is recommended to increase fidelity in the proposed flexural design methodology and proposed 

equations for strand stress at ultimate. Future experimental work can be informed by the 

conclusions drawn from this study  in terms of: 1) locating strain, displacement, and load sensors 

at key locations to validate the two types of failure modes discussed in this paper, 2) confirming 

the influence of the parameters identified as the ones with the greatest impact on Δεps, and 3) 
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confirming the accuracy of the proposed equations for predicting the change in strand strain at the 

ultimate limit state. 
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4. Chapter 4 : Moment-Curvature-Deformation Response of UHPC Beams Post-tensioned 

with Internal Unbonded Tendons: Analysis and Algorithm 

4.1 Introduction 

Post-tensioned concrete flexural members have the ability to offer enhanced rentable space, 

architectural freedom, and adaptable structures by offering floor systems that feature very few 

columns. This characteristic has been well explored in the construction industry and post-tensioned 

concrete floors with unbonded tendons are the system of choice in many midrise and high-rise 

building structures. The ability to offer slender structures in general and slender floor systems in 

particular can be further enhanced if the post-tensioned (PT) flexural member is constructed with 

ultra-high performance concrete (UHPC), which in addition to its high compressive strength also 

offers considerable tensile strength. According to Annex 8.1 of Canadian Standards Association 

(2019) S6 Fibre Reinforced Concrete (FRC), ultra-high performance fiber reinforced concrete 

(UHPFRC), herein referred to as UHPC, is defined as a discrete fiber reinforced cementitious 

composite material with enhanced compressive strength and durability compared to high 

performance concretes with a minimum compressive strength of 120 MPa. According to the 

Federal Highway Administration (FHWA)(Russel and Graybeal 2013), “UHPC-class materials 

are cementitious based composite materials with discontinuous fiber reinforcement, compressive 

strengths above 150 Mpa, tensile strengths above 5 Mpa, and enhanced durability via their 

discontinuous pore structure”. In this study the FHWA (Russel and Graybeal 2013) definition for 

UHPC is adopted, although the variability of key parameters in the constitutive model are 

considered to evaluate their impact on post-tensioned member behavior. 

Typical post-tensioned concrete floor systems feature flat plates in midrise and high-rise 

building structures, or post-tensioned beams and one-way slabs in parking garages. Flat plates, 

beams, and one-way slabs are structural members whose behavior and failure are in many cases 
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dominated by flexure. While the flexural behavior of post-tensioned concrete members constructed 

with normal and high strength concrete has been investigated extensively, to the author’s 

knowledge the complete response of UHPC flexural members post-tensioned with internal 

unbonded tendons to gravity induced loading appears to be unexamined. 

The determination of the complete flexural response of a PT member is related to the 

determination of unbonded strand stress at various stages of loading. Various approaches have 

been used to determine this stress and consequently the complete flexural response for normal 

strength concrete (NSC) members. Some (Balaguru 1981, Naaman and Alkhairi 1991, Harajli and 

Kanj 1992, Pannell 1969, Tam and Pannell 1976, Au and Du 2004, Harajli 2006, Harajli 1990, 

Lee et al. 1999, Harajli et al. 2002, van Weerdhuizen and Bartlett 2020, Au et al. 2005, Vega and 

Dotreppe 1988) include the determination of strand stress at discrete points and limited ranges 

such as ultimate limit state and service, respectively, whereas others (Alkhairi and Naaman 1993, 

Knight et al. 2014, Ariyawardena and Ghali 2002, Ozkul et al. 2008, Vu et al. 2010, Kim et al. 

2012) provide guidance for how to obtain the complete flexural response. 

 Balaguru (1981) proposed a methodology to predict strand stress at service and ultimate 

level loads for NSC beams post-tensioned with unbonded tendons. Change in strand strain at 

service was empirically expressed as a function of span-eccentricity and eccentricity-maximum 

deflection ratio.  To obtain the change in strand stress at the ultimate limit state, a maximum 

deflection at ultimate is assumed based on what would be acceptable for this stage, and the 

attainability of this deflection is checked using the rotation capacity of the beam. Naaman and 

Alkhairi (1991) proposed a simplified methodology to predict the stress in unbonded tendons in 

NSC beams under service and ultimate loading conditions by employing empirically obtained 

bond reduction coefficients, which facilitate the use of solutions based on strain compatibility 
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while accounting for the lack of bond. This approach is attractive from a design perspective, since 

it addresses critical loading stages for a member, such as behavior both at service and at ultimate 

limit state. The concept of using a coefficient to account for the relative slip between concrete and 

tendons was also used by Harajli and Khanj (1992). Other researchers (Naaman and Alkhairi 1991, 

Pannell 1969, Tam and Pannell 1976, Au and Du 2004, Harajli 2006, Harajli 1990, Lee et al. 1999, 

Harajli et al. 2002) developed empirical formulations for calculating an equivalent plastic hinge 

length, which is attractive not only for calculating strand strain at the ultimate limit state, 𝜀𝑝𝑠, and 

consequently nominal flexural capacity, 𝑀𝑛, but also for calculating deflection at incipient failure, 

∆𝑢, which has recently emerged as a warning of the failure metric (van Weerdhuizen and Bartlett 

2020). Au et al. (2005) extended Pannell (1969) approach to investigate cracked PT NSC beam 

behavior under service loads. Vega and Dotreppe (1988) investigated the moment-curvature 

response of NSC beams prestressed with unbonded tendons at service and ultimate level loads 

using linear elastic beam flexure theory and an assumption for the plastic hinge length, 

respectively.  

These studies dealt primarily with understanding the behavior of NSC beams post-

tensioned with unbonded tendons under service and ultimate level loads. While these two stages 

of loading are of great importance to practicing engineers from the perspective of being able to 

calculate deflections at service and flexural capacities at the ultimate limit state, they provide 

limited insight about cross-section and member level ductility, the calculation of which is better 

informed by the availability of the full moment-curvature-deformation response. Additionally, as 

performance based design transitions from being an exception to becoming a norm in structural 

design, approaches that provide the means to obtain the full response of the structural members 

under loading will be needed. Alkhairi and Naaman (1993) and Knight et al. (2014) used 
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mechanics based approaches to address analytically the complete range of behavior of NSC beams 

post-tensioned with unbonded tendons thus addressing this need for NSC members. Similarly, 

Ariyawardena and Ghali (2002) developed a computer model to predict the complete response of 

PT NSC members. In this method of analysis the PT element is modeled as an assemblage of plane 

frame members connected at nodes. Ozkul et al. (2008) proposed a methodology, which considers 

the beam and tendon as a trussed beam system that allows for the use of equilibrium and 

compatibility equations as well as the law of conservation of energy to predict behavior at various 

load levels. Vu et al. (2010) proposed a model that allows the calculation of the structural response 

of PT NSC beams including deflections under service loading, before and after cracking, as well 

as at the ultimate limit state. The model uses a non-linear beam macro finite element, which is 

characterized mainly by its homogenous average moment of inertia (Vu et al. 2010). Kim and Lee 

(2012) developed an algorithm for predicting the load deformation response of continuous PT NSC 

members including the ability to capture moment redistribution.  

While the need to predict the complete flexural response of PT NSC members has been 

met, there is currently no efficient tool to predict the complete response of PT UHPC members 

whose behavior is significantly different from that of their NSC counterparts. For example, the 

studies mentioned above are based on the assumption that concrete is a material that resists 

primarily compression forces after cracking and flexural capacity is achieved when concrete 

ultimately crushes in compression. These assumptions do not reflect the behavior of UHPC as a 

material, which has unique compressive and tensile domains and do not represent the flexural 

failure mode of PT UHPC members, which has been reported to be controlled by the pulling of 

fibers before the crushing of concrete (Dogu and Menkulasi 2020). As a result, the tensile domain 

of UHPC plays an important role in dictating the failure mode of such members. 
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Dogu and Menkulasi (2020) recently presented a flexural design methodology for UHPC 

beams post-tensioned with internal unbonded tendons. However, the goal of the study was limited 

to offering an approach for predicting the ultimate flexural capacity of such members, which is of 

interest for collapse prevention but does not provide insight in terms of their complete flexural 

response from the onset of loading to failure. Nonlinear finite element analysis can be used to 

obtain the complete flexural response of PT UHPC beams, however, the creation and analysis of 

reliable models even for simple beams requires considerable computational time. 

The goal of the research provided in this paper is to present an efficient analytical method 

for obtaining the complete moment-curvature-deformation response of UHPC beams post-

tensioned with internal unbonded tendons by taking into consideration the nonlinear domain of 

UHPC in tension and how this nonlinear domain affects the behavior of these beams throughout 

the entire range of loading. The proposed methodology is presented in the form of an algorithm, 

which can be implemented in any mathematical software with programming capabilities such as 

Mathcad and Matlab. The proposed method offers the users an efficient tool to obtain the complete 

flexural response of such members including deflection at incipient failure and offers insight about 

their ductility at the cross-section and member level. The proposed method does not require the 

definition of empirically obtained elastic and inelastic design parameters such as bond reduction 

coefficients and plastic hinge length. However, it can facilitate the use of approaches that employ 

these parameters by helping formulate them without having to rely on extensive experimental 

testing or time-consuming finite element analysis. The scope is limited to simply supported PT 

UHPC beams with a rectangular cross-section that feature straight and draped tendons as well as 

various loading configurations, reinforcement ratios and material properties.  
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4.2 Definition of Cross-sectional and Member Level Ductility  

A typical moment-curvature-deformation relationship for an UHPC beam post-tensioned 

with internal unbonded tendons obtained using the proposed approach is provided in Fig. 4.1 and 

is characterized by four distinct phenomena. The application of prestress, the cracking of concrete, 

the yielding of reinforcement, and the attainment of ultimate moment capacity. 

 

 
Fig. 4.1 Qualitative illustration of moment-curvature-deformation response for a typical UHPC 

beam post-tensioned with internal unbonded tendons 

 

In this paper, curvature ductility, μφ, is defined as the ratio of the curvature at the maximum 

calculated flexural resistance, φu, over the curvature at the flexural resistance corresponding to 

yielding of the reinforcement in the tension zone, φy. This definition is consistent with that 

provided in Annex 8.1 of Canadian Standards Association (CSA) S6 Fibre Reinforced Concrete 

(2019), which requires a minimum curvature ductility ratio μmin of 2.0 for members designed for 

the applied moments under an elastic analysis without any force redistribution. ACI 318-19 (2019) 

and AASHTO LRFD Bridge Design Specifications (2017) uses a strain based definition for cross-

section level ductility of prestressed and nonprestressed concreted members constructed with NSC. 

A tension-controlled section is defined as a cross section in which the net tensile strain, εt, in the 
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extreme tension steel at nominal strength is greater than or equal to εty + 0.003, where εty is equal 

to 0.002 for all prestressed reinforcement and Grade 60 deformed reinforcement. This definition 

for εty is used to determine the curvature corresponding to yielding of the reinforcement in the 

tension zone, φy.   The net tensile strain, εt, is the tensile strain calculated in the extreme tension 

reinforcement at nominal strength exclusive of strains due to prestress, creep, shrinkage, and 

temperature (ACI 318-19 2019). If the limiting strain at the ultimate limit state for a tension-

controlled member (0.005) is divided with the strain at first yield (0.002), a strain-based cross-

section level ductility of 2.5 is obtained, which is slightly higher than the curvature based ductility 

of 2.0 specified in Canadian standard (2019) for fiber reinforced concrete (FRC). Both, the 

curvature-based definition provided in the Canadian standard (2019) for FRC and the strain-based 

definition provided in ACI 318-19 (2019) and AASHTO LRFD Specifications (2017) for NSC are 

used to quantify cross-section level ductility for UHPC beams post-tensioned with internal 

unbonded tendons.  

In this paper, member level ductility is expressed using two metrics. The first is the ratio 

of displacement when the beam reaches its maximum load carrying capacity, Δu, over the 

displacement corresponding to yielding of the reinforcement in the tension zone, Δy. The second 

is the ratio of span length, L, over deflection at incipient failure, Δu (i.e. when the beam reaches its 

maximum load carrying capacity). It has been recently (van Weerdhuizen and Bartlett 2020) 

argued that deflection at incipient failure is a meaningful warning of the failure metric because 

such deflections provide visible indications that the condition of the member could soon become 

dangerous. There are currently no requirements for member level ductility for prestressed or 

nonprestressed members as it is typically assumed that ductility at the cross-sectional level will 

translate to ductility at the member level for flexural dominated failures provided that detailing 
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requirements in the applicable codes and standards are followed. The proposed algorithm for 

computing the moment-curvature-deformation response of PT UHPC beams is used to evaluate 

ductility at the cross-section and member level, and to provide insight about the complete flexural 

behavior of PT UHPC members. 

4.3 Procedure for Computing Moment Curvature and Load Displacement Relationship 

The rectangular UHPC beam shown in Fig. 4.2 was taken as a prototype to develop the 

proposed procedure for obtaining the complete moment-curvature-deformation response of a 

simply supported UHPC beam post-tensioned with internal unbonded tendons. This UHPC beam 

contains bonded compression and tension mild steel, A’
s and As, respectively, and unbonded post-

tensioning tendons, Aps.  

 
Fig. 4.2 Typical post-tensioned UHPC beam detail considered in moment-curvature and load-

deformation response analysis 

 

The proposed procedure includes analysis conducted at the member level as well as at the 

cross-section level. Member level analysis is required due to the lack of bond between the tendons 

and the surrounding concrete, which does not allow the application of a cross-section level analysis 

based on strain compatibility. Therefore, compatibility is enforced at the member level by equating 
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the total change in length in the concrete fiber at the centroid of the tendons to the total change in 

tendon length. This member level condition of compatibility is enforced before the beam cracks 

as well as after the beam cracks.  

a)       

b)          

Fig. 4.3 Deformed a) uncracked and b) cracked configuration for a simply supported UHPC beam 

post-tensioned with internal unbonded tendons 

The proposed procedure covers pre- and post-cracking behavior. Naturally, a cracked beam 

will have portions that have cracked as well as portions that have not cracked. The challenge in 

this case is to demarcate the cracked and uncracked regions so that the appropriate analysis 

approach can be followed in each case. This demarcation involves the determination of the point 

along the length of the member where the applied moment, Mapplied, exceeds the cracking moment, 

Mcracking. This is a straightforward task when the tendon is straight, however, for draped 

configurations; it requires an iterative procedure because the location of the cracking moment 

depends on the effective depth as well as the applied loading configuration. Additionally, the 

demarcation between cracked and uncracked regions will shift as the applied moment intensity 

increases. After cracking, it is assumed that multiple cracks will form along the length of the 

member due to the presence of fibers and bonded mild reinforcement. The assumed deformed 

configurations for the uncracked and cracked beams are shown in Fig. 4.3a and 4.3b, respectively.  
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The assumed stress-strain relationships for all materials are shown in Fig. 4.4. These 

material constitutive models are important as they influence the flexural failure mode of the 

investigated beams. For example, Dogu and Menkulasi (2020) report that the failure mode of most 

UHPC beams post-tensioned with internal unbonded tendons is a tension-controlled failure in 

which the maximum usable tensile strain in UHPC, 𝜀𝑡𝑢, is attained before concrete crushes in 

compression or mild and prestressing steel fracture in tension. Therefore, a proper characterization 

of the tensile domain of UHPC is of outmost importance as it influences the failure mode of post-

tensioned UHPC members.  

This study considers UHPC formulations that exhibit an elasto-plastic (i.e. bilinear) tensile 

behavior as well as those that exhibit a trilinear (i.e. strain hardening followed by strain softening) 

behavior (Fig. 4.4a right). A total of three constitutive models are considered for the compression 

domain and a total of 13 for the tensile domain. The default compressive and tensile stress-strain 

curves are indicated in Fig. 4.4a. These curves are used in the majority of the parametric analysis, 

although the impact of other constitutive models on the complete flexural behavior of UHPC 

beams post-tensioned with internal unbonded tendons are considered. The validation of the 

constitutive model for the ascending branch of the compressive domain is provided by Graybeal 

(2017). Case 1 and 2 in the compressive domain differ from the default curve by exhibiting more 

gradual descending branches. In Case 1, the descending branch features a bilinear curve, which 

exhibits a stress of 0.5f’c when the strain is equal to 0.006. In Case 2, the descending branch extends 

from the point when the peak stress is achieved to a point with strain and stress equal to εtu= 0.01 

and 0.05f’
c, respectively. 
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a) 

 
b)                                                                    c) 

Fig. 4.4 Stress-strain relationship for: a) UHPC in compression (left) and tension (right), b) 

prestressing steel, and c) mild steel  

The validation for the bilinear and trilinear models in the tensile domain is shown in Fig. 

4.5a and 4.5b, respectively. The cracking stress is taken equal to 0.56√fc′ based on 

recommendations by Russell and Graybeal (2013). The maximum usable tensile strain εtu is 

limited to 0.01 based on test data provided by Haber et al. (2018). As can be seen, both the bilinear 

model and trilinear model provide rather accurate idealizations of the stress-strain behavior of 

UHPC in tension depending on which UHPC formulation is selected. Case 1-12 in the tensile 

domain differ from the default curve by exhibiting a strain hardening behavior after the first crack 

followed by a descending branch after the attainment of the peak tensile stress. To contain the 

scope of analysis, the peak tensile strength was taken equal to 1.5fcr and the strain at which this 
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stress is achieved was varied to create a variety of constitutive models. The descending branches 

for Case 1-6 was determined such that the stress that corresponds to a strain of εtu= 0.01 is 0.5fcr. 

For cases 7-12 the strain that corresponds with the peak stress was fixed at 0.005 and the stress 

that corresponds with εtu= 0.01 was varied from 0.2fcr to 0.8fcr. 

 
a)                                                                    b) 

Fig. 4.5 Validation of: a) bilinear model, and b) trilinear model for the tensile domain of UHPC 

 

Several controls are introduced in the proposed procedure to distinguish beams that exhibit 

a fiber tension-controlled failure from those that exhibit a UHPC compression failure so that the 

appropriate procedure is used in each case. Long term losses are not considered because it is 

assumed that the designer has a methodology available to estimate short term and long-term losses. 

Guidance on how to estimate losses in pretensioned UHPC beams is provided by Graybeal (2006) 

and John et al. (2011). The goal of the proposed methodology is to provide guidance for how to 

calculate the change in strand strain Δεps so that this change in strand strain can be added to the 

effective prestrain  𝜀𝑝𝑒 to calculate the total strand strain 𝜀𝑝𝑠 and consequently the force in the 

tendons, Ftendon, internal moment, Mn, cross-sectional curvature, 𝜑, total load, and mid-span 

displacements. In the proposed prediction methodology, the effective prestress, fpe, is an input and 

can therefore take any value. The determination of long-term deformation, which is typically 

addressed using multiplier-based methods or more advanced incremental time step analysis (ACI 

435R 2003), is outside the scope of work for this study.  
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The proposed methodology provides a tunable framework for accommodating UHPC 

formulations, prestressing strands, and bonded reinforcement whose behavior can be characterized 

using the relationships shown in Fig. 4.4. The following two sections provide a step-by-step 

explanation of the proposed procedure before and after cracking when the default compression and 

tension stress-strain curves for UHPC are used. 

4.3.1 Before Cracking  

The flowchart for obtaining the moment curvature and load deformation response of an 

uncracked UHPC beam post-tensioned with internal unbonded tendons is provided in Fig. 4.6. 

Half of the beam is taken as one section (Fig. 4.3a). No further discretization or meshing is required 

since numerical integration using the Gaussian quadrature rule is used to account for the variation  

of moment along the span when calculating tendon strain, 𝜀𝑝𝑠, and mid-span beam displacement. 

A total of six Gauss points are used to conduct the numerical integration based on Gauss-Legendre 

coefficients provided in Table 4.1. 

Table 4.1 Gauss-Legendre Coefficients (Hornbeck 1975) 
Gauss 

Coefficient No. 
Wk μk 

1 0.467913 0.23861918 

2 0.467913 -0.23861918 

3 0.360762 0.66120938 

4 0.360762 -0.66120938 

5 0.171324 0.93246951 

6 0.171324 -0.93246951 

 

A change in strand stress, Δfps,assumed, is initially selected and this assumed change is added 

to the effective prestress, fpe, to calculate the total strand stress, fps, and subsequently the total force 

in the tendon, Ftendon, before cracking. Using this tendon force, the cracking moment, Mcracking, at 

mid-span is calculated and the magnitude of the moment at the rest of the Gauss points is computed  

 



86 

 

 

 

 
Fig. 4.6 Flowchart used to obtain moment-curvature-deformation response in an uncracked 

UHPC beam post-tensioned with internal unbonded tendons 
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by scaling the mid-span moment considering the loading configuration and its magnitude at mid-

span.  

For every Gauss point, starting at mid-span, the curvature, φ, and the strain in concrete at 

the centroid of tendons, Δεconcrete_elastic, is calculated for the given moment corresponding to that 

point. Once this procedure is conducted for all points, the strain in the concrete at the centroid of 

tendons is numerically integrated along the length of the beam to calculate the total change in fiber 

length at the centroid of tendons, ΔLelastic. The numerical integration is conducted using the Gauss 

Legendre coefficients provided in Table 4.1.  

The total change in fiber length at the centroid of tendons, ∆𝐿𝑒𝑙𝑎𝑠𝑡𝑖𝑐, is set equal to the total 

change in tendon length to enforce member level deformation compatibility. This change in tendon 

length is then divided by the original tendon length, L, to calculate the change in tendon strain, 

Δεps_elastic. This change in tendon strain is added to the decompression strain, ∆𝜀𝑑𝑒𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛, and 

effective prestrain, εpe, to calculate the total strain in the strands, εps_total. Using the stress-strain 

curve for prestressing strands the total strain is used to obtain the total strand stress, fps. The 

effective prestress, fpe, is then subtracted from this total stress to determine the change in strand 

stress, Δfps,calculated, and to compare it to the value assumed at the beginning. If the two values match, 

then, moment, curvature, total load, and midspan deflection are reported, and the algorithm is 

terminated. Total load is calculated using the load configuration in question and the magnitude of 

the moment at mid-span; while mid-span deflection is calculated using the obtained curvature 

values at Gauss points and the second moment area theorem. If the assumed, Δfps,assumed, and 

calculated, Δfps,calculated, change in tendon stress do not match, the iteration continues with an 

assumed change in tendon stress set equal to that calculated in the previous iteration until the 
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assumed change in tendon stress matches with the calculated one. The step-by-step procedure 

including relevant equations is provided below. 

Member Level Analysis 

Step 1: Consider half of the beam as one section. Set Lelastic=L/2, where Lelastic is the length of the 

elastic portion of the loaded member in half the span, and L is the span length. 

Step 2: Assume a value for the change in strand stress, Δfps, and calculate the total strand stress 

 fps = fpe + Δfps and total tendon force, Ftendon, (Eq. 4.1).  

𝐹𝑡𝑒𝑛𝑑𝑜𝑛 = 𝑓𝑝𝑠𝐴𝑝𝑠 Eq. 4.1 

 

Cross-section Level Analysis (at all six Gauss points – start at mid-span) 

Step 3.1: Determine the cracking moment, Mcracking, at mid-span using Eq. 4.2 where Ag is the gross 

area of the section, etendon is the eccentricity of the prestress tendon, Sbottom and Stop are the section 

moduli with respect to the bottom and top of the beam, respectively; and 𝜎𝑐𝑟𝑎𝑐𝑘𝑖𝑛𝑔 (fcr in Fig. 4.4a) 

is the cracking stress of UHPC. Eq 4.2 is considering signs.  Determine the distribution of strain 

in the cross-section using Eq. 4.3-4.4 where 𝜀𝑡𝑜𝑝 and 𝜀𝑏𝑜𝑡𝑡𝑜𝑚 are the strains in the top most and 

bottom most fibers, respectively, and Ec is the modulus of elasticity of UHPC.  

𝑀𝑐𝑟𝑎𝑐𝑘𝑖𝑛𝑔 = (
𝐹𝑡𝑒𝑛𝑑𝑜𝑛
𝐴𝑔

+
𝐹𝑡𝑒𝑛𝑑𝑜𝑛𝑒𝑡𝑒𝑛𝑑𝑜𝑛

𝑆𝑏𝑜𝑡𝑡𝑜𝑚
+ 𝜎𝑐𝑟𝑎𝑐𝑘𝑖𝑛𝑔)𝑆𝑏𝑜𝑡𝑡𝑜𝑚 

Eq. 4.2 

𝜀𝑡𝑜𝑝 =
1

𝐸𝑐
(−

𝐹𝑡𝑒𝑛𝑑𝑜𝑛

𝐴𝑔
+
𝐹𝑡𝑒𝑛𝑑𝑜𝑛𝑒𝑡𝑒𝑛𝑑𝑜𝑛

𝑆𝑡𝑜𝑝
−
𝑀𝑐𝑟𝑎𝑐𝑘𝑖𝑛𝑔

𝑆𝑡𝑜𝑝
) 

Eq. 4.3 

𝜀𝑏𝑜𝑡𝑡𝑜𝑚 =
1

𝐸𝑐
(−
𝐹𝑡𝑒𝑛𝑑𝑜𝑛
𝐴𝑔

−
𝐹𝑡𝑒𝑛𝑑𝑜𝑛𝑒𝑡𝑒𝑛𝑑𝑜𝑛

𝑆𝑏𝑜𝑡𝑡𝑜𝑚
+
𝑀𝑐𝑟𝑎𝑐𝑘𝑖𝑛𝑔

𝑆𝑏𝑜𝑡𝑡𝑜𝑚
), 

Eq. 4.4 

Step 3.2: Calculate curvature at mid-span using Eq. 4.5 where h is the overall depth of the 

section. Store this curvature. 

𝜑 =
𝜀𝑡𝑜𝑝 + 𝜀𝑏𝑜𝑡𝑡𝑜𝑚

ℎ
 

Eq. 4.5 
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Step 3.3: Calculate the change in strain in concrete at the centroid of tendons, 𝛥𝜀𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒_𝑒𝑙𝑎𝑠𝑡𝑖𝑐,  at 

mid-span for the applied moment using Eq. 4.6 where c is the neutral axis depth measured from 

the top most compression fiber, and dps is the distance from centroid of tendons to the top most 

compression fiber. 

𝛥𝜀𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒_𝑒𝑙𝑎𝑠𝑡𝑖𝑐 =
𝜀𝑡𝑜𝑝

𝑐
(𝑑𝑝𝑠 − 𝑐) Eq. 4.6 

Step 3.4: Use the moment at mid-span and the considered loading configuration to determine the 

variation of moment, M, curvature, φ, and change in concrete strain at the centroid of 

tendons, 𝛥𝜀𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒_𝑒𝑙𝑎𝑠𝑡𝑖𝑐,  at all six Gauss points.  

Member Level Analysis 

Step 4: Calculate the change in concrete fiber length at the centroid of tendons, 𝛥𝐿𝑒𝑙𝑎𝑠𝑡𝑖𝑐, by 

integrating the change in strain at this fiber along the member length (definite integral shown in 

Eq. 4.7a; numerical integration based on Gaussian-Legendre quadrature rule using six points 

employed in algorithm and shown in Eq. 4.7b) 

𝛥𝐿𝑒𝑙𝑎𝑠𝑡𝑖𝑐 = ∫ 𝛥𝜀𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒_𝑒𝑙𝑎𝑠𝑡𝑖𝑐𝑑𝑥
𝐿𝑒𝑙𝑎𝑠𝑡𝑖𝑐
0

                                               Eq. 4.7a 

𝛥𝐿𝑒𝑙𝑎𝑠𝑡𝑖𝑐 = 2
(𝑥2−𝑥1)

2

𝐸𝑐𝐼
∑ 𝑀𝑥(𝑧𝑘)𝑒(𝑧𝑘)𝑊𝑘
6
𝑘=1                                           Eq. 4.7b 

where 𝑧𝑘 = 
𝑥2+𝑥1

2
+
𝑥2−𝑥1

2
𝜇𝑘= Gauss-Legendre point; e(zk) = eccentricity of unbonded tendon 

evaluated at Gauss-Legendre point; Mx(zk) = external moment as a function of Gauss-Legendre 

point zk; x1 = 0; x2 = Lelastic; Wk = Gauss-Legendre coefficient (Table 4.1); μk = Gauss-Legendre 

coefficient (Table 4.1) 

Step 5: Calculate the change in strand strain, 𝛥𝜀𝑝𝑠_𝑒𝑙𝑎𝑠𝑡𝑖𝑐, (Eq. 4.8), the total strand 

strain, 𝜀𝑝𝑠_𝑒𝑙𝑎𝑠𝑡𝑖𝑐,  (Eq. 4.9), and total strand stress, fps (Eq. 4.10). 
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𝛥𝜀𝑝𝑠_𝑒𝑙𝑎𝑠𝑡𝑖𝑐 =
𝛥𝐿𝑒𝑙𝑎𝑠𝑡𝑖𝑐

𝐿
 

Eq. 4.8 

𝜀𝑝𝑠_𝑒𝑙𝑎𝑠𝑡𝑖𝑐 = 𝜀𝑝𝑒 + 𝛥𝜀𝑝𝑠_𝑒𝑙𝑎𝑠𝑡𝑖𝑐 Eq. 4.9 

𝑓𝑝𝑠 =  6.895 𝜀𝑝𝑠_𝑒𝑙𝑎𝑠𝑡𝑖𝑐  [𝐴 +
𝐵

{1 + (𝐶𝜀𝑝𝑠_𝑒𝑙𝑎𝑠𝑡𝑖𝑐)
𝐷
}
1
𝐷⁄
 ] ≤ 𝑓𝑝𝑢 

Eq. 4.10 

where A = 887; B = 27613; C= 112.4; and D = 7.36 for 1861.65 MPa tendon;  
𝑓𝑝𝑦

𝑓𝑝𝑢
⁄ = 0.9, 

where fpy and fpu are yield and ultimate stress of prestressing strands, respectively. 

Step 6: Compare the assumed strand stress in Step 2 with that obtained in Step 5. If they match, 

proceed to Step 7, if not go back to Step 2 with calculated tendon stress obtained in Step 5. 

Step 7: Using the curvature diagram along the length of the member and the second moment area 

theorem determine mid-span displacement, 𝛥𝑚𝑖𝑑𝑠𝑝𝑎𝑛, using numerical integration based on Gauss-

Legendre quadrature rule (Eq. 4.11). Also, determine total load considering the applied loading 

configuration and the magnitude of the cracking moment. 

𝛥𝑚𝑖𝑑𝑠𝑝𝑎𝑛 =
(𝑥2−𝑥1)

2

𝐸𝑐𝐼
∑ 𝑀𝑥(𝑧𝑘)𝑧𝑘𝑊𝑘
6
𝑘=1                                        Eq. 4.11 

Step 8: Report mid-span moment (cracking moment), mid-span curvature, mid-span displacement, 

and total load. Also, store concrete top fiber strain as this information will be useful for the 

procedure after cracking. 

4.3.2 After Cracking 

The flowchart for obtaining the moment curvature and load deformation response of a 

cracked UHPC beam post-tensioned with internal unbonded tendons is provided in Fig. 4.7. First, 

the section at mid-span is considered and is assigned a number (i.e. S=1 at mid-span). Then the 

maximum usable strain in tension and compression for all materials considered are stored as this  
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Fig. 4.7 Flowchart used to obtain moment-curvature-deformation response in a cracked UHPC 

beam post-tensioned with internal unbonded tendons 
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information will be used to validate the assumed failure mode. A maximum compressive strain for 

UHPC at mid-span is then assumed to determine the point up until which the algorithm is desired 

to be run. Then, an initial value for the top fiber compressive strain in UHPC at mid-span, εc,s=1, is 

assumed together with the change in strand stress, Δfps,assumed. The assumed change in tendon stress 

is then used to determine the total stress, fps, and the force in the tendon, Ftendon. Knowing the force 

in the tendon and an anchor point in the strain diagram, force equilibrium can be used to iteratively 

determine the depth to the neutral axis, c, at mid-span.  

Once the depth to the neutral axis at midspan is determined, the internal moment at mid-

span is computed. Then the location of the first crack in the beam is determined. This information 

is used to distinguish cracked regions, Lcracked, from uncracked regions, Lelastic. The cracked region 

in half of the beam is divided into an odd number of sections, n, to facilitate coefficient symmetry 

when implementing Simpson’s rule for numerical integration (Fig. 4.3b). This creates an even 

number (n-1) of beam elements (segments) in the cracked region in half of the beam. For each 

section, the combination of concrete top fiber strain, εtop,c, and neutral axis depth c that results in 

force and moment equilibrium is determined iteratively. Once the εtop,c and c couple is determined 

for every section, this information is used to calculate curvature, ϕ, at every section as well as the 

strain in concrete at the centroid of tendons, ∆εconcrete_cracked. The uncracked region is considered as 

one section. Then, the total change in concrete fiber length at the centroid of tendons, ΔLcracked, is 

calculated by numerically integrating the strain in the concrete at the level of tendons along the 

length of the beam. While Gauss-Legendre quadrature is used to integrate strain in the uncracked 

region, Simpson’s 1/3 rule is used to conduct the numerical integration in the cracked region 

because Gauss quadrature cannot be used since the method requires the integrated function to be 
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continuous rather than discrete to facilitate integration at the predetermined Gauss points. 

Simpson’s 1/3 rule may be used with equally spaced beam sections and does not require the 

function to be continuous. 

Once the total change in fiber length at the centroid of tendons is computed, this is equated 

to the change in tendon length to ensure member level deformation compatibility. Then the change 

in tendon length, ΔLcracked, is divided by the original tendon length, L, to determine the change in 

tendon strain, Δεps_cracked. The change in tendon strain is then added to the effective prestrain, εpe, 

and the decompression strain, ∆εps_decompression, to compute the total strain in the tendon, εps_total. The 

stress-strain curve for the strands is then used to obtain the total stress in the strand, fps. The change 

in strand stress, Δfps,calculated, is computed by subtracting the effective prestress, fpe, from the total 

stress in the strands, fps. If this matches the assumed change in strand stress at the beginning of the 

algorithm then the mid-span moment, mid-span curvature, total reaction, and mid-span 

displacement are reported. Mid-span displacement is computed by using the second moment area 

theorem, the calculated curvature at various sections along the length of the beam, and Simpson’s 

1/3 rule for the cracked region and Gauss-Legendre quadrature rule for the uncracked region. This 

entire procedure is then repeated for different levels of strain at the top concrete fiber until the full 

moment-curvature-deformation response is obtained. Algorithm termination criteria is established 

to ensure that the analysis stops once flexural failure occurs. Flexural failure is defined as the 

attainment of maximum usable concrete strain in tension or compression, or strand rupture. If the 

calculated change in strand stress does not match with that assumed at the beginning of the 

algorithm, then the procedure is repeated until convergence is achieved by setting the assumed 

change in strand stress equal to the computed one for the next iteration. A detailed step-by-step 

procedure of the algorithm just described is provided below: 
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Cross-section Member Analysis 

Step 1: Assume a top concrete fiber strain at mid-span, εc,s=1 and a change in strand stress Δfps. 

Step 2: Determine the total stress in strands, fps, and the force in the strands, Ftendon, using Eq. 4.1. 

Step 3: Determine the cracking moment, Mcracking, using the prestressing force obtained in Step 2 

for a straight tendon configuration. For a draped tendon configuration, see Step 6. 

Step 4: Using the assumed concrete top fiber strain and the calculated tendon force at mid-span 

determine the depth to the neutral axis, c, iteratively, using force equilibrium as indicated in Eq. 

4.12-4.17; where Ctotal is the total compression force; Cconcrete and Ccompression mild steel are the 

compression forces provided by concrete and mild steel, respectively; bw is the width of the section; 

d’
s and ds are the distances from compression and tension mild steel to the uppermost compression 

fiber, respectively; E’
s and Es are the moduli of elasticity of compression and tension mild steel, 

respectively; f’
c is the compressive strength of UHPC; f’

y  and fy are the yield stress of the 

compression and tension mild steel, respectively; 𝜀𝑐𝑟 is the UHPC cracking strain; 𝜀𝑡 is the tensile 

strain in UHPC in the bottom most fiber; Ttotal is the total tension force; Tconcrete and Ttensionmildsteel 

are the tension forces provided by concrete and mild steel, respectively; and Ttendon (Ftendon) is the 

tension force provided by tendon. 

Ctotal = 𝐶𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒 + 𝐶𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑚𝑖𝑙𝑑 𝑠𝑡𝑒𝑒𝑙 Eq. 4.12 

Ctotal = 
𝜀𝑡𝑜𝑝,𝑐𝐸𝑐𝑏𝑤𝑐

2
+
𝜀𝑡𝑜𝑝,𝑐(𝑐−𝑑𝑠

′)𝐸𝑠
′𝐴𝑠
′

𝑐
 

where 𝜀𝑡𝑜𝑝,𝑐𝐸𝑐 ≤ 𝑓𝑐
′ and   

𝜀𝑡𝑜𝑝,𝑐(𝑐−𝑑𝑠
′)𝐸𝑠

′

𝑐
≤ 𝑓𝑦

′ 

Eq. 4.13 

𝜀𝑐𝑟 =
𝑓𝑐𝑟
𝐸𝑐
      𝜀𝑡 =

𝜀𝑡𝑜𝑝,𝑐(ℎ − 𝑐)

𝑐
 

Eq. 4.14 

Ttotal = 𝑇𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒 + 𝑇𝑡𝑒𝑛𝑠𝑖𝑜𝑛 𝑚𝑖𝑙𝑑 𝑠𝑡𝑒𝑒𝑙 + 𝑇𝑡𝑒𝑛𝑑𝑜𝑛 Eq. 4.15 
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Ttotal = 
(ℎ−𝑐)𝑓𝑐𝑟𝑏𝑤

2
(
𝜀𝑐𝑟

𝜀𝑡
) + (ℎ − 𝑐)𝑓𝑐𝑟𝑏𝑤(

𝜀𝑡−𝜀𝑐𝑟

𝜀𝑡
) +

𝜀𝑡𝑜𝑝,𝑐(𝑑𝑠−𝑐)𝐸𝑠𝐴𝑠

𝑐
 + 𝑓𝑝𝑠𝐴𝑝𝑠 

where 𝜀𝑡 ≤ 𝜀𝑡𝑢  and   
𝜀𝑡𝑜𝑝(𝑑𝑠−𝑐)𝐸𝑠

𝑐
≤ 𝑓𝑦 

Eq. 4.16 

Ctotal = Ttotal Eq. 4.17 

Step 5: Once force equilibrium for the mid-span section is satisfied, determine the internal mid-

span moment. 

Member Level Analysis 

Step 6: Determine the point that demarcates cracked and uncracked regions for the loading 

configuration in question (use Eq. 4.18-4.19 for a straight tendon configuration where Luncracked is 

the uncracked length of the member starting from each support (Fig. 4.3b), L is the length of the 

member, and Lcracked is the cracked length of the member). If the tendon is draped, use the moment 

at mid-span, the external loading configuration, and the variation of tendon eccentricity to 

determine the point that demarcates cracked and uncracked regions. 

𝐿𝑢𝑛𝑐𝑟𝑎𝑐𝑘𝑒𝑑 =
𝑀𝑐𝑟𝑎𝑐𝑘𝑖𝑛𝑔𝐿

𝑀𝑚𝑖𝑑𝑠𝑝𝑎𝑛2
  (𝑜𝑛𝑒 𝑝𝑜𝑖𝑛𝑡 𝑙𝑜𝑎𝑑𝑖𝑛𝑔 𝑖𝑛 𝑚𝑖𝑑𝑠𝑝𝑎𝑛) 

Eq. 4.18 

𝐿𝑢𝑛𝑐𝑟𝑎𝑐𝑘𝑒𝑑 =
𝑀𝑐𝑟𝑎𝑐𝑘𝑖𝑛𝑔𝛼𝐿

𝑀𝑚𝑖𝑑𝑠𝑝𝑎𝑛
  (𝑡𝑤𝑜 𝑝𝑜𝑖𝑛𝑡 𝑙𝑜𝑎𝑑𝑖𝑛𝑔) Eq. 4.19 

Step 7: For the uncracked region use steps 3 through 5 in the pre-cracking procedure to determine 

the change in strand strain in the uncracked region. For the cracked region, proceed with the next 

step. 

Step 8: Determine the length of the cracked region, 𝐿𝑐𝑟𝑎𝑐𝑘𝑒𝑑, (Eq. 4.20), divide the cracked region 

into an odd number of sections, n, and determine the length of a typical cracked segment, 𝛥𝐿𝑐𝑟𝑎𝑐𝑘𝑒𝑑 

(Eq. 4.21).  

𝐿𝑐𝑟𝑎𝑐𝑘𝑒𝑑 =
𝐿 

2
− 𝐿𝑢𝑛𝑐𝑟𝑎𝑐𝑘𝑒𝑑 

Eq. 4.20 
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𝛥𝐿𝑐𝑟𝑎𝑐𝑘𝑒𝑑 =
𝐿𝑐𝑟𝑎𝑐𝑘𝑒𝑑 

𝑛 − 1
 

 

Eq. 4.21 

Step 9: Store the net moment due to prestress and externally applied loads at all sections. Also, 

store the total reaction. 

Cross-section Member Analysis 

Step 10.1: Satisfy moment and force equilibrium starting from s=2 to s=n by assuming a concrete 

strain at the top fiber, 𝜀𝑡𝑜𝑝,𝑠≥2, and a neutral axis depth , c , to determine the strain distribution 

along the depth of the member. Using this strain distribution determine stresses using material 

constitutive relationships for concrete and bonded reinforcement and calculate corresponding 

forces. For prestress use the prestressing force assumed in Step 2. Force and moment equilibrium 

can be checked  by establishing a tolerance for the acceptable error.  

Step 10.2: If both, force and moment equilibrium are satisfied, proceed with the next step, 

otherwise go back to step 10.1 and assume another pair of 𝜀𝑡𝑜𝑝,𝑠≥2 and c for sections starting from 

s=2 to s=n. 

Step 10.3: Compute the change in concrete strain at the centroid of tendons in the cracked 

region, 𝛥𝜀𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒_𝑐𝑟𝑎𝑐𝑘𝑒𝑑, using Eq. 4.22.  

 𝛥𝜀𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒_𝑐𝑟𝑎𝑐𝑘𝑒𝑑 =
𝜀𝑡𝑜𝑝,𝑐

𝑐
(𝑑𝑝𝑠 − 𝑐) Eq. 4.22 

Step 10.4: Compute decompression strain in concrete at the centroid of tendons by considering the 

effect of prestressing only (Eq. 4.23). If the tendon is straight, this decompression strain will be 

constant along the beam length. If the tendon is draped, the decompression strain should be 

calculated at all sections under consideration.  

𝛥𝜀𝑑𝑒𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 =
1

𝐸𝑐
(
𝐹𝑡𝑒𝑛𝑑𝑜𝑛

𝐴𝑔
+
𝐹𝑡𝑒𝑛𝑑𝑜𝑛𝑒𝑡𝑒𝑛𝑑𝑜𝑛𝑒𝑡𝑒𝑛𝑑𝑜𝑛

𝐼𝑔
) Eq. 4.23 

Step 10.5: Repeat steps 10.1 to 10.4 for all sections under consideration (sections i through n) 
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Member Level Analysis 

Step 11: Calculate the change in fiber length at the level of tendon due to decompression, 

∆𝐿𝑑𝑒𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛, and externally applied loads, ∆𝐿𝑐𝑟𝑎𝑐𝑘𝑒𝑑,  by integrating the strain in concrete at 

the level of tendon along the cracked region (direct integration shown in Eq. 4.24 and 4.25). Use 

Gauss-Legendre quadrature rule as shown previously for calculating the change in fiber length due 

to decompression and Simpson’s 1/3 rule for the cracked regions (Eq. 4.25b). 

𝛥𝐿𝑑𝑒𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 = ∫ 𝛥𝜀𝑑𝑒𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑑𝑥
𝐿

0

 
Eq. 4.24 

𝛥𝐿𝑐𝑟𝑎𝑐𝑘𝑒𝑑 = ∫ 𝛥𝜀𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒_𝑐𝑟𝑎𝑐𝑘𝑒𝑑𝑑𝑥
𝐿𝑐𝑟𝑎𝑐𝑘𝑒𝑑

0

  
Eq. 4.25a 

𝛥𝐿𝑐𝑟𝑎𝑐𝑘𝑒𝑑 = 
2𝛥𝐿𝑐𝑟𝑎𝑐𝑘𝑒𝑑

3
[(𝛥𝜀𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒_𝑐𝑟𝑎𝑐𝑘𝑒𝑑(𝑖,1) + 4𝛥𝜀𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒_𝑐𝑟𝑎𝑐𝑘𝑒𝑑(𝑖,2)

+ 2𝛥𝜀𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒_𝑐𝑟𝑎𝑐𝑘𝑒𝑑(𝑖,3) +⋯4𝛥𝜀𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒𝑐𝑟𝑎𝑐𝑘𝑒𝑑(𝑖,𝑛−1)

+ 𝛥𝜀𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒𝑐𝑟𝑎𝑐𝑘𝑒𝑑(𝑖,1))] 

Eq. 4.25b 

 

Step 12: Calculate the change in strand strain (𝛥𝜀𝑝𝑠_𝑑𝑒𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 and 𝛥𝜀𝑝𝑠_𝑐𝑟𝑎𝑐𝑘𝑒𝑑), the total 

strand strain (𝜀𝑝𝑠_𝑡𝑜𝑡𝑎𝑙), and total strand stress (fps) using Eq. 4.26-4.29. 

𝛥𝜀𝑝𝑠_𝑑𝑒𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 =
𝛥𝐿𝑑𝑒𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛

𝐿
  

Eq. 4.26 

𝛥𝜀𝑝𝑠_𝑐𝑟𝑎𝑐𝑘𝑒𝑑 =
𝛥𝐿𝑐𝑟𝑎𝑐𝑘𝑒𝑑

𝐿
  

Eq. 4.27 

𝜀𝑝𝑠_𝑡𝑜𝑡𝑎𝑙 = 𝜀𝑝𝑒 + 𝛥𝜀𝑝𝑠𝑒𝑙𝑎𝑠𝑡𝑖𝑐 + 𝛥𝜀𝑝𝑠_𝑐𝑟𝑎𝑐𝑘𝑒𝑑 + 𝛥𝜀𝑝𝑠_𝑑𝑒𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛  Eq. 4.28 

𝑓𝑝𝑠 = 6.895𝜀𝑝𝑠_𝑡𝑜𝑡𝑎𝑙 [𝐴 +
𝐵

{1 + (𝐶𝜀𝑝𝑠_𝑡𝑜𝑡𝑎𝑙)
𝐷
}
1
𝐷⁄
 ] ≤ 𝑓𝑝𝑢 

where A = 887, B = 27613 , C= 112.4 , D = 7.36 for 1861.65 MPa tendon  
𝑓𝑝𝑦

𝑓𝑝𝑢
⁄ = 0.9  

Eq. 4.29 

Step 13: Compare the assumed change in strand stress in Step 1 with that obtained in Step 12. If 

they match, proceed to Step 14, if not go back to Step 1, use the same strain for the top concrete 
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fiber, 𝜀𝑡𝑜𝑝,𝑠=1, and set the assumed change in strand stress equal to the difference between, fps, 

obtained in Eq. 4.29 and, fpe, (effective prestress) (i.e. set the total strand stress, fps, equal to that 

calculated in Step 12).  

Step 14: Determine mid-span displacement using the curvature diagram along the length of the 

member, the second moment area theorem, and numerical integration using Simpson’s 1/3 rule 

(Eq.4.30). 

𝛥𝑚𝑖𝑑𝑠𝑝𝑎𝑛 = 
𝛥𝐿𝑐𝑟𝑎𝑐𝑘𝑒𝑑

3
[(𝜑𝑐𝑟𝑎𝑐𝑘𝑒𝑑(𝑖,1)𝑥(𝑖,1) + 4𝜑𝑐𝑟𝑎𝑐𝑘𝑒𝑑(𝑖,2)𝑥(𝑖,2) + 2𝜑𝑐𝑟𝑎𝑐𝑘𝑒𝑑(𝑖,3)𝑥(𝑖,3) +

⋯4𝜑𝑐𝑟𝑎𝑐𝑘𝑒𝑑(𝑖,𝑛−1)𝑥(𝑖,𝑛−1) + 𝜑𝑐𝑟𝑎𝑐𝑘𝑒𝑑(𝑖,𝑛)𝑥(𝑖,𝑛))]                   Eq. 4.30 

Step 15: Check the following subroutine termination criteria. First, 𝜀𝑐𝑡𝑜𝑝 at any section along the 

member should not exceed 𝜀𝑐𝑢, although this is unlikely to occur because the flexure failure of 

post-tensioned UHPC beams is typically a fiber tension controlled failure in which fibers pull out 

before concrete crushes (Dogu and Menkulasi 2020). Second, 𝜀𝑡 at any section along the member 

should not exceed 𝜀𝑡𝑢, which corresponds with the attainment of the peak load (Dogu and 

Menkulasi 2020). Therefore, the algorithm is written to characterize the moment-curvature-

deformation response up until the point when the peak moment or load is achieved and not beyond. 

Lastly, 𝑓𝑝𝑠  should not exceed 𝑓𝑝𝑢, which indicates the fracture of tendons. If none of the 

termination criteria is applicable, go to Step 1 and increase 𝜀𝑡𝑜𝑝,𝑠=1. The increment with which 

𝜀𝑡𝑜𝑝,𝑠=1 is increased affects the run time of the algorithm. The change in strand stress, ∆𝑓𝑝𝑠, can 

be taken equal to that computed in the previous iteration. 
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4.3.3 Discussion of the Proposed Procedure 

It should be noted that the proposed procedure does not rely on any sort of empiricism 

other than the one included in the assumed material constitutive models. The proposed procedure 

relies on an extensive number of iterations to produce the moment-curvature-deformation 

response. The time required to run the proposed algorithm is orders of magnitude lower than that 

required to run high fidelity nonlinear finite element analysis (NFEA) such as those described in 

reference (Vu et al. 2010), which are capable of simulating the lack of bond and varying contact 

between unbonded tendons and the surrounding UHPC. The selection of the number of sections 

required to produce accurate results depends on the loading configuration and should be 

determined such that key changes in the moment diagram are captured. A total of 12 sections for 

half of the beam should be sufficient to produce reliable results. Fig. 4.8 shows a number of 

sections used for sensitivity analysis for the beam B-1 (see Table 4.2) when subject to a 

concentrated load at mid-span. As can be seen, even with three sections the results are rather 

accurate. The proposed algorithm can be used to obtain empirical coefficients, which can be used 

to determine plastic hinge length and strand stress at ultimate, or to obtain bond reduction factors 

for various stages of loading if an approach similar to that proposed by Naaman and Alkhairi 

(1991) is selected. 

 

Fig. 4.8 Sensitivity analysis for the number of sections considered for half of the span in a typical 

UHPC beam post-tensioned with internal unbonded tendons 
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4.4 Validation of Proposed Procedure 

Provided that there are currently no experimental tests on UHPC beams post-tensioned 

with unbonded tendons, the proposed procedure for computing the moment curvature and load 

deformation response of UHPC beams post-tensioned with internal unbonded tendons was 

compared with results obtained from validated nonlinear finite element analysis. The full 

validation as well as the details of the numerical modeling protocol used to create the finite element 

models is provided by Dogu and Menkulasi (2020) and was based on a submodel validation 

approach. In this approach, finite element models of normal strength concrete beams post-

tensioned with unbonded tendons, and UHPC beams prestressed with bonded tendons were created 

and the results were compared with those obtained from physical tests. Good correlation between 

computed and measured results were obtained. It was therefore deduced that a modeling protocol 

that is able to correctly capture the behavior of UHPC beams prestressed with bonded tendons as 

well as the behavior of normal strength concrete beams with unbonded tendons should be able to 

correctly capture the behavior of UHPC beams post-tensioned with unbonded tendons.  

 Fig. 4.9 shows the comparison between results obtained using the proposed procedure and 

those obtained using validated nonlinear finite element analysis. The results agree well at various 

levels. Fig. 4.9a1 and 4.9b1 illustrate the behavior at the member level in terms of total load versus 

mid-span displacement. Fig. 4.9a2 and 4.9b2 illustrate cross-sectional level behavior in terms of 

moment versus curvature at mid-span, and Fig. 4.9a3, 4.9b3, 4.9a4, 4.9b4 illustrate the variation 

of tendon stress with respect to mid-span displacement. The variation in tendon stress with respect 

to mid-span displacement is illustrated in terms of the total tendon stress as well as the change in 

tendon stress. The close agreement between FEA results and those obtained using the proposed 

procedure in the latter case is noteworthy because the change in tendon stress is rather small. The 
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results shown in Fig. 4.9 demonstrate that the proposed procedure can be used to reliably simulate 

the behavior of UHPC beams at various levels.  

a1) b1)  

a2) b2)  

a3) b3)  

a4) b4)  
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a5) b5)  

a6) b6)  

a)                                                           b) 

Fig. 4.9 Validation of proposed approach to compute moment-curvature-deformation response of 

UHPC beams post-tensioned with internal unbonded tendons: a) straight tendons, b) draped 

tendons 

4.5 Parametric Analysis , Failure Mode and Ductility 

Dogu and Menkulasi (2020) conducted an extensive parametric analysis on the influence 

of various parameters on the change in strand stress at the ultimate limit state. However, the 

influence of these parameters on flexural capacity and ductility of UHPC beams post-tensioned 

with unbonded tendons was not investigated. Therefore, a parametric analysis was conducted to 

understand the influence of various parameters on the complete moment curvature and load 

deformation response of UHPC beams post-tensioned with unbonded tendons. Table 4.2 shows 

the geometrical and material properties of the beam used for parametric analysis. This beam is 

considered to represent a baseline case. The beam is 152 mm wide (bw) and 305 mm deep (h) with 
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a span length of 8.53 m (L), and it features 2-13 mm diameter draped tendons with zero eccentricity 

at ends (e) and 102 mm eccentricity at mid-span (em).  

 
a)                                                                                    b) 

 
c)                                                                                           d) 

 
e)                                                                                           f) 

Fig. 4.10 Influence of various parameters on the moment-curvature relationship of UHPC beams 

post-tensioned with internal unbonded tendons: a) εtu, b) fcr, c) Aps, d) Astension, e) loading 

configuration on straight tendon profile, f) loading configuration on draped tendon profile 
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a)                                                                                     b) 

 
c)                                                                                 d) 

 
e)                                                                                 f) 

Fig. 4.11 Influence of various parameters on the load-deformation relationship of UHPC beams 

post-tensioned with internal unbonded tendons: a) εtu, b) fcr, c) Aps, d) Astension, e) loading 

configuration on straight tendon profile, f) loading configuration on draped tendon profile 
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a)   

b)  

Fig. 4.12 Influence of various constitutive models for UHPC on the moment-curvature and load-

deformation relationship: a) influence of the compressive domain, and b) tensile domain 

Compressive strength of UHPC (f’
c) is 152 MPa and modulus of elasticity (Ec) and cracking 

stress (fcr) are calculated using the equations shown in Fig. 4.4 and guidance provided in references 

(Russel and Graybeal 2013, Graybeal 2017). The prestressing strands are assumed to be low 

relaxation steel with 1862 MPa  ultimate tensile strength (fpu). The beam features 2-6 mm and 2-

10 mm diameter mild steel bars in tension, and 2-6 mm diameter mild steel bars in compression. 

The yield stress of mild steel is assumed to be 414 MPa.  

Table 4.2. Beam properties used in parametric analysis (See Fig. 4.2 for illustration) 

Beam 

ID 

Beam Properties 

bw 

(mm) 

h 

(mm) 

Aps
1 

(mm2) 

Tendon 

config.2 

em 

(mm) 

Astension
3 

(mm2) 

Ascomp. 

(mm2) 

f’
c 

(MPa) 

fcr
4
 

(MPa) 

fy 

(MPa) 

fpu 

(MPa) 

fpe 

(MPa) 

fpy/fpu  

B-1 152 305 198 Draped 102 205 63 152 6.89 414 1862 1262 0.9 
1See Table 4.5 for range; 2See Table 4.7 for range; 3See Table 4.6 for range; 4See Table 4.4 for range 
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4.5.1  Effect of εtu on complete flexural behavior 

It has been previously (Dogu and Menkulasi 2020) demonstrated that PT UHPC members 

exhibit a tension controlled failure, which is characterized by fiber pull out in tension before 

concrete crushes in compression when the peak load is achieved. Fiber pullout in tension is 

characterized by a reduction in UHPC’s ability to sustain tensile stresses accompanied by an 

increase in strain. The tensile strain at incipient fiber pullout is hereby called maximum usable 

tensile strain,  εtu, and is considered to be a parameter worthy of investigation since its attainment 

represents the point when the beam reaches its maximum load carrying capacity. The influence of 

εtu on the complete flexural behavior of UHPC beams post-tensioned with unbonded tendons is 

shown in Table 4.3, Fig. 4.10a, and Fig. 4.11a. Table 4.3 shows a total of nine beams that feature 

three different loading configurations whereas Fig. 4.10a and 4.11a feature three beams that feature 

a one-point loading configuration. The magnitude of εtu was varied from 0.005 to 0.015 in 

increments of 0.005. 

Table 4.3. Influence of εtu on flexural capacity and ductility 

Beam  

ID 

Loading  

configuration 
εtu 

c  

(mm) 

Mn  

(m-kN) 

% change 

(Moment) 

Cross-section  

Level Ductility 

Member Level 

Ductility 

𝜇𝜀 =
𝜀𝑢
𝜀𝑦

 𝜇𝜙 =
𝜙𝑢
𝜙𝑦

 𝜇𝛥=
𝛥𝑢

𝛥𝑦
 

𝐿

𝛥𝑢
 

B-1-ETU1-P One Point 0.005 84 119 -4.57 2.19 1.80 1.26 143 

B-1-ETU2-P One Point 0.010 63 125 Baseline 4.48 3.30 1.65 109 

B-1-ETU3-P One Point 0.015 53 126 +0.47 6.38 4.45 1.73 104 

B-1-ETU1-TP Two Point 0.005 85 119 -7.21 2.23 1.81 1.41 74 

B-1-ETU2-TP Two Point 0.010 54 128 Baseline 4.29 3.27 2.20 47 

B-1-ETU3-TP Two Point 0.015 64 129 +0.98 6.74 5.15 2.37 44 

B-1-ETU1-DP Distributed 0.005 85 126 -4.68 2.23 1.80 1.73 60 

B-1-ETU2-DP Distributed 0.010 65 132 Baseline 3.91 3.03 2.24 46 

B-1-ETU3-DP Distributed 0.015 55 139 +5.65 6.31 4.77 3.74 28 

 

The results shown in Table 4.3 and Fig. 4.13a suggest that +/-50% change in εtu causes 

only a marginal change in flexural capacity. There are several reasons for the disproportionate 

influence of εtu on flexural capacity. First, Fig. 4.14 shows that a significant increase in εtu causes 
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only a small decrease in the neutral axis depth (Table 4.3). The decrease in the neutral axis depth 

causes an increase in the height of the tension block provided by UHPC, however, this increase is 

much smaller than the increase in εtu as evinced in Fig. 4.15a, which shows a small increase in the 

tension force provided by UHPC compared to induced change in εtu. 

a)  b)  

c)  d)  

e)  

Fig. 4.13 Influence of various parameters on flexural capacity: a) εtu, b) fcr, c) ρps, d) ρstension, e) 

tendon profile 
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 Second, since UHPC is not the only component providing tensile resistance to an applied 

external moment, a certain percentage increase in εtu cannot have a proportional increase in the 

moment capacity of the beam. This is illustrated in Fig. 4.15a, which shows the tensile force 

provided by UHPC, tendons, and mild steel as εtu increases. Third, an increase in εtu causes an 

expansion in the tension block height provided by UHPC, which results in a reduction in the 

moment arm for the tension force provided by UHPC due to an upward shift in the location of the 

neutral axis and the resultant tension force provided by UHPC. The upward shift in the neutral axis 

causes also a shift in the location of the resultant compression force provided by UHPC, however, 

this shift is smaller than that caused by the expansion of the tension block, because the compression 

block has a triangular shape whereas the tension block has a rectangular shape. Therefore, there is 

a net reduction in the moment arm between the resultant compressive and tensile forces provided 

by UHPC. While this reduction is small, it is one of the reasons why a change in εtu does not result 

in a proportional change in flexural capacity.  

 
Fig. 4.14 Influence of the increase in εtu on strain, stress, and force diagrams for a typical UHPC 

beam post-tensioned with internal unbonded tendons 
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a) b) 

 
c)                                                                                   d) 

Fig. 4.15 Variation in the tension force provided by each component as a function of: a) εtu, b) fcr, 

c) ρps, and d) ρs. 

Table 4.3 and Fig. 4.16a suggest that εtu has a direct influence on cross-sectional and 

member level ductility although the degree of this influence varies from cross-sectional to member 

level. Fig. 4.16 shows that εtu is the parameter with the strongest influence on cross-section level 

ductility.  At the cross-sectional level, when ACI 318-19 (2019) and AASHTO (2017) strain-based 

definition for ductility is used, εtu has a proportional influence. A 100% increase in εtu typically 

results in a 100% increase in με. When the Canadian (2019) curvature-based definition is used, εtu 

has a slightly smaller influence on curvature ductility but still a very strong one. Out of the nine 
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beams considered in Table 4.3 only the ones that featured an εtu equal to 0.005 failed to meet 

minimum cross-section level ductility requirements provided in American (ACI 318-19 2019 and 

AASHTO 2017) and Canadian standards (2019) for NSC and FRC, respectively. 

 
                                         a)                                                                                        b) 

  
                                        c)                                                                                       d) 

 
e) 

Fig. 4.16 Influence of various parameters on cross-section and member level ductility: a) εtu, b) fcr, 

c) ρps, d) ρstension, e) tendon profile 
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a)                                                                                    b) 

 
             c)                                                                                           d) 

 
e) 

Fig. 4.17 Influence of various parameters on L/Δu: a) εtu, b) fcr, c) ρps, d) ρstension, e) tendon profile 
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This suggests that either the design of the UHPC formulation should be chosen such that 

there is a sufficient amount of fibers so that εtu is at least equal to 0.006, or the area of strands and 

tension mild steel should be adjusted accordingly. It is worth noting how the influence of εtu on 

member level ductility is not nearly as strong as that on cross-sectional level ductility especially 

for beams that feature one point and two point loading when the ratio of Δu/Δy is used to quantify 

ductility. For a distributed loading configuration the influence of εtu on member level ductility 

remains strong suggesting that ductility at the member level is highly dependent on the loading 

configuration. This observation is further corroborated when member level ductility is evaluated 

using the L/Δu ratio as shown in Fig. 4.17a. Beams with two point loading and distributed loading 

configurations exhibit much larger deflections at incipient failure than beams with a point load at 

mid-span. 

4.5.2 Effect of fcr on complete flexural behavior 

Table 4.4, Fig. 4.13b, and Fig. 4.16b illustrate the influence of fcr on flexural capacity and 

ductility. Fig. 4.15b illustrates the influence on fcr on the magnitude of the tensile force provided 

by UHPC, and Fig. 4.10 and 4.11 illustrate the influence of fcr on the full behavior of UHPC beams 

post-tensioned with unbonded tendons. The investigated beams featured a range of fcr from 

0.39√𝑓𝑐′ to 0.84√𝑓𝑐′ where f’
c is 152 MPa. A certain % change in the fcr causes a proportional 

change in the magnitude of the tension force provided by UHPC. This is expected and is illustrated 

in Fig. 4.15b. The influence of fcr on flexural capacity is more pronounced than that of εtu, because 

of the more significant impact that fcr has on the tension force provided by UHPC (Fig. 4.13b).  

Table 4.4, Fig. 4.16b, and Fig. 4.17b suggest that fcr has almost no marked effect on cross 

section and member level ductility. All twelve investigated beams exhibited similar levels of 
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ductility and they all met minimum cross-section level ductility requirements provided in (ACI 

318-19 2019 and AASHTO  2017) and Canadian standards (2019) for NSC and FRC, respectively. 

Fig. 4.17b suggests that when the ratio L/Δu was used to evaluate member level ductility, an 

increase in fcr corresponded with a slight increase in ductility (i.e. a lower L/Δu). This observation 

applies in Fig. 4.16b as well, although the influence of fcr on the Δu/Δy ratio is not as noticeable. 

Table 4.4. Influence of cracking stress fcr on flexural capacity and ductility 

Beam  

ID 

Loading  

configuration 

fcr 
Mn 

(mm-

kN 

x103) 

% change 

(Moment) 

Cross-section level 

ductility 

Member level  

ductility 

(MPa) √𝑓𝑐
′ 𝜇𝜀 =

𝜀𝑢
𝜀𝑦

 𝜇𝜙 =
𝜙𝑢
𝜙𝑦

 𝜇𝛥=
𝛥𝑢

𝛥𝑦
 

𝐿

𝛥𝑢
 

B-1-fcr1 One Point 4.83 0.39 114 -8.74 4.36 3.24 1.63 115 

B-1-fcr2 One Point 6.89 0.56 125 Baseline 4.48 3.30 1.65 109 

B-1-fcr3 One Point 8.27 0.68 132 +5.66 4.41 3.08 1.69 109 

B-1-fcr4 One Point 10.34 0.84 143 +14.67 4.44 3.19 1.75 102 

B-1-fcr1 Two Point 4.83 0.39 118 -8.15 4.32 3.27 2.13 50 

B-1-fcr2 Two Point 6.89 0.56 128 Baseline 4.29 3.27 2.20 47 

B-1-fcr3 Two Point 8.27 0.68 136 +5.92 4.49 3.27 2.20 46 

B-1-fcr4 Two Point 10.34 0.84 147 +14.57 4.48 3.28 2.24 44 

B-1-fcr1 Distributed 4.83 0.39 122 -7.7 4.11 3.19 2.21 46 

B-1-fcr2 Distributed 6.89 0.56 132 Baseline 3.91 3.03 2.24 46 

B-1-fcr3 Distributed 8.27 0.68 139 +5.76 4.22 3.21 2.28 45 

B-1-fcr4 Distributed  10.34 0.84 150 +13.85 4.22 3.15 2.30 44 

4.5.3 Effect of ρps on complete flexural behavior 

Table 4.5, Fig. 4.13c, and Fig. 4.16c show the influence of longitudinal unbonded 

reinforcement ratio, ρps, on flexural capacity and ductility. While an increase in ρps causes a 

significant increase in flexural capacity, this increase is not directly proportional to that induced in 

the ρps because tendons are not the only component providing tensile resistance as illustrated in 

Fig. 4.15c. Also, an increase in ρps results in a decrease in the tendon stress at ultimate, fps, (Dogu 

and Menkulasi 2020) thus affecting the magnitude of the tension force provided by the tendons 

and their contribution to flexural capacity. Fig. 4.15c shows that an increase in ρps causes a slight 

decrease in the tension force provided by UHPC due to a shift in the neutral axis, thus further 

dampening the increase in flexural capacity caused by an increase in ρps. Table 4.5 shows that the 
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influence of  ρps on flexural capacity is stronger than the influence of fcr for a given percentage 

change in these parameters from the baseline values. 

Table 4.5. Influence of ρps on flexural capacity and ductility 

Beam ID 
Loading 

configuration 

ρ (%) 
Mn 

(m-kN) 

% change 

(Moment) 

Cross-section level 

ductility 

Member level 

ductility 

ρtotal ρps 𝜇𝜀 =
𝜀𝑢
𝜀𝑦

 𝜇𝜙 =
𝜙𝑢
𝜙𝑦

 𝜇𝛥=
𝛥𝑢

𝛥𝑦
 𝐿

𝛥𝑢
 

B-1-Aps1 One Point 1.00 0.51 125 Baseline 4.48 3.30 1.65 109 

B-1-Aps2 One Point 1.21 0.72 147 +17.28 4.27 3.13 1.57 113 

B-1-Aps3 One Point 1.47 0.98 170 +35.82 3.77 2.65 1.37 125 

B-1-Aps1 Two Point 1.00 0.51 128 Baseline 4.29 3.27 2.20 47 

B-1-Aps2 Two Point 1.21 0.72 149 +16.34 4.26 3.20 1.90 54 

B-1-Aps3 Two Point 1.47 0.98 171 +33.33 3.98 2.98 1.54 63 

B-1-Aps1 Distributed 1.00 0.51 132 Baseline 3.91 3.03 2.24 46 

B-1-Aps2 Distributed 1.21 0.72 159 +20.28 3.90 2.93 2.23 46 

B-1-Aps3 Distributed 1.47 0.98 192 +45.69 3.77 2.92 2.22 47 

ρtotal = ρstension+ ρps; ρstension= Astension/(bwds); ρps= Aps/(bwdps); ρmin_stension_ACI = 0.22% (Astension_min_ACI=0.004Act) 

 

Table 4.5, Fig. 4.16c, and Fig. 4.17c suggest that an increase in ρps  typically results in a 

decrease in cross-section and member level ductility although all nine investigated beams met 

minimum ductility requirements provided in American (ACI 318-19 2019 and AASHTO 2017) 

and Canadian (2019) standards for NSC and FRC, respectively. The investigated total longitudinal 

reinforcement ratio ρtotal (or ρt) varied from 1.00% to 1.47%, while the unbonded reinforcement 

ratio ρps varied from 0.51% to 0.98%. The bonded reinforcement ratio, ρs (or ρstension) was kept 

constant at 0.49%, which is greater than the 0.22% required minimum ratio specified in ACI 318-

19 (2019) for bonded reinforcement in NSC members post-tensioned with unbonded tendons. This 

required minimum bonded longitudinal reinforcement ratio, ρmin_stension_ACI, was calculated as 

Astension_min_ACI/(bwdstension) where  Astension_min_ACI=0.004Act, and Act is the area of that part of cross 

section between the flexural tension face and centroid of gross section. Fig. 4.16c and 4.17c 

suggest that for beams with point and two point loading configurations ductility decreased as ρps 
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increased, whereas the ductility of the beams with a distributed loading remained essentially 

unaffected by the increase in ρps.  

4.5.4 Effect of ρstension on complete flexural behavior 

Table 4.6, Fig. 4.13d, 4.16d, and 4.17d show the influence of the bonded longitudinal 

reinforcement ratio in tension, ρstension, on flexural capacity and ductility. Similar to the influence 

of ρps on flexural capacity, while an increase in ρstension causes a proportional increase in the tension 

force provided by mild steel, it does not cause a proportional increase in flexural capacity due to 

the contribution of tendons and UHPC. In general, Fig. 4.15 illustrates how the contribution of 

each component that provides tensile resistance varies for different scenarios. As ρstension is 

changing, there is no significant difference in the tensile resistance provided by UHPC and 

prestressing tendons (Fig. 4.15d). The investigated total longitudinal reinforcement ratio ρtotal 

varied from 1.00% to 3.08%, while the reinforcement ratio for bonded tension steel, ρstension, varied 

from 0.49% to 2.57%. The unbonded reinforcement ratio, ρps, was kept constant at 0.51%. Table 

4.6 shows that while the influence of ρstension on flexural capacity is not as strong as the influence 

of fcr and ρps for a given percentage change from the baseline values, ρstension is still an influential 

factor on flexural capacity. 

Table 4.6, Fig. 4.16d and 4.17d suggest that ρstension has a similar effect with ρps on cross-

sectional and member level ductility with higher ρstension values resulting in lower ductility although 

all twelve investigated beams met minimum cross-section level ductility requirements provided in  

American (ACI 318-19 2019 and AASHTO 2017) and Canadian standards (2019) for NSC and 

FRC, respectively. One of the beams exhibited a curvature-based cross-section level ductility of 

2.08, which is close to the 2.0 Canadian limit (2019), however, this beam had a ρtotal of 3.08% and 
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a ρstension of 2.57%, which suggest that the beam was heavily reinforced and the longitudinal 

reinforcement ratios were well beyond practical limits for NSC beams post-tensioned with 

unbonded tendons.  

Table 4.6. Influence of ρstension on flexural capacity and ductility 

Beam  

ID 

Loading 

configuration 

ρ (%) 
Mn  

(m-kN) 

% change 

(Moment) 

Cross-section level 

ductility 

Member level 

ductility 

ρtotal ρstension 𝜇𝜀 =
𝜀𝑢
𝜀𝑦

 𝜇𝜙 =
𝜙𝑢
𝜙𝑦

 𝜇𝛥=
𝛥𝑢

𝛥𝑦
 

𝐿

𝛥𝑢
 

B-1-As1 One Point 1.00 0.49 125 Baseline 4.48 3.30 1.65 109 

B-1-As2 One Point 1.27 0.76 136 +8.46 4.30 3.15 1.52 110 

B-1-As3 One Point 2.01 1.50 163 +30.56 4.24 2.88 1.35 123 

B-1-As4 One Point 3.08 2.57 198 +58.58 3.82 2.08 1.15 137 

B-1-As1 Two Point 1.00 0.49 128 Baseline 4.29 3.27 2.20 47 

B-1-As2 Two Point 1.27 0.76 138 +7.55 4.27 3.17 2.00 49 

B-1-As3 Two Point 2.01 1.50 163 +27.6 4.22 3.06 1.68 53 

B-1-As4 Two Point 3.08 2.57 199 +55.16 4.15 2.89 1.34 59 

B-1-As1 Distributed 1.00 0.49 132 Baseline 3.91 3.03 2.24 46 

B-1-As2 Distributed 1.27 0.76 143 +8.46 3.87 3.02 2.20 48 

B-1-As3 Distributed 2.01 1.50 180 +36.2 3.84 2.98 1.98 50 

B-1-As4 Distributed 3.08 2.57 215 +62.94 3.79 2.97 1.85 53 

ρtotal = ρstension+ ρps; ρstension= Astension/(bwds); ρps= Aps/(bwdps); ρmin_stension_ACI = 0.22% (Astension_min_ACI=0.004Act) 

4.5.5 Effect of loading configuration and tendon profile on complete flexural behavior 

Table 4.7, Fig. 4.10e-f, 4.11e-f, and 4.13e illustrate the  influence of loading configuration 

and tendon profile on the complete flexural behavior of UHPC beams post-tensioned with internal 

unbonded tendons. The beams with straight tendon profiles exhibit slightly higher ultimate tendon 

stress compared to beams with draped tendon profiles since the overall tendon deformation is 

larger when the tendon is closer to the most extreme tension fiber. This member level dependency 

results in slightly larger moment capacities at the ultimate limit state for beams with straight tendon 

profiles. However, these differences are marginal. This is the reason why many closed form 

formulations for fps do not include end eccentricity as part of the formulation. The greatest 

influence of tendon profile on moment capacity is exhibited in beams subject to a two point loading 

configuration (Table 4.7 and Fig. 4.13e) since in these beams there is a chance that the weakest 
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section is at the location of point loads rather than at mid-span due to the draping of the tendons 

and the reduced effective depth. 

Table 4.7. Influence of tendon configuration on flexural capacity and ductility 

Beam 

ID 

Tendon 

config. 

Loading 

config. 

Mn  

(m-kN) 

% change 

(Moment) 

Cross-section level 

ductility 

Member level 

ductility 

𝜇𝜀 =
𝜀𝑢
𝜀𝑦

 𝜇𝜙 =
𝜙𝑢
𝜙𝑦

 𝜇𝛥=
𝛥𝑢

𝛥𝑦
 

𝐿

𝛥𝑢
 

B-1S straight One Point 125 +0.04 4.62 3.40 1.71 114 

B-1S straight Two Point 133 +6.77 4.42 3.17 2.56 40 

B-1S straight Distributed 132 +5.57 4.55 3.23 2.70 48 

B-1D draped One Point 125 Baseline 4.48 3.30 1.65 109 

B-1D draped Two Point 128 +2.48 4.29 3.27 2.20 47 

B-1D draped Distributed 132 +5.49 3.91 3.03 2.24 46 

 

Table 4.7, Fig. 4.16e, and 4.17e suggest that the influence of loading configuration on 

ductility varies from mild to strong at the cross-section and member level, respectively. Tendon 

profile appears to have some effect on cross-section level ductility with beams featuring a straight 

tendon profile typically featuring higher ductility values compared to those with draped tendons. 

At the cross-section level, curvature ductility is barely influenced by loading configuration or 

tendon profile. Strain based cross-sectional ductility appears to be slightly influenced by loading 

configuration when draped tendon profiles are considered and barely influenced when beams with 

straight tendon configuration are considered. It is interesting how at the member level, loading 

configuration appears to have a marked difference with beams featuring a two point and distributed 

loading configurations possessing higher ductility than those with one point-loading configuration. 

This is especially evident in Fig. 4.17e.  

In general, the most efficient approach to increase the flexural capacity of UHPC beams 

post-tensioned with unbonded tendons is to: 1) use a UHPC mix with high cracking strength and 

a minimum maximum usable tensile strain, 2) increase the area of the tendons, 3) or do both. While 

an increase in εtu increases the ductility of the beam at the cross-sectional and member level, it has 

a marginal effect on flexural capacity. An increase in mild steel area helps with flexural capacity, 



118 

 

 

 

but it is not as efficient as an increase in tendon area, which helps with the behavior of the member 

at all stages of loading including service by controlling deflections. 

4.5.6 Effect of constitutive model for UHPC on complete flexural behavior 

The influence of various constitutive models for UHPC on the complete flexural behavior of beams 

post-tensioned with internal unbonded tendons was investigated by considering three constitutive 

models for the compressive domain and 13 for the tensile domain (Fig. 4.4a). The impact of the 

various constitutive models is illustrated in Fig. 4.12 and Table 4.8. It is worth noting that the 

impact of the 12 additional constitutive models for the tensile domain of UHPC on flexural strength 

was contained to at most 8.6% change in nominal moment capacity (Table 4.8) compared to the 

default (bilinear) tensile curve. 

Table 8. Influence of various constitutive models for UHPC on flexural strength and ductility 

Beam ID 
Tendon 

config. 

Loading 

config. 

Mn  

(m-kN) 

% change 

(Moment) 

Cross-section level 

ductility 
Member level ductility 

𝜇𝜀 =
𝜀𝑢
𝜀𝑦

 𝜇𝜙 =
𝜙𝑢
𝜙𝑦

 𝜇𝛥 =
𝛥𝑢
𝛥𝑦

 
𝐿

𝛥𝑢
 

Tension Domain 

B-1D-TD* draped One Point Loaded 125 Baseline 4.48 3.30 1.65 109 

B-1D-T1 draped One Point Loaded 133 5.97 2.43 1.95 1.51 112 

B-1D-T2 draped One Point Loaded 130 3.91 1.95 1.67 1.36 124 

B-1D-T3 draped One Point Loaded 136 8.57 4.38 3.33 1.72 102 

B-1D-T4 draped One Point Loaded 128 2.54 1.84 1.52 1.21 135 

B-1D-T5 draped One Point Loaded 125 -0.04 1.63 1.41 1.07 153 

B-1D-T6 draped One Point Loaded 135 7.88 3.16 2.60 1.79 97 

B-1D-T7 draped One Point Loaded 134 6.97 3.40 2.52 1.54 109 

B-1D-T8 draped One Point Loaded 133 6.61 2.65 2.09 1.54 109 

B-1D-T9 draped One Point Loaded 132 5.94 2.44 1.95 1.51 112 

B-1D-T10 draped One Point Loaded 132 5.93 2.55 2.02 1.51 112 

B-1D-T11 draped One Point Loaded 135 7.71 3.83 2.78 1.58 107 

B-1D-T12 draped One Point Loaded 132 5.27 2.30 1.86 1.47 115 

Compression Domain 

B-1D-CD** draped One Point Loaded 279 Baseline 0.42 <1.0 <1.0 276 

B-1D-C1 draped One Point Loaded 325 16.64 2.62 2.01 1.27 140 

B-1D-C2 draped One Point Loaded 328 17.51 2.81 1.88 1.25 136 

*TD = Default stress-strain curve in tension, T1 through T12= Tensile stress-strain curves 1-12; (Fig. 4.4a right) 

** CD = Default stress-strain curve in compression, C1 and C2= Compression stress-strain curves 1 and 2, respectively 

(Fig. 4.4a left) (𝜌𝑠𝑡𝑒𝑛𝑠𝑖𝑜𝑛 = 0.49 %; 𝜌𝑝𝑠 = 3.06 %; 𝜌𝑡𝑜𝑡𝑎𝑙 = 3.55 %) 
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  The use of UHPC formulations with strain hardening characteristics in the tensile domain 

(i.e. trilinear model) generally resulted in a decrease in ductility compared to the default bilinear 

model since in many of these cases the peak load was achieved prior to the attainment of the 

maximum usable tensile strain, εtu, for UHPC. However, there were a few trilinear constitutive 

models, which resulted in higher ductility compared to the baseline case. In general, the influence 

of the tensile domain on flexural strength and ductility is a function of the slope of the strain 

hardening branch and the slope of the descending branch after the peak tensile stress is achieved.  

The consideration of the additional two stress-strain curves for UHPC in compression 

resulted in up to a 17.5% change in flexural capacity (Table 4.8). It should be noted that the failure 

mode for the beam specimen with the default stress-strain curve in compression was a 

compression-controlled failure and therefore the beam exhibits no ductility (i.e. ductility < 1). The 

inclusion of descending branches in compression switched the failure mode from compression 

controlled to steel tension-controlled, since the reinforcement yielded prior to the crushing of 

UHPC in compression. As a result, ductility increased in addition to the increase in flexural 

strength. 

The proposed algorithm allows the modeling of various constitutive models for UHPC in 

tension and compression and uses that information to characterize cross-section and member level 

behavior. 

4.5.7 Effect of no mild steel on subroutine 

 Unreinforced UHPC beams were modelled as draped and straight tendons. Validity of 

multiple crack formations were checked by comparing FEA and subroutine results. As seen in Fig. 

4.18, total load versus deflection and tendon stress versus deflection from onset of loading to 
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ultimate load were captured by subroutine in case of post-tensioned UHPC beam without any mild 

steel reinforcement. 

 

 

Fig. 4.18 Validation of unreinforced UHPC beam 

4.6 Summary and Conclusions 

A procedure for computing the moment curvature and load deformation response of UHPC 

beams post-tensioned with unbonded tendons was presented. The proposed procedure was 

validated using high fidelity nonlinear finite element analysis. A parametric study was conducted 

to understand the influence of various parameters on flexural capacity and ductility as well as on 

the full flexural behavior of UHPC beams post-tensioned with internal unbonded tendons. The 

following conclusions are drawn: 

1) The proposed procedure is based on structural mechanics and is capable of reliably and 

efficiently computing the complete moment-curvature-deformation response of UHPC 



121 

 

 

 

beams post-tensioned with internal unbonded tendons and offers insight about their 

ductility at the cross-section and member level. This information is useful in cases when a 

performance-based design approach is selected and a characterization of member behavior 

under different load intensities is desired. 

2) The proposed method does not require the definition of empirically obtained elastic and 

inelastic design parameters such as bond reduction coefficients and plastic hinge length. 

However, it can facilitate the use of approaches that employ these parameters by helping 

formulate them without having to rely on extensive experimental testing or time consuming 

finite element analysis. 

3) Cross-section level ductility was generally higher than member level ductility. 

Additionally, strain-based computations resulted in higher levels of cross-section level 

ductility compared to curvature-based computations. Most beams met minimum cross-

section level ductility requirements specified in American and Canadian standards for NSC 

and FRC, respectively. 

4) The most influential parameter for cross-section level ductility is εtu. A minimum value of 

0.006 is recommend for εtu to meet existing minimum ductility requirement set forth for 

NSC and FRC members. Additionally, while εtu is an important parameter related to the 

failure mode of UHPC beams post-tensioned with unbonded tendons, its variation does not 

cause a marked difference in flexural capacity. 

5) The most influential parameter for member level ductility is the loading configuration 

especially when the ratio L/Δu was used as the metric for evaluating such ductility. The 

determination of deflection at incipient failure is indeed a useful metric for evaluating 

ductility at the member level and for serving as a warning of failure metric and the proposed 
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algorithm provides a tool for accurately estimating this deflection. The influence of loading 

configuration on cross-section level ductility was much smaller than that exhibited at the 

member level. 

6) The most influential parameters in terms of increasing flexural capacity are the longitudinal 

unbonded reinforcement ratio, ρps, followed by the UHPC cracking stress, fcr, and the 

longitudinal bonded reinforcement ratio, ρstension, when the impact of these parameters for 

a given percentage change from the baseline case was considered. While a change in fcr did 

not influence ductility at any level, and increase in ρps and ρstension resulted in a decrease in 

cross-section and member level ductility. 

7) The influence of the constitutive models for the tensile and compressive domains was 

contained to a 8.6% and 17.5% change in flexural capacity when compared to the default 

stress-strain curves. 
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5. Punching Shear Strength of Post-tensioned UHPC Plates  

5.1 INTRODUCTION 

Punching shear is one of the controlling limit states in the design of post-tensioned flat 

plates and should be avoided due to its brittle nature and its potential to cause progressive collapse. 

The combination of ultra-high-performance concrete (UHPC) and unbonded post-tensioning 

provides an opportunity to create super thin and ultralight floor systems thus reducing the 

gravitational and seismic load demand on the entire structural system. The creation of such super 

slender elements warrants an investigation of their behavior under concentrated loads. The 

behavior of reinforced and post-tensioned concrete flat plates constructed with normal strength 

concrete (NSC) under concentrated loads has been investigated by Muttoni (2008) and Clement et 

al. (2012) and Clement et al. (2014) and that of fiber reinforced concrete (FRC) plates with 

nonprestressed reinforcement has been studied by Maya et al. (2012); Neto et al. (2014); and 

Gouveia et al. (2017). Similarly, the behavior of unreinforced UHPC plates under concentrated 

loads has been investigated by Joh et al. (2008), Harris (2004), and Harris and Roberts-Wollmann 

(2005). However, the behavior of punching critical post-tensioned UHPC flat plates under 

concentrated loads appears to be unexamined and provided the motivation for this study. 

 

Fig. 5.1 Proposed framework for predicting punching shear capacity of PT UHPC plates 
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 A methodology to predict the punching shear capacity of PT UHPC plates is presented and 

assumes that punching capacity is reached when a critical plate rotation is attained. The kinematics 

of a flat plate subject to concentrated loads are simplified with the purpose of creating a 

formulation to predict the load rotation relationship of the plate. This relationship is then 

superimposed with a rotation dependent failure criterion. The intersection of the two curves 

supplies the punching capacity of the plate as well as the critical plate rotation (Fig. 5.1). While 

the development of plate’s load rotation relationship is based on principles of engineering 

mechanics, an empirical approach is used to develop the failure criterion by using a database of 

punching critical PT UHPC flat plate specimens. This approach was originally proposed by 

Kinnunen and Nylander (1960) for reinforced concrete flat plates and further developed by 

Hallgreen (1996), Broms (2006), and Muttoni (2008). Maya et al. (2012) and Neto et al. (2014) 

extended the method to FRC slabs with nonprestressed reinforcement, and Clement et al. (2012) 

and Clement et al. (2014) investigated the behavior of prestressed concrete slabs constructed with 

NSC. The purpose of this study is to extend this methodology to PT UHPC plates by providing a 

framework for how to obtain the PT UHPC plate load-rotation relationship and developing a 

rotation dependent failure criterion appropriate for such plates. An additional objective is the 

quantification of the impact of column size, plate thickness, prestressed and nonprestressed 

reinforcement ratio, tendon configuration, prestressing force, and fiber content and characteristics 

on plate punching capacity. 

5.2 RESEARCH SIGNIFICANCE 

There is currently no efficient method for obtaining the punching shear capacity of PT UHPC 

plates. The availability of such method is instrumental in facilitating PT UHPC flat plate designs 

and creating super slender and ultra-light floors that minimize building mass and offer large span 
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to depth ratios. A methodology to obtain the plate load rotation relationship is proposed and is 

informed by a simplified method to obtain the moment curvature relationship. The plate’s load 

rotation relationship is superimposed with a rotation dependent failure criterion to supply the 

plate’s punching and rotation capacity. 

5.3 CREATION OF SPECIMEN DATABASE 

Nonlinear finite element analyses were used to create a database of punching critical 

specimens because there are no punching shear tests available for PT UHPC plates. This database 

was used to validate a mechanics-based methodology for developing the plate load rotation 

relationship, as well as to inform the development of a nonlinear regression based failure criterion. 

The specimen database was created by first identifying the parameters that affect punching 

capacity and systematically changing them such that a large enough database of specimens was 

created to test the proposed prediction methodology as well as to gain an understanding of the 

impact of each parameter on the behavior of PT UHPC plates subject to concentrated loads. The 

UHPC plate and the hollow PT sheathings, which are embedded into the plate, are modeled using 

8-node 3D continuum elements with reduced integration (C3D8R). The PT tendons are modeled 

using 2-node 3D truss elements (T3D2) and are inserted inside the PT sheathings. A friction 

coefficient is specified between the tendon and the sheathing in the direction of the axis of the 

tendon and a hard contact is defined in the perpendicular direction. PT anchorages are modeled 

using multi-point constraints (Dogu and Menkulasi 2020). The constitutive model for UHPC is 

selected based on the definition presented by the Federal Highway Administration (FHWA) 

(Haber et al. 2018), which states that: “UHPC is a cementitious composite material composed of 

an optimized gradation of granular constituents, a water-to-cementitious materials ratio less than 

0.25, and a high percentage of discontinuous internal fiber reinforcement. The mechanical 
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properties of UHPC include compressive strength greater than 21.7 ksi (150 MPa) and sustained 

post-cracking tensile strength greater than 0.72 ksi (5 MPa)”. The stress-strain curve for the 

compressive domain is based on recommendations by Graybeal (2007). Various stress-strain 

curves are considered for the tensile domain of UHPC including bilinear and trilinear (i.e. strain 

hardening) curves. The constitutive model for prestressing strands is based on recommendations 

by Devalapura and Tadros (1992) and non-prestressed reinforcement is modeled as elastic 

perfectly plastic with fy = 414 MPa (60 ksi) and E=200 GPa (29000 ksi). Pinned and fixed edge 

plates are considered. The PT UHPC flat plat specimens are loaded monotonically to failure 

through the column using a displacement-controlled protocol. Table 5.1 shows the characteristics 

of the investigated specimens and Fig. 5.2 illustrates the modeling protocol, which is based on the 

approach used by Dogu and Menkulasi (2020) for PT UHPC beams. 

Table 5.1 Characteristics of investigated PT UHPC plates 

 
Fig. 5.2 Modelling approach for simulating the behavior of PT UHPC plates under concentrated 

loads 

Range of variation 

h [mm] L [mm] sc [mm] 𝑑𝑝 [mm] 
ρps (%) ρs (%) 

Tendon 

configuration 

𝑓𝑐
′ [MPa] 

Boundaries 
([in.]) ([in.]) ([in.]) ([in.]) ([ksi]) 

100-225 2000 100-300 70 – 200 
0.07-1.32 0.04 – 5.8 

Banded-Banded 

Banded-Distributed 

91-153 
Pin, fixed 

(3.9-9.8) (78.7) (3.9-11.8) (2.8-7.9) (13.2-22.2) 

h = plate thickness; L = plate width and length; sc = column size; dp = effective depth of prestressed reinforcement; 

ρps = prestressed reinforcement ratio; ρs = nonprestressed reinforcement ratio; f’
c = UHPC compressive strength at 

28 days 
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5.3.1 Distinction of Punching and Flexural Failures in the Numerical Model 

Given that PT UHPC plates are likely to provide significant ductility, a criterion for 

distinguishing between punching and flexural failures was developed so that only flat plate 

specimens that failed in punching shear are used when developing and validating the proposed 

methodology. This criterion is based on the magnitude and location of principle tensile strains 

along the thickness of the plate and the maximum usable uniaxial tensile strain for UHPC. This 

approach is illustrated in Fig. 5.3, which shows a flat plate specimen controlled by a punching 

shear failure (Fig. 5.3a1-5.3c1) in which the peak load was attained when the maximum principal 

tensile strains in UHPC were created along the critical diagonal crack, and another specimen 

controlled by a flexural failure (Fig. 5.3a2 – 5.3c2), in which the maximum principle tensile strains 

when the peak load was achieved were created along the top fiber of the plate. 

Fig. 5.3a shows the distribution of principal strains at failure in these two flat plate 

specimens. One features fixed edges (Fig. 5.3a1) and the other roller supported edges (Fig. 5.3a2). 

The evolution of the magnitude of the principal tensile strains in two finite elements is monitored 

and reported in Fig. 5.3b. Finite element, a, is located along the top fiber of the plate, where flexure 

induced principal tensile strains are expected to be maximum. Finite element, b, is located along 

the critical compression strut, where shear induced principal tensile strains are expected to be 

maximum. Fig. 5.3b1 suggests that the magnitude of the principal tensile strain in finite element b 

increases exponentially as the plate reaches its load carrying capacity. Conversely, the magnitude 

of the principal tensile strain in finite element a increases at a slower rate prior to the attainment 

of peak load and remains constant thereafter. Additionally, on average, the angle of inclination of 

the compressive struts, 𝜃, in the specimen with fixed edges (𝜃1) is higher than that in the specimens 

with free edges (𝜃2). It should be noted that when the peak load is achieved, the principal tensile 
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strain in finite element b is 0.015, which is past the assumed fiber pullout limit of 0.01 based on 

the bilinear model shown in Fig. 5.3b1.  

a1)  
a2)  

b1)  b2)  

c1)  c2)  

Fig. 5.3 a) PT UHPC plates subject to punching (a1) and flexural (a2) failures; b) variation of 

maximum principal tensile strain in punching (b1) and flexure (b2) critical plates; c) load-

deflection relationship in punching (c1) and flexure (c2) critical plates. 

 

This suggests that at this location, the fibers have pulled out, and the crack is progressing 

along the diagonal compressive strut. Also, Fig. 5.3c1 shows that the peak load for the plate with 

fixed edges is attained at small column displacements and that there is an abrupt reduction in 

capacity after the attainment of peak load, which is a characteristic of a punching shear failure. 
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The overall behavior of the plate with fixed edges suggests that its failure mode is controlled by 

punching shear. 

Conversely, Fig. 5.3b2 suggests that in the specimen with roller supported edges, the 

magnitude of the principal tensile strain in finite element a increases more rapidly than that of 

finite element b, although the rate of increase in finite element b is also significant. Additionally, 

after failure, the rate of increase in finite element a continues to be more pronounced than that in 

finite element b. The peak load is achieved when the principal tensile strain in finite element a is 

0.01, which is the fiber pullout limit in the assumed constitutive model. This suggest that a flexure 

failure has precipitated, characterized by crack formation and fiber pullout at the top of the plate. 

Also, as pointed out earlier, the average angle of inclination of the compressive struts in the 

specimen with roller supported edges is lower than that in the specimen with fixed edges further 

corroborating the presence of a flexure controlled failure. Based on these observations, the 

punching critical plate specimen database was created by selecting plates that were fixed at the 

edges, and monotonically loading them using small columns (Table 5.2) with the purpose of 

inducing a punching shear failure and documenting plate behavior 

Table 5.2 Influence of several parameters on PT UHPC plate punching shear capacity 

Plate 

ID 

h 

[mm] 

sc 

[mm] 

𝑓𝑐
′ 

[MPa] 

Prestressing 
ρs 

(%) 

Fibers 
𝑃𝑐𝑟

𝐹𝐸𝐴 

[kN] 

𝑃𝑐𝑟
𝑃 

[kN] 

𝑃𝑐𝑟
𝐹𝐸𝐴

𝑃𝑐𝑟
𝑃  

Tendona 
ρps 

(%) 

fpe 

(% fpu) 

dp 

[mm] 
% 

df 

[mm] 

lf 

[mm] 
Type 

Effect of plate thickness (h) 

ST-1 100 100 150 Band. 0.38 70 80 0.84 2 0.3 16.5 straight 697 711 0.98 

ST-2 125 100 150 Band. 0.33 70 90 0.65 2 0.3 16.5 straight 983 950 1.03 

ST-3 150 100 150 Band. 0.24 70 125 0.53 2 0.3 16.5 straight 1319 1311 1.01 

ST-4 175 100 150 Band. 0.30 70 150 0.45 2 0.3 16.5 straight 1679 1669 1.01 

ST-5 200 100 150 Band. 0.17 70 175 0.39 2 0.3 16.5 straight 2086 2046 1.02 

ST-6 225 100 150 Band. 0.15 70 200 0.34 2 0.3 16.5 straight 2564 2228 1.13 

Effect of column size (sc) 

SN-1 125 100 150 Band. 0.33 70 90 0.65 2 0.3 16.5 straight 983 950 1.03 

SN-2 125 150 150 Band. 0.33 70 90 0.65 2 0.3 16.5 straight 1214 1075 1.13 

SN-3 125 200 150 Band. 0.33 70 90 0.65 2 0.3 16.5 straight 1421 1185 1.20 

SN-4 125 250 150 Band. 0.33 70 90 0.65 2 0.3 16.5 straight 1601 1304 1.23 

SN-5 125 300 150 Band. 0.33 70 90 0.65 2 0.3 16.5 straight 1714 1442 1.19 

Effect of dp 

SH-1 125 100 150 Band. 0.33 70 70 0.65 2 0.3 16.5 straight 968 858 1.13 
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SH-2 125 100 150 Band. 0.33 70 80 0.65 2 0.3 16.5 straight 975 904 1.08 

SH-3 125 100 150 Band. 0.33 70 85 0.65 2 0.3 16.5 straight 982 926 1.06 

SH-4 125 100 150 Band. 0.33 70 90 0.65 2 0.3 16.5 straight 983 950 1.03 

SH-5 125 100 150 Band. 0.33 70 95 0.65 2 0.3 16.5 straight 985 968 1.02 

SH-6 125 100 150 Band. 0.33 70 100 0.65 2 0.3 16.5 straight 991 988 1.00 

Effect of ρps 

SP-1 125 100 150 Band. 0.07 70 90 0.65 2 0.3 16.5 straight 883 646 1.37 

SP-2 125 100 150 Band. 0.13 70 90 0.65 2 0.3 16.5 straight 916 735 1.25 

SP-3 125 100 150 Band. 0.19 70 90 0.65 2 0.3 16.5 straight 942 817 1.15 

SP-4 125 100 150 Band. 0.26 70 90 0.65 2 0.3 16.5 straight 968 888 1.09 

SP-5 125 100 150 Band. 0.33 70 90 0.65 2 0.3 16.5 straight 983 950 1.03 

SP-6 125 100 150 Band. 0.41 70 90 0.65 2 0.3 16.5 straight 1001 1035 0.97 

SP-7 125 100 150 Band. 0.49 70 90 0.65 2 0.3 16.5 straight 1021 1115 0.92 

SP-8 125 100 150 Band. 0.58 70 90 0.65 2 0.3 16.5 straight 1038 1200 0.86 

SP-9 125 100 150 Band. 0.66 70 90 0.65 2 0.3 16.5 straight 1045 1252 0.83 

SP-10 125 100 150 Band. 0.83 70 90 0.65 2 0.3 16.5 straight 1082 1252 0.86 

SP-11 125 100 150 Band. 0.99 70 90 0.65 2 0.3 16.5 straight 1105 1252 0.88 

SP-12 125 100 150 Band. 1.16 70 90 0.65 2 0.3 16.5 straight 1137 1252 0.91 

SP-13 125 100 150 Band 1.32 70 90 0.65 2 0.3 16.5 straight 1168 1252 0.93 

Effect of fpe 

SP-0 125 100 150 Band. 0.33 0 90 0.65 2 0.3 16.5 straight 857 603 1.42 

SP-14 125 100 150 Band. 0.33 14 90 0.65 2 0.3 16.5 straight 888 682 1.30 

SP-28 125 100 150 Band. 0.33 28 90 0.65 2 0.3 16.5 straight 918 764 1.20 

SP-42 125 100 150 Band. 0.33 42 90 0.65 2 0.3 16.5 straight 943 833 1.13 

SP-56 125 100 150 Band. 0.33 56 90 0.65 2 0.3 16.5 straight 967 897 1.08 

SP-70 125 100 150 Band. 0.33 70 90 0.65 2 0.3 16.5 straight 983 950 1.03 

Effect of tendon configuration 

SF-1 125 100 150 Band. 0.33 70 90 0.65 2 0.3 16.5 straight 983 950 1.03 

SF-2 125 100 150 Dist. 0.33 70 90 0.65 2 0.3 16.5 straight 964 950 1.01 

Effect of ρs 

SS-1 125 100 150 Band. 0.33 70 90 0.04 2 0.3 16.5 straight 920 827 1.11 

SS-2 125 100 150 Band. 0.33 70 90 0.16 2 0.3 16.5 straight 932 856 1.09 

SS-3 125 100 150 Band. 0.33 70 90 0.36 2 0.3 16.5 straight 957 899 1.06 

SS-4 125 100 150 Band. 0.33 70 90 0.65 2 0.3 16.5 straight 983 950 1.03 

SS-5 125 100 150 Band. 0.33 70 90 1.01 2 0.3 16.5 straight 1003 1003 1.00 

SS-6 125 100 150 Band. 0.33 70 90 1.45 2 0.3 16.5 straight 1030 1053 0.98 

SS-7 125 100 150 Band. 0.33 70 90 1.97 2 0.3 16.5 straight 1055 1099 0.96 

SS-8 125 100 150 Band. 0.33 70 90 2.58 2 0.3 16.5 straight 1074 1126 0.95 

SS-9 125 100 150 Band. 0.33 70 90 3.27 2 0.3 16.5 straight 1085 1150 0.94 

SS-10 125 100 150 Band. 0.33 70 90 4.04 2 0.3 16.5 straight 1097 1175 0.93 

SS-11 125 100 150 Band. 0.33 70 90 4.88 2 0.3 16.5 straight 1105 1231 0.90 

SS-12 125 100 150 Band. 0.33 70 90 5.81 2 0.3 16.5 straight 1111 1243 0.89 

Effect of fiber content and characteristicsd 

UA2 125 100 112 Band. 0.33 70 90 0.65 2 0.55 30 end def 770 843 0.91 

UA3 125 100 105 Band. 0.33 70 90 0.65 3 0.55 30 end def 897 888 1.01 

UB2 125 100 150 Band. 0.33 70 90 0.65 2 0.3 16.5 straight 983 950 1.03 

UB3.25 125 100 101 Band. 0.33 70 90 0.65 3.25 0.3 16.5 straight 949 921 1.03 

UC2 125 100 94 Band. 0.33 70 90 0.65 2 0.3 13 straight 706 816 0.86 

UC4.5 125 100 132 Band. 0.33 70 90 0.65 4.5 0.3 13 straight 845 905 0.93 

UE2 125 100 119 Band. 0.33 70 90 0.65 2 0.2 13 straight 898 925 0.97 

UE3.25 125 100 120 Band. 0.33 70 90 0.65 3.25 0.2 13 straight 1007 999 1.02 

UD2C1 125 100 94 Band. 0.33 70 90 0.65 2 0.2 13 straight 822 883 0.93 

UD2C7 125 100 128 Band. 0.33 70 90 0.65 2 0.2 13 straight 931 952 0.98 

UD3C1 125 100 91 Band. 0.33 70 90 0.65 3 0.2 13 straight 840 929 0.90 

UD3C7 125 100 126 Band. 0.33 70 90 0.65 3 0.2 13 straight 1016 1019 1.00 
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UD4C1 125 100 100 Band. 0.33 70 90 0.65 4 0.2 13 straight 1013 1049 0.97 

UD4C7 125 100 124 Band. 0.33 70 90 0.65 4 0.2 13 straight 1160 1125 1.03 

Note: 1 mm = 0.00394 in.; 1 MPa = 0.145 ksi; 1 kN = 0.225 kips; L = plate length = 2000 mm (78.7 in.); df = fiber 

diameter; lf = fiber length; Pcr
FEA = computed punching shear capacity; Pcr

P = predicted punching shear capacity; asix 

tendons in each direction unless otherwise noted, Band = Banded-Banded, Dist. = Banded-Distributed; bmild steel 

top and bottom in each direction; c very high displacement is induced for pin cases, tendon ruptured at peak load 

before punching occurred; ddetails regarding fiber content, characteristics, and UHPC formulation are provided in 

reference (Haber et al. 2018) 

5.3.2 Validation of Numerical Modeling Protocol 

A total of 16 models of tested PT flat plates constructed with NSC and subject to 

concentrated loads were created with the purpose of demonstrating the capability of the modeling 

protocol to accurately simulate the behavior of such plates. Experimental data on the tested flat 

plates were obtained from Silva et al. (2007). Fig. 5.4a provides a comparison of measured and 

predicted plate load rotation relationship. It should be noted that the magnitude of measured mid-

plate displacement at failure is extremely small (only a few millimeters) due to the brittle nature 

of the punching shear failure in NSC plates. Fig. 5.4a suggests that the numerical modeling 

protocol is able to capture with good accuracy the complete load versus mid-plate displacement 

relationship despite the small magnitude of plate deformation at failure.  

Similarly, numerical models of tested unreinforced UHPC flat plates subject to 

concentrated loads were created to demonstrate the ability of the numerical modeling protocol to 

accurately simulate UHPC plate behavior. Experimental data on the tested UHPC flat plates were 

obtained from Joh et al. (2008). Fig. 5.4b shows a comparison of measured and computed plate 

load deflection relationship and suggests that there is good agreement between the two. Contrary 

to the behavior of PT NSC flat plates, UHPC flat plates exhibit a much more ductile behavior 

exhibiting mid-plate displacements at failure that are several times higher than those in NSC 

specimens.  
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a)   

b)   

Fig. 5.4 Validation of numerical modeling protocol - comparison of computed and measured 

plate load-deflection relationship for: a) PT NSC plates; b) unreinforced UHPC plates 
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The similarity between experimental and numerical curves suggests that the adopted 

modeling protocol can predict with good accuracy not only the punching capacity of these plates, 

but also the full range of behavior from the onset of loading to failure. Using deductive reasoning 

in the absence of experimental data on PT UHPC flat plates, it is concluded that since the modeling 

protocol is able to capture with good accuracy the behavior of unreinforced UHPC plates and PT 

plates constructed with NSC subject to concentrated loads, it should be able to capture with good 

accuracy the behavior of PT UHPC plates subject to similar loading conditions. 

5.4 PROPOSED PREDICTION METHODOLOGY 

        In the proposed prediction methodology, the plate’s load rotation-relationship is 

superimposed with a rotation dependent failure criterion. The intersection of the two curves 

supplies punching capacity and the rotation of the plate when punching occurs. Plate’s load-

rotation relationship is obtained by simplifying the kinematics of a column supported plate and 

utilizing a quadrilinear moment curvature relationship. The failure criterion is obtained using 

nonlinear regression based on the specimen database discussed in the previous section. An 

adjustment for plate rotation proposed by Clement et al. (2014) for PT NSC plates is evaluated in 

terms of its appropriateness for PT UHPC plates. A criterion is proposed to distinguish between 

flexure and punching induced failures. The vertical contribution of prestressing force (Vp) is 

neglected due to the small thickness of the plate and the fact that the tendon angle between 

centerline of column and critical punching shear section is negligible.  

5.4.1 Load-Rotation Relationship 

The approach for calculating the punching capacity of a column supported plate is to define 

a plate region, which together with the column can be isolated from the rest of the slab for further 
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analysis. The geometry of this plate region is defined by the distance from the column centerline 

to the inflection point in each plate direction, rs. For a plate with fixed boundary conditions, this 

inflection point may be taken as 0.25L where L is the overall length of the plate with the distance 

from column to plate edge support being 0.5L. If the plate is roller supported at the edge, then the 

inflection point may be taken as 0.5L (i.e. equal to the distance from column to plate edge support). 

For a plate supported my multiple columns, an elastic analysis can be conducted to determine the 

location of the inflection point. The isolated rectangular plate supported by a rectangular column 

is then converted into an equivalent circular plate supported by an equivalent circular column. This 

conversion is conducted by keeping the perimeter of the elements the same. For example, a square 

column with a width of sc can be converted into an equivalent circular column with a radius of 

rc=2sc/𝜋. The plate is then assumed to be loaded through the column while being roller supported 

at the perimeter.  

The plate’s load rotation relationship shown in the general form in Eq. 5.1 and 

mathematically simplified in Eq. 5.2 can be obtained by isolating a typical plate pie strip with an 

angle Δ𝜃, drawing the free body diagram, and summing moments about the critical shear crack 

(Fig 5.5).  The punching capacity of the plate can be obtained by summing the load capacities of 

all pie strips. In Eq. 5.1, VL is the total concentrated load applied to the plate; rc and rq are distances 

from the centerline of column to face of column and to plate edge support, respectively (Fig. 5.5); 

mr, mp, and mt are radial, prestressing, and tangential moments, respectively; and ro and rm are 

distances from the centerline of column to the top of critical shear crack, and to the location of 

moment caused by prestressing, respectively. 

The critical shear crack is assumed to occur at a distance ro from the centerline of the 

column (Fig. 5.5a), which can be calculated as ro=rc+d, where d is the average effective depth of 
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nonprestressed reinforcement. The radii that define the regions that have cracked, rcr, and the 

region where the nonprestressed reinforcement has yielded, ry, can be calculated as rcr = 
Ψ

φcr
 and 

ry = 
Ψ

φy
 (Eq. 5.3) if both radii are greater than radius of critical shear crack, ro. In Eq. 5.3, φcr and 

φy are plate curvatures at first crack and first yield of nonprestressed reinforcement, respectively, 

and  Ψ is plate rotation. As the rotation of the plate changes, the radii that define cracking and 

yielding regions change. The radii for the cracking and yielding zones are limited to the radius of 

the equivalent circular plate, rs, (Eq. 5.3). 

a)  b)  

Fig. 5.5 a) Simplified plate kinematics at punching shear failure, b) internal and external forces 

acting on a typical plate pie strip. 

 

Since the establishment of equilibrium in a typical plate pie strip requires the consideration 

of radial, mr, tangential, mt, and prestressing, mp, moments, integration is required provided that 

tangential moments vary along the sides of the strip for a given load. The variation of tangential 

moments is a function of curvature, which in turn is a function of plate rotation. Curvature can be 

calculated as a function of plate rotation assuming that the deflected shape of the plate is conical 

outside the critical shear crack. Therefore, plate rotation in regions where r > ro  can be calculated 

using Eq. 5.4, which assumes that radial curvature in this region is negligible. For the region where 

r ≤ 𝑟𝑜 plate rotation can be calculated using Eq. 5.5, which assumes that curvatures in the 

radial, 𝜑𝑟, and tangential, 𝜑𝑡, direction are constant.   
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Once the variation of tangential curvature is determined, the variation of tangential 

moments can be obtained using the quadrilinear moment-curvature relationship shown in Fig. 5.6. 

The obtention of this relationship is discussed in subsequent section. Using this relationship, the 

load rotation relationship shown in Eq. 5.1 can be simplified as shown in Eq. 5.2. It should be 

noted that in Eq. 5.1 the unit radial moment mr is present at the critical shear crack and can be 

different from the ultimate moment capacity of the plate; the unit tangential moment mt is present 

along the sides of the strip; and the unit prestressing moment mp created due to the eccentricity of 

the prestressing force is present at the critical shear crack, around the perimeter of the equivalent 

circular plate, as well as along the sides of the typical pie strip. These unit moments are multiplied 

with the distances in which they apply to obtain total internal moments. The total internal moment 

is then equated to the external moment to establish equilibrium (Eq. 5.1-5.2). 

 
Fig. 5.6 Proposed moment-curvature relationship for PT UHPC elements used in the derivation of 

plate load-rotation relationship 

The terms EIo, EI1, EI2, in Eq. 5.2 represent flexural stiffnesses for a typical PT UHPC 

plate strip of unit width before cracking, EIo, after cracking and before yielding of nonprestressed 

reinforcement, EI1, and after yielding of nonprestressed reinforcement and before the attainment 

of ultimate moment capacity, EI2, as shown in Fig. 5.6. These flexural stiffnesses are used to 
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determine the variation of the internal moment as a function of the variation of curvature and plate 

rotation. The operator 〈𝑥〉 is x for x> 0 and 0 for x≤ 0.  

The integration of the trapezoidal area between cracking and nonprestressed reinforcement 

yielding zones in the moment curvature relationship in Fig. 5.6 is represented using the two EI1 

terms in Eq. 5.2. The second EI1 term includes the parameter 𝜒𝑇𝑆1 , which represents the curvature 

difference in the 𝐸𝐼1 region and it can be found using Eq. 5.6 where my is the yield moment. 

Similarly, the integration of the trapezoidal shape between the regions of nonprestressed 

reinforcement yielding and attainment of ultimate moment capacity is represented using the two 

EI2 terms. The second EI2 term includes the parameter 𝜒𝑇𝑆2, which represents the curvature 

difference in the 𝐸𝐼2 region and can be found using Eq. 5.7, where 𝜑𝑟 is the curvature in the 

tangential direction.  The prestressing moment, 𝑚𝑝, that is part of the last term in Eq. 5.2, can be 

calculated using Eq. 5.8, and is expressed as a function of the unit normal force, 𝑛, due to 

prestressing, average tendon eccentricity, e, plate thickness, h, and average effective depth of 

nonprestressed reinforcement, d. Unit normal force is calculated as 𝑛 =
𝑃𝑝𝑠

𝐿
  where 𝑃𝑝𝑠 is the total 

prestressing force, and L is the length of the plate.  

a)  b)  

Fig. 5.7 Comparison of computed and predicted: a) plate load-rotation relationship; b) mid-plate 

moment-curvature relationship (per unit width of plate) 
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The PT UHPC plate load rotation relationship obtained using the proposed method was 

compared with that obtained using the validated numerical modeling protocol for roller-supported 

and fixed-supported plates with the characteristics shown in Fig. 5.7a. Fig. 5.7a suggest that the 

proposed method is able to capture accurately the load rotation relationship of PT UHPC plates. 

𝑉𝐿
Δθ

2π
(rq − rc) = mrΔθro +mpΔθrm + Δθ∫ mtdr

rs
ro

                          Eq. 5.1 

𝑉𝐿= 
2𝜋

𝑟𝑞−𝑟𝑐
{

𝑚𝑟𝑟𝑜 + 𝐸𝐼0𝛹〈𝑙𝑛(𝑟𝑠) − 𝑙𝑛(𝑟𝑐𝑟)〉 + 𝐸𝐼1𝛹〈𝑙𝑛(𝑟𝑐𝑟) − 𝑙𝑛(𝑟𝑦)〉

+𝐸𝐼1𝜒𝑇𝑆1〈(𝑟𝑐𝑟) − (𝑟𝑦)〉 + 𝐸𝐼2𝛹〈𝑙𝑛(𝑟𝑦) − 𝑙𝑛(𝑟𝑜)〉

+𝐸𝐼2𝜒𝑇𝑆2〈(𝑟𝑦) − (𝑟𝑜)〉 + 𝑚𝑝𝑟𝑚

}              Eq. 5.2 

ro ≤
Ψ

φcr
≤ rs              ro ≤

Ψ

φy
≤ rs                                  Eq. 5.3 

Ψ = φtr              for r > ro                                           Eq. 5.4 

𝛹 = 𝜑𝑡𝑟𝑜 = 𝜑𝑟𝑟𝑜  for r ≤ 𝑟𝑜                                                Eq. 5.5 

𝜒𝑇𝑆1 = 
𝑚𝑦

𝐸𝐼1
− 𝜑𝑦                                             Eq. 5.6 

𝜒𝑇𝑆2 = 
𝑚𝑟

𝐸𝐼2
− 𝜑𝑟                                             Eq. 5.7 

mp =  n(
h2

12(d−
h

2
)
+ e)                                          Eq. 5.8 

5.5 Moment Curvature 

The moment curvature relationship of a typical PT UHPC plate strip of unit width can be 

characterized by four distinct phenomena (i.e. the application of prestress, the cracking of concrete, 

the yielding of nonprestressed reinforcement, and the attainment of ultimate moment capacity) 

(Fig. 5.6). The initial moment and curvature due to prestress and self-weight can be calculated 

using linear elastic engineering mechanics based on transformed section properties and the 

effective prestress. Similarly, moment and curvature at first cracking can be calculated assuming 
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material linearity, selecting a cracking stress for UHPC, and assuming that the stress in the strands 

is equal to the effective prestress. In reality, the stress in the strands at first cracking is slightly 

larger than the effective prestress, however, this difference was found to be negligible. The 

calculation of the ultimate moment and curvature can be obtained using the methodology proposed 

by Dogu and Menkulasi (2020), which is based on a collapse mechanism approach and requires 

the calculation of a plastic hinge length to determine the stress in the strands at the ultimate limit 

state, fps. The calculation of moment and curvature when the non-prestressed reinforcement yields, 

is calculated by reducing, fps, using a coefficient, κ. The values for κ were determined by using a 

database of specimens for which strand stress values at the ultimate limit state as well as at first 

yield were available from nonlinear finite element analysis (NLFEA). The average ratio and COV 

between strand stress at first yield and that at ultimate were 0.98 and 1%, respectively, suggesting 

notable consistency and justifying the use a single numerical value to slightly reduce ultimate 

strand stress.  Moment curvature diagrams obtained using the proposed methodology were 

compared with those obtained from NLFEA and are shown in Fig. 5.7b. Fig. 5.7b suggests that 

the proposed approach provides a reasonable approximation of the plate’s moment curvature 

relationship.  

5.6 Failure Criteria 

The proposed punching shear failure criterion represents the punching capacity of the plate, 

VR, as the summation of the contribution provided by concrete, VR,c, and fibers, VR,f, (Eq. 5.9) both 

of which are rotation dependent. The contribution of the concrete strength to the plate’s punching 

capacity, VR,c, can be obtained using Eq. 5.10, where 𝑏0 is control perimeter calculated at a distance 

0.5d away from face of column, which can be obtained as 𝑏0 = 4𝑏𝑐 + 𝜋𝑑 (where bc is column 
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width); 𝑓𝑐
′ is the UHPC compressive strength; 𝑑𝑔,0 is the reference aggregate size, which can be 

taken as 16 mm (0.63 in.); 𝑑𝑔 is the aggregate size, which for UHPC can be taken as zero due to 

the lack of course aggregates; and  Ψ′is the adjusted plate rotation, which can be calculated using 

Eq. 5.11 (Clement et al. 2014). The plate rotation, Ψ′, is expressed as a function of the rotation of 

a non-prestressed plate, Ψ′, minus 45
σn

Ec
, which represents the increase in plate flexural stiffness 

due to the presence of post-tensioning. This term is expressed as a function of the ratio of the 

average compressive stress in UHPC due to prestressing, σn, and the modulus of elasticity of the 

concrete, 𝐸𝑐. Average UHPC compressive stress is calculated as 𝜎𝑛 =
𝑃𝑝𝑠

𝐿ℎ
  where 𝑃𝑝𝑠 is the 

prestressing force, L is the length of the plate, and h is the thickness of the plate.  

 The coefficient 1.25 (15) was derived using nonlinear regression using the specimen 

database described earlier such that the intersection of proposed failure criterion and proposed 

plate rotation relationship resulted in punching capacities that matched those from NLFEA.  

𝑉𝑅 = VR,c + VR,f                                                               Eq. 5.9 

VR,c

b0d√𝑓𝑐
′
=

1.25

1+15
Ψ′d

dg,0+dg

    (SI units: N, mm) 

                
VR,c

b0d√𝑓𝑐
′
=

15

1+15
Ψ′d

dg,0+dg

    (U.S. customary units: psi, in.) 

 

Eq. 5.10 

Ψ′ = Ψ − 45
σn

Ec
≥ 0                                                      Eq. 5.11 

The contribution of fibers to the punching capacity of the plate, VR,f, can be obtained using 

Eq. 5.12 based on the variable engagement model (Voo et al. 2010) except that the plate rotation 

is replaced with the adjusted plate rotation, Ψ′, formulation proposed by Clement et al. (2014) for 

PT NSC plates. This contribution can be quantified by integrating the fiber bridging stress, σtf, 

over the projected cracked area, 𝐴𝑝. Fiber bridging stress is a function of crack width, w, which in 
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turn is a function of the adjusted plate rotation and the distance from the bottom of the plate, ξ. To 

simplify calculations, the varying fiber bridging stress can be replaced with the average fiber 

bridging stress, which may be obtained at a distance d/3 from the bottom of the plate, and for 

which the corresponding crack width becomes  
Ψ′d

6
 . This average fiber bridging stress, σtf,  may 

be obtained using Eq. 5.13 where 𝐾𝑓 is the global orientation factor, αf is the aspect ratio of fibers 

(ratio of fiber length, lf, to fiber diameter, df, (Eq. 5.17)), ρf is the fiber reinforcement ratio by 

volume, and τb  is the bond stress between the concrete matrix and fibers. The global orientation 

factor, 𝐾𝑓, can be obtained using Eq. 5.14, where the crack width, w, can be taken as, 
Ψ′d

6
, αI is the 

engagement parameter, and 𝑙𝑓 is the length of fibers. The engagement parameter αI can be 

calculated using Eq. 5.16 for straight and hooked fibers as a function of fiber aspect ratio (Eq. 

5.17). Eq. 5.13 was derived assuming that the failure mode for the tensile domain of UHPC is fiber 

pullout rather than fiber fracture as expressed in Eq. 5.18, where σfu is the fiber tensile strength, 

and τb is the fiber bond stress. The fiber bond stress, τb, which can be calculated using Eq. 5.15, 

is a function of the bond factor kb, which can be taken as 1.0 for end hooked fibers and 0.6 for 

straight fibers (Voo et al. 2010). When Eq. 5.13-5.18 are substituted into Eq. 5.12, Eq. 5.19 is 

obtained. The rotation dependent failure criteria for concrete and fibers may be substituted in Eq. 

5.9 to express the punching capacity of the plate as a function of plate rotation. This expression 

together with the load rotation relationship can be solved simultaneously either graphically or 

mathematically to obtain plate rotation and punching capacity. Detailed example can be found in 

Appendix B. 

VR,f = ∫ σtf(w(ξ))dAp = ∫σtf (w =
Ψ′d

6
, ξ) dAp                          Eq. 5.12 

σtf = Kf. αf. ρf. τb                                                 Eq. 5.13  
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Kf = 
1

π
arctan (

w

αIlf
) (1 −

2.w

lf
)
2

                                     Eq. 5.14  

                       τb = kb√fc′    (SI units: N/ mm2) 

                                                τb = 12.5kb√fc′   (U.S. customary units: lb/ in.2) 

 

Eq. 5.15 

αI = 
1

3.5αf
                                                        Eq. 5.16  

αf = 
lf

df
                                                           Eq. 5.17  

lf < lcrit =
dfσfu

2τb
                                                  Eq. 5.18  

            
VR,f

b0d√fc
′
= 

1

π
arctan (3.5

Ψ′d

6df
) (1 −

Ψ′d

3lf
)
2

αf. ρf. kb   (SI units: MPa, mm)            

VR,f

b0d√fc
′
= 12.52

1

π
arctan (3.5

Ψ′d

6df
) (1 −

2Ψ′d

6lf
)
2

αf. ρf. kb   (U.S. customary units: psi, in.) 

 

Eq. 5.19 

 
Fig. 5.8 Validation of proposed failure criterion and impact of adjusting plate rotation to account 

for prestressing force 

The proposed failure criteria for the contribution of concrete to plate punching capacity 

was validated by subtracting the contribution of fibers obtained using Eq. 5.19 from computed 

plate punching capacities. The contribution of fibers was calculated once using the unadjusted 

plate rotation, Ψ′,  and another time using the adjusted plate rotation,  Ψ′, to demonstrate the 
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necessity of this adjustment for PT UHPC plates. The normalized computed plate rotation and Vr,c 

terms were compared with those obtained from the proposed failure criterion for Vr,c by varying 

plate rotation and obtaining corresponding Vr,c values. Fig. 5.8 suggests that the use of the proposed 

coefficient of 1.25 (15) in the numerator of Vr,c and the adjustment of plate rotation when 

calculating the contribution of fibers results in good agreement between predicted and computed 

punching and plate rotation capacities. If the unadjusted plate rotation is used, the discrepancy 

between computed and predicted results is larger. 

5.7 Distinction of Punching Shear and Flexural Failures in the Proposed Method 

Flexure and punching shear failure in PT UHPC plates can be distinguished by plotting the 

plate load rotation relationship and the rotation dependent failure criteria. The intersection of the 

two curves implies a punching shear failure. If the curves do not intersect, then the controlling 

failure mode is plate flexure. The flexural capacity of the plate in such cases can be obtained by 

noting the maximum load in the plate load rotation curve. Alternatively, Eq. 5.2 can be simplified 

by making the following substitutions:  𝑚𝑟 = 𝑚𝑢 and 𝑟𝑠 = 𝑟𝑐𝑟 = 𝑟𝑦, which reduce Eq. 5.2 to Eq. 

5.20, where mu is the ultimate moment capacity of the plate per unit length. Since the term 𝐸𝐼2 is 

rather small, tangential moments along the sides of the plate can be taken equal to the ultimate 

moment, which further simplifies Eq. 5.20 to Eq. 5.21.  

𝑉𝑓𝑙𝑒𝑥 =
2𝜋

𝑟𝑞−𝑟𝑐
{𝑚𝑢𝑟𝑜 + 𝐸𝐼2𝛹〈𝑙𝑛(𝑟𝑠) − 𝑙𝑛(𝑟𝑜)〉 + 𝐸𝐼2𝜒𝑇𝑆2〈(𝑟𝑠) − (𝑟𝑜)〉 + 𝑚𝑝𝑟𝑚  }           Eq. 5.20  

𝑉𝑓𝑙𝑒𝑥 =
2𝜋

𝑟𝑞−𝑟𝑐
{𝑚𝑢𝑟𝑠 +𝑚𝑝𝑟𝑚 }                                                   Eq. 5.21 
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5.8 COMPARISON OF COMPUTED AND PREDICTED CAPACITIES 

5.8.1 Parametric Analyses 

A parametric analysis was conducted to: 1) understand the influence of several parameters 

on the behavior of PT UHPC plates subject to concentrated loads, and 2) demonstrate the ability 

of the proposed prediction methodology to accurately capture the influence of each considered 

parameter on plate punching shear capacity.  

5.8.1.1 Effect of plate thickness 

Six PT UHPC plates (Table 5.2) were considered to quantify the influence of plate 

thickness on punching shear capacity and on shear stress at failure. Table 5.2 and Fig. 5.9a suggest 

that increasing plate thickness is the most impactful technique to increase plate punching capacity.  

a)  b)  c)  

d)   e)  f)  

g)  h)  

Fig. 5.9 Influence of various parameters on PT UHPC plate punching shear strength 
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This is expected as the influence of plate thickness, captured through the effective depth, 

d, elevates the failure criterion and increases plate stiffness, thus resulting in higher plate punching 

capacities. Conversely, an increase in plate thickness results in a decrease in the punching shear 

stress at failure as is evident in the proposed failure criterion for Vr,c. The computed and predicted 

punching capacities and punching shear stresses at failure are rather consistent for the considered 

range of plate thickness suggesting that the proposed methodology can accurately capture the 

influence of this parameter. 

5.8.1.2 Effect of column size 

While an increase in plate thickness may be the most impactful technique to increase plate 

punching shear capacity, it is not the most efficient, since a punching shear failure precipitates 

from the overstress of an isolated region around the column. Therefore, increasing plate thickness, 

increases floor dead load and consequently gravitational and seismic load demand on the entire 

structural system including foundations. A more efficient technique to address punching in flat 

plates is to increase the column size. Table 5.2 and Fig. 5.9a show that an increase in column size 

is also an impactful technique to increase punching capacity although not as impactful as 

increasing plate thickness as evidenced by the slope of the curves. The influence of column size in 

the prediction methodology is captured primarily through the failure criterion, through the critical 

punching shear perimeter, bo, the outline of which is assumed to be at a distance d/2 from the face 

of the column. The column size also influences the plate load rotation relationship as shown in Eq. 

5.2 although this influence is marginal compared to that captured through the failure criterion. A 

comparison of computed and predicted results suggest that the proposed prediction method is able 

to accurately capture the influence of this parameter on plate punching capacity in terms of the 
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increase in punching capacity for a given change in column size, although, predicted capacities are 

generally lower (i.e. more conservative) than computed capacities. 

5.8.1.3 Effect of 𝒅𝒑 

The influence of the effective depth of prestressed reinforcement, dp, on PT UHPC plate 

punching capacity was investigated by considering the range of dp values shown in Table 5.2 and 

Fig. 5.9b. Larger dp values correspond to larger plate punching capacities, however, this increase 

is marginal. A larger dp results in a larger tendon stress as the plate approaches its punching 

capacity. This larger tendon stress results in a larger plate moment capacity captured through 

radial, mr, prestressing, mp, and tangential, mt, moments in Eq. 5.2 thus resulting in a slightly stiffer 

load rotation response. However, this increase is rather small as the stiffness and flexural capacity 

of the plate is affected by the tensile domain of UHPC as well as non-prestressed reinforcement. 

Therefore, the variation of dp alone does not amount to an appreciable increase in punching 

capacity. Computed and predicted capacities are generally consistent, which further demonstrates 

the ability of the proposed method to accurately capture the influence of this parameter on plate 

punching capacity. 

5.8.1.4 Effect of 𝝆𝒑𝒔 

The effect of the prestressed reinforcement ratio, 𝜌𝑝𝑠,  on plate punching shear capacity 

was investigated by varying it from 0.07-1.32% as shown in Table 5.2 and Fig. 5.9d. An increase 

in 𝜌𝑝𝑠 generally results in an increase in plate punching shear capacity because 𝜌𝑝𝑠 affects the 

magnitude of prestressing force, which in turn affects the stiffness of the plate through the 

reduction of the critical shear crack width captured by the product of adjusted plate rotation and 

effective depth Ψ′d (Eq. 5.10). The contribution of fibers to the punching capacity of the plate is 

influenced similarly by the width of the critical shear crack through the 
Ψ′d

6
 term in Eq. 5.19. The 
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adjusted plate rotation Ψ′  (Eq. 5.11) is a function of average normal stress due to prestressing, σn, 

and modulus of elasticity, E.  As σn increases, Ψ′ decreases resulting in an increase in punching 

capacity. However, Ψ′ cannot be smaller than zero as indicated in Eq. 5.11. In cases when there is 

a high amount of prestressing force, the adjusted rotation assumes a value of zero and the 

contribution of concrete to plate punching capacity is reduced to a rotation independent 

formulation as shown in Eq. 5.22. Similarly, the contribution of fibers, Vr,f , becomes zero and the 

predicted plate punching capacity remains constant regardless of further increases in prestressed 

reinforcement ratio, 𝜌𝑝𝑠.  The increase in plate punching capacity is on average captured 

consistently in the numerical as well as in the proposed prediction model with average ratio and 

COV of computed over predicted capacity being 1.00 and 17%. Maximum and minimum ratios 

are contained to 1.37 and 0.83, respectively. 

VR,cΨ′ = 1.25b0d√𝑓𝑐′    (SI units: N, mm) 

                VR,cΨ′ = 15b0d√𝑓𝑐′    (U.S. customary units: psi, in.) 

 

Eq. 5.22 

5.8.1.5 Effect of Prestress Losses 

The impact of prestress losses on plate punching capacity was quantified by evaluating 

plates with various magnitudes of effective prestress. The considered plates are shown in Table 

5.2 and feature effective prestress that varies from 0.7fpu (i.e. full jacking stress – no losses) to 0 

prestress. The magnitude of effective prestress, fpe, affects the calculation of cracking moment, mcr, 

yield moment, my, and ultimate moment, mu, which define the proposed quadrilinear moment 

curvature relationship (Fig. 5.6). Effective prestress further influences the plate rotation 

relationship (Eq. 5.2) through the prestressing moment, mp (Eq. 5.8), which is a function of the 

unit normal force, n, which in turn is a function of prestressing force when plate punching occurs. 

This prestressing force, Pps, varies along the perimeter of the typical pie strip considered in the 
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derivation of plate’s load rotation relationship, and can be obtained as function of curvature and 

the corresponding strand stress (which is a function of effective prestress). Strand stress also affects 

the critical shear crack width through the calculation of the adjusted rotation (Eq. 5.11). Table 5.2 

and Fig. 5.9e suggest that for expected magnitudes of prestress losses (15-25% of jacking stress) 

the predicted plate punching capacities match well with computed values and for lower than 

expected effective prestress, the proposed method provides conservative estimates of plate 

punching shear capacity. 

5.8.1.6 Effect of tendon configuration 

The influence of tendon configuration on PT UHPC plate punching capacity was 

investigated by considering banded-banded and banded-distributed tendon configurations. Table 

5.2 and Fig. 5.9f suggest that tendon configuration has very little influence on plate punching 

capacity and computed capacities were rather similar for both cases. Predicted capacities were 

identical since the proposed method does not distinguish between various tendon configurations 

and Fig. 5.9f suggest that such distinction is not warranted. 

5.8.1.7 Effect of 𝝆𝒔 

The effect of non-prestressed reinforcement ratio, 𝝆𝒔, on the tensile zone was investigated 

by varying, 𝝆𝒔, from 0.04% to 5.81% as illustrated in Table 5.2 and Fig. 5.9g. Higher 𝜌𝑠 resulted 

in higher computed and predicted plate punching capacities with computed and predicted 

capacities being rather consistent. The influence of 𝜌𝑠 on plate punching capacity is captured 

through the moment curvature and plate load rotation relationship with higher 𝜌𝑠 values resulting 

in a stiffer load rotation response and consequently higher plate punching capacities. 



149 

 

 

 

5.8.1.8 Effect of Fiber Content and Characteristics 

The effect of fiber content and characteristics on PT UHPC plate punching shear capacity 

was investigated by considering the UHPC formulations shown in Table 5.2. These formulations 

vary in terms of fiber content (2-4.5% by volume), fiber diameter (0.2-0.55 mm [0.0079-0.0217 

in.]), fiber length (13-30 mm [0.51-1.18 in.]), fiber type (straight or with deformed ends), and 

UHPC compressive strength (f’
c = 91-153 MPa [13.2-22.2 ksi]). It should be noted that some of 

these formulations feature compressive strengths that are lower than the FHWA definition 

presented earlier but are classified as UHPC class materials (Haber et al. 2018). Details about these 

various UHPC formulations are provided in reference Haber et al. (2018). The influence on these 

various formulations on PT UHPC plate punching shear capacity is illustrated in Fig. 5.9h and 

Table 5.2. Computed and predicted capacities are rather consistent for all considered formulations 

demonstrating the flexibility and generality of the proposed method. The effect of fiber content, 

fiber length, fiber diameter, and fiber type are captured directly through the Vr,f term in the failure 

criterion, and indirectly through the plate load-rotation relationship. Any differences in fiber 

amount and characteristics, and UHPC compressive strength will lead to differences in the UHPC 

constitutive relationship, which is a required input when computing the moment-curvature 

relationship and subsequently the plate load-rotation relationship. Measured constitutive models 

for the compressive and tensile domain of UHPC were available for the formulations shown in 

Table 5.2 and this information was used when obtaining computed and predicted plate punching 

shear capacities.  

5.8.2 Comparison of Computed and Predicted Plate Punching Shear Capacities 

The punching capacity of 58 punching critical PT UHPC plate specimens described earlier 

was compared with that obtained from validated NLFEA. The results are shown in Fig. 5.10. The 
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average of ratio of computed and predicted punching shear capacities is 0.99 and the COV is 

11.3%. The minimum and maximum ratios of computed over predicted capacities are 0.73 and 

1.20, respectively. These statistics suggest that the proposed prediction methodology can predict 

accurately the punching capacity of PT UHPC plates with various characteristics. 

 

Fig. 5.10 Comparison of computed and predicted PT UHPC plate punching shear strength 

5.9 SUMMARY AND CONCLUSIONS 

1) A methodology to predict the punching shear capacity of PT plates was presented. The method 

supplies simultaneously plate’s punching and rotation capacity by superimposing plate’s load 

rotation relationship and a rotation dependent failure criterion. Punching shear capacities of 58 

PT UHPC plates obtained from the proposed methodology were compared with results 

obtained from validated numerical models. The average ratio and COV of computed over 

predicted punching shear capacity are 0.99 and 11.3%, respectively, suggesting that the 

proposed methodology can accurately predict the punching shear capacity of PT UHPC plates. 

2) A simplified procedure was proposed to predict the moment-curvature relationship for a PT 

UHPC plate strip of unit width and this procedure was used to generate the plate load rotation 
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relationship. Predicted and computed moment curvature and plate load rotation relationships 

were consistent. 

3) A PT UHPC plate punching shear failure criterion was developed. The coefficient 1.25 (15) in 

Eq. 5.10 was derived using nonlinear regression using a database of punching shear in critical 

plates. An adjustment for plate rotation proposed by Clement et al. (2012) for PT NSC plates 

was evaluated and was found to be appropriate for PT UHPC plates. The inclusion of this 

adjustment was necessary when computing the contribution of fibers using the formulation 

proposed by Voo et al. (2010) for nonprestressed beams. 

4) A criterion was proposed to distinguish between punching and flexure induced plate failures 

in the numerical models. This criterion was used to create a database of punching critical PT 

UHPC plate specimens, which were used to validate and inform the development of the 

proposed methodology. Similarly, the proposed method provides a graphical as well as a 

mathematical approach for how to distinguish between punching and flexure induced plate 

failures. 

5) The proposed method captures accurately the influence of plate thickness, column size, 

prestressed and non-prestressed reinforcement ratio, tendon configuration, prestressing force, 

and fiber content and characteristics on PT UHPC plate punching capacity. 
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6. Chapter 6: Summary, Conclusions, and Recommendations 

6.1 Summary 

Procedures for predicting the flexural strength, moment-curvature-deformation response, 

and punching shear capacity of PT UHPC elements are presented. The prediction method for 

flexural strength is based on a mechanics based phenomenological model. A set of equations is 

provided to predict strand stress at the ultimate limit state as a function of plastic hinge length. The 

procedure for obtaining the moment-curvature-deformation response does not rely on empiricism 

other than what is included in the assumed material constitutive models, and provides the means 

to determine the variation of curvature and deflection as the beam is loaded to failure thus 

providing an avenue to quantify ductility at the cross-section and member level. The method 

presented for predicting the punching shear capacity of PT UHPC plates supplies simultaneously 

plate’s punching and rotation capacity by superimposing plate’s load rotation relationship and a 

rotation dependent failure criterion. The derivation of plates load-rotation relationship is based on 

engineering mechanics and is informed by the moment curvature relationship of a typical plate 

strip developed. Criteria are presented for distinguishing between punching and flexural failures 

in numerical and prediction models. All prediction methods are validated using nonlinear finite 

element analysis. 

6.2 Conclusions 

The following conclusions can be drawn for each topic: 
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6.2.1 Flexural Strength of PT UHPC Beams 

(1) The proposed flexural design methodology is general and provides numerous advantages: 

(a) it accounts for simple span and continuous members featuring various loading 

configurations and loading patterns, (b) it accounts for rectangular and T-section 

behavior,(c) it captures the influence of key parameters such as beam cross-sectional 

dimensions, effective depth of tendons and span over effective depth ratio, area of tendons 

and mild steel, and different classes of UHPC exhibiting various compressive and tensile 

properties. 

(2) The proposed methodology results in rather accurate predictions of the change in strand 

stress at ultimate, Δfps, the strand stress at ultimate, fps, and nominal moment capacity, Mn, 

of post-tensioned UHPC beams featuring average predicted values that are within 5% of 

computed ones and coefficients of variation no greater than 17%. 

(3) The majority of investigated beams exhibited a fiber tension-controlled failure. The only 

exceptions were continuous T-beams and heavily post-tensioned beams, which exhibited 

UHPC compression controlled failures. 

(4) Loading configuration, patterned loading, effective depth, span to effective depth ratio, and 

maximum usable UHPC compressive and tensile strains, had a strong influence on the 

magnitude of the change in strand stress at ultimate and therefore were directly included in 

the calculation of Δfps. 

(5) The influence of specified UHPC compressive strength, tendon area, mild steel area, UHPC 

cracking stress, and continuity on Δfps was considered small enough to allow the equations 

of equilibrium capture their effect through the calculation of the depth to the neutral axis. 
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6.2.2 Moment Curvature Deformation Response of PT UHPC Beams 

1) The proposed procedure is based on structural mechanics and is capable of reliably and 

efficiently computing the complete moment-curvature-deformation response of UHPC 

beams post-tensioned with internal unbonded tendons and offers insight about their 

ductility at the cross-section and member level. This information is useful in cases when a 

performance-based design approach is selected and a characterization of member behavior 

under different load intensities is desired. 

2) The proposed method does not require the definition of empirically obtained elastic and 

inelastic design parameters such as bond reduction coefficients and plastic hinge length. 

However, it can facilitate the use of approaches that employ these parameters by helping 

formulate them without having to rely on extensive experimental testing or time-

consuming finite element analysis. 

3) Cross-section level ductility was generally higher than member level ductility. 

Additionally, strain-based computations resulted in higher levels of cross-section level 

ductility compared to curvature-based computations. Most beams met minimum cross-

section level ductility requirements specified in American and Canadian standards for NSC 

and FRC, respectively. 

4) The influence of the considered constitutive models for the tensile and compressive 

domains was contained to an 8.6% and 17.5% change in flexural capacity when compared 

to the benchmark stress-strain curves. Most members exhibited a fiber tension-controlled 

failure. 

5) The most influential parameter for cross-section level ductility is εt1. A minimum value of 

0.006 is recommend for εt1 to meet existing minimum ductility requirement set forth for 
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NSC and FRC members. Additionally, while εt1 is an important parameter related to the 

failure mode of UHPC beams post-tensioned with unbonded tendons, its variation does not 

cause a marked difference in flexural capacity. 

6) The most influential parameter for member level ductility is the loading configuration 

especially when the ratio L/Δu was used as the metric for evaluating such ductility. The 

proposed methodology provides a framework for accurately determining the deflection at 

incipient failure, Δu. The influence of loading configuration on cross-section level ductility 

was much smaller than that exhibited at the member level. 

7) The most influential parameters in terms of increasing flexural capacity are the longitudinal 

unbonded reinforcement ratio, ρps, followed by the UHPC cracking stress, fcr, and the 

longitudinal bonded reinforcement ratio, ρstension, when the impact of these parameters for 

a given percentage change from the baseline case was considered. While a change in fcr did 

not influence ductility at any level, and increase in ρps and ρstension resulted in a decrease in 

cross-section and member level ductility. 

6.2.3 Punching Shear Strength of PT UHPC Plates 

1) A methodology to predict the punching shear capacity of PT plates was presented. The 

method supplies simultaneously plate’s punching and rotation capacity by superimposing 

plate’s load rotation relationship and a rotation dependent failure criterion. Punching shear 

capacities of 58 PT UHPC plates obtained from the proposed methodology were compared 

with results obtained from validated numerical models. The average ratio and COV of 

computed over predicted punching shear capacity are 0.99 and 11.3%, respectively, 
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suggesting that the proposed methodology can accurately predict the punching shear 

capacity of PT UHPC plates. 

2) A simplified procedure was proposed to predict the moment-curvature relationship for a 

PT UHPC plate strip of unit width and this procedure was used to generate the plate load 

rotation relationship. Predicted and computed moment curvature and plate load rotation 

relationships were consistent. 

3) A PT UHPC plate punching shear failure criterion was developed. The coefficient 1.25 

(15) in Eq. 5.10 was derived using nonlinear regression using a database of punching 

critical plates. An adjustment for plate rotation proposed by Clement et al. (2014) for PT 

NSC plates was evaluated and was found to be appropriate for PT UHPC plates. The 

inclusion of this adjustment was necessary when computing the contribution of fibers using 

the formulation proposed by Voo et al. (2010) for nonprestressed beams. 

4) A criterion was proposed to distinguish between punching and flexure induced plate 

failures in the numerical models. This criterion was used to create a database of punching 

critical PT UHPC plate specimens, which were used to validate and inform the 

development of the proposed methodology. Similarly, the proposed method provides a 

graphical as well as a mathematical approach for how to distinguish between punching and 

flexure induced plate failures. 

5) The proposed method captures accurately the influence of plate thickness, column size, 

prestressed and non-prestressed reinforcement ratio, tendon configuration, prestressing 

force, and fiber content and characteristics on PT UHPC plate punching capacity. 
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6.3 Recommendation for Future Work 

• Experimental testing of post-tensioned UHPC beams is recommended to increase fidelity 

in the numerical modelling protocol, proposed flexural design methodology, and proposed 

procedure for obtaining the moment-curvature-deformation response. The specimens 

should be designed such that they feature different failure modes to validate anticipated 

behavior. Work on this topic is currently underway. 

• Experimental testing to evaluate PT UHPC plate punching shear capacity is recommended 

to validate the numerical modeling protocol and to evaluate the accuracy of the proposed 

prediction methodology. The angle of inclination of the compressive struts at failure (i.e. 

angle of diagonal tension cracks) should be measured to validate assumptions. The 

influence of casting method on punching shear strength should be evaluated.  

• Experimental testing of beams and plates with various amounts of fibers and no 

nonprestressed reinforcement is recommended. These cases are important to determine 

whether minimum nonprestressed reinforcement requirement for PT NSC plates can be 

waived if plates are constructed with PT UHPC. Elimination of this requirement, if proved 

possible, would simplify the construction process of PT UHPC plates.  

• Beams or plates with high span to depth ratios (L/dp) should also be investigated to ensure 

that proposed methodology for the ultimate tendon stress (fps) is valid for such cases.  

• Since the combination of PT and UHPC can lead to super slender floors, these floors should 

be evaluated for vibrations to ensure satisfactory performance during service.  

• Long term deflections of super thin post-tensioned UHPC plates should be investigated to 

ensure that deflection values are within acceptable limits.  
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• The behavior of plate column connections under natural hazard induced loading should be 

investigated. 
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APPENDIX A 

 Example: Flexural Design Methodology for PT UHPC Beams (English Units) 

Fiber-tension controlled failure 

Problem Statement 

Consider a single span simply supported beam with a draped tendon configuration. The beam 

features  2 No. 2 bars (0.049 𝑖𝑛2)  as nonprestressed compression reinforcement, 2 No. 2 bars 

(0.049 𝑖𝑛2) and 2 No. 3 bars (0.11 𝑖𝑛2)  as nonprestressed tension reinforcement. Assume that that 

tensile domain of UHPC may be idealized using a bilinear stress-strain curve and that the 

compression domain may be represented as linear elastic to failure. Assume that the beam is 

subject to uniformly distributed loading. Using the following additional information determine the 

nominal moment capacity of the beam. 

𝑓𝑐
′ = 22 𝑘𝑠𝑖   (compressive strength of UHPC) 

f = 3, distributed loading coefficient (loading configuration coefficient) 

L = 336 in. (total length of beam);  

h = 12 in. (total beam height)  

b = 6 in. (width of beam); 

𝐴𝑝𝑠 = 0.306 𝑖𝑛2 (total area of prestressing strands) 

𝑑𝑝 = 10 𝑖𝑛. (distance from centroid of strands to uppermost compression fiber) 

𝑓𝑝𝑒 = 185 𝑘𝑠𝑖 (effective tendon stress);  
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𝑓𝑦 = 60 𝑘𝑠𝑖 (yield stress of non-prestressed reinforcement); 

𝐸𝑐 = 6853 ksi (modulus of elasticity of UHPC obtained from Ec = 46200 √𝑓𝑐′ (𝑓𝑐
′ in psi) 

𝑑𝑠 = 10.875 in. (distance from centroid of nonprestressed tension reinforcement to uppermost 

compression fiber)  

𝑑𝑠
′  = 1.125 in. (distance from nonprestressed compression reinforcement to uppermost 

compression fiber)  

𝐸𝑠 = 29000 ksi (modulus of elasticity of nonprestressed reinforcement); 

𝜀𝑡𝑢 = 0.01  (ultimate tensile strain of UHPC) 

𝐸𝑝𝑠 = 28500 ksi (modulus of elasticity of prestressing strands);  

c = neutral axis depth 

𝜀𝑝𝑒 = 
𝑓𝑝𝑒

𝐸𝑝𝑠
= 6.491 ∗ 10−3  (initial effective strain in prestressing strands) 

𝑓𝑐𝑟 = 0.994 ksi  (cracking stress of UHPC) = 6.7 √𝑓𝑐′ (𝑓𝑐
′ in psi) 

Solution 

Use force equilibrium at mid span (total tensile forces = total compressive forces) to determine the 

neutral axis depth. (∑𝐻 = 0) Assume that compression steel has not yielded, and tension steel 

has yielded. Assume that the governing strain distribution at failure is represented by a tensile 

strain of 0.01 in UHPC in the most extreme tension fiber. Use the proposed equation for fps. 
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2*0.0049*[
𝜀𝑡𝑢∗(𝑐−𝑑𝑠

′)∗𝐸𝑠

(ℎ−𝑐)
] + c*

𝑏

2
*[
𝜀𝑡𝑢∗𝑐∗𝐸𝑐

(ℎ−𝑐)
] = (h-c)*𝑏*𝑓𝑐𝑟 + 2*0.0049*𝑓𝑦 + 2*0.11*𝑓𝑦 + 

𝐴𝑝𝑠*[𝜀𝑝𝑒 + [(
1
𝐿

𝑑𝑝

+ 
1

𝑓
) ∗ 𝐿] ∗ (

𝜀𝑡𝑢

𝐿
) ∗ (

𝑑𝑝−𝑐

ℎ−𝑐
)]

[
 
 
 
 
 
 

𝐴 + 
𝐵

[
 
 
 

1 +[𝐶∗[𝜀𝑝𝑒+ [(
1
𝐿
𝑑𝑝

+ 
1

𝑓
)∗𝐿]∗(

𝜀𝑡𝑢
𝐿
)∗(

𝑑𝑝−𝑐

ℎ−𝑐
)]]

𝐷

]
 
 
 
1/𝐷

]
 
 
 
 
 
 

 

where  A = 887, B = 27613, C = 112.4, D = 7.36 

c = 2.566 in.  Check assumptions:  

[
𝜀𝑡𝑢∗(𝑐−𝑑𝑠

′)∗𝐸𝑠

(ℎ−𝑐)
] = 44.31 𝑘𝑠𝑖  < 60 𝑘𝑠𝑖  (compression steel has not yielded)  

[
𝜀𝑡𝑢∗(𝑐)∗𝐸𝑐

(ℎ−𝑐)
] = 18.64 𝑘𝑠𝑖  < 22 𝑘𝑠𝑖  (UHPC has not crushed in compression region)  

[
𝜀𝑡𝑢∗(𝑑𝑠−𝑐)

(ℎ−𝑐)
] = 8.807 ∗ 10−3  > 2.069 ∗  10−3 = 

𝑓𝑦

𝐸𝑠
   (tension steel has yielded)  

Using the calculated depth to the neutral axis, determine fps using the proposed equation: 

𝑓𝑝𝑠 = [𝜀𝑝𝑒 + [(
1
𝐿

𝑑𝑝

+ 
1

𝑓
) ∗ 𝐿] ∗ (

𝜀𝑡𝑢

𝐿
) ∗ (

𝑑𝑝−𝑐

ℎ−𝑐
)]

[
 
 
 
 
 
 

𝐴 + 
𝐵

[
 
 
 

1 +[𝐶∗[𝜀𝑝𝑒+ [(
1
𝐿
𝑑𝑝

+ 
1

𝑓
)∗𝐿]∗(

𝜀𝑡𝑢
𝐿
)∗(

𝑑𝑝−𝑐

ℎ−𝑐
)]]

𝐷

]
 
 
 
1/𝐷

]
 
 
 
 
 
 

 = 

237 ksi    

Determine the nominal moment capacity of the beam: 

𝑀𝑝 = 2*0.0049*[
𝜀𝑡𝑢∗(𝑐−𝑑𝑠

′)∗𝐸𝑠

(ℎ−𝑐)
] (ℎ − 𝑑𝑠

′) + c*
𝑏

2
*[
𝜀𝑡𝑢∗𝑐∗𝐸𝑐

(ℎ−𝑐)
] [ℎ −

𝑐

3
] - (h-c)*𝑏*𝑓𝑐𝑟  [

ℎ−𝑐

2
] - 

2*0.0049*𝑓𝑦*(h - 𝑑𝑠) - 2*0.11*𝑓𝑦 ∗ (h − 𝑑𝑠)  - 𝐴𝑝𝑠*𝑓𝑝𝑠*(h - 𝑑𝑝) = 1524 in – kips (Answer) 
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Concrete-compression controlled failure: 

Problem Statement: 

Consider a single span simply supported beam with a draped tendon configuration. The beam 

features 2 No. 2 bars (0.049 𝑖𝑛2)  as non-prestressed compression reinforcement, and 2 No. 2 bars 

(0.049 𝑖𝑛2) and 2 No. 3 bars (0.11 𝑖𝑛2)  as nonprestressed tension reinforcement. Assume that the 

tensile domain of UHPC may be idealized using a bilinear stress-strain curve and the compressive 

domain may be idealized using a linear elastic stress-strain relationship. Assume that the beam is 

subject to uniformly distributed loading. Using the following additional information determine the 

nominal moment capacity of the beam. 

𝑓𝑐
′ = 22 𝑘𝑠𝑖 (compressive strength of UHPC)  

𝜀𝑐𝑢 = 0.0038 (ultimate compressive strain of UHPC) 

f = 3 , distributed loading coefficient (loading configuration coefficient) 

L = 336 in. (total length of beam) ;  

h = 12 in. (total beam height)  

b = 6 in. (width of beam) ; 

𝐴𝑝𝑠 = 0.918 𝑖𝑛2 (prestressing tendon area) 

𝑑𝑝 = 10 𝑖𝑛. (distance from tendon location to uppermost compression fiber) 

𝑓𝑝𝑒 = 185 𝑘𝑠𝑖 (effective tendon stress) ;  

𝑓𝑦 = 60 𝑘𝑠𝑖 (yield strength of mild steel); 
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𝐸𝑐 = 6853 ksi  ( modulus of elasticity of UHPC ) = 46200 √𝑓𝑐′ (𝑓𝑐
′ in psi) 

𝑑𝑠 = 10.875 in. (distance between tension mild steel to uppermost compression fiber)  

𝑑𝑠
′  = 1.125 in. (distance between compression mild steel to uppermost compression fiber)  

𝐸𝑠 = 29000 ksi  (modulus of mild steel) ;  

𝜀𝑡𝑢 = 0.01  (ultimate tensile strain of UHPC); 

𝐸𝑝𝑠 = 28500 ksi  (modulus of prestressing tendon) ;  

c = neutral axis depth; 

𝜀𝑝𝑒 = 
𝑓𝑝𝑒

𝐸𝑝𝑠
= 6.491 ∗ 10−3  (initial effective strain in prestressing tendon); 

𝑓𝑐𝑟 = 0.994 ksi  (cracking stress of UHPC) = 6.7 √𝑓𝑐′ (𝑓𝑐
′ in psi); 

Solution: 

Use force equilibrium at mid span (total tensile forces = total compressive forces) to determine 

depth to neutral axis (∑𝐻 = 0).  Assume that compression steel and tension steel has yielded. 

Assume that the governing strain distribution at failure is represented by a compressive strain of 

0.0038 in UHPC in the most extreme compression fiber. Use the proposed equation for fps. 

2*0.0049*𝑓𝑦 + c*
𝑏

2
*𝑓𝑐

′ = (h-c)*𝑏*𝑓𝑐𝑟 + 2*0.0049*𝑓𝑦 + 2*0.11*𝑓𝑦                                                   

+ 𝐴𝑝𝑠*[𝜀𝑝𝑒 + [(
1
𝐿

𝑑𝑝

+ 
1

𝑓
) ∗ 𝐿] ∗ (

𝜀𝑐𝑢

𝐿
) ∗ (

𝑑𝑝−𝑐

𝑐
)]

[
 
 
 
 
 
 

𝐴 + 
𝐵

[
 
 
 

1 +[𝐶∗[𝜀𝑝𝑒+ [(
1
𝐿
𝑑𝑝

+ 
1

𝑓
)∗𝐿]∗(

𝜀𝑐𝑢
𝐿
)∗(

𝑑𝑝−𝑐

𝑐
)]]

𝐷

]
 
 
 
1/𝐷

]
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where  A = 887, B = 27613, C = 112.4, D = 7.36 

c = 4.059 in.     Check assumptions:  

[
𝜀𝑐𝑢∗(𝑐−𝑑𝑠

′)∗𝐸𝑠

(𝑐)
] = 79.65 𝑘𝑠𝑖  >  60 𝑘𝑠𝑖  (compression steel has yielded)  

[
𝜀𝑐𝑢∗(ℎ−𝑐)

(𝑐)
] = 7.435 ∗ 10−3  < 0.01  (maximum tensile strain is smaller than maximum usable 

tensile strain 0.01)  

[
𝜀𝑐𝑢∗(𝑑𝑠−𝑐)

(𝑐)
] = 6.382 ∗  10−3  > 2.069 ∗  10−3 = 

𝑓𝑦

𝐸𝑠
   (tension steel has yielded)  

Using the calculated depth to the neutral axis, determine fps: 

𝑓𝑝𝑠 = [𝜀𝑝𝑒 + [(
1
𝐿

𝑑𝑝

+ 
1

𝑓
) ∗ 𝐿] ∗ (

𝜀𝑐𝑢

𝐿
) ∗ (

𝑑𝑝−𝑐

𝑐
)]

[
 
 
 
 
 
 

𝐴 + 
𝐵

[
 
 
 

1 +[𝐶∗[𝜀𝑝𝑒+ [(
1
𝐿
𝑑𝑝

+ 
1

𝑓
)∗𝐿]∗(

𝜀𝑐𝑢
𝐿
)∗(

𝑑𝑝−𝑐

𝑐
)]]

𝐷

]
 
 
 
1/𝐷

]
 
 
 
 
 
 

 = 

226 ksi    

Determine nominal moment capacity: 

𝑀𝑝 = 2*0.0049*[𝑓𝑦](ℎ − 𝑑𝑠
′) + c*

𝑏

2
*[𝑓𝑐

′] [ℎ −
𝑐

3
] - (h-c)*𝑏*𝑓𝑐𝑟  [

ℎ−𝑐

2
] - 2*0.0049*𝑓𝑦*(h - 𝑑𝑠) - 

2*0.11*𝑓𝑦 ∗ (h − 𝑑𝑠)  - 𝐴𝑝𝑠*𝑓𝑝𝑠*(h - 𝑑𝑝) = 2292 in – kips Answer 

 

 

 

 



165 

 

 

 

APPENDIX B 

Example: Punching shear capacity of a PT UHPC Plate (SI Units) 

Problem Statement 

Consider a two-way square flat plate with a draped tendon configuration in both direction. Assume 

that there are 15 No. 8 bars (50.27 𝑚𝑚2)  as nonprestressed compression reinforcement, and 28 

No. 8 bars (50.27 𝑚𝑚2)  as nonprestressed tension reinforcement. Assume that the tensile domain 

of UHPC may be idealized using a bilinear stress-strain curve and that the compression domain 

may be represented by a linear elastic relationship. Assume that there are 6 tendons with a 14.7 

mm diameter placed in each direction. Determine the punching shear capacity of the plate using 

the additional information provided below: 

𝑓𝑐
′ = 151.1 𝑀𝑃𝑎   (compressive strength of UHPC) 

L = 2000 mm (plate length);  

h = 125 mm (total plate height)  

b = 2000 mm (plate width);  

𝐴𝑝𝑠 = 592.2 𝑚𝑚2 (prestressing tendon area in one direction); 

𝑑𝑝 = 90.8 𝑚𝑚 (distance from tendon location to uppermost compression fiber); 

𝑑𝑝𝑎𝑣𝑔 = 76.65 𝑚𝑚 (average tendon depth from uppermost compression fiber); 

𝑓𝑝𝑒 = 1292 𝑀𝑃𝑎 (effective tendon stress);  

𝑓𝑦 = 420 𝑀𝑃𝑎 (yield strength of mild steel); 
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𝐸𝑐 = 47200 MPa  ( modulus of elasticity of UHPC ) = 3840 √𝑓𝑐′ (𝑓𝑐
′ in MPa); 

𝑑𝑠 = 109 mm (distance between tension mild steel to uppermost compression fiber);  

𝑑𝑠
′  = 16 mm (distance between compression mild steel to uppermost compression fiber);  

𝐸𝑠 = 200 GPa  (modulus of mild steel) ;  

𝜀𝑡𝑢 = 0.01  (ultimate tensile strain of UHPC); 

𝐸𝑝𝑠 = 196.5 GPa  (modulus of prestressing tendon) ;  

c = neutral axis depth; 

𝜀𝑝𝑒 = 
𝑓𝑝𝑒

𝐸𝑝𝑠
= 6.576 ∗ 10−3  (initial effective strain in prestressing tendon); 

𝑓𝑐𝑟 = 6.884 MPa  (cracking stress of UHPC) = 0.56 √𝑓𝑐′ (𝑓𝑐
′ in MPa); 

𝑑𝑔 = 0 mm  (maximum aggregate size in diameter);  

𝑑𝑓 = 0.3 mm  (diameter of fiber in matrix); 

𝑑𝑔𝑜 = 16 mm  (reference aggregate size in diameter);  

𝑙𝑓 = 16.5 mm  (length of fiber in matrix); 

𝑘𝑏 = 0.6 mm  (bond factor for straight fiber) ; 

𝜌𝑓 = 2%  (fiber reinforcement ratio in volume); 

𝑏𝑐 = 100 mm  (side length of square column) ;  

𝑟𝑐 = 
2∗𝑏𝑐

𝜋
= 63.66 mm  (radius of circular column); 
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𝑟𝑜 = 𝑟𝑐 + 𝑑𝑠 = 172.66 mm  (radius of critical shear crack, d away from face of support); 

𝑟𝑞 = 500 mm (radius of isolated slab element);  

𝑟𝑚 = 500 mm (radius of isolated slab element); 

𝑟𝑠 = 
𝐿

2
= 500 mm (radius of load introduction at perimeter); 

𝑏𝑜 = (4 ∗ 𝑏𝑐 + 𝜋 ∗ 𝑑𝑠) = 742.4 mm (control perimeter d/2 away from face of support); 

Solution: 

Using the proposed procedure to obtain the moment curvature relationship determine the 

following points:  

𝜙𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 1.5 ∗  10−6 1/mm (initial curvature after prestressing) 

𝑀𝑐𝑟 = 1.16 ∗  108 N.mm (cracking moment of slab)  

𝜙𝑐𝑟 = 1.04 ∗  10−5 1/mm (curvature at cracking moment) 

𝑀𝑦 = 1.8 ∗  108 N.mm (moment at mild steel yielding)  

𝜙𝑦 = 3.15 ∗  10−5 1/mm (curvature at mild steel yielding) 

𝑀𝑢 = 1.99 ∗ 108 N.mm (ultimate moment, fiber-tension controlled)  

𝜙𝑢 = 9.58 ∗ 10−5 1/mm (curvature at ultimate moment)  

 𝑓𝑝𝑠 = 1345 MPa (tendon stress at ultimate) 

Determine unit moments and forces as follows: 

𝑚𝑐𝑟 = 
𝑀𝑐𝑟

𝑏
= 5.8 ∗ 104 N-mm/mm (cracking moment of slab per unit length) 
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𝑚𝑦 = 
𝑀𝑦

𝑏
= 9 ∗ 104 N-mm/mm (moment at mild steel yielding per unit length) 

𝑚𝑢 = 
𝑀𝑢

𝑏
= 9.95 ∗ 104 N-mm/mm (moment at ultimate per unit length) 

𝑛 =  
𝑓𝑝𝑠∗𝐴𝑝𝑠

𝑏
= 398.2 N /mm (unit force due to prestressing tendon) 

𝑚𝑝 =  𝑛 [
ℎ2

12(𝑑𝑠−
ℎ

2
)
+ 𝑒] = 1.96 ∗ 104 N.mm/mm (decompression moment per unit length) 

𝑟𝑚 = location of prestressing effect;  

e = tendon eccentricity 

𝜎𝑛 = 
𝑛

ℎ
= 3.186 MPa (unit normal stress due to prestressing tendon) 

𝜓 = rotation of slab outside of column region; 

𝑚𝑟 = radial moment at critical shear crack region; 

Determine the terms required to obtain the load rotation relationship: 

𝐸𝐼0 = 
𝑚𝑐𝑟

𝜙𝑐𝑟−𝜙𝑖𝑛𝑖𝑡𝑖𝑎𝑙
= 5.577 ∗ 109 MPa. 𝑚𝑚4/mm (slope between cracking and onset of loading) 

𝐸𝐼1 = 
𝑚𝑦−𝑚𝑐𝑟

𝜙𝑦−𝜙𝑐𝑟
= 1.517 ∗ 109 MPa. 𝑚𝑚4/mm (slope between cracking and yielding moment) 

𝐸𝐼2 = 
𝑚𝑢−𝑚𝑦

𝜙𝑢−𝜙𝑦
= 1.477 ∗ 108 MPa. 𝑚𝑚4/mm (slope between yielding moment and ultimate) 

𝑋𝑇𝑆1 = 
𝑚𝑦

𝐸𝐼1
− 𝜙𝑦  = 2.784 ∗ 10−5 1/mm (curvature difference between cracking and yielding) 

𝑋𝑇𝑆2 = 
𝑚𝑢

𝐸𝐼2
− 𝜙𝑢  = 5.777 ∗ 10

−4 1/mm (curvature difference between yielding and ultimate) 

General the load-rotation relationship as follow:  



169 

 

 

 

VR= 
2∗π

rq−rc

{
 
 

 
 mr ∗ ro + EI0 ∗ ψ ∗ [ln(rs) − ln (

ψ

𝜙𝑐𝑟
)] + EI1 ∗ ψ ∗ [ln (

ψ

𝜙𝑐𝑟
) − ln (

ψ

𝜙𝑦
)]

+EI1 ∗ XTS1 ∗ [(
ψ

𝜙𝑐𝑟
) − (

ψ

𝜙𝑦
)] + EI2 ∗ ψ ∗ [ln (

ψ

𝜙𝑦
) − ln(ro)]

+EI2 ∗ XTS2 ∗ [(
ψ

𝜙𝑦
) − (ro)] + mp ∗ rm }

 
 

 
 

 

Equate the total load (VR) to the punching shear capacity of the plate (VR) and solve for the 

critical plate rotation at punching failure.  

𝑉𝑅 = VR,c + VR,f   ; ψ
′ = ψ− 45 ∗

σn

Ec
 ;  

VR,c

b0∗d∗√𝑓𝑐
′
=

1.25

1+15∗
ψ′∗𝑑𝑠
𝑑𝑔𝑜+𝑑𝑔

 ; 
VR,f

b0∗𝑑𝑠∗√fc
′
= 

1

π
∗ arctan (3.5 ∗

ψ′∗𝑑𝑠

6∗lf
) ∗ (1 −

ψ′∗𝑑𝑠

3∗lf
)
2

∗
lf

df
∗ ρf ∗ kb 

2 ∗ π

rq − rc

{
 
 
 

 
 
 mr ∗ ro + EI0 ∗ ψ ∗ [ln(rs) − ln(rs)] + EI1 ∗ ψ ∗ [ln(rs) − ln (

ψ

𝜙𝑦
)]

+EI1 ∗ XTS1 ∗ [(rs) − (
ψ

𝜙𝑦
)] + EI2 ∗ ψ ∗ [ln (

ψ

𝜙𝑦
) − ln(ro)]

+EI2 ∗ XTS2 ∗ [(
ψ

𝜙𝑦
) − (ro)] + mp ∗ rm

}
 
 
 

 
 
 

                                          

=
1.25

1 + 15 ∗
ψ′ ∗ 𝑑𝑠
𝑑𝑔𝑜 + 𝑑𝑔

+ 
1

π
∗ arctan (3.5 ∗

ψ′ ∗ 𝑑𝑠
6 ∗ lf

) ∗ (1 −
ψ′ ∗ 𝑑𝑠
3 ∗ lf

)

2

∗
lf
df
∗ ρf ∗ kb 

𝜓 = 0.009914 ; ψ − 45 ∗
σn

Ec
 = 6.896 ∗ 10−3  >  0  

Using this critical plate rotation determine the punching shear capacity of the plate. 

ψ

𝜙𝑐𝑟
= 953.25 > rs , so, take it as rs ; 

ψ

ro
 = 5.742 ∗ 10−5 1/mm (curvature at critical shear crack) 

ψ

𝜙𝑦
= 314.723 < rs , so, take it as ry ; mr = 9.5 ∗ 104 N.mm/mm (unit radial moment at 

ψ

ro
) 

𝑽𝑹 = 𝟗𝟑𝟐. 𝟑 kN (Answer) (punching shear capacity of post-tensioned UHPC slab) 
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ABSTRACT 

FLEXURE AND PUNCHING SHEAR BEHAVIOR OF UHPC ELEMENTS POST-

TENSIONED WITH UNBONDED TENDONS 

 
by 
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Advisor: Dr. Fatmir Menkulasi 
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Degree: Doctor of Philosophy 

Procedures for predicting the flexural strength, moment-curvature-deformation response, 

and punching shear capacity of PT UHPC elements are presented. The prediction method for 

flexural strength is based on a mechanics based phenomenological model. A set of equations is 

provided to predict strand stress at the ultimate limit state as a function of plastic hinge length.  

The procedure for obtaining the moment-curvature-deformation response does not rely on 

empiricism other than what is included in the assumed material constitutive models, and provides 

the means to determine the variation of curvature and deflection as the beam is loaded to failure 

thus providing an avenue to quantify ductility at the cross-section and member level.  

The method presented for predicting the punching shear capacity of PT UHPC plates 

supplies simultaneously plate’s punching and rotation capacity by superimposing plate’s load 

rotation relationship and a rotation dependent failure criterion. The derivation of plates load-

rotation relationship is based on engineering mechanics and is informed by the moment curvature 

relationship of a typical plate strip developed. Criteria are presented for distinguishing between 

punching and flexural failures in numerical and prediction models. All prediction methods are 

validated using nonlinear finite element analysis. 
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