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CHAPTER 1. INTRODUCTION 

Obesity 

Obesity among adults, defined as a body mass index (BMI) of 30 kg/m2 or greater, has 

become a global pandemic. The prevalence of obesity has been increasing drastically around the 

world. In 2016, over 650 million adults were living with obesity, which is approximately 13% of 

adults across the globe [1]. According to the Centers for Disease Control and Prevention (CDC), 

the age-adjusted prevalence of obesity among adults significantly increased from 30.5% to 42.4% 

in the period from 1999 to 2018 in the United States [2]. Obesity is generally caused by an 

imbalance between energy intake and expenditure. High-fat diet-induced obesity is one of the 

common causes of obesity [3]. Diets that have over 30% of calorie intake from fat can easily 

contribute to obesity [4], and most Americans consume a diet with approximately 36% dietary fat 

[5]. 

Obesity increases the risks of various chronic diseases, including diabetes, hypertension, 

and cardiovascular disease (CVD) [6]. It has been considered as a vital risk factor for type 2 

diabetes mellitus (T2DM), resulting in insulin resistance and consequently triggering the -cell 

dysfunction [7, 8]. Studies have shown that over 80% of T2DM patients are overweight or obese, 

while approximately 50% of those have BMI over 30 kg/m2 [9, 10]. Hypertension has also been 

associated with obesity mainly by increasing leptin levels, sympathetic nervous system activities, 

and renal sodium reabsorption activity [11]. It has been found that 60-70% of adults with 

hypertension are attributed to adiposity [12]. Cardiovascular disease has been proven as another 

obesity-associated comorbidity. Obesity heightens the risks of CVD due to the increase of 

cholesterol deposition through blood vessels [13]. Increasing obesity has also been associated with 

shortening of life expectancy between 0.2 and 11.7 years [14, 15].  
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Due to these adverse impacts, it is crucial to develop strategies for the prevention and 

treatment of obesity. Searching for methods to modify energy balance, which can also be 

influenced by biological, and behavioral, and environmental factors, has become a major approach 

that researchers are focusing on [16]. To reverse the occurrence of obesity, diet control, and 

physical exercise have been evaluated as potential approaches. A meta-analysis study by Andela 

et al. observed that reduced-energy diet (≤800 kcal/day) interventions resulted in an average 

weight loss of 10.1 kg (P < 0.001) lasting 3 to 20 weeks and maintaining a weight loss of 5.3 kg 

(P < 0.001) at follow-up (5 - 14.5 months) [17]. Isolated physical activity intervention improved 

body composition but is not an effective approach for confronting obesity [18]. Aerobic exercise 

interventions without calorie restriction showed a weight loss of 1.6 kg from 6-month programs 

and 1.7 kg from 12-month programs [19]. However, a combination of physical exercise and diet 

intervention has yielded better results than physical- or diet-only intervention [20]. A meta-

analysis study by Johns et al. concluded that the combined physical and diet interventions yielded 

a similar short-term (3-6 months) weight loss and an increased weight loss during the long term 

(12-18 months) compared to the diet-only interventions [21].  

Gut microbiota 

The human gut microbiome is a complex and dynamic ecosystem colonized by 

approximately 1014 microbes, and microbes are symbiotic with the host [22, 23]. The initial 

colonization of microbes in the intestine is immediate at birth from maternal and environmental 

exposures, which becomes stable and complex by 2.5 years of age [24]. Although the gut 

microbiome community is stable in most cases, the composition can be shifted by external factors, 

including antibiotics overuse and diet modification [25, 26]. The use of antibiotics significantly 

disturbs the intestinal community, which may take four weeks or even longer to again resemble 
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the pre-treatment gut composition [27]. With antibiotics overuse, the risk of harboring antibiotic-

resistant pathogens increases drastically [25]. Furthermore, diet is another crucial factor that 

significantly influences the intestinal community. An animal study conducted by Zhang et al. 

suggested that 57% of total composition changes in mouse intestines can be explained by high-fat 

diet modification, whereas genetic factors only account for 12% of the variations [28]. In addition, 

Arumugam et al. analyzed the fecal metagenomes of individuals and clustered the microbiome 

into three variants or enterotypes, including Bacteroides, Prevotella, and Ruminococcus [29]. Wu 

et al. further showed an association between these enterotypes and long-term dietary patterns, in 

which the Bacteroides-enriched enterotype was linked to a protein- and animal fats-based diet, 

while the Prevotella-enriched enterotype was related to dietary carbohydrates [30]. Currently, 

increasing experiments on humans and animal models have provided evidence suggesting a solid 

association between the gut microbiome and obesity [27, 31-33]. Studies have consistently 

indicated the linkage between obesity and an increased abundance of Firmicutes with a higher 

Firmicutes to Bacteroidetes ratio in the human gut [23, 34]. A potential mechanism could be due 

to the fact that Firmicutes are more effective in absorbing energy than Bacteroidetes do [35]. 

Animal studies also suggested that the gut microbiota of lean mice contained a 50% lower 

abundance of Firmicutes with an elevated abundance of Bacteroidetes compared to obese siblings 

[36, 37]. Turnbaugh et al. further indicated that more energy from diets was extracted by the gut 

microbiome of obese mice than that of lean mice [38]. Furthermore, Germ-free (GF) mice studies 

and fecal transplant studies have repeatedly shown the gut microbial influences on energy balance, 

specifically, energy consumption from food and energy storage in the host [38-40], suggesting the 

potential of probiotic interventions could be used to manage obesity [41-43].  
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Probiotics and short-chain fatty acids 

Probiotics are live microorganisms that may directly modify the gut microbiome 

composition for positive health effects [44, 45]. Lactobacillus and Bifidobacterium species have 

been widely reviewed and used as probiotics in animal and human subjects, which are associated 

with relieving various types of diarrhea, such as antibiotic-induced, and rotavirus infection-

induced diarrhea, improving inflammatory bowel disease (IBD) symptoms, and lowering the 

cholesterol synthesis [46, 47]. Once probiotics survive and colonize in the gut, specific species 

could produce antimicrobial substances, mediators, or metabolites, such as bacteriocins and short-

chain fatty acids (SCFAs) [45]. These substances can inhibit other microorganisms from 

enumeration or colonization [48]; they can also compete against other gut microbes for receptors 

and binding sites [49]. For instance, Lactobacillus johnsonii La1 has been reported to effectively 

compete with enteropathogens because they both share the same carbohydrate-binding 

specificities in the intestine [50]. Likewise, certain metabolites produced by Lactobacillus 

acidophilus, including acidolin, acidophilin, and lactocidin, have been shown to inhibit the growth 

of food pathogens such as Bacillus, Salmonella, E. coli, and Staphylococcus [51, 52]. These 

mediators and metabolites produced by probiotics not only enhance the epithelial barrier and 

increased adhesion to the intestinal mucosa but also improve insulin sensitivity and the immune 

system, and influence energy intake [44, 53, 54]. SCFAs, which include formate, acetate, 

propionate, and butyrate, are major end products of the probiotic fermentation of non-digestible 

carbohydrates [55]. They have been positively associated with body weight reduction and insulin 

sensitivity, which are considered as one of the functional mechanisms of probiotics [56, 57]. In 

addition, SCFAs are also ligands and activators of G protein-coupled receptors (GPRs), including 

GPR41 and GPR43, renamed as FFAR3 and FFAR2, respectively [58]. The activation of these 
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receptors by butyrate and propionate leads to the enhanced secretion of satiety hormones in the 

intestine. Specifically, it has been reported that the ffa2-deficient mice displayed the lower 

glucagon-like peptide-1 (GLP-1) secretion, while the ffa3-deficient mice revealed a reduced 

peptide YY (PYY) expression [59, 60]. Consequently, the overexpressed receptors activated by 

SCFAs result in the decreased energy consumption and alleviates obesity [61-63].  

Clostridium cochlearium 

The potential probiotic of interest in this study was Clostridium cochlearium (C. 

cochlearium). It has been found in mammalian gut microflora, such as the rat, mice, and humans, 

suggesting its common and nonpathogenic nature [64, 65]. C. cochlearium is a Gram-positive 

anaerobic bacteria that belongs to the genus of Clostridium, which has a wide range of functions 

[66]. Some species in the genus of Clostridium have been identified as the pathogens, such as C. 

botulinum, C. perfringens, and C. difficile [66-68]. However, certain species of Clostridium have 

been shown to possess probiotic effects [67]. For example, Clostridium butyricum, named after its 

main product, butyric acid [69], has been suggested as a probiotic to prevent and treat obesity and 

other metabolic syndromes [70, 71]. Currently, there are limited references related to the health 

effect of C. cochlearium; however, it has properties similar to that of C. butyricum, such as 

converting carbohydrates into butyrate and other SCFAs [72, 73]. Studies have shown that dietary 

supplementations of butyrate or butyrate producers, such as Eubacterium hallii, reduced insulin 

resistance in db/db mice [74, 75], suggesting a beneficial role of butyrate in improving obesity-

related complications. Thus, C. cochlearium could be a potential novel probiotic against obesity 

and its related complications. 
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Specific aims 

The overall goal of this investigation was to determine the potential probiotic effect of 

Clostridium cochlearium supplementation on high-fat diet-induced obesity in C57BL/6mice and 

to further determine the underlying mechanism in relation to SCFAs and gut microbiota 

modification. We hypothesized that dietary supplementation of C. cochlearium could change gut 

microbiota and increase butyrate production in the gut, consequently reducing body weight gain 

in high fat-induced obese mice. To test our hypothesis, we proposed three specific aims.  

Aim 1 was to determine the effect of C. cochlearium supplementation on high-fat diet-

induced obesity and its associated complications using a mouse model.  

Aim 2 was to determine the effect of dietary C. cochlearium treatment on gut microbiota 

via 16S rRNA gene sequencing. Continuous supplementation of C. cochlearium was expected to 

significantly alter the gut microbiota.  

Aim 3 was to determine whether the probiotic effect of dietary C. cochlearium treatment 

is mediated through modification of gut microbiota and SCFAs production. Functional gene 

analysis was used to determine the potentially related gut microbial enzymes and their 

corresponding metabolic pathways. Additional gene expression was analyzed to confirm the 

potential interaction between host and gut microbiome based on the predicted potential pathways.  
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CHAPTER 2. DETERMINE THE EFFECT OF C. COCHLERIUM SUPPLEMENTATION 

ON A DIO MOUSE MODEL 

In order to mimic human obesity development, a diet induce-obesity (DIO) animal model 

would be suitable for the evaluation of the phenotypical and genetic effects of a high-fat Western 

diet. For this purpose, the C57BL/6 mouse model was chosen for this study. Currently, there are 

limited animal studies related to C. cochlearium, so no in vivo reports were available on its health 

effect. As a butyrate producer, it was hypothesized that C. cochlearium is able to modify glucose 

homeostasis and further prevent obesity development. Our objective was to investigate whether 

dietary C. cochlearium can reduce body weight gain in DIO mice treated with a high-fat diet. We 

conducted a 16-week dietary intervention. Mouse body weight was recorded weekly in order to 

monitor the weight change. In addition, the body composition of each mouse was evaluated using 

an MRI analyzer at the end of dietary treatment to determine the supplemental effects on fat mass 

and lean mass. Glucose homeostasis analysis, including periodic fasting blood glucose test, oral 

glucose tolerance test (OGTT), and insulin sensitivity, was performed. Energy balance of each 

mouse was evaluated at the end of treatment, which included food intake, fecal energy content, 

and energy expenditure. 

Methods 

Bacterial preparation 

C. cochlearium strain (ATCC 17787) was purchased from ATCC (Manassas, VA). They 

were cultured using anaerobic PYG media and conditions according to the previously 

recommended method [76]. The cultured bacteria were collected and centrifuged to yield a 

bacterial pellet at the end of the growth phase. The pellet was then washed with sterile phosphate-

buffered saline and integrated with sterile 25% glycerol in PYG media to reach the final 



 
 

 

8 

concentration of 1010 CFU/mL. The serial dilution and plating methods were utilized to check the 

viability to ensure the desired concentration for all further experiments. The bacterial glycerol 

stock was flash-frozen in liquid nitrogen and stored at -20 °C. The preparation was used within 

one week. During the experiment, bacterial samples were prepared daily at 30 min – 1 hour before 

oral gavage using thawed C. cochlearium glycerol stock. It was then centrifuged and washed with 

sterile phosphate-buffered saline to remove any excess storage medium. The final C. cochlearium 

culture was resuspended in sterile water and ready for oral gavage. 

Experimental animals 

The experiment was conducted with the approval of the Institutional Animal Care and Use 

Committee (IACUC) of Wayne State University. Thirty-six 6–8-week-old male C57BL/6 mice 

were purchased from Charles River Laboratories (Wilmington, MA), and housed in the Biological 

Science Building under 12-hour day/night cycles, constant room temperature (24 °C ± 1 ℃), and 

controlled moisture level (40% ± 10%). Food and water were given ad libitum. To prevent the 

possible intake of bedding material, sani-chip bedding was prepared for each cage. Two kinds of 

rodent diets were provided, the high-fat diet (D12492M) and the low-fat diet (normal diet, 

D12450J), which were stored at 4 °C until use. Both were purchased from Research Diets Inc. 

(New Brunswick, NJ). The high-fat diet contained 5.24 kcal per gram with 60% of calories from 

fat and 20% of calories from carbohydrates, while the low-fat diet consisted of 3.85 kcal per gram 

with 10% from fat and 70% from carbohydrates. The nutrition composition of these purified rodent 

diets is disclosed in Table 1. After 7-day acclimatization with the low-fat diet, mice were 

randomized into three groups (n = 12 per group, six mice per cage): the high-fat diet (HF) control 

group, the low-fat diet control (LF) group, and the C. cochlearium supplemented high-fat diet (CC) 

group. The HF control and LF control groups were gavaged with 200 µL of sterile water, while 
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the experimental group (CC) was treated with 200 µL of C. cochlearium culture containing 

approximately 1010 CFU/mL along with the high-fat diet. The experimental duration was set to be 

16 weeks. Food intake and body weight were monitored weekly. 

Fecal energy analysis 

At week 12, fecal pellets were collected and pooled from each cage within a 24-hour period 

while food and water were still provided to all the mice. All pellets were then air-dried and stored 

at – 20 °C for further analysis. Fecal energy was measured using a Bomb Calorimeter (Parr, Moline, 

IL). Duplicated fecal pellets (0.5 g per cage) per group were weighed and combusted in the 

calorimeter to yield appropriate energy output. The actual quantity of burned fecal content was 

used to calculate the fecal energy (kcal/g), where post-test non-combustible residue weight was 

subtracted from pre-test fecal weight. Additionally, feed efficiency was calculated using the 

following formula: Feed efficiency = total mouse body weight gain / total energy intake  100%. 

Glucose homeostasis 

Fasting blood glucose was evaluated every four weeks, during which each mouse’s tail 

vein blood drawn was tested with an Accu-chek glucometer (Roche, Indianapolis, IN) post-8-hour 

fasting with only water given. At week 15, an oral glucose tolerance test (OGTT) was performed 

for each mouse. After 8-hour food deprivation with only water given, all mice were given a glucose 

solution (10% w/v in sterile water) at the dosage of 1 g per kg body weight via oral gavage. At the 

time point of 0, 15, 30, 60, and 120 min, blood glucose was measured with an Accu-check 

glucometer via tail vein sampling. Incremental areas under the curve (AUC) of blood glucose 

levels were calculated using the standard trapezoid method [77]. 

Serum fasting insulin was evaluated followed the manufacturer's instruction using the 

ultra-sensitive mouse insulin ELISA kit (Crystal Chem, Doners Grove, IL). The optical density 
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(OD) values were tested using a microplate reader with 450 nm and 630 nm filters. The standard 

curve of insulin was produced to compute the serum insulin levels. Samples were measured in 

duplicates and the average of these 2 duplicates was calculated for each sample. The average 

absorbance value of each sample and the standard curve were used to interpolate the sample’s OD 

values. Homeostatic model assessment of insulin resistance (HOMA-IR) was computed as follows: 

fasting insulin (mU/L) × fasting glucose level (mg/dL)/405 [78].  

Metabolic study and body composition analysis (BCA) 

At week 15, each mouse from the HF group and the CC group was transferred to Wayne 

State University iBio facility and caged for five days (with 2-day acclimatization) into TSE 

PhenoMaster metabolic chamber system (TSE Systems, Chesterfield, MO) in order to measure 

each mouse’s energy expenditure and activity level. The housing environment for the mice was 

maintained the same as the previous group housing condition with the same light (day) /dark (night) 

cycle. Food consumption and weight changes of each mouse were measured and recorded along 

with respiratory parameters, including heat emission, respiratory exchange ratio (RER) via CO2 

production/O2 consumption. In addition, each mouse’s activity levels were also measured using 

horizontal and vertical infrared motion sensors spread out around the housing cage. Movement 

units were then converted into the distance in centimeters or meters for analysis. BMR was 

calculated based on the mean heat emission from the 10 lowest successive time points (kcal per 24 

hours) and then divided by each mouse’s body weight. 

After metabolic analysis, body composition was measured using the EchoMRI-100 

analyzer (EchoMRI, Houston, TX) at the same building. Oil standard was used as the calibrator to 

accurately measure body density differences when placed in the MRI scanner. Each mouse was 

weighed prior to scanning, and duplicated measurements were performed and resulted in fat and 



 
 

 

11 

lean mass, which would be further calculated into percentages. Free water such as blood and urine 

were subtracted from the total weight of the animal for accurate fat/lean ratio analysis. The fat 

percentage, lean mass percentage, and fat/lean ratio were calculated using the following formulas: 

fat percentage = fat mass/weight  100%. Lean mass percentage = lean mass/weight  100%. 

Fat/lean ratio = fat mass/lean mass. 

Euthanasia and tissue collection 

Upon termination, all mice were euthanatized by CO2 exposure with subsequent cervical 

dislocation. The heart puncture method was used for blood collection, and approximately 1 to 1.5 

mL of blood samples were able to be collected and placed into sterile Eppendorf® microtubes. 

The samples were then left undisturbed at room temperature for 30 minutes after the collection. In 

order to remove the clot, the blood samples were centrifuged (1000 g, 10 minutes, 4 °C), and the 

supernatant was aliquoted into microtubes. All serum samples were then aliquoted and flash-frozen 

in liquid. Tissues (liver, kidney, and fat) from each mouse were collected, weighed, and quenched 

immediately using liquid nitrogen. Intestinal contents from the cecum and large intestine (absent 

of solid fecal droplet) were scrapped out and placed in microtubes, which were immediately flash-

frozen in liquid nitrogen. All samples were stored at -80 °C until analysis. 

Statistical analysis 

Data were analyzed and presented as means ± SEM. Statistical analyses of the three groups 

of data were performed using one-way or two-way analysis of variance (ANOVA) followed by a 

post-hoc t-test with Turkey correction by GraphPad Prism (V 7.0, La Jolla, CA). The metabolic 

data between the HF and CC groups were performed using the Student t-test with GraphPad Prism. 

All the results were considered statistically significant at P < 0.05.  
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Results 

The body weight trends between the LF, HF, and CC groups during the 16-week 

intervention are presented in Figure 1. The HF group gained body weight at the highest rate, 

followed by the CC and LF control groups. At the third week of dietary intervention, mice in the 

CC group started to show significantly less body weight than the HF group. The difference 

remained significant until the end of the dietary intervention. After 16 weeks of the high-fat diet 

treatment, the HF mice gained 101.4% from original body weight, while the high-fat diet 

supplemented with C. cochlearium was able to reduce body weight gain to 85.6% (Table 2). The 

average body weight of the CC group was 7.6 g less than that of the HF group, which accounted 

for a 14.8% reduction in the CC mice when compared to the HF group (P < 0.0001). The CC group 

had a significantly reduced percentage body weight gain of 15.8% compared to the HF group (P < 

0.0001).  

The body composition of each mouse in the LF, HF, and CC groups was evaluated at week 

16 of the intervention as shown in Table 2. The HF group had the highest fat mass and fat 

percentage across the three groups, which were significantly higher than that of the CC group (P 

< 0.0001, P < 0.05, respectively). Specifically, the fat mass in the CC mice was decreased by an 

average of 20.8% compared to the HF mice. The LF group showed the lowest fat mass and fat 

percentage among the three groups. The average lean mass of the CC mice was lower than that of 

the HF mice (P = 0.06). However, there was no significant difference in the lean mass percentage 

between the two groups (P > 0.05). In addition, the CC group had a significantly lower fat/lean 

ratio than the HF group did (P < 0.01). 

Fasting blood glucose levels were performed every 4 weeks. Figure 2 shows that the serum 

fasting glucose levels of the HF group were higher than for the other two groups after the eighth 
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week. There was no significant difference in fasting blood glucose between the CC and LF groups 

throughout the dietary intervention. At the end of the intervention, the CC group maintained an 

average fasting blood glucose level of 175.2  10.3 mg/dL (Table 3), which was reduced by 21.7% 

when compared to the HF group. 

Additionally, the oral glucose tolerance test was also performed for all three groups at the 

time points of 0, 15, 30, 60, and 120 minutes following ingestion (Figure 3). The HF group showed 

significantly higher blood glucose levels than the other two groups at all time points. The blood 

glucose response in OGTT also showed a significant difference by C. cochlearium treatment as 

compared to the high-fat diet-only treatment. C. cochlearium treatment improved the glucose 

tolerance and subsequently returned the blood glucose back to a normal level at the end of OGTT. 

The area under the curve (AUC) was calculated based on the results of OGTT glucose levels, as 

shown in Figure 4. The HF group showed a significantly elevated AUC level compared to the LF 

(P < 0.0001) and CC groups (P < 0.0001), while the AUC level of the CC group was also 

significantly higher than that of the LF group (P < 0.0001). Specifically, the AUC level of the CC 

group was 39.8% lower than that of the HF mice. 

The fasting insulin and glucose levels were measured at the end of the intervention in order 

to compute the HOMA-IR (Table 3). The average insulin level of the CC group was significantly 

lower than that of the HF group (P < 0.01), which was reduced by 36.9% in the CC group when 

compared to that of the HF group. The HOMA-IR calculation has confirmed that the HF group 

had a significantly elevated level compared to the CC group (P < 0.01), which showed a 47.2% 

reduction in the CC group compared to the HF group (P < 0.01).  

The food intake was monitored every week, and the average energy consumption was 

calculated (Table 4). Due to the lower energy in the normal diet, lower grams of food consumption 
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were observed in the HF and CC mice compared to the LF group. After calculating diets into 

calories, similar daily food intake was observed among the 3 groups. The HF group showed the 

highest fecal energy output at 1.3 kcal/day/mouse when compared to the LF and CC groups (P < 

0.0001, P < 0.0001, respectively). Subsequently, the feed efficiency analysis using daily total 

caloric intake per weight gain generated a significantly higher ratio in the HF group compared to 

the CC group (P < 0.01). Interestingly, the calorie absorption was significantly higher in the CC 

group compared to the HF group (P < 0.001). 

The respiratory exchange ratio (RER) was calculated based on the quantity of carbon 

dioxide generated in metabolism and oxygen utilized. The RER of the HF group was lower than 

that of the CC group (P < 0.05) (Table 4). Similarly, the HF group had a lower basal metabolic 

rate (BMR) than the CC group did (P < 0.05). The daily physical activity level was measured in 

average distance traveled (meters/day/mouse), which indicated that mice in the CC group were 

more active than the HF group (P < 0.05). 

Discussion 

The results of this study confirmed the effects of a high-fat diet on C57BL/6 mice as 

expected based on previous literature reports, including body weight gain, insulin resistance, 

hyperglycemia, and increased fat mass [79, 80]. A study by Siersbæk et al. indicated that the body 

weight gain of C57BL/6J mice increased approximately by 80% at week 10 with high-fat diet 

treatment, which is similar to our results [80]. Our HF group had body weight gain increase by 

73.2% at week 10 and 82% at week 11. The dietary supplementation of C. cochlearium also 

supported our hypothesis that C. cochlearium can reduce high-fat diet-induced obesity and its 

associated complications, such as increased body weight gain, fat mass, fat percentage, and fat/lean 

ratio. A significant decrease in fat mass in the CC group was observed, which has been correlated 
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with the lower risks of several chronic diseases, such as diabetes, cardiovascular disease, and 

cancer [81]. In our investigation, since there is no difference in lean mass percentage, the major 

body weight difference between the HF mice and CC mice came from the significantly shifted fat 

mass/fat percentage. The reduced fat mass by C. cochlearium supplementation would be 

associated with SCFAs. SCFAs-activated ffar2 genes from fat tissue suppress insulin metabolism 

in adipose cells and subsequently reduce fat storage and promote glucose signaling in other tissue 

[63]. As a butyrate producer, the C. cochlearium supplemented group promotes SCFAs production, 

which could lead to less fat mass compared to the HF group. 

Glucose homeostasis was another point of interest when examining the efficacy of C. 

cochlearium supplementation. The fasting glucose during the whole period of intervention has 

clearly indicated the significant difference between the HF group and the CC group as described 

above, suggesting the administration of C. cochlearium significantly reduced the fasting blood 

glucose level and improved the glucose tolerance and insulin sensitivity. Although the fasting 

glucose level was similar in the LF and CC groups, both AUC and HOMA-IR were significantly 

higher in the CC group compared to the LF group. This could be due to the administration of C. 

cochlearium, which partially reduced the onset of insulin resistance caused by a high-fat diet but 

might not be enough to reverse the insulin resistance to the level observed in the low-fat-fed mice. 

Although no previous study has investigated C. cochlearium in glucose homeostasis, these results 

are consistent with other similar property probiotics. Clostridium butyricum (C. butyricum), a 

butyrate producer as well, has been shown to improve fasting glucose and insulin sensitivity in 

high-fat diet-induced diabetic mice by gut microbiome modulation with elevated butyrate-

producing bacteria [71]. Thus, our C. cochlearium supplementation could have a similar 

mechanism through the alteration of the gut microbiome. Exploring the microbiome profile is 
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needed to clarify the potential mechanism through the shifted gut composition. In conclusion, C. 

cochlearium supplementation had the ability to reduce fasting blood glucose and improve insulin 

sensitivity. 

Food intake, fecal energy, and activity level were measured in order to analyze the energy 

balance. There was no difference in energy intake among the tested groups. The HF mice had a 

higher fecal energy content than the CC group did. Nevertheless, the reduced body weight gain 

and fat mass in the CC group should be the result of increased energy expenditure. The elevated 

feed efficiency in the HF group suggested that the CC mice reduced energy storage, which resulted 

in a lower fat mass and fat percentage, as hypothesized. Moreover, mice’s RER (VCO2/VO2) 

through indirect calorimetry analysis revealed a significantly higher ratio in the CC group than that 

of the HF group, suggesting that mice in the CC group utilized relatively less fat and more 

carbohydrates as energy fuel than mice in the HF group did [82]. RER values indicated that both 

the HF and CC groups showed mixed respiratory substrates; however, it might be associated with 

potential elevation of the SCFAs production pathway as mentioned above [63]. This theory is not 

yet well understood as our hypothesis of weight reduction through fat mass decrease could be due 

to increased fatty acid oxidation, which would have given a lower RER in the CC treatment group. 

Therefore, further investigation into the in vivo SCFAs production along with organ-specific 

metabolism, such as liver- and adipose-specific SCFAs receptors, could be helpful to elucidate the 

mechanism. Approximately 10.7% increase in BMR was observed from the CC group when 

compared to the HF group, suggesting that the CC mice utilized more energy for basal energy 

needs. This is consistent with a previous study that showed BMR was lower in obese people than 

the normal weight counterparts [83]. Furthermore, the physical activity level measured by the 

traveled distance in the metabolic chamber was 98% higher in the CC group compared to those in 



 
 

 

17 

the HF group. Both physical activity and BMR level have been involved with fat oxidation, which 

could explain the reduced body weight gain and lowered fat mass observed in the CC group [84, 

85]. The elevated energy expenditure could also be associated with the gut microbiome. Although 

mechanisms between the increased energy expenditure and influences from the gut profile shift 

are not yet clear, SCFAs produced by gut microbiota have been suggested to increase energy 

expenditure through fat oxidation, which promotes the host activity level [86]. Thus, the 

production of SCFAs from bacteria might explain the increased energy expenditure, especially the 

elevated physical activity of the host. Therefore, the next step was to analyze the gut microbiome 

differences between the HF and CC groups. 
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CHAPTER 3. DETERMINE THE EFFECT OF DIETARY C. COCHLERIUM 

TREATMENT ON GUT MICROBIOME PROFILE VIA 16S rRNA GENE SEQUENCING 

Over the last decade, biologists have raised the importance of the gut microbiome inhabited 

by thousands of bacterial species in diverse communities unique to each body site [87]. It is 

becoming evident that the gut microbiome plays an important role in human health and disease 

[88]. In order to understand the gut microbiome, 16S rRNA gene sequencing has become the 

approach to explore the gut microbiome by identification, classification, and quantitation of 

microorganisms. The 16S rRNA gene includes both variable regions used for microbiota 

identification and conserved regions used for designing universal PCR primers [89]. The V3 and 

V4 regions are hypervariable, commonly used in 16S sequencing [90]. In our investigation, V4 

regions of the encoding gene were amplified and sequenced. It was hypothesized that the gut 

microbiome in the CC group would be modulated by supplemented C. cochlearium compared to 

the HF group. The shifted profile was analyzed to explore how C. cochlearium supplementation 

contributes to gut microbiome communities. 

Methods 

16S rRNA-amplicon sequencing of gut microbiota 

The intestinal content collected was utilized for bacterial community composition analysis. 

Samples were sent to, as well as extracted and analyzed by, the University of Michigan Microbial 

Systems Molecular Biology Laboratory (MSMBL), Ann Arbor, Michigan. DNA extraction was 

processed by the Qiagen MagAttract PowerMicrobiome kit (Qiagen, CA, USA) and following the 

manufacture’s protocol. The Quant-iT PicoGreen dsDNA Assay kit was used to quantify the DNA 

samples. The V4 hypervariable region of the 16S rRNA-encoding gene was amplified, normalized, 
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and sequenced by MiSeq Reagent Kit v2 (500 cycles) on the Illumina MiSeq platform (San Diego, 

CA, USA) [91].  

Sequencing data were analyzed using QIIME 2 software (2019.12) [92]. After 

demultiplexing and quality filtering using the q2-demux plugin, denoising was followed via q2-

dada2 [93]. The denoised sequences were then clustered into operational taxonomical units 

(OTUs), which involved using 97% sequence similarity against a reference Greengenes OTU 

database (Release 13.8) for taxonomic classification [94-96]. Alpha-diversity was measured, 

including Shannon diversity index, Pielou’s evenness, and Faith’s phylogenetic diversity. The 

beta-diversity metrics were estimated using the Principal Coordinate Analysis (PCoA) based on 

UniFrac (unweighted and weighted) distance, Jaccard distance, and Bray-Curtis dissimilarity. 

Both alpha and beta diversity analyses were computed using q2-diversity. Kruskal-Wallis test and 

Permutational multivariate analysis of variance (PERMANOVA) were further implemented using 

q2-diversity-alpha-group-significance/beta-group-significance to evaluate the group difference for 

alpha diversity box plots and the group separation for PCoA, respectively. 

The linear discriminant analysis (LDA) effect size (LEfSe) was analyzed to explore high-

dimensional biomarker taxa with significantly varied relative abundance between two groups [97]. 

The Kruskal-Wallis rank sum test among classes was used to detect the differences of species 

abundance with the alpha level of 0.05. The threshold of 2.0 was used on the logarithmic LDA 

score for discriminative features [97, 98].  

Statistical analysis  

The relative abundance of the gut microbiome at the phylum level was presented as means 

± SEM. Statistical analyses between the HF and CC groups were performed using Student’s t-test 

by GraphPad Prism (V 7.0). Results were considered statistically significant at P < 0.05.  
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Results 

In total, 5,390,372 sequencing reads were obtained from 22 mouse intestinal content 

samples of the HF group (n = 12) and the CC group (n = 10), with an average of 449,198 reads per 

sample. After the quality filtering and denoising, 20 sample taxonomies were assigned by the 

Greengenes 13_8 97% OTUs taxonomy classifier. The relative abundance was converted by Qiime 

2 2019.12, as shown in Figure 5. Firmicutes, Proteobacteria, and Bacteroidetes were predominant 

of the total community at the phylum level and accounted for 95.46% and 95.18% of the HF and 

CC groups, respectively. Specifically, Bacteroidetes and Proteobacteria were elevated in the CC 

group as compared to the HF group (P = 0.068, P < 0.05, respectively) (Table 6). Firmicutes 

showed significantly lower abundance in the CC mice than in HF mice (P < 0.05). One of the 

minor phylum groups, Tenericutes, showed a significant difference between the HF and CC groups 

(P < 0.001). The ratio of Firmicutes to Bacteroidetes (F/B) was then calculated, which yielded a 

significantly lower ratio for the CC group than that of the HF group (P < 0.05).  

The alpha-analysis was used to measure the microbiome diversity, including non-

phylogenic metric and phylogenic metric [99]. In this study, Pielou’s evenness and Shannon 

diversity index were performed as non-phylogenic metrics, while Faith’s phylogenetic diversity 

was used as a phylogenic metric. The gut bacteria in the CC group showed a significantly higher 

level in both Pielou’s evenness (P < 0.001, Figure 6) and Shannon diversity index (P < 0.001, 

Figure 7) by the Kruskal-Wallis test. There is no significant difference in Faith’s phylogenetic 

diversity (Figure 8) among the HF group and the CC group, even though the gut microbiota of the 

CC mice showed an elevated level of diversity compared to that of the HF mice.  

The beta-analysis was performed to estimate the difference between two composition 

vectors, which measured the amount of species shift between regions [100]. Unweighted UniFrac, 
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weighted UniFrac, Bray-Curtis, and Jaccard distance PCoA plots are depicted in Figures 9-12. 

The UniFrac-based PCoA indicated significant separation between the HF and CC groups for both 

unweighted (P = 0.001) and weighted (P = 0.001) plots as shown in Figure 9 and Figure 10. The 

first three components of unweighted UniFrac explained 41.71% of the total variance (17.46%, 

14.82%, and 9.43% for PC1, PC2, and PC3, respectively), while the first three components of 

weighted UniFrac covered 74.39% of the total variance (43.96%, 16.73% and 13.70% for PC1, 

PC2, and PC3, respectively). The Bray-Curtis PCoA has also confirmed the significant separation 

between the HF and CC groups based on the microbial abundances (Figure 11). The Jaccard PCoA 

indicates that the CC group was significantly distinct from the HF group based on the presence of 

species (Figure 12). All four beta-analysis plots were further analyzed by PERMANOVA, which 

all showed significant separation with P = 0.001.  

LEfSe was performed with a list of 69 OTUs that summarized to genus. The LDA score, 

which was transformed to a logarithmic plot, was performed to estimate the influence of the 

differential abundance between the HF and CC groups depicted in Figure 13. All the species 

shown in Figure 13 were significantly contributed to their microbial profile filtering by the 

Kruskal—Wallis test, which clarified the differences between the HF and CC groups. The higher 

the LDA value of a specific species means the more important the species to its microbial group 

(HF or CC group). The threshold was set as 2, which means that the LDA score plot only indicated 

the absolute score over 2. The cladogram shown in Figure 14 was another output of LEfSe analysis, 

which added the taxonomy classification of those contributing bacteria. There are circles in Figure 

14 from the inside to the outside, which represent the bacteria classification level from the phylum 

to the genus. The larger the circle size indicates the higher relative abundance of the bacteria. There 

are three colors of circles shown in the cladogram. The bacteria without any significant differences 
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between the HF and CC groups are yellow. The significantly different microbiota between the HF 

and CC groups are green and red, respectively. In this case, the red circles of bacteria significantly 

higher abundance in the CC group, while the green nodes played a significant role in the HF group. 

Combining with both LDA score plots and the cladogram, several bacteria were found the 

differential abundance between the HF and CC groups. In the CC group, both the family of 

Ruminococcaceae and its genus of Ruminococcus, Oscillospira, and Clostridium significantly 

supported the CC group. The family of Lachnospiraceae with its genus of Dorea and 

Ruminococcus, the family of Desulfovibrionaceae with its genus of Bilophila, the family of 

Xanthomonadaceae with its genus of Stenotrophomonas, the family of Moraxellaceae and its 

genus of Acinetobacter, the family of Mogibacteriaceae, the family of Christensenellaceae, the 

family of Rikenellaceae and the family of S24_7 played an important role in the CC group when 

compared to the HF group. Although there is no C. cochlearium specifically shown in the LEfSe 

results, its genus of Clostridium has shown a significant contribution to an altered microbiome in 

the CC mice. In the HF group, the family of Lactobacillaceae and its genus of Lactobacillus, the 

family of Streptococcaceae, and its genus of Streptococcus and Lactococcus, the family of 

Enterobacteriaceae and its genus of Escherichia, and the family of Peptostreptococcaceae 

strongly contributed to the microbiota profile of the HF group.  

Discussion 

Probiotics have the ability to attain their anti-obesity beneficial effects by modifying the 

gut microbiome profile and consequently enhancing intestinal barrier function or boosting the 

host’s immunity [101]. In this study, the alteration of C. cochlearium supplementation was 

evaluated using alpha- and beta-diversity analysis. The detailed modulated microbiota, especially 
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at the phylum level, family level, and genus level, were detected and analyzed to display the 

contribution of gut microbiota to the anti-obesity effect by the administration of C. cochlearium. 

The alpha-diversity analysis was used to measure the species diversity of each sample at 

the local region and compare the difference of richness between groups. Among the non-

phylogenetic metrics of alpha-diversity indices, Pielou’s evenness is the estimator for the evenness 

of species abundance, while the Shannon diversity index was estimated based on both richness of 

species numbers and evenness of species abundance [99, 102]. For the phylogenetic metrics, 

Faith’s phylogenetic diversity was performed in this study to estimate based on both abundance 

information and phylogenetic information [99]. In this intervention, significant elevation of 

Pielou’s evenness and Shannon diversity index in the CC group was observed when compared to 

the HF group, suggesting that the administration of C. cochlearium significantly increased the 

evenness and richness of gut microbiota. In Faith’s phylogenetic diversity box plot, the increase 

of diversity in the CC group was also observed, but there was no significant change between the 

HF and CC groups. Overall, the increased diversity of gut bacteria, which is associated with anti-

obesity, was shown in the CC group compared to the HF group [103-105]. The high microbial 

diversity has been correlated with less fat mass and insulin resistance [105]. It is consistent with 

the animal study results that the fat mass and HOMA-IR were significantly lower in the CC group 

than in the HF group. Moreover, reduced microbial diversity has been observed in seniors with 

intestinal inflammation and patients with ulcerative colitis, inflammatory bowel disorder, and 

dyslipidemia [105-108].  

The beta-diversity analysis was performed to evaluate the change in species diversity 

between the HF and CC groups. In this investigation, both unweighted and weighted UniFrac 

distance, Bray-Curtis dissimilarity, and Jaccard distance were measured. The UniFrac distance 



 
 

 

24 

was analyzed based on the sequence distances, also known as the phylogenetic tree [109]. 

Specifically, the unweighted UniFrac purely contains the sequence information, while the 

weighted UniFrac incorporated both abundance and sequence information [109]. Bray-Curtis 

dissimilarity was used to evaluate the differential abundance of gut microbiota between the HF 

and CC groups, while the Jaccard distance assessed the differential composition of gut bacteria 

among the two groups [109, 110]. Jaccard distance was analyzed based on the existence or absence 

of a species without the abundance data [110]. All four measurements comprehensively analyzed 

the differences in gut microbiome composition between the HF and CC groups. All of the 

measurements’ PCoA plots depicted the strong separation between the HF and CC groups and 

were further analyzed by the PERMANOVA, which revealed the significant differences in gut 

microbial composition between the two groups. This suggested that the C. cochlearium 

supplementation significantly modulated the gut microbiome profile with regards to the abundance, 

presence, and phylogenetic information of bacteria. 

The gut microbiota is mainly comprised of two predominant phyla, Firmicutes and 

Bacteroidetes, and other subdominant phyla, including Proteobacteria, Actinobacteria, and 

Verrucomicrobia [111]. Based on our findings, Firmicutes and Bacteroidetes were still the 

dominant phyla in both the HF and CC groups. Firmicutes were observed with a significant 

reduction in the CC group, which was approximately 6.8% lower than the HF group. The elevation 

trend of Bacteroidetes in the CC group was also displayed when compared to the HF group with 

the P = 0.068. The F/B ratio has been frequently mentioned in the literature related to obesity [112, 

113]. It has been widely reported that the finding of increased Firmicutes and decreased 

Bacteroidetes were discovered in high-fat DIO mice and obese ob/ob mice compared to their lean 

controls [114, 115]. According to the literature, Firmicutes have been found to be more effective 
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in absorbing energy than Bacteroidetes and subsequently promoting weight gain [35, 111, 116]. 

Consequently, a high F/B ratio has been frequently linked with higher body weight or the body 

mass index (BMI) as a hallmark of obesity [36, 112, 113]. Moreover, the physical activity level 

has also been inversely correlated with the F/B ratio in animals and humans [111]. The outcome 

of our animal studies confirmed a similar phenotype as previous F/B ratio-related literature, in 

which the C. cochlearium treatment group showed reduced body weight gain and higher activity 

level compared to the HF group. Thus, this suggested that reducing the F/B ratio could be one of 

the reasons that the administration of C. cochlearium had anti-obesity activity.  

Furthermore, the phylum of Proteobacteria was shown to be positively associated with gut 

dysbiosis and metabolic diseases, and it was suggested as a “microbial signature” [117]. However, 

an elevated abundance of Proteobacteria was also observed in a dietary supplementation of a 

whole-grain oats animal study conducted by Zhou et al. The study suggested that a higher 

abundance of Proteobacteria has been associated with enhanced insulin sensitivity in C57BL/6J 

mice [77]. These inconsistent findings were likely due to the use of diverse animal models, 

insufficient amounts of subjects, or nonuniform experimental protocols [118-120]. Further 

investigation and comparison with other literature on the specific genus or species level to 

determine whether Proteobacteria could influence the overall profile or F/B ratio would be helpful 

to gain further perspectives. 

The output of LEfSe analysis displayed the significantly differentially abundant bacteria 

for the HF group and the CC group. The family of Ruminococcaceae and its genus of 

Ruminococcus, Oscillospira, and Clostridium has been detected as a significant contribution to the 

CC group. The family of Ruminococcaceae bacteria has been shown to be butyrate, lactate, and 

acetate producers [121]. The abundance of the Ruminococcaceae family has been associated with 
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the anti-obesity effect, with the potential of reducing the risks for obesity and cardiometabolic 

disease [122, 123]. Moreover, the family of Ruminococcaceae has been negatively associated with 

ulcerative colitis, one of the inflammatory bowel diseases [107]. Therefore, C. cochlearium 

supplementation could beneficially influence gut microbiota in ameliorating adverse digestive 

tract diseases.  

Moreover, the family of Lachonospiraceae, which can ferment carbohydrates into SCFAs 

as well, has been detected in increased abundance in the CC group when compared to the HF group 

[124]. The decreased abundance of the family of Lachonospiraceae bacteria was noticed in the 

obese participants in another clinical trial [122]. Another animal study has proved that the family 

of Lachonospiraceae diminished body weight gain, body fat, and microbiome dysbiosis, and 

improved glucose homeostasis in Nlrp12-/- mice [124]. The abundance of Lachnospiraceae 

bacteria was inversely associated with colorectal cancer, ulcerative colitis, and cirrhosis dysbiosis 

as well [107, 125, 126]. Interestingly, although the Lachnospiraceae family is not associated with 

obesity, the genus of Dorea and Ruminococcus under the family of Lachnospiraceae, which were 

also shown the contribution to the change in the CC group, has been associated with obesity and 

inflammatory bowel disease [127-129]. It might be because the C. cochlearium supplementation 

attenuated the high-fat-induced obesity but cannot comprehensively reverse the consequences of 

obesity. 

Other significant differential abundant taxa in the CC group, the families of 

Christensenellaceae, Mogibacteriaceae, Rikenellaceae, and S24_7, have been associated with 

anti-obesity effect and increased bowel movement [127, 130]. Among these, the family of 

Christensenellace has been described as SCFAs producer [131]. In a recent twin cohort study, the 

family of Christensenellace was found as the most heritable taxon, and the abundance of the 
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Christensenellace family was negatively associated with BMI [132]. Moreover, the family of 

Christensenellace has been linked to longevity in several cohort studies across diverse geographic 

areas [133]. 

Most of the gut microbiota mentioned above with increased abundance in the CC group 

are SCFAs producers. Some taxa with significantly higher abundance in the CC group cannot 

directly produce SCFAs, but have a positive correlation with the intestinal concentrations of 

SCFAs (acetate and propionate), including the genus of Stenotrophomonas and the family of 

Desulfovibrionaceae [134, 135]. Therefore, the administration of C. cochlearium potentially 

modulated the gut microbiome composition also by influencing the SCFAs-producing bacteria 

abundance. Most of the SCFAs-producing bacteria, especially for the butyrate-producing bacteria, 

are beneficial and play an important role in the anti-inflammatory effect [136]. 

The increased abundance of class Bacilli and its families Streptococcaceae and 

Lactobacillaceae were correlated with obesity [122]. This is consistent with our findings from the 

HF group. It is interesting to observe that the genus of Lactobacillus under the family of 

Lactobacillaceae had a significant contribution to the HF group. It has been widely reported that 

Lactobacillus sp. are beneficial, and can be used and added as probiotics in food, such as 

Lactobacillus acidophilus and Lactobacillus rhamnosus [137, 138]. However, some species of 

Lactobacillus, such as Lactobacillus acidophilus, Lactobacillus fermentum, Lactobacillus 

ingluviei, and Lactobacillus reuteri, have been associated with weight gain in animals [139-142]. 

Surprisingly, the abundance of the Lactococcus genus from the family Streptococcaceae was 

higher in the HF group compared to the CC group. Lactococcus genus is famous for Lactococcus 

lactis, a probiotic that was positively correlated with insulin sensitivity [54, 143]. However, not all 

the species in the genus of Lactococcus are probiotics. Lactococcus lactis cremoris, L. lactis 
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subspecies, has been reported as a rare pathogen that can cause human infections [144]. In our 

investigation, we cannot identify the specific species of the Lactococcus genus contributing to the 

HF group. Thus, the influence of the increasing abundance of the Lactococcus genus is uncertain. 

The LEfSe output has confirmed that the phylum level differentiation between the HF and 

CC groups as previously analyzed relative abundance results. Moreover, the most significant 

taxonomy changes in the CC group were SCFAs-producing or related bacteria and associated with 

the anti-obesity effect. On the contrary, majority of the highly abundant taxa in the HF group were 

linked to pro-obesity. Overall, it can be concluded that the administration of C. cochlearium had 

an effect against obesity through the alteration of gut microbiome composition by a potential 

SCFAs metabolic pathway.  

Although the genus of Clostridium under different families showed a significant difference 

between the HF group and the CC group, there is no C. cochlearium detected in the OTU table 

from the sequencing analysis results provided. One of the potential reasons could be identified as 

unclassified species in the OTU table, which may contain C. cochlearium, and was reflected as a 

significant increase of Clostridium genus in the CC group. In addition, the reference database we 

used in this study is the Greengenes database, which is based on the information from other 

taxonomy sources, mainly from NCBI [145]. Likewise, the most updated Greengenes database 

version was released in 2013, which means it has not been updated for almost 8 years [145]. 

Secondly, there could be a difficulty in the extraction of genetic materials of C. cochlearium from 

the low quantity of intestinal content, likely leading to non-detectable quantity. It is also possible 

that the supplemented C. cochlearium could have started sporulation, which may affect extraction 

and detection [146, 147]. We also suspected the possibility of microbial profile change due to the 

C. cochlearium metabolites from both intracellular and extra-cellular content. The digestive 
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process of mice could lead to bacterial cell degradation and the release of its cellular components 

and intracellular metabolites, which other native bacteria could utilize these for survival or other 

functionality.  
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CHAPTER 4. DETERMINE THE POTENTIAL MECHANISM BASED ON GUT 

MICROBIOME 

The 16S rRNA sequencing data has proved the significant separation between the HF and 

CC groups’ gut communities. To better explore the 16S sequences and understand the gut 

microbiome, functional gene analysis was performed. The Phylogenetic Investigation of 

Communities by Reconstruction of Unobserved States (PICRUST2) was used to support the 

prediction of characterization in a community of organisms. The gene family abundance was 

predicted in environmental DNA samples for the 16S rRNA gene [148]. After identifying the gene 

from 16S rRNA, the abundance of functional genes, specifically enzymes, were predicted. 

Subsequently, the predicted enzymes were regrouped to the MetaCyc reactions database to predict 

MetaCyc pathway abundances. The pathway abundances would uncover the potential mechanism 

between the gut microbiome and changed phenotypes. In this investigation, the enzymes from 

bacteria and bacteria-participated pathways were predicted. It was hypothesized that the increasing 

SCFAs-related enzymes and pathways abundance would be shown in the C. cochlearium treated 

group. 

Methods 

Functional gene analysis 

The Greengenes close-reference OTU table computed by Qiime2 was prepared for further 

analysis. The pipeline called PICRUST2 (Version 2.3.0 beta) was utilized in this study to predict 

the enrichment of functional genes in the gut microbiome of the HF and CC groups based on 

marker gene sequences from 16S sequencing data and a database of reference genomes [148-151]. 

Enzyme Classification (EC) numbers were first predicted through the hidden state prediction [152]. 

The MetaCyc reactions prediction was based on the abundance of EC number prediction after 
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reorganizing them into MetaCyc pathways. Likewise, the presence of minimum pathways in 

accordance with the presence of gene families was identified by MinPath [153]. The GraphPad 

Prism (V 7.0, La Jolla, CA) was performed to further analyze and visualize the output of PICRUSt2 

results. 

Short-chain fatty acids measurement 

The intestinal content of each mouse was sampled and pooled by group. After 

homogenizing the pooled samples, two aliquots per group were prepared for further measurement. 

SCFAs, including acetate, including propionate, and butyrate, were derivatized with a propyl 

chloroformate/pyridine mixture. Samples were then examined using gas chromatography-mass 

spectrometry (GC-MS) based on the previously published method [154, 155]. The retention times 

for different metabolites were varied. For acetate, the retention time was 2.119 min, while the 

retention time of propionate was 3.309 min. The retention time of butyrate was the longest among 

the three, which was 4.741 min. The quantitative ions for acetate, propionate, and butyrate were 

varied as well, which were m/z 61, 75, and 71, respectively. 

RNA extraction 

The liver and intestine tissue RNA were extracted using the InvitrogenTM PureLinkTM 

RNeasy Mini Kit (Carlsbad, CA) following the manufacturer's protocol. Tissues were brought 

from a -80 °C freezer and placed on the ice to obtain the correct sample weight. The rotor-stator 

homogenizer was used to homogenize the sample with the fresh lysis buffer. Samples were then 

centrifuged, and the supernatant was transferred to a clean RNase-free tube. The 100% ethanol 

was added to the supernatant, and then the supernatant was transferred to the spin cartridge to bind, 

wash, and elute RNA. The eluted RNA samples from the supernatant were further analyzed for 
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the quality and quantity by the Thermo ScientificTM NanoDrop 2000 spectrophotometer 

(Wilmington, DE). The RNA samples were stored at -80 °C for future analysis.  

Reverse transcription-quantitative polymerase chain reaction (RT-PCR) 

The RNA samples were reverse transcribed to cDNA by using the iScript™ Reverse 

Transcription Supermix (Hercules, CA). The Bio-rad CFX Connect real-time PCR instruments 

(Hercules, CA) was used for running RT-PCR. The NanoDrop 2000 spectrophotometer was used 

to evaluate the cDNA concentration. 

Real-time quantitative polymerase chain reaction (qPCR/real-time PCR) 

Targeted Gene-specific primers were used, and all the results were normalized with the 

housekeeping gene of GAPDH. iTaq Universal SYBR Green Supermix (Hercules, CA) solution 

was used as the real-time PCR reagents, which is 2 concentrated. The Bio-rad CFX Connect real-

time PCR instruments were used for running the qPCR, in which real-time PCR data were collected 

and evaluated by the CFX Maestro Software (Hercules, CA). Duplication was performed for each 

sample. The relative gene expressions were calculated by the Livak/delta delta Ct method [156, 

157]. Primer sequences are presented in Table 7. 

Statistical analysis 

Data were analyzed and presented as means ± SEM. The functional gene results and gene 

expression between the HF and CC groups were performed using the Student t-test with GraphPad 

Prism (V 7.0, La Jolla, CA). The Person correlation coefficients were computed to analyze the 

correlation between body weight and the predicted enzymes or pathways, combining both the HF 

and CC groups’ data. The SCFAs concentration among the LF, HF, and CC groups was analyzed 

using one-way ANOVA and followed by a post-hoc for multiple comparisons with GraphPad 

Prism. Results were considered statistically significant at P < 0.05.  
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Results 

PICRUST2 was performed as the functional gene analysis. The hidden-state prediction of 

the enzymes was first computed. There were 1,684 enzymes/functional genes predicted based on 

the 16S sequencing data. Among them, 974 enzymes showed a significant difference between the 

HF and CC groups. The abundance of 14 selected SCFAs-related enzymes or functional genes 

among the HF and CC groups is displayed in Table 8. The correlations between body weight and 

these enzymes are shown in Table 9. The abundance of all the SCFAs-related enzymes was 

elevated in the CC group when compared to the HF group, except for propionate kinase (Enzyme 

Commission (EC): 2.7.2.15). All the four butyrate-producing enzymes, including phosphate 

butyryltransferase (EC: 2.3.1.19), butyrate kinase (EC: 2.7.2.7), acetate CoA-transferase (EC: 

2.8.3.8), and short-chain acyl-CoA dehydrogenase (EC: 1.3.8.1), were significantly elevated in the 

CC group when compared to the HF group (Table 8). However, according to the correlation results 

(Table 9), only acetate CoA-transferase was shown to be inversely correlated with the host’s body 

weight (P < 0.01). The phosphate butyryltransferase and short-chain acyl-CoA dehydrogenase had 

a trend of negative correlation with body weight but the relationships failed to be significant (P > 

0.05). For other SCFAs-related enzymes, phosphate acetyltransferase (P < 0.01), acetate--CoA 

ligase (P < 0.01), propionate--CoA ligase (P < 0.05), propionate CoA-transferase (P < 0.0001), 

and propionyl-CoA carboxylase (P < 0.05), the significantly differential abundance between the 

HF and CC groups was observed (Table 8). Among these, propionate--CoA ligase , propionate 

CoA-transferase, and propionyl-CoA carboxylase showed significant inverse correlations between 

body weight and concentration of these enzymes. Additionally, there were two functional genes, 

succinyl-CoA: acetate CoA-transferase (P = 0.051) and urocanate reductase (P = 0.063), showing 

the trend to significantly increase the abundance in the CC group compared to the HF group.  
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The predicted pathway analyzed by PICRUST2 was anticipated based on the abundance of 

functional genes/enzymes. In total, 326 pathways involved with those enzymes were predicted. 

Among these, the significant differences between the HF and CC groups were observed in 194 

pathways by Student t-test. Thirteen SCFAs-related pathways were chosen for analyzing the 

SCFAs metabolism through gut microbiota. The abundance of SCFAs-related pathways is 

demonstrated in Table 10, while the correlation of these pathways was further investigated and is 

presented in Table 11. Six butyrate-related pathways were predicted, which are butyrate-

producing pathways through gut bacteria. Among these, the abundance of five pathways, including 

acetyl-CoA fermentation to butanoate II (P < 0.0001), pyruvate fermentation to butanoate (P < 

0.001), L-lysine fermentation to acetate and butanoate (P < 0.0001), L-glutamate degradation V 

(via hydroxyglutarate) (P < 0.01), and succinate fermentation to butanoate (P < 0.05) were 

significantly higher in the CC group compared to the HF group. Three out of the five pathways, 

acetyl-CoA fermentation to butanoate II (r = -0.55, P < 0.01), pyruvate fermentation to butanoate 

(r= -0.52, P < 0.05), and L-lysine fermentation to acetate and butanoate (r= -0.55, P < 0.01), was 

inversely correlated with body weight, while the abundance of L-glutamate degradation V (via 

hydroxyglutarate) had a trend to be negatively correlated with body weight (P = 0.074). 

Additionally, 6 acetate-related pathways were chosen for investigation in this study, including L-

lysine fermentation to acetate and butanoate, pyruvate fermentation to acetate and lactate II, 

pyruvate fermentation to acetone, hexitol fermentation to lactate, formate, ethanol, and acetate, 

methanogenesis from acetate, and TCA cycle VII (acetate-producers). Among these, the L-lysine 

fermentation to acetate and butanoate, which is mentioned above, has been linked to both acetate 

and butyrate production. Among other five acetate-related pathways, three of them, pyruvate 

fermentation to acetate and lactate II (P < 0.05), pyruvate fermentation to acetone (P < 0.0001), 
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and hexitol fermentation to lactate, formate, ethanol, and acetate (P < 0.05), have shown a 

significantly differential abundance between the HF and CC groups. Among these, only the 

pathway of pyruvate fermentation to acetone is the acetate-degradation pathway, while the other 

two pathways are acetate-producing. Remarkably, the abundance of pyruvate fermentation to 

acetate and lactate II, and pyruvate fermentation to acetone pathways were significantly elevated 

in the CC group, while the abundance of hexitol fermentation to lactate, formate, ethanol and 

acetate pathway revealed a significant decrease in the CC group when compared to the HF group. 

Among the three significantly shifted pathways, two of them have been significantly linked with 

body weight in the opposite direction. The pathway of pyruvate fermentation to acetone has been 

negatively correlated with body weight (r = -0.51, P < 0.05), while the pathway of hexitol 

fermentation to lactate, formate, ethanol and acetate indicated the positive correlation with body 

weight (r = 0.49, P < 0.05). Likewise, there are two propionate-related pathways selected in this 

investigation, including pyruvate fermentation to propanoate I and L-glutamate degradation VIII 

(to propanoate), which produce propionate through gut microbiota. Among two propionate-related 

pathways, only the pathway of pyruvate fermentation to propanoate I revealed a significant 

increase in the CC group (P < 0.05) when compared to the HF group. Analyzed by the Pearson 

correlation coefficient, a negative correlation trend was observed between the abundance of 

pyruvate fermentation to propanoate I pathway and body weight (r = -0.41, P = 0.06).  

The SCFAs metabolites were measured from the intestinal content using GC-MS, 

including the acetate, propionate, and butyrate. All the intestinal contents from each mouse were 

gathered and pooled by group. The grouped samples were homogenized, and duplicated samples 

were measured. The metabolites concentrations are presented in Table 12. The acetate level in the 

HF group was significantly higher than in the LF and CC groups. The acetate concentration in the 
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CC group was significantly increased compared to the LF group as well (P < 0.001). Additionally, 

the CC group had the highest propionate level among the three groups. The propionate 

concentration in the CC group was significantly higher than that of the HF group (P < 0.01). The 

trend of butyrate concentration results was similar to the trend of acetate level among the three 

groups. The HF group had the highest level of butyrate concentration among the three groups, 

which was significantly different from that of the CC group ( P < 0.0001). A significant difference 

in butyrate level was also observed between the LF and CC groups, with the level of the CC group 

higher than that of the LF group (P < 0.01).  

The real-time PCR was performed to evaluate the SCFAs-related gene expression, 

including ffar2, ffar3, HCAR2, SLC16A1, and SLC5A8. Free fatty acid receptor 2 (FFAR2) 

(GPR43), FFAR3 (GPR41), and GPR109A (encoded by HCAR2 gene) are the G protein-coupled 

receptors (GPRs) of SCFAs, while MCT1 (encoded by SLC16A1 gene) and SMCT1 (encoded by 

SLC5A8 gene) are the transporters of SCFAs [158]. The intestinal RNA of each mouse was first 

extracted and then reverse transcribed to cDNA. The intestinal cDNA was utilized to estimate the 

gene expression of ffar2, ffar3, HCAR2, SLC16A1, and SLC5A8. At the same time, the liver RNA 

was also extracted and reverse transcribed to cDNA. The gene expression of ffar2, ffar3 and 

HCAR2 was measured for liver cDNA, which are the receptors of SCFAs in liver tissue [159]. 

According to our relative normalized expression results from intestinal cDNA shown in Figure 

15-19, only the ffar2 gene had a significant difference between the HF and CC group (P < 0.0001), 

which was significantly downregulated in the CC group. However, no significant difference 

among the HF and CC groups was observed in the ffar2 gene expression from liver cDNA (Figure 

20). Besides, ffar3 and HCAR2 genes extracted from liver tissue also showed no difference 

between the HF and CC groups (Figure 21 and Figure 22). 
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Discussion 

The functional genes/enzymes and pathways were predicted through PICRUST2 based on 

the 16S rRNA sequencing results. Since the modulation of gut microbial composition was detected, 

the changes between the HF and CC groups were discovered, indicating that the increase of 

SCFAs-producing bacteria strongly contributed to the gut microbiome composition of the CC 

group. Thus, the SCFAs-related enzymes and pathways, especially the SCFAs synthesis pathways, 

require further investigation.  

According to the metabolic routes for butyrate production, there are direct and indirect 

pathways for butyrate synthesis [121]. The direct pathway converts carbohydrate directly to 

butyrate through butyrate kinase (EC: 2.7.2.7), while the indirect pathways synthesize butyrate 

from acetate via butyryl-CoA: acetate CoA transferase (EC: 2.8.3.8), succinate through succinyl-

CoA synthetase and lactate by lactate dehydrogenase, and finally via butyrate kinase as shown in 

Figure 23 [121, 160]. Thus, the genes of butyryl-CoA: acetate CoA transferase and butyrate kinase 

have been utilized as biomarkers for detecting the butyrate-producing microbiome. Additionally, 

we analyzed another two enzymes, short-chain acyl-CoA dehydrogenase/butyryl-CoA 

dehydrogenase (EC: 1.3.8.1) and phosphate butyryltransferase/phosphotransbutyrylase (EC: 

2.3.1.19), both involved in the pathways for butyrate production. All four of them showed a 

significant increase in the CC group compared to the HF group, suggesting an elevated butyrate 

production in the gut via the microbiota in the CC group. Interestingly, when correlation analyses 

were conducted, only acetate CoA-transferase showed a significantly negative correlation with 

body weight, which indicated the acetate CoA-transferase could be linked with the anti-obesity 

effect of C. cochlearium supplementation. Furthermore, the acetate CoA-transferase-involved 

pathway, acetyl-CoA fermentation to butanoate II, showed a significant difference between the 
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HF and CC groups. The abundance of this pathway in the CC group was elevated by 105.0% 

compared to that of the HF group, which means the abundance in the CC group was more than 

twice the abundance in the HF group. Moreover, the pathway has been shown to be negatively 

correlated with body weight in accordance with Pearson’s correlation test. It was suggested that 

the abundance of acetyl-CoA fermentation to butanoate II pathway could be used as the obesity 

indicator, the higher abundance meaning the lower body weight. The majority of butyrate-

producing pathways depicted in Figure 23 were detected in the functional gene analysis in terms 

of the abundance of enzymes, except the lactate to butyrate pathway, which can be combined with 

pyruvate to butyrate pathway. However, not all of the six butyrate-producing pathways discovered 

by the PICRUST2 were significantly different between the two groups. Apart from the acetyl-CoA 

fermentation to butanoate II, four pathways of pyruvate fermentation to butanoate, L-lysine 

fermentation to acetate and butanoate, L-glutamate degradation V (via hydroxyglutarate), and 

succinate fermentation to butanoate were significantly elevated in the CC group compared to the 

HF group, which suggested that the administration of C. cochlearium promoted the butyrate-

producing pathways by modulating the gut microbiome. Among these, the pathway of pyruvate 

fermentation to butanoate and the pathway of L-lysine fermentation to acetate was negatively 

correlated with body weight, indicating that the increasing abundance of butyrate-producing 

pathways bacteria by C. cochlearium supplementation has been linked to the anti-obesity effect. 

In other words, the mechanism of the probiotic effect of C. cochlearium supplementation could be 

through increasing butyrate-producing bacteria and their participation of butyrate-producing 

pathways and consequently elevating the butyrate level in the gut and resulting in an anti-obesity 

activity. Thus, the synthesized butyrate in the intestine would be the key to explaining this 

mechanism.  
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Acetate- and propionate-related enzymes and pathways were also analyzed. There are two 

acetate-related enzymes showing significant elevation in the CC group. These were phosphate 

acetyltransferase and acetate--CoA ligase, although there was no correlation between these two 

enzymes and body weight. Both of them participated in pathways of acetate degradation, while the 

acetate--CoA ligase participated in a reversible reaction between acetate and acetate-CoA. Three 

pathways involved with acetate production showed a significant difference, in which pathways of 

pyruvate fermentation to acetate and lactate II and pyruvate fermentation to acetone were increased 

in the CC group while the abundance of the pathway hexitol fermentation to lactate, formate, 

ethanol and acetate was reduced as compared to the HF group. Considering Pearson’s correlations, 

pathways of pyruvate fermentation to acetone and hexitol fermentation to lactate, formate, ethanol, 

and acetate were correlated with body weight in reverse regulation. It is challenging to predict 

acetate production levels because acetate is not only the end-product but also the co-substrate for 

other pathways working as a regulator [161]. Thus, the status of acetate production cannot be 

predicted and concluded. 

Three enzymes involved with propionate pathways were significantly increased in the CC 

group relative to the HF group, and these were propionate--CoA ligase, propionate CoA-

transferase, and propionyl-CoA carboxylase. All of them have been inversely correlated with body 

weight. Actually, these three enzymes participated in the propionate degradation pathways. 

Among these, the enzyme of propionate--CoA ligase was not a good prediction of propionate 

metabolism due to the small abundance in both the HF and CC groups. Analyzing the predicted 

pathway, pyruvate fermentation to propanoate I pathway was significantly elevated abundance in 

the CC group as compared to the HF group, and with a trend of negative correlation with obesity. 
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Thus, the propionate production in the intestine of the CC group was expected to increase, which 

was modulated by C. cochlearium administration.  

It was hypothesized that the higher butyrate level would be observed in the CC group due 

to C. cochlearium supplementation and the increase of other butyrate-producing bacteria. However, 

the butyrate concentration in the intestinal content was significantly lower in the CC group than in 

the HF group, which was against our hypothesis. Not only butyrate concentration but also acetate 

concentration was significantly higher in the HF group compared to the CC group. Nevertheless, 

the propionate concentration in the CC group was the highest among the three groups. Similar to 

our findings, an animal study conducted by Turnbaugh et al. observed the increased butyrate (P < 

0.01) and acetate (P < 0.01) in cecum from obese ob/ob mice relative to their lean counterparts 

[38]. Numerous human studies had similar results indicating that an elevated SCFAs level in feces 

has been detected in obese individuals relative to their lean individuals, and these elevated SCFAs 

have been associated with obesity, gut dysbiosis, and hypertension [131, 162, 163]. There is no 

doubt that the SCFAs have been widely considered as beneficial metabolites [164, 165]. Studies 

on the circulating SCFAs levels indicated an inverse association with blood pressure, insulin 

resistance, and obesity [166, 167]. There is no association between fecal acetate and butyrate levels 

and their respective circulating concentration; however, the circulating propionate level was 

positively correlated with fecal propionate concentration [167]. It is consistent with our findings 

that the propionate concentration in the intestinal content was significantly higher in the CC group 

than in the HF group, which suggested the high circulating propionate concentration in CC mice. 

It was suspected that the reduced level of SCFAs in the CC group was due to the fact that SCFAs 

were absorbed and utilized by the host quickly, whereas the transient change of SCFAs 
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concentration is hard to detect [168]. Thus, a more sensitive method for the timely detection of 

SCFAs is needed in future studies. 

However, studies have shown that SCFAs could modulate the host’s phenotype through 

endothelial GPRs [166]. The real-time PCR was performed to measure the gene expression of 

SCFAs-related receptors and transporters. The downregulation of the ffar2 gene was found in the 

investigation. FFAR2 (GPR43) has been reported as the receptor of acetate, propionate, and 

butyrate, and is able to be activated by SCFAs [169]. The ffar2 gene is highly expressed in the 

intestinal epithelium and the immune cells [158]. It is inconsistent that the downstream ffar2 was 

revealed when the increasing butyrate-producing bacteria and pathways were predicted. 

Additionally, there is no significant difference in the gene expression of the other receptors and 

transporters in both liver and intestine tissues. Long-term fasting and change of circadian rhythm 

of the mice could impact acute liver SCFAs metabolism and its related genes in C57BL/6 mice 

[170, 171]. This could also impact the intestinal SCFAs metabolism. Therefore, further 

investigation is needed to measure the gene expression of SCFAs-related receptors and 

transporters without the factor of fasting. 

Conclusion 

There are limited studies on the health effects of C. cochlearium. As a butyrate producer, 

C. cochlearium could have a potential probiotic effect against obesity. After 16 weeks of high-fat 

diet treatment supplemented with C. cochlearium, the CC group had significantly lower body 

weight gain, fat mass, and fat/lean ratio than the HF group without a change in lean mass. Moreover, 

the energy expenditure of BMR and activity level significantly increased, indicating the elevation 

of fat oxidation. This suggested that the administration of C. cochlearium had the ability to 

attenuate body weight gain by reducing the fat mass through fat oxidation. Furthermore, the 
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glucose homeostasis was also improved with C. cochlearium supplementation, including fasting 

blood glucose, glucose tolerance, fasting insulin, and HOMA-IR. The 16S rRNA sequencing data 

revealed a significant microbial separation between the HF and CC groups in alpha- and beta-

diversity analyses. The F/B ratio significantly decreased from 4.91 in the HF group to 3.54 in the 

CC group, which has been positively associated with body weight. Based on the LEfSe analysis, 

the families of Christensenellaceae and Lachnospiraceae, Mogibacteriaceae, Rikenellaceae, and 

S24_7 have been detected as a significant contribution to the CC group, and these families have 

been inversely associated with body weight. Among these, the families of Christensenellaceae and 

Lachnospiraceae are SCFAs-producing bacteria. On the contrary, the increased abundance of 

families Streptococcaceae and Lactobacillaceae in the HF group have been correlated with obesity. 

It can be concluded that C. cochlearium supplementation had a beneficial effect against obesity 

through increasing anti-obesity-related bacteria, especially SCFAs-producing bacteria, and 

decreasing obesity-related taxa. Further functional gene analysis has confirmed that the 

administration of C. cochlearium increased the butyrate-producing enzymes and pathways, and 

propionate-related pathways. Thus, the administration of C. cochlearium promoted SCFAs 

production, especially butyrate production, and subsequently exert the anti-obesity effect. In this 

case, the reduced body weight gain, elevated resting energy expenditure and activity level, and 

improved insulin sensitivity can be at least partly explained by the increasing butyrate production. 

Nevertheless, the concentration of butyrate and acetate in the intestinal content was significantly 

lower in the CC group relative to the HF group, which was consistent with previous studies 

indicating that the fecal and cecal SCFAs levels were associated with obesity [131, 162, 163]. 

Additionally, there is no significant difference in the gene expression of SCFAs receptors and 
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transporters, except for the abnormal ffar2 gene. These abnormal gene expression results might be 

impacted by the long fasting time before euthanasia. 

Future direction 

In the current study, the supplementation of C. cochlearium showed a significantly reduced 

weight gain and improved insulin sensitivity compared to the HF group. However, C. cochlearium 

was not observed in the OTU table from the 16s rRNA sequencing performed, which could be 

categorized into unclassified bacteria. In future studies, those unclassified bacteria need to be 

identified. The NCBI taxonomy database, which is more comprehensive than the Greengenes 

database and updated daily, could be an alternative to identify those unclassified bacteria via 

blasting those unidentified sequences. Additionally, it would also be interesting to conduct another 

animal study with heat-treated C. cochlearium supplementation as a comparison, which could lead 

to further understanding other potential mechanisms of its effect on the changes in the gut 

microbiome that may lead to preventing obesity. Previous studies have stated that some probiotics, 

either in live or dead forms, may have a beneficial effect on preventing obesity and metabolic 

syndromes [172, 173]. With the comparison of heat-killed C. cochlearium administration, we can 

clarify whether there would be additional cellular components or metabolites that lead to change 

in microbial interactions. 

Moreover, significant elevations of butyrate and acetate concentrations were observed in 

obese HF mice rather than the CC mice. Although it is consistent with previous findings, it is 

suspected that butyrate and acetate have been quickly absorbed and utilized by hosts. Thus, it is 

necessary to detect circulating SCFAs to evaluate the reaction between SCFAs and the host. It is 

hypothesized that the circulating SCFAs are significantly elevated with C. cochlearium 

supplementation, which would suggest the increased utilization of SCFAs by the CC host. 
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Furthermore, the measurement of circulating SCFAs should be conducted on both the fed and 

fasting states, and this may reduce the interference of food availability to SCFAs utilization. In 

addition, the SCFAs receptors and transporter in both the liver and intestine tissue should be 

estimated on fed status instead of fasting, which could help to depict the interaction between 

SCFAs and the host. Similarly, the specific pathway involved in the utilization of SCFAs by the 

host could be further studied to understand increased fat oxidation and physical activity. 

In this investigation, the administration of C. cochlearium showed the probiotic effect on 

a high-fat diet-induced obesity model. However, probiotics are usually taken by people who are 

looking for alternative methods to lose weight. Thus, it is important to explore the effect of C. 

cochlearium after the onset of obesity, which is highly individualized in severity. It is warranted 

to consider the modification of dosage or frequency of C. cochlearium administration. Since the 

developed obese model has a higher body weight than the inducing model, the dosage needs to 

be increased based on the body weight. It would be informative to conduct the dose-response 

experiments of C. cochlearium to acquire the most efficient dosage for the developed obese 

model.  
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TABLES AND FIGURES 

Table 1. Nutrient composition and caloric content of the Low-fat Diet (LF) and the High-fat 

Diet (HF) used in the experiment 

  LF (D12450J) HF (D12492M)  

Ingredient gm kcal gm kcal  

Casein, 30 Mesh 200 800 200 800  

L-Cystine 3 12 3 12  

Corn Starch 506.2 2024.8 0 0  

Maltodextrin 10 125 500 125 500  

Sucrose 68.8 275.2 68.8 275  

Cellulose, BW200 50 0 50 0  

Soybean Oil 25 225 25 225  

Lard 20 180 245 2205  

Mineral Mix S10026 10 0 10 0  

DiCalcium Phosphate 13 0 13 0  

Calcium Carbonate 5.5 0 5.5 0  

Potassium Citrate, 1 H2O 16.5 0 16.5 0  

Vitamin Mix V10001 10 40 10 40  

Choline Bitartrate 2 0 2 0  

      

Overall gm% kcal% gm% kcal%  

Protein 19.2 20 26 20  

Carbohydrate 67.3 70 26 20  

Fat 4.3 10 35 60  

Total  100  100  

kcal/gm 3.85   5.24    
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Table 2. Biometrics results in the LF, HF and CC groups at 16 weeks 

  
Group P value 

LF HF CC ANOVA HF vs. CC LF vs. CC 

Body weight, g 30.5 ± 0.8 50.2 ± 0.7 43.7 ± 1.2 <0.0001 <0.0001 <0.0001 

Percentage weight gain, % 36.1 ± 2.9 101.4 ± 3.1 85.6 ± 5.4 <0.0001 0.0002 <0.0001 

Fat mass, g 5.7 ± 0.6 22.9 ± 0.6 17.3 ± 0.7 <0.0001 <0.0001 <0.0001 

Percentage fat, % 19.4 ± 2.1 47.1 ± 0.8 41.7 ± 0.8 <0.0001 0.0230 <0.0001 

Lean mass, g 20.0 ± 0.9 21.2 ± 0.4 19.2 ± 0.4 0.0974 0.0615 0.5763 

Percentage lean, % 70.0 ± 2.1 43.7 ± 0.7 46.4 ± 0.9 <0.0001 0.3319 <0.0001 

Fat/Lean ratio 0.3 ± 0.0 1.1 ± 0.0 0.9 ± 0.0 <0.0001 0.0033 <0.0001 

Values are means ± SEM (n = 12 per group). The statistical significance was calculated at P < 0.05. 
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Table 3. Blood biochemistry results in the LF, HF and CC groups at 16 weeks 

  
Group  P value  

LF HF CC ANOVA HF vs. CC LF vs. CC 

Fasting Glucose, mg/dL 162.6 ± 9.5 223.8 ± 14.5 175.2 ± 10.3 0.0017 0.0121 0.6717 

Fasting Insulin, mU/L 49.5 ± 5.5 192.4 ± 13.8 121.5 ± 16.3 <0.0001 0.0017 0.0011 

HOMA-IR 19.4 ± 2.4 104.8 ± 13.2 55.3 ± 10.5 <0.0001 0.0031 0.0236 

 

Values are means ± SEM (n = 8-10 per group). The statistical significance was calculated at P < 

0.05. 
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Table 4. Energy balance results in the LF, HF and CC groups  

Values are means ± SEM (n = 12 per group). The statistical significance was calculated at P < 0.05. 

  

  

Group P value 

LF HF CC ANOVA 
HF vs. 

CC 

LF vs. 

CC 

Food intake, kcal/day/mouse 10.4 ± 0.2 11.4 ± 0.4 10.7 ± 0.3 0.6500 0.8596 0.9001 

Fecal energy, kcal/day/mouse 0.8 ± 0.0 1.3 ± 0.0 1.1 ± 0.0 <0.0001 <0.0001 <0.0001 

Calorie absorption, kcal/day/mouse 9.4 ± 0.0 9.6 ± 0.0 10.1 ± 0.0 <0.0001 <0.0001 <0.0001 

Feed efficiency, % 0.7 ± 0.1 2.0 ± 0.1 1.7 ± 0.1 <0.0001 0.0074 <0.0001 
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Table 5. Metabolic results in the LF, HF and CC groups at 16 weeks 

 

Values are means ± SEM (n = 12 per group). The statistical significance was calculated at P < 

0.05. 

 

  

  
Group P value 

HF CC HF vs. CC 

RER 0.777 ± 0.004 0.791 ± 0.004 0.0398 

BMR, kcal/day/kg 212.2 ± 5.8 234.9 ± 6.7 0.0182 

Distance traveled, m/day 1103.8 ± 135.6 2003.2 ± 417.1 0.0390 



 
 

 

50 

Table 6. Relative abundance of phylum classification in the HF and CC groups 

Phylum  HF CC P value 

Acidobacteria 0.0 ± 0.0 % 0.0 ± 0.0 % 0.3741 

Actinobacteria 1.0 ± 0.1 % 1.2 ± 0.3 % 0.5076 

Bacteroidetes 16.5 ± 1.6 % 21.3 ± 1.8 % 0.0680 

Chlorobi 0.0 ± 0.0 % 0.0 ± 0.0 % 0.2840 

Deferribacteres 2.7 ± 0.5 % 2.9 ± 0.4 % 0.7889 

Firmicutes 74.4 ± 1.6 % 67.6 ± 1.9 % 0.0114 

Proteobacteria 4.5 ± 0.5 % 6.3 ± 0.4 % 0.0185 

TM7 0.1 ± 0.0 % 0.0 ± 0.0 % 0.2903 

Tenericutes 0.1 ± 0.0 % 0.0 ± 0.0 % 0.0006 

Verrucomicrobia 0.7 ± 0.2 % 0.7 ± 0.2 % 0.8850 

Unclassified 0.0 ± 0.0 % 0.0 ± 0.0 % 0.7302 

Firmicutes/Bacteroidetes ratio 4.9 ± 0.4 3.5 ± 0.5 0.0409 

Values are mean ± SEM (n = 10 per group). The statistical significance was calculated at P < 0.05. 
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Table 7. Primers for real-time PCR 

Gene 
Primer 

Forward Reverse 

GAPDH CAAGGAGTAAGAAACCCTGGACC CGAGTTGGGATAGGGCCTCT 

ffar2 CTTGATCCTCACGGCCTACAT CCAGGGTCAGATTAAGCAGGAG 

ffar3 CTTCTTTCTTGGCAATTACTGGC CCGAAATGGTCAGGTTTAGCAA 

HCAR2 GGGGCTGGAATTTGTGTTCG ATGAAGAGCATCACACGGCA 

SLC16A1 TGTTAGTCGGAGCCTTCATTTC CACTGGTCGTTGCACTGAATA 

SLC5A8 CGGGACATCGGCAGTTTTG CTGCGACCGCCCATAAGAA 
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Table 8. SCFAs-related predicted enzymes between the HF and CC groups 

  
Group P value 

HF CC HF vs. CC 

Phosphate butyryltransferase1 21682.5 ± 3044.4 38017.5 ± 3229.5 0.0015 

Butyrate kinase1 24096.6 ± 3461.7 43956.2 ± 4441.3 0.0019 

Acetate CoA-transferase1 12138.9 ± 1549.1 26762.5 ± 1461.7 <0.0001 

Short-chain acyl-CoA dehydrogenase1 13314.1 ± 1826.6 29533.0 ± 3215.7 0.0002 

Acetate kinase2 76564.8 ± 10877.7 88338.7 ± 8417.1 0.4168 

Acetoacetate decarboxylase2 0.3 ± 0.3 0.0 ± 0.0 0.3741 

Phosphate acetyltransferase3 69174.4 ± 9422.5 114670.4 ± 11589.7 0.0059 

Acetate--CoA ligase2,3 14110.4 ± 2496.8 23300.3 ± 1728.4 0.0088 

Succinyl-CoA:acetate CoA-transferase3 114.4 ± 47.8 5.2 ± 2.2 0.0511 

Propionate kinase4 154.9 ± 38.6 76.8 ± 32.5 0.1467 

Urocanate reductase4 348.8 ± 51.4 645.90 ± 153.7 0.0626 

Propionate--CoA ligase4,5 0.0 ± 0.0 4.3 ± 1.9 0.0244 

Propionate CoA-transferase5 7568.3 ± 1086.7 18166.5 ± 1224.1 <0.0001 

Propionyl-CoA carboxylase5 8046.5 ± 1582.5 13656.9 ± 1498.5 0.0195 

Values are mean ± SEM (n = 10 per group). 1: are butyrate-producing enzymes, 2: acetate-

producing enzymes, 3: acetate-degradation enzymes, 4: propionate-producing enzymes, 5: 

propionate-degradation enzymes. The statistical significance was calculated at P < 0.05. 
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Table 9. Correlation between body weight and SCFAs-related predicted enzymes 

  Correlation P value 

Phosphate butyryltransferase1 -0.38 0.082 

Butyrate kinase1 -0.34 0.121 

Acetate CoA-transferase1 -0.54 0.009 

Short-chain acyl-CoA dehydrogenase1 -0.39 0.069 

Acetate kinase2 0.02 0.923 

Acetoacetate decarboxylase2 0.25 0.252 

Phosphate acetyltransferase3 -0.27 0.224 

Acetate--CoA ligase2,3 -0.40 0.068 

Succinyl-CoA:acetate CoA-transferase3 0.33 0.130 

Propionate kinase4 0.31 0.162 

Urocanate reductase4 -0.08 0.735 

Propionate--CoA ligase4,5 -0.54 0.009 

Propionate CoA-transferase5 -0.51 0.016 

Propionyl-CoA carboxylase5 -0.45 0.034 

Values are mean ± SEM (n = 10 per group). 1: butyrate-producing enzymes, 2: acetate-producing 

enzymes, 3: acetate-degradation enzymes, 4: propionate-producing enzymes, 5: propionate-

degradation enzymes. The statistical significance was calculated at P < 0.05. 
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Table 10. SCFAs-related predicted pathways between the HF and CC groups 

  
Group P value 

HF CC HF vs. CC 

acetyl-CoA fermentation to butanoate II1 17590.3 ± 2124.5 36060.3 ± 1901.6 <0.0001 

pyruvate fermentation to butanoate1 5145.0 ± 607.1 8733.8 ± 565.9 0.0003 

L-lysine fermentation to acetate and butanoate1,2 3637.3 ± 456.8 7001.8 ± 352.7 <0.0001 

4-aminobutanoate degradation V1 5530.1 ± 745.8 4311.2 ± 566.9 0.2232 

L-glutamate degradation V (via hydroxyglutarate) 1 3303.0 ± 403.3 6399.5 ± 806.7 0.0017 

succinate fermentation to butanoate1 132.3 ± 53.1 999.3 ± 362.4 0.0174 

pyruvate fermentation to acetate and lactate II2 69915.7 ± 9469.3 102113.3 ± 9601.8 0.0280 

hexitol fermentation to lactate, formate, ethanol and 

acetate2 
14954.5 ± 2014.7 8725.8 ± 1303.0 0.0222 

TCA cycle VII (acetate-producers) 2 1615.6 ± 449.6 1087.9 ± 200.9 0.3287 

pyruvate fermentation to acetone3 19008.6 ± 2419.9 40783.1 ± 2435.3 <0.0001 

methanogenesis from acetate3 2263.7 ± 413.1 2371.7 ± 260.9 0.8352 

pyruvate fermentation to propanoate I4 25597.7 ± 4820.4 41845.7 ± 2959.3 0.0128 

L-glutamate degradation VIII (to propanoate) 4 451.8 ± 110.8 267.3 ± 108.9 0.2538 

Values are mean ± SEM (n = 10 per group). 1: butyrate-producing pathways, 2: acetate-producing 

pathways, 3: acetate-degradation pathways, 4: propanoate-producing pathways. The statistical 

significance was calculated at P < 0.05. 
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Table 11. Correlation between body weight and SCFAs-related predicted pathways 

  Correlation P value 

acetyl-CoA fermentation to butanoate II1 -0.55 0.008 

pyruvate fermentation to butanoate1 -0.52 0.014 

L-lysine fermentation to acetate and butanoate1,2 -0.55 0.008 

4-aminobutanoate degradation V1 -0.21 0.260 

L-glutamate degradation V (via hydroxyglutarate) 1 -0.39 0.074 

succinate fermentation to butanoate1 0.25 0.346 

pyruvate fermentation to acetate and lactate II2 -0.20 0.374 

hexitol fermentation to lactate, formate, ethanol and acetate2 0.49 0.021 

TCA cycle VII (acetate-producers) 2 0.06 0.786 

pyruvate fermentation to acetone3 -0.51 0.015 

methanogenesis from acetate3 -0.10 0.645 

pyruvate fermentation to propanoate I4 -0.41 0.060 

L-glutamate degradation VIII (to propanoate) 4 0.33 0.140 

Values are mean ± SEM (n = 10 per group). 1: butyrate-producing pathways, 2: acetate-producing 

pathways, 3: acetate-degradation pathways, 4: propanoate-producing pathways. The statistical 

significance was calculated at P < 0.05. 
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Table 12. SCFAs concentration in intestinal content between the HF and CC groups 

 

Group P value 

LF HF CC ANOVA HF vs. CC LF vs. CC 

Acetate, µmol/g 58.1 ± 1.0 96.9 ± 0.4 82.6 ± 0.9 <0.0001 0.0009 0.0001 

Propionate, µmol/g 3.6 ± 0.6 5.0 ± 0.5 9.2 ± 0.5 0.0035 0.0080 0.0035 

Butyrate, µmol/g 5.0 ± 0.1 13.4 ± 0.2 7.4 ± 0.1 <0.0001 <0.0001 0.0014 

Values are mean ± SEM (n = 12 per group). The statistical significance was calculated at P < 

0.05. 
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Figure 1. Average percentage body weight gain over a 16-week period 

Values are means ± SEM, n = 12. *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001 indicating 

significant difference between the HF and CC groups for weekly body weight.  
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Figure 2. Average fasting blood glucose tested every 4-week period 

Values are means ± SEM, n = 12. *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001 

indicating significant difference between the HF and CC groups for every 4 weeks.  
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Figure 3. Average blood glucose measurement for oral glucose tolerance test over a 120-

min period 

Values are means ± SEM, n = 12. *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001 

indicating significant difference between the HF and CC groups for every time point.  
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Figure 4. Average AUC calculated from OGTT levels from Figure 3 

The baseline was set from 0. Values are means ± SEM, n = 12, and *P < 0.05, **P < 0.01, ***P 

< 0.001, and ****P < 0.0001 indicating significant difference among the LF, HF and CC groups.  
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Figure 5. Relative abundance of microbiota at Phylum level between the HF and CC 

groups  

Both the phyla of Firmicutes and Proteobacteria showed significantly elevated in the CC group 

compared to the HF group (P < 0.05), n = 10. Significance was indicated with * for P < 0.05, ** 

for P < 0.01, *** for P < 0.001, and **** for P < 0.0001. 
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Figure 6. Pielou’s evenness in alpha diversity between the HF and CC groups 

Statistical analysis was performed using the Kruskal-Wallis test, n = 10 per group. Significance 

was indicated with * for P < 0.05, ** for P < 0.01, *** for P < 0.001, and **** for P < 0.0001. 
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Figure 7. Shannon diversity index in alpha diversity between the HF and CC groups 

Statistical analysis was performed using the Kruskal-Wallis test, n = 10 per group. Significance 

was indicated with * for P < 0.05, ** for P < 0.01, *** for P < 0.001, and **** for P < 0.0001. 
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Figure 8. Faith’s phylogenetic diversity (PD) in alpha diversity between the HF and CC 

groups 

Statistical analysis was performed using the Kruskal-Wallis test, n = 10. P = 0.13. Significance 

was indicated with * for P < 0.05, ** for P < 0.01, *** for P < 0.001, and **** for P < 0.0001.  
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Figure 9. Unweighted Unifrac PCoA in beta diversity between the HF and CC groups 

Statistical analysis was performed using the PERMANOVA, P = 0.001, n = 10 per group. 
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Figure 10. Weighted Unifrac PCoA in beta diversity between the HF and CC groups 

Statistical analysis was performed using the PERMANOVA, P = 0.001, n = 10 per group. 
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Figure 11. Bray-Curtis PCoA in beta diversity between the HF and CC groups 

Statistical analysis was performed using the PERMANOVA, P = 0.001, n = 10 per group. 
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Figure 12. Jaccard PCoA in beta diversity between the HF and CC groups 

Statistical analysis was performed using the PERMANOVA, P = 0.001, n = 10 per group. 
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Figure 13. Biomarkers found by LEfSe results between the HF and CC groups 
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Figure 14. Cladograms of LEfSe results between the HF and CC groups 
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Figure 15. Intestinal ffar2 relative gene expression 

Values are means ± SEM, n = 11-12, and *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001 

indicating significant difference between the HF and CC groups. 
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Figure 16. Intestinal ffar3 relative gene expression 

Values are means ± SEM, n = 11-12, and *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001 

indicating significant difference between the HF and CC groups. 
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Figure 17. Intestinal HCAR2 relative gene expression 

Values are means ± SEM, n = 11-12, and *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001 

indicating significant difference between the HF and CC groups. 
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Figure 18. Intestinal SLC16A1 relative gene expression 

Values are means ± SEM, n = 11-12, and *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001 

indicating significant difference between the HF and CC groups. 
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Figure 19. Intestinal SLC5A8 relative gene expression 

Values are means ± SEM, n = 11-12, and *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001 

indicating significant difference between the HF and CC groups. 
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Figure 20. Liver ffar2 relative gene expression  

Values are means ± SEM, n = 11-12, and *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001 

indicating significant difference between the HF and CC groups. 
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Figure 21. Liver ffar3 relative gene expression  

Values are means ± SEM, n = 11-12, and *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001 

indicating significant difference between the HF and CC groups. 
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Figure 22. Liver HCAR2 relative gene expression 

Values are means ± SEM, n = 11-12, and *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001 

indicating significant difference between the HF and CC groups. 
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Figure 23. Butyrate synthesis pathways [160] 

CoA, coenzyme A; P, bound phosphate; Pi, inorganic phosphate; PEP, phosphoenolpyruvate; 

(B12), enzyme dependent on vitamin B12. The dotted line indicates that several intermediate 

steps are involved. 
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ABSTRACT 
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Degree: Doctor of Philosophy 

The prevalence of obesity is rising steadily across the world, which increases the risk of 

many metabolic diseases and life-threatening illnesses. A specific strain, Clostridium cochlearium 

(C. cochlearium), reported as a butyrate producer, could have potential probiotic effects against 

obesity. The objective of this study was to evaluate the effects of dietary supplementation of C. 

cochlearium on a high-fat diet-induced obese (DIO) mouse model. The 16S rRNA sequencing of 

mice gut microbiome was performed at the end of the experimental period to identify the changes 

in gut microbial composition, investigate possible functional genes, and elucidate potential 

mechanisms. Thirty-six C57BL/6 6-8 week old male mice were randomly separated into three 

groups (n = 12): low-fat diet control (LF) group, high-fat diet control (HF) group, and experimental 

group on a high-fat diet with C. cochlearium supplementation (CC). After 16 weeks of dietary 

supplementation, the results showed the CC group had a 17.29% body weight reduction relative 

to the HF group (P < 0.0001), while 20.82% of fat mass decrease was observed compared to the 

HF group (P < 0.0001). The AUC of OGTT and HOMA-IR in the CC group was significantly 

reduced by 60.20% (P < 0.0001), 47.21% (P < 0.01), respectively. Moreover, the resting energy 
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expenditure (P < 0.05) and activity level (P < 0.05) showed a significant increase in the CC group. 

After performing alpha-and beta-diversity analyses, significant separation of the gut microbiome 

profile was observed between the HF and CC groups, which suggested the alteration of microbial 

compositions from the C. cochlearium supplementation. Additionally, the ratio of Firmicutes and 

Bacteroidetes (F/B) was significantly lower in the CC group compared to the HF group (P < 0.05). 

The family of Ruminococcaceae and Lachnospiraceae, as short-chain fatty acids (SCFAs) 

producers, significantly contributed to the gut community of the CC mice, which has been 

negatively associated with body weight. There was an increasing abundance of butyrate-producing 

enzymes and pathways observed from the CC group, which suggested a possible beneficial effect 

of a negative correlation with body weight gain. This study concluded that the administration of 

C. cochlearium had anti-obesity effects on reduced body weight gain and improve glucose 

homeostasis in the high-fat diet-induced obesity mouse model, which could be mediated through 

an increased abundance of SCFAs-producing bacteria and their related pathways. However, the 

butyrate (P < 0.0001) and acetate (P < 0.001) concentrations in the intestinal content showed a 

significant reduction in the CC group, which was unexpected and warranted further investigation 

of circulating SCFAs levels. This additional information may enhance our understanding of the 

probiotic effects of C. cochlearium supplementation. 
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