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CHAPTER 1 INTRODUCTION

Despite enormous investments in research and development (R&D), it still takes ap-

proximately $800 million to $2 billion and 10-17 years to approve a new drug for clinical

use [5, 67, 68]. More than 90% of drugs fail to pass beyond the early stage of develop-

ment and toxicity tests, and many of the drugs that go through early phases of the clinical

trials fail because of adverse reactions, side effects, or lack of efficiency. Based on a re-

cent report [244], around 90% of drugs are effective only on 40% of patients, and such

ineffective treatment can cause an enormous loss ($350 billion/year) in the United States

alone.

We are addressing above mentioned challenges by introducing two main strategies.

First, we are developing a novel computational method to discover novel therapeutic roles

for existing FDA-approved drugs. The identification of novel disease indications for ap-

proved drugs, known as drug repositioning (or repurposing), is a very effective way to

increase the therapeutic arsenal at a very reduced cost [16, 42, 54, 173, 205, 232, 238,

239, 292]. Finding new disease indications for existing drugs sidesteps all these issues

and can therefore increase the available therapeutic choices at a fraction of the cost of a

new drug development. The need for new drugs is currently met mostly with the classical

drug development pipeline, which is slow, extremely expensive, and very prone to failures.

Drug repurposing tools are likely to be widely adopted by pharmaceutical companies be-

cause they would offer a very low cost solution to increase the market size for their existing

drugs [167, 237]. The societal impact includes increasing the available therapeutic choices

for existing diseases, reducing treatment cost by offering more alternatives, as well as pos-

sibly finding treatments for “orphan diseases” - rare diseases that will never have targeted
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drugs because they do not justify the usual drug development cost for their market size.

In this thesis, new usages for existing FDA-approved drugs are identified by performing

a system-level analysis using gene expression data and publicly available data, including

drug targets, disease-associated genes and KEGG signaling pathways.

Analyzing the diversity and evolution of single cancer cells can also enable the ad-

vances in early cancer diagnosis, and ultimately choosing the best strategy for cancer

treatment [149, 231, 244]. In particular, this analysis can play a crucial role in cancer

treatment, where individual cells develop drug resistance and metastasis [122, 136, 244].

Recent advances in single-cell RNA-Seq (scRNASeq) techniques have provided tran-

scriptomes of the large numbers of individual cells (single-cell gene expression data) [61,

79, 99, 126, 168, 186, 194, 266, 280]. Unlike the bulk measurements that average the

gene expressions over the individual cells, gene measurements at individual cells can be

used to study several different tissues and organs at different stages [99, 126, 186, 266,

280]. Furthermore, one important analysis on scRNASeq is the identification of cell types

that can be achieved by performing an unsupervised clustering method on transcriptome

data [12, 13, 75, 177, 291, 304, 308].

In this thesis, as a second strategy, we have introduced a novel method to identify the

cell types using single-cell gene expression data. To do this, we have developed a pipeline

to cluster the individual cells based on their gene expression values such that each cluster

consisting of cells with specific functions or distinct developmental stages. We used the

Adjusted Rand Index (ARI) [113], adjusted mutual information (AMI) [274, 275], and

V-measure [226] to evaluate the performance of the clustering result for datasets in which

the true cell types are known.
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This thesis is organized as follows. Chapter 2 focuses on the proposed approach for

drug repurposing, introduced in the context of the systems biology. In this approach, new

usages for existing FDA-approved drugs are identified by performing a system-level analy-

sis using gene expression data and publicly available data, including drug targets, disease-

associated genes and KEGG signaling pathways. The proposed approach first builds a

drug-disease network (DDN) by considering all interactions between drug targets and

disease-related genes in the context of signaling pathways [205]. This network is inte-

grated with gene-expression measurements to identify drugs with new desired therapeutic

effects. This method is evaluated based on its ability to re-discover drugs that are already

FDA-approved for a given disease.

Our approach is innovative because it focuses on the effect at the pathway level, rather

than the effect on a specific set of genes. Cancer could be used as a good high-level ex-

ample [63]. One of the “hallmarks” of solid tumors independently of the type of cancer

or localization is that the cancer cells manage to avoid apoptotic signals. In other words,

their apoptotic pathway is inhibited. The specific set of genes that each particular type

of tumor uses to accomplish this is less relevant than the ultimate effect, which is uncon-

trolled proliferation. Identifying the specific genes that are dis-regulated in a given type

of tumor and then looking for drugs that have an antagonistic effect on the very same

set of genes, as proposed by Sirota et al. [248] is a sufficient but perhaps not necessary

condition. Identifying a drug that has an antagonistic effect on the apoptotic pathway may

be sufficient, even though this drug may induce its effect through a different set of genes

than that used by the tumor to escape apoptosis in the first place.

Chapter 3 focuses on recent methods for the identification of cell types based on un-
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supervised clustering of the single cell gene expression data. In this chapter, we propose

a framework that addresses challenges in identifying meaningful clusters of cells. We

validate the performance of the proposed method on eight publicly available scRNA-seq

datasets with known cell types as well as five simulation datasets with different degrees of

the cluster separability. We compare the proposed method with five other existing meth-

ods: RaceID [93], SC3 [139], SINCERA [95], SEURAT [162], and SNN-Cliq [291]. The

results show that the proposed method performs better than the existing methods. Fi-

nally, chapter 4 concludes the dissertation by proposing future work and possible research

directions.
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CHAPTER 2 DRUG REPURPOSING

2.1 Problem statement

Despite enormous investments in research and development (R&D), it still takes ap-

proximately $800 million to $2 billion and 10-17 years to approve a new drug for clinical

use [5, 67, 68]. More than 90% of drugs fail to pass beyond the early stage of develop-

ment and toxicity tests, and many of the drugs that go through early phases of the clinical

trials fail because of adverse reactions, side effects, or lack of efficiency. Indeed, the rate

of failure is still significantly higher than the rate of approval [31, 67, 68]. In order to

overcome these challenges, drug repurposing, an approach aiming to find new indications

for existing drugs [54], has emerged as an important strategy for drug discovery [16]. This

approach can also rescue drugs that are safe but fail to get to market due to the lack of

efficacy against their initial clinical indication [58]. A well-known example of repurposed

drug is Thalidomide. Originally, this drug was approved for the treatment of morning sick-

ness during pregnancy. Not long after that, it was withdrawn from the market due to the

severe birth defects in the early 1960s [135]. However, several years after, it was approved

by the FDA for the treatment of multiple myeloma [20].

2.2 Overview of existing approaches

Repurposing approaches can be categorized as drug-based or disease-based. Disease-

based approaches are developed to overcome the lack of knowledge about the pharma-

cology of a drug [41, 74]. Drug-based approaches are preferred when drug data (e.g.

transcriptomic data) are available. While each one of these approaches faces several chal-

lenges, successful repurposing approaches often take advantage of both drug and disease

data. In this area, a number of of approaches have been developed based on the analysis
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of transcriptomic data, such as gene expression signatures, defined as the changes in the

expression of genes under a certain condition (e.g. administration of a drug, or a dis-

ease). Some of these approaches are based on the idea that if there is an anti-correlation

between a drug-exposure gene expression signature and a disease gene expression signa-

ture, that drug may have a potential therapeutic effect on the disease [146, 248]. Drugs

that are strongly anti-correlated with a disease are likely to be candidates for repurposing.

Resources such as LINCS (new version of Connectivity Map [146]) allow for systematic

search of candidates for drug repurposing.

The Connectivity Map (CMap) project [146] was the first systematic approach aimed

at exploring functional connections between drugs, as well as between drugs and diseases.

This project led to the first repository of genome-wide expression data from five human

cancer cell lines exposed with 1,309 compounds at different dosages, and integrated with

other sources such as NCBI Gene Expression Omnibus (GEO). [146] evaluate the simi-

larity of a query signature, that can be a drug-exposure gene expression signature or a

disease gene expression signature, to each drug signature in Connectivity Map database

(reference data). In [248] the authors developed a systematic approach based on the same

idea originally proposed by [146]. In this work, they use drug-exposure gene expression

signature from Connectivity Map as the reference data and query this reference data with

every single disease gene expression signature by applying a pattern-matching method.

Some approaches [49, 116, 198] employ Over-Representation Analysis (ORA) in order

to understand the mode of actions (MoA) of drugs and their potential new usages. The

most recent approach [116], DGE-NET, is based on the hypothesis that drugs with similar

binding patterns (to a reference target protein) have similar molecular activities. In step
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1, drug-target interactions (drug-target signatures) are predicted. DGE-NET ranks drugs

that most likely bind to a given target based on similarity scores between different drugs

and the given target. To do this, a modified version of Train, Match, Fit and Streamline

(TMFS) [62] is used. TMFS determines the binding potential of a protein-ligand complex

incorporating docking, three-dimensional shape, and ligand physicochemical data. For a

given protein target, the top 40 drugs (1% of all drugs) are selected as hits for the next

step. In step 2, the associations between the drug-target signatures on the one hand,

and diseases, pathways, functions, and protein-protein interactions on the other hand, are

identified. To this end, a hypergeometric test is applied at different biological levels: pro-

tein targets, protein-protein interactions (PPIs), cell signaling pathways, and molecular

functions. In this step, gene expression data of the given disease is exploited to identify

differentially expressed genes by comparing the expression values of two groups of sam-

ples: normal and disease. DAVID [110, 111] and STRING analysis [80] is applied on the

list of differentially expressed genes to indicate the associations at different levels (by com-

puting z-scores). The identified associations are validated based on the current literatures

and annotated databases. DGE-NET is applied to human disease gene expression datasets:

rheumatoid arthritis, inflammatory bowel disease, Alzheimer’s disease, and Parkinson’s

disease to prioritize FDA-approved drugs for repurposing purposes.

Another approach [198] performs the pathway enrichment analysis to investigate MoA

and clinical functions of the FDA-approved drugs. First, it selects sixteen FDA-approved

drugs (with available target information) from DrugBank [287]. Then, it retrieves primary

and secondary targets of these drugs from GEO datasets [76], MMDB [164], and Pub-

Chem [153]. And finally, it applies the enrichment analysis based on a modified Fisher’s
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Test using the drug targets and pathways data. Pathways are ranked based on the num-

bers of retrieved drug targets involved in each pathway. Pathways with p-values <0.05 are

chosen for further investigations.

The third method using an ORA approach analyzes the associations among drugs,

targets and biological functions [49]. It assigns drugs into nine classes based on their

targets: (1) G protein-coupled receptors, (2) cytokine receptors, (3) nuclear receptors,

(4) ion channels, (5) transporters, (6) enzymes, (7) protein kinases, (8) cellular anti-

gens and (9) pathogens. Then, it employs an enrichment analysis to identify the as-

sociations between the drugs and features including GO terms [17] and KEGG (http:

//www.genome.ad.jp/kegg/) pathways. Thus, given the drug and the KEGG pathway (or

GO term), an enrichment score is computed as S_KEGG (or S_GO) based on the result of

hypergeometric test (p-value). Overall, 279 KEGG pathways and 17,904 GO terms are ex-

ploited to obtain the enrichments scores. Each drug is represented by 279 S_KEGG enrich-

ment scores and S_GO 17,904 enrichment scores. Finally, the feature selection minimum

redundancy maximum relevance (mRMR) method [203] is used to extract the key fea-

tures. Pathways and GO terms that are highly enriched by several classes of drugs can be

investigated for drug interaction predictions. For instance, the neuroactive ligand-receptor

interaction pathway is enriched with two classes: GPCR and IC. This suggests that drugs

with different targets may belong to the same biological pathway, thus also suggesting a

potential for synergistic drug interactions.

The lack of a unifying analysis at system-level makes such ORA methods limited. In this

study, we use: i) KEGG signaling pathways, ii) drug target data, and iii) disease associated

genes to construct a global network with genes specific to the drug and disease of inter-

http://www.genome.ad.jp/kegg/
http://www.genome.ad.jp/kegg/
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est (called drug-disease network, DDN). We then measure gene perturbation signatures

for drug-disease pairs by propagating measured expression changes across the network

topology.

Methods based on protein-protein interactions that employ over-representation anal-

ysis (ORA) are limited by the fact that each gene is analyzed independently without a

unifying analysis at a system level, while the proposed approach aims to consider the

system-level dependencies and interactions on the drug-disease-specific network. One of

the existing approaches for drug repurposing is based on an over-representation analysis

of various pathways, based on the genes targeted by a given drug [116]. Based on this ap-

proach, a drug is first associated with pathways based on its directly targeted genes. Using

this approach, Sunitinib can be associated to the following KEGG pathways: MAPK signal-

ing pathway, Cytokine-cytokine receptor interaction, VEGF signaling pathway, and Pathways

in cancer. Subsequently, Issa et al. expand the set of genes to include the genes having

direct interactions with the Sunitinib target genes using PPI data, and recalculated the

pathways enriched in these “predicted targets”. Table 1 shows the list of pathways that are

significantly enriched in such predicted targets (FDR-corrected p-values less than 0.05).

Although this type of ORA analysis could provide useful associations between Sunitinib

and various pathways, extrapolating from pathways to diseases may not be optimal since

there are many diseases that might be relevant to these pathways. For instance, the KEGG

pathway Pathways in cancer is associated with over 1,000 diseases according to CTD [169].

This illustrates why this simple pathway-based enrichment approach cannot be used for

effective drug repurposing and explains why our system-level analysis is able to provide

much more specific results.
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Table 1: A list of pathways that are significantly enriched in predicted target genes for
Sunitinib (FDR-corrected p-value < 0.05).

Pathway pORA.fdr
PI3K-Akt signaling pathway 1.08E-18
Cytokine-cytokine receptor interaction 1.11E-15
Focal adhesion 2.80E-14
Pathways in cancer 1.20E-12
Melanoma 1.75E-07
Prostate cancer 8.30E-07
mTOR signaling pathway 1.08E-06
Gap junction 1.29E-05
MAPK signaling pathway 3.73E-05
Glioma 3.73E-05
HIF-1 signaling pathway 3.73E-05
Endocytosis 0.00088
Pertussis 0.00093
Regulation of actin cytoskeleton 0.00093
Rheumatoid arthritis 0.00174
Transcriptional misregulation in cancer 0.00317
Amoebiasis 0.00468
Legionellosis 0.00638
Acute myeloid leukemia 0.00747
p53 signaling pathway 0.00904
Long-term potentiation 0.00943
Hepatitis B 0.00982
HTLV-I infection 0.01044
Hypertrophic cardiomyopathy (HCM) 0.01341
Progesterone-mediated oocyte maturation 0.01341
Calcium signaling pathway 0.01605
Oocyte meiosis 0.02104
Osteoclast differentiation 0.04606
Amyotrophic lateral sclerosis (ALS) 0.04606
Insulin signaling pathway 0.04798

In summary, the limitations of these methods can be summarized as follows: i) the

obtained target proteins might not be the exact target of a drug (for instance, they can

be indirectly associated to the drug because of down or upstream proteins or cross-talk

effects); ii) the target(s) of a drug have a limited ability to identify the pathways based

on enrichment alone since one or a few genes on a pathway are unlikely to constitute

sufficient statistical evidence; iii) the drug targets might be involved in variety of pathways

that are not specifically related to the drug primary target. Thus such methods may fail in
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identifying significant pathways related to biological functions of the drug based on their

target information.

Although existing drug repurposing methods showed moderate success, they are far

from bringing critical advancements in the drug development pipeline. Most of these

approaches rely only on an analysis of a set of differentially expressed genes. How-

ever, changes in genes expression are propagated in the system through a complex gene

signaling network and this fact is not captured by approaches using only lists of DE

genes [72, 133, 180].

It has been shown that many drugs exert their effect through modulation of several pro-

teins rather than single targets [105, 106, 196, 217]. Furthermore, the analysis by [300]

shows that not all drugs directly impact the proteins associated with the root cause of a

disease. These findings suggest that drug repurposing may be more successful if it used

novel paradigms, going beyond lists of genes.

Systems biology can be used as an effective platform in drug discovery and develop-

ment by leveraging the understanding of interactions between the different system com-

ponents [3, 14, 34, 60, 141, 205, 259, 260, 270, 297]. In this work, we propose a systems

biology approach that takes advantage of prior knowledge of drug targets, disease-related

genes, and signaling pathways to construct a drug-disease network (DDN) composed of

the genes that are most likely perturbed by a drug [205]. By performing a system-level

analysis on this network using disease gene expression signatures and drug-exposure gene

expression signatures, our approach estimates the amount of perturbation caused by a

drug on the genes that are associated to a disease of interest. Drugs are ranked based

on the amount of perturbation they exercise on specific disease-related genes, and highest
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ranking drugs are proposed as candidates for repurposing.

We compare the results of our approach with the computational drug-repurposing ap-

proach proposed by [248] using 19 datasets involving 4 diseases: idiopathic pulmonary

fibrosis (IPF), non-small cell lung cancer (NSCLC). We show that our approach provides a

more accurate prediction based on its ability to identify drugs that are already approved

for the disease of interest.

2.3 Drug repurposing using systems biology

2.3.1 Disease and drug gene expression data

Large scale drug-exposure gene expression data are obtained from two databases: Con-

nectivity Map and the Library of Integrated Network-Based Cellular Signatures (LINCS) [146]

(http://www.lincsproject.org/).

Disease expression data are obtained from NCBI Gene Expression Omnibus (GEO) [76]

and Lung Genomics Research Consortium (http://www.lung-genomics.org).

In Connectivity Map, drug expression data are measured from the exposure of 5 human

cell lines to bioactive small molecules. Differentially expressed genes (DEGs) are identi-

fied using a moderated t-test [250] by comparing treated samples and the corresponding

control (untreated) samples. The resulting p-values are FDR adjusted [24] to correct for

multiple comparisons.

The LINCS program, the successor of CMap [146], generated transcriptional gene ex-

pression data from cultured human cells exposed to small molecules and knock-down-

overexpression of a single gene. The data is also available in GEO (GSE70138). This

program provides DEGs in terms of z-score signatures by comparing two groups of sam-

ples (treatment vs control). Since measurements are carried out on different platforms,

http://www.lincsproject.org/
http://www.lung-genomics.org
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we standardize gene identifiers from chip specific probe identifiers to NCBI GeneID identi-

fiers using the affy package [83]. We average across distinct probe expression values when

multiple probes mapped to the same NCBI GeneID.

In both Connectivity Map and LINCS, there are often more than one replicate for each

drug. Replicates with at least (1%) DEGs (FDR-adjusted p-value <0.025) are selected.

Since measurements are carried out on different platforms, we standardize gene identifiers

from chip specific probe identifiers to NCBI GeneID identifiers using the affy package [83].

We average across distinct probe expression values when multiple probes mapped to the

same NCBI GeneID.

We use two sources: i) Connectivity map (CMap) [146] for breast cancer and prostate

cancer, and ii) NIH’s Library of Integrated Network-based Cellular Signatures (LINCS) for

idiopathic pulmonary fibrosis (IPF) and non-small cell lung cancer. We used two different

data sources in order to show the approach is reliable and works independently of the

source of the drug data. CMap database has several of FDA-approved drugs for breast

cancer and prostate cancer but none for idiopathic pulmonary disease (IPF). So, for IPF

we used LINCS database that has several gene expression profiles for Nintedanib (an FDA-

approved drug for IPF). We chose to use LINCS for non-small cancer (NSCLC) rather than

CMap for two reasons. First, more FDA-approved drugs belong to this database. (four drug

instances for each of FDA-approved drugs: Gefitinib and Crizotinib). In comparison, the

only FDA-approved drug for NSCLC in CMap is Paclitaxel and there is only one instance

for this drug. Second, in LINCS, 123 out of 260 drug instances are measured on the

A549 cell line that is the human lung adenocarcinoma epithelial cell line (a model For

NSCLC). Since IPF is a chronic progressive and ultimately fatal disease that did not have
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any effective treatment until recently, we were interested to see if our proposed approach

is able to predict any new treatments for this disease.

2.3.2 Drug-targets and disease-related genes

The proposed approach needs to construct a network that includes all the shortest

paths between the drug targets and genes known to be associated to the disease of in-

terest. Drug targets and disease-related genes (genes associated with the disease of in-

terest) are retrieved from the Comparative Toxicogenomics Database (CTD) [169] and

Drugbank [287]. CTD is a database that provides curated data describing cross-species

chemical-gene/protein interactions and gene-disease associations. Drugs with no known

targets are removed from the study. Such drugs are mostly not FDA-approved.

2.3.3 Signaling pathways

We obtain signaling pathways from Kyoto Encyclopedia of Genes Genomics (KEGG)

(http://www.genome.ad.jp/kegg/). A signaling pathway in KEGG is modeled by a graph

in which nodes represent genes or proteins, and directed edges between them represent

signals between genes or proteins. The edges are weighted based on the various types of

signals, such as activation, inhibition, etc.

2.4 Proposed framework

2.4.1 Drug-disease network construction

The first part of the framework consists in building the drug-disease network (DDN)

by integrating knowledge about the disease-related genes, drug targets, and gene-gene

interaction knowledge. Then, a repurposing score is computed for each drug-disease pair

by integrating expression data into this network. Figure 1 represents the proposed frame-

work. As shown in Figure 1A, first, we construct a global network (GN) by performing the

http://www.genome.ad.jp/kegg/
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union of all nodes and edges of KEGG human signaling pathways. In a number of KEGG

pathways, a gene ’a’ interacts with gene ’b’, through an intermediate pathway ’A’. This is

represented by a link that starts from gene ’a’ to gene ’b’ through pathway ’A’. For example,

in the Adherence Junction pathway, TGFβR activates Smad3 through the TGF-beta signal-

ing pathway. Interactions between genes belonging to the pathway ’A’ and genes ’a’ and

’b’ are not included in our model. There are some interactions between genes/pathways

through DNA or small molecules in KEGG. For instance, there is a link between MAPK

signaling pathway and Phosphatidylinositol signaling system through a small molecule

(compound) IP3 in KEGG. Such interactions are not part of the scope of this analysis and

we do not include them in constructing the global network [205]. We used ROntoTools

package [276] (version 1.2.0) to calculate the union all KEGG signaling pathways that

are represented by the adjacency matrices and obtain a unified adjacency matrix. In this

step, we included some implicit interactions between the genes by performing the union

of adjacency matrices representing KEGG signaling pathways. For example, suppose gene

’a’ activate gene ’b’ in pathway ’A’ and gene ’b’ activates gene ’c’ in pathway ’B’. A path

between gene ’a’ and gene ’c’ may be constructed by our analysis, while there was no path

between them before this analysis.

Next, given the two sets of disease-related genes as Diseaset = {x1, x2, ..., xn}, and

drug targets as Drugt = {y1, y2, ..., yn}, we extract a subgraph of GN that consists of all

the shortest paths connecting genes belonging to these sets. It means that a gene from

either Diseaset or Drugt can be a source or destination of the shortest path extracted

from GN. This subgraph called Drug-disease network (DDN) represents all the interactions

between drug targets and genes related to the given disease, through all the interactions
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Figure 1: Framework overview. A) We construct a global network (GN) that is the union of
all KEGG human signaling pathways. For each drug-disease pair, we extract a subgraph of
GN, namely DDN, consisting of all shortest paths between two sets of disease-related genes
and drug targets. B) We then generate gene perturbation signatures of drug-disease pairs
by applying a system-level analysis on their gene expression signatures in the drug-disease
network (DDN). A comparative analysis is applied on drug and disease gene perturbation
signatures. A repurposing score is assigned to each drug-disease pair. Finally, a ranked
list of drugs with potential therapeutic effects for the given disease is generated based on
repurposing scores.

described in KEGG signaling pathways.

2.4.2 Drug-disease repurposing score computation

In this stage, we capture the impact caused by a drug exposure or a disease on the genes

that are specific to the condition of interest. In order to integrate the drug and disease

gene expressions signatures, we generate gene perturbation signatures by computing the

amount of perturbation upon the genes belonging to the drug-disease network (DDN)

for all drug-disease pairs, as shown in Figure 1B. The gene perturbation signatures are
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calculated using the impact analysis method [71] on the subgraph of global network we

constructed in previous step. The impact analysis (IA) takes into account the structure and

dynamics of a signaling pathway by considering a number of important aspects, including

the measured gene expression changes, the direction and type of every gene signal, and

the position and role of every gene in a pathway. A perturbation factor for each gene,

PF (gi), is calculated using the impact analysis method [71], as follows:

A perturbation factor for each gene, PF (gi), is calculated using the impact analysis

method [71], as follows:

PF (gi) = ∆E(gi) +
n∑

j=1

βij
PF (gj)

Nds(gj)
(2.1)

where the term ∆E(gi) denotes the signed normalized measured expression change of

a gene gi, added to the sum of all perturbation factors of the genes gj that are direct up-

stream of the gene gi, normalized by the number of downstream genes of gj, Nds(gj). The

coefficient βij represents the type of the interaction, βij = 1 for activation and induction,

and βij = −1 for inhibition and repression. The second term in Equation (2.1) involves the

PF values of those genes that are upstream of the gene for which the perturbation factor

is calculated. For a gene with no upstream genes, the PF will be the measured expression

gene ∆E(g).

Next, we calculate the repurposing scores for drug-disease pairs by computing the Pear-

son correlation coefficient between their gene perturbation signatures. The result score is

from -1 to 1, where a high positive score shows that the drug and the disease both cause

similar perturbations in the system, and therefore, that drug may cause the same effect

as the disease. Conversely, a high negative score shows that the drug and disease have
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opposite gene perturbation signatures. Our hypothesis is that if the perturbation caused

by a particular drug in the system is the reverse of the perturbation caused by a disease,

that drug may have the potential to treat the given disease. Thus, we rank drugs from the

strongly anti-correlated to the strongly correlated, according to their repurposing pathway

perturbation scores.

In order to estimate the statistical significance of drug candidate repurposing scores, we

generate 1,000 random drug gene expression signatures (by permuting gene labels), and

then calculate random repurposing scores for all drug-disease pairs. We compute p-values

as the percentage of the random scores higher than the observed score.

2.4.3 A systematic method to select repurposing candidates

We used a systematic method in order to rank repurposing candidates. To do this, given

a ranked-list of drugs (drug instances) obtained by applying our approach on a disease

dataset, we first compute a score for each drug that indicates how better or worse that

drug is ranked in comparison to already FDA-approved drugs as follows:

score(Drugx) = a− b (2.2)

where a denotes the number of already FDA-approved drugs (gold standards) that are

ranked worse than Drugx, and b denotes the number of FDA-approved drugs that are

ranked better than Drugx (see Figure 3). For instance, if there were N FDA-approved

drugs for a condition and an instance of a repurposing candidate were ranked higher than

all N FDA approved drugs, the score of this candidate would be N . Conversely, if the

candidate were ranked lower than all N FDA approved drugs, its score would be −N .
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Figure 2: A systematic method [205] to select repurposing drug candidates. A) Given
a set of ranked lists of drugs (drug instances), we compute a score for each drug. B)
We then calculate an average score for each drug instance across different lists (using
disease datasets). C) Finally, we calculate an average score for each distinct drug across
the instances, in case there are multiple instances for that drug.
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Figure 3: Drug repurposing score computation. A) Given a ranked-list of drugs (drug in-
stances) obtained by applying our approach on a disease dataset, a score is assigned to
each drug indicating how better or worse that drug is ranked in comparison to already
FDA-approved drugs. The score for Drugx is defined as Score(Drugx) = a − b, where a
and b denote the number of already FDA-approved drugs that are ranked worse and bet-
ter than Drugx, respectively. B) The non-small cell lung cancer (NSCLC): in total there
are 8 drugs that are already FDA-approved for treatment of NSCLC. Table I shows the
lists of 10 top-ranked drugs, results of the proposed approach using 4 NSCLC datasets:
GSE11969-adenocarcinoma, GSE11969-large cell carcinoma, GSE11969-squamous cell
carcinoma, and GSE32863-adenocarcinoma. The scores for GSM1741743_sirolimus,
GSM1738326_mocetinostat, and GSM1740080_sunitinib across NSCLC datasets are sum-
marized in Table II. A score of 8 means that each candidate ranked higher than all 8
instances of FDA-approved drugs.

Using this objective measure, we then calculate an average score for each drug across

different disease datasets (Figure 2B ). And finally, we compute an average score for each

distinct drug across different instances, if there are multiple instances for that drug (Fig-

ure 2C). We select the top 5% drug candidates from the ranked lists obtained by applying
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our approach on disease datasets and rank such drugs based on the scores computed by

the this method, from highest to the lowest.

2.5 Discussion and results

To validate our approach, we analyzed 19 datasets from four different conditions: id-

iopathic pulmonary fibrosis (IPF) (6 datasets), non-small cell lung cancer (NSCLC) (4

datasets), prostate cancer (3 datasets), and breast cancer (6 datasets).

We compare the results of 3 computational drug repurposing approaches: our system-

level approach, the most popular approach proposed by [248] (henceforth drug-disease),

and a classical method based on disease and drug signature anti-correlation (henceforth

anti-correlation).

Both the drug-disease and the anti-correlation approaches are based on the hypothesis

that if gene expression signature is perturbed in one direction in a disease state, and in

the opposite (reverse) direction upon a drug exposure, then that drug may have the po-

tential therapeutic effect for the disease. The difference between the two approaches is

related on the approach used to calculated the match between a disease and a drug. Given

a disease gene expression signature (query signature) and a drug gene expression signa-

tures (reference signature), the Sirota et al.’s drug-disease similarity approach calculate an

enrichment score for the up-regulated and down-regulated disease genes (by applying a

Kolmogorov-Smirnov (KS) test). We use the R implementation of this approach available

in the package DrugVsDisease [197].

In contrast, the classical anti-correlation method calculates a similarity score for drug-

disease pairs by computing the Pearson correlation coefficient between the drug gene ex-

pression signature and the given disease gene expression signature. Drugs are ranked from
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Table 2: Preliminary support by preclinical or clinical studies showing the therapeutic
potential of the proposed candidates. These candidates are currently FDA-approved but
for other indications.

Disease Proposed candidate Preclinical / clinical evidence ClinicalTrials.gov ID
IPF Sunitinib [92, 143, 222]

Dabrafenib [163, 193, 301]
Nilotinib [1, 8, 15, 38, 46, 91, 104, 220]

NSCLC Sunitinib [189, 251] NCT00092001, NCT00372775, NCT00693992, NCT00864721
Sirolimus [30, 77, 90, 234] NCT00923273
Everolimus [90, 212, 252] NCT01061788
Ponatinib [44, 45, 81, 84, 218, 263] NCT01813734

Prostate cancer Podophyllotoxin [25, 48, 53, 88, 109, 137, 159]
Acetylsalicylic acid [29, 52, 97, 118, 160, 188, 229, 249] NCT02757365,NCT03103152,NCT02804815
Papaverine [89, 112, 236]
Mefloquine [85, 247, 294]
Vorinostat [32, 39, 66, 130] NCT00330161,NCT00589472
Sirolimus [9, 40, 114, 215] NCT00311623,NCT02565901

Breast cancer Captopril [123, 129, 144, 185, 225, 230] NCT00086723
Glibenclimiade [2, 190, 202, 213, 224, 299]
Fluorometholone [127, 132, 155]
Etoposide [18, 305, 306] NCT00026949, NCT01492556, NCT01589159
Colchicine [255]
Tretinoin [33, 82, 157, 199, 256]

the highly anti-correlated to the highly correlated, according to their score.

The Anatomical Therapeutic Chemical ATC drug classification system, recommended

by the World Health Organization (WHO) (http://www.whocc.no/atc/) provides a useful

classification information based on drugs mechanism of actions. However, it is not precise

enough to be considered as the gold standard. Drugs from the same class may not have

the exact therapeutic desired effect for a condition. For instance, Nintedanib is an anti-

neoplastic agent in L01 ATC class and it is the FDA-approved drug for treatment of IPF.

However, not all drugs in the antineoplastic class have promising therapeutic effects on

IPF because of pulmonary toxicities [69]. Hence, using the ATC class to repurpose drugs

or even validate drug repurposing results is not feasible.

In this study, we compare the various approaches based on their ability to identify drugs

that have already been FDA-approved for that condition (gold standard), based exclusively

on the molecular data. In essence, a good repurposing approach should place already

approved drugs at the very top of the list of drugs proposed for that particular disease. We

used the Wilcoxon rank sum test [285] to determine whether the proposed approach is
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significantly better than the existing approaches.

Table 2 shows the proposed candidates for treatment of four human diseases: IPF,

NSCLC, prostate cancer, breast cancer, and preliminary evidences that support the useful-

ness of those candidates in treatment of the given diseases.

2.5.1 Idiopathic pulmonary fibrosis

The list of IPF datasets we used in our analysis is summarized in Table 3. We compare

the results of our approach with the existing approach proposed by [248] (drug-disease),

as well as the classical method (anti-correlation). The lists of the top 10 drugs are summa-

rized in Table 4.

Table 3: Idiopathic pulmonary fibrosis (IPF) datasets

Dataset Source Samples
GSE1724 NCBI GEO [219] Treated (TGFbeta) vs untreated
GSE21369 NCBI GEO [51] Interstitial lung disease vs healthy
GSE24206-advanced NCBI GEO [176] Advance stage IPF vs healthy
GSE24206-early NCBI GEO [176] Early stage IPF vs healthy
GSE44723 NCBI GEO [204] Rapid progressing IPF vs healthy
LGRC Lung Genomics Research Consortium Interstitial lung disease vs healthy

Gold standard:Nintedanib is the only FDA-approved drug for IPF in our drug input

datasets (highlighted as green). It inhibits RTKs such as PDGFR (α , β), FGFR(1,2,3),

VEGFR(1,2,3), and FLT3, among them, FGFR, PDGFR, and VEGFR have been implicated in

the pathogenesis of IPF. Additionally, Nintedanib inhibits nRTKs such as Lck, Lyn and Src

kinases [91, 103, 131, 171, 214, 254, 289].

We select the top 5% of drugs ranked lists obtained by applying the proposed approach

on 6 IPF datasets. As shown in Table 5, these drugs are ranked from the highest to the

lowest, based on their scores. The score assigned to Nintedanib is 0. Since we have four

instances for Nintedanib, drugs scores range between -4 and 4. The largest negative score
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Table 5: The top 5% drugs obtained from the result of our repurposing approach. These
drugs are ranked based on the scores generated by the systematic method. The * de-
notes the drugs that are currently FDA-approved but for other indications. The score for
Nintedanib, the FDA-approved drug for IPF, is 0. Drugs with the same scores are sorted
based on their average ranks. In this analysis, the scores computed by our systematic
method can be further normalized based on dividing each score by the total number of
FDA-approved drug instances for the disease of interest (e.g. 4 FDA-approved drug in-
stances for IPF). Therefore, the scores calculated for each drug across different diseases
will be in the same range (-1,1). For instance, the normalized score for Saracatinib will be
0.37.

Drug Score
Saracatinib 1.5
Nintedanib 0
Linifanib -0.67
Sunitinib * -1.42
Buparlisib -1.83
GDC-0941 -1.92
Alvocidib -2.58
Dabrafenib * -2.67
Nilotinib * -2.83
Gefitinib * -2.92
Idelalisib * -2.92
CH5424802 -3
Everolimus * -3
Dovitinib -3
Rucaparib * -3.08
Celastrol -3.08
NVP-BEZ235 -3.17
Selumetinib -3.17
Erlotinib * -3.58
Sirolimus * -3.58

for a drug indicates that drug ranked worse than all four instances of Nintedanib. Drugs

with the same scores are sorted based on their average ranks in drugs ranked lists.

In this analysis, the scores computed by our systematic method can be further normal-

ized based on dividing each score by the total number of FDA-approved drug instances for

the disease of interest (e.g. 4 FDA-approved drug instances for IPF). Therefore, the scores

calculated for each drug across different diseases will be in the same range (-1,1). For

instance, the normalized score for Saracatinib will be 0.37.
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Proposed candidates: We propose Sunitinib (p = 0.0009), Dabrafenib (p = 0.0009),

and Nilotinib (p = 0.0009) as repurposing candidates for treatment of IPF. Saracatinib,

Linifanib, Buparlisib, GDC-0941, and Alvocidib are also highly ranked by our approach

for treatment of IPF. Although these drugs are not approved by FDA yet, they can be

considered for further experimental tests.

Sunitinib is a small molecule that inhibits multiple receptor tyrosine kinases (RTKs), in-

cluding vascular endothelial growth factor receptors (VEGFR) and platelet-derived growth

factor receptors (PDGFR). It is approved by FDA for the treatment of Gastrointestinal

stromal tumor, advanced renal cell carcinoma, and progressive well-differentiated pan-

creatic neuroendocrine tumors [64, 183]. It was investigated for its anti-fibrotic and anti-

angiogenic properties. Its efficiency was experimentally proved in a bleomycin-induced

mouse model and it has been proposed for the treatment of IPF [143]. Results of in vitro

studies and animal models show that receptor tyrosine kinases, such as PDGFR, VEGFR and

FGFR, and non-receptor tyrosine kinases, such as the Src family, play crucial roles in the

pathogenesis of IPF [92, 222].

Dabrafenib is approved by FDA for the treatment of patients with unresectable or

metastatic melanoma. Recent clinical studies demonstrate that the extracellular signal

regulated kinase (ERK) and mitogen-activated protein kinase (MAPK) are up-regulated in

lung tissues of patients with IPF [163, 301]. In particular, results of studies on MAPK

signaling pathways show that the level of serine/threonine-protein kinase B-Raf (BRAF)

is increased in patients samples compared to the normal ones, suggesting the potential

therapeutic effects of MEK/ERK inhibitors for pulmonary fibrosis [163, 193]. This supports

the idea that the BRAF inhibitor Dabrafenib may have atherapeutic effect on IPF.
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Nilotinib is another FDA-approved drug we propose to be repurposed for the treatment

of IPF. Nilotinib is a transduction inhibitor targeting BCR-ABL, c-kit, and PDGF, that is

approved by FDA for treatment of patients who are newly diagnosed with Philadelphia

chromosome positive chronic myeloid leukemia (Ph+CML). It is also used for treatment

of patients with Ph+CML in chronic phase and accelerated phase if they were resistant (or

intolerant) to previous treatments. The potential roles of PDGFs in IPF have been shown

by many studies [8, 15, 38, 104, 289]. The advantage of PDGF inhibition in IPF is well

studied and supported by several studies [1, 46, 281, 289]. Authors of [91, 220] confirmed

the potential effect of Nilotinib in decreasing the extent of pulmonary fibrosis in a mouse

model.

The phosphatidylinositol 3 kinase (PI3K) inhibitors Buparlisib and GDC-0941 are un-

dergoing clinical trials for a number of diseases. Buparlisib is in Phase III of clinical

trials for treatment of breast cancer and in and Phase II for several other solid tumors.

GDC-0941(Pictilisib) has been used in clinical trials for the treatment of several cancers,

including breast cancer. Preclinical studies proved that PI3K inhibitors have potential

roles in treatment of IPF by interfering with the fibrogenic effects of TGF − β1 signal-

ing [26, 59, 107, 178]. Based on this evidence, Buparlisib and GDC-0941 may have po-

tential therapeutic effects on IPF.

The tyrosine kinase inhibitors Saracatinib and Linifanib are also highly ranked by

our approach for treatment of IPF. Saracatinib (AZD0530) is an oral, tyrosine kinase in-

hibitor selective for Src. It underwent clinical tests at AstraZeneca for the treatment of

cancer [94, 148, 179, 211]. However, it failed to show a sufficient efficacy in these stud-

ies. Subsequently, it was proposed for other usages such as Alzheimer’s disease (in Phase
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II) [191]. Linifanib (ABT-869) is also a multi-targeted receptor tyrosine kinase inhibitor

that is intended to suppress tumor growth. It is investigated for treatment of leukemia

(myeloid), myelodysplastic syndrome, and solid tumors [47, 50, 279]. The efficiency and

tolerability of Linifanib versus Sorafenib has been assessed in patients with advanced hep-

atocellular carcinoma [36]. The tyrosine kinase inhibitors are proven to be effective in

treatment of IPF [4, 6, 26, 91, 152, 222, 288]. In particular, the Src kinase inhibitor Sara-

catinib is reported to be useful in treatment of IPF through targeting the TGF−β signaling

pathway [108].

The Food and Drug Administration’s Office of Orphan Products Development provides

orphan drug status to medicines that are designed for the treatment, diagnosis or pre-

vention of rare conditions or diseases that affect fewer than 200,000 people in the U.S

or that affect more than 200,000 people but are not expected to recover the costs of

developing and marketing a treatment drug [246, 273]. IPF has a significant affect on

patients’ lives and finding optimal treatments for this condition is extremely important

(https://pulmonaryfibrosisnews.com). More specifically, Saracatinib is currently in (STOP

IPF) trial for the treatment of patients with IPF where 100 participants with IPF will receive

either Saracatinib or placebo for 24 weeks [6]. In this trial, the safety and tolerability of

Saracatinib as well as the early indicators of Saracatinib efficacy and the relevant biomark-

ers of Src kinase activity and fibrogenesis in treatment of IPF will be evaluated [6].

Alvocidib is a cyclin-dependent kinase (CDK) inhibitor that is undergoing clinical tri-

als for a number of cancers: esophageal cancer, leukemia, lung cancer, liver cancer, and

lymphoma. Studies of murine models show that the CDK inhibitors block the epithelial

apoptosis and decrease the tissue fibrosis in pulmonary fibrosis [115, 150]. As a result,
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CDK inhibitors have been suggested as a novel therapeutic strategy against IPF [310].

Drug-disease networks

Figure 4: The chord diagram represents the subnetwork of DDN for Nintedanib, the FDA-
approved drug for IPF. In order to obtain this subnetwork, we used IPF-associated genes
that are included in KEGG’s Pathways in cancer (the target pathway for Nintedanib). Sec-
tors and chords represent the genes and associations between the genes in the network,
respectively. Red sectors represent genes known to be associated to IPF disease. Sectors
representing the Nintedanib target genes are green.

We used chord diagrams to represent subnetworks of drug-disease networks (DDN) for

Nintedanib (Figure 4), Sunitinib (Figure 5), Linifanib (Figure 6), and Saracatinib (Fig-

ure 7). In order to obtain the subnetworks we use IPF-associated genes belonging to the

Pathways in cancer, the target pathway for Nintedanib. The subnetwork S= (V,E) with the
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node set V and edge set E is represented as follow:

S = (V,E) : (V ⊂ Path ∩ (Diseaset ∪Drugt)) ∧ (E ⊂ DDN) (2.3)

where Diseaset = {x1, x2, ..., xn}, Drugt = {y1, y2, ..., yn}, and Path denote the disease-

related genes, drug targets, and the genes on the Pathways in cancer, respectively.

In the chord diagram, sectors represent the genes and the chords represent the asso-

ciations between various genes in the network we built. The red sectors represent the

genes known to be associated to IPF. The green sectors represent the genes targeted by

Nintedanib.

In addition to chord diagrams, we used the edge lists to represent the DDN subnetworks

we construct for the repurposing candidates. In this list, the association between the genes

is represented as a tuple (e.g. FGFR1 - KRAS). Table 6 shows the edge lists representing

DDN subnetworks for repurposing drugs: Nintedanib, Nilotinib, and Sunitinib.

Table 7 shows the edge lists representing DDN subnetworks for drugs: Linifanib and

Saracatinib. These drugs are currently undergoing clinical trials for several indications

(see detail in section 3.1 of the manuscript). Red entires represent genes known to be

associated to IPF disease. Entries representing the Nintedanib target genes are green.

Drug-drug networks

Figures 9 and 8 show the drug-drug networks we generated using the known knowl-

edge (target pathways and target genes) of Nintedanib (FDA-approved for IPF treatment)

and top-ranked candidates for IPF, where circles correspond to drugs, and two drugs being

connected if they share target pathways or target genes, respectively. The target path-
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Table 6: The edge lists represent the subnetwork of DDN of drugs: Nintedanib, Nilotinib,
and Sunitinib. Nintedanib is the FDA-approved drug for IPF treatment. Nilotinib and Suni-
tinib are the repurposing candidates for the treatment of IPF. In this list, the association
between two genes is represented as gene pairs. In order to obtain the subnetworks, we
used IPF-associated genes that are included in KEGG’s Pathways in cancer (the target path-
way for Nintedanib). Red entires represent genes known to be associated to IPF disease.
Entries representing the Nintedanib target genes are green.

Nintedanib Nilotinib Sunitinib

Gene1→ Gene2 Gene1→ Gene2 Gene1→ Gene2 Gene1→ Gene2 Gene1→ Gene2 Gene1→ Gene2

FGFR1 KRAS JUN VEGFA PDGFRα KRAS MYC VEGFA FGFR1 KRAS JUN VEGFA
FGFR1 MAPK1 KRAS MAPK1 PDGFRβ KRAS NFKB1 BCL2 FGFR1 MAPK1 KRAS MAPK1
FGFR1 MAPK3 KRAS MAPK3 FGF2 PDGFRα NFKB1 BIRC2 FGFR1 MAPK3 KRAS MAPK3
PDGFRα KRAS MAPK1 CDKN1A FGF2 PDGFRβ NFKB1 IL6 PDGFRα KRAS MAPK1 CDKN1A
PDGFRβ KRAS MAPK1 IL6 HGF PDGFRα NFKB1 MMP9 PDGFRβ KRAS MAPK1 IL6
FGF2 FGFR1 MAPK1 MMP9 HGF PDGFRβ NFKB1 NFKBIA FGF2 PDGFRα MAPK1 MMP9
FGF2 FGFR2 MAPK1 MYC VEGFA PDGFRα NFKB1 TRAF2 FGF2 PDGFRβ MAPK1 MYC
FGF2 FGFR3 MAPK1 NFKB1 VEGFA PDGFRβ NFKB1 VEGFA HGF FGFR1 MAPK1 NFKB1
FGF2 PDGFRα MAPK1 RELA AKT1 NFKB1 RELA BCL2 HGF FGFR2 MAPK1 RELA
FGF2 PDGFRβ MAPK1 TP53 AKT1 NFKBIA RELA BIRC2 HGF PDGFRα MAPK1 TP53
HGF FGFR1 MAPK3 CDKN1A AKT1 RELA RELA IL6 HGF PDGFRβ MAPK3 CDKN1A
HGF FGFR2 MAPK3 IL6 BAX CASP9 RELA MMP9 VEGFA FGFR1 MAPK3 IL6
HGF FGFR3 MAPK3 MMP9 BAX CYCS RELA NFKBIA VEGFA FGFR2 MAPK3 MMP9
HGF PDGFRα MAPK3 MYC BIRC5 CASP9 RELA TRAF2 VEGFA FGFR3 MAPK3 MYC
HGF PDGFRβ MAPK3 NFKB1 CASP9 CASP3 RELA VEGFA VEGFA PDGFRα MAPK3 NFKB1
VEGFA FGFR1 MAPK3 RELA CYCS CASP3 TGFB1 SMAD3 VEGFA PDGFRβ MAPK3 RELA
VEGFA FGFR2 MAPK3 TP53 FOS VEGFA FGF2 FGFR1 MAPK3 TP53
VEGFA FGFR3 MYC MMP2 JUN VEGFA FGF2 FGFR2 MYC MMP2
VEGFA PDGFRα MYC MMP9 KRAS MAPK1 AKT1 BCL2 MYC MMP9
VEGFA PDGFRβ MYC VEGFA KRAS MAPK3 AKT1 NFKB1 MYC VEGFA
AKT1 NFKB1 NFKB1 BCL2 MAPK1 CDKN1A AKT1 NFKBIA NFKB1 BCL2
AKT1 NFKBIA NFKB1 BIRC2 MAPK1 IL6 AKT1 RELA NFKB1 BIRC2
AKT1 RELA NFKB1 IL6 MAPK1 MMP9 BAX CASP9 NFKB1 IL6
BAX CASP9 NFKB1 MMP9 MAPK1 MYC BAX CYCS NFKB1 MMP9
BAX CYCS NFKB1 NFKBIA MAPK1 NFKB1 BIRC5 CASP9 NFKB1 NFKBIA
BIRC5 CASP9 NFKB1 TRAF2 MAPK1 RELA CASP9 CASP3 NFKB1 TRAF2
CASP9 CASP3 NFKB1 VEGFA MAPK1 TP53 CYCS CASP3 NFKB1 VEGFA
CYCS CASP3 RELA BCL2 MAPK3 CDKN1A FOS IL6 RELA BCL2
CYCS CASP9 RELA BIRC2 MAPK3 IL6 FOS MMP2 RELA BIRC2
FOS MMP2 RELA IL6 MAPK3 MMP9 FOS MMP9 RELA IL6
FOS VEGFA RELA MMP9 MAPK3 MYC FOS VEGFA RELA MMP9
JUN MMP2 RELA NFKBIA MAPK3 NFKB1 JUN IL6 RELA NFKBIA
JUN NFKB1 RELA TRAF2 MAPK3 RELA JUN MMP2 RELA TRAF2
JUN RELA RELA VEGFA MAPK3 TP53 JUN MMP9 RELA VEGFA
JUN VEGFA TGFB1 SMAD3 MYC MMP2 JUN NFKB1 SMAD3 CDKN1A
KRAS MAPK1 TRAF2 BIRC2 MYC MMP9 JUN RELA TGFB1 SMAD3

TP53 CDKN1A
TRAF2 BIRC2
TRAF2 NFKBIA
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Table 7: The edge lists represent the subnetwork of DDN of drugs: Linifanib and Saraca-
tinib. These drugs are currently undergoing clinical trials (for conditions other than IPF)
that can be considered for the treatment of IPF. In this list, the association between two
genes is represented as a tuple. In order to obtain the subnetworks, we used IPF-associated
genes that are included in KEGG’s Pathways in cancer (the target pathway for Nintedanib).
Red entires represent genes known to be associated to IPF disease. Entries representing
the Nintedanib target genes are green.

Linifanib Saracatinib

Gene1→ Gene2 Gene1→ Gene2 Gene1→ Gene2
PDGFRβ KRAS FGFR1 MAPK1 NFKB1 BIRC2
FGF2 PDGFRβ FGFR1 MAPK3 NFKB1 IL6
HGF PDGFRβ PDGFRα KRAS NFKB1 MMP9
VEGFA PDGFRβ FGF2 PDGFRα NFKB1 NFKBIA
AKT1 NFKB1 FGF2 PDGFRβ NFKB1 TRAF2
AKT1 NFKBIA HGF PDGFRα NFKB1 VEGFA
AKT1 RELA HGF PDGFRβ RELA BCL2
BAX CASP9 VEGFA FGFR1 RELA BIRC2
BAX CYCS AKT1 NFKB1 RELA IL6
BIRC5 CASP9 AKT1 NFKBIA RELA MMP9
CASP9 CASP3 AKT1 RELA RELA NFKBIA
CYCS CASP3 BAX CASP9 RELA TRAF2
JUN VEGFA BAX CYCS RELA VEGFA
KRAS MAPK1 BIRC5 CASP9 TGFB1 SMAD3
KRAS MAPK3 CASP9 CASP3
MAPK1 CDKN1A CYCS CASP3
MAPK1 IL6 FGF2 FGFR1
MAPK1 MMP9 FOS IL6
MAPK1 MYC FOS VEGFA
MAPK1 NFKB1 HGF FGFR1
MAPK1 RELA JUN NFKB1
MAPK1 TP53 JUN RELA
MAPK3 CDKN1A JUN VEGFA
MAPK3 IL6 KRAS MAPK1
MAPK3 MMP9 KRAS MAPK3
MAPK3 MYC MAPK1 CDKN1A
MAPK3 NFKB1 MAPK1 IL6
MAPK3 RELA MAPK1 MMP9
MAPK3 TP53 MAPK1 MYC
MYC MMP2 MAPK1 NFKB1
MYC MMP9 MAPK1 RELA
MYC VEGFA MAPK1 TP53
NFKB1 BCL2 MAPK3 CDKN1A
NFKB1 BIRC2 MAPK3 IL6
NFKB1 NFKBIA MAPK3 MMP9
NFKB1 TRAF2 MAPK3 MYC
NFKB1 VEGFA MAPK3 RELA
RELA BCL2 MAPK3 TP53
RELA BIRC2 MYC MMP2
RELA NFKBIA MYC MMP9
RELA TRAF2 MYC VEGFA
RELA VEGFA NFKB1 BCL2
TGFB1 SMAD3 NFKB1 BIRC2
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Figure 5: The chord diagram represents the subnetwork of DDN for Sunitinib, the repur-
posing candidate for the treatment of IPF. In order to obtain this subnetwork, we used
IPF-associated genes that are included in KEGG’s Pathways in cancer (the target pathway
for Nintedanib). Sectors and chords represent the genes and associations between the
genes in the network, respectively. Red sectors represent genes known to be associated to
IPF disease. Sectors representing the Nintedanib target genes are green.

ways and target genes of drugs (represented by rectangles) are obtained from KEGG and

Drugbank [287].

2.5.2 Non-small cell lung cancer

We obtained four non-small cell lung cancer (NSCLC) datasets from Gene Expression

Omnibus (GEO): GSE32863 (adenocarcinoma) [241] and GSE11969 (subtypes: adeno-

carcinoma, large cell carcinoma, squamous cell carcinoma) [258]. Adenocarcinoma (40%
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Figure 6: The chord diagram represents the subnetwork of DDN for Linifanib. In order to
obtain this subnetwork, we used IPF-associated genes that are included in KEGG’s Pathways
in cancer (the target pathway for Nintedanib). Sectors and chords represent the genes and
associations between the genes in the network, respectively. Red sectors represent genes
known to be associated to IPF disease. Sectors representing the Nintedanib target genes
are green.

of lung cancers), squamous cell carcinoma (25% of lung cancers), and large cell carcinoma

(10% of lung cancers) are three main subtypes of NSCLC.

As shown in Panel A of Figure 3, given a ranked-list of drugs (drug instances) ob-

tained by applying our approach on a disease dataset, a score for drug Drugx is defined as

Score(Drugx) = a − b, where terms a and b denote the number of already FDA-approved

drugs (gold standards) that are ranked worse and better than Drugx, respectively. Panel

B in this figure shows the computed scores for a number of top-ranked dugs from non-

small cell lung cancer (NSCLC) results. In total, there are 8 FDA-approved drugs for
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Figure 7: The chord diagram represents the subnetwork of DDN for Saracatinib. In order to
obtain this subnetwork, we used IPF-associated genes that are included in KEGG’s Pathways
in cancer (the target pathway for Nintedanib). Sectors and chords represent the genes and
associations between the genes in the network, respectively. Red sectors represent genes
known to be associated to IPF disease. Sectors representing the Nintedanib target genes
are green.

NSCLC in our drug input list. For instance, the score assigned to GSM1740080_sunitinib

for the GSE11969-adenocarcinoma dataset is 6, as there is only one FDA-approved drug

(highlighted with green) ranked better than GSM1740080_sunitinib and there are 7 FDA-

approved drugs ranked below it (7-1=6). A score of 8 means that each candidate ranked

higher than all 8 instances of FDA-approved drugs. Table II in Panel B summarizes the

scores assigned to three drug instances: GSM1741743_sirolimus, GSM1738326_mocetinostat,

and GSM1740080_sunitinib using four NSCLC datasets. We then calculate an average

score for each drug across different disease datasets, and different instances, if there are
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Figure 8: Drug-drug network is generated using the known knowledge of drugs target
pathways, obtained from KEGG. Circles and rectangles correspond to drugs and target
pathways, respectively. Drugs are connected to each other based on their common target
pathways. Nintedanib (shown with green circle) is FDA-approved for treatment of IPF.
Pathways in cancer is known as the target pathway for Nintedanib.

Figure 9: Drug-drug network is generated using the known knowledge of drugs target
genes, obtained from KEGG and Drugbank [287]. Circles and rectangles correspond to
drugs and target genes, respectively. Drugs are connected to each other based on their
common target genes. Nintedanib (shown with green circle) is FDA-approved for treat-
ment of IPF. VEGFR(1,2,3), PDGFR (α,β), FGFR (1,2,3), SRC, FLT3, and KIT are known to
be target genes of Nintedanib [91, 103, 131, 171, 214, 254, 289].
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multiple instances for that drug. This is shown in Figure 2.

We select the top 5% of drugs ranked lists obtained by applying our approach on disease

datasets and rank such drugs based on the scores computed by the systematic method,

from highest to the lowest.

Gold standards: Gefitinib and Crizotinib are the FDA-approved drugs for treatment

of NSCLC. These drugs are included in our list of input drugs from LINCS. On all NSCLC

datasets, three computational approaches were compared in terms of their ability to highly

rank the instances of Gefitinib and Crizotinib that exist in the LINCS drug database.

Erlotinib is used as the maintenance treatment of locally advanced or metastatic NSCLC

patients with no progress in their disease after four cycles of platinum-based first-line

chemotherapy. It is also indicated after failure of at least one prior chemotherapy regimen

in patients with NSCLC. Since Erlotinib is limited to very specific patients with NSCLC and

none of our datasets fulfill such limitations, we did not consider it as the gold standard.

However, the proposed approach is significantly better than the other two approaches even

if Erlotinib were to be included as the gold standard.

Tables 9–12 show the results obtained on four NSCLC datasets using: i) the proposed

approach, ii) the drug-disease approach, and iii) the anti-correlation approach. The FDA-

approved drugs for NSCLC are highlighted in green.

We selected the top 5% of drugs ranked lists obtained by applying the proposed ap-

proach using 4 NSCLC datasets. As shown in Table 8, these drugs are ranked according to

the scores computed by the systematic method from the highest to the lowest. The sum of

the scores assigned to Gefitinib and Crizotinib (the FDA-approved drugs for NSCLC) is 0.

Drugs with the same scores are sorted based on their average ranks in drugs ranked lists.
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In this analysis, the scores computed by our systematic method can be further normal-

ized based on dividing each score by the total number of FDA-approved drug instances for

the disease of interest (8 FDA-approved drug instances for NSCLC). Therefore, the scores

calculated for each drug across different diseases will be in the same range (-1,1).

Table 8: The top 5% of drugs obtained from the result of the proposed approach. These
drugs are ranked based on the scores generated by the systematic method. The * denotes
the drugs that are currently FDA-approved but for other indications. Gefitinib and Crizo-
tinib, as highlighted with green, are FDA-approved for the treatment of NSCLC. Drugs
with the same scores are sorted based on their average ranks in drugs ranked lists. In this
analysis, the scores computed by our systematic method can be further normalized based
on dividing each score by the total number of FDA-approved drug instances for the disease
of interest (8 FDA-approved drug instances for NSCLC). Therefore, the scores calculated
for each drug across different diseases will be in the same range (-1,1).

Drug Score
Sunitinib * 4.625
Mocetinostat 2.75
Gefitinib 1.75
Roscovitine -1
Sirolimus * -1
Enzastaurin * -1.75
Crizotinib -1.75
Everolimus * -2
Ponatinib * -2.25
Saracatinib -2.25
Rucaparib * -3.125
Dasatinib * -3.375
Linifanib -3.625
Mitoxantrone * -4.625

Proposed candidates: We propose the FDA-approved drugs: Sunitinib (p = 0.0009),

Sirolimus (p = 0.0009), Enzastaurin (p = 0.0009), Everolimus (p = 0.001), and Ponatinib

(p = 0.004) as repurposing candidates for treatment of NSCLC. Although Mocetinostat,

Roscovitine, and Saracatinib are not approved by FDA yet, they can be prioritized for

further investigations.

As discussed earlier, Sunitinib is an oral, small-molecule that inhibits RTKs, including

VEGFR and PDGFR. Recent clinical trials have reported that Sunitinib has the provocative
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single-agent activity in previously treated patients with recurrent and advanced NSCLC [189,

251]. Sunitinib has completed the phase II of clinical trials for treatment of patients with

NSCLC (ClinicalTrials.gov IDs: NCT00372775, NCT00092001, NCT00864721). The phase

III of clinical trials on Sunitinib as a potential maintenance therapy in NSCLC patients has

been completed. These patients had received four cycles of platinum-based chemotherapy

without disease progression. The result of the trials has not published yet (ClinicalTri-

als.gov ID: NCT00693992).

Sirolimus, also known as Rapamycin, is a potent immunosuppressant that inhibits

mammalian target of rapamycin (mTOR). The positive effect of Sirolimus in inhibiting the

growth and progression of NSCLC is supported by several clinical studies [30, 77, 90, 234].

The phase I/II clinical trials have been launched to test the efficiency of Sirolimus in

combination with Pemetrexed for treating patients with NSCLC (ClinicalTrials.gov ID:

NCT01061788). The phase I clinical trials of Sunitinib and Sirolimus confirm that this

combination is well-tolerated and warrants further investigation in advanced NSCLC (Clin-

icalTrials.gov ID: NCT00555256) [282].

Everolimus is a derivative of rapamycin (Sirolimus). It is approved by FDA for treat-

ment of several conditions, including breast cancer, advanced renal cell carcinoma, renal

angiomyolipoma, and tuberous sclerosis. It has shown antitumor activity both as the single

agent and in combination with other agents in treatment of patients with NSCLC. Several

clinical trials support the efficacy of Everolimus in treatment of NSCLC [90, 212, 252, 271]

(ClinicalTrials.gov ID: NCT00096486).

Increased levels of protein kinase C (PKC) and AKT are known to be associated with

the poor prognosis in NSCLC [57, 192]. Enzastaurin, an oral serine/threonine kinase
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inhibitor, suppresses PKC and protein kinase B/AK transforming (AKT) signaling, induces

tumor cell apoptosis, and inhibits the proliferation and angiogenesis [192]. Enzastaurin is

proven to inhibit the growth of NSCLC cell lines [184, 192, 261]. The Phase II evaluation

of Enzastaurin as the second-and third- line treatment for NSCLC has completed with

promising results (ClinicalTrials.gov ID: NCT00105092).

Fibroblast growth factor receptors (FGFRs) are known to be overexpressed in NSCLC [23,

235]. Ponatinib is proven to be effective against the FGFR1 kinase in 8p11 myeloprolifer-

ative syndrome (EMS) [45]. In particular, It has been shown that Ponatinib can suppress

cell growth in NSCLC cell lines [218, 263]. Several studies reported that RET fusions are

viable targets in NSCLC [44, 81, 84]. The phase II of the clinical trial (ClinicalTrials.gov ID:

NCT01813734) is currently evaluating the safety and the effectiveness of the RET inhibitor

Ponatinib in treating patients with NSCLC.

It has been reported that HDAC inhibitor Mocetinostat may restore normal cell func-

tion and reduce or inhibit the tumor growth [187]. A phase 1/2 clinical trial of Mocetino-

stat, in combination with Durvalumab is currently ongoing in treating patients with solid

tumors and NSCLC to evaluate the safety and efficacy of this combination [98] (Clinical-

Trials.gov IDs: NCT02805660). Another clinical trial is currently undergoing to evaluate

the clinical activity of Nivolumab in combination with three separate drugs, Glesatinib,

Sitravatinib, or Mocetinostat in NSCLC (ClinicalTrials.gov ID: NCT02954991, phase II).

Roscovitine is an experimental drug in the class of pharmacological cyclin-dependent

kinase (CDK) inhibitors. Current clinical studies [56, 195] suggest the combination of

Roscovitine and Belinostat in treating patients with NSCLC. The phase II study of Roscov-

itine as a single agent in previously-treated patients with non-small cell lung cancer has
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Table 9: A comparison between the results of three approaches: proposed, drug-disease,
anti-correlation using GSE11969-adenocarcinoma dataset (the top 10 drugs). The p-values
for Wilcoxon rank sum test comparing the results of the proposed approach with drug-
disease and anti-correlation approaches are 0.01 and 0.005, respectively. Drugs high-
lighted with green are FDA-approved for the treatment of NSCLC. The * denotes the drugs
that are currently FDA-approved but for other indications.

GSE11969-adenocarcinoma
Proposed Drug-disease Anti-correlation
GSM1741743_sirolimus* GSM1746780_erlotinib* GSM1737411_NVP-

BGT226
GSM1741104_sunitinib* GSM1738326_mocetinostat GSM1739358_mocetinostat
GSM1738326_mocetinostat GSM1739358_mocetinostat GSM1741104_sunitinib*
GSM1739358_mocetinostat GSM1741104_sunitinib* GSM1740576_BI-2536
GSM1746613_enzastaurin GSM1745191_NVP-

BEZ235
GSM1738326_mocetinostat

GSM1742552_linifanib GSM1745674_dovitinib GSM1740923_BI-2536
GSM1742645_gefitinib GSM1742797_palbociclib* GSM1737409_NVP-

BGT226
GSM1740080_sunitinib* GSM1745194_NVP-

BEZ235
GSM1742797_palbociclib*

GSM1737700_rucaparib* GSM1746864_radicicol GSM1737349_everolimus*
GSM1744393_gefitinib GSM1741767_vorinostat* GSM1745194_NVP-

BEZ235

terminated with no data reported (ClinicalTrials.gov ID: NCT00372073).

Saracatinib is an inhibitor of SRC kinases that may improve NSCLC treatment [227,

228, 309]. It is undergoing phase II of clinical trials in treatment of patients with NSCLC

(NCT00638937).

2.5.3 Prostate cancer

We use three different prostate cancer datasets. The first dataset is obtained by compar-

ing gene expression levels between prostate tissues from 6 prostate cancer samples with

6 healthy samples using Affymetrix Human Genome U133 Plus2.0 Array. This dataset is

available via GEO (GSE26910) [209]. GSE6919 is the second dataset that compares 65 pri-

mary prostate cancer samples with 18 healthy samples using Affymetrix Human Genome

U95A Version 2 Array [43, 303]. The third dataset is the result of comparing gene expres-
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Table 10: A comparison between the results of three approaches: proposed, drug-disease,
anti-correlation using GSE11969-large cell carcinoma dataset (the top 10 drugs). The p-
values for Wilcoxon rank sum test comparing the results of the proposed approach with
drug-disease and anti-correlation approaches are 0.001 and 0.0005, respectively. Drugs
highlighted with green are FDA-approved for the treatment of NSCLC. The * denotes the
drugs that are currently FDA-approved but for other indications.

GSE11969-large cell carcinoma
Proposed Drug-disease Anti-correlation
GSM1741743_sirolimus* GSM1745191_NVP-

BEZ235
GSM1737411_NVP-
BGT226

GSM1741104_sunitinib* GSM1738326_mocetinostat GSM1740576_BI-2536
GSM1739358_mocetinostat GSM1739358_mocetinostat GSM1740923_BI-2536
GSM1738326_mocetinostat GSM1745194_NVP-

BEZ235
GSM1745191_NVP-
BEZ235

GSM1740080_sunitinib* GSM1745149_GDC-0980 GSM1745194_NVP-
BEZ235

GSM1741800_mitoxantrone*GSM1741767_vorinostat* GSM1739358_mocetinostat
GSM1744393_gefitinib GSM1737642_mocetinostat GSM1745149_GDC-0980
GSM1742645_gefitinib GSM1738308_entinostat GSM1737409_NVP-

BGT226
GSM1746613_enzastaurin GSM1742797_palbociclib* GSM1737410_NVP-

BGT226
GSM1742878_dasatinib* GSM1739435_belinostat* GSM1741767_vorinostat*

sion levels between 69 prostate cancer patients and 18 normal patients using Affymetrix

Human Genome U133A 2.0 Array. This dataset is available in GEO (GSE6956) [277].

Gold standard: Nilutamide is the FDA-approved drug for the treatment of prostate

cancer. This antiandrogen drug is included in our list of input drugs from Connectivity

Map. Prostate cancer mostly depends on the androgen for the growth and survival. Ni-

lutamide is known to block the action of androgens of adrenal and testicular origin that

stimulate the growth of the normal and malignant prostatic tissue [128].

Tables 14–16 show the results obtained on 3 prostate cancer datasets using: i) the

proposed approach, ii) the drug-disease approach, and iii) the anti-correlation approach.

We selected the top 5% drugs from the drugs ranked lists obtained by applying the

proposed approach on 3 prostate cancer datasets. As shown in Table 13, these drugs are
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Table 11: A comparison between the results of three approaches: proposed, drug-disease,
anti-correlation using GSE11969-squamous cell carcinoma dataset (the top 10 drugs). The
p-values for Wilcoxon rank sum test comparing the results of the proposed approach with
drug-disease and anti-correlation approaches are 0.001 and 0.0003, respectively. Drugs
highlighted with green are FDA-approved for the treatment of NSCLC. The * denotes the
drugs that are currently FDA-approved but for other indications.

GSE11969-squamous cell carcinoma
Proposed Drug-disease Anti-correlation
GSM1741743_sirolimus* GSM1739358_mocetinostat GSM1737411_NVP-

BGT226
GSM1741104_sunitinib* GSM1738326_mocetinostat GSM1740576_BI-2536
GSM1740080_sunitinib* GSM1746780_erlotinib* GSM1745149_GDC-0980
GSM1738326_mocetinostat GSM1742797_palbociclib* GSM1745194_NVP-

BEZ235
GSM1746613_enzastaurin GSM1737642_mocetinostat GSM1739358_mocetinostat
GSM1739358_mocetinostat GSM1742706_alvocidib GSM1741767_vorinostat*
GSM1744393_gefitinib GSM1745912_neratinib* GSM1737410_NVP-

BGT226
GSM1742878_dasatinib* GSM1737967_entinostat GSM1737409_NVP-

BGT226
GSM1740081_sunitinib* GSM1738308_entinostat GSM1745191_NVP-

BEZ235
GSM1740917_saracatinib GSM1737624_entinostat GSM1741769_sirolimus*

Table 12: A comparison between the results of three approaches: proposed, drug-disease,
anti-correlation using GSE32863 dataset (the top 10 drugs). The p-values for Wilcoxon
rank sum test comparing the results of the proposed approach with drug-disease and anti-
correlation approaches are 0.007 and 0.007, respectively. Drugs highlighted with green
are FDA-approved for the treatment of NSCLC. The * denotes the drugs that are currently
FDA-approved but for other indications.

GSE32863-adenocarcinoma
Proposed Drug-disease Anti-correlation
GSM1741743_sirolimus* GSM1738326_mocetinostat GSM1738326_mocetinostat
GSM1738326_mocetinostat GSM1739358_mocetinostat GSM1739453_decitabine*
GSM1741104_sunitinib* GSM1743209_nintedanib* GSM1746780_erlotinib*
GSM1740080_sunitinib* GSM1746780_erlotinib* GSM1739358_mocetinostat
GSM1739358_mocetinostat GSM1746881_mitoxantrone*GSM1742878_dasatinib*
GSM1742878_dasatinib* GSM1746893_radicicol GSM1743210_nintedanib*
GSM1744393_gefitinib GSM1742797_palbociclib* GSM1742797_palbociclib*
GSM1740301_ponatinib* GSM1740576_BI-2536 GSM1742706_alvocidib
GSM1740081_sunitinib* GSM1740298_ponatinib* GSM1744393_gefitinib
GSM1742552_linifanib GSM1741767_vorinostat* GSM1740576_BI-2536
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ranked according to the scores computed by the systematic method from the highest to

the lowest. The score assigned to Nilutamide is 0. Drugs with the same scores are sorted

based on their average ranks in drugs ranked lists.

Table 13: The top 5% drugs obtained from the result of our repurposing approach. These
drugs are ranked based on the scores generated by the systematic method. The * denotes
the drugs that are currently FDA-approved but for other indications. The score for Nilu-
tamide, the FDA-approved drug for prostate cancer, is 0. Drugs with the same scores are
sorted based on their average ranks in drugs ranked lists.

Drug Score
Podophyllotoxin * 0.33
Nilutamide 0
Acetylsalicylic acid * -0.33
Papaverine * -0.33
Mefloquine * -0.33
Vorinostat * -0.33
Sirolimus * -0.33
Alprostadil * -0.33
Glibenclamide * -0.33
Oxyphenbutazone (discontinued/withdrawn) -0.33
Phenelzine * -0.33
Methylergometrine * -0.33
Parthenolide -0.33
Primaquine * -0.33
Phenoxybenzamine * -0.67
Etoposide * -0.67
Captopril * -0.67
Trichostatin A -0.67
Fluorometholone * -1

Proposed candidates: In this case study, we chose Podophyllotoxin (p = 0.2), Acetyl-

salicylic acid (p = 0.2), Papaverine (p = 0.01), Mefloquine (p = 0.03), Vorinostat (p =

0.1), and Sirolimus (p = 0.06) for further evaluations.

Podophyllotoxin is a natural product found in podophyllin resin from the roots of

podophyllum plants. Podophyllotoxin and its derivatives, including Deoxypodophyllo-

toxin, are reported to have significant anti-tumor effects in a number of cancers [25, 48,

53, 88, 137, 159]. A recent study demonstrated that Deoxypodophyllotoxin inhibits the
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cell proliferation and induces the cell apoptosis in human prostate cancer cells through

the Akt/p53/Bax/PTEN signaling pathway, suggesting that Deoxypodophyllotoxin could

be used as a novel chemotherapeutic drug for human prostate cancer [109].

Acetylsalicylic acid (Aspirin) is a nonsteroidal anti-inflammatory drug that is used for

the temporary relief of different forms of pain, and the inflammation associated with vari-

ous conditions. It is also indicated to decrease the risk of death and myocardial infarction

in patients with chronic coronary artery disease. Recent findings confirm that the long du-

ration regular Aspirin use modestly reduces the risk of prostate cancer [52, 97, 118, 160,

188, 229, 249]. Aspirin is also reported to affect the proliferation, apoptosis, resistance

and metastasis of prostate cancer cell lines, suggesting the further evaluation of the signal-

ing cascades activated by Aspirin in order to improve diagnosis, prognosis and treatment

of prostate cancer [29]. According to these findings, Aspirin can be used for both pre-

vention and treatment purposes in prostate cancer (ClinicalTrials.gov IDs: NCT02757365,

NCT03103152, NCT02804815).

Papaverine is a nonxanthine phosphodiesterase inhibitor that is indicated for the re-

lief of the cerebral and peripheral ischemia. It induces morphologic differentiation and

suppresses the proliferation of human prostate cancer cell [89]. Papaverine is reported

to have antitumor effects in prostate cancer by inducing significant, highly selective and

dose-dependent cytotoxic effects in cancer cells [112, 236].

Mefloquine (MQ) is a prophylactic anti-malarial drug which acts as a blood schizon-

ticide and can be a potential treatment for prostate cancer. Recent findings indicate that

MQ has anticancer effects in PC3, which is the most commonly used prostate cancer cell

line [294, 295]. MQ has been reported to be potent in killing cancer cells in vitro, sug-
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Table 14: A comparison between the results of three approaches: proposed, drug-disease,
anti-correlation using GSE26910 dataset (the top 10 drugs). The ranks of Nilutamide,
the FDA-approved drug for prostate cancer, in the proposed approach, drug-disease and
anti-correlation approaches results are 9, 13, and 63 , respectively. Drug highlighted with
green is FDA-approved for the treatment of prostate cancer. The * denotes the drugs that
are currently FDA-approved but for other indications.

GSE26910
Proposed Drug-disease Anti-correlation
mefloquine_5724 * luteolin_3041 vorinostat_6179 *
mefloquine_2210 * etoposide_1626 * parthenolide_5530
podophyllotoxin_2540 vorinostat_6939 * parthenolide_2885
vorinostat_6179 * phenoxybenzamine_5248

*
tanespimycin_2666

phenoxybenzamine_5613
*

puromycin_3310 phenoxybenzamine_5248
*

oxyphenbutazone_6844 ciclopirox_2456 * phenoxybenzamine_5613
*

parthenolide_2885 vorinostat_6179 * doxazosin_3024 *
parthenolide_5530 anisomycin_1304 * mycophenolic

acid_2857 *
nilutamide_5362 lycorine_3808 etoposide_3241 *

gested as the chemotherapeutic agent for treatment of glioblastoma and breast cancer

cells [85, 247].

Vorinostat is a histone deacetylase (HDAC) inhibitor approved by FDA for the treat-

ment of patients with cutaneous T-cell lymphoma (CTCL). Inhibition of the HDAC has

resulted in decreasing the tumor growth and reducing cell proliferation in prostate can-

cer, suggesting that Vorinostat could be a potential drug for treatment of prostate can-

cer [32, 39, 66, 130] (ClinicalTrials.gov IDs: NCT00330161, NCT00589472).

The initial preclinical and clinical studies show that the mTOR inhibition Sirolimus can

be useful in treating patients with prostate cancer [9, 40, 55, 114, 215]. Sirolimus and its

combination with other drugs are undergoing clinical trials in treatment of patients with

prostate caner (NCT00311623, NCT02565901).
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Table 15: A comparison between the results of three approaches: proposed, drug-disease,
anti-correlation using GSE6919 dataset (the top 10 drugs). The ranks of Nilutamide, the
FDA-approved drug for prostate cancer, in the proposed approach, drug-disease and anti-
correlation approaches results are 7, 81, and 129, respectively. Drugs highlighted with
green are FDA-approved for the treatment of prostate cancer. The * denotes the drugs that
are currently FDA-approved but for other indications.

GSE6919
Proposed Drug-disease Anti-correlation
papaverine_1755 * alvespimycin_1638 doxorubicin_3291 *
vorinostat_6179 * daunorubicin_4983 * doxorubicin_5671 *
etoposide_3241 * tanespimycin_986 daunorubicin_4983 *
alprostadil_2938 * doxorubicin_5671 * mitoxantrone_3232 *
podophyllotoxin_2540* alvespimycin_993 rifabutin_3873 *
methylergometrine_1607 mitoxantrone_3232 * alvespimycin_1638
nilutamide_5362 etoposide_3241 * alvespimycin_993
fluorometholone_6247
*

parthenolide_5530 oxyphenbutazone_6844

colchicine_1598 * ciclopirox_3317 * mitoxantrone_5354 *
acetylsalicylic
acid_1042 *

mitoxantrone_5354 * vorinostat_6939 *

Table 16: A comparison between the results of three approaches: proposed, drug-disease,
anti-correlation using GSE6956 dataset (the top 10 drugs). The ranks of Nilutamide, the
FDA-approved drug for prostate cancer in the proposed approach, drug-disease and anti-
correlation approaches results are 15, 141, and 90, respectively. The * denotes the drugs
that are currently FDA-approved but for other indications.

GSE6956
Proposed Drug-disease Anti-correlation
acetylsalicylic
acid_1042 *

phenelzine_4360 * phenelzine_4360 *

captopril_1988 * rifabutin_4349 * rifabutin_4349 *
sirolimus_1080 * trichostatin A_5017 primaquine_4845 *
glibenclamide_1546 * captopril_1988 * norfloxacin_7283 *
phenelzine_4360 * ambroxol_6719 * flunixin_2552
sirolimus_987 * metaraminol_2298 * captopril_1988 *
trichostatin A_5017 sirolimus_1080 * sirolimus_987 *
primaquine_4845 * picrotoxinin_2161 * trichostatin A_5017
paclitaxel_6720 cyproheptadine_6740 * calmidazolium_906
ajmaline_1749 * primaquine_4845 * ambroxol_6719 *
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2.5.4 Breast cancer

We obtained six breast cancer datasets, GSE1299 [175] and GSE28645 [278], and

GSE65194 (subtypes: Her2, luminalA, luminalB, triple negative) [165, 166, 170] from

Gene Expression Omnibus (GEO). Datasets GSE1299 and GSE65194 (Her2, luminalA, lu-

minalB, triple negative) consist of two groups of samples such as disease and control,

while the dataset GSE28645 is a gene expression dataset that consists of two groups of

samples: treated (by tamoxifen) and untreated. It is well-known that choices of the treat-

ment and the ultimate success for breast cancer highly depend on its specific type [86],

that is categorized as:

• Hormone receptor positive (estrogen and/or progesterone receptor positive) or hor-

mone receptor negative (estrogen and/or progesterone receptor negative)

• Human epidermal growth factor receptor (HER2/neu) positive or HER2/neu nega-

tive

• Triple negative (all estrogen receptor, progesterone receptor, and HER2/neu are neg-

ative)

Other factors that affect the prognosis and treatment options include: stage of the

cancer, levels of estrogen receptor, progesterone receptor, or HER2/neu in the tumor tissue,

the growth rate of the tumor, the recurrence rate, patient’s age, and menopausal status.

Gold standard: Fulvestrant, Paclitaxel, Methotrexate are FDA-approved drugs for the

treatment of breast cancer. These drugs are included in our list of input drugs from Con-

nectivity Map. Table 17 represents the target genes and activity of these drugs, obtained
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from KEGG and Drugbank [287]. Tables 19–24 show the results obtained on 6 breast can-

cer datasets using: i) the proposed approach, ii) the drug-disease approach, and iii) the

anti-correlation approach.

We selected the top 5% drugs from the drugs ranked lists obtained by applying the

proposed approach on 6 breast cancer datasets. These drugs are ranked according to the

scores computed by the systematic method from the highest to the lowest. Table 18 shows

the rank-ordered list of such drugs according to their score.

Proposed candidates: For this disease, we propose Captopril (p = 0.001), Gliben-

climiade (p = 0.0009), Fluorometholone (p = 0.005), Etoposide (p = 0.01), Colchicine

(p = 0.001), and Tretinoin (p = 0.0009) as repurposing candidates for treatment of breast

cancer.

Captopril is indicated for treatment of hypertension, congestive heart failure, and kid-

ney problems caused by diabetes. Recent clinical studies confirm the potential antineo-

plastic effect of Captopril in cancer [123, 129, 144, 225, 230]. The phase I/II clinical trial

(ClinicalTrials.gov ID: NCT00086723) evaluates the activity of Captopril and the tissue

plasminogen activator (a blood factor/protein orchestrating the breakdown of blood clot)

in treating patients with progressive metastatic cancer. Specifically, Captopril is proven to

play a role in prevention and regression of the tamoxifen-induced resistance of breast can-

cer cell line MCF-7 [185], suggesting that it can be used in combination with Tamoxifen to

overcome such resistance.

Glibenclimiade is an antidiabetic drug that is used as an adjunct to diet and exer-

cise for treatment of patients with type 2 diabete. Glibenclamide is proven to be a tumor

growth inhibitor [2, 202, 213, 224, 299]. It is considered as a promising antitumor drug
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in several cancers, including breast cancer. In particular, the cytostatic effect of Gliben-

climiade by inducing G0/G1 arrest has been clearly demonstrated in MDA-MB-231 cells.

Additionally, the study of its effect in combination with Doxorubicin suggests the novel

role of Glibenclimiade as an adjuvant in breast cancer treatment [190].

Fluorometholone and Clobetasol are in the family of glucocorticoids (GCs). GCs have

shown some modest benefits in treatment of breast cancer. However, their underlying

mechanism in breast cancer is not well-understood [127, 132, 155]. GCs are also used

as an adjuvant during chemotherapy or radiotherapy to reduce the side effects in cancer

treatment [290].

Etoposide is approved by FDA for the treatment of refractory testicular tumors, and

usually used in combination with other chemotherapeutic agents. It is also used as the

first line treatment in small cell lung cancer patients. The positive therapeutic effect of

Etoposide in patients with breast cancer is experimentally validated by clinical studies [18,

306] (ClinicalTrials.gov identifiers: NCT01492556, NCT00026949, and NCT01589159).

The histone deacetylase (HDAC) inhibitor Trichostatin A (TSA) is another drug we

suggest for treatment of breast cancer. It is used as an antifungal antibiotic that is found

to be useful both as the single agent and in combination with other agents in cancer treat-

ment [119, 120, 134, 147, 182, 223, 257]. Current studies confirm the potent antitumor

activity of TSA against breast cancer [7, 221, 272, 293, 298].

Colchicine is found in crocuses and primarily indicated to treat gout. It has been also

used for treatment of familial mediterranean fever. A 12-year study in male patients with

gout shows that patients who used Colchicine had a significantly lower risk of cancers

than patients who never used Colchicine [145]. Another study in mice models shows



51

that Colchicine can induce immunogenic cell death in tumor cells, suggesting the future

clinical evaluation for Colchicine as a cancer vaccine [284]. Colchicine is reported to have

an anticancer effect on human gastric cancer cell lines [156]. In particular, a recent study

indicates that it can inhibit proliferation of the breast cancer MCF-7 cells and induce cell

apoptosis, where the intensity of the effect depends on the time and dosage [255].

Tretinoin, all-trans-retinoic acid (ATRA), is the FDA-approved drug for the treatment

of acne, photodamaged skin, and keratinization disorders. It is also used to treat acute

promyelocytic leukemia (APL). The usefulness of ATRA in treatment of breast cancer has

been independently validated in study by Bhat-Nakshatri et al. [27]. Moreover, anti-

proliferative, cyto-differentiating and apoptotic effects of ATRA are demonstrated in [33,

82, 256], suggesting the effectiveness of ATRA in treatment of breast cancer tumors with

high retinoic acid receptor alpha (RARα) / retinoic acid receptor gamma (RARγ) ratios.

Estrogen receptor-positive and Her2/neu-positive breast cancers are two subtypes of breast

cancer that can be optimal targets for ATRA [157, 199].

Table 17 represents the target genes and activity of these drugs, obtained from KEGG

and Drugbank [287].

Table 17: The FDA-approved drugs for breast cancer.

Drug Target genes Activity
Fulvestrant ESR (1,2) Estrogen receptor antagonist
Methotrexate DHFR Antimetabolite
Paclitaxel BCL2, TUBB1, NR1I2, MAP (2,4), MAPT Tubulin depolymerization inhibitor

Tables 19–24 show the results obtained on 6 breast cancer datasets using: i) the pro-

posed approach, ii) the drug-disease approach, and iii) the anti-correlation approach. The

FDA-approved drugs for breast cancer are highlighted in green. Interestingly, all two in-
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stances of Fulvestrant that are all exposures of the same cell line (MCF7) (with the same

dosage) are highly ranked by our approach in all datasets. MCF7 cell line is an ideal

model for hormone therapy that was established in 1973 at the Michigan Cancer Founda-

tion [253].

We selected the top 5% drugs from the drugs ranked lists obtained by applying the

proposed approach on 6 breast cancer datasets. These drugs are ranked according to the

scores computed by the systematic method from the highest to the lowest. Table 18 shows

the rank-ordered list of such drugs according to their score.

Table 18: The top 5% drugs obtained from the result of our repurposing approach. These
drugs are ranked based on the scores generated by the systematic method. The * denotes
the drugs that are currently FDA-approved but for other indications. Fulvestrant, Pacli-
taxel, and Methotrexate highlighted with green, are FDA-approved for the treatment of
breast cancer. The sum of the scores assigned to these drugs is 0. Drugs with the same
scores are sorted based on their average ranks in drugs ranked lists. In this analysis, the
scores computed by our systematic method can be further normalized based on dividing
each score by the total number of FDA-approved drug instances for the disease of interest.
Therefore, the scores calculated for each drug across different diseases will be in the same
range (-1,1).

Drug Score
Fulvestrant 1.33
Paclitaxel 0
Captopril * -0.33
Methotrexate -1.33
Glibenclamide * -2
Fluorometholone * -2.33
Clobetasol -2.67
Trichostatin A -2.83
Etoposide * -3.33
Colchicine * -3.67
Tretinoin * -3.67
Alvespimycin -3.67
Resveratrol -3.67
Methylergometrine -4
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Table 19: A comparison between the results of three approaches: proposed, drug-disease,
anti-correlation using GSE65194-Her2 dataset (the top 10 drugs). The p-values for
Wilcoxon rank sum test comparing the results of the proposed approach with drug-disease
and anti-correlation approaches are 0.01 and 0.02, respectively. Drugs highlighted with
green are FDA-approved for the treatment of breast cancer. The * denotes the drugs that
are currently FDA-approved but for other indications. Such drugs can be used off-label.

GSE65194-Her2
Proposed Drug-disease Anti-correlation
captopril_1988 * glibenclamide_1546 glibenclamide_1546
paclitaxel_6720 danazol_2038 * cimetidine_1884 *
fulvestrant_1630 cimetidine_1884 * danazol_2038 *
fulvestrant_985 domperidone_2655 ajmaline_1749 *
etoposide_3241 * trichostatin A_5017 domperidone_2655
captopril_4585 * ipratropium bro-

mide_1769
ipratropium bro-
mide_1769

ipratropium bro-
mide_1769

etoposide_3241 * acepromazine_1777

metoclopramide_2353 * ajmaline_1749 * nilutamide_5362
domperidone_2655 methotrexate_5000 genistein_5232
methotrexate_5000 resveratrol_841 * captopril_1988 *

Table 20: A comparison between the results of three approaches: proposed, drug-disease,
anti-correlation using GSE65194-LuminalA dataset (the top 10 drugs).The p-values for
Wilcoxon rank sum test comparing the results of the proposed approach with drug-disease
and anti-correlation approaches are 0.03 and 0.04, respectively. Drugs highlighted with
green are FDA-approved for the treatment of breast cancer. The * denotes the drugs that
are currently FDA-approved but for other indications. The proposed approach was the only
one who was able to rank the FDA-approved drugs in the top 10.

GSE65194-LuminalA
Proposed Drug-disease Anti-correlation
fulvestrant_985 glibenclamide_1546 * domperidone_2655
fulvestrant_1630 domperidone_2655 glibenclamide_1546 *
captopril_1988 * cimetidine_1884 * cimetidine_1884 *
fluorometholone_6247
*

danazol_2038 * ipratropium bro-
mide_1769

glibenclamide_1546 * ipratropium bro-
mide_1769

danazol_2038 *

captopril_4585 * trichostatin A_5017 nilutamide_5362
paclitaxel_6720 nilutamide_5362 * ajmaline_1749 *
vorinostat_6939 * ethosuximide_1433 * genistein_5232
cimetidine_1884 * ajmaline_1749 * acepromazine_1777
trichostatin A_5017 genistein_5232 ethosuximide_1433 *
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Table 21: A comparison between the results of three approaches: proposed, drug-disease,
anti-correlation using GSE65194-LuminalB dataset (the top 10 drugs). The p-values for
Wilcoxon rank sum test comparing the results of the proposed approach with drug-disease
and anti-correlation approaches are 0.02 and 0.01, respectively. Drugs highlighted with
green are FDA-approved for the treatment of breast cancer. The * denotes the drugs that
are currently FDA-approved but for other indications.

GSE65194-LuminalB
Proposed Drug-disease Anti-correlation
fulvestrant_985 glibenclamide_1546 * glibenclamide_1546 *
fulvestrant_1630 cimetidine_1884 * cimetidine_1884 *
paclitaxel_6720 danazol_2038 * danazol_2038 *
captopril_1988 * ajmaline_1749 * ajmaline_1749 *
trichostatin A_5017 trichostatin A_5017 domperidone_2655
phenelzine_4360 * domperidone_2655 ipratropium bro-

mide_1769
fluorometholone_6247
*

etoposide_3241 * fluorometholone_6247
*

valproic acid_2700 * ipratropium bro-
mide_1769

sirolimus_1080 *

etoposide_3241 * sirolimus_1080 * acepromazine_1777
glibenclamide_1546 * methotrexate_5000 nilutamide_5362

Table 22: A comparison between the results of three approaches: proposed, drug-disease,
anti-correlation using GSE65194-Triple Negative dataset (the top 10 drugs). The p-values
for Wilcoxon rank sum test comparing the results of the proposed approach with drug-
disease and anti-correlation approaches are 0.03 and 0.007, respectively. Drugs high-
lighted with green are FDA-approved for the treatment of breast cancer. The * denotes the
drugs that are currently FDA-approved but for other indications.

GSE65194-Triple Negative
Proposed Drug-disease Anti-correlation
captopril_1988 * glibenclamide_1546 * glibenclamide_1546 *
paclitaxel_6720 danazol_2038 * danazol_2038 *
etoposide_3241 * cimetidine_1884 * ajmaline_1749 *
clobetasol_6835 ajmaline_1749 * cimetidine_1884 *
methotrexate_5000 methotrexate_5000 ipratropium bro-

mide_1769
fulvestrant_985 resveratrol_841 * domperidone_2655
glibenclamide_1546 * ipratropium bro-

mide_1769
acepromazine_1777

fulvestrant_1630 trichostatin A_5017 etoposide_3241 *
captopril_4585 * acepromazine_1777 nilutamide_5362
domperidone_2655 wortmannin_1023 * methotrexate_5000
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Table 23: A comparison between the results of three approaches: proposed, drug-disease,
anti-correlation using GSE28645 dataset (the top 10 drugs). The p-values for Wilcoxon
rank sum test comparing the results of the proposed approach with drug-disease and anti-
correlation approaches are 0.05 and 0.07, respectively. Drugs highlighted with green are
FDA-approved for the treatment of breast cancer. The * denotes the drugs that are cur-
rently FDA-approved but for other indications.

GSE28645
Proposed Drug-disease Anti-correlation
fulvestrant_985 paclitaxel_6720 phenelzine_4360 *
fulvestrant_1630 captopril_1988 * valproic acid_1181 *
methylergometrine_1607 phenelzine_4360 * paclitaxel_6720
alvespimycin_993 fluphenazine_6954 * rosiglitazone_4457 *
colchicine_1598 * clomipramine_4487 * captopril_1988 *
captopril_1988 * rosiglitazone_4457 * troglitazone_4456 *
vorinostat_6939 * genistein_5232 quercetin_2499
captopril_4585 * astemizole_6807 * hyoscyamine_1424 *
sirolimus_1080 * chlorpromazine_5074 * clomipramine_4487 *
trichostatin A_5017 cimetidine_1884 * genistein_1176

Table 24: A comparison between the results of three approaches: proposed, drug-disease,
anti-correlation using GSE1299 dataset (the top 10 drugs). The p-values for Wilcoxon
rank sum test comparing the results of the proposed approach with drug-disease and anti-
correlation approaches are 0.007 and 0.02, respectively. Drugs highlighted with green
are FDA-approved for the treatment of breast cancer. The * denotes the drugs that are
currently FDA-approved but for other indications.

GSE1299
Proposed Drug-disease Anti-correlation
methotrexate_5419 etoposide_3241 * etoposide_3241 *
resveratrol_841 * ciclopirox_3317 * valproic acid_1181 *
methotrexate_5000 resveratrol_841 * rifabutin_4349 *
fulvestrant_985 valproic acid_1181 * methotrexate_5419
tretinoin_6170 * rifabutin_4349 * resveratrol_841 *
phenelzine_4360 * ivermectin_2213 * rifabutin_3873 *
fulvestrant_1630 oxyphenbutazone_6844 ciclopirox_3317 *
tretinoin_1548 * methotrexate_5419 prochlorperazine_5212

*
troglitazone_4456 * rifabutin_3873 * vorinostat_6939 *
rosiglitazone_4457 * wortmannin_1023 * phenelzine_4360 *
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2.5.5 The relationship between pathway size and prediction accuracy

The prediction accuracy of the proposed approach does not depend on size of the KEGG

pathways, nor on the size of the drug-disease network (DDN) constructed for each drug.

In other words, a drug with a larger drug-disease network is not more likely to be ranked

higher just because of the size of its network.

In order to prove this, we calculated the Pearson correlation coefficient between the

drug’s average ranks (obtained from applying our approach on disease datasets) and their

networks size (the number of nodes) for each disease (Figure 10 and 11). If the ranking of

a drug depended on the size of its drug-disease network (e.g. the top ranked drug would

have the largest network, the second drug would have the second largest network, etc.),

then there would be a very strong correlation between the ranks and the network sizes.

In fact, the computed Pearson correlation coefficients between the ranks and the network

sizes were: 0.004 for IPF, 0.25 for NSCLC, -0.10 for breast cancer, and -0.14 for prostate

cancer. Both the low absolute values of these correlation coefficients as well as the fact

that two of them are positive and while the other two are negative show no indication of

any dependency between the pathway sizes and the predictions.

2.6 Summary

We presented a systems biology approach to discover new uses of existing FDA-approved

drugs. We take advantage of known knowledge of disease-related genes, drug targets in-

formation, and signaling pathways to discover drugs with the potential desired effects on

the given disease. We estimated a network of genes potentially perturbed by drugs and

integrate this network with drug and disease gene expression signatures to conduct a more
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Figure 10: The relationship between pathway size and prediction accuracy. In order to
investigate the relationship between pathway size and prediction accuracy, we calculated
the Pearson correlation coefficient between the drug’s average ranks and their networks
size for each disease.

powerful analysis at system level. To evaluate the proposed approach for drug repurpos-

ing, four different diseases (IPF, NSCLC, prostate cancer, and breast cancer) were analyzed

using 3 approaches: proposed, drug-disease, and anti-correlation. For each disease, there
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Figure 11: The scatter plots of the drug relative average rank vs. network size for four
diseases: IPF, NSCLC, breast cancer, and prostate cancer. The scatter plots of the drug
relative average rank vs. network size for four diseases: IPF, NSCLC, breast cancer, and
prostate cancer. The Pearson correlation coefficients between the ranks and the network
sizes were: 0.004 for IPF, 0.25 for NSCLC, -0.10 for breast cancer, and -0.14 for prostate
cancer. The low correlations show there is no indication of a dependency between the
pathway size and the predicted ranks.

is at least one FDA-approved drug that is used to treat that disease in our input drug data.

The already FDA-approved drugs for a given disease are considered as the gold standard

because such drugs successfully passed all the preclinical and clinical trials for that disease

and were demonstrated to be efficacious in each disease. The approach was validated by

its ability to identify drugs that are already approved by FDA for these conditions. We

provided evidences that support the usefulness of the proposed candidates in treatment of

IPF, NSCLC, prostate cancer, and breast cancer. In all diseases, the proposed approach was

able to rank highly the approved drugs for the given conditions. This is in contrast with
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the Sirota et al. (drug-disease) and anti-correlation approaches which were not able to

retrieve any of the FDA approved drugs at the top of their respective rankings. For many

of the proposed repurposing candidates, there is significant preliminary evidence, as well

as a number of clinical trials in progress.
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CHAPTER 3 CELL TYPE IDENTIFICATION

3.1 Problem statement

Recent advances in single-cell RNA-Seq (scRNASeq) techniques have provided tran-

scriptomes of the large numbers of individual cells (single-cell gene expression data) [61,

79, 99, 126, 168, 186, 194, 266, 280]. In particular, analyzing the diversity and evolution

of single cancer cells can enable the advances in early cancer diagnosis, and ultimately

choosing the best strategy for cancer treatment [149, 231, 244]. Furthermore, one im-

portant analysis on scRNASeq is the identification of cell types that can be achieved by

performing an unsupervised clustering method on transcriptome data [12, 13, 75, 177,

265, 291, 304, 308].

3.2 Overview of existing approaches

Clustering algorithms such as k-means and density-based spatial clustering of appli-

cations with noise (DBSCAN) [78] can identify groups of cells given the single-cell gene

expression data. However, clusters obtained by these algorithms might not be robust. Such

algorithms require non-intuitive parameters [12]. For instance, given the number of clus-

ters, k-means iteratively assigns data points (cells) to the nearest centroids (cluster center),

and recomputes the centroids based on the predefined number of clusters. This algorithm

starts with the randomly chosen centroids. Thus, the result of the algorithm depends on

the number of clusters (in DBSCAN, the maximum distance between the two data points

in the same neighborhood should be determined) and the number of runs.

Another challenge comes from the high dimensionality of data, known as “curse of

dimensionality”. Identifying the accurate clusters of data points based on the measured

distances between the pairs of data points may fail since those data points become more
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similar when they are represented in a higher dimensional space [12, 22]. One approach

to deal with the curse of high dimensionality is projecting data into a lower dimensional

space, known as dimensionally reduction. In this approach, the data is represented in

a lower dimensional space while the characteristic(s) (e.g similarities between the data

points) of the original data is preserved. Several methods have used different techniques

based on this concept (e.g. principal component analysis) to determine the cell types [19,

37, 162, 208, 240]. Another approach to deal with this challenge is feature selection, i.e.

eliminating some of the features (genes) that are not informative [96]. In the following,

we provide a brief overview of the related methods that identify the cell types based on

the combination of approaches described above.

Methods SC3 [139] and Seurat [162] use a combination of feature selection, dimen-

sionality reduction, and clustering algorithms to identify the cell types. Authors of SC3

use a consensus clustering framework that combines clustering solutions obtained by the

spectral transformations and k-means clustering based on the complete-linkage hierarchi-

cal clustering. They first apply a gene filtering approach on the single-cell gene expres-

sion data to remove rare and ubiquitous genes/transcripts. Next, they compute the dis-

tance matrices (distance between the cells) using the Euclidean, Pearson, and Spearman

metrics. They transform the distance matrices using either principal component analysis

(PCA) [121], or by computing the eigenvectors of the associated graph Laplacian. Next,

they perform a k-means clustering on the first d eigenvectors of the transformed distance

matrices. Using the different k-means clustering results, they construct a consensus matrix

that represents how often each pair of cells is clustered together. This consensus matrix is

used as an input to a hierarchical clustering using a complete linkage and agglomeration
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strategies [70]. The clusters are inferred at the k-th level of hierarchy, where k is com-

puted based on the Random Matrix Theory [201, 264]. The accuracy of SC3 is sensitive

to the number of eigenvectors (d), chosen for the spectral transformation. The authors

report that SC3 performs well when d is between 4% and 7% of the number of cells. The

main advantage of SC3 is its high accuracy in identification of cell types. However, it is not

scalable [138].

Seurat [162] is a graph-based clustering method that projects the single cell expres-

sion data into the two-dimensional space using the t-distributed stochastic neighbor em-

bedding (t-SNE) technique [161]. Then, it performs the DBSCAN method [78] on the

dimensionality-reduced single cell data. Seurat may fail to find the cell types in small

datasets (low cell numbers) [139]. It is reported that this may be due to possible difficul-

ties in estimating the densities when the number of data points is low.

RaceID [93] determines the cell types by performing a k-means clustering algorithm.

In this method, the gap statistics is used to choose the number of clusters. RaceID does

not perform well when the data does not contain rare cell populations but it appears to be

the preferred methods when the aim is identification of rare types [12, 138, 151, 154].

SNN-Cliq [291] uses the shared nearest neighbor (SNN) concept, which considers the

effect of the surrounding neighbor data points, to handle the high-dimensional data. The

authors of SNN-Cliq compute the similarity between the pairs of data points (the similar-

ity matrix) based on the Euclidean distance, referred as the primary similarity measure.

Using the similarity matrix, they list the k-nearest neighbors (KNN) to each data point.

They propose a secondary similarity measure that computes the similarity between two

data points based on their shared neighborhoods. Consequently, an SNN graph is con-
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structed based on the connectivity between the data points. Then, a graph-based cluster-

ing method is applied on the SNN graph in which nodes and weighted edges represent

the data points and similarities between the data points, respectively. The main disadvan-

tage of the graph-based methods such as SNN-Cliq is that scRNASeq data is not inherently

graph-structured [12]. Therefore, the accuracy of these methods depends on the graph

representation of scRNASeq data.

SINCERA [95] performs a hierarchical clustering on the similarity matrix that is com-

puted using the centered Pearson’s correlation. The average linkage approach is used as the

default choice for the linkage. Consensus clustering [181, 286], tight clustering [268] and

ward linkage [283] are provided as alternative clustering approaches. Users can choose a

distance threshold or the number of clusters during the visual inspection when the hierar-

chical clustering is used for the cell cluster identification. SINCERA tends to identify many

clusters which likely represent the same cell type [12].

One way to identify robust clusters of cells is to resample the cells/genes and compare

the original clusters with the ones that are obtained by resampling [124]. In this thesis,

in order to explore the strength of a pattern (cluster of cells) in the data, we analyze the

sensitivity of that pattern against small changes in the data. The data is resampled by

replacing a certain number of data points with the noise points from a noise distribution.

Our hypothesis is that if there is a strong pattern in data, it will remain despite small per-

turbations [73]. Here, we develop a stable subtyping (clustering) method that employs

the t-distributed stochastic neighbor embedding (t-SNE) [161] and k-means clustering to

identify the cell types. We add noise and apply a bootstrap method [100, 101] to iden-

tify the stable clusters of cells. We use the Adjusted Rand Index (ARI) [113], adjusted
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mutual information (AMI) [274, 275], and V-measure [226] to evaluate the performance

of the clustering result for datasets in which the true cell types are known. We compare

the results of our method [206] with five other methods: RaceID [93], SC3 [139], SEU-

RAT [162], SINCERA [95], and SNN-Cliq [291] using 8 real datasets with known cell types

and 5 simulated datasets. The results of the different methods show that the proposed

method performs better than the five methods across different datasets.

3.3 Data source

The goal of the proposed method is to identify the cell types present in a mixture of

single cells. The input of the method is the single cell gene expression matrix (Mgene×cell)

in which rows represent the genes and columns represent the cells. In the following we

provide more detail about the input data and different steps of the proposed framework.

The overall approach is shown in Figure 12.

The eight publicly available scRNA-seq datasets as well as the five simulation datasets

were used in our analysis.

The list of eight single cell datasets we used in our analysis is summarized in Ta-

ble 25. We obtained the processed data from Hemberg lab’s website (https://hemberg-

lab.github.io/scRNA.seq.datasets). Hemberg et al. [140] use the SingleCellExperiment

Bioconductor S4 class [158] to store the data, and the scater package [172] for the quality

control and plotting purposes. The normalized data is deposited as a SingleCellExperiment

object (.RData file) and the cell type information is accessed in the cell_type1 column of

the "colData" slot of this object. The gene expression values of the cells are organized as a

matrix in which rows are cells and columns are the genes. In our analysis, genes (features)

that are not expressed in any cells are removed. We did not filter any cell in this analysis.
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We simulated four scRNA-seq datasets with varying degree of cluster separability using

the splatter R package [307].The dataset sim3, consists of 3 subpopulations (1000 cells)

with relative abundances 0.35, 0.30, and 0.35. The dataset sim4 includes 4 subpopula-

tions (3000 cells) with relative abundances 0.15, 0.3, 0.2, and 0.35. The dataset sim6

includes 6 subpopulations (1000 cells) with relative abundances 0.3, 0.1, 0.1, 0.2, 0.2,

and 0.1. Finally, the dataset sim8 consists of 8 subpopulations (2000 cells) with relative

abundances 0.05, 0.1,0.1, 0.2, 0.2, 0.1, 0.15, and 0.1. We also used SPARSim R pack-

age [21] to generate a simulation dataset with 8 subpopulations (564 cells) from the real

dataset Tung [269]. Among the eight real datasets, all but three (Klein [142], Patel [200],

Treutlein [267]) are considered as ’gold standard’ since the labels of the cells are known in

a definitive way. Patel [200] and Treutlein [267] are referred as ’silver standard’ by Kiselev

et al. [139] since their cell labels are determined based on the computational methods and

the authors’ knowledge of the underlying biology.

Table 25: Single cell datasets. All the datasets, except Klein, Patel, and Treutlein are
considered as “gold standard”. In the “gold standard” datasets, the cell types are clearly
known. Klein, Patel, and Treutlein are referred as “silver standard’ by [139] since the cell
types are determined based on the computational methods and the authors’ knowledge of
the underlying biology.

Dataset # cell type Organism #cell Source Reference
Biase 3 Mouse 49 Embryo development [28]
Deng 10 Mouse 268 Embryo development [65]
Goolam 5 Mouse 124 Embryo development [87]
Klein 4 Mouse 2717 Embryo Stem Cells [142]
Patel 5 Human 430 Tissues [200]
Pollen 11 Human 301 Tissues [210]
Treutlein 5 Mouse 80 Tissues [267]
Yan 8 Human 124 Embryo development [296]
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3.4 Proposed framework

One way to identify robust clusters of cells is to resample the cells/genes and compare

the original clusters with the ones that are obtained by resampling [124]. In the current

thesis, in order to explore the strength of a pattern (cluster of cells) in the data, we analyze

the sensitivity of that pattern against small changes in the data. The data is resampled by

replacing a certain number of data points with the noise points from a noise distribution.

Our hypothesis is that if there is a strong pattern in data, it will remain despite small

perturbations [73]. Here, we develop a stable subtyping (clustering) method that employs

the t-distributed stochastic neighbor embedding (tSNE) [161] and k-means clustering to

identify the cell types. We add noise and apply a bootstrap method [100, 101] to identify

the stable clusters of cells. We use the Adjusted Rand Index (ARI) [113] to evaluate the

performance of the clustering result for datasets in which the true cell types are known. We

compare the results of our method with five other methods: RaceID [93], SNN-Cliq [291],

SINCERA [95], SEURAT [162], and SC3 [139] using eight datasets with known cell types.

The ARIs computed on the results of the different methods show that the proposed method

performs better than the five methods across different datasets.

3.4.1 Gene filtering

As shown in Figure 12A, we remove the genes/transcripts that are not expressed in

any cell (expression value is zero in all cells). Such genes cannot provide useful informa-

tion that can differentiate between cell types [11]. The result of performing the filtering

method on the single cell gene expression matrix (Mgene×cell) is used as the input to the

second module of the proposed framework.



67

Figure 12: The overall workflow of the proposed method for the single cell identifica-
tion [206]. Given the single cell gene expression matrix, module (A) eliminates the genes
that are not expressed in any cell. Using the resulting matrix, module (B) computes the
Euclidean distance between the cells. The output of this module is a distance matrix in
which the rows and columns are the cells (Dcell×cell). Module (C) reduces the dimension-
ality of the distance matrix using the t-distributed stochastic neighbor embedding (t-SNE)
technique. In this module, an average silhouette method is employed to choose the opti-
mal number of clusters k. Finally in module (D), the lower-dimension distance matrix and
the optimal number of clusters k obtained from module (C) are used as the input data to
identify the most stable clustering of cells. Figure 13 shows the details of module D.
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3.4.2 Measuring the dissimilarity between the cells

The distance between the cells is calculated using the Euclidean metric (Figure 12B).

The output of this step is the distance (dissimilarity) matrix Dcell×cell. We reduce the di-

mension of D by performing the t-distributed stochastic neighbor embedding (t-SNE) [10,

161], the nonlinear dimensionality reduction/visualization technique (Figure 12C). We

will refer to the output as D′cell×l, where 2 ≤ l ≤ cell. In this study, the number of dimen-

sions is 2.

3.4.3 Identification of the optimal number of clusters

This section describes the third module of the proposed method (Figure 12C). In this

analysis, the t-SNE is repeatedly (n=50) applied on the distance matrix Dcell×cell to obtain

the dimensionality-reduced distance matrix D′cell×l. Each time, the optimal number of

clusters is calculated based on the average silhouette method using the dimensionality

reduced distance matrix D′. In order to find the optimal number of clusters k, the k-means

clustering is applied on the D′ matrix using a range value (default= 2:20), and the k that

maximizes the average silhouette measure is selected. Finally, the average of the selected

numbers k across different repeats (n = 50) (rounded to the nearest integer) is considered

as the final optimal number of clusters.

The silhouette evaluates the quality of that clustering based on how well its data points

are clustered. A silhouette measure is assigned to each data point representing how close

a data point is to its own cluster in comparison to other clusters. For each data point i, this
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measure is calculated as follows:

s(i) =
b(i)− a(i)

max{a(i), b(i)}

where a(i) is the average distance between the data point i and all other data points within

the same cluster. b(i) is the smallest average distance of i to all points in any other cluster

of which i is not a member. s(i) takes values from −1 to 1, where a high positive score

shows that the given data point is well clustered (close to other points in its own cluster

and far from points in the other clusters). Conversely, a high negative score shows that

data point is poorly clustered.

3.4.4 K-means clustering based on the resampling method

This section describes the detail of the last module of the proposed method. As shown

in Figure 13, using the dimensionality reduced distance matrix D′ and the chosen number

of clusters k from the previous step, we identify the most stable clustering by generating

different clustering solutions (clusteringi (i ∈ [1..n])) and measure the stability of each

clustering solution based on a resampling method. The stability measure assigned to each

particular clustering (denoted as clusteringi) represents how often the k clusters belong-

ing to that clustering are preserved when the input data (D′) is resampled several times.

The resampled datasets are generated from D′ by randomly replacing 5% of data points

(cells) with noise. These noisy datasets are then used as the input to k-means algorithm.

Hence, several clusterings (clusteringi,j, j ∈ [1..m]) are generated from the resampled data

(resampled versions of clusteringi).

In order to assess the stability of each cluster c in the clusteringi (original clustering),
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Figure 13: Identifying the most stable clustering. In this analysis, given the lower-
dimension distance matrix D′cell×l and the optimal number of clusters k, we calculate n
different clusterings (clustering1, ..., clusteringn) using the k-means clustering algorithm.
Then, the stability of each clustering is assessed based on a resampling approach (grey
box). A stability score is assigned to each clustering based on how often its clusters are
recovered when the input data is perturbed (resampled). A clustering with the maximum
stability score is selected as the final solution.
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Figure 14: The resampling framework to compute the stability measure for each clustering.
The input includes N data points X = {x1, ..., xN}, the number of clusters k , the number
of resamplings m , and the clustering C that is obtained by applying k-means on X. This
analysis generates m resampling data by randomly replacing 5% of data points with the
noise, and computes m resampled clusterings based on k-means clustering. Each cluster c
in C is compared with the most similar cluster in the resampling clustering, and the Jaccard
coefficient between the two clusters is computed, while the noise points are excluded. The
percentage of the times that Jaccard coefficients are larger than 0.75 is considered the
stability measure for cluster c. The average of stability measures for all clusters belonging
to clustering C is calculated and considered as the overall stability measure for clustering
C.
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the cluster c is compared to all the clusters in the clustering that is obtained from the

resample data (clusteringi,j) based on the Jaccard distance. The Jaccard coefficient [117],

a similarity measure between sets, is used to compute the similarity between two clusters as

follows:

J(A,B) =
|A ∩B|
|A ∪B|

, A,B ⊆ X

where the term A and B are two clusters, consisting of some data points in X = {x1, · · · , xN}.

If the Jaccard similarity between the cluster c (from the original clustering clusteringi)

and the most similar cluster in the resampled clustering is equal or greater than 0.75, that

cluster is considered stable (preserved). Thus, the stability of each cluster in clusteringi

is calculated as the percentage of the times that cluster is preserved (Jaccard coefficient

≥ 0.75) across the m different resamplings.

We then average the stability measures of the k clusters belonging to clusteringi, and

consider it as the overall stability measure of clusteringi. Among n different clustering

solutions (clusteringi (i ∈ [1..n])), we select the clustering solution with the maximum

stability measure as the final clustering solution.

Figure 14 shows the detail of the resampling method we performed to compute the

stability measure for each clustering. The clusters that are obtained by applying k-mean

on the resampled dataset are compared with the clusters from the original input data only

based on the non-noise points (the noise data points are excluded when two clusters are

compared based on the Jaccard similarity metric.
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3.4.5 Validation methods

We use 13 different datasets in which the cell types (labels) are known. To measure the

level of similarity between the reference labels and the inferred labels that are obtained

by each clustering method, we use three different metrics: adjusted rand index (ARI),

adjusted mutual information (AMI), and V-measure as explained in the following.

Adjusted Rand Index

Given the cell labels, the Adjusted Rand Index (ARI) [113] is used to assess the simi-

larity between the inferred clustering and the true clustering. ARI ranges from 0, for poor

matching (a random clustering), to 1 for a perfect agreement with the true clustering. For

a set of n data points, the contingency table is constructed based on the shared number

of data points between two clusters. Suppose X and Y represent two different clusterings

(representing the row and column of the contingency table, respectively) of n data points .

Xi and Yj denote a cluster in clusterings X and Y , and i and j refer to the row number and

the column number of the contingency table, respectively. The ARI is defined as follow:

ARI =

∑
ij
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where nij denotes the number of shared data points between clusters Xi and Yj, and

ai =
∑

k nik (the sum of the ith row), and bj =
∑

k nkj (the sum of the jth column of the

contingency table).

Adjusted Mutual Information

The adjusted mutual information (AMI) [274, 275] is a variation of mutual information

that corrects for random partitioning, similar to the way the ARI corrects the rand index.
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As explained in the previous section, given two different clusterings X = {X1, X2, ..., XR}

and Y = {Y1, Y2, ..., YC} of n data points with R and C clusters, respectively, the mutual

information of cluster overlap between X and Y can be summarized as a contingency table

MR×C = [nij], where i = 1...R, j = 1...C, and nij represents the number of common data

points between clusters Xi and Yj. Suppose a data point is picked at random from X,

the probability that the data point falls into cluster Xi is p(i) = |Xi|
n

. The entropy [245]

associated with the clustering X is calculated as follows:

H(X) =
R∑
i=1

P (i) logP (i) (3.2)

H(X) is non-negative and takes the value 0 only when there is no uncertainty determin-

ing a data point’s cluster membership (there is only one cluster). The mutual information

(MI) between two clusterings X and Y is calculated as follows:

MI(X, Y ) =
R∑
i=1

C∑
j=1

P (i, j) log
P (i, j)

P (i)P (j)
(3.3)

where P (i, j) denotes the probability that a data point belongs to both the cluster Xi in X

and the cluster Yj in Y :

P (i, j) =
|Xi ∩ Yj|

n
(3.4)

MI is a non-negative quantity upper bounded by the entropies H(X) and H(Y). It quan-

tifies the information shared by the two clusterings and therefore can be considered as a

clustering similarity measure. The adjusted measure for the mutual information is defined
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as follows:

AMI(X, Y ) =
MI(X, Y )− E{MI(X, Y )}

max{H(X), H(Y )} − E{MI(X, Y )}
(3.5)

where the expected mutual information between two random clusterings is:

E{MI(X, Y )} =
R∑
i=1

C∑
j=1

min(ai,bj)∑
nij=max(1,ai+bj−n)

nij

n
log(

n.nij

aibj
)

ai!bj!(n− ai)!(n− bj)!
n!nij!(ai − nij)!(bj − nij)!(n− ai − bj + nij)!

(3.6)

where the ai and bj are the partial sums of the contingency table: ai =
∑C

j=1 nij and

bj =
∑R

i=1 nij .

The adjusted mutual information (AMI) takes a value of 1 when the two clusterings

are identical and 0 when the MI between two partitions equals the value expected due to

chance alone.

V-measure

The V-measure [226] is the harmonic mean between two measures: homogeneity and

completeness. The homogeneity criteria is satisfied if a clustering assigns only those data

points that are members of a single class (true cluster) to a single cluster. Thus, the class

distribution within each cluster should be skewed to a single class (zero entropy) [226].

To determine how close a given clustering is to this ideal, the conditional entropy of

the class distribution given the identified clustering is computed as H(C | K), where

C = {C1, C2, ..., Cl} is a set of classes and K is a clustering K = {K1, K2, ..., Km}. In the

perfectly homogeneous case, this value is 0. However, this value is dependent on the size of

the dataset and the distribution of class sizes [226]. Thus, this conditional entropy is nor-
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malized by the maximum reduction in entropy the clustering information could provide,

H(C). Therefore, the homogeneity is defined as follows:

h =


1 if H(C,K) = 0

1-H(C|K)
H(C)

otherwise

(3.7)

The completeness is symmetrical to homogeneity [226]. In order to satisfy the com-

pleteness criteria, a clustering must assign all of those data points that are members of a

single class to a single cluster. To measure the completeness, the distribution of cluster as-

signments within each class is assessed [226]. In a perfectly complete clustering solution,

each of these distributions will be completely skewed to a single cluster.

Given the homogeneity h and completeness c, the V-measure is computed as the weighted

harmonic mean of homogeneity and completeness:

V-measure =
(1 + β) ∗ h ∗ c

(β ∗ h) + c
(3.8)

if β is greater than 1, completeness is weighted more strongly in the calculation [226].

If β is less than 1, homogeneity is weighted more strongly. Since the computations of

homogeneity, completeness and V-measure are completely independent of the number of

classes, the number of clusters, the size of the dataset and the clustering algorithm, these

measures can be employed for evaluating any clustering solution.

3.5 Results and validation

Tables 26–28 shows the comparison between the proposed method and five other meth-

ods: RaceID [93], SC3 [139], SEURAT [162], SINCERA [95], and SNN-Cliq [291] using
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the three metrics: ARI, AMI, and V-measures, respectively.

We used the R package fpc [102] to compute the k-means clustering based on the

resampling method. We generated 20 different clusterings, and for each clustering we

computed 1,000 clusterings based on the resampled datasets to find the most meaningful

clustering. We used the log-transformation (M ′ = log2(M + 1)) for all methods except

SINCERA. For SINCERA we followed the authors instructions [95] and used the origi-

nal z-score normalization instead of the log-transformation. In order to generate SC3

results, we used the R package SC3 (http://bioconductor.org/packages/SC3, v.1.8.0). We

applied the same gene filtering approach that authors proposed in their study (parameter

gene_filter=TRUE).

For SEURAT we used the Seurat R package (v.2.3.4) [35]. We performed the t-SNE

using the Rtsne R package with the default parameters, and we used DBSCAN algo-

rithm for clustering. We ran SNN-cliq with the default parameters that are provided

by the authors [291]. For RaceID, we used the R code provided by the authors [93]

(https://github.com/dgrun/RaceID).

As shown in Figure 15, the proposed method performs better than the five methods

across 13 different datasets. In this figure, the three boxplots shows the the performance

of each method on these 13 datasets based on the adjusted rand index (ARI), adjusted

mutual information (AMI), and V-measure. We performed the proposed method, SC3 and

RaceID on each dataset for 50, 5, and 50 times, respectively. In these three methods, we

calculated the average of ARIs, AMIs, and V-measures over different runs. Since SC3 is

reported as a stable method by the authors [139], we run it only 5 times. Indeed, we have

observed the results with a very small standard deviation in all 5 runs for all 13 datasets
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Table 26: A comparison between the results of six methods: proposed, RaceID, SC3, Seu-
rat, SINCERA, and SNN-Cliq. The adjusted rand index (ARI) [113] is used to evaluate
the performance of each clustering method. The proposed method, RaceID, and SC3 are
performed 50, 50, and 5 times on each dataset, respectively. SC3 was performed only 5
times because it is very stable (standard deviation of zero for all datasets). The average
ARIs across different runs are computed for the proposed method, SC3, and RaceID. Since
SNN-Cliq, SINCERA and SEURAT are deterministic, they are performed only once. The
proposed method was the best for 8 out of the 13 datasets. The proposed method also
yielded the best average ARI, as shown in Figure 15.

Dataset #cell types Proposed RaceID SC3
K (mean±sd) ARI (mean) K (mean±sd) ARI (mean) K (mean±sd) ARI (mean±sd)

Biase 3 3±0 0.94±0.01 3.14±0.6 0.84±0.25 3±0 0.94±0
Deng 10 10±0 0.58±0.02 1 0±0 9±0 0.65±0
Goolam 5 3±0 0.8±0.09 1 0±0 6±0 0.59±0
Klein 4 6±0 0.69±0.01 2.98±0.14 0.48±0.001 19±0 0.44±0.01
Patel 5 5±0 0.66±0.09 7.44±1.88 0.66±0.08 17±0 0.45±0.01
Pollen 11 8±0 0.86±0.02 8.36±2.27 0.55±0.11 10±0 0.93±0
Treutlein 5 3±0 0.72±0.03 1±0 0±0 3±0 0.66±0
Yan 8 5±0 0.81±0.02 5.5±2.34 0.55±0.17 4±0 0.76±0
sim3 3 3±0 1±0±0 1±0 0±0 3±0 1±0
sim4 4 4±0 0.99±0.005 1±0 0±0 4±0 0.99±0.0005
sim6 6 7.9±0.3 0.56±0.03 1±0 0±0 3±0 0.53±0
sim8 8 9.34±0.47 0.77±0.03 1±0 0±0 4±0 0.53±0.04
sim±Tung 8 8±0 0.42±0 1±0 0±0 8±0 0±0

Dataset #cell types SINCERA SNN-Cliq Seurat
K ARI K ARI K ARI

Biase 3 6 0.71 6 0.66 4 0.78
Deng 10 3 0.42 17 0.4 6 0.45
Goolam 5 13 0.19 17 0.2 3 0.05
Klein 4 43 0.45 265 0.11 3 0
Patel 5 10 0.78 26 0.14 5 0.63
Pollen 11 10 0.9 22 0.71 8 0.85
Treutlein 5 7 0.35 5 0.62 1 0
Yan 8 8 0.59 13 0.79 3 0.56
sim3 3 120 0.12 147 0.03 3 1
sim4 4 464 0.08 437 0.01 3 0.57
sim6 6 68 0.25 143 0.06 6 1
sim8 8 68 0.35 290 0.05 8 1
sim_Tung 8 17 0.001 77 0.001 8 0

confirming the claims of the authors. The other clustering methods SEURAT, SINCERA,

and SNN-Cliq were run only once since they are deterministic.

3.6 Discussion

The results shown in Tables 26–28 merit some discussion. The Goolam dataset, for

instance, includes 5 true cell types. On this dataset, the proposed algorithm identifies 3

clusters, while SC3 identifies 6, RaceID 1, Seurat 2, SINCERA 13 and SNN-Cliq 17 types.

Even though the number of clusters closest to the number of true types is 6, as yielded by
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Table 27: A comparison between the results of six methods: proposed, RaceID, SC3, Seu-
rat, SINCERA, and SNN-Cliq.The adjusted mutual information (AMI) [274, 275], is used
to evaluate the performance of each clustering method. The proposed method, RaceID,
and SC3 are performed 50, 50, and 5 times on each dataset, respectively. The average
AMIs across different runs are computed for the proposed method, SC3, and RaceID. Since
SNN-Cliq, SINCERA and SEURAT are deterministic, they are performed only once.

Dataset #cell types Proposed RaceID SC3
K (mean±sd) AMI (mean±sd) K (mean±sd) K (mean±sd) K (mean±sd) AMI (mean±sd)

Biase 3 3±0 0.92±0.02 3.14±0.6 0.85±0.23 3±0 0.92±0
Deng 10 10±0 0.73±0.01 1±0 0±0 9±0 0.81±0
Goolam 5 3±0 0.73±0.04 1±0 0±0 6±0 0.69±0
Klein 4 6±0 0.67±0.06 2.98±0.14 0.51±0.05 19±0 0.53±0
Patel 5 5±0 0.86±0.01 7.44±1.88 0.66±0.1 17±0 0.93±0
Pollen 11 8±0 0.72±0.01 8.36±2.27 0.68±0 10±0 0.53±0.01
Treutlein 5 3±0 0.54±0.03 1±0 0±0 3±0 0.62±0
Yan 8 5±0 0.78±0.01 5.5±2.34 0.61±0.17 4±0 0.72±0
sim3 3 3±0 1±0 1±0 0±0 3±0 1±0
sim4 4 4±0 0.99±0.007 1±0 0±0 4±0 0.99±0.001
sim6 6 7.9±0.3 0.64±0.02 1±0 0±0 3±0 0.51±0
sim8 8 9.34±0.47 0.85±0.01 1±0 0±0 4±0 0.56±0
sim_Tung 8 8±0 0.51±0.008 1±0 0±0 8±0 0.006±0

Dataset #cell types SINCERA SNN-Cliq Seurat
K AMI K AMI K AMI

Biase 3 6 0.64 6 0.62 4 0.74
Deng 10 3 0.48 17 0.6 6 0.59
Goolam 5 13 0.4 17 0.42 3 0.11
Klein 4 43 0.52 265 0.21 3 0.06
Patel 5 10 0.73 26 0.31 5 0.68
Pollen 11 10 0.91 22 0.74 8 0.87
Treutlein 5 7 0.46 5 0.51 1 0
Yan 8 8 0.72 13 0.76 3 0.58
sim3 3 120 0.23 147 0.21 3 1
sim4 4 464 0.21 437 0.2 3 0.66
sim6 6 68 0.42 143 0.3 6 1
sim8 8 68 0.51 290 0.31 8 1
sim_Tung 8 17 0.04 77 0.13 8 0

SC3, the membership of various cells in these clusters is not correct since the ARI index

associated to these 6 clusters is only 0.59 compared to the ARI index of 0.8 associated to

the 3 clusters constructed by the proposed method.

Conversely, for the Patel dataset that includes 5 cell types, the proposed method was

able to correctly estimate the number of clusters (k=5). However, the distribution of the

individual cells across these five clusters is not perfect, as illustrated by the lower ARI value

of 0.66, compared to the 0.78 ARI associated with the SINCERA results.

As another observation, the Pollen dataset includes 11 cell types. Using this dataset, the

number of clusters (k=10) determined by SINCERA is close to the correct number of cell
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Table 28: A comparison between the results of six methods: proposed, RaceID, SC3, Seu-
rat, SINCERA, and SNN-Cliq. The V-measure [226] is used to evaluate the performance of
each clustering method. The proposed method, RaceID, and SC3 are performed 50, 50,
and 5 times on each dataset, respectively. The average V-measures across different runs
are computed for the proposed method, SC3, and RaceID. Since SNN-Cliq, SINCERA and
SEURAT are deterministic, they are performed only once.

Dataset #cell types Proposed RaceID SC3
K (mean±sd) V-measure (mean) K (mean±sd) V-measure (mean) K (mean±sd) V-measure (mean)

Biase 3 3±0 0.93±0.03 3.14±0.6 0.87±0.2 3 0.93±0
Deng 10 10±0 0.72±0.01 1±0 0±0 9 0.74±0.001
Goolam 5 3±0 0.82±0.04 1±0 0±0 6 0.98±0
Klein 4 6±0 0.38±0.01 2.98±0.14 0.4±0.06 19 0.31±0.002
Patel 5 5±0 0.56±0.02 7.44±1.88 0.54±0.04 17 0.46±0.002
Pollen 11 8±0 0.95±0.01 8.36±2.27 0.76±0.03 10 0.93±0
Treutlein 5 3±0 0.96±0 1±0 0±0 3 0.89±0
Yan 8 5±0 0.83±0.02 5.5±2.34 0.68±0.07 4 0.81±0
sim3 3 3±0 1±0 1±0 0±0 3 1±0
sim4 4 4±0 0.99±0.0002 1±0 0±0 4 0.99±0.00003
sim6 6 7.9±0.3 0.98±0 1±0 0±0 3 0.97±0.0004
sim8 8 9.34±0.47 0.99±0 1±0 0±0 4 0.98±0.004
sim_Tung 8 8±0 0.96±0.03 1±0 0±0 8 0.66±0

Dataset #cell types SINCERA SNN-Cliq Seurat
K V-measure K V-measure K V-measure

Biase 3 6 0.72 6 0.7 4 0.73
Deng 10 3 0.93 17 0.64 6 0.93
Goolam 5 13 0.71 17 0.65 3 0.66
Klein 4 43 0.36 265 0.29 3 0.46
Patel 5 10 0.55 26 0.44 5 0.62
Pollen 11 10 0.94 22 0.72 8 0.93
Treutlein 5 7 0.93 5 0.92 1 0
Yan 8 8 0.65 13 0.78 3 0.73
sim3 3 120 0.95 147 0.95 3 1
sim4 4 464 0.97 437 0.97 3 0.96
sim6 6 68 0.97 143 0.97 6 1
sim8 8 68 0.98 290 0.98 8 1
sim_Tung 8 17 0.82 77 0.8 8 0.66

types. However, SC3 achieved better clustering (ARI=0.93) in contrast to the five other

methods. SC3 identified 17 different clusters using this dataset.

Two conclusions may be drawn from these observations. First, results should not be

assessed based on the agreement between the number of clusters found and the number of

known cell types – the assignment of each cell to a given type is more important. Second,

larger number of clusters reported will be associated with larger values of ARI. Therefore,

results that include very large number of clusters should be regarded with caution.

RaceID and Seurat both were not able to find a meaningful clustering for the Treutlein

dataset. The identified number of clusters by both RaceID and Seurat is 1 (k=1), while

this dataset includes 5 different cell types. As a result, the clusterings obtained by these
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Figure 15: The performance comparison using 13 single cell datasets based on three met-
rics: the adjusted rand index (ARI), adjusted mutual information (AMI), and V-measure.
The proposed method and RaceID were applied 50 times on each dataset. SC3 was used
only 5 times on each dataset because it is very stable. The average ARIs, AMIs, and V-
measures across different runs are computed for the proposed method, RaceID, and SC3.
Since SNN-Cliq, SINCERA, and SEURAT are deterministic, they are run only once for each
dataset.

two methods are poorly matched to the reference clustering. In Deng dataset, the best ARI

of 0.65 is obtained by SC3 but this value is not very high. The poor results obtained by all

6 methods using this dataset might be due to noisy data.

We also assessed the reproducibility/stability of the stochastic methods: proposed [206],

RaceID, and SC3 by running each method several times. Although SC3’s consensus pipeline

provides a very stable solution (very low standard deviation for the three metrics and k

across all datasets), it is computationally more costly than other methods. In summary,

one key advantage of our proposed method is that we produce consistent clustering across
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Figure 16: The run time of the different methods using 13 single cell datasets.

different datasets.

The run time for each method using 13 different datasets is shown in Figure 16. It

is notable that RaceID, the proposed method, and SC3 have a non-linear increase in run

time. At this time, it appears that it is unfeasible to perform this method on large datasets

consisting of thousands of cells. The fastest method among all the methods is Seurat, which

is a graph-based method. The graph-based methods often return only a single clustering

solution with a faster run time and they do not require the user to provide the number of

clusters [138]. Seurat is a popular choice for the large data sets based on the its optimal

speed and scalability. However, it has been shown that Seurat does not provide an accurate

solution for smaller datasets [138]. The details of the run times are shown in Table 29.

More generally, finding an optimal clustering method that provides stable solutions for

all situations may not be possible. In fact, because no method can perform well for all
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Table 29: The run time (secs) of the different methods using 13 single cell datasets, in-
cluding 5 simulation datasets.

Proposed RaceID SC3 Seurat SINCERA SNN-Cliq
Biase 43.47 8.79 59.79 27.3 3.56 0.62
Deng 188.51 55.37 234.3 23.68 10 16.39
Goolam 86.55 15.69 59.52 41.36 14.16 5.75
Klein 3709.28 16175.58 6127.56 117.1 952.25 4643.8
patel 154.18 100.32 933.05 13.78 10.25 12.22
Pollen 257.14 50.5 245.02 25.86 13.11 17.35
treutlein 53.49 8.34 47.89 23.09 5.82 1.33
Yan 87.74 13.46 60.31 19.5 4.96 2.23
sim3 777.08 1102.2 3888 63 118.8 84.71
sim4 3381.1 38232 8532 85.2 170.4 439.12
sim6 510.48 670.2 4716 31.09 18.3 23.01
sim8 1839.75 10160.64 1733.4 53.33 85.2 157.47
sim_Tung 504.6 171.6 458.4 40.66 37.36 86.13

situations, a comparative analysis of methods based on a set of criteria should be em-

ployed [138].

In the following, we investigate the application of the uniform manifold approximation

and projection (UMAP) for reducing the dimensionality of the single cell data that is used

for the resampling-based clustering framework. We also provide the performance of the

clustering results using different noise tuning hyperparmaters.

3.6.1 Uniform manifold approximation and projection

We investigated the performance of the resampling-based k-means clustering method

using two dimensionality reduction techniques: the t-distributed stochastic neighbor em-

bedding (t-SNE) and Uniform Manifold Approximation and Projection (UMAP).

The UMAP is an algorithm for reducing the dimensionality of the data based on man-

ifold learning techniques and the topological data analysis. Unlike t-SNE [161] that pre-

serves only local structure in the data, UMAP [174] claims to preserve both local and the

global structure in the data. The main difference between t-SNE and UMAP is the inter-
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pretation of the distance between objects or clusters [174].
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Figure 17: In this comparison, 13 datasets, including 8 real single cell gene expression
datasets are used. The results are compared based on the three metrics: the adjusted rand
index (ARI), adjusted mutual information (AMI), and V-measure. The results show that
the t-SNE dimensionality reduction technique provides better performance in comparison
to the UMAP technique.

We applied the UMAP [174] to reduce the dimensionality of the distance matrix in

which the rows and columns are the cells. Then, we identified the most stable clustering

of cells using the lower-dimension distance matrix based on the resampled-based k-means

clustering. As shown in Figure 17, we found that the performance is better when t-SNE is
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used for the dimensionality reduction.

Tables 30–32 show the comparison between the results of six methods: K-means-UMAP,

RaceID, SC3, Seurat, SINCERA, and SNN-Cliq .The K-means-UMAP is an alternative to the

proposed method in which UMAP technique is employed for the dimensionality reduction.

Table 30: A comparison between the results of six methods: K-means-UMAP, RaceID, SC3,
Seurat, SINCERA, and SNN-Cliq based on the adjusted rand index (ARI). The K-means-
UMAP is an alternative to the proposed method in which UMAP technique is employed
for the dimensionality reduction. The K-means-UMAP method, RaceID, and SC3 are per-
formed 50, 50, and 5 times on each dataset, respectively. SC3 was performed only 5 times
because it is very stable (standard deviation of zero for all datasets). The average ARIs
across different runs are computed for the K-means-UMAP, SC3, and RaceID. Since SNN-
Cliq, SINCERA and SEURAT are deterministic, they are performed only once. For each
dataset, the best ARI is highlighted in green.

Dataset #cell types K-means-UMAP RaceID SC3 SINCERA SNN-Cliq Seurat
K (mean±sd) ARI (mean±sd) K (mean±sd) ARI (mean±sd) K (mean±sd) ARI (mean±sd) K ARI K ARI K ARI

Biase 3 3±0 0.95±0 3.14±0.6 0.84±0.25 3±0 0.94±0 6 0.71 6 0.66 4 0.78
Deng 10 5±0 0.39±0.02 1±0 0±0 9±0 0.65±0.002 3 0.42 17 0.4 6 0.45
Goolam 5 2.88±0.33 0.82±0.11 1±0 0±0 6±0 0.59±0 13 0.19 17 0.2 3 0.05
Klein 4 3±0 0.55±0 2.98±0.14 0.48±0.001 19±0 0.44±0.01 43 0.45 265 0.11 3 0
Patel 5 2.76±0.52 0.31±0.07 7.44±1.88 0.66±0.08 17±0 0.45±0.01 10 0.78 26 0.14 5 0.63
Pollen 11 7.98±0.14 0.84±0.03 8.36±2.27 0.55±0.11 10±0 0.93±0 10 0.9 22 0.71 8 0.85
Treutlein 5 3.24±0.43 0.51±0.12 1±0 0±0 3±0 0.66±0 7 0.35 5 0.62 1 0
Yan 8 8±0 0.75±0.1 5.5±2.34 0.55±0.17 4±0 0.76±0 8 0.59 13 0.79 3 0.56
sim3 3 3±0 0.99±0.01 1±0 0±0 3±0 1±0 120 0.12 147 0.03 3 1
sim4 4 3±0 0.55±0 1±0 0±0 4±0 0.99±0.0005 464 0.08 437 0.01 3 0.57
sim6 6 16.72±0.45 0.32±0.02 1±0 0±0 3±0 0.53±0.005 68 0.25 143 0.06 6 1
sim8 8 18±0 0.38±0.02 1±0 0±0 4±0 0.53±0.04 68 0.35 290 0.05 8 1
sim_Tung 8 8±0 0.41±0.01 1±0 0±0 8±0 0±0 17 0.001 77 0.001 8 0

Table 31: A comparison between the results of six methods: K-means-UMAP, RaceID,
SC3, Seurat, SINCERA, and SNN-Cliq based on the adjusted mutual information (AMI).
The K-means-UMAP is an alternative to the proposed method in which UMAP technique
is employed for the dimensionality reduction. The K-means-UMAP, RaceID, and SC3 are
performed 50, 50, and 5 times on each dataset, respectively. The average AMIs across
different runs are computed for the K-means-UMAP, SC3, and RaceID. Since SNN-Cliq,
SINCERA and SEURAT are deterministic, they are performed only once.

Dataset #cell types K-means-UMAP RaceID SC3 SINCERA SNN-Cliq Seurat
K (mean±sd) AMI (mean±sd) K (mean±sd) AMI (mean±sd) K (mean±sd) AMI (mean±sd) K AMI K AMI K AMI

Biase 3 3±0 0.92±0 3.14±0.6 0.85±0.23 3±0 0.92±0 6 0.64 6 0.62 4 0.74
Deng 10 5±0 0.51±0.01 1±0 0±0 9±0 0.81±0.006 3 0.48 17 0.6 6 0.59
Goolam 5 2.88±0.33 0.72±0.1 1±0 0±0 6±0 0.69±0 13 0.4 17 0.42 3 0.11
Klein 4 3±0 0.53±0 2.98±0.14 0.51±0.05 19±0 0.53±0.006 43 0.52 265 0.21 3 0.06
Patel 5 2.76±0.52 0.31±0.07 7.44±1.88 0.66±0.1 17±0 0.93±0 10 0.73 26 0.31 5 0.68
Pollen 11 7.98±0.14 0.85±0.02 8.36±2.27 0.68±0 10±0 0.53±0.01 10 0.91 22 0.74 8 0.87
Treutlein 5 3.24±0.43 0.44±0.06 1±0 0±0 3±0 0.62±0 7 0.46 5 0.51 1 0
Yan 8 8±0 0.80±0.04 5.5±2.34 0.61±0.17 4±0 0.72±0 8 0.72 13 0.76 3 0.58
sim3 3 3±0 0.99±0.02 1±0 0±0 3±0 1±0 120 0.23 147 0.21 3 1
sim4 4 4±0 0.61±0 1±0 0±0 4±0 0.99±0.001 464 0.21 437 0.2 3 0.66
sim6 6 16.72±0.45 0.48±0.01 1±0 0±0 3±0 0.51±0.004 68 0.42 143 0.3 6 1
sim8 8 18±0 0.53±0.01 1±0 0±0 4±0 0.56±0.007 68 0.51 290 0.31 8 1
sim_Tung 8 8±0 0.50±0.01 1±0 0±0 8±0 0.006±0 17 0.04 77 0.13 8 0
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Table 32: A comparison between the results of six methods: K-means-UMAP, RaceID,
SC3, Seurat, SINCERA, and SNN-Cliq based on the V-measure. The K-means-UMAP is
an alternative to the proposed method in which UMAP technique is employed for the
dimensionality reduction. The K-means-UMAP, RaceID, and SC3 are performed 50, 50,
and 5 times on each dataset, respectively. The average V-measures across different runs
are computed for the K-means-UMAP, SC3, and RaceID. Since SNN-Cliq, SINCERA and
SEURAT are deterministic, they are performed only once. For each dataset, the best V-
measure is highlighted in green.

Dataset #cell types K-means-UMAP RaceID SC3 SINCERA SNN-Cliq Seurat
K (mean±sd) V-measure (mean±sd) K (mean±sd) V-measure (mean±sd) K (mean±sd) V-measure (mean±sd) K V-measure K V-measure K V-measure

Biase 3 3±0 0.93±0 3.14±0.6 0.87±0.2 3 0.93±0 6 0.72 6 0.7 4 0.73
Deng 10 5±0 0.75±0.06 1±0 0±0 9 0.74±0.001 3 0.93 17 0.64 6 0.93
Goolam 5 2.88±0.33 0.84±0.04 1±0 0±0 6 0.98±0 13 0.71 17 0.65 3 0.66
Klein 4 3±0 0.40±0 2.98±0.14 0.4±0.06 19 0.31±0.002 43 0.36 265 0.29 3 0.46
Patel 5 2.76±0.52 0.54±0.02 7.44±1.88 0.54±0.04 17 0.46±0.002 10 0.55 26 0.44 5 0.62
Pollen 11 7.98±0.14 0.94±0.02 8.36±2.27 0.76±0.03 10 0.93±0 10 0.94 22 0.72 8 0.93
Treutlein 5 3.24±0.43 0.94±0.01 1±0 0±0 3 0.89±0 7 0.93 5 0.92 1 0
Yan 8 8±0 0.77±0.07 5.5±2.34 0.68±0.07 4 0.81±0 8 0.65 13 0.78 3 0.73
sim3 3 3±0 1±0 1±0 0±0 3 1±0 120 0.95 147 0.95 3 1
sim4 4 3±0 0.98±0 1±0 0±0 4 0.99±0.00003 464 0.97 437 0.97 3 0.96
sim6 6 16.72±0.45 0.98±0 1±0 0±0 3 0.97±0.0004 68 0.97 143 0.97 6 1
sim8 8 18±0 0.99±0 1±0 0±0 4 0.98±0.004 68 0.98 290 0.98 8 1
sim_Tung 8 8±0 0.91±0.01 1±0 0±0 8 0.66±0 17 0.82 77 0.80 8 0.66

3.6.2 Noise tuning for the resampling-based clustering approach

We replaced the 5% of the data points with noise (noise tuning threshold=0.05).

In [100], Hennig performed a comparative analysis using two thresholds 0.05 and 0.2

and showed that the threshold 0.05 provides more stable clusterings. We assessed the

performance of our proposed method using other noise tuning thresholds: 0.1 and 0.2.

Tables 33–35 show comparison between the proposed method (using 3 thresholds) and

five other methods based on the three metrics: the adjusted rand index (ARI), adjusted

mutual information (AMI), and V-measure. Indeed, we have observed the threshold 0.05

provides better performance.

To assess the stability of a cluster, we used the same threshold (0.75) that is recom-

mended by Hennig [100]. In this study [100], it has been shown that a stable cluster will

yield a Jaccard similarity value of 0.75 or more. Thus, if the Jaccard similarity between the

cluster (from original clustering) and the most similar cluster in the resampled clustering

is equal or greater than 0.75, that the cluster is considered as successfully recovered.
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Table 33: A comparison between the results of six methods: proposed (noise tuning thresh-
olds: 0.05, 0.1 and 0.2), RaceID, SC3, Seurat, SINCERA, and SNN-Cliq. The adjusted rand
index (ARI) [113] is used to evaluate the performance of each clustering method. The
proposed method was performed based on three noise tuning thresholds: 0.05, 0.1 and
0.2. The proposed method, RaceID, and SC3 are performed 50, 50, and 5 times on each
dataset, respectively. SC3 was performed only 5 times because it is very stable (standard
deviation of zero for all datasets). The average ARIs across different runs are computed
for the proposed method, SC3, and RaceID. Since SNN-Cliq, SINCERA and SEURAT are
deterministic, they are performed only once. For each dataset, the best ARI is highlighted
in green.

Dataset #cell types Proposed- ARI (mean±sd) RaceID SC3 SINCERA SNN-Cliq Seurat
Threshold=0.05 Threshold=0.1 Threshold=0.2 ARI (mean±sd) ARI (mean±sd) ARI ARI ARI

Biase 3 0.94±0.01 0.95±0.01 0.91±0.15 0.84±0.25 0.94±0 0.71 0.66 0.78
Deng 10 0.58±0.02 0.43±0.03 0.43±0.01 9±0 0.65±0.002 0.42 0.4 0.45
Goolam 5 0.80±0.09 0.75±0.12 0.69±0.13 0±0 0.59±0 0.19 0.20 0.05
Klein 4 0.69±0.01 0.70±0.01 0.70±0.03 0.48±0.001 0.44±0.01 0.45 0.11 0
Patel 5 0.66±0.09 0.96±0.01 0.95±0.01 0.66±0.08 0.45±0.01 0.78 0.14 0.63
Pollen 11 0.86±0.02 0.89±0.04 0.85±0.05 0.55±0.11 0.93±0 0.90 0.71 0.85
Treutlein 5 0.72±0.03 0.32±0.04 0.31±0.04 0±0 0.66±0 0.35 0.62 0
Yan 8 0.81±0.02 0.82±0.09 0.90±0.03 0.55±0.17 0.76±0 0.59 0.79 0.56
sim3 3 1±0 1±0 1±0 0±0 1±0 0.12 0.03 1
sim4 4 0.99±0.005 0.90±0.08 0.89±0.08 0±0 0.99±0.0005 0.08 0.01 0.57
sim6 6 0.56±0.03 0.59±0.03 0.56±0.05 0±0 0.53±0.005 0.25 0.06 1
sim8 8 0.77±0.03 0.78±0.04 0.79±0.045 0±0 0.53±0.04 0.35 0.05 1
sim_Tung 8 0.42±0 0±0 0±0 0±0 0±0 0.001 0.001 0

Table 34: A comparison between the results of six methods: proposed (noise tuning thresh-
olds: 0.05, 0.1 and 0.2), RaceID, SC3, Seurat, SINCERA, and SNN-Cliq. The adjusted mu-
tual information (AMI) [274, 275] is used to evaluate the performance of each clustering
method. The proposed method was performed based on three noise tuning thresholds:
0.05, 0.1 and 0.2. The proposed method, RaceID, and SC3 are performed 50, 50, and 5
times on each dataset, respectively. The average AMIs across different runs are computed
for the proposed method, SC3, and RaceID. Since SNN-Cliq, SINCERA and SEURAT are
deterministic, they are performed only once. For each dataset, the best AMI is highlighted
in green.

Dataset #cell types Proposed- AMI (mean±sd) RaceID SC3 SINCERA SNN-Cliq Seurat
Threshold=0.05 Threshold=0.1 Threshold=0.2 AMI (mean±sd) AMI (mean±sd) AMI AMI AMI

Biase 3 0.92±0.02 0.88±0.15 0.90±0.07 0.85±0.23 0.92±0 0.64 0.62 0.74
Deng 10 0.73±0.01 0.58±0.03 0.58±0.02 0±0 0.81±0.006 0.48 0.6 0.59
Goolam 5 0.73±0.04 0.73±0.05 0.71±0.05 0±0 0.69±0 0.4 0.42 0.11
Klein 4 0.67±0.06 0.73±0.01 0.73±0.02 0.51±0.05 0.53±0.006 0.52 0.21 0.06
Patel 5 0.86±0.01 0.94±0.03 0.94±0.01 0.66±0.1 0.93±0 0 0.73 0.31 0.68
Pollen 11 0.72±0.01 0.89±0.02 0.88±0.02 0.68±0 0.53±0.01 0.91 0.74 0.87
Treutlein 5 0.54±0.03 0.41±0.04 0.42±0.04 0±0 0.62±0 0.46 0.51 0
Yan 8 0.78±0.01 0.78±0.01 0.89±0.04 0.61±0.17 0.72±0 0.72 0.76 0.58
sim3 3 1±0 1±0 1±0.01 0±0 1±0 0.23 0.21 1
sim4 4 0.99±0.007 0.91±0.07 0.89±0.07 0±0 0.99±0.001 0.21 0.2 0.66
sim6 6 0.64±0.02 0.66±0.02 0.65±0.03 0±0 0.51±0.004 0.42 0.3 1
sim8 8 0.85±0.01 0.85±0.02 0.85±0.02 0±0 0.56±0.007 0.51 0.31 1
sim_Tung 8 0.51±0.008 0.01±0 0.01±0 0±0 0.006±0 0.04 0.13 0
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Table 35: A comparison between the results of six methods: proposed (noise tuning
thresholds: 0.05, 0.1 and 0.2), RaceID, SC3, Seurat, SINCERA, and SNN-Cliq. The V-
measure [226] is used to evaluate the performance of each clustering method. The pro-
posed method was performed based on three noise tuning thresholds: 0.05, 0.1 and 0.2.
The proposed method, RaceID, and SC3 are performed 50, 50, and 5 times on each dataset,
respectively. The average V-measures across different runs are computed for the proposed
method, SC3, and RaceID. Since SNN-Cliq, SINCERA and SEURAT are deterministic, they
are performed only once. For each dataset, the best V-measure is highlighted in green.

Dataset #cell types Proposed- V-measure (mean±sd) RaceID SC3 SINCERA SNN-Cliq Seurat
Threshold=0.05 Threshold=0.1 Threshold=0.2 V-measure (mean±sd) V-measure (mean±sd) V-measure V-measure V-measure

Biase 3 0.93±0.03 0.93±0.02 0.90±0.1 0.87±0.2 0.93±0 0.72 6 0.7 0.73
Deng 10 0.72±0.01 0.75±0.06 0.81±0.1 0±0 0.74±0.001 0.93 0.64 0.93
Goolam 5 0.82±0.04 0.86±0.09 0.85±0.09 0±0 0.98±0 0.71 0.65 0.66
Klein 4 0.38±0.01 0.39±0.01 0.40±0.03 0.40±0.02 0.31±0.002 0.36 0.29 0.46
Patel 5 0.56±0.02 0.81±0.03 0.81±0.03 0.54±0.04 0.46±0.002 0.55 0.44 0.62
Pollen 11 0.95±0.01 0.92±0.02 0.91±0.02 0.76±0.03 0.93±0 0.94 0.72 0.93
Treutlein 5 0.96±0 0.93±0.01 0.93±0.01 0±0 0.89±0 0.93 0.92 0
Yan 8 0.83±0.02 0.85±0.04 0.87±0.04 0.68±0.07 0.81±0 0.65 0.78 0.73
sim3 3 1±0 1±0 1±0 0±0 1±0 0.95 0.95 1
sim4 4 0.99±0.0002 0.99±0.003 0.99±0 0±0 0.99±0.00003 0.97 0.97 0.96
sim6 6 0.98±0 0.99±0.001 0.99±0 0.99±0 0.99±0.0004 0.97 0.97 1
sim8 8 0.99±0 0.99±0.0009 1±0 0±0 0.98±0.004 0.98 0.98 1
sim_Tung 8 0.96±0.03 0.71±0.01 0.71±0.01 0±0 0.66±0 0.82 0.80 0.66

3.7 Summary

Recent advances in single-cell RNA-Seq (scRNASeq) provide the opportunity to per-

form single-cell transcriptome analysis. In this thesis, we develop a pipeline to cluster the

individual cells based on their gene expression values such that each cluster consisting

of cells with specific functions or distinct developmental stages. We first filter genes that

are not expressed in any cell. Then, we compute the distance between the cells using

the Euclidean distance. We reduce the dimensions of the distance matrix data using the

t-distributed stochastic neighbor embedding (t-SNE) technique. Based on the dimension-

ality reduced distance matrix, we explore strong patterns (clusters) of cells by randomly

drawing a percentage of the data points without replacement, and replacing them with

points from a noise distribution. We apply the proposed method on 13 different single cell

datasets, and we compare it with five related methods: RaceID, SC3, Seurat, SINCERA,

and SNN-Cliq. The results of the evaluation on datasets demonstrate that the proposed
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method yields better clustering results in comparison to the existing methods.
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CHAPTER 4 FUTURE WORK

In the first part of this thesis, we proposed a novel approach that discovers candidate

drugs for repurposing. This approach first builds a drug-disease network by considering

all interactions between drug targets and disease-related genes in the context of signal-

ing pathways. This network is integrated with gene-expression measurements to identify

drugs with new desired therapeutic effects. The results are assessed using a true gold

standard, that of the already FDA-approved drugs. The already FDA-approved drugs for a

given condition are the gold standard because such drugs successfully passed all the pre-

clinical and clinical trials for that condition and were demonstrated to be efficacious in

each condition. We provided evidences that support the usefulness of the proposed candi-

dates in treatment of the human diseases: idiopathic pulmonary fibrosis (IPF), non-small

cell lung cancer, prostate cancer, breast cancer. In all diseases, the proposed approach is

able to rank highly the approved drugs for the given conditions. For many of the proposed

repurposing candidates, there is significant preliminary evidence, as well as a number of

clinical trials in progress. Although our proposed framework is studied in the context of

drug repurposing, it also can be used to identify novel targets for FDA-approved drugs and

predicting their mechanism of action using the drug-disease networks constructed by the

proposed approach.

Second, we proposed a resampling-based clustering approach that solves one of the

most important challenges in the personalized medicine area, which is identification of cell

types from single cell data. The proposed pipeline can be used to analyze and understand

cellular heterogeneity and how this contributes to the biological system.

In particular, the proposed clustering framework can be used to analyze the impact
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of glaucoma on single retinal ganglion cells (RGCs) and study the RGC subtypes that are

more resilient and susceptible to glaucoma insult [262, 302].

As future work, one could identify driver genes (cell type signatures) that vary between

two or more clusters (cell types). The driver genes could be identified as genes that are

highly expressed in only one of the clusters and are able to distinguish one cluster from

the remaining clusters. Subsequently, one could use the impact analysis method [72] to

perform gene and pathway enrichment analysis using the discovered driver genes.

Next, we are interested in upgrading the proposed clustering framework to identify the

rare cell populations in data (e.g cancer stem cells). We will generate synthetic data with

rare cell types to evaluate the sensitivity our framework for rare cell type identification.

The proposed clustering framework on other data types (e.g mRNA, miRNA, and methy-

lation data) can be used to distinguish between subgroups of patients (respondent vs.

non-respondents) as well as disease subtypes (aggressive vs. non-aggressive). In addi-

tion to subtypes/subgroups discovery, our framework can help to identify the biomark-

ers [233, 242, 14] of identified subtypes that can assign a new sample to the correct

subgroup/subtype [207].

The distinct subtypes of the same disease cause diverse drug responses [86]. As a

result, the treatment choices and the ultimate success for a disease highly depend on

its subtype [86, 125, 243]. As future work, one could perform our drug repurposing

framework by utilizing the subtypes identified by our clustering framework.
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The traditional drug discovery process is extremely slow and costly. More than 90% of

drugs fail to pass beyond the early stage of development and toxicity tests, and many of the

drugs that go through early phases of the clinical trials fail because of adverse reactions,

side effects, or lack of efficiency. In spite of unprecedented investments in research and

development (R&D), the number of new FDA-approved drugs remains low, reflecting the

limitations of the current R&D model. In this context, finding new disease indications for

existing drugs sidesteps these issues and can therefore increase the available therapeutic

choices at a fraction of the cost of new drug development. In this thesis, we introduce

a drug repurposing approach that takes advantage of prior knowledge of drug targets,

disease-related genes, and signaling pathways to construct a drug-disease network com-

posed of the genes that are most likely perturbed by a drug. Systems biology can be used as

an effective platform in drug discovery and development by leveraging the understanding

of interactions between the different system components [34, 141, 216]. By performing a

system-level analysis on this network, our approach estimates the amount of perturbation

caused by drugs and diseases and discovers drugs with the potential desired effects on
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the given disease. Next, we develop a stable clustering method that employs a bootstrap

approach to identify the stable clusters of cells. We show that strong patterns in single cell

data will remain despite small perturbations. The results, that are validated based on well-

known metrics, show that using this approach yields improvement in correctly identifying

the cell types, compared to other existing methods.
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