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CHAPTER 1 INTRODUCTION

Logistic and transportation (L&T) activities become a significant contributor to social

and economic advances throughout the modern world [78, 101, 102]. Road L&T activities

are responsible for a large percentage of CO2 emissions, with more than 24% of the total

emission, which mostly caused by fossil fuel vehicles [80]. Researchers, governments, and

automotive companies put extensive effort to incorporate new solutions and innovations

into the L&T system. As a result, Electric Vehicles (EVs) are introduced and universally

accepted as one of the solutions to environmental issues [80]. Subsequently, L&T com-

panies are encouraged to adopt fleets of EVs. Various factors promote the use of these

vehicles, such as: receiving incentives to reduce the carbon footprint; less dependency on

the oil-based energy sources; immense government support such as purchasing subsidies,

public charging stations, carpool lane access, etc.; and lower maintenance cost [48]. Al-

though the use of EVs should be the first priority to mitigate the environmental issues and

improve the energy efficiency, the EV technology suffers from several deficiencies such as

limited battery capacity, longer refueling time compared to the conventional vehicles, and

the scarcity of electric charging stations. Therefore, integrating the EVs into the logistic

and transportation systems introduces new challenges from strategic, planning, and oper-

ational perspectives. For example, electric charging station network design in smart cities

is dependent on the investment decisions regarding the location, number, capacity, and

types of chargers. Likewise, the limited driving range of EVs and scarcity of the charging

sites impose new restrictions when L&T companies make efficient routing decisions.

The cumulative global EV sales exceeded 3 million units in 2017, and it is expected to

reach 230 million units by the end of 2030. It is estimated that there should be at least 300
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public charging locations per million people. At the same time, half of the U.S. population

lives in the markets with 70% below the estimated benchmarks for number of charging

stations. It is also suggested that there should be a 20% annual growth in the deployment

of charging infrastructures to support the current trend of EV sales [92]. Several studies

concluded that the workplace and public charging stations are strongly correlated with

the adoption of EVs. Therefore, designing a cost-efficient charging network with wide-

ranging access is crucial to keep up the current growing trend in the EV market. One

of the main challenges to be addressed to expand the EV charging infrastructures is the

location of charging stations [35]. Due to the longer charging time in EVs compared to

the conventional vehicles, the parking locations can be considered as the candidate loca-

tions for installing charging stations. Another essential factor that should be considered in

designing the Electric Vehicle Charging Station (EVCS) network is the size or capacity of

charging stations. EV drivers’ arrival times in a community vary depending on various fac-

tors such as the purpose of the trip, time of the day, and day of the week. In the specified

time in which EVs stop at a station, if the station is occupied, the vehicles should leave the

station or wait in the queue. So, the capacity of stations and the number of chargers sig-

nificantly affect the accessibility and utilization of charging stations. Also, the EVCSs can

be equipped by distinct types of chargers, which are different in terms of installation cost,

charging time, and charging price. City planners and EVCS owners can make low-risk and

high-utilization investment decisions by considering EV users charging pattern and their

willingness to pay for different charger types. Many of the existing studies on the charging

facility location problem are based on the assumption that charging service demands are

deterministic. However, the real demand is affected by various sources of uncertainty, such
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as the day of the week, the time of day, the purpose of the trip, the location of the final

destination, a driver’s willingness to walk, distance from home, and weather condition.

Thus, there may be significant differences between the optimal solutions for deterministic

and stochastic models [6, 5, 74, 120, 51]. Stochastic programming is a modeling approach

for making decisions under uncertainty. The most well-known method in stochastic pro-

gramming is two-stage stochastic programming, where the decisions in the first stage are

made before the realization of uncertainties, and the second-stage the decisions are made

after revealing the uncertainties [4].

Therefore, effective electric vehicle management requires intelligent charging station

location decisions at the strategical level and efficient routing strategies at the operational

level. These two decisions are inter-related since the location of chargers can significantly

the routing strategies. Figure 1 illustrates the effect of location decisions on routing poli-

cies. At the operational level, managing a fleet of electric vehicles can offer several incen-

tives to the L&T companies. EVs can be equipped with autonomous driving technologies to

facilitate online decision making, on-board computation, and connectivity. Energy-efficient

routing decisions for a fleet of autonomous electric vehicles (AEV) can significantly im-

prove the asset utilizationand vehicles’ battery life. However, employing AEVs also comes

with new challenges. Two of the main operational challenges for AEVs in transport ap-

plications is their limited range and the availability of charging stations. Effective routing

strategies for an AEV fleet require solving the vehicle routing problem (VRP) while consid-

ering additional constraints related to the limited range and number of charging stations.

Autonomous Electric Vehicle Routing Problem (AEVRP) is an extension of multi- charging

stations vehicle routing problem, and it is NP-hard. To solve the AEVRP, we face three
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Potential locations for installing
chargers

Base depot

Installed chargers

AEV routes

Targets\Customers

Figure 1: The relationship between the charging location decisions and routing strategies
for autonomous electric vehicle’s operation
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major challenges: 1) assigning targets to the AEVs, 2) finding the best route for each AEV,

and 3) maintaining feasibility such that each AEV does not run out of fuel. Each of these is

complex and difficult to solve. Hence, simple algorithms do not work well for this problem

even for the small size instances.

In this dissertation, we develop models and algorithms to address the challenges in

integrating the EVs into the logistic and transportation systems. In the chapter 2, from

the strategical point of view, we propose a choice modeling approach embedded in a two-

stage stochastic programming model to determine the optimal layout and types of EV

supply equipment for a community while considering randomness in demand and drivers’

behaviors. Some of the key random data parameters considered in this study are: EV’s

dwell time at parking location, battery’s state of charge, distance from home, willingness

to walk, drivers’ arrival patterns, and traffic on weekdays and weekends. The two-stage

model uses the sample average approximation method, which asymptotically converges to

an optimal solution. To address the computational challenges for large-scale instances, we

propose an outer approximation decomposition algorithm. We conduct extensive compu-

tational experiments to quantify the efficacy of the proposed approach. In addition, we

present the results and a sensitivity analysis for a case study based on publicly available

data sources. In the chapter three, we address the challenges that arise at the operational

level by developing sophisticated algorithms to make efficient routing decisions for the

fleet of autonomous electric vehicles. We proposed a mixed-integer programming formu-

lation and computational results are presented for small scale instances using branch and

cut procedure. To circumvent the computational challenges for large-scale instances, a

Genetic algorithm-based heuristic is developed. Extensive computational results and sen-
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sitivity analysis are performed to corroborate the efficiency of the proposed approach, both

quantitatively and qualitatively. From the methodological point of view, we implement an

exact method for the strategical planning and a hybrid meta-heuristic for operational plan-

ning decisions in the electric vehicle operation network. The contribution of this research

are summarized as follows:

• Formulated a two-stage stochastic programming model with an embedded choice

model for locating charging facilities, and determined the types of chargers to be

installed in these facilities based on EV drivers’ choices, behaviors, and other random

parameters

• Included various uncertainties in the model, such as EV demand flows, EV drivers’

charging patterns, state of charge, arrival and departure times, the purpose of arrivals

in the community, and preferred walking distances

• Developed an outer-linearization-based decomposition algorithm and performed ex-

tensive computational experiments with multiple variations to demonstrate the effi-

cacy of our algorithm

• Conducted a case study using data representing the midtown area of Detroit, Michi-

gan, in the U.S. and provide post-analysis insights for improving accessibility and

transportation choices based on our proposed framework.

• Conducted a data-driven simulation where the proposed method is compared to two

other configurations from the literature



7

• Developed an efficient mixed integer formulation for the min-max autonomous elec-

tric vehicle routing problem to efficiently solve small-scale instances

• Designed a GA-based heuristic for large-scale instances and performed extensive

computational experiments to quantify the efficacy of the proposed approach

• Performed a sensitivity analysis to investigate the aspects of solutions from min-sum

and min-max AEVRP

• Conducted a data-driven simulation study using robot operating system (ROS) to

showcase the application of the AEVRP for robots
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CHAPTER 2 TWO-STAGE STOCHASTIC CHOICE MODELLING APPROACH FOR
ELECTRIC VEHICLE CHARGING STATION NETWORK DESIGN IN URBAN

COMMUNITIES: INTRODUCTION AND PREPROCESSING

2.1 Introduction

One of the most promising approaches to alleviating vehicle emissions and satisfying

climate targets is the deployment of electric vehicles [118]. Lower maintenance costs,

lower ownership costs, noise reduction, and charging at home and work and around the

community are some of the additional advantages of using EVs. Vehicle purchasing sub-

sidies, public electric charging availability, and carpool lane access are the three most

substantial benefits offered to EV consumers [66]. In response to the government’s pro-

motion of vehicle electrification objectives, the world’s major automobile companies are

striving to produce affordable EVs for environmentally conscious consumers [54]. Every

year, automotive companies around the world introduce various new models of EVs (e.g.,

hybrid vehicles, plug-in hybrid vehicles, and pure battery electric vehicles (BEVs)). The

U.S. is one of the growing markets for EVs. However, half of the U.S. population live in

areas with fewer than 90 charging infrastructures per million people, which is 70% below

the estimated benchmarks[92]. By the end of 2025, there should be about a 20% growth

in deployment of charging infrastructures per year to support more than three million ex-

pected EVs [77]. Therefore, designing a cost-efficient charging network with broad access

is critical for supporting the current flourishing trend in the EV market.

Installation of a public charging station costs at least $5,000 to $15,000 [107]. Elec-

tric vehicle charging stations (EVCSs) can be equipped with different types of chargers

that differ in power, installation cost, and charging price. Broadly, EV supply equipment
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(EVSE) can be classified into level 1, level 2, and level 3, based on the power supply. Level

1, which is known as home charging, has a 1.9kW electric power supply and requires be-

tween 8 and 30 hours to fully charge an EV’s battery, depending on its size. Level 2, known

as semi-rapid charging, has a 6.6 kW power supply and a charging time between 4 and 8

hours. Level 3, known as fast charging EVSE, has a 50kW power supply and a charging

time of less than 30 minutes; this is considered to be the most expensive charger. Given

the availability of chargers with different capabilities and prices, it is worth considering EV

users’ choices of charger levels when establishing an optimal EVCS network.

A study of EV users’ charging behaviors, especially their preferences in charging levels

and locations, can help increase the accessibility of charging stations for EV users, and

this can lead to widespread EV adoption. Also, since establishing an EVCS network is a

strategic decision, considering the randomness in demand and analyzing EV users’ travel

patterns, charging behaviors, and infrastructure utilization will help in designing a charg-

ing station network that provides better access [124]. Increasing the overall utilization of

charging stations can potentially increase investment opportunities for EVCS providers and

automobile makers. The analysis in [77] indicates that EVCS providers can make low-risk

and high-utilization investment decisions by expanding charging infrastructures in such

a way that the designs of charging outlet networks are matched to the complex driver

charging patterns. Different types of users (residential, visitors, employees, fleet users)

have different charging needs, as well as different dwell times, frequencies of charging

and states of charge (SOCs). Since an EV can be recharged at home, at public charging

stations, or at private working places, a wide range of consumers demand several different

power supply options. Furthermore, charging prices can significantly affect EV owners’
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choices. The importance of this last factor can vary depending on people’s socioeconomic

characteristics. The authors of [116] showed that EV owners are less likely to use charging

stations when the charging costs are higher or when their battery has a sufficient driving

range for reaching the next charging opportunity.

Many of the existing studies on the charging facility location problem are based on the

assumption that charging service demands are deterministic. However, the real demand

is affected by various sources of uncertainty, such as the day of the week, the time of day,

the purpose of the trip, the location of the final destination, and the driver’s willingness

to walk. Thus, there may be significant differences between the optimal solutions for de-

terministic and stochastic models. Stochastic programming is a modelling approach for

making decisions under uncertainty. Discrete choice analysis has also proven to be a use-

ful strategy for analyzing and predicting EV drivers’ decisions regarding their choices of

location and chargers. In this study, considering the uncertainties in EV users’ demand,

we propose a two-stage stochastic programming model with an embedded choice model

representing EV drivers’ choices of chargers for designing an optimal network of charging

stations for a community. Since two-stage stochastic programming models often require

a large number of scenarios for good approximations of the expectation function, we use

the sample average approximation (SAA) method, a Monte Carlo simulation-based sam-

pling technique. Another challenge for the two-stage stochastic programming approach

is the computational burden arising from second-stage scenarios, so we use a L-shaped

decomposition algorithm with single- and multi-cut variants to solve the model efficiently.

Finally, we evaluate our proposed two-stage model and our approach to its solution with a

case study based on data representing the midtown area of Detroit, Michigan, in the U.S.
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The contributions of this study include the following: (1) we formulate a two-stage

stochastic programming model with an embedded choice model for locating charging fa-

cilities, and we determine the types of chargers to be installed in these facilities based on

EV drivers’ choices and behaviors and other random parameters; (2) we include various

uncertainties in the model, such as EV demand flows, EV drivers’ charging patterns, SOCs,

arrival and departure times, the purpose of arrivals in the community, and preferred walk-

ing distances; (3) we develop an outer-linearization-based decomposition algorithm and

conduct extensive computational experiments with multiple variations to demonstrate the

efficacy of our algorithm; and (4) we conduct a case study using data representing the

midtown area of Detroit, Michigan, in the U.S. and provide post-analysis insights for im-

proving accessibility and transportation choices based on our proposed framework. In

addition, we conducted a data-driven simulation where the proposed method is compared

to two other configurations from the literature.

The remainder of this research is organized as follows: Section 2.2 reviews the re-

lated literature. Section 2.3 describes the various sources of uncertainty that we consider

in the demand generation process as well as our construction of the utility function for

the choice model. Section 3.1 provides a mathematical formulation of the problem along

with a subsequent reformulation. Section 6 introduces the solution methodologies that

we implemented to solve large-scale instances. Section 4.1 presents the case study, com-

putational experiments, data-driven simulation and various insights from our sensitivity

analysis. Finally, Section 8.3 provides concluding remarks.
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2.2 Literature Review

In this section, we first review the literature related to deterministic and stochastic

approaches for the EV charging location problem. Then we provide details about choice

models for the behaviors of the EV drivers.

A majority of the studies in the literature on the EV charging location problem consider

deterministic models. A capacitated refueling location model with limited traffic flow was

introduced in [109] to maximize the vehicle miles traveled by alternative-fuel vehicles. A

reformulation of the flow-refueling location model was proposed in [73] to decrease the

computational effort needed to solve large-scale set covering and the maximum coverage

problem. The research in [38] explored the allocation of public charging stations to in-

crease the social welfare associated with transportation and power networks. Considering

users’ daily travel, [136] introduced a novel model to determine EVCS locations while

minimizing the charging station installation and management costs. The authors of [121]

developed a simulation-optimization model for EVCSs to maximize the service level for

EV drivers. The results show that a combination of level 1 and level 2 chargers is more

desirable than installing only level 1 chargers. The research in [17] addressed the EVCS

problem in an urban area. The authors proposed a mixed integer programming (MIP)

model for locating slow-charging stations. They considered travelers’ parking locations as

well as their daily activities to aggregate the demand. An optimization model based on

travel behavior to optimally install charging stations was developed in [90]. The research

in [115] used an MIP model to determine the locations for multiple types of charging sta-

tions. The results indicated that an increase in EV ranges allows installing fewer charging
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stations. The authors of [59] formulated a charging station location problem with a focus

on human factors. To support recent developments in the electrification of public trans-

portation, the authors of [14, 61], and [114] developed models to optimally determine the

locations of charging stations for electric taxis and buses. The impact of different types of

EVs [29, 108] , locations and sizes of charging infrastructures [65, 87, 91, 123] on power

networks has also been investigated by various studies. Furthermore, various concerns

from both the traffic system and power system perspectives are addressed by few studies

[113, 126, 130].

Even though it is important to consider uncertainties for strategic and tactical plan-

ning, as decisions made using deterministic parameters can under- or over-estimate the

reality [12], only a few research studies consider uncertainties for EV infrastructure plan-

ning. The research in [27] developed a decision support system consisting of a modeling

framework using a stochastic model and the Monte Carlo sampling method to optimally

design an EV charging network. The researchers considered uncertainties in SOCs, dwell

times, demand distribution, driver preferences regarding charging, the market penetration

of EVs, and also drivers’ willingness to walk. They used SAA and a heuristic to tackle

the computational intractability of the stochastic model. The present research extends

this work by considering different types of chargers and their associated preferences by

the EV drivers. The authors of [82] developed a two-stage stochastic model for locating

charging stations to support both the transportation system and the power grid. They con-

sidered uncertainty in the demand for batteries, loads, and generation of renewable power

sources. The research in [46] incorporated uncertainty regarding the traffic flow into both

capacitated and uncapacitated versions of a two-stage stochastic model to locate EVCSs.
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With the objective of maximizing both the miles traveled by EVs and environmental bene-

fits, the research in [7] presented the EVCS problem as an extension of the flow refueling

location problem. The authors considered both hybrid and single-fueled vehicles, and

they proposed using Benders’ decomposition approach for solving large-scale instances.

Accounting for EV drivers’ route choice behavior, [84] suggested a flow-capturing model

with a stochastic user equilibrium to locate wireless charging infrastructures.

Charging behavior has been studied by numerous authors from different perspectives,

which are multifarious amongst drivers [137, 31]. To develop models that evaluate EV

drivers’ preferences for charging services, it is necessary to understand individuals’ behav-

iors [21, 122]. The authors of [124] developed a mixed logit model to explore the factors

that affect BEV users in Japan. They considered fast and normal types of chargers along

with specific locations such as home, company, and public stations for installing charg-

ers. They identified battery capacities and initial states of charge as the main predictors

for drivers’ charging and location choices. The research in [63] implemented a tri-level

design that considers consumers’ charging and routing choices to locate multiple levels of

charging facilities, including wireless charging. Findings from a national survey showed

that recharging times have a considerable influence on consumers’ preferences [42]. The

effects of policies on charging behavior and EV adoption were studied in [117]. The au-

thors used a large data set to investigate the influence of daytime and free parking policies

on EV drivers’ charging behaviors. The research in [95] focused on charging time behavior

using a mixed logit model, and the predictors related to charging or not charging were

SOCs, number of days between charging, and kilometers of travel. The results show that

fast charging is preferred to normal charging. The authors of [39] suggested a tour-based
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BEV network equilibrium model to evaluate drivers’ behaviors. Recently, the authors of

[37] published a literature review on consumers’ preferences for plug-in vehicle charging

stations. They focused on approaches related to the expansion of charging infrastructures

based on users’ interactions with EV charging stations.

Choice models have recently been proposed for various purposes. The authors of [10]

proposed integrating a choice model within an optimization framework for locating new

facilities in a competitive market. They used a random utility model to model customers’

behavior with the aim of predicting the market shares of the locations. In [57], the au-

thors considered clients’ utility functions, with waiting time for an appointment and the

quality of care used as variables for determining health-care facility locations. Similarly,

the authors of [32] applied a robust approach to selecting new housing programs. They

incorporated a utility function with a linear combination of the features of locations and

their values for potential buyers in a mathematical model with the aim of maximizing cus-

tomers’ satisfaction.

Only a few studies have included multiple types of charging stations in their mathe-

matical models [115, 20, 129], and none of these have considered EV drivers’ charging

behavior in locating multiple types of charging stations. To the best of the authors’ knowl-

edge, the present study is the first attempt to embed a choice model within a two-stage

stochastic programming approach. Also, although many studies have considered the EVCS

location problem for state-wide networks [129, 84, 19, 67, 9, 70], only a few [27, 132]

have investigated the problem for an urban area.
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2.3 Preprocessing

In this study, we consider parking facilities as potential candidates for installing charg-

ers. Drivers select parking locations based on their preferences regarding walking distances

to their final destinations. We assume that if chargers are installed in any of the parking

lots that are within a driver’s preferred walking distance, the driver will be attracted to one

of these, depending on the availability of that station at the time of arrival. If there are

no charging stations within a driver’s preferred walking distance, we do not consider that

driver as contributing to the demand in our model. In the two-stage stochastic model, de-

mand is a multi-variate random variable whose realizations are represented as scenarios.

The randomness in the demand comes from many different sources, such as drivers’ ar-

rival time and their purpose in driving to the community, the duration of drivers’ activities,

the SOCs of EV batteries at the time of arrival, and the distances the drivers are willing

to walk, based on demographics, community size, and weather conditions. The follow-

ing subsection describes the uncertainties that affect the demand for public EV charging

stations, based on previous work in [27].

2.3.1 Dwell Time

Based on National Household Travel Survey (NHTS) data, we selected work, study,

social, family, shopping, and meals as six different final destination categories for the EV

drivers. The average dwell time reported for each category is shown in Fig. 2. We used

a Weibull distribution, as suggested in [135], to represent the duration of weekday and

weekend activities.
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Figure 2: Average dwell times for activity types; Sources: [13] and [58].

2.3.2 Arrival Time

EV drivers’ arrival times in a community depend on the time of day, the day of the

week, and the commuters’ type of activity. On weekends, people tend to participate in

social activities and visit shopping malls and their families more than on weekdays. On

weekdays, most of the demand for chargers comes from people who are traveling to work

or school. Hence, a different demand pattern for charging stations arises on different days

of the week. Fig. 3 shows how the demand for charging stations depends on the time and

the type of day. On weekdays, the maximum demand occurs during the morning when

people are arriving at work or school; in contrast, the maximum demand on weekends

usually occurs around noon, when people are traveling to shopping malls and social places.

The study in [81] concluded that the Weibull distribution is the best-fitting distribution for

arrival times at parking lots. Therefore, we use two Weibull distributions to estimate these

arrival times for weekends and weekdays.
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Figure 3: The expected percentage breakdown for various activities by vehicle arrival
times on A) weekdays and B) weekends; Sources: [13] and [58].

2.3.3 State of Charge

While the demand for EVs is increasing due to environment- and economy-related con-

cerns, EVs have a limited battery capacity for charging and use. Many factors, such as

commuting distance, the driver’s behavior, traffic congestion, and weather conditions, can

affect an EV’s SOC at the time of its arrival at a final destination [128, 104]. Similar to

[26], we consider a normal distribution with a mean of 0.3 and a standard variance of 0.1

for the SOC of EVs when they arrive at charging locations. Fig. 4 shows the initial SOC

distribution for arriving EVs.

2.3.4 Willingness to Walk

Sociodemographic characteristics such as age, gender, education level, and occupation

affect drivers’ willingness to walk [79]. Walking distances are typically shorter for children
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Figure 4: Initial state-of-charge distribution for arriving electric vehicles; Source: [26].

and the elderly than for the young and middle-age groups. Studies have also indicated that

walking preferences are associated with many design factors, such as street connectivity,

pedestrian infrastructure, and mixed land uses [30]. Many authors have implemented a

distance decay function to illustrate individuals’ willingness to walk or bicycle. The decay

function parameter depends on the type of the final destination, and research using dis-

tance decay functions has also revealed different behaviors for people that live in different

areas. A negative exponential distribution was used in [125] to estimate walking trips over

short distances. The authors defined the distance decay function as P (d) = e−β×d, which

reflects the total percentage of walking trips for which the distance is greater than or equal

to d given in miles; here β is the decay parameter. The authors used 2009 NHTS data to

approximate the decay parameter β for different groups and trip purposes. In our study,

we consider the effects of the destination activity type, the season, the community size,

and the region of the U.S. on drivers’ walking preferences. The variation for each of these

factors on the walking distance preferences estimated by [125] is shown in Fig. 10, and
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details are provided in Table 1.
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Figure 5: Distance decay function for walking trips to different types of destination;
Source: [125].

Table 1: Estimated distance decay function parameters

Factor Category β

Season

Winter 1.88
Spring 1.68

Summer 1.64
Autumn 1.7

Region

Northeast 1.85
Midwest 1.65

South 1.76
West 1.65

Community
Town and country 1.68

Suburban 1.63
Urban and second city 1.78

2.3.5 EV Market Penetration

Various social, environmental and economic factors can significantly contribute to the

increasing market share of different types of EVs [27]. The research in [111] showed

that the presence of charging infrastructure contributes to the adoption of battery EVs but

does not have any significant effect on adoption of Plug-in hybrid vehicles. The authors of

[62] considered many sources of uncertainty in their sampling process, such as charging

infrastructure availability, energy prices, and consumers’ preferences. Their results project
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that BEV share distributions in 2030 and 2050 will have mean values of 11% and 28%,

respectively.

2.4 Utility Construction

Discrete choice models are utilized to help decision makers select the best choice among

different options in a choice set. These models are designed to maximize the utility of a

decision maker’s behaviors [106]. When an EV driver j reaches a charging station, he/she

can choose between n different charging types that differ in terms of prices and charging

duration. A given choice among the n charging types will provide an EV driver with a

certain level of utility. We denote the utility that EV driver j obtains from charging type n

as Un,j, n = 1, . . . , N . The behavioral model will then choose charging type n if and only if

Un,j ≥ Un′ ,j, ∀n, n
′ ∈ N ;n 6= n

′. Thus, a “utility function” can be defined as Un,j = Vn,j+εn,j,

where Vn,j = V (Xn,j) captures the deterministic part of the utility and εn,j is the random

part capturing the non-observable variables [75]. Some of the variables in V are unknown

to us, so we need to estimate them statistically.

We consider Un,j to be the utility of an EV driver who is willing to charge at station j

using charging type n. Let K be the set of predictor variables. Then the utility function

can represented as

Un,j =
∑
k∈K

βkXk
n,j + εkn,j,

where βk are the coefficients of the corresponding variables representing the decision

maker’s taste. The research in [116] analyzed drivers’ charging choices through a web-

based preference survey, using a mixed logit model with various predictor variables. Table

2 shows the estimated fixed and random effects of variables provided in [116].
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Table 2: Estimated parameters using mixed logit model; Source:[116]

Fixed Effects Random Effects
Variable Estimate Standard Deviation
Intercept 4.756 0.022

Price - 0.607 0.089
Charging cost -0.062 0.004
Cost at home 0.009 0.489

Dwell time ≥ 30 min 0.335 0.188
Chargers power (Reference: Level 1)

Level 2 1.229 0.253
Level 3 1.609 0.264

Range charged 0.014 0.003
Remaining range -0.130 0.006

Enough to Next Charging Opportunity -4.401 0.078

Using the estimated parameters, we calculate EV drivers’ utility from charging at each type

of charger and also the utility of not charging at that station. As mentioned earlier, when

an EV driver arrives in the community to reach his/her final destination, a set of available

parking lots is selected based on the driver’s walking preferences. Then the driver’s utility

for each parking lot in the selected set is calculated. This process is repeated for each

driver. Finally, we aggregate the utilities of the individuals to obtain the aggregated utility

for each charger type in each parking lot. The details about the utility construction phase

is provided in APPENDIX A.
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CHAPTER 3 MODEL FORMULATION AND DECOMPOSITION ALGORITHM

3.1 Notation and Model Formulation

One of the common approaches to modeling a problem under uncertainty is two-stage

stochastic programming. We formulate the EVCS network design problem as a scenario-

based, two-stage non-linear stochastic programming model that considers the randomness

arising from dwell times, drivers’ willingness to walk, the EV market penetration, the de-

mand patterns on weekdays and weekends, and SOCs. The first-stage decision variables

represent “here-and-now” decisions that are determined based on deterministic parame-

ters in the first-stage constraints before the uncertainty is revealed. Subsequently, second-

stage decisions are determined based on the first-stage decisions and the realizations of

the random variable.

We define J as the set of potential parking lots for installing a set of charger types,

denoted as N . We define B as the set of buildings that are considered to be the final

destinations for EV drivers. Given b ∈ B, we define m ∈ SM(b) to be collection of sub-

sets of available parking lots within the walking preference ranges of drivers whose final

destination is building b. We consider a collection of subsets since the EV drivers have com-

monality among the parking lots in reaching their final destinations. This is due to that the

drivers have different walking distance preferences and hence have different parking lot

subsets. We define T to be the set of time slots within a day, indexed by t ∈ T . We use Γ to

denote a set of arrival and departure times, where γ(a) and γ(d) indicate a combination of

arrival and departure times for γ ∈ Γ. We define ω̃ to be a multi-variate random variable

representing the demand, where each scenario ω is a realization of ω̃. In the first-stage of

the model, the locations and types of chargers are determined by binary variables, and the
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numbers of charger types in the selected parking lots are represented by integer variables.

In the second-stage, based on EV drivers’ walking preference ranges and the aggregated

utilities for each parking lot and charger type, EV drivers are allocated to parking lots in

a way that maximizes their expected access. For the mathematical formulation, we first

define the model sets, parameters, and variables:

• Sets

– J: Set of parking lots, with j ∈ J .

– T : Set of time slots, with t ∈ T .

– N : Set of charger types, with n ∈ N .

– B: Set of buildings, with b ∈ B.

– SM(b): Collections of subsets of possible parking lots based on the walking pref-

erences of drivers who are going to building b. There are M subsets and M

depends upon building b, with m ∈ SM(b).

– Γ: Set of arrival and departure times, with γ ∈ Γ.

– Ω: Set of scenarios, with ω ∈ Ω.

• Model parameters

– cn: Cost of installing charger of type n.

– kj: Capacity of parking lot j for installing chargers.

– F : Total amount of the budget for installing chargers.

– dγ,b(ω): Total demand for building b between the arrival and departure times

γ ∈ Γ for a given t ∈ T in scenario ω ∈ Ω.
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– un,j(ω): The aggregated utility of EV drivers who are willing to use charger type

n in parking lot j in scenario ω ∈ Ω.

– unc,j(ω): The aggregated utility of EV drivers who are not willing to charge their

EVs in parking lot j in scenario ω ∈ Ω .

– d
′

γ,b,m(ω): The demand for building b among drivers who are willing to use

parking lots m ∈ SM(b) between the arrival and departure times γ ∈ Γ in

scenario ω ∈ Ω.

• First-stage decision variables

– xn,j: 1 if parking lot j is chosen for installing charger type n; 0 otherwise.

– zn,j: Number of charger of type n in parking lot j.

• Second-stage decision variables

– ymγ,b,j,n(ω): The proportion of the demand for building b in the subsets of parking

lots SM(b) between the arrival and departure times γ ∈ Γ for a given t ∈ T that

is satisfied by parking lot j ∈ Sm(b), where m ∈ SM(b), using charger of type n

in scenario ω ∈ Ω.
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3.1.1 Two-stage Non-linear Stochastic Model

The two-stage non-linear stochastic programming model is defined as follows:

First-Stage Model:

Max EΩ[ϕ(x, z, ω̃)] (3.1)

s.t.∑
n∈N

zn,j ≤ kj ∀j ∈ J, (3.2)

zn,j ≤ kjxn,j ∀n ∈ N, j ∈ J, (3.3)∑
n∈N

∑
j∈J

cnzn,j ≤ F (3.4)

xn,j ∈ {0, 1}, zn,j ∈ Z+ ∀n ∈ N, j ∈ J. (3.5)

The second-stage recourse function based on the first-stage decisions x and z and a sce-

nario ω is given by the following non-linear programming model:

ϕ(x, z, ω) = Max
∑
γ∈Γ

∑
b∈B

∑
m∈SM (b)

∑
j∈Sm(b)

∑
n∈N

dγ,b(ω)ymγ,b,j,n(ω) (3.6)
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s.t.∑
γ∈Γ:

γ(a)≤t≤γ(d)

∑
b∈B

∑
m∈SM (b):
j∈Sm(b)

dγ,b(ω)ymγ,b,j,n(ω) ≤ zn,j

∀t ∈ T, j ∈ J, n ∈ N, (3.7)∑
m∈SM (b):
j∈Sm(b)

ymγ,b,j,n(ω) ≤ eun,j(ω)xn,j
eunc,j(ω) +

∑
l∈N e

ul,j(ω)xl,j

∀γ ∈ Γ, b ∈ B, j ∈ J, n ∈ N, (3.8)∑
n∈N

∑
m∈SM (b)

∑
j∈Sm(b)

ymγ,b,j,n(ω) ≤ 1 ∀γ ∈ Γ, b ∈ B, (3.9)

dγ,b(ω)
∑
n∈N

∑
j∈Sm(b)

ymγ,b,j,n(ω) ≤ d
′

γ,b,m(ω)

∀γ ∈ Γ, b ∈ B,m ∈ SM(b), (3.10)

0 ≤ ymγ,b,j,n(ω) ≤ 1

∀γ ∈ Γ, b ∈ B,m ∈ SM(b), j ∈ Sm(b), n ∈ N. (3.11)

The first-stage objective function (3.1) maximizes the expected EV drivers’ access to the

charging stations. Constraints (3.2) represent capacity restrictions for each type of charger

in a parking lot based on its capacity, and constraints (3.3) state that a parking lot must be

selected before selecting the charger type. Constraints (3.4) give the budgetary constraints.

Constraints (3.5) define the binary and integer restrictions for the first-stage variables. For

a realization of ω ∈ Ω, the second-stage objective function (3.6) maximizes the EV traffic

flows based on the network decisions made in the first-stage. For each time slot in the plan-

ning horizon t ∈ T , the constraints (3.7) limit access based on the capacity decided upon
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in the first-stage. Constraints (3.8) limit EV drivers’ choice of different levels of chargers

based on the utility function estimated by the mixed logit model described in the previous

section. Constraints (3.9) ensure that the allocation of flow to the charging stations for

each building does not exceed the building’s demand in any time slot. Constraints (3.10)

guarantee that drivers are assigned to only one of the parking lots within their walking

distance range. Finally, constraints (3.11) define the restrictions for the second-stage vari-

ables. Due to the constraints (3.8), the two-stage model is non-linear in nature and is in

general difficult to solve. In the next section, we provide details for linearizing the model

so that it is viable for computational efficiency.

Proposition 1. First, we restate constraints (3.8) as:

∑
m∈SM (b):
j∈Sm(b)

ymγ,b,j,n(eunc,a +
∑
l∈N

eul,jxl,j) ≤ eun,axn,j.

Then for bounded continuous and binary variables y and x, respectively, we define a non-

negative bi-linear variable as follows:

omγ,b,j,n,l = xl,jy
m
γ,b,j,n

∀γ ∈ Γ, n ∈ N, l ∈ N, b ∈ B,m ∈ SM(b), j ∈ Sm(b).

Using the variables o, a standard approach that has been adopted for linearizing the bi-linear

terms is to replace each term by its convex and concave envelopes, also called the “McCormick
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envelopes” [71]. The constraints (3.8) can then be rewritten as:

eunc,j

∑
m∈SM (b):
j∈Sm(b)

ymγ,b,j,n +
∑

m∈SM (b):
j∈Sm(b)

∑
l∈N

eul,jomγ,b,j,n,l

≤ eun,jxn,j ∀γ ∈ Γ, b ∈ B, j ∈ J, n ∈ N, (3.12)

omγ,b,j,n,l ≤ xn,j

∀γ ∈ Γ, n ∈ N, l ∈ N, b ∈ B,m ∈ SM(b), j ∈ Sm(b), (3.13)

omγ,b,j,n,l ≤ ymγ,b,j,n

∀γ ∈ Γ, n ∈ N, l ∈ N, b ∈ B,m ∈ SM(b), j ∈ Sm(b), (3.14)

omγ,b,j,n,l ≥ xn,j + ymγ,b,j,n − 1

∀γ ∈ Γ, n ∈ N, l ∈ N, b ∈ B,m ∈ SM(b), j ∈ Sm(b). (3.15)

Proof. For the proof, see [71].

This reformulation helps represent the second-stage problem as a linear programming

model, thus allowing us to use the L-shaped method as a decomposition algorithm. It is

worth to mention that since the two-stage model is an extension of capacitated facility

location problem, it is a NP-hard problem [72].

3.2 Methodology and Algorithm Development

3.2.1 Sample Average Approximation

The SAA method is an approach to solving two-stage stochastic programming prob-

lems that uses Monte Carlo simulation. It is a sampling technique for approximating the
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expectation function in a two-stage model. SAA approximates the second-stage expected

recourse function of the two-stage stochastic programming model by a sample average

estimate derived from a random sample. Then the sample average approximating the two-

stage model is solved using a decomposition algorithm or a direct solver. The SAA model

is solved multiple times with different samples to obtain candidate solutions along with

statistical estimates of their optimality gaps. The SAA procedure is specified in Algorithm

1.

The SAA procedure for statistical evaluation of a candidate solution was suggested in

[68], while convergence properties for the SAA method were studied in [55].

Table 3: SAA performance

S P UB LB Gap SD

10

5 230.78 224.40 6.38 5.57
10 246.89 242.83 4.06 4.98
15 277.43 272.72 4.71 3.55
20 300.76 295.42 5.34 3.76

20

5 227.90 224.90 3.00 6.11
10 268.78 264.95 3.83 5.20
15 296.59 291.80 4.79 3.65
20 310.49 306.78 3.71 4.76

30

5 229.75 226.23 3.52 2.03
10 265.20 261.82 3.38 2.98
15 286.43 285.11 1.32 3.81
20 273.18 272.28 0.90 2.48

40

5 227.29 226.40 0.89 2.75
10 278.13 277.00 1.13 2.21
15 304.46 302.31 2.15 1.17
20 323.39 322.85 0.54 1.88

50

5 220.10 219.70 0.40 2.90
10 289.42 288.21 1.21 3.12
15 308.24 307.90 0.34 2.26
20 322.00 321.85 0.15 2.59

Table 3 presents the computational results for the two-stage model using the SAA pro-

cedure. In the table, ‘S’ and ‘P’ represent the numbers of scenarios and parking lots, re-

spectively. The upper and lower bounds are represented as ‘LB’ and ‘UB’, respectively. The
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Algorithm 1 : SAA

Estimate the upper bound:
Generate K independent sample sets of scenarios, each
of size L, i.e., (ω1

j , ω
2
j , ..., ω

L
j ) for j = 1, 2, ..., K.

For each sample set j = 1, 2, ..., K, find the optimal
solution:

vjL =
1

L

L∑
i=1

ϕ(x, z, ωij).

Calculate:

vL,K =
1

K

K∑
j=1

vjL,

σ2
vL,K

=
1

K(K − 1)

K∑
j=1

(vjL − vL,K)2.

Estimate the lower bound:
Choose any feasible solution (x, z) from the first-stage
problem, which provides a lower bound for the optimal
value f(x, z) ≤ v∗.

Choose a sample of scenarios of a size L′ that is much
larger than L and independent of the samples, i.e.,
(ω1, ω2, ..., ωL

′).
Estimate the objective function f :

f(x, z) = 1
L′

∑L′

i=1 ϕ(x, z, ωi).

Calculate the variance of this estimation:

σ2
L′(x, z) = 1

L′(L′−1)

∑L′

i=1(ϕ(x, z, ωi)− f(x, z))2.

Estimate the optimality gap and variance:
Based on the computed upper and lower bounds, the optimality gap is estimated as
follows:

GapK,L,L′(x, z) = vL,K − f(x, z).

Similarly, the variance is calculated as follows:

σ2
gap = σ2

vL,K
+ σ2

L′(x, z).
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upper bound for the expected accessibility of the charging station is estimated by a batch

size of 20 (K=20). An independent sample of scenarios (L′=1,000) were used to estimate

a lower bound for the optimal solution. The gap and standard deviation are represented

in the columns ‘Gap’ and ‘SD’, respectively.

3.2.2 L-shaped Decomposition

SAA was adopted for the model presented in section 5.2.2, and two-stage sample aver-

age stochastic programs are commonly solved by decomposition algorithms such as Ben-

ders’ method and the L-shaped method. Realistic problems are continuously growing in

size and complexity; for this reason, decomposition techniques are more attractive. De-

composition methods break a problem down into smaller problems that are easier to solve.

The L-shaped method has been applied to the class of mixed-integer linear stochastic pro-

gramming problems with only continuous variables in the second-stage. The L-shaped

method works by approximating the expected second-stage recourse function through con-

struction of optimality cuts in the first-stage based on the dual solutions of the second-stage

problems. The procedure alternates between a master problem (MP), as represented in

(3.16), and sub-problems (SPs), trading information to obtain the optimal solution. The

SPs are the second-stage formulation (3.6), subject to constraints (3.7)-(3.11).

Master Problem (MP):

Max η (3.16)

s.t.

(3.2)− (3.5), η free.
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In the problem, constraints (3.7), (3.12), (3.13), and (3.15) are referred to as the linking

constraints because of the presence of the first-stage variables x and z in the second-

stage, which links the two stages. Let A be the coefficient matrix for variables zn,j in

the linking constraints (3.7), where ai,q is the entry of matrix A at indices i and q, and

ai,q ∈ R|N ||J ||T |×|N ||J |. In addition, let F and G be the coefficient matrices for variables

xn,j in the linking constraints (3.12) and ((3.13), (3.15)), respectively, where fi,q and

gi,q are the entries of the matrices F and G at indices i and q, and fi,q ∈ R|N ||J ||T ||B|×|N ||J |,

gi,q ∈ R2|T ||N ||N ||B||J ||S|×|N ||J |. We use πω as the notation for a vector for the dual values of the

second-stage constraints ((3.7), (3.9), (3.10), (3.11) (3.12), (3.13), (3.14), (3.15)), and

π1
ω, π2

ω, and π3
ω as dual values corresponding to the constraints (3.7), (3.12) and ((3.13),

(3.15)) in each scenario. We use ∆ω to refer to the right-hand sides of the SPs in each

scenario. The L-shaped method is initialized by solving the first-stage EVCS problem to

obtain the initial solutions x0 and z0. These solutions are then used as fixed parameters in

the second-stage problem. For each scenario ω ∈ Ω, a sub-problem is defined based on the

second-stage problem. In the next step, the SPs are solved to obtain the dual values and

the corresponding objective functions. The optimality cut(s) is (are) then generated using

matrix multiplication. For each scenario, an optimality cut can be defined as follows:

∑
n∈N

∑
j∈J

(
((π1)TA) · zn,j +

(
((π2)TF )((π3)TG)

)
· xn,j

)
+ η ≤ πT ·∆ ,

where η is a free variable. We use Θk
ω to denote the optimality cut corresponding to sce-

nario ω at iteration k. It should be noted that because the second-stage is feasible for every



34

solution of the first-stage (complete recourse), we do not need to add any feasibility cuts

in (3.16). In the next step, the generated cut(s) are added to the MP (3.16) with the ob-

jective function to maximize η for the single-cut and
∑

ω∈Ω pωηω for the multi-cut L-shaped

decomposition where pω is the probability of occurrence for each scenario ω. Then the MP

is solved to obtain a new solution for the variables x and z, and the updated solution is

then added to the sub-problems. In each iteration, upper and lower bounds are updated

based on the new solutions obtained from the sub-problems and the MP. This process is re-

peated until the difference between the upper and lower bounds reaches a pre-determined

threshold.

To evaluate the efficacy of the L-shaped algorithm, we conducted computational exper-

iments with various instances. We implemented single- and multi-cut L-shaped decompo-

sition methods to solve the large-scale sample average two-stage stochastic programming

models. We compared the performance of these two methods to the deterministic equiv-

alent problem (DEP). The DEP is the entire representation of formulation (3.1)-(3.11)

without any decomposition for the problem. Table 4 indicates the complexity of instances

in terms of the number of variables and constraints in the first-stage and the second-stage,

along with the number of non-zeros. The columns labelled ‘S’, ‘P ’, ‘Cons’, and ‘Vars’ repre-

sent the number of scenarios, parking lots, constraints, and variables, respectively. Table

5 shows the numerical results. The first two columns indicate the performance of the DEP

in terms of runtime in seconds and the MIP gap (%). The next three columns specify the

performance of single-cut L-shaped decomposition, with ‘time(s),’ ‘gap(%)’ and ‘# of cuts’

indicating runtime (seconds), the gap percentage, and the total number of cuts within

the stipulated time limit, respectively. Similarly the last three columns indicate the per-
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Algorithm 2 : L-shaped decomposition

Initialization:
Obtain an initial solution z0 and x0 by solving the first-
stage problem.

Set UB←∞, LB← −∞, k ← 0.
Define the free variable η for single-cut and ηω for
multi-cut decomposition.

While UB - LB > ε:
Sub-problems:

For ∀ω ∈ Ω:
Solve ϕ(x, z, ω).
Calculate the dual solution for ϕ(x, z, ω)
and store it as πk.

Extract π1,k, π2,k, and π3,k from πk.
Calculate the objective function value for
ϕ(x, z, ω) and store it as fkω .

Update upper bound:
Set vk =

∑
ω∈Ω pωf

k
ω , where pω is the probability

of the occurrence of scenario ω ∈ Ω.
Set UB← min (UB, vk).

Cut generation:
Single-cut:

Add
∑

ω∈Ω pωΘk
ω to the first-stage problem.

Multi-cut:
∀ω ∈ Ω :

Add Θk
ω to the first-stage problem.

Master problem:
Set vk+1 ← η as the objective function for
single-cut.

Set vk+1 ←
∑

ω∈Ω ηω as the objective function for
multi-cut.

Solve the MP and update z∗ ← zk and x∗ ← xk.
Update lower bound:

Set LB← max (LB,vk+1).
Set k ← k + 1.
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Table 4: Model data specifications

S P Cons Vars First-Stage Vars First-Stage Cons Second-Stage Vars Second-Stage Cons # of Non-zeros

10

5 477,970 178,770 15 21 447,955 178,749 2,886,750
10 951,240 357,540 30 41 951,210 357,499 7,987,222
15 1,424,510 536,310 45 61 1,424,465 536,249 12,342,786
20 1,897,780 1,715,080 60 81 1,897,720 714,999 18,967,552

20

5 1,043,334 390,210 15 21 1,043,319 390,189 4,245,768
10 2,076,404 780,360 30 41 2,076,374 780,319 11,879,054
15 3,109,474 1,170,630 45 61 3,109,429 1,170,569 17,652,320
20 4,142,544 1,560,840 60 81 4,142,484 1,560,759 25,657,932

25

5 1,244,946 465,090 15 21 1,244,931 465,069 6,676,510
10 2,477,576 930,180 30 41 2,477,546 930,139 15,777,890
15 3,710,206 1,395,270 45 61 3,710,161 1,395,209 21,876,112
20 4,942,836 1,860,360 60 81 4,942,776 1,860,279 33,132,981

30

5 1,456,852 543,450 15 21 1,456,837 543,429 8,352,947
10 2,899,182 1,086,900 30 41 2,899,152 1,086,859 20,301,290
15 4341,512 1,630,350 45 61 4341,467 1,630,289 37,392,389
20 5,783,842 2,173,800 60 81 5,783,782 2,173,719 75,390,221

35

5 1,750,951 653,910 15 21 1,750,936 653,889 10,893,269
10 3,484,551 1,307,820 30 41 3,484,521 1,307,779 21,290,765
15 5,218,151 1,961,730 45 61 5,218,106 1,961,669 45,888,242
20 6,951,751 2,615,640 60 81 6,951,691 2,615,559 80,561,107

40

5 2,093,635 781,590 15 21 2,093,620 781,569 15,896,110
10 4,166,475 1,563,180 30 41 4,166,445 1,563,139 30,290,137
15 6,239,315 2,344,770 45 61 6,239,270 2,344,709 59,876,208
20 8,312,155 3,126,360 60 81 8,312,095 3,126,279 101,965,108

Table 5: Computational results for L-shaped method

S P
DEP Single-cut Multi-cut

time(s) gap(%) time(s) gap(%) # of cuts time(s) gap(%) # of cuts

10

5 303 0.00 1,234 0.00 453 204 0.00 570
10 2,263 0.00 3,600 0.30 598 539 0.00 780
15 2,779 0.00 3,600 0.20 438 321 0.00 510
20 3,600 0.10 3,600 3.00 253 3,600 2.00 1,750

20

5 1,845 0.00 2,747 0.00 349 432 0.00 1,060
10 3200 0.00 3,600 0.70 366 1,036 0.00 1,420
15 3,600 10.80 3,600 3.90 272 737 0.00 1,180
20 3,600 0.20 3,600 33.00 162 3,600 0.70 1,360

25

5 2,575 0.00 3,600 0.04 508 921 0.00 1,675
10 3,600 - 3,600 4.10 301 3,600 0.20 3,300
15 3,600 - 3,600 5.20 251 3,600 0.30 3,125
20 3,600 0.20 3,600 12.80 153 3,600 0.50 2,775

30

5 3,057 0.00 3,600 0.00 467 661 0.00 1,530
10 3,600 - 3,600 62.40 499 1,086 0.00 1,710
15 3,600 - 3,600 5.80 201 1,198 0.00 1,860
20 3,600 2.40 3,600 46.25 116 3,600 6.00 2,130

35

5 3,200 0.00 3,600 0.20 207 1,401 0.00 1,610
10 3,600 - 3,600 11.60 177 3,600 0.02 2,380
15 3,600 - 3,600 5.10 152 3,600 0.01 2,205
20 3,600 - 3,600 11.80 98 3,600 0.15 1,575

40

5 3,600 - 3,600 0.15 203 3,600 0.11 2,240
10 3,600 - 3,600 2.40 148 3,600 0.22 1,680
15 3,600 - 3,600 9.00 137 1,414 0.00 840
20 3,600 - 3,600 37.00 76 3,600 4.00 400



37

formance metrics related to multi-cut L-shaped. The gap percentage is calculated as the

difference between the upper bound and the lower bound divided by the lower bound.

Similarly, the last three columns specify the performance of multi-cut L-shaped decom-

position. All of the optimization models were implemented in Python 3.6 using Gurobi

8.1.1, with a one-hour time limit. The computational experiments were performed on a

computer with an Intel R© Xeon R© CPU E5-2640, 2.60 GHz, and 80GB RAM. As shown in

Table 5, the runtime for most instances increased with an increase in the number of park-

ing lots and scenarios, as expected. When the number of scenarios was less than 20, DEP

performed better than the single-cut method. However, for the rest of the 16 instances,

DEP could obtain a feasible solution within the one-hour time limit in only four instances,

while single-cut decomposition performed better in most of these instances. Especially for

the large-scale instances, multi-cut decomposition outperformed DEP with a much better

runtime and gap. Also, multi-cut decomposition outperformed single-cut decomposition

in all instances. Given the relatively simple and fewer constraints in the first-stage model,

the multi-cut variant was able to perform better than single-cut. The single-cut L-shaped

method mostly had difficulties in accelerating the convergence of the upper and lower

bounds. Hence, for any given data set, multi-cut decomposition outperformed the other

methods, and especially when there were a larger number of parking lots and scenarios.

3.2.3 Value of the Stochastic Solution

The utility of the stochastic programming approach can be evaluated by estimating the

value of the stochastic solution (VSS) introduced by [11]. The objective value of the re-

course problem (RP) can be stated as RP=EΩ[ϕ(x, z, ω̃)]; then we take the expected value

of the random variable and solve the expected value problem, EV=ϕ(x, z, ω̄), where ω̄ for
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the demand parameter is
∑

ω∈Ω pωdγ,b(ω), with pω indicating a scenario ω’s probability of

occurrence and
∑

ω∈Ω pω=1. Considering x̄, z̄ as the solutions for the EV problem, the

expected result of using the expected value solutions (x̄, z̄) is EEV=EΩ[ϕ(x̄, z̄, ω̃)]. Then

the VSS can be defined as the difference between the objective values of the recourse

problem and the EEV, i.e, VSS=RP-EEV. In Fig. 6, value of the stochastic solution is cal-

culated as RP−EEV
EEV

∗ 100, ‘VSS’ represents the series while considering uncertainties in all

the parameters, and each of the other series represent the value of stochastic solution for

each uncertain parameter while other parameters are replaced by their mean values. Five

replications and 40 scenarios were used to obtain value of stochastic solutions. Within the

parameters, dwell time has the highest impact on the accessibility to charging stations.

Due to the limited capacity of charging locations, and an EV is plugged-in till the end of

a driver’s activity, dwell time significantly affects the accessibility to the charging stations.

For the same reason, SOC’s impact is minimum and contributes to a driver’s decision on

whether to charge or not. At lower budgets, arrival time of an EV to the community has

more impact due to lesser availability of charging stations. Also, as the budget increases,

due to the availability of more charging stations within the drivers’ walking distance, the

stochastic influence of walking has decreased. By adopting the stochastic programming

approach, the overall improvement in accessibility to charging stations is 11.37 %.
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CHAPTER 4 CASE STUDY, COMPUTATIONAL EXPERIMENTS, AND CONCLUSION

4.1 Case Study and Computational Experiments

We conducted a case study using data obtained from the Southeast Michigan Council

of Governments (SEMCOG) and literature sources for the midtown area of Detroit, Michi-

gan, in the US. This area includes different types of destinations, which attracts lots of

traffic. There are 67 offices, 44 school-related buildings, 12 social places, 5 family-related

buildings, 4 restaurants, and 3 shopping places in this area. We selected 10 parking lots as

potential locations for installing chargers and assumed that the parking lots are available

for use from 6:00a.m to 6:00p.m and that the capacity of each of the parking lots is based

on its size. We estimated the EV demand for the case study through a two-step process.

The data from SEMCOG shows that the average annual daily traffic for the Detroit mid-

town area is between approximately 10,000 and 14,000 vehicles and follows a uniform

probability distribution. Furthermore, we calculated the EV demand for the final destina-

tion based on drivers’ different activity types during the time of day and the day of the

week. According to the U.S. Environmental Protection Agency’s analysis, 3% and 5% of

the light-duty vehicle fleet comprise EVs, and BEVs’ market share can be affected by cold-

temperature weather conditions [82]. Since our case study is in a cold area, we considered

a 2% market share for BEVs in each case. Following a suggestion in [125], we used a neg-

ative exponential distribution function to capture EV drivers’ willingness-to-walk patterns

based on the activity type, season, and community size. On average, given our parame-

ter settings, 13% of the total demand is lost because there is no parking available within

drivers’ preferred walking distances.
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Table 6: Weibull distribution parameters for drivers’ dwell time; Source:[27]

Type of day Work Social Family Meal School Shopping
Weekday (5.89, 10) (1.89, 10) (1.05, 10) (0.79, 2) (3.61, 2) (0.56, 2)
Weekend (6.04, 6) (2.03, 2) (1.13, 2) (0.79, 2) (3.36, 10) (0.25, 0.5)

4.1.1 Scenario Generation

We modeled uncertainties using case scenarios in the two-stage model. Each scenario

represents a single day and is affected by the total number of EV drivers arriving in the

community on a weekday or weekend in specific seasons of the year. Following the uniform

probability distribution, each scenario occurs in each season of the year with the same

probability. The arrival times of BEV drivers were estimated by Weibull distributions with

parameters (8, 3) and (13, 4) for a weekend and a weekday, respectively [135]. Based on

a driver’s activity, the dwell time was calculated using a Weibull distribution. The scale and

shape parameters for each type of activity and type of day are provided in Table 6. When a

driver arrives in the community, a building or final destination is randomly assigned to the

driver based on his/her activity type, using a uniform distribution. As mentioned in the

previous section, we use a truncated normal distribution N(0.3, 0.1) with limits of 0 and 1

to estimate the SOC for an EV upon its arrival at a parking lot. This process was repeated

multiple times to generate a set of scenarios.

4.1.2 Experiments and Results

The availability of an EVCS can offer a greater driving range for an EV and make it

unnecessary to use other vehicles for longer trips. To examine the effects of different pa-

rameters and their impact on the accessibility of EVCSs in the proposed model, we studied

different cases and evaluated the model with a sensitivity analysis. We considered 6:00
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am – 9:00 am, 9:00 am – 12:00 pm, 12:00 pm – 2:00 pm, and 2:00 pm – 6:00 pm to

be the four time slots in a day. Also, we considered $900, $3,450, and $25,000 to be the

average installation costs for level 1, level 2, and level 3 chargers, respectively [93]. Forty

scenarios were generated for the two-stage model, and 10 parking lots were used in all

cases. Fig. 7 shows the heat map for the demand distribution and the locations of parking

lots. Parking lots 1 through 8 are the parking structure facilities that have the highest ca-

pacity in the area in terms of parking spots. The other two parking lots are smaller parking

facilities. A darker color indicates a higher demand for a parking lot. Parking structures

are considered to have a capacity for 20 stations, while the parking lots are considered

to have a capacity for 5. A set of available parking lots was generated for each EV driver

based on the driver’s preferred walking distance. Four different metrics were used to as-

sess the performance of the EVCS network design, including EVCS accessibility, charger

utilization, total walking distance, and average walking distance per driver. Accessibility

is defined as the percentage of EV drivers who could charge their vehicles in the charging

locations proposed by the two-stage model. Utilization is defined as the percentage of the

total time that a charger is used by EVs. Because the installation of public charging stations

can change travelers’ walking patterns, especially in an urban community, we measured

the walking distance trend before and after installing charging stations. Fig. 8 compares

the accessibility of charging stations with the utilization of each level of chargers as the

budget increases. As expected, the results indicate that, with a budget increase, the acces-

sibility of the charging levels also increases. In addition, level 1 utilization decreases faster

than level 2 utilization with a budget increase. This is because more level 2 chargers than

level 1 chargers are installed as the budget increases, since level 2 chargers have a higher
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Figure 7: Heat map of the demand flow and location of parking lots in the study area.
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utility for commuters. Fig. 9 compares the total number of level 1 and level 2 chargers

that are installed in parking lots based on different budgets, and these are labeled with ac-

cessibility percentages. In Fig. 11, the average utilization percentages for level 1 and level

2 chargers in the ten parking lots are compared for different time slots. The maximum

utilization occurs between 9:00 am and 12:00 pm, and this matches the activity types of

the case community, which are mostly school and work. In addition, Fig. 12 illustrates the

trade-off between the budget size and the utilization percentage in different time slots for

level 1 and level 2 chargers. Figs. 11 and 12 present the utilization of chargers, which is a

major factor in estimating the financial rate of return for investors.

Although this was not the focus of the study, increases in travel options enable com-

muters to dedicate a part of their trip to walking or biking in order to improve their health.

Thus, an optimal design of public charging infrastructures can provide opportunities for
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people in a community to increase their levels of physical activity [78]. This can also im-

prove the livability metrics within a city. Based on walking preferences, two cases were

generated; pessimistic and optimistic cases. Both cases generated from a distribution given

by [125]; however, in the pessimistic case the distribution is truncated for value over 0.2

mile. Fig. 10 compares the total walking distance and the walking distance per person

among EV drivers who access public charging stations for the two cases.

As the results indicate, level 3 chargers are not installed in the parking locations. This is

due to the limited budget size, since the level 3 installation cost is relatively high compared

to the cost for the other levels of chargers. Based on our data sources, Fig. 13 indicates

that within the urban community, people are unwilling to use level 3 chargers when the

price is about 35 cents per minute. However, the utility of level 3 increases as the charging

price decreases. When the charging price is finally lowered to $3 per hour, the preference

for using fast chargers is higher than for level 1 and level 2 chargers.

4.1.3 Data-driven Simulation

A data driven simulation study was performed to evaluate the efficacy of the proposed

work with the approach presented in [27] which ignores choice modeling. Two config-

urations were considered to establish the baseline for [27]: configuration 1 - where all

the chargers are considered to be level 2; configuration 2 - 80% of the parking lots’ ca-

pacity is allocated for installing level 2 chargers and the remaining capacity is assigned to

level 1. Based on the network designs proposed by each of the approaches, a simulation

experiment was performed to measure the ‘accessibility’ for each driver based on the avail-

ability and choice during their arrival. If an EV driver could not find his/her first-choice

of charger, the driver will search for the next best alternative. We used two performance



46

75
k

10
0k

12
5k

15
0k

17
5k

20
0k

Budget ($)

0.0

0.2

0.4

0.6

0.8

1.0
Av

er
ag

e 
wa

lk
in

g 
di

st
an

ce
 p

er
 p

er
so

n 
(m

i)

Walking
Pessimistic
Optimistic

75
k

10
0k

12
5k

15
0k

17
5k

20
0k

Budget($)

3
4
5
6
7
8
9

10
11
12

To
ta
l W

al
ki
ng
 D
ist
an
ce
 (1

00
0*
m
i)

Walking
Pessimistic
Optimistic
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people who have access to a public EV charging station in both optimistic and pessimistic

cases.



47

6:0
0-

9:0
0

9:0
0-

12
:00

12
:00

-1
4:0

0

14
:00

-1
8:0

0

Time slots

0

20

40

60

80

100

Ut
iliz

at
io

n(
%

)

Level 1

Parking
1
2
3
4
6

6:0
0-
9:0

0

9:0
0-
12
:00

12
:00

-1
4:0

0

14
:00

-1
8:0

0

Time slots

60
65
70
75
80
85
90
95

100

Ut
iliz

at
io
n(
%
)

Level 2

Parking
1
2
3
4
6

Figure 11: Percentage of average utilization of a) Level 1, and b) Level 2 chargers during
each time slot in five parking lots



48

6:0
0-

9:0
0

9:0
0-

12
:00

12
:00

-1
4:0

0

14
:00

-1
8:0

0

Time slots

0.0

0.2

0.4

0.6

0.8

1.0

Ut
iliz

at
io

n

Level 1

Budget
75k
100k
125k
150k
175k
200k

6:0
0-

9:0
0

9:0
0-

12
:00

12
:00

-1
4:0

0

14
:00

-1
8:0

0

Time slots

0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Ut
iliz

at
io

n

Level 2

Budget
75k
100k
125k
150k
175k
200k

Figure 12: Percentage of average utilization of a) level 1, and b) level 2 chargers in all
parking lots during each time slot for different budgets



49

1 2 3 4 5 6 7 8 9 10
Parking lots

0

1

2

3

4

5

Ag
gr
eg

at
ed

 U
til
ity

Level 3 charging price : 9($/h)

Level 1
Level 2
Level 3
No Charging

1 2 3 4 5 6 7 8 9 10
Parking lots

0

1

2

3

4

5

Ag
gr
eg

at
ed

 U
til
ity

Level 3 charging price : 6($/h)

Level 1
Level 2
Level 3
No Charging

1 2 3 4 5 6 7 8 9 10
Parking lots

0

1

2

3

4

Ag
gr
eg

at
ed

 U
til
ity

Level 3 charging price : 4($/h)

Level 1
Level 2
Level 3
No Charging

1 2 3 4 5 6 7 8 9 10
Parking lots

0

1

2

3

4

5

Ag
gr
eg

at
ed

 U
til
ity

Level 3 charging price : 3($/h)

Level 1
Level 2
Level 3
No Charging

Figure 13: Aggregated EV drivers’ utility of using different charger levels in different
parking lots when the level 3 charging price is 9($/h), 6($/h), 4($/h) and 3($/h)

75
k

10
0k

12
5k

15
0k

17
5k

20
0k

Budget ($)

20

30

40

50

60

70

80

90

100

 A
cc

es
sib

ilit
y 

(%
)

Proposed Approach
Configuration 1
Configuration 2

75
k

10
0k

12
5k

15
0k

17
5k

20
0k

Budget ($)

50

60

70

80

90

100

 L
ev

el
 2

 U
til

iza
tio

n(
%

)

Proposed Approach
Configuration 1
Configuration 2

Figure 14: Percentage of accessibility and level 2 utilization for the proposed approach
and two defined configurations



50

metrics: “accessibility" is the percentage of EV drivers who could use the chargers at their

arrival; “utilization" is calculated as the total number of hours that a charger is used by

drivers over the total number of hours within the simulation period. Fig. 14 shows that the

proposed approach considering choice modelling has better accessibility and utilization at

each of the budget levels compared to other two configurations using the model proposed

in [27]. For each budget, we used 200 replications for simulation, and on average, the

proposed approach could increase the accessibility by 29% and 10%, and level 2 utiliza-

tion by 23% and 14% compared to using configurations 1 and 2 without choice modelling,

respectively.

4.2 Conclusion

In this research, we propose a choice modeling approach embedded in a two-stage

stochastic programming model for EV charging station network design within a commu-

nity. Various factors, such as the total EV flow, arrival and dwell times, batteries’ SOCs

upon arrival, and the distances that EV drivers are willing to walk, are considered in the

model as sources of uncertainty. Factors such as charging prices, the cost of charging at

home, driving range charges, total trip distances, and dwell times are used to capture BEV

drivers’ charging choice behaviors. The framework suggests relationships among the bud-

get size and the capacity and accessibility of the charging stations for EVs. A choice model

utility function was helpful in determining preferences for different charger types among

the EV drivers. The proposed model presents a robust charging station network solution to

any future changes in the community’s pattern of willingness to walk. The computational

results indicate that the optimal layout of charging stations should include a mix of differ-

ent chargers. For the given data, accessibility improved with an increase in the budget, and
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more level 2 chargers are installed compared to the level 1. Also, with increase in budget,

utilization of chargers decreased. Based on current pricing policy and utility function, level

3 is not preferred in urban communities. The simulation study in post optimization helps

to study the influence of price on utility function and subsequent improvement in prefer-

ences for level 3 chargers. We ran experiments to quantify the influence of stochastic data

parameters, and dwell time had the highest impact on accessibility to charging stations.

Furthermore, a data-driven simulation study was conducted to evaluate the benefits of us-

ing choice modelling approach. We solve the proposed two-stage stochastic programming

models using sample average approximation and the L-shaped decomposition method.

We compare the computational results with single- and multi-cut variants of the L-shaped

method for a deterministic equivalent problem formulation. We present a case study using

the model’s results along with various insights, including (among others) a demarcation

in the utility function for different charger types and the sensitivity of the optimal network

to the budget.
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CHAPTER 5 EFFICIENT ALGORITHMS FOR AUTONOMOUS ELECTRIC VEHICLE
MIN-MAX ROUTING PROBLEM: INTRODUCTION AND MODEL FORMULATION

5.1 Introduction

Global warming has been primarily linked to human activities which release green-

house gases [76]. Among those activities, the transportation sector causes the largest share

(about 24%) of greenhouse gas emissions, which mainly originate from fossil fuel burner

vehicles [94]. Given this, a lot of efforts are made to transform the transportation systems

by driving new technological innovations in vehicles [119]. One of the outcomes is elec-

tric vehicles (EVs) which are becoming rapidly important for many automotive companies.

Many countries have offered incentives to accelerate the adoption of EVs to increase the

EV share in future vehicle fleets [127]. Meanwhile, autonomous driving technologies are

evolving and considerable efforts are been made to advance the real-world applications

for self-driving [119].

Due to natural synergies between the autonomous and EVs, automotive companies

are striving to equip the EVs with autonomous driving technologies [18]. Autonomous

electric vehicles (AEV) have capabilities for decision making, on-board computation, and

connectivity. It is important for AEVs to choose energy-efficient routes and find the best

locations for recharging during their itineraries. Transportation network companies (e.g.,

Lyft and Uber), and logistic companies (e.g., FedEx and UPS) seek to operate a fleet of

AEVs in their business in the future [133]. Adopting AEVs also brings new challenges.

One of the main operational challenges for AEVs in transport applications is their limited

range and the availability of charging stations (CS) [98, 88, 44]. It is estimated that half

of the US population lives in areas with fewer than 90 charging infrastructures per million
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people, which is 70% below the benchmarks [92, 28]. To successfully employ AEVs, we

need strategies that can alleviate the range and recharging limitations. Effective routing

strategies for an AEV fleet ask for solving the vehicle routing problem (VRP) with the

limited range and number of CSs. Hence, the autonomous electric vehicle routing problem

(AEVRP) naturally appears in order to operate a team of AEVs efficiently. AEVRP falls into

the category of green vehicle routing problem (GVRP). The GVRP embraces a broad and

extensive class of problems considering environmental issues as well as finding the best

possible routes for vehicles. The GVRP research flow can be divided into two categories:

1) minimize the fuel consumption while considering loading weights [56]; and 2) replace

the conventional vehicles with Alternative Fuel Vehicles (AFV) [88, 96, 23, 112, 47, 56].

This research focuses on AFVs, hence we briefly review the related literature on routing

strategies for AFVs. An initial work was done by [25], where they developed a mixed

integer programming (MIP) formulation and a heuristics to overcome the range limitation

of AFVs and shortage of refueling locations. Authors in [88] introduced the EV routing

problem with time windows and charging stations with the limited freight capacity for the

vehicles. They developed a hybrid meta-heuristic by integrating variable neighborhood

and tabu search. The research work in [43] considered a mixed fleet of conventional,

plug-in hybrid, and EVs. They proposed a hybrid genetic algorithm integrated with a

neighborhood search approach. Also, to include CSs in each trip and determining the

fuel type, they applied a layered optimization algorithm by combing labeling technique

and a greedy algorithm. For single unmanned aerial vehicles’ routing problem, authors in

[96] proposed a novel approach based on an approximation algorithm combined with a

heuristic method. Later, the authors extended their work to multiple vehicles by applying
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the Voronoi algorithm as the construction phase, and 2-opt, 3-opt variable neighborhood

searches in the improvement phase [60].

In this research, we define the AEVRP as follows: given a set of AEVs which are initially

stationed at a depot, a set of targets and a set of CSs, the goal is to visit each target exactly

once by any AEV and return to the depot while no AEV runs out of charge as they travel in

their routes. We assume that all AEVs get fully charged at charging stations, and the fuel

consumption rate is linearly proportioned with traveled distance. This research considers a

variant of the AEVRP, which we refer to as min-max AEVRP. The objective of this problem

is to minimize the maximum distance traveled by any AEV instead of the total distance

(min-sum), that is the conventional case in VRP. The min-max AEVRP is fundamentally

different from min-sum AEVRP. An optimal solution in min-max AEVRP assigns routes to

all AEVs such that none of the AEVs has a longer route. This will result in a more balanced

distribution of loads and fair and equitable utilization of the AEVs, which can decrease

the rates of battery degradation in AEVs [64]. Refer to Figure 15 for an illustration for

min-max and min-sum routes for AEVs. In Figure 15, AEV1 visits most of the targets while

AEV2 visits only a few targets with min-sum. However, using min-max, the two AEVs visit

almost the same number of targets.

The min-max AEVRP is also of interest when minimizing time to visit targets is more

important than the total traveled distance. This situation arises mainly in emergency man-

agement situations such as providing relief after a disaster [15, 3]. Other applications of

min-max AEVRP are in intelligence, surveillance, and reconnaissance by unmanned ground

or aerial vehicles [2, 105, 131, 69, 52], and multi-robot coverage path planning. For ex-

ample, in time-critical scenarios, a group of unmanned aerial vehicles can be engaged in
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Charging stations

AEV1 path 
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Figure 15: A feasible tour for two AEVs which visit all the targets while visiting some
charging stations for recharging: AEVRP using min-sum (left) vs AEVRP using min-max
(right).

large scale surveillance operations to minimize the maximum time needed to visit particu-

lar targets. In the energy-efficient multi-robot coverage path planning, the goal is to obtain

an optimal path considering all targets within the area of interest, and avoiding sub-areas

with unique characteristics such as obstacles, not-flight zones in the presence of recharg-

ing points [49]. Additionally, the min-max provides a fair and equitable utilization for the

resources, and maximum wait time of the targets will be less compared to a solution from

min-sum. Especially, this is very vital if the AEVs are used to transport people, and the

targets are considered as stops in the AEVs’ routes.

To the best of our knowledge, this study is the first attempt to formulate and solve the

min-max version of AEVRP. We propose an efficient mixed-integer programming formula-

tion that is adaptable for branch and cut algorithm to obtain optimal solutions for smaller
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instances. For the large-scale instances, we developed a Genetic Algorithm-based Heuris-

tic (GAH) with three phases. We then evaluate the performance of the exact and heuristic

methods through extensive numerical studies on a variety of benchmark instances. Also,

we conducted a data-driven simulation using robot operating system (ROS) to showcase

the application of the AEVRP in a multi-robot environment.

The contributions of this study include the following: an efficient MIP formulation

for the AEVRP; a GA-based heuristic for large-scale instances and perform extensive com-

putational experiments to quantify the efficacy of the proposed approach; computational

experiments for MIP formulation using branch and cut algorithm; a sensitivity analysis to

investigate the aspects of solutions from min-sum and min-max AEVRP, and a data-driven

simulation study using ROS.

The remainder of this research is organized as follows: Section 3.1 provides a math-

ematical formulation of the problem along with a subsequent reformulation. Section 6

introduces the solution methodologies where we present exact and heuristic methods to

solve small and large-scale instances, respectively. Section 8 presents extensive compu-

tational experiments and sensitivity analysis. Finally, Section 8.3 provides concluding re-

marks.

5.2 Model Formulation

We define T as a set of targets, and D̄ as a set of CSs. Define D = D̄ ∪ d0, be a set of

CSs, including a depot d0 where m AEVs are initially stationed, and each AEV is charged

to its battery capacity. The AEVRP is defined on a directed graph with a set of vertices V

and a set of edges E as G = (V,E) where V = T ∩D. We assume that the graph G does

not contain any self-loop. Each edge (i, j) ∈ E is associated with a distance cij between
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vertices i and j, and fmij is the charge consumed by traveling from i to j by an AEV m. The

fmij is calculated by multiplying the energy consumption rate of AEV m and ci,j. It is also

assumed that both the distances and the charge costs satisfy the triangle inequality, e.g.,

∀i, j, k ∈ V, fmij + fmjk ≥ fmik . Also, let Fm denote the maximum charging capacity of any

AEV m.The objective of the model is to find a route for each AEV starting and ending at

the base depot such that: each target is visited at least once by an AEV; no AEV runs out

of charge during the trip; and maximum distance traveled by an AEV is minimized.

5.2.1 Notation

• Sets

– T : Set of targets, indexed as t ∈ T .

– D̄: Set of charging stations, indexed as d ∈ D̄.

– D: Set of charging stations and base depot, D = D̄ ∪ {d0}.

– V : Set of all vertices in the graph, including all targets, CSs and base depot,

V = T ∪D.

– E: Set of all edges connecting any two vertices without any self-loop, (i, j) ∈ E

and i, j ∈ V .

– S : Subset of targets and a depot in V , S ⊂ V , σ+(S) = {(i, j) ∈ E : i ∈ S, j 6∈ S}

– M : Set of AEVs which are initially stationed at base depot d0, indexed by

m ∈M .

• Model parameters
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– cij: Distance associated with edge (i, j) ∈ E.

– fmij : Amount of charge spent by an AEV m ∈M while traversing from i to j with

i, j ∈ V .

– Fm: Battery capacity of AEV m, with m ∈M .

– Q: A big number

• Decision variables

– xmij : 1 if the edge (i, j) is traversed by an AEV m, and 0 otherwise;

– zmij : The total battery charge spent by any AEVm since the start from base deport

or a CS and reaches the vertex j ∈ V while the predecessor of j is i ∈ V .

– ymd : 1 if the CS d ∈ D is visited by any AEV m, and 0 otherwise.
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5.2.2 Min-max AEVRP Model

Min
(
Max
∀m∈M

∑
(i,j)∈E

cijx
m
ij

)
(5.1)

s.t.∑
i∈V

xmdi =
∑
i∈V

xmid ∀d ∈ D̄,m ∈M, (5.2)

∑
i∈V

xmdi ≤ Qymd ∀d ∈ D̄,m ∈M, (5.3)

∑
i∈V

xmid0 = 1, ∀m ∈M, (5.4)

∑
i∈V

xmd0i = 1, ∀m ∈M, (5.5)

∑
i∈V

∑
m∈M

xmij = 1 ∀j ∈ T, (5.6)

∑
i∈V

∑
m∈M

xmji = 1 ∀j ∈ T, (5.7)

x
(
σ+(S)

)
≥ yd

∀d ∈ S ∩ D̄, S ⊂ V \ {d0} : S ∩ D̄ 6= ∅, (5.8)∑
j∈V

zmij −
∑
j∈V

zmji =
∑
j∈V

fmij x
m
ij ∀i ∈ T,m ∈M, (5.9)

zmij ≤ Fmx
m
ij ∀(i, j) ∈ E,m ∈M, (5.10)

zmdi = fmdi x
m
di ∀i ∈ T, d ∈ D,m ∈M, (5.11)

xmij ∈ {0, 1}, zmij ≥ 0 ∀(i, j) ∈ E,m ∈M, (5.12)

ymd ∈ {0, 1} ∀d ∈ D̄,m ∈M, (5.13)
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The objective function (5.1) minimizes the maximum distance traveled by any AEV. Con-

straints (5.2) and (5.3) impose the in-degree and out-degree of any AEV using a CS d to be

equal. Additionally, the constraints (5.3) force the variable ymd to be one if CS d is visited.

Constraints (5.4) and (5.5) ensure that AEVs start and end their trip from the base depot

d0. Constraints (5.6) and (5.7) force the in-degree and out-degree of each target to be

equal, and each target should be visited by exactly one AEV. Connectivity of any feasible

solution is guaranteed by constraints (5.8). Constraints (5.9) introduce the flow variable

zmij for each edge (i, j) ∈ E and also removes the sub-tours. Constraints (5.10) and (5.11)

ensure that no AEV runs out of charge during its trip. Finally, constraints (5.12) and (5.13)

define the restrictions for the decision variables.

Proposition 2. Relax the binary restrictions on constraints (5.13) and replace them by the

following constraints:

xmid ≤ ymd ∀i ∈ T ∪ {d0} d ∈ D̄,m ∈M, (5.14)

0 ≤ ymd ≤ 1 ∀d ∈ D̄,m ∈M. (5.15)

Proof. See [98] for the proof.

The model is non-linear due to the min-max term in the objective function (5.1). To

improve computational efficiency, the model is linearized using the following proposition.

Proposition 3. Define a non-negative continuous variable w and restate the objective function

as follows:

Min w (5.16)
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Then, we add the following constraint:

w ≥
∑

(i,j)∈E

cijx
m
ij ∀m ∈M. (5.17)

Proof. See [83] for the proof.
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CHAPTER 6 METHODOLOGY AND ALGORITHM DEVELOPMENT

The chapter presents a summary and directions of future research.

6.1 Branch and Cut Algorithm

In this section, we describe the main components of a branch-and-cut algorithm used

to optimally solve the formulation presented in the previous section. To solve the for-

mulation developed in section 3.1, off-the-shelf commercial branch-and-cut solvers could

be used. The formulation contains constraints (5.8) to guarantee the connectivity of any

feasible solution. However, the number of such constraints is exponential, and it may

not be computationally efficient to consider all these constraints in advance while using

an off-the-shelf solver. To address this issue, we relax the constraints (5.8) from the for-

mulation. Whenever the solver obtains a feasible integer solution, we check if any of the

constraints (5.8) are violated by the feasible integer solution. If so, we add the correspond-

ing constraint and continue solving the problem. It has been observed that this process is

computationally efficient for a variety of the VRP problems [97, 110]. Now, we describe

the details about the algorithm used to find a constraint (5.8) that is violated for a given

integer feasible solution to the relaxed problem. For every AEV m ∈ M , a violated con-

straint (5.8) can be denoted by a subset of vertices S ⊂ V \ {d0} such that S ∩ D̄ 6= ∅; and

x(σ+(S)) < ymd for every d ∈ S ∩ D̄. We construct an auxiliary graph G′ = (V
′
, E
′
) for any

feasible solution where V ′ = T ∪d0∪{d ∈ D̄ : ymd = 1}, and E ′ = {(i, j) ∈ E : xmij = 1}. We

then find Strongly Connected Components (SCC) of this graph. Every SCC which does not

contain base depot d0 violates the constraint (5.8). Hence, we add all these cuts for any

feasible integer solution until we reach optimality. To implement this algorithm within the

branch and cut framework, we use Callback feature provided by most of the commercial
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solvers like Gurobi [34]. Although the branch-and-cut can find an optimal solution, the

AEVRP is an extension of VRP problem and it is NP-hard [25]. Thus, to circumvent com-

putational challenges for large-scale instances, we develop a heuristic method in the next

section.

6.2 GA-based Heuristic Method

The genetic algorithm (GA) is a stochastic optimization technique inspired by the pro-

cess of natural selection, which is widely applied to solve different classes of NP-Hard

problems [45, 89, 103]. GA maintains a population of candidates solution through the

selective procedure. GA is initialized by a set of solutions called population. Each solution

in the population is called chromosome. Chromosomes progress through successive iter-

ations called generations. Throughout each iteration, the chromosomes are evaluated by

a fitness function. The fitter chromosomes have higher chances of being selected for GA

operations such as mutation and crossover. The GA operations choose some parents and

produce some off-springs as the new solutions. The new solutions are then accepted or

rejected based on their fitness values as well as the solutions from the previous iterations

to keep the population size fixed. The GA may converge to the best solution after a certain

number of iterations. To solve the AEVRP using the GA algorithm, we have three major

challenges: 1) assigning targets to the AEVs; 2) finding the best route for each AEV; and

3) maintaining feasibility such that each AEV does not run out of fuel. Each of these is

complex and difficult to solve. Hence, a naive GA may not perform well for this problem.

Therefore, to overcome the complexity, we implement several heuristics to improve the

solution further.

The flowchart of GAH for the AEVRP is shown in Figure 16. We describe the procedure
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of the GAH as follows: the algorithm starts by computing a modified traveling cost matrix

for each AEV to consider the charging limitation of AEVs. Subsequently, a LP relaxation

of an assignment problem is solved to assign the targets to the AEVs. Then, an optimal or

a sub-optimal TSP tour for the AEVs is determined by the Lin-Kernigan-Helgaun heuristic

[40]. In the next step, the feasibility of each route in terms of charge limitation is checked.

On every infeasible route, a heuristic is applied to find CSs for recharging and the distance

traveled by each AEV is calculated. To provide a pool of high-quality solutions, an itera-

tive Variable Neighborhood Search (VNS) is implemented. The VNS starts with the initial

solution obtained in the previous step. Three different insertions are used to improve the

current solution. At each iteration, a new solution is generated and compared to the cur-

rent solution. If the new solution is better than the current solution, it is considered as an

incumbent and added to the GA pool. Also, if a new solution is not better but has a cost

relatively closer compared to the current solution, it is considered as a potentially good

solution and added to the GA pool. This process is repeated until either no improvement

is found or the maximum number of iterations is reached. Once the GA pool is filled with

high-quality solutions from VNS, the GA parameters such as the iteration number, popu-

lation size, crossover rate, mutation rate, stopping criteria are initialized. The solutions

in the pool represent GA chromosomes, and the fitness value of chromosomes is consid-

ered as the maximum distance traveled by any AEV. The chromosomes are sorted based on

their fitness value and the ones with the higher fitness values are eliminated based on fixed

population size. During the improvement phase, through a roulette wheel selection oper-

ation, some chromosomes are selected for the GA operations. The GA operations such as

crossover and mutation are performed to generate new solutions (offsprings). The routing
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Figure 16: The flowchart of GAH including three main phase : construction, improvement
and post improvement

and feasibility check are performed again on the offsprings. The fitness value of the feasi-

ble offsprings is measured and compared to other chromosomes. These steps constitute an

iteration, and then the roulette wheel selection is applied again to begin the next iteration.

The GAH is terminated whenever a stopping criterion is met. In the post improvement, a

heuristic is performed on some of the best chromosomes to further improve the solution

from the improvement phase. Steps of GAH are explained in the subsequent sections.

6.3 Construction Phase

6.3.1 Path Representation

To encode the solution of the AEVRP problem, we use path representation in a way

that targets are listed based on the order in which they are visited. Suppose that there

are 10 targets and numbered from t5 to t14. In order to form a chromosome, we generate

a path where targets are randomly placed in each gene of the chromosome. A sample
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chromosome of AEVRP problem is as follows:

t10 t7 t11 t12 t9 t5 t6 t8 t13 t14

Note that each chromosome contains |M | string, each related to an AEV.

6.3.2 Modified Cost Matrix

In this step, considering the range limitation of AEVs, we compute a new traveling cost

based on [50]. The new cost matrix considers the additional charge that an AEV may

need to visit the available CSs as it traverses between two targets. The maximum charge

remained at the AEV’s battery when it visits a target i is denoted as F − fmindi
where fmindi

denotes the amount of fuel an AEV requires to reach a CS with the minimum distance from

target i. This ensures that in any feasible tour, an AEV must have an option of recharging

at the nearest CS to continue visiting other targets when it reaches a target i. So, we say

that an AEV can directly travel from target i to target j if and only if fij ≤ F − fmindi
− fmindj

.

If the AEV is unable to directly travel from target i to j, we create an auxiliary graph

G∗ = (V ∗, E∗) where V ∗ = D̄ ∪ {i, j}. Any edge that can satisfy the fuel constraint, will be

added to the auxiliary graph. So, we add the following three sets of edges to the graph:

E∗ =:



(i, d) : if fi,d ≤ F − fmindi
,∀d ∈ D̄,

∪(d, j) : if fd,j ≤ F − fmindj
,∀d ∈ D̄,

∪(dk, dk′ ) : if fdk,dk′ ≤ F, ∀dk, dk′ ∈ D̄.

For every AEV, the cost(length) of edges in graph E∗ is calculated by finding the shortest

path between the any two nodes using Dijkstra Algorithm [24]. The modified cost matrix

is created by replacing the new computed costs with old costs in the original cost matrix.



67

We denote the modified cost matrix as c′.

6.3.3 Target Assignment

To assign targets to the AEVs, we use a LP-based Load Balancing heuristic (LLBH) as

suggested in [16] with some modifications. The LLBH assumes that the distance traveled

by the AEVs should almost be the same, and designed for multi-depot problems. Hence,

in a network where targets are uniformly distributed, AEVs visit nearly the same number

of targets. For the sake of compatibility, we perturb the location of AEV in the base depot

to create multiple depots. We uniformly place the AEVS on a small circle around the base

depot. Given a set of K base depots, indexed by i, with one AEV stationed at each of

them, and set of t targets, indexed by j, the LLBH solves the relaxation of the following

assignment problem where uij is 1 if target j is assigned to the depot i, and 0 otherwise.

Also, c′ij indicates the modified cost matrix.

Min
∑
i∈K

∑
j∈T

c
′

ijuij (6.1)

s.t.∑
i∈K

uij = 1 ∀j ∈ T, (6.2)

∑
j∈T

uij = b|T |
K
c ∀i ∈ K, (6.3)

uij ∈ {0, 1} ∀i ∈ K, j ∈ T. (6.4)

Constraints (6.2) assign targets to the ‘K’ copies of depots made around the base depot

d0. Constraints (6.3) determine the number of targets that each AEV should visit. For the

cases where |T |
K

is fractional, as per [16] we assume that |T | = pK + q, with p, q ∈ Z+ and
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q is residue. The extra q targets are assigned to the AEVs based on a insertion technique

which we describe in the next sections. After the initial assignment of targets to AEVs by

solving the above assignment problem, the auxiliary depots are removed. Then, we add

the base depot (d0) to the beginning and end of each route. Adding the base depot to the

routes would result in a group of strings as follows:

d0 t10 t7 t11 d0 d0 t12 t9 d0 d0 t5 t6 t8 t13 t14 d0

Now, we solve a single AEV routing problem for every set of targets assigned to each AEV

including the base depot.

6.3.4 Routing

Lin-Kernigan-Helgaun (LKH) heuristic is considered as one of the best algorithms for

solving single vehicle routing problem without recharging constraints. After assigning

AEVs to targets, the LKH heuristic is used to find the best tour for each AEV.

6.3.5 Feasibility Check

The route found by LKH heuristic for each AEV may be infeasible due to the exclusion

of range constraint (5.10). Hence, this step is performed to attain feasibility for the tours.

The feasibility procedure is demonstrated using the following example: consider a sub-

string of an AEV including targets 5, 6 and 8 (t5, t6 and t8). Assume that there are three

CSs (d1, d2 and d3) along this path as shown in Figure 17, and an AEV reaches t6, with 20

units of travel distance remaining in the battery. Since the AEV cannot reach the target t8

due to insufficient charge, recharging is required at one of the available CSs. The algorithm
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developed by authors in [134] considers the minimum of dist(t6, dk) ∀k ∈ D̄ which is d2.

However, in this study, we choose the minimum of dist(t8, dk) ∀k ∈ D̄ which is d3. The

advantage of this approach is that the AEV will have more charge to complete the rest

of the trip, and also has less necessity for recharging. Consequently, this may lead to

shorter distance traveled in overall. However, if the AEV does not have sufficient charge

to reach d3, then d2 is selected for recharging. If visiting d2 is also not possible, then we

do a “backward" move and go to the previous edge (t5, t6) and travel from t5 to d1 for

recharging. We call a route is infeasible if one of the following circumstances occurs: 1)

backward moves resulted in visiting the base depot; 2) all the available CSs in one edge

are visited and yet it is impossible to move to the next edge; or 3) exiting from a target is

impossible due to insufficient charge, and also the closet CS to the target is visited in the

previous edge. The feasibility check procedure is given in Algorithm 3. In this algorithm,

we define AEVRPP route as a sequence of targets (t0, t1, t2, ..., ti−1, ti, ti+1, ..., tn+1) where

the t0 and tn+1 represent the depot. We also define m(ti,ti+1) = 1 if the edge (i, i + 1) is

traversed by an AEV. We consider cmindi
for the CS d which has the minimum distance to

the target i. We define dk(vi,vi+1) = 1 if the eligible CS dk,∀k ∈ D̄ is visited by the AEV, and

location of the AEV is referred as loc. The feasibility procedure is applied on every route

to create a feasible solution along with its corresponding cost for the min-max AEVRP

problem. This solution x is considered as the incumbent solution xinc = x.

6.3.6 Variable Neighborhood Search (VNS)

To create a pool of high-quality solutions for the GA, we implement a VNS-based algo-

rithm. The VNS framework is based on a systematic change of neighborhood integrated

with a local search [36]. A local search starts with an initial solution x and look for a
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Algorithm 3 : Feasibility Check

Initialization:
Set: Status← Feasible, BM ← False, FM ← True,

h← Battery Capacity, i← 0, loc← ti
while any m(ti,ti+1) 6= 1 :

if Status = Infeasible
break

else do FM
i++
while FM = False

do BM
Forward Move (FM):

if: z > f(ti,ti+1):
loc← ti+1, z− = f(ti,ti+1) , m(ti,ti+1) = 1
return True

elif: z > f(ti,cmin
di+1

) and F > f(cmin
di+1

,ti+1) and
m(ti,ti+1) 6= 1:
loc← ti+1, z = F − f(cmin

di+1
,j) , m(ti,ti+1) = 1,

dk(ti,ti+1) = 1
return True

elif: z > f(i,cmin
di

) and F > f(ti,cmin
di

) and m(ti,ti+1) 6= 1:
loc← ti+1, z = F − f(cmin

di
,ti+1) , m(ti,ti+1) = 1,

dk(ti,ti+1) = 1
return True

else: False
Backward Move:

if: loc = t0 or dk(ti,ti+1) = 1,∀k ∈ D̄
Status← Infeasible
Stop

else:
loc← ti−1, z+ = f(ti−1,ti), m(ti−1,ti) = 0,
dk(ti−1,ti)

= 0,
do FM
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𝑡5 𝑡8𝑡6

𝑑1 𝑑3𝑑2

25

Figure 17: An example for charging station selection approach

descent direction from x within a neighborhood N(x). The algorithm stops if there is

no further improvement. In this problem, we consider four neighborhoods including one,

two, and three insertions which we refer as N1(x), N2(x) and N3(x), respectively, and swap

operation as N4(x). In the insertion procedure, we try to improve the initial solution by

removing the target from the longest route (in terms of distance) and insert it to another

route. Considering the initial solution obtained in the previous section, we generate a new

solution x′ from N1(x). In order to select the target for removal, we calculate the amount

of saving by removing each target from the longest route. The saving of/’ targets i (ti) is

calculated as follows:

dist(tj, ti) + dist(ti, tk)− dist(tj, tk), (6.5)

where tj and tK are the preceding and succeeding targets in the same route.

We select the target with the highest saving from the longest route. In the next step, we



72

determine the route on which we want to insert the target. We compute the insertion cost

of the selected target in all other routes and select the route with the minimum insertion

cost. The insertion cost of each route is calculated based on the equation (6.5) where ti is

inserted between any two consecutive targets tj and tk from the route. Then, we apply the

LKH and feasibility check on the new solution. If x′ is better than xinc then xinc = x
′, and

the similar procedure continues with a new solution from N1(x
′). Otherwise, we select the

next target with the highest saving. If no improvement occurs with removing any target

from the longest route and inserting into other route, we create a new solution from N2(x)

as x′′. If x′′ is better than x, then xinc = x
′′ and we return to the 1-insertion neighborhood,

and select a new solution from N1(x
′′
). Otherwise, we proceed by selecting another tar-

gets. If no improvement found in the 2-insertion neighborhood, we activate the N3(x) and

proceed as before. We also use the swap operation N4(x) by randomly selecting a target

from the longest route and exchanging it with any target from the route with the low-

est insertion cost to further improve the solution. The swap operation activated between

any insertion operations(e.g. between N1(x) and N2(x) and repeated for predetermined

number of iterations (lmax). We terminate the search if no improvement occurs in the 3-

insertion neighborhood or maximum number of iteration is reached. It should be noted

that the saving and insertion cost calculations are based on the modified cost matrix. The

VNS algorithm procedure is summarized in the Algorithm 4.

During the search process, every new solution is added to the GA pool. Inspired from

simulated annealing, ‘possibly’ good solutions are stored. A solution is potentially good

if f(x
′
)−f(xinc)
f(xinc)

≤ r, where f(x
′
) and f(xinc) are the cost of the potentially good solution

and the incumbent solution, and r is a relatively small parameter (r = 0.15 in our im-
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Algorithm 4 : Variable Neighborhood Search

Initialization:
k, l ← 0, xinc ← x0, N1 ← True, N2 ← False,
N3 ← False

while k ≤ kmax:
while N1 = True
k ← k + 1
select x′ ∈ N1(xinc)
if f(x

′
) ≤ f(xinc) :

xinc = x
′

if @ x ∈ {x′ |x′ ∈ N1(x
′
), f(x

′
) ≤ f(xinc)}:

N1 ← False ,N2 ← True
while l < lmax
do swap

while N2 = True
k ← k + 1
select x′′ ∈ N2(xinc)
if f(x

′
) ≤ f(xinc) :

xinc = x
′′

N1 ← True, N2 ← False,
if @x ∈ {x′′|x′′ ∈ N2(x

′′
), f(x

′′
) ≤ f(xinc)}:

N2 ← False ,N3 ← True
while l < lmax
do swap

while N3 = True
k ← k + 1
select x′′′ ∈ N2(xinc)
select x′′′ ∈ N2(xinc), k ← k + 1
if f(x

′′′
) ≤ f(xinc) :

xinc = x
′′′

N1 ← True, N3 ← False,
if @x ∈ {x′′′ |x′′′ ∈ N2(x

′′′
), f(x

′′′
) ≤ f(xinc)}

Terminate
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plementation). In the next step, we apply the GA operations on the pool of high quality

solutions.

6.4 Improvement Phase

6.4.1 Chromosome Selection

Chromosome selection significantly affects GA’s convergence. The roulette wheel se-

lection was first introduced by [22] to select the chromosomes for GA operations. Each

section of the roulette wheel is assigned to a chromosome based on the magnitude of its fit-

ness value. The fitness value of each chromosome is calculated as: fc = min{max
∀m∈M

{DTm}}

where DTm is the total distance traveled by AEV m. The fitness values of the chromosomes

determine their chance of being selected. We summarize the selection procedure in Algo-

rithm 5. In the algorithm, the selection and cumulative probabilities of a chromosome c

are referred as pc and gc, respectively, and the population size as psize.

Algorithm 5 : Selection

Step 1: Calculate the total fitness F:

F =

psize∑
c=1

fc

Step 2: Calculate the selection probability for each
chromosome:

pc =
F − fc

F × (psize− 1)

Step 3: Calculate the cumulative probability for each
chromosome:

gc =
c∑
i=1

pj c = 1, 2, ..., psize.

Step 4: Select the chromosome c if :

gc−1 < r ≤ gc

where r is a random number in range (0,1].
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6.4.2 Crossover

We apply order crossover introduced in [33]. In this approach, two children are gen-

erated in each iteration. We summarize the order crossover procedure with an example

demonstrated Figure 18 as follows: 1) a sub-string is randomly selected from a parent, 2)

Empty offsprings are created, and the sub-string is placed into the corresponding positions

in the offsprings, 3) starting from the end-point of the sub-string of parent 1, the sequence

of the genes from parent 2 is taken (9, 11, 6, 10, 5, 8, 7) and the genes that already exist in

the first sub-string are removed (11, 5, 8, 7), 4) the remaining genes are inserted into the

empty positions of the offspring starting from the sub-string end-point, 5) a new offspring

is created by exchanging the genes between two parents.

Figure 18: The order crossover operation

6.4.3 Mutation

The mutation operator is a genetic operator that helps to diversify the population. Mu-

tation reorders some of the gene values in a chromosome from their existing state. We

apply heuristic and inversion mutation proposed by [33]. The heuristic mutation is a
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neighborhood method to generate better offsprings. The chromosomes which are gener-

ated from exchanging genes of some parents are considered as the neighborhood. The best

chromosome is selected as the offspring. The procedure of the heuristic mutation opera-

tion is as follows: 1) three genes are selected from a parent randomly; 2) all the possible

combination of the selected genes are generated; 3) the best chromosome is considered as

the offspring. The inversion mutation is used to bring diversity into the population instead

of increasing the quality. In the inversion mutation, a sub-string of a parent chromosome

is selected and turned over to produce an offspring.

6.4.4 Post Improvement

The GA algorithm returns the best set of chromosomes after any of the predefined stop-

ping criteria is met. In the feasibility heuristic, an insertion of CS is performed whenever

a recharging is required. A route r for an AEV is defined as a sequence of targets and CSs

(d0, ti, tj, dn, ..., tl, dm, ..., d0) where d0, denotes the base depot and i, j, l ∈ V and m,n ∈ D̄.

In some instances, it is possible to obtain better fitness value by changing the position of

the CSs in chromosomes. To further enhance the quality of the GA solution, we propose

a heuristic which is described by an example as follows: suppose that there are three CSs

(d1, d2, and d3), and the following string is a feasible path for an AEV (the visited CSs are

colored with red):

d0 t8 t11 d3 t9 t5 d2 d0

Here we define the “sub-string” as a sequence of visits where the last node is a CS. We

select the first sub-string and delete the CS from the sub-string. We then insert all the

eligible CSs among the targets to generate new sub-routes. A CS is considered eligible if
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the AEV starting from a target can reach that CS without visiting other CSs and also reach

the next target from the CS after recharging. New sub-routes are checked for feasibility

using the ’feasibility check’ procedure describe in the earlier section. The total distance

traveled and the AEV’s remaining battery charge are stored for each feasible route. This

considerably decreases the computational effort. Table 7 shows all the new sub-routes

generated by CS insertion, where the feasible sub-routes are highlighted. In the next

d0 d1 t8 t11 t9
d0 t8 d1 t11 t9
d0 t8 t11 d1 t9
d0 d2 t8 t11 t9
d0 t8 d2 t11 t9
d0 d3 t8 t11 t9
d0 t8 t11 d3 t9

Table 7: All the sub-routes generated in the first step of CS insertion heuristic

step, we delete the infeasible sub-routes and add the second sub-string. We repeat the

CS insertion procedure for the second sub-string and check the feasibility of the new sub-

routes using the information stored in the previous step. The final possible routes are

shown in Tabel 7. When we visit the base depot as the last node in a route then the

feasible route with the lowest distance is considered as the AEV’s total traveled distance.

For the cases where the AEVs have to visit two consecutive CSs, we fix the second CS and

proceed as before. Once we get the feasible sub-routes, starting from the first CS position,

we insert eligible charging stations between the targets and proceed as before. It should

d0 d1 t8 t11 t9 d1 t5 d0

d0 t8 t11 d1 t9 t5 d1 d0

d0 d3 t8 t11 t9 d2 t5 d0

d0 t8 t11 d3 t9 t5 d2 d0

d0 t8 t11 d3 t9 d3 t5 d0

d0 t8 t11 d3 t9 t5 d3 d0

Table 8: Final feasible routes resulted from CS insertion in the post improvement heuristic
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be noted that since the heuristic does not change the order of the targets, the chromosome

remains the same. So, we use this heuristic only on final n best chromosomes returned by

GA algorithm, where n is a predefined user parameter.
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CHAPTER 8 COMPUTATIONAL EXPERIMENTS AND CONCLUSION

In this section, we compare the computational performance of the branch-and-cut al-

gorithm and GAH. Both methods were implemented in Python 3.7, and the mixed-integer

linear problems were solved using THE branch-and-cut framework and the solver callback

functionality of Gurobi 9.0. The computational experiments were performed on a com-

puter with an Intel R© Xeon R© CPU E5-2640, 2.60 GHz, and 80GB RAM.

8.1 Instance Generation

For the computational experiments, we selected three data sets (A, B, and P) of the

capacitated vehicle routing problem developed by Augerat et al. [8]. We then modified

them to adapt for AEVRP by randomly adding CSs. We also generated a random data set

to maintain the diversity in our experiments. The details of the data sets are as follows:

• Random instances: Random instances were generated in a square grid of size [100,100].

The base depot is considered to be at [50,50]. Also, the number of CSs was set to 5,

and the locations of the depot as well as the charging stations were fixed a prior for

all the random test instances. The number of targets varies from 10 to 50 in steps

of five, while their locations were uniformly distributed in the square grid. For each

of the generated instances, the number of AEVs in the base depot is varied from 2 to

8. The battery capacity of AEVs was set to 100, and the Energy Consumption Rate is

considered to be 0.8.

• Augerat et.al instances: The data sets reported in the study by Augerat et al. [8]

are developed for capacitated vehicle routing problems. These instances include

three sets which have differences in terms of the distribution of the targets, number
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Table 9: The characteristic of the large-scale instances for different data sets

Sets Target range Vehicles range Consumption rate range Battery Capacity range
A [31,60] [5,9] [0.81,0.99] 100
B [30,60] [4,9] [0.82,1] 100
P [21,59] [5,15] [0.88,0.99] [70,170]

Random [20,50] [4,10] [0.8,0.8] 100

of targets, vehicle’s capacity, demand/capacity tightness, and number of vehicles.

To make the instances compatible to AEVRP, we added five CSs. The coordination

of CSs are similar for all instances within each set. Also, the capacity of vehicles

is considered as the charging capacity of AEVs and capacity tightness as the fuel

consumption rate in our problem. We use the same base depot in the instances.

Figure 19 shows the four different data sets used in AEVRP.

8.1.1 Parameter Setting

For GAH, we set the GA parameters as follows: population size is 100; crossover rate

is 0.4; and mutation rate is 0.2. A stopping criterion is chosen based on the trade-off

between solution quality and run-time. Based on experiment trails, we chose the stopping

criterion as 45 non-improving iterations, and number of best chromosomes for the post

improvement phase as ten (n = 10). Also, for the branch and cut algorithm, we set a

2-hour time limit for all instances.

8.1.2 Benchmark Instances

To create benchmark instances, we selected a subset of targets, the first 10 and 15 tar-

gets with 2 and 3 AEVs from instances within each set, respectively. We solve the bench-

mark instances with GAH and compare the obtained results to the optimal or near-optimal

solution by branch and cut algorithm and Gurobi described in section. 6.1 solved b. Figure

20 represents the differences in the objective function between GAH and B&C(Gurobi) for
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Figure 19: Four different data sets generated based on the study in [8]
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the instances with 15 targets. The difference in percentage is calculated as B&C(O)−GAH(O)
B&C(O)

,

where GAH(O) and B&C(O) are objective function values from GAH and B&C, respec-

tively. In total, we solved 71 10-target and 71 15-target benchmark instances. For all the

10-target instances, the B&C algorithm was able to reach solutions within 1% of optimality

gap. For many of the 15-target instances from sets A, B, and Random, the B&C algorithm

was not able to find the optimal solution within the stipulated time limit. However, the

B&C found the optimal solution for most of the 15-target instances from set P. For all the

completed runs using B&C; the GAH reached the optimal solution or near-optimal solu-

tion with less than 2.5% gap as it is shown in Figure 20. For the instances where B&C

was not able to reach optimality, the GAH could find a solution closer or better compared

to the upper bound provided by B&C. In terms of run-time, for most of the 10-target

instances, the B&C outperformed the GAH with a small margin. However, the GAH out-

performed the B&C with a much better run-time. The run-time difference(%) between

the two algorithms is provided in Figure 20. The characteristics of the instances and the

performance of algorithms are provided in APPENDIX B. Table (11) compares the branch

and cut algorithm with the GA-based heuristic for the random benchmark instances. The

columns 2 to 5 show the number of targets, number of AEVs, battery capacity (F), and

energy consumption rate (α), respectively. The next four columns specify the performance

of branch and cut algorithm with ‘Obj,’ ‘Time(s),’ ‘Gap(%)’ and ‘Cuts(#)’ indicating the

objective function, run-time (seconds), the gap percentage, and the total number of con-

nectivity cuts within the stipulated time limit, respectively. The last three columns indicate

the performance of GAH algorithm with ‘Obj’,‘Time(s)’, and ‘PI(%)’ representing the ob-

jective function, run-time (seconds) and the post improvement percentage, respectively.
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The PI(%) indicates the improvement obtained by using CS insertion heuristic comparing

to the the best results of the GA algorithm (GA−Heuristic
GA

× 100). Similarly, tables (12),(13),

and (14) compare the two methods over the Augerat instances.

The results from the benchmark instances indicate that GAH approach is capable of pro-

viding highly efficient routes for AEVs.
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Figure 20: The performance of the GAH compared to the B&C procedure for benchmark
instances with 15 targets

8.1.3 Large-scale Instances

To demonstrate the performance of GAH on large scale problem sets, we considered

82 instances with the number of targets and AEVS up to 60 and 15, respectively. Among

these instances, 18 instances are from set A, and 17, 12 and 35 instances are from sets

B, P, and Random. Similar to the benchmark instances, the number of CSs is five. In

32 instances, B&C procedure was not able to find any feasible solution whereas the GAH

was capable of providing a feasible solution for all instances in just a few seconds. For

set A, B&C procedure found a feasible solution for six instances with an average gap of

63.7%. Similarly, for sets B, P and Random, B&C procedure found a feasible solution for

5, 10 and 20 instances with an average gap of 51.3%, 35.3%, and 61.1%, respectively.
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Table 10: Comparison of the performances of GAH and B&C procedure for large-scale
instances

Sets # of Instances # of Inf(B&C) # of Inf(GAH) AG-B&C(%) ART-GAH(s) AOD(%)
A 18 9 0 63.7 290 22.1
B 17 12 0 51.3 246 16.8
P 12 2 0 35.3 128 18.2

Random 35 5 0 61.1 220 24

For all the experiments using large-scale instances, GAH outperformed B&C procedure

in terms of computational time and the quality of the solution. Table 10 represents the

comparison between the B&C procedure solved by Gurobi and GAH for each set. Column

‘# of Instances’ indicates the total number of instances. The columns ‘# of Inf(B&C)’ and ‘#

of Inf(GAH)’ indicate the number of instances in which the B&C procedure and GAH could

not find any feasible solution in the stipulated time limit. The next column ‘AG-B&C(%)’

specifies the average gap percentage obtained by B&C procedure, and the average run-time

in seconds by GAH is represented by the column ‘ART-GAH(s).’ The last column ‘AOD(%)’

is the average objective difference percentage between B&C procedure and GAH.

8.2 Sensitivity Analysis

8.2.1 Min-max Vs Min-sum

To provide managerial insights for using different objective functions for the AEVRP,

we construct an experiment where we compare the solutions of min-max and min-sum

AEVRP. We selected an instance from set P with 20 targets and two AEVs. The optimal

route for each AEV and the distribution of targets are depicted in Figure 21. In the min-

sum version, the AEV 1 traveled 20 units and visited only one target, and did not stop

at any CS whereas AEV 2 traveled 178.6 units and visited 19 targets, and visited a CS

once. On the other hand, in the min-max version, the AEV 1 traveled 112.7 units, visited

eight targets, whereas AEV 2 traveled 112.4 units and visited 12 targets, and none of them



85

used any CS during their trips. The total distance traveled in min-sum AEVRP and min-

max is 198.6 and 225.1 units, respectively. This results from this instance indicate that

with a reasonable sacrifice in the total distance, one can greatly decrease the travel time

to visit some of the targets. This is an important factor in the context of humanitarian

relief where delivering aid supplies to the victims is the first priority or in the on-demand

mobility (car-sharing and ride-sharing [100, 99]) when the transportation companies aim

at minimizing the customers’ wait times in the network. Another aspect is the fair workload

among the AEVs in the min-max compared to the min-sum objective. The unfair workload

could result in heterogeneous charging/discharging among the AEVs. This may lead to

significant battery aging or degradation [64] which can increase the maintenance cost for

the ownership of AEVs.

Figure 21: The AEV routes in the AEVRP in the Min-max (left) vs Min-sum (right)
versions
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Figure 22: Effect of increase in the number of AEVs on the min-max and the total
distance traveled by the AEVs

8.2.2 Effect of the Number of AEVs

We analyze the effect of increase in the number of AEVs on the objective function of

min-max AEVRP as well as the total distance traveled by all the AEVs. Instances from

each of the four data sets are selected. As shown in Figure 22, it can be observed that

when there is an increase in the number of AEVs, the maximum distance traveled by

the AEVs decreases. However, the total distance traveled by all the AEVs increases. The

instance from set B has the highest increase in the total distance. This can be due to the

cluster-like distribution of the targets. When the number of AEVs surpasses the number

of clusters, each cluster is assigned to more than one AEV which can increase the total

distance. Another factor that may significantly affect the total distance is the position of

the depot. In the cases where the depot is far from the targets, dispatching multiple AEVs

could result in a longer total distance. Since the targets are closer to each other in set P, an

increase in the number of AEVs would not result in a notable decrease or increase in the
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Figure 23: Effect of increase in the number of charging stations on sets A,B,P, and Random

min-max or total distance, respectively. In conclusion, decision makers should evaluate the

trade-off between the maximum and total distance due to the distribution of the targets

and depot.

8.2.3 Effect of the Number of Charging Stations

Another perspective is the impact of increase in the number of CSs on the traveled

distance by the AEVs due to min-max objective function. We chose an instance from each

of the four data sets, and for each instance, we considered 2 to 7 randomly placed CSs.

Figure 23 shows the effect of number of CS on min-max AEVRP for different instances. An

increase in the number of charging instances has a lower impact on sets P and B instances

where the targets are condensed in a smaller area. Due to the scattered distribution of the

targets in the random set and set A, we observe a rapid decrease in the maximum distance

as the number of charging stations decreases.



88

8.2.4 Data-driven Simulation

We performed a data-driven simulation study in rviz [41] 3D-simulation environment

for ROS [85] to showcase the application of AEVRP in the robotic operating systems (ROS).

We used Turtlebot [53] in the turtlebot_stage package environment as shown in Figure

24. The black oval indicates the base depot where the Turtlebots are stationed. The red

rectangles indicate targets, and the blue circles represent the charging locations. The

highlighted black lines are walls (obstacles) that prevent Turtlebots to move from one

target to another directly. The navigation stack of ROS computes the distance between

any pair of targets/depots in the environment. However, it is not possible to use the

distance matrix in the AEVRP model since it does not satisfy the triangle inequality. Hence,

to preserve the triangle inequality, we convert the distance between each pair of nodes

calculated by ROS denoted as f ′ij to fij using Dijkstra algorithm. The Dijkstra algorithm

creates a mapping between f
′
ij to fij by calculating the shortest path between nodes. We

use the new distance matrix as cost to the AEVRP problem, and conducted experiments

with four different instances. In each instance, there are two Turtlebots, nine targets, and

five charging locations. The experiments performed using ROS Kinetic Kame [86] using

a Ubuntu 16.04 (Xenial) release and the ROS publishers were developed using Python

programming language. Figure 25 shows the traveled distance by each turtlebot for min-

max and min-sum AEVRP. In the instances one and two, observe the total distance traveled

by turtlebots are same, however, a significant difference between the traveled distance for

each turtlebots in the min-max versus min-sum. In instances 3 and 4, we notice a slight

increase in the total traveled distance in min-max but considerable improvement in the
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workload balancing between the two turtlebots. In summary, on average, we observed 2%

increase in the total traveled distance by the turtlebots using the min-max, however 95%

improvement in balancing the traveled distance between the turtlebots comparing to the

min-sum AEVRP.

 

Figure 24: Rviz navigation environment illustrated using Turtlebot package
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Figure 25: Comparison among four different instances for distance, total travel, and work-
load balance among turtlebots using min-max and min-sum approaches.

8.3 Conclusion

In this research, we consider a routing problem for a fleet of autonomous electric ve-

hicles in the presence of charging stations with an objective of minimizing the maximum

distance traveled by any autonomous electric vehicle (AEV). The goal is to find an efficient

tour for each AEV while no AEV runs out of fuel, and all the targets are visited. We pro-

posed an efficient mixed-integer programming formulation and a genetic algorithm based

heuristic (GAH) to solve small and large-scale instances, respectively. Numerical studies

are performed on randomly generated data sets and capacitated vehicle routing problem

data sets from literature. The efficacy of the proposed methods are benchmarked using

extensive computational experiments. The results indicate that GAH was able to find so-
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lutions within 1% of optimality gap for the 10-target, and equal or better solutions in the

15-target benchmark instances. Also, GA-based heuristic could produce high-quality solu-

tions in large-scale instances whereas the branch-and-cut procedure could not even find a

feasible solution for most of the instance within the stipulated time limit. The proposed

methods are capable for facilitating routing and charging decisions for a fleet of AEVs em-

ployed by logistics and transportation companies. The sensitivity analysis indicates that

with a reasonable sacrifice in the total distance, the proposed approach can significantly

decrease the travel time to visit some of the targets. In addition, this may decrease the

maintenance cost of the AEVs due to fair and equitable distribution of workload among

the AEVs fleet. This could potentially decrease the aging or degradation of battery in AEVs.

In addition, we conducted a data-driven simulation using the ROS package to investigate

the application of the AEVRP in the robot environment.
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CHAPTER 9 CONCLUSION AND FUTURE RESEARCH

The chapter presents a summary and directions of future research.

9.1 Two-stage Stochastic Choice Modeling Approach for Electric Vehicle Charging
Station Network Design in Urban Communities

We studied the problem of designing an effective network of charging stations for elec-

tric vehicles. We integrated behavioral aspects which take account for drivers’ preference

toward their different charging options into the charging location decisions. Since there

are many factors such as EV’s dwell time at parking location, battery’s state of charge,

distance from home, willingness to walk, drivers’ arrival patterns, and traffic on weekdays

and weekends, that affect the demand of charging station, we formulated the problem as

a two-stage stochastic programming model. The framework provides opportunities for a

planning agencies and stakeholders to evaluate the trade-off between accessibility, budget,

and utilization. We present a case study using the model’s results along with various in-

sights, including (among others) a demarcation in the utility function for different charger

types and the sensitivity of the optimal network to the budget. The computational re-

sults indicate that the optimal layout of charging stations should include a mix of different

chargers. Also, we provide pricing insights toward installing different types of chargers.

In addition, we investigated the effect of different sources of uncertainty to give more in-

sights into this problem. To overcome the complexity of the problem, we implemented a

decomposition method integrated with scenario sampling techniques.

A potential research extension might be to add multi-modal transportation options to the

existing framework to consider the interactions between various transportation modes and

EV drivers’ choices. Another extension could be a study on impact of EV charging station
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loads on the electricity distribution network within the current framework. From mod-

elling perspective, other appropriate risk measures can be added to the recourse function,

and the subsequent analysis can help us understand the implications of dispersion statis-

tics while choosing optimal solutions. From an algorithm perspective, scalability of the

proposed algorithm to large planning regions needs further investigation. Either a meta-

heuristic method can be investigated or explore a hierarchical approach. For example, an

aggregate analysis can first identify the required density of charging stations for different

regions/neighborhoods and detailed charging network planning can then be carried by the

proposed algorithm.

9.2 Efficient Algorithms for Autonomous Electric Vehicle Min-max Routing Problem

We studied the routing problem for a fleet of autonomous electric vehicles. The natural

synergy between electric and autonomous vehicles possibly can relieve the limitations re-

garding access to charging infrastructure, time management, and range anxiety. A fleet of

Autonomous Electric Vehicles is considered to be employed by transportation and logistic

companies to take advantage of AEVs capabilities. However, the limited battery capacities

of AEVs and the scarcity of charging stations are the limitations that have to be considered

in the route planning to avoid inefficient routing strategies. We introduced the min-max

autonomous electric vehicle routing problem where the maximum distance traveled by

any AEV is minimized while considering charging stations for recharging. We propose an

efficient mixed-integer programming formulation and computational results are presented

for small scale instances using branch and cut procedure. For the large-scale instances,

we developed a Genetic Algorithm-based heuristic. The algorithm is consists of construc-
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tion, improvement, and post-improvement phases. I each phase, we developed and im-

plemented multiple heuristics to generate high-quality solutions. The results showed that

the algorithm is capable of producing high-quality solutions with a short amount of time.

In addition, we performed a data-driven simulation study using robot operating system

(ROS) to showcase the application of the AEVRP for robots.

Future work could include AEVs with freight capacities and the targets with time window.

Another extension could be incorporating uncertainties in the battery consumption rate as

well as the location of target locations especially for surveillance applications. From the

algorithm perspective, use of decomposition algorithms like column generation method

can be investigated.
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APPENDIX A

Utility Construction

A study by [116] analyzed the driver charging choices through web-based preference

survey. The authors used mixed logit model with various predictor variables. The following

predictor variables are considered in the utility function calculations:

• Power (Pw): 1.9, 6.6 and 50 KW are the powers that we consider for EVSE level 1,

level 2, and level 3 respectively.

• Dwell Time (DT): Dwell Time is calculated based on arrival and departure of the EV

drivers.

• Energy Consumption (EC): Based on the current BEVs in the market, we have con-

sidered 0.34 (kW−h
mi

) for average energy consumption.

• Max Range (MR): We considered 75 mile as an average for BEV’s maximum range.

• Current Range (CR): Current range will be calculated based on the SOC of BEVs

when they arrive at charging stations.

• Price (Pr): Based on the current charging price at Michigan, 0.3( $
h
), 1.5( $

h
), and

21( $
h
) are considered as the charging prices for EVSE level 1, level 2, and level 3,

respectively.

• Electricity Price at Home (EPH): 0.14( $
kW−h) is considered as an average for elec-

tricity price at home in Michigan.

• Distance to Home (DH): More than 50 cities and suburban within the 40-mile dis-

tance from midtown of Detroit are considered as origins of EV drivers. Based on
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SEMCOG data [1], a distribution is obtained based on the origin’s population and

traffic flow to estimate the distance to the home of EV drivers from parking locations.

Also, we added a fixed distance varying from 0 to 40 miles in 10-mile increments for

all the drivers. In this way, additional trips by the drivers are accounted before they

head back to their original origin.

Also, to capture the interaction between dwell time, charging power, and SOC and other

predictor variables the following derived interaction variables are introduced:

I Range Charged at Station (RCS)

This variable determines the amount of charge (miles) an EV can get during the

charging period. RCS is calculated by taking the minimum of the amount of charge

that an EV can get by using a specific EVSE during driver’s dwell time and the differ-

ence between the capacity and the current range of the battery.

RCS = min
(

Pr(kW)×DT(h)
EC ( kW−h

mi
)

,(MR(mi) - CR(mi))
)

II Charging Cost (CC)

In order to calculate the charging cost at each station, we assume that an EV driver

will only unplug the vehicle at the end of his/her activity. Hence, charging cost can

be calculated by the multiplying the charging cost by the dwell time:

CC($)= Pr( $
h
) × DT(h)

III Cost at Home (CH)

The ‘Cost at Home’ variable is calculated based on the amount of Range to be Charge

at Home (RCH), electricity price at home and the energy consumption.

CH($)= RCH(mi) × EC(kW−h
mi

) × EPH( $
kW−h)
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Also, RCH depends on whether the driver will charge EV at charging station and the

amount of charge that is consumed during the trip to home. If the EV driver decides

to not charge the vehicle at charging station then the range to be charged at home

will be calculated as follow:

RCH(mi)= min
(

MR(mi),(MR(mi) - CR(mi) + DH(mi))
)

However, if the EV driver decides to charge the vehicle at charging station then the

amount of charge received in the charging station will be considered in calculating

the RCH:

RCH(mi)= min
(

MR(mi),(MR(mi) - CR(mi) + DH(mi) - RCS(mi))
)

IV Remained Range (RR)

Remained Range represents the amount of charge (without charging) that is re-

mained at the end of the driver’s trip. So RR can be calculated as the difference

between the current range and the distance to home.

RR(mi)= min(CR(mi),(MR(mi) - CR(mi) + DH(mi) - RCS(mi))

V Enough to Next Charging Opportunity (ENCO)

This variable indicates whether the current range is enough to the next charging

opportunity. In our model, it is assumed that charging at home is the only next

charging opportunity for the EV drivers. So the ENCO is 1 if the current range is

more than the distance to home.
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APPENDIX B

Table 11: Computational results of benchmark instances; set Random

Instance Targets(#) AEV(#) F α
B&C GAH

Obj Time(s) Gap(%) Cuts(#) Obj Time(s) PI(%)

c15-1-F1 10 2 100 0.8 279.7 68 0 101 279.7 22 0
15 3 100 0.8 279.4 7200 29.3 1206 269 39 2

c15-2-F1 10 2 100 0.8 230.5 19 0 53 230.5 24 0
15 3 100 0.8 220.1 7200 21.9 261 216 40 5

c15-3-F1 10 2 100 0.8 205.8 22 0 77 205.8 21 0
15 3 100 0.8 190.7 7200 21.5 158 189 41 3

c15-4-F1 10 2 100 0.8 214.7 21 0 67 214 25 2
15 3 100 0.8 205.7 7200 14.2 320 202 44 8

c15-5-F1 10 2 100 0.8 217.7 11 0 41 219 44 0
15 3 100 0.8 191.9 7200 0.006 158 194 31 0

c20-1-F1 10 2 100 0.8 217.2 18 0 31 217.2 20 0
15 3 100 0.8 214.9 7200 6 211 214.9 34 3

c20-2-F1 10 2 100 0.8 241.5 34 0 73 24.5 21 0
15 3 100 0.8 211.6 7200 16.8 234 206 33 6

c20-3-F1 10 2 100 0.8 245.9 21 0 87 245.9 18 0
15 3 100 0.8 212.4 7200 22 417 209 41 2

c20-4-F1 10 2 100 0.8 203 16 0 34 205 17 0
15 3 100 0.8 180.8 7200 9 85 182 32 3

c20-5-F1 10 2 100 0.8 215 5.2 0 47 215 25 0
15 3 100 0.8 212.9 7200 0.03 721 212.9 38 6

c25-1-F1 10 2 100 0.8 207.3 11 0 38 207.3 19 0
15 3 100 0.8 197.1 2175 0 68 197.1 19 4

c25-2-F1 10 2 100 0.8 279.8 184 0 236 28 18 2
15 3 100 0.8 264.8 7200 29.1 1285 258.6 35 0

c25-3-F1 10 2 100 0.8 236.5 39 0 83 236.5 29 0
15 3 100 0.8 192.4 7200 11.1 129 192.4 35 5

c25-4-F1 10 2 100 0.8 237.9 35 0 144 237.9 26 0
15 3 100 0.8 226.5 7200 23.9 1579 220 50 0

c25-5-F1 10 2 100 0.8 193.1 5 0 30 193.1 22 0
15 3 100 0.8 191.3 7200 7 107 191.3 49 7

c30-1-F1 10 2 100 0.8 225.4 15 0 49 225.4 23 0
15 3 100 0.8 228.5 7200 2 218 230 40 0

c30-2-F1 10 2 100 0.8 185 13 0 73 185 29 0
15 3 100 0.8 159.3 423 0 92 159.3 47 5

c30-3-F1 10 2 100 0.8 203.9 11 0 60 203.9 31 0
15 3 100 0.8 194.1 4009 0 152 194.1 47 3

c30-3-F1 10 2 100 0.8 227.3 11 0 61 227.3 27 0
15 3 100 0.8 219.8 7200 7 166 221 59 0

c30-4-F1 10 2 100 0.8 227.3 11 0 61 227.3 27 0
15 3 100 0.8 219.8 7200 7 166 221 59 0

c30-5-F1 10 2 100 0.8 230.4 10 0 50 230.4 13 0
15 3 100 0.8 190.8 2170 0 138 193 41 6
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Table 12: Computational results of benchmark instances; set A

Instance Targets(#) AEV(#) F α
B&C GAH

Obj Time(s) Gap(%) Cuts(#) Obj Time(s) PI(%)

A-32-k5 10 2 100 0.82 275.6 20 0 53 275.6 23 0
15 3 100 0.82 237.4 7200 12.8 111 237.4 55 4

A-n33-k5 10 2 100 0.89 237.9 26 0 68 239 28 0
15 3 100 0.89 187 7200 10 66 185 53 3

A-n33-k6 10 2 100 0.90 151.4 24 0 70 151.4 29 2
15 3 100 0.90 144 7200 11.3 116 144 58 0

A-n34-k5 10 2 100 0.92 230.3 35 0 49 230.3 75 1
15 3 100 0.92 191.5 7200 12 94 188 73 2

A-n36-k5 10 2 100 0.88 244.4 17 0 67 244.4 37 3
15 3 100 0.88 235.7 7200 19.3 323 232 74 4

A-n37-k5 10 2 100 0.81 194.6 7 0 27 194.6 29 0
15 3 100 0.81 184 7200 9.4 226 184 67 0

A-n37-k6 10 2 100 0.95 234 17 0 83 237 33 0
15 3 100 0.95 234 7200 12.7 360 234 45 0

A-n38-k5 10 2 100 0.96 213.4 5 0 31 213.4 29 4
15 3 100 0.96 213.4 7200 18 142 213.2 45 8

A-n39-k5 10 2 100 0.95 197.7 22 0 40 199 35 0
15 3 100 0.95 195.9 7200 25 177 190 54 6

A-n39-k6 10 2 100 0.88 223.1 24 0 102 225 47 0
15 3 100 0.88 188 4673 0 161 192 62 0

A-n44-k6 10 2 100 0.95 266.9 24 0 114 266.9 51 0
15 3 100 0.95 230 1400 0 177 234 71 5

A-n45-k6 10 2 100 0.99 243.3 15 0 55 243.3 37 0
15 3 100 0.99 228.4 7200 1.7 162 228.4 55 7

A-n45-k7 10 2 100 0.91 236.8 9 0 45 236.8 34 2
15 3 100 0.91 215.8 7200 1.2 211 220 69 2

A-n48-k7 10 2 100 0.89 262.7 16 0 70 262.7 38 0
15 3 100 0.89 243.1 7200 20 302 239 81 7

A-n53-k7 10 2 100 0.95 189.9 4 0 32 192 35 0
15 3 100 0.95 207.6 3438 0 129 211 77 3

A-n54-k7 10 2 100 0.96 246.8 14 0 82 246.8 38 2
15 3 100 0.96 230.5 7200 20 780 228 44 5

A-n55-k9 10 2 100 0.93 203.2 7 0 47 203.2 39 0
15 3 100 0.93 195.1 7200 2 205 195.1 51 0

A-n60-k9 10 2 100 0.92 255.5 13 0 55 255.5 47 0
15 3 100 0.92 246.5 5091 0 270 246.5 92 8
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Table 13: Computational results of benchmark instances; set B

Instance Targets(#) AEV(#) F α
B&C GAH

Obj Time(s) Gap(%) Cuts(#) Obj Time(s) PI(%)

B-n31-k5 10 2 100 0.82 188.8 0 2 35 188.8 22 0
15 3 100 0.82 236.6 7200 10 69 236.6 71 0

B-n34-k5 10 2 100 0.91 195.9 0 16 19 195.9 23 0
15 3 100 0.91 195.2 7200 19.3 35 188.2 66 0

B-n35-k5 10 2 100 0.87 282.4 11 0 59 282.4 28 2
15 3 100 0.87 259.7 7200 17.2 183 259.7 88 5

B-n38-k6 10 2 100 0.85 226.2 6 0 67 228 31 0
15 3 100 0.85 173.3 241 0 144 173.3 80 5

B-n39-k5 10 2 100 0.88 194.3 6 0 45 194.3 55 0
15 3 100 0.88 176.4 7200 1.3 87 179 72 2

B-n41-k6 10 2 100 0.95 243.3 8 0 36 243.3 37 0
15 3 100 0.95 217.4 7200 14.1 163 216.8 72 5

B-n43-k6 10 2 100 0.87 184.4 99 0 49 184.4 67 4
15 3 100 0.87 174.9 7200 11.8 212 175 89 7

B-n44-k7 10 2 100 0.92 210.9 9 0 34 210.9 29 0
15 3 100 0.92 206.1 7200 16.5 105 203.8 91 3

B-n45-k5 10 2 100 0.97 190.3 4 0 20 190.3 35 1
15 3 100 0.97 185.4 7200 11.4 135 183.6 82 3

B-n45-k6 10 2 100 0.99 177 13 0 22 177 47 3
15 3 100 0.99 176.7 7200 11 135 178.5 88 0

B-n50-k7 10 2 100 0.87 199.9 4 0 37 199.9 23 0
15 3 100 0.87 172.5 7200 11.7 25 168.2 90 0

B-n50-k8 10 2 100 0.92 284.6 34 0 210 288 32 0
15 3 100 0.92 247.9 7200 19.9 897 242 72 4

B-n51-k7 10 2 100 0.98 248.2 15 0 31 248.2 26 2
15 3 100 0.98 239.8 7200 34.6 64 225 68 6

B-n52-k7 10 2 100 0.87 209.1 5 0 20 209.1 31 3
15 3 100 0.87 211.8 7200 10.7 106 210.6 72 5

B-n56-k7 10 2 100 0.88 197.1 5 0 43 197.1 35 0
15 3 100 0.88 196.3 7200 16.8 79 194 74 6

B-n57-k7 10 2 100 1 298.4 32 0 119 301 33 3
15 3 100 1 219.1 7200 4 139 222 63 0

B-n57-k9 10 2 100 0.89 269.2 20 0 61 269.2 44 0
15 3 100 0.89 251.8 7200 29.1 467 248 69 4
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Table 14: Computational results of benchmark instances; set P

Instance Targets(#) AEV(#) F α
B&C GAH

Obj Time(s) Gap(%) Cuts(#) Obj Time(s) PI(%)

P-n19-k2 18 2 160 0.97 112.7 399 0 15 112.7 33 0
18 3 160 0.97 89.5 4661 0 33 89.5 56 2

P-n20-k2 19 2 160 0.97 112.7 274 0 56 112.7 41 0
19 3 160 0.97 90.1 7200 4.6 48 90.1 82 0

P-n21-k2 20 2 160 0.93 112.7 793 0 47 112.7 63 0
20 3 160 0.93 90.1 7200 7.3 64 90.1 91 2

P-n22-k2 21 2 160 0.96 112.7 422 0 22 112.7 72 0
21 3 160 0.96 90.9 7200 12.6 109 90.9 88 3

B-n22-k8 21 2 3000 0.94 158.7 0 0 50 158.7 91 2
21 3 3000 0.94 115.9 7200 7.7 16 115 77 7

P-n40-k5 15 2 140 0.88 124.7 8 0 18 124.7 57 0
15 3 140 0.88 94.6 675 0 41 96.2 66 6

P-n45-k5 15 2 150 0.92 0 124.7 15 0 9 124.7 44 1
15 3 150 0.92 94.6 670 0 16 94.6 88 3

P-n50-k7 15 2 150 0.91 1 112.4 6 0 6 112.4 40 4
15 3 150 0.91 86.9 271 0 21 86.9 53 0

P-n50-k8 15 2 120 0.99 112.4 8 0 19 112.4 58 3
15 3 120 0.99 86.9 204 0 20 86.9 69 4

P-n50-k10 15 2 100 0.95 118.6 30 0 27 118.6 55 2
15 3 100 0.95 86.9 602 0 79 86.9 80 5

P-n51-k10 15 2 80 0.97 153.3 4971 0 11 153.3 64 7
15 3 80 0.97 100.7 80 0 17 102 77 6

P-n55-k7 15 2 170 0.88 112.4 7 0 3 112.4 68 0
15 3 170 0.88 86.9 254 0 27 86.9 76 0

P-n55-k10 15 2 115 0.91 112.4 10 0 12 112.4 71 2
15 3 115 0.91 86.9 188 0 58 86.9 81 6

P-n55-k15 15 2 70 0.99 129.4 128 0 20 129.4 58 4
15 3 70 0.99 109.5 7200 17.3 68 107.2 87 4

P-n60-k10 15 2 120 0.95 112.4 6 0 28 112.4 45 0
15 3 120 0.95 86.9 708 0 30 86.9 79 2

P-n60-k15 15 2 130 0.94 129.4 349 0 7 129.4 66 1
15 3 130 0.94 92.4 1614 0 21 92.4 93 5
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Logistic and transportation (L&T) activities become a significant contributor to social

and economic advances throughout the modern world Road L&T activities are responsi-

ble for a large percentage of CO2 emissions, with more than 24% of the total emission,

which mostly caused by fossil fuel vehicles. Researchers, governments, and automotive

companies put extensive effort to incorporate new solutions and innovations into the L&T

system. As a result, Electric Vehicles (EVs) are introduced and universally accepted as one

of the solutions to environmental issues. Subsequently, L&T companies are encouraged

to adopt fleets of EVs. Integrating the EVs into the logistic and transportation systems

introduces new challenges from strategic, planning, and operational perspectives. At the

strategical level, one of the main challenges to be addressed to expand the EV charging

infrastructures is the location of charging stations. Due to the longer charging time in

EVs compared to the conventional vehicles, the parking locations can be considered as the

candidate locations for installing charging stations. Another essential factor that should be

considered in designing the Electric Vehicle Charging Station (EVCS) network is the size
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or capacity of charging stations. EV drivers’ arrival times in a community vary depending

on various factors such as the purpose of the trip, time of the day, and day of the week.

So, the capacity of stations and the number of chargers significantly affect the accessibility

and utilization of charging stations. Also, the EVCSs can be equipped by distinct types

of chargers, which are different in terms of installation cost, charging time, and charging

price. City planners and EVCS owners can make low-risk and high-utilization investment

decisions by considering EV users charging pattern and their willingness to pay for differ-

ent charger types. At the operational level, managing a fleet of electric vehicles can offer

several incentives to the L&T companies. EVs can be equipped with autonomous driving

technologies to facilitate online decision making, on-board computation, and connectivity.

Energy-efficient routing decisions for a fleet of autonomous electric vehicles (AEV) can

significantly improve the asset utilization and vehicles’ battery life. However, employing

AEVs also comes with new challenges. Two of the main operational challenges for AEVs

in transport applications is their limited range and the availability of charging stations.

Effective routing strategies for an AEV fleet require solving the vehicle routing problem

(VRP) while considering additional constraints related to the limited range and number of

charging stations. In this dissertation, we develop models and algorithms to address the

challenges in integrating the EVs into the logistic and transportation systems.
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