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CHAPTER 1 INTRODUCTION

Enormous efforts have been made to collect genetic and clinical data from cancer pa-

tients to advance the understanding of disease development and progression. Processing

and analyzing these flows of data is challenging. Many computational methods have been

proposed to help different fronts of biology and medicine. The personalized medicine1 (PM)

paradigm recognizes that many factors influence the diagnosis, treatment, and prognosis of

patients, factors that could vary among patients. The integration of clinical and genetic

data using computational methods towards personalized medicine is considered the future

for oncology studies [9, 64], and this thesis contributes in this direction. This thesis mainly

presents data integration approaches to identify granular and meaningful disease sub-types

from heterogeneous genetic and clinical data, which is an essential step towards PM imple-

mentation. Although research has shown that integrating different data sources for disease

subtyping2 increases the analytic power [46, 43, 48, 44, 45], integrative approaches are in

their early stages due to many computational challenges, such as high-dimensionality, data

collection noise, and heterogeneity of data sources [45, 76, 363, 340, 47, 158, 283]. Here, we

present three new methods to integrate high-dimensional genetic data and clinical variables

to elucidate disease-subgroups and their different biological mechanisms.

Disease subtyping is an important research topic in health-care informatics. For example,

it is well known that “breast cancer” (BC) encompasses several profoundly different BC

sub-types, such as ER+, PR+, HER2+, and triple-negative. The specific sub-type of cancer

highly conditions diagnosis, treatment plan, treatment success, prognosis, and response to

treatment. Identifying subgroups of patients that can lead to disease sub-types incorporating

clinical and genetic data is still a challenge. Many attempts to disease subtyping based solely

on genetic characteristics of patients have been undertaken but returned only moderate

success so far (for example, rarely gene expression tests have been FDA approved).

1screening, diagnostic, therapeutic, and prognostic procedures that take into account individual variability
of patients [9, 64].

2partitioning patients into outcome related cohorts
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This thesis is organized as follows. Chapter 2 presents the biological terminology and

concepts that are studied with our proposed computational methods. Chapter 3 stages a

comprehensive literature review of computational methods for disease subtyping. Here we

examine many tools and technologies that have been applied to cancer patient stratification,

also known as disease subtyping. Some of these tools focus on one of the many types of

patient data, while others use a combination of various data types. Here we approach disease

subtyping as a computational problem to bridge the gap between oncology and computer

science. We also study and compare the different techniques that have been used to tackle

this problem, as well as highlight opportunities for new methods. Chapter 4 presents our

integrative disease subtyping based on microRNA, gene expression, and gene networks. We

demonstrate the feasibility of the algorithm using real data patients from publicly available

datasets. We show that data integration is critical to identify sub-types of diseases and

their underlined biological mechanisms. In Chapter 5, we describe the current limitations

of integrative approaches and propose the integration of clinical data to genetic subtyping

to find relations between the clinical and genetic components, in addition to identifying

meaningful sub-types of patients. In Chapter 6, we extended our integrative pipeline by

incorporating gene expression to somatic mutation and clinical data for subtyping. We tested

our method with data from six different cancer types and identified meaningful sub-types of

patients. These results can potentially have important impacts on diagnosis, prognosis, and

treatment of cancer. We conclude this thesis by proposing future works.

1.1 Integrating high-throughput biomolecular data

The advent of high-throughput genomics technologies has resulted in massive amounts

of diverse genome-scale data. These technologies measure molecular expression at different

levels, such as gene expression, microRNA expression, protein abundance, DNA methylation,

and copy number variation, across the whole genome. Simultaneously analyzing multiple

data types allows us to gain a more comprehensive view and a deeper understanding of

complex diseases that any single data type analysis is unable to provide. Pathway analysis
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and disease subtyping are often the first steps needed to interpret the diverse data types

and to gain insights into biological processes. Despite the efforts, the integration of massive

amounts of high-dimensional and diverse data types presents significant algorithmic and

computational challenges. These challenges include the curse of dimensionality of the high-

throughput data, contradicting and redundant signals from heterogeneous types of data,

poor reproducibility of independent studies designed for the same disease, and algorithmic

complexity. In this introduction, we focus on approaches that integrate multi-omics data for

disease subtyping and show the differences, advantages, and disadvantages compared to the

existing methods.

The Centers for Disease Control and Prevention (CDC) expects the number of new can-

cer cases in the United States to go up about 24% in men to more than 1 million cases per

year, and by about 21% in women to more than 900,000 cases per year until 20203. These

alarming figures motivate to accelerate the research on cancer, which underlines complicated

cellular processes that are not fully understood. These processes encompass thousands of

chemical compounds and physical reactions. High-throughput molecular biological methods

perform thousands of simultaneous measurements of biological molecules to read a particular

state of cells. Recent technologies have extended the broadness of available high-throughput

molecular biological data. Nowadays, most of the molecular data types are analyzed sepa-

rately. Single data type studies have provided essential discoveries like biomarkers for some

diseases. However, analyzing various data types together can potentially lead to a more

coherent understanding of cellular processes [124].

The term high-throughput data is referred to here as large measures of genetic data taken

in a short time. Different technologies generate these data, commonly referred to as “omics

technologies”, which are the foundation for systems biology [268]. Omics seek to quantify,

describe, and identify all of the components on cellular systems with spatial and temporal

dimensions [285]. There are several data types of high-throughput measurements from which

3“Expected New Cancer Cases and Deaths in 2020”, The Centers for Disease Control and Prevention
(CDC), viewed Feb. 10, 2020, https://www.cdc.gov/
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four categories are the most important: proteomics, transcriptomics, metabolomics, and ge-

nomics [362]. Proteomics is the large-scale study of proteins present in cells. Transcriptomics

measures all gene expression values. Metabolomics aims for the quantification and identi-

fication of metabolites. Furthermore, genomics includes the large-scale genotyping of SNP

(single nucleotide polymorphisms) and epigenomics. Each of these data types is unique and

provides different perspectives on cellular processes.

Proteomic measurements strive to determine the presence and quantity of the proteins

that have been translated into a sample. The process of protein identification is performed

serially and rapidly using antibodies or Mass Spectrometry (MS). The general process for an

MS study starts by preparing the sample. Then proteins are detached using chromatography,

which typically consists of several protein gels that can be: 1-dimensional protein gels which

detach proteins based on size, or 2-Dimensional protein gels which detach proteins based on

size and electrical charge. Next, these gels are digested and drive through mass spectroscopy,

which identifies the volume of the peptides. Finally, each type of protein can be recognized by

querying on protein databases the volume of the peptides, which retrieves the corresponding

protein. Proteomic measures are extensively used for early identification of diseases and

disease subtyping.

Transcriptomic measurements or gene expression microarrays are the best established of

the high-throughput technologies. The most common arrays consist of hundreds of thousands

of probes. A broad pipeline of these technologies starts by extracting RNA from cells. Then

perform purification of the sample to perform cDNA coupling then. Then, the cDNA is

hybridized to the array. Finally, the probes are scanned to assess the expression level of

approximately 30,000 different mRNAs. There are several statistical methods developed to

perform each of these steps. Gene expression is largely used for early disease identification

and disease subtyping.

Metabolomics target the measure of metabolites present in cells. Similar to proteomics,

metabolites are measured using a rapid serial process. Typical technologies used to identify
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and measure metabolomics are Nuclear Magnetic Resonance(NMR) spectroscopy, and MS.

NMR can detect metabolites by comparing the measured signals with databases of refer-

ence compounds. Measurements of metabolites are known for their high correlation with

phenotypes and are typically used for early disease detection and disease subtyping.

Finally, genomics determines which of the millions of Single Nucleotide Polymorphisms

(SNPs) scattered through the whole genome an individual carries. SNPs are single variations

(mutations) in the DNA sequence that occur in about 1 of a population. Analyzing the

frequencies of these variations is important because it helps to determine the relationship of

specific mutations with a particular disease. Genotyping can be performed using different

technologies depending on the variants under study. When looking for several different

variants, genotyping arrays are the right choice. The main advantage of genomic studies over

the previous omics is that genotypes are useful for pre-disease prediction because genomic

aberrations are present even before diseases start phenotypic manifestations.

All these different data types provide different levels of knowledge, and they should be

considered to fully understand biological processes at the cellular level. There are several

computational solutions for analyzing omics data in isolated fashion [24]; however, single

measures have not given enough conclusions for disease diagnosis and treatment. Some of

the ultimate goals for integrating multiple-omics are the identification of relevant pathways

behind a condition, treatment response prediction, and disease subtyping.

The identification of pathways that are involved in a specific phenotype is typically re-

ferred to as pathway analysis. Identifying pathways that are relevant to a condition is

essential because it gives insights that can be used to further disease treatment or diagnosis.

The standard input of pathway analysis techniques is the fold change of two phenotypes.

Fold change is computed from gene expression of two different groups, commonly one group

of control subjects and another group with patients carrying a disease. The output of these

methods is a ranked list of statistically significant biological pathways. These pathways are

considered to be related to the condition under study. Biological pathways are graphical
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representations of common knowledge about genes and their interactions as part of biolog-

ical processes. Some of these graphs have a set of genes as nodes and the biochemical and

physical interactions as edges. These pathways are typically made by mining the litera-

ture and then manually curating the retrieved information [182]. The components that

are mostly analyzed are genes, proteins, and metabolites. Signaling processes of the cell

are captured in signaling pathways that describe the interactions between protein and DNA

level of protein-coding genes [189].

Treatment response prediction refers to the identification of patients that respond to a

treatment and patients that do not. Prediction of treatment outcomes in complex diseases

like cancer is crucial. Tumor size reduction and side effects are commonly expected outcomes

from these approaches. For example, studies have proven that the integration of gene muta-

tion with gene expression improves outcome prediction in some myelodysplastic syndromes

(MDS) [131], which are a group of cancers for which blood cells in the bone marrow do not

mature and never become healthy cells. Particularly for cancers, tumor progression can be

tracked by identifying differentially expressed genes across two phenotypes. The input of

treatment response predictors includes clinical or biological parameters registered at base-

line during treatment. The output is a likelihood of a response to a given treatment or

the prognostic ability of the models to distinguish between patients that responded to the

treatment and patients that did not.

Generating clinical meaningful disease subtyping is critical for prognosis and further

treatment determination. Based on statistical information and the patient’s profile, the

objective is to identify the sub-type of the disease that the patient more likely belongs to.

The input for disease subtyping is molecular and clinical data of several patients that undergo

a particular condition and have different outcomes. The expected output is well-identified

groups that highly correlate with the observed survival (e.g., a group of long-term survival

patients and another group of short-term survival patients). It is also essential to identify

possible patterns that are shared among members of each sub-type and differences with other
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sub-types. This is commonly posed as a clustering problem where the main goal is to find

groups of patients that are highly similar to the members of its group, very different with

the other groups, and the number of groups is unknown.

All these applications show how important is integrating various biomolecular data types.

There are more applications and studies on genetic data integration like drug studies [351],

signaling networks reconstruction [197, 241, 77], systems biology [130], or biological net-

works visualization [301]. From the computer science perspective, the term data integration

refers to the integration of fragmented information from different physical databases or data

warehouses and different representations. Several authors have proposed platforms and lan-

guages to integrate the databases (typically using XML) [3]. In bioinformatics, the terms

data integration and data fusion are used indistinctly. In computer science, data fusion is

referred to as the process of integrating information acquired from various heterogeneous

types into a unique compound knowledge. Here we refer to data integration and data fu-

sion as the integration of knowledge without focusing on the representation. Additionally,

data fusion is valuable for acquiring more reliable information than original measurements

from a single type of source. The primary issue in data fusion (DF) is to provide fused

data with increased correctness, conciseness, and completeness compared with the original

data. Correctness measures whether the fused data conform to the reality of the object

under study. This occurs when more than one data source can confirm the same hypothesis,

which increases the confidence of the data. Conciseness refers to the reduction of ambiguity,

which means that the fused data from multiple sources have decreased the set of hypotheses

about the object of study. Finally, completeness measures the amount of information from

the fused data, which increases the robustness because one measurement can contribute to

information where other measurements are incapable. To make this process successful, we

need to define resolving conflicts from the data outline. The data conflicts can occur when

there is uncertainty or when there are contradictions. Uncertainty occurs when there is miss-

ing information, such as gene levels not included in the measured platform, or a particular
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sample. A contradiction occurs when all the information is presented to its entirety, but

the information that we can extract from one source is different from the one that can be

extracted from another source.

Data fusion techniques have been applied mainly to the graphical computation context.

Numerous data fusion algorithms at different levels of detail [83] have been categorized by

the USA JDL [221] into three basic levels according to the amount of information that

they provide. The first level corresponds to raw uncorrelated data. The second level -or

feature level- provides a higher level of inference, and an additional interpretative meaning

is suggested. Finally, the third level –or decision level– delivers additional interpretative

meaning. It is designed to provide recommendations to users.

In the high-throughput biomolecular data context, data integration is typically performed

in four different manners. One is to analyze each data type isolated first, then integrate the

conclusions. Another one is to first pre-process each type of data independently. Second,

normalize the data types. Third, integrate the normalized figures and finally perform an

overall analysis. A different approach for integration consists of performing a statistical

integration (using statistical methods). Lastly, to integrate the data types using a model

based on the biological meaning of the data types and their interactions.

For instance, researchers have analyzed mRNA and microRNA paired data by analyzing

each data type independently and interpret results manually [71]. Sometimes the results

of these experiments can lead to contradictory and unexplained results. A second scenario

consists when researchers decide to merge measurement tables, i.e., add the microRNA rows

to the mRNA table (rows are the RNA molecules) and analyze and extract conclusions from

the new merged table.

During the last two decades, immense progress has been made toward understanding the

molecular processes that are different in cancer patients. Traditional approaches compare

gene expression levels between samples of cancer patients and healthy individuals; however,

recent studies have shown that monitoring only gene expression is not able to capture the
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Figure 1.1: Classification of integration methods for high-throughput biomolecular data.

disease signatures in most cancers [246]. Integrating gene expression with other data types

has become a new challenge in our age. Integrating gene expression with other data types is

the new paradigm for studying complex diseases. Integrative approaches have shown to be

successful in finding cohesive perspectives of complex cellular systems. Nevertheless, analyz-

ing multiple data types is extremely difficult due to heterogeneity and high-dimensionality.

For example, The Cancer Genome Atlas (TCGA) [325] dataset contains nine data levels

(excluding clinical data and imagines) for a total of 28 data types. TCGA is an effort of

the National Cancer Institute (NCI) and the National Human Genome Research Institute

(NHGRI). Life scientists that intend to analyze these datasets by pairs would have to conduct

378 different analyses to compare every possible pair of data types. And the most signif-

icant set back is, for a basic experiment as determining if a gene is active or inactive will

result in data suggesting different conclusions. To help biologists to understand this complex

data flood, informaticians have been developing computational methods that integrate the

information that we learned from each isolated component in a systematic approach.
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Many publicly available repositories contain a vast amount of high-throughput data, such

as Gene Expression Omnibus [18, 106], The Cancer Genome Atlas [325], ArrayExpress [288,

34]. To take advantage of these floods of data, many researchers are trying to integrate data

from multiple datasets and multiple measurements of the same set of patients from numerous

sources. There are two general directions to integrate data: i) horizontal meta-analysis and ii)

vertical multi-omics analysis [332]. A horizontal meta-analysis is also known as cross-cohort

data integration. Its purpose is to integrate the same type of data from independent but

related studies. A vertical multi-omics analysis integrates multiple types of data measured

for the same set of patients. A horizontal meta-analysis (also known as cross-cohort data

integration) is used to integrate the same type of data from different sources or different

laboratories. Both of these can also incorporate information from biological pathways or

other knowledge databases. These studies require interdisciplinary expertise like biology,

statistics, and computer science. Many publicly available high-throughput multi-omic data

sets create several challenges to store, pre-process, curate, analyze, integrate, and interpret

data [260, 209, 30].

This thesis contributes to the field of vertical data integration rather than data fusion

because the proposed methods integrate multi-omics and clinical data prior to data analysis.

In Chapter 4, we introduced disSuptyper, a method that integrates multi-omics data and

biological pathways. Chapter 5 presents CLIGEN, which integrates clinical and mutation

data. Lastly, we integrate clinical, mutation, and gene expression data in our TGENEX

pipeline presented in Chapter 6.

1.2 Disease subtyping using multiple data types

A vast majority of the diseases develop differently, making them heterogeneous. Iden-

tifying similarities and differences among patients to ultimately identify disease sub-types

reduces such heterogeneity and help us study diseases [291]. Furthermore, the precise clas-

sification of patients into sub-types can help the practice of medicine from diagnosis, treat-

ment, and prevention. Moreover, identifying sub-types that are relevant to survival profiles
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or related to biological patterns is crucial as well as identifying more homogeneous disease

sub-types and their corresponding genetic signatures. Such sub-type distinction can advance

diagnosis classification, which can improve clinical decision and treatment matching. Most

methods for disease subtyping perform clustering using either genetic data or clinical data

from patients [291, 272, 31, 87, 90, 157, 156]. These methods do not integrate clinical data

with molecular measurements, and the outcome sub-types are prone to be suboptimal [314].

A contemporary method that integrates genetic data for disease subtyping is SNF (Sim-

ilarity Network Fusion) [345]. Figure 1.2 shows the workflow of SNF. The input includes

multiple matrices, and each represents the molecular measurement of a data type for the

same set of patients. a) SNF first constructs a patient similarity matrix (PSM) for each data

type (Figure 1.2b). It then constructs a network for the patients where the nodes are pa-

tients, and the edges are the similarity between them (Figure 1.2c). It then iteratively fuses

these networks into one network that represents the overall similarity between patients for

the multi-omics data (Figure 1.2d). In each iteration, the fused network discards the weak

similarities to eliminate contradictions. After each iteration, the networks from multiple

data types are more similar to each. The algorithm stops when the networks are identical

(Figure 1.2f). Finally, a similarity-based clustering, such as spectral clustering, is performed

on the fused network to identify sub-types of the disease.

The authors validated the discovered sub-types using Kaplan-Meier survival curves, Cox

regression [69, 326], and Silhouette score. The method is compared with existing methods,

such as iCluster [298] and Consensus Clustering [239]. The data analysis was done using

five different cancer datasets downloaded from TCGA: glioblastoma multiform data (GBM),

breast invasive carcinoma (BIC), kidney renal clear cell carcinoma (KRCCC), lung squamous

cell carcinoma (LSCC), and colon adenocarcinoma (COAD). For all the five datasets and all

the metrics used, SNF achieved the best result.

Cox log-rank test is one of the methods to determine if certain groups of patients have

different survival dynamics [326, 70]. Survival Analysis, or time-to-event analysis, is used for



12

Figure 1.2: Workflow of Similarity network fusion (SNF) [345]. (a) The input consists of
multiple matrices that have the same set of patients (rows) but different sets of measurements
(columns). Each matrix represents the molecular measurements of a data type. (b) Similarity
matrices for each data type. (c) Similarity networks built from similarity matrices. (d)
Network fusion by SNF. The algorithm iteratively the networks of the data types. Each
iteration makes the networks more similar. (e) The resulting fused network.

examining the expected time it takes for an event of interest, such as death, to occur [214,

26, 136, 26]. The basic setup for this analysis is that certain subjects (e.g., cancer patients)

are censored over time until the event happens (e.g., death). Some subjects could get lost

from the sample and cannot be censored anymore (e.g., patients drop from the study or

die). Survival in this context means how long people stay in the sample. At the beginning

of the study, all the subjects are in the sample; therefore, survival is 100%. Over time,

events start happening, and survival starts decreasing until the study is over. Typically, the

analysis will include a survival curve to visualize the behavior of survival over time. It also

considers hazards, which represent the risk of failure or what is the chance that the event

will happen before a specific period. In this case, the hazard is the probability of dying at

a particular moment. For survival analysis, we are particularly interested in hazard ratio,

which is the hazard in one group (e.g., cancer patients) divided by the hazard in another

group (e.g., control subjects) [214, 26, 136, 26]. The dependent variable is the duration of

measurement which is a combination of three variables the time variable (the length of time

until the event happened or being in the study), the event variable (1 if the event happened
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or 0 if the event has not happened yet), and the censored variable (indicating if the event was

observed or not). These survival studies can have several extensions; one of these is the use

of more than one group of participants in the same study. Survival analysis models can be

non-parametric models, parametric or semi-parametric models. Non-parametric models are

useful for descriptive purposes and to visualize the shape of the survival and hazard functions

before using a parametric model. Hazard curves are nonmonotonic and survival curves are

strictly non-increasing curves. There are two estimators commonly used for non-parametric

models: Nelson-Aalen estimator of the cumulative hazard function and The Kaplan-Meier

estimator for the survival function [136]. These models depend on the form of the survival

function. The Cox proportional hazards model is a semi-parametric model [326, 70]. The

cluster (i.e. sub-type) number that each patient belongs to is incorporated into this model as

an independent explanatory variable. Cox’s proportional hazards model, is the most common

approach used to model survival data, and we use it for our survival analyses. The dependent

or response variable for this model is the hazard (risk of death at a given moment) [26]. To

compare two survival groups, this model assumes that the risk of death in one group is a

constant ratio of the risk of death in the other group (Hazard Ratio). The Cox score test

is used to test if the ratio between the groups equals 1. The Log-rank Mantel-Cox test is

similar to the score test, and it tests the null hypothesis, H0, that the survival functions of

the groups have no statistically significant difference.

For disease subtyping, most methods using machine learning techniques rely on gene fil-

tering to reduce complexity. For example, the gene expression and methylation data consist

of tens of thousands or hundreds of thousand features, which make the clustering or classifica-

tion problems unscalable using classical techniques. Most techniques reduce the complexity

by feature selection, i.e., they focus on the set of genes that are selected beforehand by the

life scientists. Similarity Network Fusion (SNF) is the only known technique that deals with

molecular data on the whole genomic scale without filtering or gene pre-selection. SNF works

on the space of patients instead of the space of genes. In order to do this, they construct
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the similarity network between patients for each data type and then simultaneously merges

the constructed networks into a single fused network that represents the overall similarity

between patients across all data types.

However, SNF has several pitfalls. First, the metric fusion technique used in SNF relies on

many parameters. A slight change in these parameters or the input data would significantly

alter the output sub-types. Besides, the spectral clustering techniques used to partition the

fused network is known to be unstable (a small change in similarity may completely alter the

final clusters). Furthermore, this clustering method needs a pre-specified number of clusters.

In this thesis, we present methods for integrating multiple types of data for the purpose of

disease subtyping. The first method incorporates biological pathways and integrates multi-

omics data [90]. Our second method incorporates mutation data and clinical data of breast

cancer patients [84], and the third method integrates gene expression, mutation data, and

clinical data of several different types of cancer.
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CHAPTER 2 BIOLOGICAL BACKGROUND

This chapter provides a necessary background in molecular biology, which is crucial to

present the contributions of this thesis. In particular, we present the central dogma of

molecular biology, introduce the function of mRNA, different types of mutation, cancer

development, and breast cancer sub-typing.

Molecular biology can be defined as the study of life at the molecular level. It is an inter-

disciplinary approach that combines genetics (i.e., the study of heredity) and biochemistry

(i.e., the study of the chemistry of living things). Here, we are interested in the molecular

biology of the genes rather than other components of the cell, i.e., the study of genes, how

they translate to proteins, and its clinical significance.

Figure 2.1 illustrates a simple representation of the flow of genetic information from

genes to proteins. This process is known as the central dogma of molecular biology which

has two main steps: translation and transcription. First, a piece of information in the DNA

(a gene) is transcribed into messenger-RNA (mRNA) in the cell nucleus. Then, the mRNA

is transported to the cytoplasm to be translated into a polypeptide chain (protein) by the

action of a ribosome and multiple transfer-RNAs.

Different technologies have been developed to measure the molecules involved in the flow

of genetic information (DNA, mRNA, protein). The following subsections describe these

molecules and the techniques used to measure them. The input material of transcription

is deoxyribonucleic acid (DNA). The genetic information necessary for cell functioning is

carried in the form of DNA, which is made up of nucleotides. Each DNA nucleotide contains

one of these four bases: adenine (A), cytosine (C), guanine (G), or thymine (T). These bases

bind nucleic acids together by complementary pairing – adenine base pairs with thymine

and cytosine with guanine. The DNA structure contains two strands of complementary

nucleotide chains forming a double helix [353]. Typically, DNA is represented in a linear

format as a sequence of nucleotides.

The output of transcription is ribonucleic acid (RNA). DNA is transcribed to messenger-
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Figure 2.1: The central dogma of molecular biology.

Credit: Nicolle Rager, National Science Foundation

RNA (mRNA), which is transported out of the nucleus. RNA is a single strand of nucleotides,

where each RNA nucleotide contains one of these four nitrogen bases: adenine (A), cytosine

(C), guanine (G), or uracil (U). In transcription, each thymine base is copied as a uracil

base. Typically, mRNA is described in a linear format as a sequence of nucleotides.

Each triplet of mRNA nucleotides, named codon, is translated to an amino acid. Humans

have 20 types of amino acids, and each amino acid is mapped from more than one codon.

The amino acids translated from an mRNA strand bond together to form proteins, i.e.,

polypeptide chains. Proteins are involved in almost all functions in a cell.

There are two main categories of genes: protein-coding genes and non-protein-coding

genes. Protein-coding genes are transcribed and then translated into protein. Non-protein-

coding genes are transcribed but never translated; their final product is non-coding RNA

(ncRNA). Gene expression is the process by which a piece of particular gene information

(DNA) is transformed into a gene product, i.e., either ncRNA or protein. The essential

central dogma model does not include crucial ncRNAs, such as microRNAs (miRNAs).
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microRNAs (miRNAs) are small RNA molecules of approximately 22 nucleotides capa-

ble of suppressing protein production by binding to gene transcripts. More than 30% of the

protein-coding genes in humans are miRNA regulated [213]. Additionally, miRNAs have

been shown to play a significant role in diagnosis and prognosis for different types of dis-

eases [211]. Several efforts have been made to identify mRNA-miRNA target interactions,

i.e., which miRNAs regulate which genes. Most microRNA-target interactions are statisti-

cally predicted, and some are experimentally validated.

Given the importance of miRNAs, hundreds of thousands of miRNA-targeting-genes in-

teractions have been experimentally validated and collected in public databases such as

mirTarBase [165], miRWalk 2.0 [105], miRecords [360], and TarBase 7.0 [294]. There are

also several algorithms used to predict miRNA targets [178, 213, 203] and databases with

predicted interactions such as miRanda [178], TargetScan [213], PicTar [203], and Targe-

tRank [252]. There are also find miRNA-disease interaction databases [165, 176, 218] which

are growing rapidly.

2.1 Data integration in cancer studies

Cancer is a disease that involves genetic and environmental factors. Knowledge of the

roles that genes play in a particular disease is rapidly helping us to understand cancer biology.

These functions differ significantly; for example, some genes can contribute to determining

the disease state (disease genes) while other genes can interact with particular environmental

factors in causing cancer (susceptibility genes). Identifying the roles that genes play in a

disease is not an easy task; it requires rigorous biological experiments followed by statistical

and computational analyses to interpret the data. High-throughput technologies allow the

monitoring of cellular processes at the molecular level.

One of the molecules typically measured is ribonucleic acid (RNA), particularly messenger

RNA (mRNA). The mRNA is used as a proxy to determine gene expression, i.e., the process

by which a gene synthesizes to a gene product. These measurements are taken to identify

if a gene is over-expressed or under-expressed. Using these technologies, conventional data
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analysis provides a list of differentially expressed (DE) genes. This analysis is done by

comparing the gene expression from two groups and statistically identifying the genes that

are significantly different between the groups, e.g., one group of healthy individuals versus

one group of patients with the disease under study. Lists of DE genes are widely used.

However, these lists often fail to elucidate the underlying biological mechanisms.

In the last couple of decades, several approaches have focused on the interactions be-

tween genes rather than the study of individual genes. These gene to gene interactions are

captured as graphs, named signaling pathways, with genes as vertices and interactions as

edges. Each signaling pathway describes a cellular process and contains the genes and inter-

actions that are involved in this process. Researchers have been storing the knowledge about

various pathways into many publicly available databases, such as the Kyoto Encyclopedia of

Genes and Genomes (KEGG) [182], Biocarta [28], and Nature Pathway Interaction Database

(NCI) [292]. Given the availability of such a collection of pathways, researchers now could

identify the pathways that are significantly impacted by a given condition. Identifying path-

ways instead of genes increases the explanatory power and gives us a better understanding of

the underlying biological phenomenon [187, 189, 238]. Many pathway analysis methods have

been developed to identify enriched or differentially regulated pathways [22, 25, 107, 113, 317].

These methods can be divided into three different categories: over-representation analysis

(ORA), functional class scoring (FCS), and pathway topology methods (PT) [101, 274].

The over-representation analysis (ORA) [324] identifies the pathways with differentially

expressed genes that are significantly greater than expected by chance. This approach ignores

all the gene interactions and assumes gene independence, resulting in an incorrect hypothesis

testing thus leading to biased results. Functional class scoring (FCS) methods, such as Gene

Set Enrichment Analysis (GSEA) [317] and Gene Set Analysis (GSA) [107], do not assume

independence between genes [36, 95]. The hypothesis of FCS methods states that well-

coordinated small changes in relevant genes can also have significant effects on pathways

besides large changes in individual genes. However, these approaches still do not take into



19

consideration the interactions between genes as described by the pathways, resulting in

information loss, which in turn leads to both false positives, as well as false negatives [101].

Topology-aware approaches, such as Impact Analysis [101, 323], analyze the pathways as

graphs and take into consideration the type and direction of each gene-gene interaction.

Pathway analysis methods using gene expression (mRNA) have achieved remarkable re-

sults [22, 25, 107, 113, 187, 189, 238, 317]. However, mRNA alone is unable to capture the

complete picture of cell processes, as other entities also play important roles. For instance,

microRNAs (miRNAs) are newly discovered gene regulators that play a crucial role in di-

agnosis and prognosis for different types of cancer [211]. miRNAs are small RNA molecules

capable of suppressing protein production by binding to gene transcripts. More than 30% of

the protein-coding genes in humans are miRNA-regulated [213]. Given all the evidence of

the miRNA’s relevance, hundreds of thousands of miRNA targeting genes interactions have

been experimentally validated and collected in public databases such as mirTarBase [165],

miRWalk 2.0 [105], miRecords [360], and TarBase 7.0 [294]. There are also several algorithms

used to predict miRNA targets [178, 203, 213] and databases with predicted interactions such

as miRanda [178], TargetScan [213], PicTar [203], and TargetRank [252].

Besides, relevant work has been done to elucidate the important interplay between miR-

NAs and biological pathways [10, 41, 164, 165, 247, 343]. These studies focus on different

directions, some methods search for pathways that are targeted by a particular miRNA [10],

and others perform pathway analysis using just miRNA expression, such as mirTar [164, 165]

and DIANA-miRPath [343]. Other methods incorporate both mRNA and miRNA for path-

way analysis [41, 247]. The earliest tool that implements mRNA-miRNA integration is the

miRNA and mRNA integrated analysis (MMIA) [247], which performs Gene Set Analysis

(GSA) of the down-regulated genes that are targeted by up-regulated miRNAs. However, as

mentioned before, GSA does not take advantage of the knowledge captured by the pathway

topology. The state-of-the-art approach for the miRNA-mRNA pathway analysis method

is microGraphite [41], which uses an empirical gene set approach. microGraphite’s primary
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goal is the identification of signal transduction paths that are most correlated with the con-

dition under study [231]. Functional analysis methods that include miRNA are still needed

to enhance the knowledge of disease gene regulation [74].

The major drawback of current approaches is that most of them do not take into consid-

eration the knowledge about the interactions between the genes, as well as between genes and

miRNAs. In this thesis, we present mirIntegrator, a topology-aware approach that system-

atically integrates miRNA and mRNA expressions to identify pathways that are significantly

impacted by the studied condition. Our framework is flexible and allows users to integrate

signaling pathway databases with miRNA-mRNA interaction databases to produce miRNA-

augmented pathways. Here we show that pathway analysis performed on these augmented

pathways offers more statistical power than performing analysis on gene-gene pathways. Our

augmented pathways offer a more comprehensive view and a deeper understanding of com-

plex diseases.

2.2 Current pathway analysis methods

High-throughput molecular biological methods perform thousands of simultaneous mea-

surements of biological molecules to observe a particular state of cells. Recent technologies

have extended the breadth of available high-throughput molecular biological data. Nowa-

days, most of the molecular data types are analyzed separately, which has provided essential

discoveries, such as biomarker identification. However, analyzing various data types together

can lead to a more consistent understanding of cell processes [124].

The term high-throughput data is used here as large measures of genetic data taken in

a short time. These data are generated by different technologies commonly referred to as

“omics technologies” which are the foundation for systems biology [268]. Omics seek to quan-

tify, describe, and identify all of the components of cellular systems with spatial and temporal

dimensions [285]. There are several data types of high-throughput measurements from which

four categories are the most important: proteomics, transcriptomics, metabolomics, and ge-

nomics [362]. Proteomics is the study of proteins present in cells. Transcriptomics measures
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all gene expression values. Metabolomics aims for the quantification and identification of

metabolites. Genomics includes the large-scale genotyping of single nucleotide polymor-

phisms (SNPs). Each of these data types is unique and provide different perspectives on

cellular processes, that is why is important to consider these different perspectives when

analyzing live systems. There are several computational solutions for analyzing omics data

in an isolated fashion [24]. However, single data type analyses have not established enough

understanding to perform disease diagnosis and treatment success.

The identification of pathways that are involved in a particular phenotype is typically

referred to as pathway analysis. Identifying pathways that are relevant to a condition is

essential because it provides insights that can be used to further disease treatment or diag-

nosis. The standard input of pathway analysis techniques is the log-fold change of a large

set of genes (around 25,000). Fold change is computed as the ratio of gene expression be-

tween two different groups, commonly one group of control subjects and another group with

patients. The output of pathway analysis is a ranked list of statistically significant biological

pathways. These pathways are considered to be related to the condition under study. Bio-

logical pathways are graphical representations of common knowledge about genes and their

interaction with biological processes. In particular, signaling pathways are represented as

graphs with a set of genes as nodes and the biochemical and physical interactions as edges.

These pathways are typically made by mining the literature and then manually curating the

retrieved information [182].

Disease sub-typing is an essential goal for omics integration. Generating clinical mean-

ingful disease sub-typing is critical for prognosis and further treatment determination. Based

on statistical information and the patient’s profile, the objective is to identify the sub-type of

disease that the patient more likely belongs to. The input for disease sub-typing is molecular

and clinical data from several patients with the same condition but have different outcomes.

The expected output is well-identified groups that highly correlate with the observed out-

comes (e.g., a group of long-term survival patients and another group of short-term survival
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patients). It is also essential to identify possible patterns that are shared among mem-

bers of each sub-type and differences with other sub-types. This is commonly expressed

as a clustering problem where the main goal is to search for similarities among the data

points. All these applications highlight the importance of integrating various biomolecular

data types. There are more applications of data integration, such as signaling networks

reconstruction [77, 130, 197, 241] and biological networks visualization [301].

From the computer science perspective, the term data integration refers to the integra-

tion of fragmented information from different physical databases or data warehouses and

different representations. Several authors have proposed platforms and languages to inte-

grate databases [3]. Even though data fragmentation is a significant problem, we will not

study that type of data integration here. In bioinformatics, the terms data integration and

data fusion are synonymous. In computer science, data fusion is referred to as the process of

integrating information acquired from various heterogeneous types into a single compound

knowledge. Here, we define data integration and data fusion as the integration of knowledge

without focusing on the representation. Additionally, data fusion is valuable for acquiring

more reliable information than the raw measurements from a single type of source.

In the high-throughput biomolecular data context, data integration is typically performed

in four different manners. One is to analyze each data type separately first and then integrate

the final findings. Another manner is to pre-process each type of data independently, then

perform cross-platform normalization across the data types, then combine the normalized

figures and finally perform an overall analysis. The third type of integration consists of

performing statistical integration. The fourth approach is to integrate the data by modeling

the data types based on the biological meaning of the molecules and their interactions.

For example, researchers have integrated mRNA and microRNA paired data by analyzing

each data type independently and then interpreting the results manually [71]. Sometimes

the results of these experiments can lead to conflicting and unexplained outcomes. A second

scenario is given when researchers having sample-paired data decide to merge the two data
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tables into a single table and analyze this new merged table. This practice requires cross-

normalization, and it is very dangerous because each data type has different scales, volumes,

and properties.
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CHAPTER 3 REVIEW OF COMPUTATIONAL METHODS FOR DISEASE

SUBTYPING

Cancer development and progression are influenced by several factors, including genetic

and overall patient health, which implies that one single treatment plan might not be useful

for all cancer patients. Instead, health professionals should be able to design a personalized

treatment plan, i.e., a plan for each individual according to their particular genetics, clinical

history, and environmental factors. The stratification of patients into groups with similar

biology and survival patterns it is a step forward towards personalized treatments and better

prognosis. This Chapter examines many computational tools and technologies that have been

applied to cancer patient stratification, also known as disease subtyping. Some of these tools

focus on one of the many types of patient data, while others use a combination of various

data types. Here we approach disease subtyping as a computational problem to bridge

the gap between oncology and computer science. We also study and compare the different

techniques that have been used to tackle this problem, as well as highlight opportunities for

new methods. Disease subtyping is an open problem that we could address with the use of

the latest machine learning techniques.

Advancements in sequencing technology and wide-spread adoption of Electronic Health

Records (EHR) have enabled the large-scale collection of genetic and clinical data. Recent

studies focus on analyzing each of these two types of data in isolation for identifying either

phenotypes (i.e., observable characteristics that are more prevalent in some individuals with

a disease than in the general population [56, 156, 157, 161, 264, 302, 350] or genotypes (i.e.,

genetic patterns that underlie specific diseases) [110, 163, 192, 207]. Other studies integrate

different types of ‘omics’ data based on the hypothesis that a single data type cannot capture

the whole biological system [346].

Several computational methods for analyzing genetic data have been proposed with the

goal of identifying genes that play important roles in cancer. Some methods rely on feature

selection to reduce the complexity of the problem [295] while other approaches adapt well-
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known machine learning methods to the genetic context [110, 192, 346, 163]. Other methods

use structured and unstructured Electronic Health Records (EHR) for phenotyping which

is the identification of meaningful medical concepts from clinical data [264]. Phenotyping

is important for disease subtyping, research subject selection, optimization of interventions,

and predicting response to therapy [156, 157, 350]. Current methods for EHR-based phe-

notyping include rule-based, heuristic, and iterative approaches, which are not fully unsu-

pervised [161, 56, 52, 275]. These methods need annotated data, creating which is time-

consuming and requires knowledge from experts, even when phenotyping is performed for

a single disease (e.g., rule-based approaches require effort to write decision rules manually).

Recently, methods using tensors as a way to represent EHR data from different sources

have been proposed [156, 157, 350]. These approaches extract phenotype candidates using

tensor factorization methods. They represent the interactions between patients’ diagnoses

and medications or procedures using a tensor, and then find phenotype candidates after

decomposing the tensor. Additionally, these approaches incorporate medical knowledge and

constraints [350] and can distinguish the features that are common across patients from the

candidate phenotypes [157]. Also, large-scale efforts have been made to automatically define

and share phenotypic data, such as the Electronic Medical Records and Genomics Net-

work (eMERGE) consortium [234], and the Observational Medical Outcomes Partnership

(OMOP) [259].

Alternative methods combine genomic data and phenotypes to derive a comprehen-

sive model of complex diseases and help to identify important genes and clinical vari-

ables [262, 33]. For instance, cancer development and progression are influenced by multiple

factors, including germ-line or somatic tumor genetics and environmental or lifestyle risk

factors [12]; therefore, clinical variables and genotypes should be considered together when

investigating cancer sub-types. Although researchers have highlighted the importance of in-

tegrating genetic data into EHR [234, 33, 191], their main focus is on the technical aspects of

including genetic reports into EHR systems. To date, limited research focused on developing
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methods to analyze patients’ clinical and genetic data simultaneously.

In this Chapter, we present a review of computational methods for disease subtyping

with a focus on different data and methods that have been used to discover and refine

disease sub-types, which can benefit science and practice of medicine [291]. Novel sub-types

can drive the design of new biological studies. For example, by finding subgroups whose

clinical manifestation differ, researchers can conduct targeted studies to identify molecular

determinants of those differences. Such analyses can allow scientists to understand the causes

of related diseases. In clinical practice, fine-grained sub-types and prognoses help to reduce

uncertainty in individual patient’s expected outcome. More accurate prognoses can in turn

improve treatment plans. For example, the administration of therapy with substantial side

effects could be well justified on an individual prognosticated to decline rapidly without this

treatment. In addition, sub-types can improve the effectiveness of clinical trials by increasing

the recruitment of viable patients, particularly for cancer trials, in which only a 5% of cancer

patients enter clinical trials [119]. Feller et al. [119] found that 25% of cancer trials did not

have an adequate number of subjects, and 18% of clinical trials ended with less than half

of their goal enrolment after three or more years. The enrolment of clinical trials could be

improved with sub-types that can pinpoint patients with a poor short-term prognosis, i.e.,

patients with a high risk of perishing soon, which might be qualified candidates for aggressive

treatments and could be matched to an appropriate clinical trial. Also, the estimation of

costs of care could be finetuned if we discover sub-types that can identify patients that are

most likely to respond to their treatment plan.

We organized the different papers based on their main contribution, the type of input

data, and the computational method applied. Figure 3.1 illustrates the complete framework

of disease subtyping methods. We define disease subtyping methods to those that take

information for patients with the goal of identifying distinctive groups of patients in terms of

survival. Among the methods that we studied, we identified variability in the input data and

the methods to be used. We classify the different input data that the studies presented in
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Figure 3.1: General Disease Subtyping Framework

three categories: genetic data types, clinical data, and knowledge bases. Some methods use

only one of these while others analyze a combination. The second aspect of the framework

that changes from study to study is the method. Some studies focus on finding distinctive

features that are related to survival [13, 251, 210, 12, 87, 141, 90, 27, 127], other studies

focus on identifying the number of groups of subgroups [103, 38, 37, 295, 302, 329, 318, 237,

205, 102], and others focus on the clustering method [96, 250, 195, 144, 192, 204, 111, 299].

3.1 Research Methodology

For the literature review presented in this Chapter, we collect data through research

papers and a systematic literature review protocol for the formulation of research questions.

3.1 Relevant Research Questions

To compare the different computational methods for disease subtyping (DS) and their

impact on cancer studies, we addressed the following questions:

RQ1. What types of data are relevant for DS?

RQ2. What type of computational methods has been applied for DS?
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RQ3. Which steps on the DS pipeline have been studied?

3.1 Search Strategy

We performed a systematic search of published research available in July 2018. The

target population was cancer patients. To identify search terms, we followed this protocol:

1. Derive key terms from research questions.

2. Find synonyms and acronyms for keywords.

3. For each paper, check its relevance and keywords.

3.1 Studies Selection Criteria

Following the protocol described above, we search in five recognized digital libraries

(Pubmed, Google Scholar, Science Direct, IEEE Xplore and Springer Link) this query (

”subtyping” OR ”molecular subtyping” OR ”disease subtyping” OR ”molecular subtyping”

OR ”cancer subtyping” OR ”patient stratification” OR ”cancer stratification”) in July 2018.

The number of papers obtained with this search is presented in Table 3.1. We manually

reviewed each of these papers and discarded papers that did not present computational

methods. This search was limited to English-language and peer-reviewed studies in the field

of health informatics and human diseases.

Table 3.1: Query search results

Digital library N.o. papers Date URL
IEEE Explore 158 Jul-2018 ieeexplore.ieee.org
Pubmed 105 Jul-2018 pubmed.gov
Science Direct 95 Jul-2018 sciencedirect.com
Google Scholar 90 Jul-2018 scholar.google.com.pk
Springer link 58 Jul-2018 springerlink.com
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Inclusion Criteria

For each of the retrieved documents, we decide its relevance based on the degree to which

it addresses any of the three research questions using its abstract section. Only journal pa-

pers, full papers from conference proceedings, thesis, and books that present computational

techniques for DS, describe theoretical concepts in the context of computational methods

for disease subtyping (DS), or describe the need and challenges in DS were included for a

full revision.

Exclusion Criteria

Any study that did not present computational methods were excluded, for example,

biological papers describing cancer pathways through lab experiments and did not present

any automatic way to discover sub-types. Literature reviews and articles without original

findings and studies focusing on a single gene and its influence on cancer were also excluded.

3.2 Related work

We divide the selected studies based on the data type they analyzed and the method used.

Based on the input data (Section 3.2.1), we classify the DS methods in clinical, genomic, and

integrative approaches. Based on the computational method (Section 3.2.2), we organize the

DS methods in feature selection and unsupervised learning.
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Table 3.2: Latest computational methods for disease subtyping.

Method Data Goal Method characteristics
MLFS [171] six cancer types: Breast

Cancer, Hepatocellular
Carcinoma (HCC), Lung
Cancer, Prostate Cancer,
Colon Cancer and Ovar-
ian Cancer.

Gene/MiRNA Feature
Selection

Deep Belief Nets
(DBN) and unsuper-
vised active Learning

ML [115] Gene expression data
from various types of
cancer

cancer diagnosis and
classification (cancer
type analysis)

Unsupervised feature
learning methods.

DNL [212] alternative exons profiled
from RNA-Seq data

predicting AS pat-
terns

deep neural network

DBN and
CD [219]

multi-platform genomic
data (e.g., gene expres-
sion, miRNA expression,
and DNA methylation)
for the same set of tumor
samples.

Identification of can-
cer sub-types cluster
cancer patients from
multi-platform obser-
vation data

Multimodal deep be-
lief network (DBN)
and Multimodal Deep
Learning contrastive
divergence (CD)

DNNs [212] blood biochemistry re-
ports

biomarkers of human
cancer

deep neural networks
(DNNs)

H2O [336] simulated datasets and
published genome-wide
association dataset

detect SNP interac-
tions for disease sub-
typing

deep feedforward neu-
ral network

3.2 Data types

Finding the data and features that are relevant to disease subtyping (DS) is a difficult

problem. Some approaches search for sub-types using clinical variables [12, 262, 39] while

other approaches use multi ‘omics’ data [346, 297]. Here we categorize DS methods based

on the type of data they use in three categories: i) clinical data, ii) genomic data, and iii)

integrative approaches.

Clinical data

Clinical variables used for subtyping include survival data [12], epidemiological data [262],

clinical chemistry evaluations, and histopathologic observations [39]. These variables have

shown to provide useful information for better subtyping.



31

Genomic

Several methods use genomic data for which has to be preprocessed and normalization.

Current knowledge of cancer biology is key to prioritization and identification of candidate

biomarkers. In the same direction, integrating different types of genomics data (e.g., gene

expression and copy number mutation) provides crucial insights to identify the genomic

alterations that characterize sub-types relevant from both biological and clinical points of

view (e.g., HER2 oncogene activation through concordant DNA amplification and mRNA

overexpression). Comprehensive cancer-driving mechanisms cannot be entirely captured by

any of the genomic data types alone; however, integrative genomic studies can discover novel

cancer sub-types and their associated mechanism.

Standard methods for multi-omics subtyping consist of first clustering each of the different

genomic data types to analyze and then manually integrating the cluster assignments. These

results restrict the ability to discover additional multidimensional interactions and carry a

substantial loss of information and cannot identify a correlation between data types [297].

Previous review paper focused on multi-omic clustering methods [297].

One of the challenges of integrating multiple data types is that multi-omics have different

scales. Another problem for validating integrative analyses is the lack of availability of

independent data sets with all data types available.

Although genome-scale molecular information provides an insight into biological processes

driving tumor progression, cancer subtyping based on gene expression profiles alone has been

shown to have limited correlation with clinical outcomes [245, 60].

Integrative approaches

Clinical data and biological knowledge are complementary to gene expression and lever-

age disease subtyping. For instance, some approaches incorporate gene-expression-based

subtyping with other types of data, such as clinical variables and multi ‘omics’ data. These

types of data are more and more available nowadays. Large public repositories, including
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the Cancer Genome Atlas (TCGA) [249] (now GCD) and the international cancer genome

Consortium (ICGC), accumulate clinical and multi ‘omics’ data from thousands of patients.

Despite the immense progress in computational methods for analyzing clinical or genomic

data, neither of these two types of methods alone can capture all aspects of the patho-

genesis of complex diseases such as cancer [284]. The emergence of EHR-linked biobanks,

such as those created by the Electronic Medical Records and Genomics (eMERGE) con-

sortium [234], enabled computational methods to discover associations between specific dis-

eases and genes [33, 206, 104, 190] through genome-wide association studies (GWAS) [153]

or between specific phenotypes and genes through phenome-wide association studies (Phe-

WAS) [191, 81].

Since cancer development and progression are influenced by several factors, including

germ-line or somatic tumor genetics, overall patient health as well as environmental or

lifestyle factors [32], it is natural to assume that cancer sub-types should incorporate all

these different modalities of patient data. However, there has been relatively little research

on computational methods for joint analysis of clinical and genomic data for disease sub-

typing. To address this deficiency, CLIGEN has been proposed, a high-throughput pipeline

for fully unsupervised disease subtyping based on CLInical and GENomic data [85]. This

method finds verotypes (clinical disease sub-types combining phenotypes and genotypes) [31].

BioDCV [262] integrates predictive profiling from gene expression with clinical and epidemio-

logical data by combining machine learning techniques. The modk-prototypes algorithm [39]

simultaneously considers microarray gene expression data and classes of known phenotypic

variables such as clinical chemistry evaluations and histopathologic observations.

3.2 Methods

Feature Selection

High-throughput technologies can measure more than ten thousand genes at the time.

Subtyping patients using whole-genome data is challenging due to the curse of high-dimensionality.
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Some approaches have been developed to reduce data dimensionality through feature selec-

tion techniques [297, 90].

Traditionally, data is normalized, and features pass initial variance filtering steps, which

can result in highly variable clusters due to noise accumulation in estimating centroid in

high dimensional feature space, for example, when using the k-means algorithm [297]. This

challenge has been addressed by sparse clustering because statistical inference can be more

reliable when sparsity is assumed [123, 261, 361, 348, 356].

The selection of class-discriminant features is crucial for model interpretation, accuracy,

and computational complexity. For this reason, clustering methods should not be decoupled

from a selection of discriminant features. [297]

For example, iCluster [297] is a feature selection based clustering method. Correct feature

selection means the identification of class-discriminant features without loss of relevant in-

formation or driving factors that define biologically and clinically relevant disease sub-types.

Several disease subtyping methods are based on feature selection [154, 168, 272, 216, 149].

Ranking-base methods The simplest way to perform unsupervised feature selection for

subtyping is by ranking the list of genes and filtering out those with low rankings. For

example, genes can be ranked using Fisher score-based methods [168, 272] or t-test based

methods [216].

Filtering metrics Other methods [149] use general purpose filtering metrics like Infor-

mation Gain [293], Consistency, Chi-Squared [367] and Correlation-Based Feature Selec-

tion [142].

Wrapper methods These filter-based methods are computationally efficient, but they do

not account for dependency between genes or features. To address this challenge, wrapper

methods [92, 296] use learning algorithms to find subsets of related features or genes. Even

though these methods consider feature dependency, they have a high degree of computational

complexity due to repeated training and testing of predictors. This makes them impractical
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for analyzing high-dimensional data.

3.2 Unsupervised Learning

Many DS methods use unsupervised learning approaches, for which here we present

methods that study how to select the number of sub-types and methods that propose the

use of clustering methods for DS.

Number of sub-types

A challenge of clustering techniques is the identification of the number of clusters. Most

studies get the number of clusters based on the judgment of experts instead of using an

automatic method to obtain the number of clusters. Several clustering methods require the

definition of the number of clusters beforehand, and their performance depends on this pa-

rameter. For example, glioblastoma multiform (GBM) has been studied to have two or three

in [297], four sub-types [341], and five sub-types in [254]. From [297], the number of repro-

ductible sub-types (K) and model sparsity (number of subtype discriminating features) are

determined using resampling-based scheme. The cluster reproducibility index is explained in

[300]. In [297], the concept of prediction error that typically applies to classification analysis

where the true cluster labels are known now becomes relevant for clustering [103, 328, 186].

Clustering method

Selecting the correct clustering method for disease subtyping has been the main focus of

many subtyping studies. Methods such as k-means [297], sparse clustering [297], PCA [297],

bayesian consensus clustering [224], and spare PCA [357] have been largely applied.

3.2 Matrix decomposition based methods

Some other studies use Matrix Decomposition techniques, also known as matrix fac-

torization, to identify sub-groups of patients [217, 364, 159, 229, 319]. In this section, we

present two matrix decomposition methods that have been used for sub-typing: Singular

Value Decomposition (SVD) and Non-Negative Matrix Factorization (NMF).
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Singular Value Decomposition

One approach to analyzing large volumes of data consists of reducing the dimensionality

of the input data. Singular Value Decomposition (SVD) is a data dimensionality reduction

technique widely used in machine learning. For SVD, we represent the input data as a matrix

A, with m rows (e.g., patients) and n columns (e.g., clinical features), as a product of three

matrices: U , σ, and V . Formally, A ≈ UσV T , where the U matrix has dimensions m × r

and contains the left singular vectors. σ is a diagonal matrix with dimensions r× r and has

singular values. The V matrix is n× r and stores the right singular vectors (r is the rank of

the matrix A).

In [319], the authors propose a multi-view SVD approach that integrates patient’s clinical

features with genetic markers for disease subtyping. The method partitions patients into

clusters and identifies the genotypes and clinical features that define each sub-type. To

validate this approach, the authors used simulated data. The authors proposed a formula

for a two-view joint SVD biclustering to find consistent groups across the two matrices

(clinical and genetic matrices) [319]. Their rationale is based on applying SVD to each of

the matrices and obtained two left and right singular vectors, named u1, u2, v1, and v2.

However, traditional SVD does not guarantee agreement between the two clusterings. The

authors claim that to make the clusterings consistent, u1 and u2 must have their non-zero

components in the same position; therefore, they extended the SVD optimization problem

by introducing a common vector between the matrices.

Non-negative Matrix Factorization

Among the matrix factorization methods, Non-negative Matrix Factorization (NMF) has

been widely used for genetic data because gene expressions are non-negative; therefore,

NMF factors allow for a logical interpretation. For example, [217] proposes an NMF based

classification of gene expression data, and [364] uses NMF to classify prostate cancer mutation

profiles. Furthermore, NMF automatically clusters the data, a.k.a. has intrinsic clustering
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property [94]. Formally, we represent the input data as a matrix A, by the approximation,

A ≈ WH, where the W and H can be obtained by minimizing ||A−WH||F , where W ≥ 0,

H ≥ 0. If HHT = I, then the minimization problem is equivalent to K-means clustering [94].

In [160], the authors cluster cancer patients based on their mutation profiles and known

gene networks. They smoothed the binary mutation data by propagating the mutation oc-

currences through gene-gene interactions and then used NMF to cluster a sample of patients.

3.2 Tensor-based methods

Tensors are generalizations of matrices used to represent data in higher dimensions. Ten-

sors and their factorizations were defined in 1927 [155], but used to analyze real data only

recently as the computational power made the required computations possible [305]. Cur-

rently, tensor-based methods have been widely used in data science and machine learn-

ing [305]. Some studies for disease sub-typing [217, 364, 229] represent the input data as

tensors and perform tensor factorization. Tensor factorization methods have shown to be

beneficial for genotyping and phenotyping, as presented in [229]. Here, the authors argue

and present all the advantages of using tensor factorization for precision medicine, including

its facility to integrate various data modalities, reduce the data dimensionality, and identify

underlying groups. In the next subsection, we present some examples of three studies that

use Non-negative Tensor Factorization (NTF) for phenotyping [157, 156, 350].

Non-negative Tensor Factorization

Ho et al. proposed Limestone [156] and Marble [157] to identify observable trails in pa-

tients (phenotyping) from electronic health records (EHR). The advantage of using EHR over

genetic data is that they are inexpensive and abundant; however, EHR is noisy, incomplete,

and requires manual annotations. The goal is to find the clinical features that are relevant

for particular phenotypes, and the authors claim that phenotyping is similar to dimension-

ality reduction, in the sense that the end goal is to identify relevant features. For this, the

authors leverage a tensor factorization on a count tensor proposed by Chi and Kolda [58] for
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both the Limestone [156] and Marble [157] methods. CP decomposition factors a tensor in

the sum of rank-one tensors, and each one rank tensor is expressed as the outer product of n

vectors. For counts, the authors use the generalized k divergence as the objective function to

better capture Poisson data (i.e., non-negative and discrete data), with non-negative weights

and stochastic constraints.

In Limestone [156], each of the rank one tensors were defined as the candidate phenotypes

and the non-zero elements are the clinical variables that define such a phenotype. By post-

processing rank one tensors, this method introduced computational stability and inadmissible

zero problems. To solve these problems, the authors proposed Marble, which introduces a

bias tensor. In Marble [157], phenotypes are defined on the signal tensor, then the baseline

characteristics of the population are represented on the bias tensor, which is a special one-

rank tensor. To avoid filtering out elements with a value close to zero, they add a sparsity

constrain while maintaining non-negative weights and stochastic constraints.

3.2 Topological data analysis

Topological data analysis (TDA) applies three fundamental concepts in topological con-

structions that make extracting patterns via shape possible: 1) shape representations are

coordinate-system-free, 2) shapes have properties that are invariant under small deforma-

tions, and 3) shapes can be represented using triangulations. TDA has proven to detect

patterns better than other analysis methods [227].

Nicolau et al. [251] used TDA to identify sub-types among breast cancer patients. In [251],

the authors use Mapper, which is a TDA method to identify shape characteristics of data

sets. They also use Disease-Specific Genomic Analysis (DSGA) for transforming disease

omics- data into a sum of two terms, the ‘healthy’ component of the data and the ‘disease’

component, which measures the deviation of the data from healthy samples. Then the

authors proposed a method to apply Mapper in DSGA data to identify subgroups of patients.

In conclusion, this Chapter describes cancer subtyping and how to address its challenges

with machine learning approaches. There had been substantial work done for discovering
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molecular disease sub-types, which have helped with the identification of personalized treat-

ments for some Cancers, such as Breast and Lung cancers. For example, the diagnosis of

breast cancer is driven by the identification of mutation of a few particular genes, and de-

pending on the mutation profile, each personalized patient’s treatment targets its mutated

genes. However, there are still patients that do not respond well to treatments, which is an

evidence that more fine-grained sub-types are yet to be discovered.

We present a generalized view of disease subtyping (DS) studies in a framework described

in Fig. 3.1. We classify DS studies based on the types of data that are analyzed and the

methods. We observe that many data types have been used to stratify patients, but most of

the analyses use data in isolation, there are still many opportunities for integrating different

types of data from the biological domain. Analysis of clinical records remains still a complex

problem that can help DS and work in this direction is in high demand. When analyzing

the methods proposed so far, we observe a great variety: from purely statistical methods

to Bayesian analysis, traditional machine learning and deep learning. Typically, there is

a combination of clustering methods [110, 192] with data integration techniques [250, 346]

and feature selection [87, 295] to identify factors that are predictive of a specific clinical

outcome [12, 66, 278]. Many deep learning methods are currently being used for genetic

data (see Table 3.2).

We believe that applying novel techniques to the field of oncology has a great potential to

discover fine-grained sub-types that are in such great need for cancer diagnosis, treatment,

and prognosis. Further research is also needed in additional oncology related questions

that can greatly benefit from computational methods, such as identification of pathogenic

mutation in cancer tumors [207], tumor stratification [114, 140, 159, 278], functional diag-

nostics [122], and tumor classification [287].
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CHAPTER 4 A SYSTEMS BIOLOGY APPROACH

One main challenge in modern medicine is the discovery of molecular disease sub-types

characterized by relevant clinical differences, such as survival. However, clustering high-

dimensional expression data is challenging due to noise and the curse of high-dimensionality.

This chapter describes a disease subtyping pipeline that can exploit the critical information

available in pathway databases and clinical variables. The pipeline consists of a new feature

selection procedure and existing clustering methods. Our procedure partitions a set of pa-

tients using the set of genes in each pathway as clustering features. This procedure estimates

the relevance of each pathway and fuses relevant pathways to select the best features. We

show that our pipeline finds sub-types of patients with more distinctive survival profiles than

traditional subtyping methods by analyzing a TCGA colon cancer gene expression dataset.

Here we demonstrate that our pipeline improves three different clustering methods: k-means,

SNF, and hierarchical clustering.

4.1 Introduction

Identifying homogeneous sub-types in complex diseases is crucial for improving prog-

nosis, treatment, and precision medicine [291]. Disease subtyping approaches have been

developed to identify clinically relevant sub-types. High-throughput technologies can mea-

sure the expression of more than ten thousand genes at a time. Subtyping patients using

the whole-genome scale measurement is challenging due to the curse of high-dimensionality.

Several clustering methods have been developed [111, 193, 345, 163] to handle this type of

high-dimensional data. Other approaches, such as iCluster [295], rely on feature selection to

reduce the complexity of the problem.

There are many widely used feature selection methods [154, 168, 272, 216, 150]. The

simplest way to perform unsupervised feature selection for subtyping is by ranking the list

of genes and filtering out those with low rankings. For example, genes can be ranked using

Fisher score-based methods [168, 272] or t-test-based methods [216]. Other methods, such



40

as [150], use general purpose filtering metrics like Information Gain [293], Consistency [223],

Chi-Squared [367] and Correlation-Based Feature Selection [143]. These filter-based methods

are computationally efficient, but they do not account for dependency between genes or

features. To address this, wrapper methods [92, 296] use learning algorithms to find subsets

of related features or genes. Even though these methods consider feature dependency, they

have a high degree of computational complexity due to repeated training and testing of

predictors. This makes them impractical for analyzing high-dimensional data.

Meanwhile, some approaches incorporate to gene-expression-based subtyping other types

of data such as clinical variables [13, 262, 40] and multi ‘omics’ data [295, 54, 345]. These

types of data are more and more available nowadays. Large public repositories, includ-

ing the Cancer Genome Atlas (TCGA) (cancergenome.nih.gov), accumulate clinical and

multi ‘omics’ data from thousands of patients. Clinical variables used for subtyping include

survival data [13], epidemiological data [262], clinical chemistry evaluations and histopatho-

logic observations [40]. These variables have shown to provide useful information for better

subtyping.

Subtyping patients using gene expression data has additional challenges because genes do

not function independently. They function in synchrony to carry on complex biological pro-

cesses. Knowledge of these processes is usually accumulated in biological pathway databases,

such as KEGG [182] and Reactome [72]. Biological pathways are graphical representations of

common knowledge about genes and their interactions on biological processes. This valuable

information has been used to cluster related genes using gene expression [144, 166, 276, 270]

and should be used to identify disease sub-types as well. Clinical data and biological knowl-

edge are complementary to gene expression and can leverage disease subtyping.

Here we present a disease subtyping pipeline that includes a new feature selection ap-

proach and any existing unsupervised clustering method. To the best of our knowledge,

this is the first approach that integrates pathway knowledge and clinical data with gene

expression for disease subtyping. Our framework is validated using gene expression and

cancergenome.nih.gov
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clinical data downloaded from The Cancer Genome Atlas (TCGA) and pathways from the

Kyoto Encyclopedia of Genes and Genomes (KEGG). Using the features selected with our

approach and three different clustering methods (k-means, SNF, and hierarchical clustering),

our pipeline can identify sub-types that have significantly different survival profiles. This

pipeline was developed in R programming language. The source code is available on GitHub

(http://datad.github.io/disSuptyper) to ease the reproducibility of the methods pre-

sented here [271, 50].

4.2 Background

This section is structured as follows. First, we briefly introduce typical comparative anal-

ysis and the importance of pathway analysis using gene expression. Second, we describe the

existing knowledge-based pathway analysis methods. Third, we explain the need for multi-

omics data integration to better identifying the impacted pathways for better understanding

of biological mechanisms of the underlying diseases or phenotypes. Finally, we summarize

the main strategies used to integrate multiple data types for pathway analysis.

High-throughput technologies for gene and protein profiling, such as DNA microarray or

RNA-Seq, have transformed biomedical research by allowing for comprehensive monitoring of

biological processes. A typical data analysis often yields a set of genes that are differentially

expressed (DE) when comparing patients versus healthy samples. The lists of DE genes

helps to identify genes that take part in the underlying phenomenon. However, there are two

drawbacks. First, they often fail to reveal the underlying mechanisms [331, 189]. Second,

independent experiments of the disease often yield to entirely different lists of DE genes,

which makes the interpretation extremely difficult [321, 108, 109].

To address these challenges, researchers have developed a large number of knowledge

bases. Biological processes, in which genes interact with each other, are accumulated in

pathway databases, such as the Kyoto Encyclopedia of Genes and Genomes (KEGG) [182,

255], or Biocarta [28]. Pathway analysis [238, 189, 113, 201, 167] were developed to infer

correlation of DE genes with the known biological processes accumulated in these databases.

http://datad.github.io/disSuptyper
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The three main strategies of pathway analysis using gene/protein expression data. The

input of these methods consists of two parts: i) the molecular measurements using a high-

throughput technology, and ii) functional annotations (pathway database) of the correspond-

ing genome. The first approach is the Over-Representation Analysis (ORA). From the molec-

ular measurements of the two groups of patients to be compared, the ORA approach first

calculates the list of differentially expressed genes (DE genes) between the two conditions.

It then assesses whether the number of DE genes in a given pathway is likely to occur by

chance. The second approach is Functional Class Scoring (FCS). It first computes a gene-

level statistic for each gene. It then aggregates the gene-level statistics for all genes in a

pathway to get a single pathway-level statistic. This summary statistic is then used to

calculate the statistical significance of the pathway using permutation or resampling. The

third approach consists of the Pathway Topology (PT) based methods. The PT approach

calculates a pathway-level statistic that summarizes the expression changes of the genes in

the pathway, the known interactions between genes, and the topological order of the genes

in a pathway. This summary statistic is then used to calculate the statistical significance of

the pathway using bootstrap or resampling. The result of each pathway analysis method is

a list of pathways order by the corresponding p-values (see Figure 4.1).

The three different strategies used for pathway analysis are shown in Figure 4.1. For

all methods, the input consists of gene/protein expression data and a pathway database.

The gene expression data is often represented as a matrix where the columns represent

the samples, and the rows represent the components of the samples. For example, a DNA

microarray assay [98, 126] of 20 diabetes patients and ten healthy patients are represented as

a matrix of 30 columns and about 20, 000 rows. Each column represents a patient, while each

row represents the expression of a gene across all patients. The second input, the pathway

database, is a list of known functional modules. A functional module can simply be a set of

genes [236, 235, 17, 42, 67, 7] that are known to be involved in a biological process, or can be

a complicated graph where the nodes represent genes and the edges represent interactions
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Figure 4.1: Classification of pathway analysis methods. Figure taken from [189].

between genes [184, 182, 255, 72, 232, 180].

The earliest pathway analysis methods use the Over-Representation Analysis (ORA) [230,

22, 25, 100, 97, 188] to identify the gene sets that have more differentially expressed genes

than expected by chance. This approach starts by identifying genes that are differentially

expressed between the two phenotypes, e.g., disease versus control. Statistical methods for

identifying DE genes include t-test [139, 267], regularized t-test [147, 14], and linear mod-

els [310]. It then transforms the pathway analysis problem to the classical hypergeometric

problem, in which DE genes are the red balls, and non-DE genes are the black balls. For a

given gene set and the number of DE genes in the gene set, the ORA approach calculates

the probability of obtaining the same number of DE genes or more, using hypergeometric or

Fisher’s exact test [117].

The ORA approach has obtained remarkable results and gained widespread usage. How-

ever, ORA has several limitations. First, this approach only takes into consideration the

number of DE genes and completely ignores the change in expression; i.e., it ignores the

actual expression measured. However, gene expression or fold change can be useful in as-

signing different weights to the DE genes. Second, ORA typically uses the most significant
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genes and completely ignore other genes. For example, with a p-value cutoff of 0.01, i.e., 1%,

only genes passing that threshold are considered significant. Genes that are marginally less

significant, e.g., p-values = 0.0099, are not considered, resulting in information loss. Finally,

ORA assumes that the difference in expression of a gene is independent of the other genes.

However, this assumption is invalid since biological systems are complex with interaction be-

tween genes and their products. This assumption ignores the structural correlation between

genes, resulting in incorrect hypothesis testing and thus leads to biased results.

The second class of methods in pathway analysis is Functional Class Scoring (FCS).

Methods in this class include Gene Set Enrichment Analysis (GSEA) [317, 240], Gene

Set Analysis (GSA) [107], sigPathway [327], Category [177], SAFE [20], GlobalTest [137],

PCOT2 [200], SAM-GS [95], Catmap [36], FunCluster [148], and PADOG [322]. This ap-

proach hypothesizes that not only large changes in individual genes can have significant

effects, but well-coordinated small changes in functionally related genes can also have sig-

nificant effects on pathways. FCS methods mainly consist of three steps. First, they

calculate the gene-level statistics, i.e., differential expression of individual genes between

two phenotypes. Examples include correlation [266], Q-statistic [137], t-test [4], or Z-

score [196]. Second, they aggregate the gene-level statistics into pathway-level statistics,

one for each pathway. Existing pathway-level statistics include Kolmogorov-Smirnov (used

in GSEA) [317, 240], sum, mean, or median of gene statistics for all genes in the pathway

(used in Category) [177], or the max-mean statistic (used in GSA) [107].

The strategy used in FCS methods offers a significant improvement over ORA methods.

However, it also has several limitations. First, although FCS methods do not assume the

independence between genes, they still assume the independence between pathways. How-

ever, this is not true because a gene can function in more than one pathway. Therefore, FCS

methods fail to address the crosstalk between pathways and thus lead to biased analysis and

an increase in false positives. Second, they do not take into consideration the interaction

between genes. For example, consider a gene that is known to interact with many other
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genes in a pathway. A significant change in the expression of this gene would result in a

significant perturbation in the pathway. This gene should be weighted much more than a

gene that is known not to interact with any other genes.

The third class of pathway analysis methods is pathway topology-based approaches

(PT) [274, 101, 323, 323, 303, 134, 174, 359, 173, 133]. Methods in this class include

ScorePAGE [274], Impact Analysis [101], SPIA [323], NetGSA [303], TopoGSA [134], DE-

Graph [174], MetPA [359], BPA [173], and EnrichNet [133]. These methods take advantage

of the interaction between genes/proteins provided in pathway databases. Typical PT-based

methods, such as Impact Analysis [101] and SPIA [323], model each pathway as a directed

graph, where the nodes are genes or gene products, and the edges are the known interactions

between the nodes. These methods perform two statistical tests. The first test focuses on

the differential expression of genes falling on the given pathway. The p-value of this first test

can be obtained from the ORA or FCS methods described above. The second test focuses

on the number of perturbation factors accumulated on the given pathway. This test is con-

cerned with the topological position, magnitude, and sign of changes in expression for genes

falling the given pathway. The null distribution of the pathway perturbation is obtained by

permuting the genes at different locations in the pathway graph. The two p-values obtained

from the two independent tests are then combined using Fisher’s method.

Although pathway analysis using gene expression has achieved excellent results, recent

research has proven that integrating different types of data offers a more comprehensive view

of complex cellular systems [246, 91], resulted in a wave of methods for data integration.

We divide these methods into two categories: topology-aware methods and non-topology

aware methods. Topology aware methods are the methods that incorporate gene topology

and interactions into the analysis (i.e., methods that make use of nodes and edges of the

pathways). Non-topology aware methods are methods that treat a pathway as a set of genes

without considering their topology or interactions. Figure 4.2 shows the overall pipeline of

integrative pathway analysis methods. The input includes a set of signaling pathways and
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experimental data from multiple data types coming from the same set of patients. Integrative

methods output a list of pathways ranked by statistical significance, i.e. p-value or score.

� Genome	  copy	  number	  
variation	  
� Gene	  expression	  
� DNA	  methylation	  	  
� Somatic	  mutations	  

Pathways	  

Integra(ve	  
method	   Ranked	  list	  of	  pathways	  	  

in	  a	  particular	  dataset	  

Pathway	  Name	   Score	  

1	   Endothelins	   20.7	  

2 FoxO	  family	   13.8	  

3 p38	  MAPK	   10.6	  

.	   ….	   ...	  
Experimental	  data	  from	  	  
multiple	  types	  of	  "omics“:	  

Figure 4.2: A general overview of multi-omics pathway topology techniques. The input of
these techniques includes, i) different types of molecular measurements for the same set of
patients, and ii) pathway knowledge from the databases. The output is a list of pathways
ranked according to their statistical significance, e.g., p-values or scores.

Topology aware methods are based on the hypothesis that incorporating the structure of

biological processes on the analysis will provide better results. We reviewed several methods

of this nature, and we identified two main categories. Methods belonging to the first category

extend the existing signaling pathways with molecules or nodes that were not included in

the original pathways. Methods belonging to the second category transform pathways to

probabilistic graphical models and include new relations among multiple types of data.

Methods in the first category base their algorithms in traditional statistical tests, which

have been used, evaluated, and accepted by the scientific community for decades; there-

fore, they can be rapidly implemented in research pipelines. The main disadvantage of this

approach type is that there are very few data types that can be mapped directly to gene in-

teractions. Given that current signaling pathways databases contain information about gene

interactions and ignore remaining data types, enhancing them is imperative [273, 263, 91, 89].
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An example of integrating mRNA with microRNA is microGraphite [41]. The small

microRNAs molecules interact with genes as gene regulators, and recent studies have shown

that these molecules play essential roles in the development of cancers and many complex

diseases [211, 226]. In the pipeline of microGraphite, the pathway of genes is extended to the

pathway of genes and microRNA molecules. This study [41] defines a pipeline to integrate

microRNA and mRNA expressions by wiring the microRNA - mRNA interactions into the

formal pathway representations. After expanding the pathway, microGraphite performs

pathway analysis using the existing method named CliPPER [231] (see Figure 4.3). The

pipeline has been applied to ovarian cancer data, obtaining successful results.

The pipeline of microGraphite consists of five steps, as shown in Figure 4.3. In the

first step, microGraphite wires microRNAs to existing pathways downloaded from pathway

databases, such as the Kyoto Encyclopedia of Genes and Genomes (KEGG) [182, 255],

Nature Pathway Interaction Database (NCI) [292], Reactome [180], or Biocarta [28]. There

are two types of microRNA target interactions that are wired to the pathways: in-silico

predicted interactions and validated interactions. Validated interactions are obtained from

miRecords [360] and mirTarbase [165]. In the second step, microGraphite performs pathway

analysis to obtain a set of significant initial pathways. In the third step, it carries an analysis

across the significant pathways to score the coherent paths inside the pathways. In the fourth

step, microGraphite selects the paths with the highest score and then join these paths to

form a connected network called meta-pathway. Finally, microGraphite performs pathway

analysis among the paths to identify the most significant paths.

Methods in the second category use graphical models, such as Bayesian network or factor

graphs, to represent the interaction between data types and gene expression. These models

are versatile because they can describe the complex type of interactions. These methods

rely on the fact that each type of genomic data contains valuable information, so integrating

them in a unique figure makes the analysis more complete.

An example of these approaches is PARADIGM [339]. This method integrates and an-
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Figure 4.3: Outline of the computational approach described on [41]. (1) Signaling path-
ways are extended with microRNAs. (2) Pathway analysis is performed, and the significant
preliminary pathways are obtained. (3) Analysis across the significant pathways to score
the coherent paths. (4) Selection of the paths with the highest score to further join then in
connected networks called meta-pathways. (5) Perform pathway analysis among the meta-
pathways to identify the significant meta-pathway.

alyzes different types of genomic data by producing a single measurement called Inferred

Pathway Activities (IPA). Obtaining a single measurement per patient is innovative because

this measurement can be used as a complete signature, simplifying the disease diagnosis.

Also, the IPA per patient allows us to perform pathway analysis for an individual while

current approaches need a group of samples (several patients) for the comparison. In order

to compute the IPA, PARADIGM connects the different types of measurements by adding

causal-effect relations and the interaction between genes in a factor graph model. Then, the

likelihood of having a gene activated or not in each particular cancer patient and the IPA per

gene is computed by performing a Bayesian inference algorithm. The method was evaluated

by performing pathway analysis in two different diseases, breast cancer and glioblastoma mul-

tiform (GBM), and comparing the results with those obtained by using SPIA. The authors
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Figure 4.4: An example of a factor graph. This factor graph represents a global function G
as the product of the local functions f1, f2, f3, and f4. Black squares of the graph represent
local functions or factors, and circles represent variables. Each factor is a function of its
neighbor variables.

concluded that PARADIGM analysis generates fewer false positives than other methods,

and they were able to identify different groups of GBM with significantly different survival

profiles. This method has been included as an official tool into The Cancer Genome Atlas

(TCGA) [325]. For this reason, we considered PARADIGM to be the state of the art tool

to integrate high-throughput data for pathway analysis.

4.3 Method

In this section, we introduce a new feature selection framework for disease subtyping.

Figure 4.5 presents the overall pipeline of our framework. The input includes i) gene expres-

sion data, ii) survival data, and iii) biological pathways (see Figure 4.5a). The output is a

set of selected genes (Figure 4.5f) for finding sub-types with significantly distinct survival

patterns (Figure 4.5g).

Gene expression data can be represented as a matrix D ∈ RM×N , where the rows are

different patients having the same disease, and columns are different features (i.e., genes).

M is the number of patients, and N is the number of genes. For gene expression data, N

can be as large as 20, 000. The survival data include the patient’s vital status (dead or alive)

and follow-up information (time and censored/uncensored). The biological pathways are

collected from public pathway databases. In this work, our data analysis is based on KEGG
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i) gene expression                                    ii) survival data                               iii) pathways

Figure 4.5: Proposed feature selection pipeline for disease subtyping using biological knowl-
edge. (a) The input includes i) gene expression data, ii) survival data, and iii) pathways
downloaded from a database. (b) First, we partition the gene expression data using the set
of genes in each pathway as features. (c) Second, we perform survival analysis on each re-
sulting partition. (d) Third, we compute the p-value that represents how likely the pathway
improves the subtyping. (e) Fourth, we rank the list of pathways by corrected p-value and
select pathways that have a nominal p-value less than or equal to the significance threshold
of 5%. (f) Fifth, we merge the relevant pathways to construct the final set of features. (g)
Finally, we sub-type the patients using the selected features. The clustering is demonstrated
in the first two principal components, but we use all dimensions/genes for clustering. Note:
IBD pathway stands for the Inflammatory Bowel Disease pathway.
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pathways [182], but other databases can also be used.

First, we partition the rows (patients) of gene expression matrix D using the features

provided by each pathway in the pathway database (Figure 4.5b). Formally, let us denote P

as the pathway database, which has n = |P| signaling pathways. We have P = {Pi} where

i ∈ [1..n]. For each pathway Pi, we cluster the rows using genes that belong to the pathway

Pi as features resulting in a partitioning Ci.

Second, we perform survival analysis on each of the pathway-based clusterings Ci (Fig-

ure 4.5c). We calculate the Cox log-rank p-value for the sub-types defined by Ci using

the input survival information. This Cox p-value represents how likely the survival curves’

difference is observed by chance. So far, we have n Cox p-values, one per pathway.

Now the question is whether the features provided by the pathway Pi help to differentiate

the sub-types better. We will answer this question by using a random sampling technique.

Denote |Pi| as the number of genes in the pathway Pi. We randomly select |Pi| genes

from the original set of N genes. We partition the patients using this randomly selected

set of genes and then compute the Cox p-value. We repeat this random selection 10, 000

times which results in a distribution that has 10, 000 Cox p-values (Figure 4.5d). This

distribution represents the distribution of Cox p-values when randomly selecting |Pi| features

for subtyping. In Figure 4.5d, the vertical red line shows the real Cox p-value calculated

from the actual genes in Pi, whereas the green distribution shows the 10, 000 random Cox p-

values. Now we compare the Cox p-value obtained from the pathway Pi with the distribution

of randomly selected genes. We estimate the probability of obtaining this Cox p-value (using

genes in Pi) by computing the ratio of the area to the left of this Cox p-value divided by the

total area of the distribution. We denote this probability as pi. In total, we have n values

{pi, i ∈ [1..n]}, one for each pathway. Each of these p-values pi quantifies how likely it is

to observe by chance a Cox log-rank statistic as extreme or more than the one observed.

Therefore, this p-value of a pathway Pi represents how likely the features provided by the

pathway help to improve the subtyping.
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Table 4.1: List of pathways selected by our approach when using RSS k-means. We first
ranked the pathways by FDR adjusted p-value (p-value.fdr), then selected the pathways
with a nominal p-value ≤ 0.05 as relevant pathways.

Pathway p-value p-value.fdr

Complement and coagulation cascades 0.00020 0.03680
AGE-RAGE signaling pathway in diabetic complications 0.00420 0.38640
Peroxisome 0.00670 0.41093
Cytokine-cytokine receptor interaction 0.01040 0.45448
Fc gamma R-mediated phagocytosis 0.01650 0.45448
Phagosome 0.01840 0.45448
Inflammatory bowel disease (IBD) 0.02050 0.45448
Staphylococcus aureus infection 0.02150 0.45448
Leukocyte transendothelial migration 0.02330 0.45448
NF-kappa B signaling pathway 0.03710 0.50048
Renin secretion 0.03850 0.50048
Malaria 0.04780 0.51326

Platelet activation 0.06980 0.54970

The third step is to choose a set of pathways that certainly help to improve the subtyp-

ing. To do this, we adjusted the p-values for multiple comparisons using False Discovery

Rate (FDR), we rank the set of pathways and select those that have the corresponding

nominal p-values less than or equal to the significance threshold of 5%. Let us name the

pathways yielding significantly distinct survival curves as relevant pathways. For example,

In Figure 4.5e, the horizontal red line shows the significance threshold of 5%. In this exam-

ple, the relevant pathways are Coagulation cascades, Peroxisome, Fc gamma phagocytosis,

Phagosome, Inflammatory Bowel Disease (IBD) pathway, and Staphylococcus infection.

Considering all the genes in the relevant pathways as favorable features, we merge these

pathways to get a single set of genes (Figure 4.5f). We use this merged set of genes as

the selected features for our final subtyping. In our example, the final selected genes are

the genes in the six pathways listed above. We then use these genes to construct the final

clustering, as shown in Figure 4.5g.

We note that this feature selection procedure can be used in conjunction with any clus-
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tering method. In our experimental studies, we used three clustering methods that belong to

different clustering models. The first method is the classical k-means. It is well-known that

k-means does not always converge to a global optimal point; it depends on the initialization.

To overcome this problem, we ran k-means several times and chose the partitioning that has

the smallest residual sum of squares (RSS). In the rest of the manuscript, we refer to this

as “RSS k-means”. The second method is Similarity Network Fusion (SNF) [345], which is

based on spectral clustering. The third one is the traditional hierarchical clustering using

cosine similarity as the distance function. We will show that our framework helps to improve

the subtyping using any of the three mentioned clustering methods.

4.4 Results

In this section, we assess the performance of our feature selection for disease subtyping

framework using gene expression data (Agilent G4502A-07 platform level 3) generated by

the Cancer Genome Atlas (TCGA) (cancergenome.nih.gov). We selected the samples

that have miRNA and methylation measurements as were selected in SNF [345]. A copy of

the dataset is available in the GitHub repository (http://datad.github.io/disSuptyper).

The number of patients is M = 92, and the number of genes is N = 17, 814. For all the

performed clusterings, we set the number of clusters as k = 3 according to prior knowledge

of the number of sub-types of colon cancer [345]. When running our method, we used 184

pathways from the KEGG pathway database [182].

As described in Section 4.3, our framework can be used in conjunction with any unsu-

pervised clustering algorithm. Here we test it using three clustering methods: RSS k-means,

SNF [345], hierarchical clustering [111]. For all clustering methods, we first clustered the pa-

tients using all the measured genes, then clustered the patients using only the genes selected

by our technique. To contrast the difference between the three traditional clustering methods

and our pipeline results, we performed survival analysis for all the cases using Kaplan-Meier

analysis and Cox p-value.

cancergenome.nih.gov
http://datad.github.io/disSuptyper
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Figure 4.6: Kaplan-Meier survival analysis of the obtained sub-types using the RSS k-means
algorithm. a) Survival curves using all genes. b) Survival curves using selected genes.

4.4 Subtyping using k-means

We clustered the patients from the TCGA colon adenocarcinoma dataset using our

pipeline in conjunction with RSS k-means. We used the 184 signaling pathways from the

KEGG database [182]. For each pathway Pi, we partitioned the patients using the genes in

the pathway Pi as features to get a clustering Ci.

After this step, we got a total of 184 clusterings, one per pathway. Also, for each pathway,

we constructed the empirical distribution and then estimated the p-value of how likely the

pathway helps to improve disease subtyping. The p-values of relevant pathways are shown

in Table 4.1. The horizontal red line represents the significance of cutoff at 5%. There are 12

relevant pathways. We then merged the relevant pathways to get a single set of genes that

we used as clustering features. Finally, we performed RSS k-means clustering of patients

using these 851 genes. Figure 4.6 shows the survival analysis of the resultant clusterings.

Figure 4.6a shows the resultant clustering when using RSS k-means for all 17, 814 genes.

The Cox p-value of this clustering is 0.129, which is not significant. Figure 4.6b shows the

resultant clustering using the 851 selected genes. The resultant Cox p-value is 0.0156, which

is approximately ten times lower than using all genes.
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Table 4.2: List of pathways that contain relevant genes obtained with our approach when
using SNF. These are the results of the third step of our pipeline, the selection of the relevant
pathways. We first ranked the pathways by p-value.fdr, then selected the pathways with a
nominal p-value ≤ 0.05.

Pathway p-value p-value.fdr

HTLV-I infection 0.00400 0.37765
Endocrine and other factor-regulated calcium reabsorption 0.00680 0.37765
Complement and coagulation cascades 0.00800 0.37765
Aldosterone-regulated sodium reabsorption 0.00830 0.37765
AMPK signaling pathway 0.01410 0.51324
Phagosome 0.02150 0.54196
Fc epsilon RI signaling pathway 0.02290 0.54196
Cytosolic DNA-sensing pathway 0.02680 0.54196
Peroxisome 0.03900 0.61320
Leishmaniasis 0.04300 0.61320

Non-alcoholic fatty liver disease (NAFLD) 0.05400 0.66544

4.4 Subtyping using SNF

Similar to the assessment performed for k-means, we clustered the patients from the

TCGA colon adenocarcinoma dataset using our pipeline in conjunction with SNF. To perform

SNF clustering, we ran the SNFtool Bioconductor package with the parameters suggested

by the authors [345]. We used the same input (KEGG pathways), settings (three clusters),

and process previously described.

After this step, we obtained 184 clusterings, one per pathway. Then for each pathway,

we constructed the empirical distribution and estimated the p-value of how likely the path-

way helps to improve disease subtyping. The estimated p-values are shown in Table 4.2.

The horizontal red line represents the significance threshold of 5%. There are 10 relevant

pathways. We merged these relevant pathways to get a single set of genes that we used as

our final set of selected features. This feature set contains 764 genes for the SNF method.

Finally, we performed SNF clustering using these 764 genes.

Figure 4.7 shows the survival analysis of the resultant clusterings. Figure 4.7a shows

the clustering when using SNF for all 17, 814 genes. The Cox p-value of this clustering
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Figure 4.7: Kaplan-Meier survival analysis of the obtained sub-types using SNF. a) Survival
curves using all genes. b) Survival curves using the selected genes.
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is 0.1836, which is not significant (this result is identical to the result reported in [345]).

Figure 4.7b shows the resultant clustering when using the 764 selected genes. The Cox p-

value is 0.0207, which is approximately ten times lower than using all genes. Despite this

meaningful improvement, none of the pathways has a corrected p-value.fdr ≤ 0.05. This

shows a lack of statistical power on our approach and an opportunity for improvement.

4.4 Subtyping using hierarchical clustering

Alike the assessment performed previously; we clustered the colon adenocarcinoma pa-

tients using our pipeline in conjunction with Hierarchical Clustering (HC) [111]. We set the

dendrogram cutoff into three clusters according to prior knowledge. We used the 184 signal-

ing pathways from KEGG [182]. The estimated p-values of the relevant pathways obtained

with HC are shown in Table 4.3. The horizontal red line represents the significance threshold

of 5%. We merged these three relevant pathways to get our final set of selected features.

This feature set contains 195 genes for HC. Finally, we performed hierarchical clustering

using the selected genes only.

Figure 4.8 shows the survival analysis of the resultant clusterings. Figure 4.8a shows

the clustering when using HC for all 17, 814 genes. The Cox p-value of this clustering is

0.799, which is not significant. Figure 4.8b shows the resultant clustering when using the
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195 selected genes. The Cox p-value is 0.151, which is lower than using all genes, but it is

still not significant. The sub-types obtained with hierarchical clustering do not separate the

patients in clinically meaningful sub-types in any of the cases (neither using all genes nor

filtered genes).

Table 4.3: List of pathways selected by our approach when using hierarchical clustering.
These are the results of the third step of our pipeline, the selection of the relevant pathways.
We first ranked the pathways by FDR adjusted p-value (p-value.fdr), then selected the
pathways with a nominal p-value ≤ 0.05 as relevant pathways.

Pathway p-value p-value.fdr

Cytosolic DNA-sensing pathway 0.01140 0.63874
Peroxisome 0.01200 0.63874
Fc epsilon RI signaling pathway 0.04090 0.63874

Complement and coagulation cascades 0.12390 0.80770

Given that our approach requires resampling for computing the p-values pi, this pipeline

is more time consuming than traditional approaches. For the computational experiments

presented here, we generated 10, 000 random samplings and clusterings per each pathway

(184 pathways in total). Our pipeline took several hours to sub-type the set of patients

(about 8 hours for k-means, 17 hours for SNF, and 46 hours for hierarchical clustering) while

running any traditional clustering method takes only some minutes (less than 6 minutes).

We ran these experiments on a typical desktop workstation with a 2.6 GHz Intel Core i5,

8GB of RAM, on a single thread, and the OS X 10.11 operative system.

4.5 Conclusions

In this chapter, we describe a framework to combine gene expression data, survival data,

and biological knowledge available in pathway databases for a better disease subtyping.

The performance of the new approach was demonstrated on the colon adenocarcinoma data

downloaded from TCGA. The described framework was tested in conjunction with k-means,

Similarity Network Fusion (SNF), and hierarchical clustering. For these clustering algo-

rithms, our approach greatly improves the subtyping. In all cases, the Cox p-value is 3
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Figure 4.8: Kaplan-Meier survival analysis of the obtained sub-types using hierarchical clus-
tering (HC). a) Survival curves using traditional HC. b) Survival curves using HC in our
pipeline.

folds lower when using the selected features. Cox p-value improved from 0.129 to 0.0156 for

k-means, from 0.184 to 0.0207 for SNF, and from 0.799 to 0.151 for hierarchical clustering.

Our contribution is two-fold. First, this framework introduces a way to exploit the ad-

ditional information available in biological databases. Although the framework was demon-

strated on KEGG pathways, it can exploit the information available in other databases,

such as functional modules available in the Gene Ontology database or protein-protein in-

teractions available in the STRING database. Second, this framework is the first one that

integrates clinical data, biological pathways, and gene expression data for disease subtyping.

For future work, we plan to use other clinical variables besides survival information and

integrate multiple data types, such as microRNA, for a more comprehensive analysis [89].

Additionally, we plan to analyze the performance of feature selection methods from other

contexts into the context of disease subtyping.
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CHAPTER 5 CANCER SUBTYPING BASED ON CLINICAL AND MU-

TATION DATA

Successful transition into the era of precision medicine or screening, diagnostic, therapeu-

tic, and prognostic procedures that take into account individual variability of patients [9, 64],

requires comprehensive knowledge of complex relationships between molecular, biological and

physiological processes in a human body. Stratification of patients into cohorts with a typical

biological pattern is an essential aspect of such knowledge. Remarkable advances in the next-

generation sequencing technology coupled with the widespread adoption of electronic health

records (EHR) by healthcare providers in the United States have enabled the collection of un-

precedented amounts of genetic and clinical patient data from which such knowledge can be

discovered. Specifically, methods for high-throughput computational analysis of genetic and

clinical data can help shed light on heterogeneous (molecular, biological, and physiological)

markers that are highly predictive of survival as well as the outcome of therapeutic agents

and treatment strategies. Prior research along this direction has focused on the methods to

analyze genetic and clinical data in isolation with the goal of identifying either phenotypes

(i.e. sets of biomarkers that are more prevalent in individuals with a particular disease or

condition than in the general population) [56, 156, 157, 161, 264, 302, 350] or genotypes (i.e.

DNA sequences that underlie specific diseases or traits) [111, 163, 193, 208, 345]. In partic-

ular, the recently proposed computational methods for discovering EHR-based phenotypes

have been successfully applied to patient cohort identification [302] and determining the el-

igibility of patients for clinical trials [281]. On the other hand, the mapping of the human

genome has enabled computational genotyping methods, which typically combine cluster-

ing [111, 193] with data integration [250, 345] and feature selection [87, 295] to identify the

genes that are predictive of specific clinical outcomes [13, 66, 278]. Previous research on per-

sonalized approaches to cancer treatment has primarily focused on genetic studies, including

identification of pathogenic mutations of individual genes in cancer tumors [208], tumor

stratification [114, 140, 160, 278], functional diagnostics [122], and classification [287], as
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b) tensor decomposition and definition of candidate disease sub-types
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Figure 5.1: Stages of the proposed CLIGEN pipeline: A) data representation and construc-
tion of multi-modal three-dimensional tensor τ. B) obtaining candidate sub-types via CP
decomposition of tensor τ.

well as creating centralized resources, repositories and protocols for interpreting, validating,

sharing and updating the results produced by these studies [277].

Despite the immense progress in computational methods for analyzing clinical or genetic

data, these methods alone cannot capture all aspects of the pathogenesis of complex dis-

eases [284], such as cancer. The emergence of EHR-linked biobanks, such as those created

by the Electronic Medical Records and Genomics (eMERGE) consortium [234], enable com-
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Symbol Definition
M, V somatic mutation and clinical matrices
Mij cell of mutation matrix for patient i and gene j
Vij cell of clinical matrix for patient i and k-th value or interval

of clinical markers
τ multi-modal binary CLIGEN tensor

P, G, C number of patients, genes as well as intervals and values
of clinical markers

i, j, k indices of patients, genes, and clinical markers.
tijk value of tensor cell for the i-th patient, j-th gene,

and k-th value or interval of clinical markers
◦ outer product of two vectors
R number of tensor components
Ŋr r-th rank-one component i.e. a candidate verotype definition

pr, gr, cr patient, gene and clinical factor vectors

Table 5.1: Sample table title. List of notations used in this paper and their definitions

putational methods to discover associations between specific diseases and genes [33, 104, 190,

206] through genome-wide association studies (GWAS) [153] or between specific phenotypes

and genes through phenome-wide association studies (PheWAS) [81, 191].

Previous tools for integrative analysis of TCGA data have been proposed [63, 369, 290,

289, 128]. The purpose of these tools is to retrieve TCGA data sets in a single environment

for further performing integrative analyses. In [63], for example, the authors present an R

package that includes one method to integrate DNA methylation and gene expression data

and two distinct types of analysis: molecular analysis and clinical analysis. These tools are

very useful (in fact, we use two of these tools cBioPortal and GDAC Firehose here in this

work), but none of them include a method to analyze clinical and genetic data together.

Since cancer development and progression are influenced by several factors, including

germ-line or somatic tumor genetics, overall patient health as well as environmental or

lifestyle factors [32], it is natural to assume that cancer sub-types should incorporate all these

different modalities of patient data. However, existing integrative approaches are specific to

one particular type of clinical data, such as chemistry evaluations [40], survival [13, 90], or

epidemiological data [262], and there has been relatively little research on computational
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methods for joint analysis of clinical and genomic data for disease subtyping. We focus

on the problem of identifying cohorts of patients, which share the same set of pathogenic

gene mutations as well as the same values of clinical variables and markers. This problem

is different from tumor stratification, which is based only on genetic information and is

aimed at dividing the heterogeneous population of cancer tumors into biologically meaning-

ful sub-types based on mRNA expression data [114, 278] or gene networks [160]. Although

genome-scale molecular information provides an insight into biological processes driving tu-

mor progression, cancer subtyping based on gene expression profiles alone has been shown

to have limited correlation with clinical outcomes [60, 245].

Some studies combining clinical and genomic data for subtyping have been presented [215,

55, 80, 253], showing promising results for understanding Type II diabetes, traumatic brain

injury, and bipolar disorder. Here we present three contributions, i) a high-throughput

pipeline for fully unsupervised disease subtyping based on CLInical and GENomic data,

CLIGEN, ii) its implementation as an open-source R package, and iii) the breast cancer

sub-types discovered with this pipeline, which is presented here in two main stages. In

the first stage, multi-modal patient data that includes somatic mutation profiles, as well

as clinical variables and markers, is represented as a binary three-dimensional tensor. As

differential measurements between a tumor and healthy tissue, somatic mutation profiles

are more suitable for disease subtyping than other types of ”omics” data, which are abso-

lute measurements for each patient. Furthermore, somatic mutations capture causal genetic

events underlying tumor progression, whereas mRNA or protein expression profiles are func-

tional readouts of the current cell state and can be influenced by external factors that are

unrelated to tumor biology. In the second stage, singular value decomposition (SVD) based

smoothing is applied to the binary tensor to reduce the scarcity of our tensor. Then, tensor

decomposition is applied to identify latent factors in each modality of the smoothed tensor.

These latent factors correspond to the frequently co-occurring combinations of gene muta-

tions and clinical markers in patients with a particular complex disease, such as cancer. We
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hypothesize that the proposed pipeline enables the discovery of cancer sub-types (clinical

disease sub-types combining phenotypes and genotypes) [31]. To validate this hypothesis,

we applied the proposed framework to discover breast cancer sub-types based on the clinical

and genetic data in the Cancer Genome Atlas (TCGA) Cancer Genome Atlas Research Net-

work [249] and experimentally demonstrate that the discovered breast cancer sub-types can

provide actionable insights, such as patient survival prognosis, to clinicians at the point of

care.

5.1 Dataset Description

We used real patient data from The Cancer Genome Atlas - Genomic Data Commons

Data Portal (TCGA GDC) downloaded from cBioportal [49] and firebrowse http://firebrowse.

org on 9 April 2017. We used somatic mutation (non-silent mutation from the whole-exome

sequencing level 3) profiles and clinical data of breast cancer patients. We considered only

the patients for whom both somatic mutation and clinical data were available and dis-

carded the genes that appear mutated on fewer than five patients. We manually searched

for biomarkers through the 3402 variables of the clinical table downloaded from firebrowse.

Then, we searched for biomarkers among the 30 variables of the clinical table from cBiopor-

tal. Next, we verified the consistency of the tables using common variables (i.e., variables on

the firebrowse table and the cBioportal table). We removed two patients with inconsistent

data (i.e., patients that have different values across the two databases1). This resulted in a

dataset combining information about mutations in 499 genes and 32 dichotomized values of

11 clinical variables and markers for 482 patients.

5.1 Somatic Mutations

The downloaded somatic mutation table consists of 37 columns and 34032 registries. A

registry in this table indicates a mutation in the gene reported in the column “Hugo Symbol”

11) patient.bcr-patient-barcode tcga-e2-a14w has an inconsistent gender field; in one dataset, the patient
is male and female in the other dataset. 2) patient.bcr-patient-barcode tcga-b6-a0ru has an inconsistent age
at initial pathology as 40 in one dataset and 49 in the other dataset.

http://firebrowse.org
http://firebrowse.org
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Demographics and clinical history:
Age
Sex
Race
BMI
Prior cancer history
Family history of cancer
Diagnosis of diabetes
Menstrual status
Histopathology results:
Tumor size
Histology designations
Tumor grade
Cancer stage
Lymph node stage
Metastasis stage
Test results for molecular markers or their immunohistochemistry surrogates:
EGFR protein
Cytokeratin 5/6 (CK 5/6)
ER/PR
HER1
HER2
TP53
CA-125
Prostate-specific antigen (PSA)
KRAS
ERBB2
UGT-1A
EML4
ALK
BRCA

Table 5.2: List of biomarkers.

for the sample in the column “Tumor Sample Barcode”. Additional details on the processing

and organization of these data are available in [49]. In this work, we constructed patient

mutation profiles as binary vectors, in which a bit is set, if the patient’s gene corresponding

to that position in the vector harbors a mutation.

5.1 Clinical Variables and Markers

The clinical variables and markers (without loss of generality, further referred to as clinical

markers) in TCGA include the age of diagnosis with cancer, gender, estrogen receptor (ER)
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status, progesterone receptor (PR) status, human epidermal growth factor receptor 2 (HER2)

final status, American Joint Committee on Cancer (AJCC) coded tumor (T), AJCC coded

lymph node invasion status (N), AJCC coded metastasis (M), histology, cancer stage, and

patient ethnicity, see Table 5.2. The complete description of each of these clinical variables

can be found in [249].

5.2 Proposed Pipeline

The proposed pipeline for unsupervised subtyping of complex diseases, CLIGEN, is il-

lustrated in Figure 5.1. The input to the pipeline consists of genetic and clinical data of the

patients with the same complex disease (e.g., cancer). The output of the pipeline is a set of

definitions of disease sub-types characterized by genetic and clinical markers. The pipeline

consists of three stages: i) data pre-processing ii) tensor construction and iii) decomposition

of the constructed tensor to derive multi-modal disease sub-types. Each of these stages is

discussed in detail below, and the notations used in these descriptions are summarized in

Table 5.1. The source code for CLIGEN is publicly available at github.com/datad/CLIGEN.

5.2 Data pre-processing

The first stage of the proposed pipeline, illustrated in Figure 5.1A, involves pre-processing

the input to create a combined multi-dimensional representation of genomic and clinical

patient data for subsequent analysis. Given the input mutation table, CLIGEN constructs

a binary mutation matrix M with patients as rows and genes as columns. A value of the

cell Mij of matrix M is set to 1, if the ith patient has a mutation in the jth gene and to 0,

otherwise. Continuous clinical variables, such as the age of cancer diagnosis, are discretized

into intervals. The values of clinical variables for all patients are represented as a binary

clinical matrix V with patients as rows and values of clinical variables as columns. A value

of the cell Vik of matrix V is set to 1, if the ith patient has the kth value of clinical variables.

github.com/datad/CLIGEN
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Somatic Mutation Data Representation

Somatic mutation datasets typically take the form of mutation tables, in which the rows

correspond to mutations, and the columns describe the type of each mutation and its location

(Figure 5.1 Ai). Based on the input mutation table, CLIGEN constructs a binary mutation

matrix M with patients as rows and genes as columns. The value of 1 in the cell Mij of

matrix M indicates that patient i has at least one non-silent mutation (i.e., a mutation

of any of the following types: missense mutation, nonsense mutation, non-stop mutation,

in-frame insertion, in-frame deletion, or frameshift mutation) in gene j, while the value of 0

indicates that patient i has no mutations in gene j. Genes with mutations appearing in less

than five patients were discarded from the mutation matrix.

Clinical Data Representation

Continuous clinical variables or markers, such as the age of diagnosis, were discretized

into intervals with a total of n combined intervals of all continuous markers and levels of all

discrete markers in the entire dataset. The values of clinical markers for each patient were

represented as a binary clinical matrix V with patients as rows and intervals of continuous

or levels of discrete clinical markers as columns. The value of 1 in the cell Vik of matrix V

indicates that patient i has a k-th level or interval of a discrete or continuous clinical marker.

Smoothing of mutation data

Due to the sparse nature of the binary mutation matrix, we smooth it with the following

Singular Vector Decomposition (SVD) based approach. First, we find the singular value

decomposition of the binary mutation matrix, which outputs its eigenvalues and eigenvectors.

Then, matrix multiplication of the top 50% of the eigenvalues and eigenvectors was performed

to obtain our smoothed mutation matrix.
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5.2 Tensor construction

Matrices M and V are combined to create a three-dimensional binary tensor (i.e., mul-

tidimensional array of objects) τ ∈ RP×G×C , which captures interactions between somatic

mutations and clinical variables. The first mode of tensor τ corresponds to P patients in

the population, while the other two modes correspond to G distinct genes and C distinct

values of clinical variables (Figure 5.1.b). Each cell tijk of tensor τ has a binary value (1 or

0) which is set to 1, if the ith patient has at least one mutation in the jth gene and the kth

value of clinical variables or to 0 otherwise.

5.2 Tensor decomposition

Tensor decomposition [199] is a powerful mathematical technique that has been success-

fully applied in different domains ranging from psychology and neuroscience to computer

vision [242]. In biomedical informatics, tensor decomposition has proven to be useful for

understanding cellular states [366] and biological processes [256], in addition to EHR-based

phenotyping [156, 157, 350]. Tensor decomposition has several advantages over matrix fac-

torization. First, tensors explicitly account for the multiway structure of the data that is

otherwise lost, when a tensor is converted into a matrix by collapsing some of its modes.

Second, some tensor decomposition methods guarantee the uniqueness of the optimal solu-

tion even for very sparse tensors. The two most widely used tensor decomposition methods

are the Tucker method [334] and Candecomp/Parafac (CP) which stands for Canonical

Decomposition (CANDECOMP) [51] and Parallel Factor Analysis (PARAFAC) [145]. CP

decomposes a tensor into a linear combination of rank-one tensor components [51].

CLIGEN utilizes CP tensor factorization [199] to identify disease sub-types as groups

of latent factors in τ. CP decomposition approximates τ with τ̂, a linear combination of

rank-one tensors. Formally:

τ ≈ τ̂ = Jλ,P,G,CK =
R∑

r=1

λr · sr =
R∑

r=1

λr · pr ◦ gr ◦ cr (5.1)
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where R is the number of rank-one tensors sr that τ is decomposed into, λr ∈ R is the

weight of the rth rank-one tensor. Each sr is an outer product (◦) of patient pr ∈ RP , gene

gr ∈ RG and clinical cr ∈ RC latent factors. Patient, gene and clinical latent factors that

correspond to each rank-one tensor can be thought of as clusters of patients with frequently

co-occurring somatic gene mutations and clinical variables. Latent factors for all rank-one

tensors can be grouped into the columns of the patient P, gene G and clinical C factor

matrices. CP decomposition of τ is obtained by solving the following optimization problem:

min
τ̂
‖τ− τ̂‖F (5.2)

aimed at finding the best approximation of each element tijk of the original tensor τ from

the latent factors corresponding to rank-one tensors as follows:

tijk ≈
R∑

r=1

λrpirgjrckr (5.3)

Uniqueness of the optimal solution to the above optimization problem is an important

property of CP decomposition [199].

Molecular and clinical markers of disease sub-types are derived from the gene and clinical

latent factors associated with each rank-one tensor obtained by CP decomposition of τ. Each

element of a gene and clinical latent factor can be interpreted as a degree of specificity of a

particular gene or a clinical variable to the corresponding disease subtype. Each element of

a patient latent factor can be interpreted as a membership proportion of a particular patient

in the corresponding disease subtype.

Slicing tensor τ along each of its three modes yields the following views:

1. Patient mode: each slice is a matrix of co-occurrences of mutations and clinical markers

for a particular patient. For instance, if a patient’s health records indicate stage I breast

cancer, and her mutation profile indicates a mutation in gene TP53, then a cell at the

row for the “Stage I” clinical variable and the column for the TP53 gene in the matrix
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corresponding to the tensor slice for this patient will have the corresponding smoothed

value of gene TP53. The cells in the same column and the rows for “Stage II”, “Stage

III” and “Stage IV” will have the value of 0.

2. Gene mode: each slice is a matrix with patients as rows and clinical markers as columns,

which shows how a mutation in a particular gene is correlated with clinical markers

in different patients. Such matrix can be considered as a summary of phenotypic

manifestations of a particular gene mutation.

3. Clinical mode: each slice is a matrix with patients as rows and genes as columns, which

shows how gene mutations in different patients are correlated with a particular clinical

marker. Such a matrix can be considered as a summary of genetic markers for a single

phenotype.

5.3 Challenges and Limitations

Methods for integrative analysis of genomic and clinical data face a common challenge

of dealing with large volumes and high-dimensionality of data. By utilizing sparse represen-

tations and inexpensive linear algebra operations, tensor factorization methods effectively

address this challenge. Successful application of tensor decomposition in different domains

led to further research into efficient optimization methods for tensor decomposition [1], which

makes tensor decomposition a method of choice for high-throughput cancer subtyping.

We propose a method capable of incorporating clinical data into the pipeline of mutation

based stratification by utilizing a tensor based-representations and inexpensive linear algebra

operations, tensor factorization methods effectively address this challenge. Advancements

in efficient tensor decomposition methods and their broad application to different domains

makes tensor decomposition a method of choice for high-throughput disease subtyping.

Since tensor factorization models are parametric, selecting the optimal number of compo-

nents for CP decomposition of the binary tensor (i.e. model order estimation) is an important

practical aspect of the proposed pipeline. Too few components typically result in general
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subtype definitions, which may combine several actual disease sub-types. Too many com-

ponents typically result in specific subtype definitions, which may split the actual disease

sub-types. It is important to point out that, in terms of the number of model parameters,

CP decomposition, which assumes that the number of components is the same per each

tensor mode, has an advantage over Tucker decomposition, which requires specifying the

number of components per each mode. While it is known that the number of components

that minimizes the reconstruction error of the original tensor from its components is equal

to the rank of a given tensor [59, 199], finding tensor rank is an NP-complete problem [146].

Even if the rank of a tensor is known, the number of components that minimizes recon-

struction error may not result in the best accuracy for a particular task, such as survival

prediction. Identifying the parameters of our model, number of components and number

of clusters, still remains a challenge. However, we show here that empirical experiments

with the combination of the possible values of these parameters is feasible way to address

this problem. Therefore, the optimal number of components is typically determined using

heuristics, such as core consistency diagnostic [37], cross validation [38] (as was done in this

work) or hierarchical Bayesian approach [243], if a suitable prior can be defined.

Tensor construction is another aspect of the proposed approach with possible variations.

In this work, we used the presence or absence of non-silent gene mutation as a single genetic

signature of patients. However, it is possible to use other types of genetic data, such as gene

expression or copy number variation. It is also possible to construct a count tensor, instead

of a binary tensor, by taking into account both the type of mutations and the number of

mutations per gene, which we leave for future work.

5.4 Results

We performed both qualitative and quantitative evaluation of breast cancer sub-types

derived from a TCGA breast cancer dataset [49] using the proposed pipeline. Here, we

present the quantitative evaluation. The qualitative evaluation is presented in section 5.6.
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Figure 5.2: Obtaining genotypes through non-negative factorization of a binary somatic
mutation matrix. The rows in matrix P correspond to a vector of genotype memberships
(e.g. p1 is a vector of genotype memberships for the first patient). Rows in matrix G
correspond to genotype definitions.

Figure 5.3: AUC of Cox models for breast cancer patient survival prediction that utilize pa-
tient membership proportions in most prevalent sub-types obtained by the proposed pipeline
(M1), patient membership proportions in genotypes (M2) obtained by NMF of binary so-
matic mutation matrix, phenotypes (M3) obtained by NMF of binary clinical matrix as
predictors, and random patient membership proportions (M4).

5.4 Quantitative Evaluation

Quantitative evaluation was conducted for the task of patient survival prognosis, which

is important for personalizing cancer treatment [291]. Specifically, we compared Cox pro-

portional hazards models that use the following predictors for survival prognosis of breast

cancer patients:

• M1: membership proportions of each patient in breast cancer sub-types discovered by

the proposed pipeline, which correspond to a row in the patient factor matrix P;

• M2: membership proportions of each patient in breast cancer genotypes, which cor-
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Model Wald-rank test Wald test
M1 8.327e-15s 0.000082
M2 0.315 0.3772
M3 0.0007 0.0124
M4 0.5060 0.5509

Table 5.3: p-values of Log-rank and Wald tests of the Cox proportional hazard models
utilizing patient membership proportions in sub-types (M1), genotypes (M2), phenotypes
(M3), and random membership assignment (M4) as predictors.

respond to a row in matrix P obtained by non-negative factorization of the somatic

mutation matrix M (as in Hofree et al. [160] without gene network smoothing), as

shown in Figure 5.2;

• M3: membership proportions of a patient in breast cancer phenotypes, which corre-

spond to a row in the patient factor matrix obtained by non-negative factorization of

the clinical matrix V ;

• M4: random membership proportions of a patient in each number of breast cancer

sub-types.

In the first experiment, we compared the accuracy of the Cox models using each of

the above predictors for survival prognosis of breast cancer patients, while in the second

experiment, we compared the goodness of fit of these models.

Accuracy of Survival Prognosis

In the first experiment, we compared the area under the ROC curve (AUC) for the models

M1-M4 using randomized 10-fold cross validation. The Cox models were estimated using

the data in the training splits and evaluated using the data in the testing splits.

The plot of AUC values for models M1-M3 micro-averaged over splits by varying the

number of the most prevalent cancer sub-types, genotypes and phenotypes is shown in Fig-

ure 5.3, from which two major conclusions can be drawn. First, the Cox regression model

that utilizes patient membership proportions in sub-types obtained by CLIGEN (M1) is

consistently more accurate at predicting breast cancer survival than the Cox model that



73

uses membership proportions in genotypes obtained by NMF (M2) and phenotypes obtained

by NMF (M3), which indicates the importance of taking into account both clinical and

genomic data when determining cancer sub-types. In particular, the Cox model utilizing

patient subtype membership proportions as predictors achieved the highest AUC of 0.5796,

when ten most prevalent sub-types were used, while the Cox model utilizing patient geno-

type memberships as predictors achieved the highest AUC of 0.4731, when the nine most

prevalent genotypes were used, and the Cox model utilizing patient phenotype memberships

as predictors achieved the highest AUC of 0.5047 from the six most prevalent phenotypes.

Second, the Cox models utilizing patient membership proportions in the top-k most

prevalent sub-types derived by CLIGEN and phenotypes and genotypes derived by NMF [129]

are all more accurate at predicting breast cancer survival than the baseline Cox model uti-

lizing random patient membership proportions (AUC = 0.4056).

Goodness of Fit

In the second experiment, we compared the goodness of fit of the models M1-M4 es-

timated on the entire TCGA dataset. The p-values of Log-rank and Wald tests of these

models are summarized in Table 5.3.

Both tests indicate that patient membership proportions in sub-types derived by CLIGEN

are more statistically significant predictors of breast cancer patient survival than membership

proportions in breast cancer phenotypes, which in turn are more statistically significant

predictors than random patient membership proportions and membership proportions in

genotypes derived by NMF. This important finding illustrates the need to combine clinical

and genomic data in order to more accurately predict survival of breast cancer patients.

Kaplan-Meier survival plots for the 4 most prevalent breast cancer sub-types obtained

by CLIGEN and NMF of mutation and clinical matrices are shown in Figure 5.4. As follows

from Figure 5.4, breast cancer patient cohorts that correspond to the 4 most prevalent

sub-types obtained using CLIGEN are more distinct in terms of survival dynamics (p =

0.0493) than the patient cohorts that correspond to the 4 most prevalent molecular (p =
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Figure 5.4: Kaplan-Meier survival plots for the four most prevalent sub-types: A) sub-types
obtained using CLIGEN, B) genotypes obtained using NMF, C) phenotypes obtained using
NMF.

0.241) and clinical (p = 0.2073) phenotypes. The curves in Figure 5.4a correspond to the

CLIGEN components 10, 8, 2, and 1 (the patients from component 10 correspond cohort 1,
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patients from component 8 to cohort 2, those from component 2 to cohort 3, and those from

component 1 to cohort 4. Cohort 1, which according to the analysis in Section 5.6.1 consists

mainly of Luminal B patients has worse survival than cohort 2, which mainly consists of

Luminal A patients. Interestingly, GLIGEN was able to identify a small (19 patients) and

a fairly large (99 patients) cohorts 1 and 2, which have significantly longer term survival

than cohorts 3 and 4, but cannot be equivocally assigned to any known molecular subtype

of breast cancer discussed in Section 5.5.1. This finding indicates that there may exist sub-

types of breast cancer, which can be identified by the joint analysis of clinical and genomic

data that require less aggressive treatment than the known molecular sub-types.

5.4 Survival Analysis

To assess if the sub-types obtained with CLIGEN are clinically relevant, we compared the

survival curves of the obtained patient cohorts using the traditional Cox log rank test. We

used two traditional clustering methods, k-means and hierarchical clustering, with different

numbers of clusters, k = 2-15. To find out the best clustering, we run CP factorization on

the CLIGEN tensor varying the value of R (tensor rank) from 2 to 10. In addition, we tested

the effect of outliers by running these tests with all the data and comparing with the results

obtained without major outliers. The outliers of the distributions of each component were

detected by identifying the points that falls outside the outer fences, which was calculated by

three times the interquartile range plus Q3-Q1. The lowest Cox log rank p-value (p = 2.39E-

16) is obtained with Hierarchical clustering without outliers (Tables 1-4 in supplementary

materials show the complete results). We compared our method with the state of the art

method network-based stratification (NBS) [160] which gives us a Cox p-value = 0.00477 (see

supplementary materials for complete NBS results). NBS is a method to integrate somatic

tumor genomes with gene networks. This approach clusters together patients with mutations

in similar network regions using Non-negative Matrix Factorization (NMF). Figure 5.4 shows

the Kaplan-Meier survival plots of the clustering with lowest p-value obtained with CLIGEN

that produces balanced number of groups and compared with the stratification obtained with
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NBS. As we can see, the sub-types obtained using CLIGEN are significantly more distinct

in terms of patient survival (p = 0.00176) than stratification using NBS.

5.5 Breast Cancer Molecular sub-types and their Implications on Diagnosis,

Treatment and Mortality

In this section, we present the necessary background regarding molecular sub-types and

treatment of breast cancer, followed by biological analysis of the results obtained with CLI-

GEN. Although CLIGEN can be utilized to analyze other complex diseases, this thesis only

reports its application to the TCGA Breast Cancer (BC) data. We focused on BC because

it is a well-studied cancer with known molecular sub-types. Therefore, we validate the sub-

types discovered with CLIGEN against these known molecular BC sub-types, which gives us

an opportunity to discover novel or refine existing sub-types. In this section, we discuss these

known BC sub-types and the procedures to treat patients, which belong to each subtype.

5.5 Molecular sub-types of Breast Cancer

Based only on the genes that cancer expresses, Perou et al. have characterized the

genomic diversity of breast tumors, to define five molecular (or intrinsic) sub-types of Breast

Cancer (BC) using the PAM50 assay [21], i.e., Luminal A, Luminal B, Triple-negative/basal-

like, HER2-enriched, and Normal-like [269, 73, 35]:

• Luminal A: ER-positive and/or PR positive, HER2 negative, and has low levels of the

protein Ki-67. Luminal A cancers are low-grade, tend to grow slowly, and have the

best prognosis.

• Luminal B: ER and/or PR positive, and HER2 positive or negative with high levels of

Ki-67. Luminal B cancers generally grow slightly faster than luminal A cancers, and

their prognosis is slightly worse.

• Triple-negative/basal-like: ER, PR, and HER2 negative. This type of cancer is more

common for younger, African-American women, and women with BRCA1 gene muta-
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tions than Caucasian women.

• HER2-enriched: ER negative, PR negative, and HER2 positive. HER2-enriched can-

cers tend to grow faster than luminal cancers and have a relatively worse prognosis, but

they are often successfully treated with targeted therapies aimed at the HER2 protein.

• Normal-like: share gene expression patterns with Luminal A subtype (ER-positive

and/or PR positive, HER2 negative, and has low levels of the protein Ki-67) and are

characterized by a normal tissue profiling.

Ductal Carcinoma In Situ (DCIS)
Invasive Ductal Carcinoma (IDC)
(IDC type) Tubular Carcinoma of the Breast
(IDC type) Medullary Carcinoma of the Breast
(IDC type) Mucinous Carcinoma of the Breast
(IDC type) Papillary Carcinoma of the Breast
(IDC type) Cribriform Carcinoma of the Breast
(IDC type) Apocrine Carcinoma of the Breast
Invasive Lobular Carcinoma (ILC)
Inflammatory Breast Cancer
Lobular Carcinoma In Situ (LCIS)
Angiosarcomas
Male Breast Cancer
Molecular Sub-types of Breast Cancer
Paget’s Disease of the Nipple
Phyllodes Tumors of the Breast
Metastatic Breast Cancer

Table 5.4: List of histological types of breast cancer.

5.5 Histological Types of Breast Cancer

There are a significant number of different histological types of BC, and a patient could

be diagnosed with a combination of different types of BC. Cancer can begin in different

areas of the breast; the lobules, the ducts, or the tissue in between [35] and can be divided

into two main groups: the carcinomas and the sarcomas. Carcinomas are divided into two

major sub-types: adenocarcinoma, which develops in an organ or gland, and squamous cell
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carcinoma, which originates in the squamous epithelium. Some histological types of cancer

are shown in Table 5.4 [120].

Each of these types has different implications on mortality and the required treatment;

for example, Ductal Carcinoma In Situ (DCIS) is a non-invasive breast cancer (stage 0).

The cancer cells are contained within the milk ducts. In Invasive Ductal Carcinoma (IDC)

cancers, the cancer cells inside of a milk duct or lobule have spread to the nearby tissues.

Most invasive BCs often called ‘Ductal Carcinoma NOS (not otherwise specified)’ are of

a generic variety and about 5 or 6 common types with an identifiable cellular appearance and

behavior. Beyond this, there are many rare forms of BC and a number that is very difficult to

classify because they have features from different BC types or contain a large percentage of

benign tissue. Some of the names given to BC types refer to the visual characteristics of the

malignant cells and cell formations. Also, patients can be diagnosed with hereditary forms

of BC, such as those linked to the BRCA1 and BRCA2 genes and other gene mutations,

before the appearance of any tumor.

5.5 Breast Cancer Diagnosis and Treatment

The process of diagnosis of BC involves a pathologist who is an expert in examining cells

from biopsy samples under a microscope, which is crucial to diagnose the presence of cancer

cells. The pathology report will include the BC stage, the tumor-lymph node-metastasis

status (TNM status), and type of BC based on the cell’s morphology. Current clinical

practice depends on the pathology report to diagnose BC. The BC stage can fall into one

of the five categories (stage I, II, III, IV, or V) and is determined by the tumor size (T).

The TNM status indicates the extent of the primary BC tumor, the presence or absence

of lymph node metastasis, and the presence of distant metastasis. The cell’s morphology

describes signs of malignant activity and cell formations. Malignant formations can include

irregular nuclear borders and shapes, extra-large nuclei, cell dissociation, arrangements of

cells in clusters and necrosis.

Additionally, pathologists perform immunohistochemical tests to evaluate the status of
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the hormone receptors on a sample to determine the histological type of the BC tumors and

predict essential aspects of BC behavior. These tests are performed on a set of biochemical

markers using protein-based dyes and visually inspecting the sample. Other elements in-

cluded in the histological evaluation include the genetic type of the cancer cell (which can be

different from epithelial cells), calcifications, necrosis, fat, blood, and lymphatic responses.

There are three major biochemical markers for BC: estrogen receptors (ER), progesterone

receptors (PR), and epidermal growth factor receptors (HER2). These are also referred to

as predictive immunohistochemistry (IHC) markers for targeted treatment. ER/PR positive

tumors (ER/PR+) have high levels of estrogen/progesterone receptors and can be treated

with chemo/endocrine therapy, such as the use of tamoxifen. Patients with ER/PR positive

breast tumors have a lower mortality risk compared to women with ER-/PR+ and ER-/PR-

breast tumors. ER/PR+ cancers have a prevalence of 70% of all invasive BCs.

HER2 positive tumors (HER2+) are associated with a slightly poorer prognosis and

a higher risk of local recurrence, but there are targeted therapies for this type of cancer.

HER2+ cancers can be treated with targeted therapy such as Herceptin, Perjeta, Tykerb,

Nerlynx, and Kadcyla [35]. The prevalence of HER2+ cancer is between 15% and 20% of

all invasive BCs. Triple-negative breast cancer (TNBC) tumors lack receptors for estrogen,

progesterone, and HER2 and are harder to treat because they do not respond to targeted

therapies (i.e., drugs that target ER, PR, or HER2). The primary treatment for TNBC

patients is chemotherapy. Studies have shown that genetic mutations are more common in

women with TNBC, even if they do not have hereditary BC. The prevalence of TNBC is

between 10% and 15% of all BC.

Immunotherapy

Traditional treatments of cancer include chemotherapy, radiation therapy, and surgery.

An emerging type of cancer treatment that “trains” the immune system to attack cancer

cells is immunotherapy. The immune system is in charge of fighting infections and other

diseases by detecting foreign bodies and attaching them. It includes the lymph node system
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and white blood cells [172].

Typically, the immune system is unable to detect cancer cells as malign bodies, and

it does not attack them. One type of immune therapy, the immune checkpoint inhibitors

therapy, disrupts cancer cell’s signals to expose them to the immune system. Once the

immune system is able to detect cancer cells, it can attack them and kill them [23].

Currently, immunotherapy is applied to late states of cancer and some clinical trials.

In particular, checkpoint inhibitors have been FDA-approved to treat a variety of cancers,

including lung cancer, melanoma, bladder cancer, kidney cancer, and lymphoma. It has not

been proven effective for Breast Cancer yet.

Just recently, clinical trials to use immunotherapy in early cancer stages have been ap-

proved. Triple-negative type of cancer is a good candidate for clinical trials because there are

no treatments that are effective, but CLIGEN could suggest that not all TNBC patients have

a high mutation load, maybe patients that were identified in Component 1 could benefit from

immunotherapy more than other TNBC patients. Without this distinction, immunotherapy

would be delivered in clinical trials to TN patients that are not suitable for this treatment

and possibly be marked as an ineffective treatment for breast cancer when the problem might

not be the treatment, but the cohort.

5.6 Biological analysis of CLIGEN

In this section, we present the results of biological evaluation of breast cancer sub-types

obtained by CP decomposition of the binary CLIGEN tensor constructed from the TCGA

dataset into ten components, since this decomposition gives the most accurate prediction of

cancer patient survival. We analyze each of the three resultant factor matrices independently

and then compare the conclusions across all dimensions. First, we analyze the genetic factor

matrix, then the clinical factor matrix, and conclude with the patient factor matrix. Second,

we analyze the mapping of traditionally used breast cancer molecular sub-types onto the

sub-types obtained with CLIGEN.
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Analysis of genetic factors associated with CLIGEN components

Enrichment analysis of the genes associated with each sub-type derived by CLIGEN was

performed using the Ingenuity Systems Upstream Analysis tool [202]. Breast cancer sub-

types associated with the components obtained by CLIGEN were first analyzed to identify

biological processes behind them. Component 1 (shown in Figure 5.5A) corresponds to a

small cohort of patients with a high mutation load. Further investigation of this sub-type

revealed a large number of mutations in the tumor suppressor genes (BRCA1, BRCA2,

TP53, PTEN, RB1) that participate in DNA repair, which indicates that the high mutation

load may be associated with a mutation in a DNA repair gene pathway(s). As follows from

Figure 5.6, for each sample, these mutations were mutually exclusive.

Figure 5.5: Examples of sub-types identified by the proposed pipeline.

Component 5 (shown in Figure 5.5B) appears to correspond to a sub-type of triple-

negative breast cancer (TNBC), which is defined by the lack of ER, PR, and HER2 ex-

pression. Molecular aberrations driving this breast cancer sub-type remain undefined, and

patients with this sub-type of breast cancer have the worst prognosis relative to the patients
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Figure 5.6: Mutual exclusivity across the characteristic genes of Component 1

with any other known breast cancer sub-type. Component 6 (shown in Figure 5.5C) cor-

responds to the sub-type of the progesterone receptor and estrogen receptor alpha-positive

(PR+ ER+) cancers, that are responsive to anti-ER therapies. Based on the associated

clinical markers, Component 9 (shown in Figure 5.5D) appears to be related to the known

sub-type of breast cancer that is driven by over-expression of the epidermal growth factor

receptor oncogene (HER2) and responsive to HER2-targeted inhibitors.

Further analysis using Ingenuity Systems software [202] to test Pathway Enrichment of

putative cancer driver genes, potentially activated or inactivated by mutations associated

with the TNBC-related fifth component identified significant enrichment of genes with a role

in signaling networks that promote the function of cancer stem-like cells (CSCs), i.e., down-

stream of transcription factor TWIST1, and alternative mRNA splicing, i.e., downstream of

serine and arginine-rich splicing factor SRSF2. CSCs have been identified in patient TNBC

tumors as a fraction of self-renewing, tumor-initiating cancer cells that also give rise to drug

resistance and metastatic recurrence [75, 222]. Alternative mRNA splicing has also been

implicated in maintaining and generating CSCs [15].

We then compared the subtypes derived by CLIGEN with the well-established PAM50

breast cancer subtypes first introduced by Perou et al. [269] that are outlined above in Sec-

tion 5.5.1. To do this, we used expression status of the biomarkers ER, PR and HER2,

which are in large part available for each sample in TCGA and are acceptable surrogates
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to characterize the basal, HER2 enriched, Luminal A and Luminal B breast cancer sub-

types [257, 280]. Patients that do not have values for any of the three biomarkers were

labeled as ‘Unassigned’ subtype2. To answer the question, “How CLIGEN subtypes com-

pare to these established subtypes?” we performed two analyses. First, we examined patient

factors associated with each CLIGEN component. Second, we examined the clinical factors

associated with each CLIGEN component. Table 5.6 describes the convention that we used

for BC sub-type classification and Figure 5.7 shows the distribution of patients in TCGA

dataset across the PAM50 sub-types.

Analysis of patient factors associated with CLIGEN components

In this analysis, we assigned each patient to a unique CLIGEN component (the compo-

nent that corresponds to the highest score in the patient’s factor matrix obtained by CP

decomposition of the CLIGEN binary tensor). We also assigned each patient to the PAM50

subtype based on the patient’s clinical markers. Table 5.5 shows the proportions of patients

assigned to each combination of CLIGEN component and PAM50 subtype.

From Table 5.5, we observe that patients assigned to Component 1 are also mostly asso-

ciated with Luminal B and, to a smaller extent, with Luminal A PAM50 sub-type. Patients

assigned to Component 5 include only TNBC patients, patients assigned to Component 6

are split between Luminal A and TNBC, and patients assigned to CLIGEN Components

2,3, 7-10 are associated with all PAM50 sub-types to some extent.

We also observe that patients belonging to PAM50 sub-types were not also exclusively

assigned to a single CLIGEN component. Furthermore, components with higher enrichment

match had less than 50% of patients assigned to them. 21% of the patients assigned to

the HER2-enriched PAM sub-type were also assigned to Component 3, 29% of Luminal B

patients were also assigned to Component 7, 34% of Luminal A patients to Component 2 and

26% of TNBC patients to Component 4. Majority of patients, who could not be assigned

2Note that Normal-like BC sub-type was not considered as a subtype here because the only difference
between normal-like and luminal A is that normal-like patients have low levels of protein Ki-67, and our
dataset did not have that status nor reference point to compute these levels.
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to any PAM50 sub-type, are also assigned to CLIGEN components 8 and 10, which reveals

that our method did not simply recapitulate the same sub-types that have been exposed by

Perou et al. [269], but it elucidates a different way to sub-type BC patients. Researchers

could study and learn from clustering tumors in this different way.

Comp. HER2 Lum. B Lum. A Basal Unassigned Max
1 0 0.05 (3) 0.01 (3) 0.01 (1) 0 0.05
2 0.16 (3) 0.22 (12) 0.34 (105) 0.06 (5) 0.26 (5) 0.34
3 0.21 (4) 0.09 (5) 0.03 (9) 0.18 (15) 0.05 (1) 0.21
4 0 0.02 (1) 0.06 (18) 0.26 (22) 0 0.26
5 0 0 0 0.06 (5) 0 0.06
6 0 0 0.03 (9) 0.06 (5) 0 0.06
7 0.21 (4) 0.29 (16) 0.23 (70) 0.12 (10) 0.21 (4) 0.29
8 0.16 (3) 0.18 (10) 0.23 (70) 0.07 (6) 0.26 (5) 0.26
9 0.16 (3) 0.13 (7) 0.05 (15) 0.08 (7) 0.11 (2) 0.16
10 0.11 (2) 0.02 (1) 0.02 (6) 0.1 (8) 0.11 (2) 0.11

Sum 1.0 (19) 1.0 (55) 1.0 (305) 1.0 (84) 1.0 (19)

Table 5.5: Distribution of TCGA patients assigned to different PAM50 suptypes across
CLIGEN components. The column Comp. indicates the component number. Each cell
shows the proportion of patients assigned to a particular CLIGEN component and PAM50
subtype, and the patient count is shown in parenthesis.

Analysis of clinical factors associated with CLIGEN components

Here we compare the assignments to the most prevalent clinical variable in the clinical fac-

tor and to the known sub-types of BC. To characterize the known sub-types, we first found the

distribution of the three molecular biomarkers on the Clinical Factor C across the ten com-

ponents, see these distributions in Table 5.7. After getting the raw values for the biomarkers,

we standardized the values and summarized them in Table 5.8. Since the variables appear

in more than one component, we assigned the variables to the component with the highest

score. For example, the clinical variable HER2 had its highest score on the Component 2

vector compared with the score on the other Components; therefore, the equivocal status

of HER2 was matched with Component 2. Equally, PR.StatusIndeterminate with Com-

ponent 2, HER2.StatusNegative with Component 6, PR.StatusPositive with Component 6,

HER2.StatusPositive, PAM50.sub-typeHER2.enriched, ER.StatusNegative, ER.StatusPositive,
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and PR.StatusNegative with Component 9. From the Clinical Factor matrix the only clear

groups are for HER2 positive, HER2 negative and PR negative as shown in Table 5.8.

Breast Cancer molecular subtype Biomarkers
Basal-like HER2-, ER-, PR-

HER2 HER2+, ER-, PR-
Luminal A HER2- and ER+ and/or PR+
Luminal B HER2+ and ER+ and/or PR+
Unassigned Missing any HER2, ER, or PR

Table 5.6: Four molecular sub-types of breast cancer and definition of ‘Unassigned’ sub-type.

sub-types

19
55

305

84

19

HER2
Luminal B
Luminal A
Basal
Unassigned

Figure 5.7: Distribution of molecular sub-types.

5.6 Degree of Overlap between CLIGEN and PAM50 Breast Cancer sub-types

Based on the analyses of patient, genetic and clinical factor matrices, we found that

Components 1 and 7 correspond to Luminal B breast cancer, while more than one third

of Luminal A patients are mapped to Component 2. From the genetic point of view,

Components 4, 5 and 6 appear to be different sub-types of triple-negative breast cancer

(TNBC), which was corroborated by our analysis of patient factor matrix obtained by CLI-

GEN. Component 6 corresponds to the subtype of the progesterone-receptor-positive and

estrogen-receptor-positive (PR+ ER+) cancers based on the genetic factor matrix obtained
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C # HER2 ER PR
1 0
2 67 Unassigned, Negative,

Positive
Unassigned, Negative,
Positive

Unassigned,

3 5 Unassigned Unassigned
4 10 Unassigned Unassigned
5 9 Unassigned Unassigned
6 66 Unassigned, Negative,

Positive
Unassigned, Negative,
Positive

Unassigned, Negative,
Positive

7 2
8 2 Unassigned
9 64 Unassigned, Negative,

Positive
Unassigned, Negative,
Positive

Unassigned, Negative,
Positive

10 5 Indeterminate, Per-
formed but Not
Available

Performed but Not
Available

Table 5.7: Distribution of biomarkers’ values among the 10 components. The C column
indicates the component number. The # column indicates the number of clinical variables
that have non-zero value in the row component.

C HER2 ER PR Molecular Subtype
1 Equivocal Unassigned
6 Negative Positive Luminal HER-
9 Positive Negative, Positive Negative HER2 and Luminal HER2+

Table 5.8: Summary conclusive components.

by CLIGEN. From the list of patients, this component contains patients from Luminal A

and Basal breast cancers. Based on the clinical factor, this component was associated with a

Luminal A BC. Component 3 and 9 appear to be related to the HER2-enriched PAM50 sub-

type based on the genetic profile and the clinical variables. To establish the degree of overlap

between GLIGEN and PAM50 breast cancer sub-types, we grouped the patients in CLIGEN

components into their closest inferred PAM50 sub-types according to the mappings outlined

above. Table 5.8 illustrates the confusion matrix between the PAM50 molecular sub-types

of patients predicted based on the analysis of CLIGEN components and the actual PAM50

molecular sub-types of patients determined based on their clinical variables. We did not

include in this analysis the patients that could not be assigned to a PAM50 subtype based
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on their available clinical data (column ”Unassigned” in Table 5.5). It follows from this

table that overall the actual PAM50 sub-types can be inferred from the analysis of CLIGEN

components with 50.76% accuracy. Luminal A PAM50 subtype was inferred with the high-

est accuracy of 57.38%, followed by HER2-enriched (47.37%). The greatest confusion was

in distinguishing Luminal A from Luminal B as well as HER2-enriched from Basal PAM50

sub-types.

Predicted label
HER2 Lum B Lum A Basal

T
ru

e
la

b
e
l HER2 9 (0.47) 4 (0.21) 6 (0.32) 0 (0.0)

Lum B 13 (0.24) 19 (0.35) 22 (0.40) 1 (0.02)
Lum A 30 (0.1) 73 (0.24) 175 (0.57) 27 (0.09)
Basal 30 (0.36) 11 (0.13) 11 (0.13) 32 (0.38)

Figure 5.8: Confusion matrix between the actual PAM50 patient sub-types and PAM50 sub-
types predicted based on the analysis of CLIGEN components. Fractions of patients with
predicted PAM50 subtype that belong to the corresponding gold standard PAM50 sub-type
are shown in parentheses.

5.6 Implications for Breast Cancer Treatment

From the sub-types obtained by CLIGEN, we paid particular attention to Component

1, which had non-clinical variables associated with and a high abundance of mutually ex-

clusive somatic mutations and mapping from CLIGEN to PAM50 breast cancer sub-types.
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These analyses are important because they are in-line with ongoing research reported in the

literature that a subset of patients could benefit from new therapies and specifically from

immunotherapy (see Section 5.5.3), since the high mutational load is a predictor of positive

response to immunotherapy [244].

It is known that the accumulation of somatic mutations is a hallmark of tumors, but

the mutational burden varies dramatically among tumor types [208]. These dramatic dif-

ferences in mutation burden reflect significant differences in the balance of DNA damage

exposure and DNA repair fidelity among tumors. It has been shown that tumor muta-

tional load was significantly higher in patients who achieved long-term clinical benefit and

more prolonged progression-free survival from immune checkpoint blockade (ICB) therapy

compared with those who had minimal benefit. This association was confirmed by two

studies in patients with metastatic melanoma treated with the CTLA-4-blocking antibod-

ies ipilimumab [311, 338] and patients with non-small cell lung cancer treated with the

anti-PD-1 antibody pembrolizumab [282]. The association between mutational burden and

immunotherapy response has now been observed in many cancers; however, it is becoming

clear that high mutational burden alone is not sufficient to drive immunotherapy response,

and there is no definitive threshold mutational burden that separates ICB responders from

non-responders [244]. Our results highlight the need for further biological studies to identify a

threshold for BC mutational burden and additional factors that can benefit BC immunother-

apy.

5.7 Conclusion

In this chapter, we introduced CLIGEN, a novel machine learning based pipeline for un-

supervised disease subtype discovery based on tensor decomposition of a three-dimensional

tensor combining clinical and somatic mutation patient data, and applied the proposed

pipeline to breast cancer subtyping. Quantitative evaluation of the discovered breast cancer

sub-types indicates that representation of clinical and genetic patient data as a tensor and its

subsequent decomposition is an effective computational approach to high-throughput disease
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subtyping for precision medicine. In particular, our proposed pipeline was not only able to

identify known breast cancer sub-types (HER2+ and ER+), but also elucidated new possi-

ble characteristics of a complex breast cancer subtype (triple negative), which provides an

opportunity for further research to define new cancer sub-types. We also demonstrated that

patient membership proportions in the discovered breast cancer sub-types are more effective

predictors of breast cancer survival than patient membership proportions in computationally

identified genotypes and phenotypes.
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CHAPTER 6 CANCER SUBTYPING BASED ON CLINICAL, SOMATIC

MUTATION AND GENE EXPRESSION DATA

It has long been understood that stratification of patients into fine-grained cohorts corre-

sponding to disease sub-types is a foundation of accurate diagnosis and personalized cancer

treatment. Nevertheless, current disease sub-typing methods have not addressed the integra-

tion of genetic and clinical data for obtaining comprehensive sub-types yet. In this chapter,

we propose TGENEX, a new computational pipeline for high-throughput data-driven strati-

fication of cancer patients into cohorts corresponding to multi-modal cancer sub-types based

on clinical and genomic data (mutation and gene expression data). We applied TGENEX to

discover sub-types of seven different cancers using publicly available datasets from the Cancer

Genome Atlas (TCGA). Quantitative evaluation of the sub-types discovered by TGENEX

indicates that they are clinically meaningful and can provide insights for cancer patient sur-

vival prognosis to clinicians at the point of care. We conclude that enriching gene expression

and somatic mutations with clinical data can elucidate novel cancer sub-types.

6.1 Introduction

It is well recognized that the personalized medicine approach is the key to effective cancer

treatment [65]. Methods for patient stratification into cohorts corresponding to cancer sub-

types and markers defining these sub-types are a central tenet of precision medicine approach

to cancer treatment [291]. However, many cancers are not fully understood, and stratifying

patients into cohorts that can predict patient survival is still an open problem.

Remarkable advances in next-generation sequencing technology coupled with the widespread

adoption of electronic health records (EHR) by healthcare providers in the United States

have enabled the collection of unprecedented amounts of genomic and clinical patient data.

However, despite the immense progress in computational methods for analyzing clinical or

genomic data, these methods in isolation cannot capture all aspects of the pathogenesis

of cancers [284]. Furthermore, there has been relatively little research on computational
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methods for joint analysis of clinical and genomic data for cancer sub-typing. Topological

analysis of the patient-patient similarity network has been applied to stratify patients with

type II diabetes [215] and traumatic brain injury [253] based on their pathoanatomical and

molecular data. As opposed to the proposed pipeline, which is implemented end-to-end and

has minimum hardware requirements, topological analysis requires defining patient similarity

lenses and requires the use of a cloud-based supercomputer [253].

Cancer treatment decisions are often based on characteristics of a tumor (e.g., size, patho-

logic stage, histologic grade, hormonal receptor status, and lymphovascular invasion) or a

patient (age, race, menopausal and performance status) [62]. These and other characteristics

are utilized in cancer clinical decision support software, such as PREDICT Plus [355]. How-

ever, this software does not take into account the molecular characteristics of tumors. As

a result, many cancer patients are over-treated by being exposed to the risk of toxic effects

from adjuvant chemotherapy without deriving significant benefits from it [179]. Advances in

high-throughput sequencing and micro-array technology enabled the utilization of genomic

data for cancer patient sub-typing. Early research on cancer patient stratification primarily

focused on gene expression profiles and have distinguished at least four molecularly distinct

sub-types of breast cancer [313]. In transcriptomics, agglomerative hierarchical clustering

(HC) is a frequently used approach for clustering genes or samples that show similar ex-

pression patterns [112, 5, 269]. HC provides for a structural view of the data that makes it

appealing in exploratory data analysis. However, classical HC imposes a tree structure on the

data that might not reflect the underlying structure and is highly sensitive to the metric used

to assess similarity among elements. Divisive clustering methods, such as k-means [93, 333],

global k-means [11], fuzzy modification of k-means [79, 125], have been applied for the same

application. These methods provide clear cluster boundaries and tighter clusters, but they

lack the visual appeal of HC. Another group of methods is neural network clustering, such as

self-organizing maps (SOM) [198, 320, 138], Self-Organising Tree Algorithm (SOTA) [151],

and Dynamically Growing Self-Organising Tree (DGSOT) [228]. Neural networks can be



92

modeled as a collection of nodes with weighted interconnections, which can be adaptively

learned. The common drawbacks of both k-means based methods and neural networks-based

methods is the need to specify the number of clusters beforehand.

Although methods analyzing single types of patient data have advanced the understand-

ing of cancer [112, 5, 269], they are unable to capture the complex interactions among

biomolecules, and the outcome sub-types are prone to be suboptimal [314]. A vast major-

ity of the diseases develop differently, making them heterogeneous. Contemporary methods

integrate genetic data for disease sub-typing and have shown that the discovered sub-types

result in better survival models than the methods using gene expression or mutation data

alone [347, 298, 239]. Cox log-rank test is one of the methods to decide if certain groups

have different survival behavior or not. The improvement in prognosis due to the integra-

tion of different types of genetic data can be because two patients rarely have identical

genotypes even though cancer is a genetic disease. Similarly, patients differ in their clin-

icopathological parameters, and integrating their clinical variables can benefit sub-typing

and prognosis models. In particular, gene expression profiling has uncovered many differ-

ences between cancer and healthy cells and has enabled the definition of relevant disease

sub-types based on ‘biomarkers’ that correlate with the clinical outcome without indicating

causality [131]. On the other hand, genomic information aims to identify driver genes (also

know as driver genes) [315, 344]. However, the vehicle by which driver mutations cause

cancer is gene transcription acting through a complex cellular signaling circuitry that links

the genomic variants to cancer. Many of the consequences of genetic alterations will affect

gene expression in different ways, such as aberrant transcription, cell signaling, gene dosage,

and epigenetic regulation. For this reason, studies using only gene expression or somatic

mutation data have fundamental limitations due to the unknown genetic background of the

samples.

In the previous chapter, we presented CLIGEN to analyze somatic mutation data and

clinical data for disease sub-typing [86]. In order to overcome the variability of diagnos-
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tic and prognostic predictors derived from genomic data alone, we propose to integrate

it with demographic and clinical cancer patient data in a computational pipeline (named

TGENEX ) for fully unsupervised disease sub-typing based on clinical data, gene mutation

and gene expression data. We chose gene expression and mutation profiles for the genetic

vector because it has been demonstrated that driver mutations are correlated with general

gene expression, and combining them improves outcome prediction for some cancers such as

myelodysplastic syndromes (MDS) [131]. Our pipeline takes demographic information of a

given cancer patient population as well as somatic point mutation profiles, gene expression,

and clinical properties of their tumors as input and identifies a set of patient cohorts that

share the same set of pathogenic gene mutations and cancer characteristics, with each iden-

tified cohort corresponding to a cancer multi-modal sub-type. Here, we hypothesize that the

sub-types discovered by TGENEX capture co-occurrences, which allow us to gather insights

surrounding molecular, demographic and clinical features of new cancer sub-types and refine

the known ones as well as shed light on molecular aberrations in tumors that are correlated

with gene expression and clinical outcomes. TGENEX consists of two main stages. In the

first stage, multi-modal patient data that includes somatic mutation profiles, gene expres-

sion, and clinical data (clinical properties of tumors and cancer patient demographics) is

represented as a three-mode tensor. In the second stage, non-negative tensor decomposition

is applied to identify latent factors in each modality of the constructed tensor.

6.2 Dataset

For experiments in this chapter, we used patient data from The Cancer Genome At-

las - Genomic Data Commons Data Portal (TCGA GDC) [49] downloaded from RTCGA

snapshot from 2016-01-28 [289]. More concretely, we use somatic mutation (non-silent mu-

tation from the whole exome sequencing level 3 profiles, mRNA expression (level 3 Agilent

g4502), and clinical data of seven cancer types: Breast invasive carcinoma (BC), Colon ade-

nocarcinoma (COAD), Colorectal adenocarcinoma (COADREAD), Kidney renal clear cell

carcinoma (KIRC), Lung squamous cell carcinoma (LUSC), Ovarian serous cystadenocarci-
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noma (OV), and Pan-kidney cohort (KICH+KIRC+KIRP) (KIPAN). For all the datasets,

we considered only the patients for whom somatic mutation, gene expression, and clinical

data are available and discarded the patients with less than 10 somatic mutations. For ex-

ample, for breast ductal carcinoma patients (BC), out of the 825 patients on TCGA, we

considered only 493 patients because only these have somatic mutation, gene expression and

clinical data available and discarded 4 patients with few somatic mutations. The resulting

BC dataset consists of genetic profiles over 11,996 genes and 87 values and value ranges of

17 discrete and dichotomized continuous clinical variables of 489 patients. For colon ade-

nocarcinoma (COAD), 12,256 genes were filtered out of a total of 17,558 present genes on

153 patients. For the kidney and renal clear cell carcinoma dataset (KIRC), 12,238 genes

were filtered out of a total of 17,522 present genes in a cohort of 72 patients. For the lung

squamous cell carcinoma dataset (LUSC), 12,226 genes were filtered out of a total of 17,510

present genes in a cohort of 154 patients. For the ovarian serous cystadenocarcinoma dataset

(OV), 12,155 genes were filtered out of a total of 17,467 present genes in a cohort of 541

patients. In addition to these individual cancer datasets, we analyze the following pan-cancer

dataset. For colorectal adenocarcinoma (COADREAD), 12,221 genes were filtered out of a

total of 17,521 present genes in 222 patients. For Pan-kidney cohort (KIPAN), which in-

cludes kidney and renal papillary cell carcinoma, kidney and renal clear cell carcinoma, and

kidney Chromophobe datasets, 11,976 genes were filtered out of a total of 17,260 present

genes with 88 patients.

Genetic data

For BC, the somatic mutation table consists of 37 columns and 34032 registries. A row

in this table indicates a mutation in the gene reported in the column “Hugo Symbol” for

the sample in the column “Tumor Sample Barcode”. Additional details on the processing

and organization of these data are available in Koboldt et al. [49]. We constructed patient

mutation profiles as binary vectors, in which a bit is set if the patient’s gene corresponding

to that position in the vector harbors a mutation. All the other somatic mutation tables
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Dataset Name Num.
patie.

Num.
genes

Num.
fil. g.

BC Breast invasive carcinoma 489 17327 11996
COAD Colon adenocarcinoma 153 17558 12256
COADREAD Colorectal adenocarcinoma 222 17521 12221
KIRC Kidney renal clear cell carcinoma 72 17522 12238
KIPAN Pan-kidney cohort (KICH+KIRC+KIRP) 88 17260 11976
LUSC Lung squamous cell carcinoma 154 17510 12226
OV Ovarian serous cystadenocarcinoma 541 17467 12155

Table 6.1: Datasets mRNA from RTCGA. Num. patie. stands for the number of patients
from the mRNA dataset. Num. genes stands for the number of genes in the mRNA dataset
from a total of 17815. Num. fil. g. is the size of the final list of genes.

have 37 columns but a variable number of registers. See Table 6.1 the number of filtered

genes that were obtained for each cancer type. Additionally, we obtained preprocessed level

3 mRNA expression Agilent g4502 with LOWESS (Locally Weighted Scatterplot Smoothing)

normalization at gene level from the RTCGA snapshot [365, 61, 289]. We downloaded only

samples that were taken from the primary tumor for both mutation and gene expression,

neither metastatic nor healthy samples were considered.

Clinical and Demographic Variables

Similarly, we downloaded clinical data from several cancer types using RTCGA and

selected clinical variables that are considered relevant for sub-typing based on the literature.

[29, 57, 68, 82, 118, 121, 132, 152, 170, 248, 286, 306, 307, 309, 335, 337, 342, 352, 354]. The

downloaded clinical tables have patients as rows and clinical variables as columns. Table

6.2 shows the dimensions of the raw clinical datasets downloaded from TCGA. To identify

the variables that we could use for our analysis, we selected the clinical variables common

across all the cancer types, which reduced the number of variables to 1,574. Then, we

discarded eight columns with administrative data, one column with additional studies, 231

columns with details about drugs, 47 columns with details about follow-ups, four columns

about new tumor events, 37 columns about radiation sessions, 61 columns related to the

biospecimen, 544 variables related to sample1 portions, 321 variables related to sample2
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portions, 268 variables related to sample3 portions, three identification variables, and the

variable informed consent. Next, we discarded 28 variables that were missing for more than

40% of patients. After filtering out all these categories of clinical variables, we ended up

with a list of 20 clinical variables. Among these, we have four variables for survival analysis:

days-to-death, vital-status, days-to-last-followup, and days-to-last-known-alive; therefore, we

removed these variables from our input. Finally, we use 17 discrete and continuous clinical

and demographic variables relevant to cancer (including one variable to identify the sample),

which we used as an input of our model after dichotomizing1 them into 87 variables (without

loss of generality, further referred to as clinical variables).

Here we present the final list of clinical variables with some literature that evidences their

relevance to cancer. 1) bcr-patient-barcode: Patient’s barcode from The Biospecimen Core

Resource, 2) age-at-initial-pathologic-diagnosis (evidence: [82]), 3) sex (evidence: [68]), 4)

race (evidence: [352, 121]), 5) ethnicity (evidence: [352, 342]), 6) cqcf.country: Patient’s coun-

try from the Case Quality Control Form (CQCF). (evidence: [337, 132, 57]), 7) cqcf.prior-dx:

Patient’s prior diagnosis of cancer from the CQCF. (evidence: [248, 335]), 8) cqcf.tumor-

type: Patient’s tumor-type from the CQCF. (evidence: [306, 170]), 9) cqcf.normal-tissue-

anatomic-site: Anatomic site of patient’s normal tissue from the CQCF (evidence: [29, 354]),

10) tumor-tissue-site (evidence: [152]), 11) patient-canonical-status (evidence: [152]), 12)

person-neoplasm-cancer-status (evidence: [286]), 13) site-of-disease (evidence: [309, 307]),

14) normal-tissue-proximity (evidence: [118]), 15) drugs measure of response with values

’clinical progressive disease’, ’complete response’, ’partial response’, and ’stable disease’2

(evidence: [152]), 16) radiation-therapy with values ’yes’ or ’not’ (evidence: [152]), and 17)

sample-type (evidence: [152]).
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Dataset Name Nr clinical vars
BC Breast invasive carcinoma 2129
COAD Colon adenocarcinoma 3166
COADREAD Colorectal adenocarcinoma 3509
KIRC Kidney renal clear cell carcinoma 2809
KIPAN Pan-kidney cohort (KICH+KIRC+KIRP) 2875
LUSC Lung squamous cell carcinoma 2698
OV Ovarian serous cystadenocarcinoma 1440

Table 6.2: Number of clinical variables for each Cancer from RTCGA.

6.3 Methods

An overview of TGENEX, our proposed pipeline for unsupervised sub-typing of complex

diseases3, is shown in Figure 6.1. The input to the pipeline consists of genetic and clinical

data of cancer patients. The output of the pipeline is a set of definitions of cancer sub-

types characterized by genetic and clinical variables. The pipeline consists of the two stages:

i) data pre-processing and tensor construction and ii) non-negative decomposition of the

constructed tensor to obtain cancer sub-types. Detailed descriptions of these stages are

provided below.

6.3 Data representation

The first stage of the proposed pipeline illustrated in Figure 6.1.a involves pre-processing

the input genomic and clinical patient data to create a combined representation for subse-

quent analysis. Somatic mutation datasets typically take the form of mutation tables, in

which the rows correspond to mutations, and the columns describe the type of each mu-

tation and its location (see Figure 6.1.a.i). Based on the input mutation table, TGENEX

constructs a genetic matrix M with patients as rows and genes as columns. Normalized

mRNA expression data is represented in the matrix R with patients as rows and genes as

1converting continuous and categorical data to binary values (two groups) which is a common approach
in clinical research [78]

2A record is marked as ’complete response’ when all target tumors have disappeared during treatment,
’partial response’ when largest tumors have decreased for at least 30%, ’stable disease’ when target tumors
have no decreased its size, and ’progressive disease’ when targeted lesions have increased for at least 20%

3source code for TGENEX is publicly available at https://github.com/teanalab/TGENEX

https://github.com/teanalab/TGENEX
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Symbol Definition
M, R, V somatic mutation, gene expression and

clinical matrices
Mij cell of mutation matrix for patient i and gene

j
Rij cell of mRNA matrix for patient i and gene

j
Vij cell of clinical matrix for patient i and k-th

value or interval of clinical variables
τ multi-modal TGENEX tensor
Gij cell of genetic matrix (mutation and gene ex-

pression) for patient i and gene j
|P |, |G|, |C| number of patients, genes as well as intervals

and values of clinical variables
i, j, k indices of patients, genes, and clinical vari-

ables.
tijk value of tensor cell for the i-th patient, j-th

gene, and k-th value or interval of clinical
variables

⊗ outer product of two vectors
R number of tensor components
Ŋr r-th rank-one component i.e. a candidate

Sub-type definition
pr, gr, cr patient, gene and clinical factor vectors

Table 6.3: List of notations used in this chapter and their definitions
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Figure 6.1: Two stages of the proposed TGENEX pipeline: a) data representation and con-
struction of three-modal tensor τ. b) obtaining candidate sub-types via CP decomposition
of tensor τ.

columns (see Figure 6.1.a.ii). To construct the genetic matrix G (see Figure 6.1.a.iv), we

assign the gene expression value to a cell if there is a mutation for that particular gene

and patient, i.e. G = M ◦ R. With this representation, we can capture both gene expres-
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sion abundance and the presence of mutation per each patient. In contrast with CLIGEN,

the genetic matrix here is not binary but has gene expression values of the mutated genes.

Formally, the element-wise multiplication (◦ or pointwise) between the mRNA expression

matrix R and the mutation matrix M requires the matrices to have the same dimensions

(same number of samples and the same number of genes), and it multiplies mRNA and

mutation values per each patient-gene pair. From the biological perspective, this operation

captures the co-occurrence of mutation and gene expression.

Continuous clinical variables, such as the age of diagnosis, were discretized into intervals

with a total of n combined intervals of all continuous variables and levels of all discrete vari-

ables in the entire dataset. The values of clinical variables for each patient were represented

as a binary clinical matrix V with patients as rows and intervals of continuous or levels of

discrete clinical variables as columns. A value of one in the cell Vik of matrix V indicates

that patient i has a k-th level or interval of a discrete or continuous clinical variable.

Tensor Construction

Here we present how the clinical V and genetic G matrices are combined to create

a three-dimensional tensor (i.e. multidimensional array) τ ∈ RP×G×C which captures

interactions between clinical variables and genetic data, see Table 6.3. The first mode of

tensor τ corresponds to patients P , while the other two modes correspond to the values of

clinical variables V and genes G (Figure 6.1.b). A value of the cell tijk of the tensor τ has

the gene expression value for gene j, if the i− th patient has at least one mutation in gene

j and k − th value of clinical variables, otherwise it is set to zero.

Slicing tensor τ along each of its three modes yields the following views:

1. Patient mode: each slice is a matrix of co-occurrences of gene patterns and clinical

variables for a particular patient.

2. Gene mode: each slice is a matrix with patients as rows and clinical variables as

columns, which shows how a gene signatures are correlated with clinical variables in
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different patients.

3. Clinical mode: each slice is a matrix with patients as rows and genes as columns, which

shows how gene mutations in different patients are correlated with a particular clinical

variable.

Obtaining Candidate Sub-type Definitions Through Tensor Factorization

Tensor decomposition [199] is a powerful mathematical technique that has been success-

fully applied in different domains ranging from psychology and neuroscience to computer

vision. Tensor decomposition has several advantages over matrix factorization. First, ten-

sors explicitly account for the multiway structure of the data that is otherwise lost, when a

tensor is converted into a matrix by collapsing some of its modes. Second, some tensor de-

composition methods guarantee the uniqueness of the optimal solution even for very sparse

tensors. The two most widely used tensor decomposition methods are the Tucker method

and CANDECOMP/PARAFAC (CP), which stands for Canonical Decomposition (CAN-

DECOMP) and Parallel Factor Analysis (PARAFAC) or CP tensor factorization [199]. CP

decomposition can be considered as a particular case of the Tucker decomposition when the

size of each modality of the core array is the same, and the only non-zero elements in the core

are the elements along the main diagonal [199]. An essential property of CP decomposition

is that the restriction imposed on the Tucker core leads to the uniqueness of the optimal

solution [199].

Here, we use CP factorization to identify disease sub-types as groups of latent factors

in τ. CP decomposition approximates τ with τ̂, a linear combination of rank-one tensors.

Formally:

τ ≈ τ̂ = Jλ; P, G, CK =
R∑

r=1

λr · Sr =
R∑

r=1

λr · pr ⊗ gr ⊗ cr (6.1)

where R is the number of component rank-one tensors sr that τ is decomposed into,

λr ∈ R is the weight of the r-th rank one tensor. Each sr is an outer product (⊗) of partient
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pr ∈ RP , gene gr ∈ RG and clinical variable cr ∈ RC latent factors. Patient, gene and clinical

vectors for all tensor components correspond to the columns of the patient, gene and clinical

factor matrices P, G, C.

CP decomposition is obtained by solving the following optimization problem:

min
τ̂
‖τ− τ̂‖F (6.2)

aimed at finding the best approximation τ̂ of each element tijk of the original tensor τ

from the factor vectors corresponding to the components tensors as follows:

tijk ≈
R∑

r=1

λrpirgjrckr (6.3)

Sub-type definitions are constructed from the patient, gene, and clinical factor vectors cor-

responding to each of the component tensors obtained by CP decomposition of the TGENEX

tensor. Each element in the vectors corresponding to gene and clinical tensor modes can be

interpreted as the importance of a gene or clinical variable to a sub-type. After finding

the sub-types, we perform survival analysis, which is essential for personalized cancer treat-

ment [291].

6.4 Results and Discussion

We assess the performance of our method for disease sub-typing by analyzing the seven

cancer datasets described in Section 6.2. After obtaining the factor matrices with our

method, we performed hierarchical clustering of the patient factor matrix. To decide the

number of clusters (k) that generate the more distinctive sub-types, we performed survival

analysis by estimating Cox log-rank p-value using the survival information downloaded from

RTCGA. This Cox p-value represents how likely the survival curves’ difference is observed

by chance. We performed 8 experiments per each disease with the number of clusters varying

from 3 to 10, i.e. k = [3 − 10]. To validate our results, we clustered the raw mRNA data

(described in section 6.2) using hierarchical clustering varying the number of clusters from
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3 to 10 also. Table 6.4 shows a dendrogram per each cancer to visualize each hierarchical

clustering.

BC (nr. p = 526, k = 4 ) OV (nr. p = 541, k=4) KIRC (nr. p = 27, k=3)

COAD (nr. p = 153, k=3)
COADREAD
(nr. p = 222 , k = 3)

KIPAN
(nr. p = 88 , k = 3)

LUSC
(nr. p = 154 , k = 3)

Table 6.4: Dendrograms of hierarchical clustering of patients on the gene expression matrix
of the seven cancers. In parenthesis, the number of patients (nr. p) per each cancer and the
number of clusters that performed the best overall clustering methods (k).

Tables 6.5, 6.6, 6.7, 6.8, 6.9, 6.10, 6.11, and 6.12 show the Kaplan-Meier survival plots
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A. BASELINE sub-types
BC OV KIRC
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B. TGENEX sub-types
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Table 6.5: Kaplan Meier curves and Cox Log rank test p-value of the sub-types per each
disease with k=3. (A) Baseline sub-types obtained with hierarchical clustering of mRNA
data. (B) TGENEX sub-types were generated with the proposed method and k=3.
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A. BASELINE sub-types
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B. TGENEX sub-types
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Table 6.6: Kaplan Meier curves and Cox Log rank test p-value of the sub-types per each
disease with k=4. (A) Baseline sub-types obtained with hierarchical clustering on mRNA
data. (B) TGENEX sub-types were generated with the proposed method and k=4.
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Table 6.7: Kaplan Meier curves and Cox Log rank test p-value of the sub-types per each
disease with k=5. (A) Baseline sub-types obtained with hierarchical clustering on mRNA
data. (B) TGENEX sub-types were generated with the proposed method and k=5.
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Table 6.8: Kaplan Meier curves and Cox Log rank test p-value of the sub-types per each
disease with k=6. (A) Baseline sub-types obtained with hierarchical clustering on mRNA
data. (B) TGENEX sub-types were generated with the proposed method and k=6.
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Table 6.9: Kaplan-Meier curves and Cox Log rank test p-value of the sub-types per each
disease with k=7. (A) Baseline sub-types obtained with hierarchical clustering on mRNA
data. (B) TGENEX sub-types were generated with the proposed method and k=7.
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Table 6.10: Kaplan-Meier curves and Cox Log rank test p-value of the sub-types per each
disease with k=8. (A) Baseline sub-types obtained with hierarchical clustering on mRNA
data. (B) TGENEX sub-types were generated with the proposed method and k=8.



110

A. BASELINE sub-types
BC OV KIRC

0 100 200 300 400 5000.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Month

S
ur

vi
va

l p
ro

ba
bi

lit
y

p−value = 0.0464

subtype 1 (49)
subtype 2 (96)
subtype 3 (79)
subtype 4 (56)
subtype 5 (17)
subtype 6 (68)
subtype 7 (84)
subtype 8 (66)
subtype 9 (11)

0 100 200 300 4000.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Month

S
ur

vi
va

l p
ro

ba
bi

lit
y

p−value = 0.0469

subtype 1 (97)
subtype 2 (94)
subtype 3 (46)
subtype 4 (14)
subtype 5 (54)
subtype 6 (57)
subtype 7 (106)
subtype 8 (27)
subtype 9 (34)

0 50 100 150 200 2500.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Month

S
ur

vi
va

l p
ro

ba
bi

lit
y

p−value = 0.00186

subtype 1 (12)
subtype 2 (23)
subtype 3 (4)
subtype 4 (10)
subtype 5 (9)
subtype 6 (11)

COADREAD KIPAN LUSC

0 20 40 60 80 100 1200.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Month

S
ur

vi
va

l p
ro

ba
bi

lit
y

p−value = 0.0255

subtype 1 (31)
subtype 2 (6)
subtype 3 (42)
subtype 4 (31)
subtype 5 (19)
subtype 6 (33)
subtype 7 (28)
subtype 8 (17)
subtype 9 (14)

0 50 100 150 200 2500.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Month

S
ur

vi
va

l p
ro

ba
bi

lit
y p−value = 0.11

subtype 1 (13)
subtype 2 (23)
subtype 3 (4)
subtype 4 (11)
subtype 5 (10)
subtype 6 (5)
subtype 7 (11)
subtype 8 (10)

0 100 200 300 4000.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Month

S
ur

vi
va

l p
ro

ba
bi

lit
y

p−value = 0.0322

subtype 1 (21)
subtype 2 (36)
subtype 3 (23)
subtype 4 (7)
subtype 5 (17)
subtype 6 (14)
subtype 7 (13)
subtype 8 (8)
subtype 9 (13)

B. TGENEX sub-types
BC OV KIRC

0 100 200 300 400 5000.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Month

S
ur

vi
va

l p
ro

ba
bi

lit
y

p−value = 1.52e−08

subtype 1 (347)
subtype 2 (20)
subtype 3 (136)
subtype 4 (12)

0 100 200 300 4000.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Month

S
ur

vi
va

l p
ro

ba
bi

lit
y

p−value = 0.0027

subtype 1 (299)
subtype 2 (33)
subtype 3 (167)
subtype 4 (13)
subtype 5 (4)
subtype 6 (4)
subtype 7 (4)
subtype 8 (4)

0 50 100 150 200 2500.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Month

S
ur

vi
va

l p
ro

ba
bi

lit
y

p−value = 3.62e−06

subtype 1 (8)
subtype 2 (23)
subtype 3 (10)
subtype 4 (12)
subtype 5 (9)
subtype 6 (9)

COADREAD KIPAN LUSC

0 20 40 60 80 1000.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Month

S
ur

vi
va

l p
ro

ba
bi

lit
y

p−value = 0.0379

subtype 1 (147)
subtype 2 (40)
subtype 3 (10)
subtype 4 (10)
subtype 5 (10)

0 50 100 150 200 2500.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Month

S
ur

vi
va

l p
ro

ba
bi

lit
y

p−value = 0.0125

subtype 1 (48)
subtype 2 (11)
subtype 3 (12)

0 100 200 300 4000.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Month

S
ur

vi
va

l p
ro

ba
bi

lit
y

p−value = 1.11e−08

subtype 1 (41)
subtype 2 (57)
subtype 3 (10)
subtype 4 (10)
subtype 5 (10)
subtype 6 (10)
subtype 7 (10)

Table 6.11: Kaplan-Meier curves and Cox Log rank test p-value of the sub-types per each
disease with k=9. (A) Baseline sub-types obtained with hierarchical clustering on mRNA
data. (B) TGENEX sub-types were generated with the proposed method and k=9.
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Table 6.12: Kaplan-Meier curves and Cox Log rank test p-value of the sub-types per each
disease with k=10. (A) Baseline sub-types obtained with hierarchical clustering on mRNA
data. (B) TGENEX sub-types were generated with the proposed method and k=10.
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of the sub-types obtained using hierarchical clustering on the raw data and compares them

with the sub-types obtained using TGENEX for the different numbers of clusters k. The two

best Cox p-values obtained with mRNA expression for each cancer where obtained with the

following values of k. For BC the best p-value was obtained with k = 4 (p− value = 0.0029)

followed by k = 5 (p − value = 0.0064), for OV with k = 3 (p − value = 0.0216) followed

by k = 8 (p − value = 0.0304), for KIRC with k = 9 (p − value = 0.00186) followed by

k = 4 (p − value = 0.0191), for COADREAD with k = 9 (p − value = 0.0255) followed

by k = 8 (p − value = 0.0654), for KIPAN with k = 6 (p − value = 0.0459) followed by

k = 8 (p − value = 0.0697), for LUSC with k = 9 (p − value = 0.00186) followed by k = 4

(p− value = 0.311). In all these cases TGENEX performed better than the baseline.

The best two Cox p-values obtained with TGENEX for each cancer where obtained with

the following values of k. For BC the best p-value was obtained with k = 3 (p − value =

1.36e−10) followed by k = 4 (p−value = 1.48e−10) , for OV with k = 7 (p−value = 2.07e−9)

followed by k = 5 (p−value = 0.00112), for KIRC with k = 6 (p−value = 1.15e−6) followed

by k = 7 and k = 8 (p−value = 3.62e−6), for COADREAD with k = 3 (p−value = 0.0239)

followed by k = 7 (p − value = 0.0379), for KIPAN with k = 3 (p − value = 0.000834)

followed by k = 4 (p−value = 0.00118) , for LUSC with k = 4 (p−value = 3.8e−9) followed

by k = 10 (p− value = 1.05e−8). In all these cases TGENEX performed better than mRNA

expression alone. Our method shows that enriching gene expression data with mutation and

clinical data improves the Cox p-values for these six different cancer datasets.

6.5 Biological analysis of TGENEX

In this section, we explore the biological contributions that our method can potentially

elucidate for squamous cell carcinoma (LUSC). We decided to study this cancer because

the molecular drivers of LUSC remain unclear and LUSC patients have limited therapeutic

options [220], underscoring the potential to gain new understanding for this cancer sub-type.

We focus on the sub-types obtained with TGENEX for LUSC with k = 3, which indicated

that these survival groups are significantly different (p-value = 1.39e−7). Figure 6.2 display
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the three survival curves, which allow us to validate that the three curves are distinctive

visually. We can notice that sub-type 1 (curve in blue) corresponds to a short term survival

group with 89 patients that decline in survival much faster than the other two groups; and

sub-type 2 (curve in red) with 51 patients, has a slower pace of deaths than sub-type 1. Also,

we observe that sub-type 3 (curve in green) has a better survival pattern than the other two

groups, but it has only 12 patients, which makes it too small to allow us to extrapolate

any conclusions to a greather population of LUSC patients; therefore, we did not include

sub-type 3 in this study.

We performed the following four steps to explore the biological differences between the two

major sub-types of LUSC (short-term versus long-term survival) obtained the experiments

performed with TGENEX (sub-types 1 and 2, respectively). First, we identify a list of

differentially expressed genes (DEG) and differentially mutated genes (DMG). Second, we

compare the list of DE genes and DM genes with The COSMIC Cancer Gene Census [312].

Third, we performed pathway analysis with both lists (DEG and DMG) and discussed the

list of pathways obtained. Forth, we compare the lists of significant pathways with the

knowledge in The COSMIC Cancer Gene Census.
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Figure 6.2: Kaplan-Meier plot of the sub-types of squamous cell carcinoma (LUSC) ob-
tained using TGENEX with k = 3. Patients in subtype 1 are characterized by the worst
survival.Patients belonging to subtype 2 has a slower decay in survival (long-term survival).
Subtype 3 has the best survival dynamics, but consists of only 12 patients.
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6.5 Identifying Differentially Expressed Genes and Differentially Mutated Genes

Here we present the process that we follow to find the list of genes that charaterize each

sub-type in terms of gene expression and gene mutation. For gene mutation, we first find the

relative frequency of gene mutation per each sub-type. Then, we find the intersection of the

genes that are frequent in each group and remove the intersected genes from each sub-type.

At the end, the list of diferentially mutated genes (DMG) for each sub-type is composed by

the genes that are frequently mutated in such sub-type and are not frequently mutated in

the other sub-type. Table 6.13 shows the top 10 differentially mutated genes for sub-types 1

and 2.

Differentially Mutated Genes

Here we detail the process to identify the differentially mutated genes (DMG) for each

group. For this process, we use the original somatic mutation dataset from TCGA repre-

sented as a gene-level binary matrix for the patients that are part of our survival sub-types

(see the details on this matrix construction in section 6.3.1). To identify the DMG between

sub-type 1 and 2, we statistically tested if the proportion of gene mutations between the two

groups are significantly different or not, obtained a p-value, and ranked the genes by their

p-value.

The first step is to find per each gene the proportion of patients having a mutation in

such a gene. We computed the sample proportion of mutated genes in sub-types 1 and 2

and ranked the genes decreasingly by proportion. Figures 6.4, and 6.5 show the top 50

mutated genes for sub-type 1 and 2, respectively. To visualize the co-occurrence of multiple

alterations and to compare mutation patterns, we plot oncoprints of sub-type 1 in Figure

6.6 and sub-type 2 in Figure 6.7. To contrast, we plot the top 50 genes with the highest

proportions for all the LUSC patients in Figure 6.3 and the oncoprints of all LUSC patients

in Figure 6.8. As we can visually observe, the patterns for sub-type 1 (short-term survival)

and the overall population look more similar than the pattern for sub-type 2.
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After obtaining all proportions of mutated genes for each sub-type4, we find the list of

genes that have significantly different proportions between the two sub-types. For each gene

g we performed a 2-sample Chi-squared test of proportions where the null hypothesis (H0)

is that the proportion of patients in sub-types 1 and 2 with a somatic mutation in gene g

are the same [16]. We use a 10% threshold to define the area of rejection, i.e. if the p-value

of Chi-squared test is < 0.10 we reject the null hypothesis and conclude that the proportion

of mutation in the two sub-types is significantly different for gene g; therefore, we consider g

a differentially mutated gene. In total we got 508 significantly differentially mutated genes.

gene p-value group gene p-value group
ARID4A 0.005344333 2 NF1 0.009693621 1
PCDHA13 0.007358202 2 CDH12 0.014423365 1
MGC26647 0.007358202 2 RYR2 0.021268981 1
EP400 0.007358202 2 RYR3 0.022152951 1
ZCCHC12 0.007358202 2 NLGN1 0.025714996 1
AKAP4 0.007358202 2 ARID1A 0.025714996 1
ARHGEF9 0.007358202 2 FREM1 0.025714996 1
TXLNB 0.007358202 2 TFAP2D 0.025714996 1
C14orf145 0.007358202 2 OR5D18 0.025714996 1
DLGAP2 0.01459629 2 BOD1L 0.025714996 1
USP6 0.01459629 2 LRRC4C 0.025714996 1

Table 6.13: Top 10 differentially mutated genes of sub-type 2 on the left (long-term survival)
and sub-type 1 on the right (short-term survival). The column ‘gene’ corresponds to each
Gene Symbol, column ‘p-value’ contains the test of proportions p-value, and column ‘group’
indicates the sub-type that has the higher mutation load of such gene.

Differentially Expressed Genes

For gene expression, we downloaded normalized results of gene expression quantification

(IlluminaHiSeq RNASeqV2) with RSEM of the TCGA LUSC dataset from the NCI Genomic

Data Commons (GDC) and filtered genes with a quantile cut of 0.25. Differential Expression

Analysis (DEA) of sub-type 1 (short-term survival) over sub-type 2 (long-term survival) was

then performed with TCGAbiolinks package v3.10 [63] using the traditional generalized

4For each gene g, the proportion of mutation in a sub-type s is the count of patients in s with a mutation
in g divided by the total number of patients in s.
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Figure 6.3: Distribution of mutations in all LUSC samples sorted descendingly by sample
proportion, top 50.
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Figure 6.5: Distribution of mutations in sub-type 2 (long-term survival) sorted descendingly
by frequency, top 50.



119

75% TP53

70% TTN

46% MUC16

44% CSMD3

41% USH2A

41% ADAM6

39% LRP1B

34% RYR2

32% ZFHX4

32% SYNE1

28% RYR3

27% SPTA1

25% DNAH11

25% CUBN

24% MLL2

23% FLG

23% XIRP2

23% PKHD1L1

21% LRP2

20% CNTNAP5

20% PAPPA2

20% HCN1

20% DNAH8

20% ZNF804B

20% LOC96610

20% NF1

20% NAV3

18% SI

18% PIK3CA

18% ANK2

18% CDH10

18% PKHD1

18% PCDH15

18% CDH12

18% CDH18

17% MUC17

17% RP1

17% HEATR7B2

17% MLL3

17% FAM135B

17% DMD

17% XIST

15% LRFN5

15% MYH2

15% CSMD2

15% FAT4

15% CDKN2A

15% MUC5B

15% PDE4DIP

15% COL11A1

Figure 6.6: Oncoprint of mutations in sub-type 1 (short-term survival) samples.
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Figure 6.7: Oncoprint of mutations in sub-type 2 (long-term survival) samples.
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Figure 6.8: Oncoprint of mutations in all LUSC samples.
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linear model (GLM) likelihood ratio test from edgeR [233, 63]. Genes were considered to

be differentially expressed with adjusted p-value < 0.05 and fold-change >= 2. Table 6.14

shows the top 10 differentially expressed genes (DEG).

gene logFC p-value FDR FC
PSG8 -4.825603218 1.79E-10 7.05E-08 0.035265389
MOV10L1 -3.542744636 3.87E-08 1.04E-05 0.085807964
CYP11B2 -3.311367553 3.68E-05 0.004047234 0.100734687
MAGEB16 -2.96994675 3.09E-20 6.90E-17 0.127631226
TP53TG5 -2.126415445 1.30E-05 0.001678954 0.2290262
RNF14 -2.095209471 3.87E-06 0.000552361 0.234034079
GPR141 -1.379412809 1.54E-06 0.000259177 0.384375208
NVL -1.358472558 9.58E-07 0.000183643 0.389994975
FKBP4 -1.285591138 4.41E-05 0.004775453 0.410202691
PTH2R -1.034534905 3.03E-06 0.000483605 0.488173232

Table 6.14: Top 10 Differentially expressed genes of sub-type 1 (short-term survival) over sub-
type 2 (long-term survival). The column ‘gene’ corresponds to each Gene Symbol, column
‘logFC’ contains the log2 FC, column ‘p-value’ contains the likelihood ratio test p-value,
column ‘FDR’ shows the false discovery rate adjusted p-value, and column ‘FC’ contains the
fold change measured as the ratio of sub-type 1 over sub-type 2.

Pathway name Pathway Id p-value
Cell adhesion molecules (CAMs)* 04514 0.011
Ribosome* 03010 0.038
Platelet activation 04611 0.046
Leukocyte transendothelial migration 04670 0.055
D-Glutamine and D-glutamate metabolism* 00471 0.057

Table 6.15: Top pathways and their associated p-values using DEG.
∗the p-value corresponding to the pathway was computed using only over-representation anal-
ysis.

6.5 Pathway analysis

Once we obtained the lists of DEG and DMG, we performed pathway analysis using gene

expression and mutation. We performed pathway analysis using iPathwayGuide [2] (Advaita

Corporation, 20205) with KEGG pathways to identify the pathways that are modulated

5https://apps.advaitabio.com/ipg/home

https://apps.advaitabio.com/ipg/home
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in the two sub-types. We set the thresholds for log2-fold change of sub-type 1 (short-

term survival) over sub-type 2 (long-term survival) of 1.0 and FDR < 5%. iPathwayGuide

implements Impact Analysis (IA) which combines two types of evidence: first, the classical

over-representation of DEGs in a particular pathway and second, the perturbation of each

pathway which is computed by propagating each gene expression change across the topology

of a particular pathway. We used Impact Analysis (IA) because studies have shown that IA

outperforms the classical over-representation analysis [99, 323]. The pathway graphs contain

genes as nodes and their signaling interactions as edges and are obtained from the Kyoto

Encyclopedia of Genes and Genomes (KEGG) database [183, 6, 181, 185].

GO Term p-value
chromatin organization 0.002
epithelial cell differentiation 0.002
mitochondrial membrane organization 0.003
negative regulation of fat cell differentiation 0.003
epithelial cell development 0.005

Table 6.16: Top identified biological processes obtained with IPathwayGuide analysis of
DEG. Only the top scoring biological process.

Pathway name Pathway Id p-value
Circadian entrainment 04713 8.654e-5
ECM-receptor interaction 04512 5.231e-4
Oxytocin signaling pathway 04921 6.981e-4
Amoebiasis 05146 0.002
Long-term depression 04730 0.002

Table 6.17: Top pathways and their associated p-values using DMG

GO Term p-value
ryanodine-sensitive calcium-release channel activity 0.002
extracellular matrix structural constituent 0.002
structural molecule activity 0.004
intracellular ligand-gated ion channel activity 0.010
calcium-induced calcium release activity 0.026

Table 6.18: Top identified biological processes obtained with IPathwayGuide analysis of
DMG. Only the top scoring biological process.
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Figure 6.9: Most significant pathway when using DEG of sub-type 1 (short-term survival)
over sub-type 2 (long-term survival), Cell adhesion molecules (CAMs) (KEGG: 04514): The
pathway diagram is overlayed with the computed perturbation of each gene. The perturba-
tion accounts both for the gene’s measured fold change and for the accumulated perturbation
propagated from any upstream genes (accumulation). The highest positive perturbation on
sub-type 1 (short-term survival) with respect to sub-type 2 (long-term survival) is shown in
dark red. The legend describes the values on the gradient. Note: For legibility, one gene
may be represented in multiple places in the diagram and one box may represent multiple
genes in the same gene family. A gene is highlighted in all locations it occurs in the diagram.
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Figure 6.10: Most significant pathway using DMG of sub-type 1 (short-term survival) over
sub-type 2 (long-term survival), Circadian entrainment (KEGG: 04713): The pathway dia-
gram is overlayed with the computed perturbation of each gene. The perturbation accounts
both for the gene’s measured fold change and for the accumulated perturbation propagated
from any upstream genes (accumulation). The highest positive perturbation on sub-type 1
(short-term survival) with respect to sub-type 2 (long-term survival) is shown in dark red.
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Table 6.15 shows the top pathways and their associated p-values using differentially

expressed genes (DEG). Figure 6.9 show the Cell adhesion molecules (CAMs) pathway which

is the most significant pathway when using DEG. We also performed Gene Ontology (GO)

analysis [8, 135] using iPathwayGuide and display the top GO terms in Table 6.16.

To run IA with mutation profiles, we used the list of differentially mutated genes with

its p-value and proportion ratio of proportion of sub-type 1 over proportion of sub-type 2.

Table 6.17 shows the top pathways and their associated p-values using differentially mutated

genes (DMG) and Table 6.18 shows the top GO terms. Figure 6.9 show the Cell adhesion

molecules (CAMs) pathway which is the most significant pathway when using DMG.

6.5 Comparison with The Cancer Genome Census

To identify if the genes that we found are novel we use the COSMIC Cancer Gene

Census [312] as the baseline. “The Catalogue of Somatic Mutations in Cancer (COSMIC)

Cancer Gene Census (CGC) is an expert-curated description of the genes driving human

cancer that is used as a standard in cancer genetics across basic research, medical reporting

and pharmaceutical development” [312]. For this, we downloaded the data release v90 (5th

September 2019) of the catalog and found the list of genes shown in Table 6.19. Interestingly,

gene NOTCH1 has been associated with squamous-cell carcinoma of the lung [175, 308, 258,

19] which evidences the potential of the rest of the genes that we found to be promising

candidates to differentiate between short-term and long-term survival patients.

6.5 Identifying Differential Clinical Variables

In addition to identifying DMG and DEG, we analyzed the clinical variables and identified

the clinical variables that are significantly different between sub-type 1 and 2 (short-term and

long-term survival, respectively), which we detailed as follows. First, we compute per each

clinical variable the proportion of patients having a positive value of such a clinical variable

for each sub-type6. Second, we find the list of clinical variables that have significantly

6For each clinical variable c, the proportion of presence in a sub-type s is the count of patients in s with
a positive value in c divided by the total number of patients in s.
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Gene Tumor Types(Somatic) Role in Cancer
NOTCH1 T-ALL, breast, bladder, skin

SCC, lung SCC, head and neck
SCC

oncogene, TSG, fusion

NF1 neurofibroma, glioma TSG, fusion
USP6 aneurysmal bone cyst oncogene, fusion
CTNNB1 colorectal, ovarian, hepatoblas-

toma, pleomorphic salivary gland
adenoma, other tumour types

oncogene, fusion

BCL9L colorectal cancer, endometrial
carcinoma, gastric cancer

oncogene, TSG

SRGAP3 pilocytic astrocytoma fusion
ARID1A clear cell ovarian carcinoma,

RCC, breast
TSG, fusion

BCL11A B-CLL oncogene, fusion
PCM1 papillary thyroid, CML, MPN fusion
TBL1XR1 splenic marginal zone lymphoma,

primary central nervous system
lymphoma, colorectal carcinoma,
gallbladder carcinoma

oncogene, TSG, fusion

NFKB2 B-NHL oncogene, TSG, fusion
CLTCL1 ALCL TSG, fusion
MSN ALCL fusion
PRKCB adult T-cell lymphoma-leukaemia 0
CARS ALCL TSG, fusion
TET1 AML oncogene, TSG, fusion
ATRX pancreatic neuroendocrine tu-

mours, paediatric GBM
TSG

CNTNAP2 glioma, melanoma TSG

Table 6.19: List of DEG and DMG that were found in the COSMIC Cancer Gene Census.
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Figure 6.11: Differential Clinical Variables. Plot of the Chi-squared p-value of the top clinical
variables.
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p-value Clinical Variable
0.007710 sample type blood derived normal
0.023149 country russia

0.116514 normal tissue anatomic site lung
0.186494 race not hispanic or latino
0.222184 country united states
0.249933 sample type solid tissue normal
0.284374 race white hispanic
0.295797 normal tissue anatomic site other
0.314466 race black or african american
0.337901 country germany
0.449056 race hispanic or latino
0.472795 race white
0.585688 gender female
0.617191 country canada
0.618592 bcr patient canonical status canonical - plus
0.690018 history of neoadjuvant treatment yes
0.721205 gender male
0.731868 bcr patient canonical status canonical
0.872053 history of neoadjuvant treatment no
0.908088 site of disease lung
0.911296 race asian
0.996429 site of disease other
1.000000 tumor type primary
1.000000 tumor tissue site lung

Table 6.20: P-values Clinical Variables. Chi-squared p-value of top 25 clinical variables.
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different proportions between the two sub-types. For each clinical variable c we performed

a standard 2-sample Chi-squared test of proportions where the null hypothesis (H0) is that

the proportion of patients in sub-types 1 and 2 with the presence of clinical variable c are

the same [16]. We use a 5% threshold to define the area of rejection, i.e., if the p-value of

Chi-squared test is < 0.05 we reject the null hypothesis and conclude that the proportion of

the clinical variable c in the two sub-types is significantly different; therefore, we consider c a

differential clinical variable. Figure 6.11 and Table 6.20 show the p-values of the top clinical

variables. We can see that the sample type and country of origin are clinical variables that

significantly differentiate the two sub-types. Sub-type 2 (long-term survival) has only two

samples blood-derived out of 51 total samples (49 solid-tissue derived samples), and none of

the patients are from Russia, while 20 out of 89 samples in sub-type 1 (short-term survival)

are blood samples and all Russian patients (9) belong to sub-type 1.

Also, we evaluated the features associated with sub-type 1 (short-term survival) to realize

their potential relevance and identify possible new insights for LUSC. We began by looking at

the clinical attributes associated with sub-type 1, the highest ranked and significant clinical

variable was sample type blood derived normal. This was somewhat unexpected, however,

NOTCH1 and NF1 are two examples of well-established cancer genes overrepresented in

sub-type 1 for which mutations are somatic and constitutional, and therefore they do arise

in patient blood samples. The data that we analyzed included sample sets from a number

of countries of origin. Identifying Russia significantly associated with sub-type 1 lead us to

realize that Russia ranks among countries with the highest lung cancer mortality rates [330],

perhaps the molecular elements associated with LUSC sub-type 1 are contributing to that.

Among the mutated genes associated with sub-type 1, NF1 is the most statistically sig-

nificant. This tumor suppressor gene is inactivated by mutation. NF1 inactivation promotes

mutant KRAS-driven lung adenocarcinoma [349]. Our results may be an indication of the

importance of KRAS signaling absent KRAS mutation in LUSC. Further down on the full list

of mutated genes associated with sub-type 1 is TET1. According to a recent Pubmed search,
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there are no publications describing TET1 mutations in lung cancer. TET1 mutations are

known to be activating and oncogenic in other cancer types [194, 169, 225]. Moreover, for

other cancer types TET1 has a role in driving a subset of aggressive cancer cells in tumors

known as cancer stem cell like-cells (CSCs) [358, 162, 368, 304, 316, 116]. CSCs are the

recognized source of primary malignant tumor initiation and they give rise to therapy resis-

tance and metastases [279, 53, 265]. Further research is warranted to learn if TET1 can also

drive CSCs in LUSC, if it does this may help to explain how TET1 is associated with the

short-term survival LUSC sub-type 1.

6.6 Conclusion

In this chapter, we introduced TGENEX, a framework to combine gene expression data,

mutation data, and clinical data for unsupervised cancer subtyping based on non-negative

tensor decomposition. The performance of the new approach was demonstrated on seven

different cancer datasets downloaded from TCGA. TGENEX was applied in conjunction

with k-means, spectral, and hierarchical clustering. For these three clustering algorithms,

our approach dramatically improves the subtyping. Our contribution is two-fold. First,

this framework introduces a new way to combine clinical and genetic data. Although the

framework was demonstrated on cancer datasets, it can be applied to analyze data from

other complex diseases. Second, this framework is the first one that integrates clinical data,

mutation, and gene expression data for disease subtyping and make these sub-types available

for further biological exploration and experimentation. As a proof of concept, our method

shows that enriching gene expression data with mutation and clinical data allows to obtain

cancer sub-types with more distinct survival dynamics. For future work, we plan to study

in-depth the discovered sub-types and integrate other data types, such as microRNA, for a

more comprehensive analysis [88].
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Enormous efforts have been made to collect genetic and clinical data from cancer patients

to advance the understanding of disease development and progression. Processing and ana-

lyzing these flows of data is challenging. This thesis is a contribution towards the integration

of clinical and genetic data using computational methods. We present here three new data

integration approaches to elucidate granular and meaningful disease sub-types from high-

dimensional complex genetic and clinical variables, an essential step towards personalized

medicine which is considered the future for oncology studies.

First we proposed disSuptyper, a pipeline that integrates biological knowledge, gene

expression data, survival data, and biological pathways using statistical analyzes and un-

supervised methods. Second we proposed CLIGEN, a tensor-based method that analyzes

somatic mutation and clinical variables jointly using CP tensor factorization. Third we pro-

posed TGENEX, a method that integrates gene expression, somatic mutation and clinical

variables to identify candidate disease sub-types.
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