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INVITED ARTICLE 

Regression: Determining Which of p 
Independent Variables Has the Largest or 
Smallest Correlation with the Dependent 
Variable, Plus Results on Ordering the 
Correlations Winsorized 
Rand Wilcox 
University of Southern California 
Los Angeles, CA 

 
 

 
 
In a regression context, consider p independent variables and a single dependent variable. 
The paper addresses two goals. The first is to determine the extent it is reasonable to make 
a decision about whether the largest estimate of the Winsorized correlations corresponds 
to the independent variable that has the largest population Winsorized correlation. The 
second is to determine the extent it is reasonable to decide that the order of the estimates 
of the Winsorized correlations correctly reflects the true ordering. Both goals are addressed 
by testing relevant hypotheses. Results in Wilcox (in press) suggest using a multiple 
comparisons procedure designed specifically for the situations just described, but 
execution time can be quite high. A modified method for dealing with this issue is 
proposed. 
 
Keywords: multiple comparisons, familywise error, robust methods, Winsorized 
correlation, ranking and selection 
 

Introduction 

Consider a situation involving some dependent variable, Y, and p covariates or 
independent variables X1, …, Xp. Let τj (j = 1, …, p) be some measure of the 
strength of the association between Xj and Y and let τ(1) ≤ ⋯	≤ τ(p) denote these 
measures of association written in ascending order. Let τ̂(j) be some estimate of τj 
and denote the ordered estimates by τ̂(1) ≤ ⋯	≤ τ̂(p). The primary focus in this paper 
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is on determining the extent it is reasonable to conclude that the independent 
variable corresponding to τ̂(p) is indeed the variable corresponding to τ(p), the 
variable with the highest population measure of association. There are two 
components to this problem. The first is developing a reasonable decision rule. 
Second, given a decision rule, there is the issue of characterizing the probability of 
making a decision about whether τ̂(p) corresponds to τ(p) as well as the probability 
of making a correct decision given that a decision is made. A related goal is to 
determine whether it is reasonable to decide that that ̂τ(1) corresponds to τ(1). Another 
goal is to whether it is reasonable to decide that τ̂(1) ≤ ⋯	≤ τ̂(p) reflects the true 
ordering of the population measures of association. The focus here is on the 
Winsorized correlation, but the method to be described is readily extended to other 
robust measures of association. 

First consider the goal of determining whether the correlation with the largest 
estimate does indeed correspond to the independent variable with the largest 
population correlation. A trivial modification of the approach used here can be used 
to deal with the situation where the goal is to make a decision about which 
independent variable has the smallest correlation instead. The decision rule used 
here is based on testing 
 
 H0 : τπ(j) = τπ(p) (1) 
 
for each j = 1, …, p – 1, where τπ(j) is the measure of association associated with the 
group having the jth largest estimate. That is, compare the strength of the 
association of the covariate having the highest estimate to the strength of the 
association associated with each of the remaining p − 1 covariates. This is done in 
a manner that controls the familywise error (FWE) rate, meaning the probability of 
making one or more Type I errors, when τ(1) ≤ ⋯	≤ τ(p). If all p − 1 hypotheses are 
rejected, decide the covariate yielding the largest estimate, τ̂(p), is in fact the 
covariate with the largest measure of association. In terms of making a decision 
about the order of the Winsorized correlations, the approach is to test 
 
 H0 : τπ(j) = τπ(j	+	1) (2) 
 
(j = 1, …, p − 1). If each of these p − 1 hypotheses is rejected, decide that 
τ̂(1) ≤ ⋯	≤ τ̂(p) reflects the true ordering. 

When testing (1) or (2), the sign of the correlations plays a role. That is, a 
correlation equal to −0.6 is considered to be less than a correlation of 0.5 even 
though the strength of the association reflected by the first correlation is estimated 
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to be stronger. If there is compelling evidence that an independent variable has a 
negative association with the dependent variable, one could simply multiply this 
independent variable by −1 to make the correlation positive and then test the 
relevant hypotheses. If, for example, a correlation of −0.6 is converted to a 
correlation of 0.6, and if now this variable is significantly larger than the other 
correlations, decide that the variable initially having a correlation of −0.6 has the 
strongest association with Y. 

Regarding the goal of controlling the familywise error (FWE) rate, a 
seemingly simple solution is to perform each test using the bootstrap method in 
Wilcox (2017a, section 11.10.1) and then use some improvement on the Bonferroni 
method to control the FWE rate (e.g., Hochberg, 1988; Hommel, 1988). However, 
this approach is unsatisfactory for reasons illustrated in the next section. Also, the 
main goal is not to control the FWE rate, but rather characterize the probability of 
making a correct decision when a decision is made. 

Comparing Winsorized Correlations 

First, the method for computing a Winsorized correlation is reviewed. Consider a 
single independent variable and let (Yi,Xi) (i = 1, …, n) denote a random sample. 
Let Y(1) ≤ ⋯	≤ Y(n) denote the Y values written in ascending order. Let g = [0.2n], 
where [0.2n] is 0.2n rounded down to the nearest integer. The Winsorized values 
of the dependent variable are Wi = Y(g + 1) if Yi ≤ Y(g + 1), Wi = Yi if 
Y(g + 1) < Yi < Y(n − g), and Wi = Y(n − g) if Yi ≥ Y(n − g). The Winsorized values of the 
independent variable X are computed in a similar fashion yielding say U1, …, Un. 
The Winsorized correlation between X and Y is just Pearson’s correlation based on 
(Wi,Ui), i = 1, …, n. 

Now consider p = 2 where the goal is test H0 : τ1 = τ2, the hypothesis that two 
independent variables have the same Winsorized correlation with Y. A basic 
percentile bootstrap method has been found to perform well (Wilcox, 2017), which 
is applied as follows: 

 
1. Generate a bootstrap sample by randomly sampling with replacement 

n vectors of values from (Y1, X11, X12), …, (Yn, Xn1, Xn2) yielding 
(Y *1, X **11, X ***12), …, ( Y **n, X ***n1, X ***n2). 

2. Compute the Winsorized correlation between Y and the jth 
independent variable based on this bootstrap sample yielding τ̂ *1 and 
τ̂ *2 and let d* = τ̂ *1 − τ̂ *2. 
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3. Repeat steps 1 and 2 B times and let d *b (b = 1, …, B) denote the 
resulting d* values. 

4. Put the d 1* , …, d B* values in ascending order and label the results 
d *(1) ≤ ⋯	≤ d *(B). 

5. Let ℓ	= αB/2, rounded to the nearest integer and u = B − l. Then the 
1 − α confidence interval for τ1 − τ2 is (d *(ℓ	+ 1),  d *(u)). 

6. Let A = ∑I(d *b), where the indicator function I(d *b) = 1 if d *b < 0; 
otherwise I(d *b) = 0. 

 
Letting P* = A/B, a p-value is 

 
 P = 2min{P*, 1 – P*} (Liu & Singh, 1997) (3) 
 

When testing (1) or (2), p-values are computed as just described, only now 
bootstrap samples are generated by resampling with replacement from 
(Y1, X11, …, X1p), …, (Yn, Xn1, …, Xnp). Once the p-values have been computed, a 
seemingly simple approach to controlling the FWE rate is to use the well-known 
Bonferroni method. That is, test each of the p – 1 hypotheses at the α/(p – 1) level 
with the goal of ensuring that the actual FWE rate is less than 0.05. 

However, this approach needs to be adjusted. To illustrate why, suppose the 
jth hypothesis is rejected when Pj ≤ cj, where Pj is the p-value associated with the 
jth hypothesis. It is informative and useful to determine c1, …, cp – 1 for a special 
case: p = 4, n = 50, and where all p + 1 random variables have independent standard 
normal distributions. A simulation was performed to estimate the distribution of the 
p – 1 p-values based on L = 3000 replications and B = 500 bootstrap samples. Let 

 denote the resulting matrix of p-values having L rows and p – 1 columns. Then 
the jth column of  provides an estimate of cj. If the goal is to have a Type I error 
probability equal to α, the estimate of cj is obtained via some quantile estimator 
applied to the jth column of . Here, the Harrell and Davis (1982) estimator is 
used. For the situation at hand, the estimates of the α = 0.05 quantiles based on the 
columns of  are (ĉ1, ĉ2, ĉ3) = (0.1961, 0.0727, 0.0136). 

Now consider the strategy of using the Bonferroni method to control the FWE 
rate. The Bonferroni method assumes that for each individual test, the probability 
of a Type I error is α. That is, if a hypothesis is rejected at the α level, this 
corresponds to rejecting if the p-value is less than or equal to α. As just illustrated, 
this is not remotely accurate for the situation at hand. In terms of achieving a FWE 
rate less than or equal to 0.05, the result (ĉ1, ĉ2, ĉ3) = (0.1961, 0.0727, 0.0136) 

P̂
P̂

P̂

P̂
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reflects a practical concern, especially when dealing with a large sample size: The 
actual FWE rate can be substantially higher than the nominal level. 

As an illustration, consider the case p = 4 and where all p + 1 variables have 
a standard normal distribution with a common correlation of 0.5. Using B = 500 
bootstrap samples, a simulation based on 1000 replications estimated the actual 
FWE rate to be 0.066, 0.075 and 0.086 for sample sizes 40, 100 and 300, 
respectively. For p = 5, the estimates were 0.077 and 0.11 for sample sizes 40 and 
100, respectively. By implication, improvements on the Bonferroni method 
previously mentioned are unsatisfactory as well because they reject as many or 
more hypotheses at the Bonferroni method. 

An outline of a method for controlling the FWE rate is as follows. 
Momentarily assume that the p + 1 variables have a multivariate normal 
distribution with a common correlation equal to zero and use a simulation to 
estimate the joint distribution of the p – 1 p-values yielding  as just described. 
Note that  can be used to compute a corrected p-value for jth hypothesis: 
 

   

 
where Pj is the p-value when testing the jth hypothesis,  is the element in the ith 

row and jth column of  and the indicator function  = 1 if , 

otherwise  = 0. Next, use Hochberg’s improvement on the Bonferroni 

method based on the adjusted p-values, which is applied as follows. Put the p – 1 
p-values in descending order and label the results . Set k = 1 and 

reject all p – 1 hypotheses if 
 
   

 
If  >, proceed as follows: 

 
1. Increment k by 1. If 

 
   

 

P̂
P̂

!Pj =
1
L

I Pj ≥ P̂ij( ),∑

P̂ij
P̂ I Pj ≥ P̂ij( ) Pj ≥ P̂ij

I Pj ≥ P̂ij( )
!P1⎡⎣ ⎤⎦

≥"≥ !P p−1⎡⎣ ⎤⎦

!Pk⎡⎣ ⎤⎦
≤α / k.

!P1⎡⎣ ⎤⎦

!Pk⎡⎣ ⎤⎦
≤α / k,
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2. stop and reject all hypotheses having a p-value less than or equal to 
. 

3. If , repeat steps 1 and 2 until a significant result is obtained 

or all p – 1 hypotheses have been tested. This will be called method S 
henceforth. 

 
Two practical issues remain. The first is that computing  can require 

several minutes of execution time when using the R function mentioned in the final 
section of this paper. For example, with p = 4, n = 100, B = 500 and L = 1000, 
execution time on a MacBook Pro with a 2.9GHz processor was a little over 14 
minutes. To deal with this, consideration is given to using an estimate of P based 
n = 50. The idea is that the estimated quantiles of the p-value distributions, based 
on the resulting estimate of , could be stored in appropriate software and used 
with any sample size. This will be called method FS. To the extent this approach 
controls the FWE rate reasonably well, low execution time is achieved. 

Now an issue is whether these quantiles continue to perform reasonably well 
as n increases. The second major issue is the impact of non-normality as well as 
situations where there is an association among all of the p + 1 variables. 
Simulations results reported in the next section deal these issues. 

Note that both methods S and FS are readily modified to testing (2), which 
will be called methods O and FO, respectively.  

Simulation 

Simulations were used to assess the actual FWE rate using method FS. Data were 
generated from one of four distributions: normal, symmetric and heavy-tailed, 
skewed and light-tailed, and skewed and heavy-tailed. More precisely, data were 
generated from g-and-h distributions (Hoaglin, 1985), which arise as follows. Let 
Z be a random variable having a standard normal distribution. Then 
 

   

 
if g > 0 and 
 

!Pk⎡⎣ ⎤⎦

!Pk⎡⎣ ⎤⎦
>α / k

P̂

P̂

exp gZ( )−1
g

exp hZ 2 / 2( ),
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if g = 0 has a g-and-h distribution, where g and h are parameters that determine the 
first four moments. The four distributions used here are the standard normal 
(g = h = 0), a symmetric heavy-tailed distribution (h = 0.2, g = 0), an asymmetric 
distribution with relatively light tails (h = 0, g = 0.2), and an asymmetric 
distribution with heavy tails (g = h = 0.2). Table 1 summarizes the skewness (κ1) 
and kurtosis (κ2) of these distributions. 
 
 
Table 1. Some properties of the g-and-h distribution. 
 

g h κ1 κ2 
0.0 0.0 0.00 3.00 
0.0 0.2 0.00 21.46 
0.2 0.0 0.61 3.68 
0.2 0.2 2.81 155.98 

 
 

Two choices for a common correlation among all p + 1 variables were used: 
ρ = 0.0 and ρ = 0.5. For ρ = 0.5, first data were generated data from a multivariate 
normal distribution and then the marginal distributions were transformed to g-and-
h distributions. Transforming to a g-and-h distribution can alter somewhat the 
correlation among the covariates. However, this is easily corrected using the R 
function rngh in Wilcox (2017, section 4.2.1). 

The simulation results for method FS are shown in Table 2 and based on 1000 
replications. Although the seriousness of a Type I error can depend on the situation, 
Bradley (1978) suggests that as a general guide, when testing at the 0.05 level, the 
actual level should be between 0.025 and 0.075. As can be seen, this criterion is 
met for all of the situations considered. For p = 4, the estimates range between 
0.037 and 0.044. For p = 6, there is more variation, the estimates ranging between 
0.026 and 0.067. All indications are that the approximation of the null distribution 
of the p-values when n = 50 provides a good approximation of the null distributions 
for sample sizes between 40 and 400. 

Some simulations were run where the goal was to identify the independent 
variable having the lowest correlation. This was done by testing 
 
 H0 : τπ(j) = τπ(1), (4) 
 

Z exp hZ 2 / 2( )
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for each j, (j = 2, …, p). The same critical values used by method FS were used 
here. The results were virtually the same as those in Table 2. 
 
 
Table 2. Estimates of α, α̂, when testing at the 0.05 level using method FS 
 
   p = 4 p = 6 

g h ρ n = 40 n = 400 n = 40 n = 400 
0.0 0.0 0.0 0.042 0.044 0.030 0.067 
0.0 0.2 0.0 0.038 0.042 0.029 0.065 
0.2 0.0 0.0 0.039 0.044 0.032 0.066 
0.2 0.2 0.0 0.037 0.043 0.026 0.062 
0.0 0.0 0.5 0.042 0.044 0.033 0.067 
0.0 0.2 0.5 0.038 0.042 0.029 0.065 
0.2 0.0 0.5 0.039 0.044 0.032 0.066 
0.2 0.2 0.5 0.037 0.043 0.026 0.062 

 
 

Results for method FO, where the goal is to test (2), are shown in Table 3. As 
can be seen, control over the Type I error probability meets Bradley’s criterion 
when p = 4. For p = 6, method FO performs well for n = 40, but for n = 400, 
estimates exceed 0.075, the largest being 0.080. Lowering n to 350, not shown in 
Table 3, method FO performs reasonably well. For g = h = 0 the estimate was 
0.069. For n = 300, now the estimate was 0.055. 
 
 
Table 3. Estimates of α, α̂, when testing at the 0.05 level using method FO 
 
   p = 4 p = 6 

g h ρ n = 40 n = 400 n = 40 n = 400 
0.0 0.0 0.0 0.061 0.065 0.050 0.073 
0.0 0.2 0.0 0.059 0.062 0.047 0.070 
0.2 0.0 0.0 0.062 0.066 0.042 0.080 
0.2 0.2 0.0 0.058 0.063 0.044 0.077 
0.0 0.0 0.5 0.061 0.065 0.050 0.073 
0.0 0.2 0.5 0.059 0.062 0.047 0.070 
0.2 0.0 0.5 0.062 0.066 0.042 0.080 
0.2 0.2 0.5 0.058 0.063 0.044 0.077 

 



DETERMINING LARGEST OR SMALLEST WINSORIZED CORRELATION 

10 

A Ranking and Selection Perspective and a Limitation of 
Methods F and FS 

Methods F and FS are designed to control the FWE rate when τ(1) = ⋯	= τ(p). 
However, consider the situation where p = 5, n = 80 and the goal is to have a FWE 
rate equal to 0.05. The critical p-values based on method F are 
(ĉ1, ĉ2, ĉ3, ĉ4) = (0.232, 0.088, 0.036, 0.004). Now suppose τ(p − 1) = τ(p) and that τ(p) 
is substantially larger than τ(1) … τ(p − 2). That is, with near certainty, 
H0 : τπ(p − 1) = τπ(p), the only true hypothesis, will be tested at the 0.232 level 
resulting in a Type I error greater than α for the one situation where two independent 
variables have the same Winsorized correlation with the dependent variable. 
Simulations confirm that for this particular situation, testing at the 0.05 level is 
more appropriate. 

However, there is an alternative perspective that might be deemed useful: 
view the problem in a manner similar to the literature dealing with ranking and 
selection techniques (e.g., Bechhofer et al., 1968; Gibbons et al., 1987; Gupta & 
Panchapakesan, 1987; Mukhopadhyay & Solanky, 1994). To describe what this 
means, first note that from basic principles, when there is independence, the 
Winsorized correlation, as well other robust measures of association, are equal to 
zero. However, when there is an association, the basic argument made by Tukey 
(1991) extends to the situation at hand: surely any two Winsorized correlations 
differ at some decimal place.  

What is needed is some rule for making a decision about which variable has 
the strongest association and then finding some useful measure of how well the 
method is performing. Mimicking the approach used in the ranking and selection 
literature in an obvious way, let δ = τ(p) − τ(p − 1). If δ is small, deciding that the 
independent variable associated with τ(p−1) has the strongest association is not that 
important. But if δ ≥ δ*, for some specified value for δ*, deciding that the 
independent variable associated τ(p) has the larger Winsorized correlation is 
important. For example, Cohen (1988) suggested that as a general guide, Pearson 
correlations 0.1, 0.3 and 0.5 be considered as small, medium and large, respectively. 
When τ(1) = ⋯	= τ(p − 1)	= 0, for instance, attention might be focused on the extent a 
correct decision is made for δ* equal to 0.1, 0.3 and 0.5. In the context of method 
F, what is the probability of a correct decision given that a decision has been made 
regarding which independent variable has the highest correlation? Noting that the 
performance of method FS does not appear to be overly sensitive to which 
distribution generated the data, this probability is readily estimated via a simulation, 
given n and p. Briefly, generate data where the marginal distributions are standard 
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normal, τ(1) = ⋯	= τ(p − 1)	= 0 and τ(p) = δ*. If a decision is made using method FS 
about which independent variable has the highest correlation, note whether a 
correct decision was made. Repeating this process many times, the proportion of 
correct decisions among the situations where a decision is made estimates the true 
probability of a correct decision. In all likelihood the actual probability is even 
higher when δ = δ* because based on Tukey’s argument, surely τ(1) < ⋯	< τ(p−1). In 
a slightly broader context, one might focus on τ(1) = ⋯	= τ(p − 1) = τ* > 0, say, and 
τ(p) = τ* + δ*. 

Illustration 

The proposed methods are illustrated using data from the Well Elderly II study 
(Clark et al., 2011), which pertained to improving the physical and mental well-
being of older adults. The sample size is n = 232. The dependent variable is taken 
to be a measure of depressive symptoms (CESD) before intervention. Here, the 
focus is on the strength of the association of CESD with four other measures: the 
change in cortisol measures taken upon awakening and measure again 30-45 
minutes later (CAR), meaningful activities (MAPA), stress and a measure of life 
satisfaction (LSIZ). The estimates of the Winsorized correlations for CAR, MAPA, 
stress and LSIZ were 0.0162, −0.46, 0.61 and −0.53, respectively. The latter three 
of these variables had a significant association with CESD with p-values less than 
0.001. Multiplying both MAPA and LSIZ by −1 and applying method FS, no 
decision was made about which independent variable had the largest association. 
However, a decision was made about CAR having the lowest correlation. All three 
of the Hochberg adjusted p-values were less than or equal to 0.001. 

Given a decision was not made about which variable had the largest 
Winsorized correlation, it is of interest to characterize the likelihood of making a 
decision. Based on n = 232, p = 4, τ(1) = τ(2) = τ(3) = 0 and τ(4) = 0.1, the probability 
of making a decision was estimated to 0.06 based on a simulation with 500 
replications. The 0.95 confidence interval for this probability is (0.042, 0.085). For 
τ(4) = 0.3, the estimate is now 0.764 and the 0.95 confidence interval is (0.725, 
0.799). Because a decision was made about the lowest Winsorized correlation, there 
is issue of characterizing the likelihood that the decision is correct. The probability 
of making a correct decision when τ(1) = τ(2) = τ(3) = 0.1 and τ(4) = 0 was estimated 
to be and 0.918; the 0.95 confidence interval is (0.803, 0.973). 
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Conclusion 

All indications are that the strategy for reducing execution time, used by method 
FS, performs well when the goal is to determine whether it is reasonable to make a 
decision about which independent variable has the strongest or smallest Winsorized 
correlation with the dependent variable. This remains the case when the focus is on 
ordering the Winsorized correlations (method FO) by testing (2) provided that the 
sample size is no larger than 350. Otherwise, it is safer to use method O rather than 
method FO. That is, use an estimate of P based on the sample size stemming from 
the study, which can result in high execution time.  

Method FS is designed to control the FWE rate when all p − 1 of the 
hypotheses given by (1) are true. But situations can be constructed where a Type I 
error rate can exceed the nominal level. The same is true in related methods where 
the goal is to identify which of J independent groups has the largest measure of 
location or the highest probability of success (Wilcox, in press; Wilcox, 2019). As 
was the case here, it is a simple matter to estimate the probability of a correct 
decision, given that a decision is made, within the context of an indifference zone. 
It remains unknown how these methods might be modified so that the Type I error 
rate never exceeds the nominal level.  

A few simulations were run with the Winsorized correlation replaced by 
Spearman’s rho and Kendall’s tau. For method FS, control over the FWE rate was 
found to satisfy Bradley’s criterion among the situations considered. For p = 4, 
g = h = 0, and n = 40, the estimate of the FWE rate using Spearman’s rho was 0.057 
and it was 0.062 using Kendall’s tau. For the p = 6 the estimates were 0.065 and 
0.055, respectively. But a more comprehensive simulation is needed. A more 
cautious approach, for the moment, is to use methods F and O when using 
Spearman’s rho or Kendall’s tau. 

An open issue is how methods S and O might be extended to Pearson’s 
correlation. There are methods for testing (1) (e.g., Wilcox, 2017, section 11.10.1). 
But even when there are only two independent variables, if all three variables have 
a reasonably strong association, the actual Type I error probability can be well 
below the nominal level, even under normality and homoscedasticity. For the 
situation at hand, some improved method for comparing Pearson’s correlations is 
needed. 

The R function corCOM.DVvsIV applies method FS by default and is stored in 
the file Rallfun-v37 located at https://dornsife.usc.edu/cf/labs/wilcox/wilcox-
faculty-display.cfm as well as https://osf.io/nvd59/quickfiles. To use method S, set 
the argument com.p.dist = TRUE. When using method S, if the same sample size 
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will be used in future analyses, the estimate of P can be computed via the R function 
corCOM.DVvsIV.crit and stored in some R variable, say A. Then, when using 
corCOM.DVvsIV, set the argument PV = A. The argument corfun controls which 
correlation is used. The default is a 20% Winsorized correlation. Setting 
corfun = tau would use Kendall’s tau and corfun = spear would use Spearman’s 
rho. When com.p.dist = TRUE, the argument iter indicates the number of 
replications, L, used to compute  and the argument nboot indicates B, the number 
of bootstrap samples. The R function corREGorder is exactly like the function 
corCOM.DVvsIV only now the goal is to use method O or FO. The default is to use 
method FO. Similar to method S,  can be computed via the R function 
corREGorder.crit. The result can be passed to corREGorder via the argument PV. 
Based on the indifference zone perspective, the R function corCOM.PMDPCD estimates 
the probability of a correct decision given that a decision has been made using 
method FS. By default, when the focus is on which independent variable has the 
largest measure of association, this is done for τ(1) = ⋯	= τ(p − 1)	= 0 and τ(p) = δ*, 
where δ* is specified by the argument delta. By default, delta = 0.3 is used. When 
the goal is to identify the variable with the smallest correlation, now the function 
uses τ(1) = ⋯	= τ(p − 1)	= δ*, and τ(p) = 0. 
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