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CHAPTER 1 “CLINICAL MOTIVATION AND PROBLEM STATEMENT” 

Cardiotoxicity from Radiation Therapy 

Radiation therapy (RT) is a beneficial treatment option for approximately half of all 

cancer patients and is recognized as a crucial component of treating cancer throughout 

the world1. Over a quarter of all diagnosed cancers involve the thoracic region where 

there is neighboring cardiac normal tissue, and these cancers remain the most common 

cancer-related cause of death among American men and women2. Weather cancers in 

the thoracic region are localized or locally advanced, applications of RT have allowed for 

curative and palliative treatment options3. However, RT can lead to secondary effects due 

to the neighboring cardiac normal tissues within the irradiation field and cause cardiac 

toxicity. Cardiac toxicity is a potentially devastating complication of cancer treatment and 

occurs throughout, shortly after, or even many years after treatment4. Increased risks of 

radiation-induced cardiac toxicities (RICTs) including acute (e.g. pericarditis) and late 

(e.g. congestive heart failure, coronary artery disease, and myocardial infarction) have 

been linked to dose from RT for many thoracic cancers including Hodgkin’s lymphoma5, 

esophageal6, late stage lung7, and breast8.  

In Hodgkin’s Lymphoma patients who have received RT, cardiovascular disease 

is the most common cause of death including coronary artery disease, valvular heart 

disease, congestive heart failure, pericardial disease, and sudden death9. Advanced 

stage lung cancer survivors, who undergo some of the highest doses of RT to the heart, 

exhibit the worst comorbidities across all cancers, with congestive heart failure being 

prevalent10. Patients with centrally located lung tumors have also experienced cardiac 

failure and pericarditis after stereotactic body therapy (SBRT)4,11,12. In a study by Hardy 
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et al., it was found that ischemic heart disease was more common in patients with tumors 

of the left lung as compared to the right after RT treatment7. Furthermore, a statistically 

significantly larger risk for radiation-associated coronary damage was also found in left-

sided early stage breast cancer patients, as compared to right-sided8. Several studies 

have also shown that perfusion defects have been linked to excess cardiac dose13,14. 

Marks et al. found that 40% of left-sided breast cancer patients had perfusion defects 

from RT within just two years of their RT treatment13. If not addressed, the aforementioned 

secondary cardiac effects from these thoracic cancer treatments may lead to ischemic 

heart disease and even heart failure15. 

RICT is more acute than previously expected, beginning only a few years after RT 

and with elevated risk persisting for nearly 20 years16. Moreover, echocardiograms from 

thoracic RT treatments have revealed real time changes due to the radiation14. With life 

expectancy in cancer survivors steadily improving (i.e. patients living to see the long-term 

cardiac effects of their treatment), it becomes of paramount importance to mitigate RICT 

while still optimizing cancer outcomes.  

Current State-of-the-Art for Cardiac Risk Assessment 

When an RT plan is being developed for a patient with cancer, the current standard 

of care is to only delineate and consider the entire heart as a single organ and use simple 

metrics like mean heart dose (MHD) and dose/volume relationships to evaluate cardiac 

risks. Importantly, these whole-heart dose metrics do not provide any information about 

where the dose is being distributed. The Quantitative Analysis of Normal Tissue Effects 

in the Clinic (QUANTEC)17 report provides radiation dose tolerance recommendations for 

organs at risk (OARs) via efforts from numerous investigators. Here, Gagliardi et al. 
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considers dose to the heart as a single organ and recommends that less than 10% of the 

heart receive greater than 25 Gy with the endpoint of long term cardiac mortality18. 

Contemporary cooperative trials use similar volumetric and MHD endpoints19-21. In a large 

population-based case control study with greater than 2,000 women undergoing breast 

cancer RT16, Darby et al. found that cardiac damage was correlated with heart-absorbed 

dose, with a 7.4% increase of ischemic heart disease risk per one Gray of dose 

received16. It was also found that the MHD from left-sided breast cancer treatment was 

5.4 Gy (range, < 0.1 to 28.6 Gy)22, which suggests a ~40% increase in relative heart 

disease risk.  

As the outcome remains poor for patients with locally advanced non-small cell lung 

cancer (NSCLC), for example a 5-year overall survival less than 20%23, there have been 

copious efforts24 to increase loco-regional control (i.e. objective tumor response plus 

freedom from local progression)25 in lung cancer. Namely, dose escalation, or increasing 

the total dose prescribed through the course of RT, has been used to try and increase 

loco-regional control, although this has come at a cost. In a recent dose escalation trial 

for locally advanced NSCLC (Radiation Therapy Oncology Group (RTOG) report 0617), 

heart volumes receiving ≥ 5 and ≥ 30 Gy were independent predictors of overall survival26 

and a patients’ quality of life27. Thus, efforts to reduce and better characterize radiation 

dose in the heart, particularly in NSCLC where dose escalation is being implemented, are 

advantageous. 

Importance of Cardiac Substructures 

 The heart is complex and dose to sensitive substructures (e.g., coronary arteries, 

ventricles, atria, great vessels, etc.) contained within the heart have been strongly linked 
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to RICT16,28,29. Radiation dose to the left anterior descending coronary artery (LADA) has 

been linked to an increased risk of radiation-induced cardiac morbidity30, myocardial 

infarction31, and development of coronary artery calcifications32. In a study by Kataria et 

al., a dependence between RICT and the maximum dose received by the LADA was 

found33. They recommended that the maximum dose to the LADA be implemented for 

OAR avoidance, rather than the mean dose, as it may be more analogous to a serial 

structure33. Additionally, Hahn et al. showed that there were dose-volume indices for the 

coronary arteries (i.e. V5 and V20) that were more accurate than the MHD in predicting 

ischemic heart disease risk34. 

The volume of the left ventricle (LV) receiving 5 Gy (LV-V5) has been shown to be 

more predictive of acute cardiac events than the MHD28. Further, radiation damage to the 

LV has been strongly associated with future acute coronary events28. Similarly, higher 

doses at the base of the heart, near the great vessels (ascending aorta (AA), superior 

vena cava (SVC), and pulmonary artery (PA)) are directly related to worse patient 

survival35. Lastly, the radiation induced affect in the heart will depend on where the dose 

is delivered. For example, a study by Wang et al. assessed 112 NSCLC patients with a 

8.8 year median follow up36. This study found that pericardial events were strongly 

correlated with atrial dose, whereas, ischemic events were strongly correlated with 

ventricular dose36.  

There have been numerous multi-institutional studies aiming at assessing the 

relationship between cardiac substructures and radiation dose. In a multi-institutional 

cohort of nearly 800 SBRT lung cancer patients, doses to the left atrium (maximum dose), 

SVC, atria, and vessels were significantly associated with non-cancer death37. In 
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Hodgkin’s Lymphoma patients, the relative risk of death from cardiac diseases was 

substantially decreased using subcarinal blocking38 while pericarditis was reduced when 

left ventricular and subcarinal areas were shielded39. Importantly, recent sub-analysis of 

a cooperative group trial for NSCLC (RTOG 0617), showed that doses to the atria, 

pericardium, and ventricles were more strongly associated with survival than standard 

dose/volume heart metrics40-42. Overall, mounting evidence suggests that local doses to 

sensitive regions within the heart are strongly associated with RICT, yet challenges exist 

for routine dose evaluation. 

Current Challenges with Assessing Cardiac Substructures 

While cardiac substructures have been shown to have importance for cardiac 

toxicities, these structures are not visible on standard computed tomography (CT) 

simulations (CT-SIMs) and thus are not typically considered in the treatment planning 

process18. Magnetic resonance imaging (MRI), on the other hand, drastically improves 

the visibility of the cardiac substructures43,44 as shown in Figure 1. There are several 

reasons, as stated by Dweck et al., that MRI is the modality of choice for visualizing 

cardiac substructures over CT44. Namely, it offers superior soft-tissue contrast, it is not 

affected by the calcium blooming that hampers CT, and it does not involve exposure to 

ionizing radiation44. However, most cancer patients do not undergo MRI due to high costs, 

lack of insurance reimbursement, and accessibility barriers. Furthermore, most radiation 

oncologists have limited experience delineating cardiac anatomy and manual contouring 

can take several hours per patient45-48.  
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Figure 1: Left: Axial planning CT, Middle: Axial T2 MRI, Right: Contoured axial T2 MRI. 
Delineated substructures are outlined across the bottom with abbreviations defined in 

the text. 
 

While overall whole-heart displacement has been measured during conditions of 

respiration49, little is known about the motion of most cardiac substructures. When 

considering motion due to respiration, cardiac substructures have been shown to displace 

greater than 1.5 cm in the dominant direction of respiration (superior-inferior axis)33,50. In 

some clinical settings, left-breast cancer patients are treated in breath-hold conditions, 

yielding mostly cardiac motion influences. In clinical RT, cardiac motion is not typically 

managed as dose volume parameters for the whole heart are not significantly influenced 

by motion from the cardiac cycle51. Cardiac motion management technology is also not 

currently implemented into clinical linear accelerators. However, individual cardiac 

substructures may move differently than the entire heart and each other. This was 

observed in a study by Wang et al. who showed that the displacement of the LADA during 

deep inspiration breath-hold (DIBH) varied substantially when compared to whole heart 

displacement with maximal extents of the LADA over 7 mm (2.5 ± 1.4 mm average 

excursion in DIBH)31. The coronary arteries and the ventricles have been reported to be 

the most mobile regions of the heart during the cardiac cycle, displacing 3-8 mm between 
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end-diastolic and end-systolic phases52. Thus, planning organ at risk volume (PRV) 

margins of 3-4 mm have been suggested for these specific substructures33,53. Given the 

potential for varied sensitivity of cardiac substructures and their independent motion 

trajectory from the rest of the heart and each other, it is important to give them further 

consideration as the dose received by specific substructures may differ significantly from 

the dose to the entire heart. 

The Challenges of Cardiac Substructure Automatic Segmentation: Problem 
Statement 
 

Obtaining paired clinical MRI and CT data for the purposes of cardiac evaluation 

presents a challenge as their acquisition is not standard of care. The MRIs used in this 

study are acquired under breath-hold conditions and are not electrocardiogram (ECG) 

gated, which means that they do not provide temporal data across the cardiac cycle. 

Thus, respiratory motion is assumed to be negligible during the scan. However, due to 

extended scan times and heart rate, at least 30 cardiac cycles are captured during the 

scan. Therefore, the heart and its substructures on the T2-weighted and TrueFISP scans 

are represented by their average position over the course of the scan. Additionally, 

cardiac substructure variations in position arise from inter-fraction setup uncertainty which 

will be quantified in this work.  

Introducing cardiac substructures into treatment planning optimization causes an 

additional challenge: not only is there a desire to lower the radiation dose to cardiac 

substructures, but also the doses to other OARs from treatments near the heart, such as 

the spinal cord, lungs, esophagus etc. need to be conserved and within clinical 

tolerances. Additionally, in adding treatment planning objectives, it needs to be ensured 

that target coverage is not compromised. This is further complicated by anatomical 
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variations among patients. Simultaneously meeting current clinical tolerances for the 

treatment target and the OARs, as well as the ability to spare sensitive cardiac 

substructures might yield a drastic improvement in patient care.  

This work, when taken together, will develop an image processing pipeline to 

segment cardiac substructures to better quantify potential opportunities for enhanced 

cardiac sparing in radiation therapy planning (RTP), which will be accomplished via the 

following specific aims: 

Specific Aims 

1) Substructure segmentation using a novel atlas method using volumetric T2 MRI rigidly 

registered to CT-simulation, 

2) Further improve substructure segmentation efficiency and accuracy using deep 

learning,  

3) Quantify intra-fraction motion due to respiration, and inter-fraction setup uncertainties, 

4) Translate the described technologies to MR-linear accelerator (MR-linac) and 

treatment planning comparisons.  
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CHAPTER 2 “IMAGING AND SEGMENTATION TECHNIQUES” 

Summary of Computed Tomography and Magnetic Resonance Imaging 

Imaging with CT has long been the standard-of-care for RTP due to its exceptional 

geometric accuracy and spatial fidelity54. When a CT image is acquired, each voxel (i.e. 

three-dimensional pixel) is assigned a numerical value called a CT number based on the 

reading from the CT detector array. Thus, the CT number is proportional to the attenuation 

coefficient (𝜇) at a particular voxel. The attenuation coefficient at each voxel is then 

compared to that of water (𝜇𝑤𝑎𝑡𝑒𝑟), as shown by the following equation, for conversion to 

Hounsfield Units (HUs). 

𝐻𝑈 = 1000 ∗
𝜇−𝜇𝑤𝑎𝑡𝑒𝑟

𝜇𝑤𝑎𝑡𝑒𝑟
                                                   (1) 

The HU is a measure of the radiodensity within a CT and is directly related to the 

measured attenuation. Grayscale values are then assigned as a function of HU for display 

purposes. Generating a CT image of a phantom with known electron density values can 

then be used to convert from HU to relative electron density that is then inputted into the 

treatment planning system for subsequent dose calculation. Thus, an additional benefit 

of CT imaging of paramount importance is that it allows for a direct conversion from 

measured attenuation to an object’s electron density to enable accurate dose 

calculation55.  

 As the intensity in a CT image represents the x-ray attenuation at a certain point, 

image intensities are mostly homogeneous among areas of soft-tissue. The limited range 

of electron densities restricts the overall image contrast, thereby making it challenging to 

differentiate between regions inside the heart, as shown on the left side of Figure 1. MRI 



10 
 

 

is often used as an adjunct imaging modality to CT, as it allows for increased soft-tissue 

contrast (Figure 1, right), specifically in the setting of cardiac imaging56. 

 An MRI is obtained by measuring the net magnetization of the hydrogen atoms 

that exist within tissues57. When a specimen is exposed to a strong enough magnetic 

field, the nuclear spins of the hydrogen atom will be aligned either in the direction of the 

applied magnetic field, or directly opposed to it57. The majority of atoms are in direct 

alignment with the magnetic field as it is a lower energy state, which causes a net 

magnetization (i.e. longitudinal magnetization)57. In order to measure a signal in MRI, 

there must be a transverse magnetization present57. This transverse component is formed 

by using a transmit coil to apply an external radiofrequency field (RF) at the same 

frequency as the Larmor frequency until a peak transverse component is obtained for a 

given sequence at which point that RF field is turned off57. The rotating magnetization 

leads to a current change in the receive coil allowing for detection of a signal57. By the 

appropriate use of magnet field gradients right after the RF pulse is applied, that signal 

can be spatially encoded so that a Fourier transform can be applied to the signal to create 

an image usually in either 2D or 3D57.  

In short, MRI can be manipulated and tuned by adjusting various image sequence 

parameters58, and it provides volumetric and multi-planar imaging at a broad range of 

slice thicknesses58. The tissue dependence of the previously mentioned time constants 

allows for MRI to provide the superior soft-tissue contrast when compared to CT56 and 

leads to improved target and OAR visualization59,60 as discussed in the next section.  
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Rationale for Magnetic Resonance Imaging Implementation 

The segmentation of tumors on CT images is impeded due to low contrast and 

ambiguous boundaries61 and can present large uncertainties in RTP for various cancer 

types62-66. For example, in a nasopharyngeal carcinoma study completed by Emami et 

al., the use of CT imaging alone for tumor delineation failed to include the entire extent of 

the target67. This was made even more apparent by the increase in target volume on the 

MRI of 74%67. In a similar study of over 250 patients, Chung et al. found that using MRI 

allowed for the detection of intracranial tumor infiltration in over 40% of patients, whereas 

the CT scan had negative findings68. In regards to pancreatic cancer, a recent study by 

Gurney-Champion et al. showed that the availability of MRI images for target delineation 

significantly reduced inter-observer variability in the majority of patient cases when 

comparing to CT alone69. Regarding breast cancer radiotherapy, Hartogh et al. found a 

4% increase (P < 0.001) in inter-observer agreement when using MRI for breast tumor 

gross target volume delineation over CT70. Moreover, they found that for two out of 14 

patients the entire tumor was missed (i.e. dense fibroglandular tissue or 

macrocalcifications segmented instead of lesion) when using CT alone70. Lastly, the co-

registration of MRI with CT allowed for a decrease in the local standard deviation of the 

gross target volume from 4.4 to 3.3 mm71.   

 MRI is also valuable in the delineation of OARs. When delineating the brachial 

plexus, Kong et al. discussed the necessity of incorporating MRI since the use of CT 

alone presents challenges72. Bainbridge et al. summarized various studies on OAR 

delineation in thoracic radiotherapy73. They found that even though the use of a CT-based 

atlas improved contouring reproducibility in the heart and esophagus, delineation 
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consistency further improved with the integration of MRI73. When conducting OAR 

delineation in the abdomen, Wachter et al. found that defining the prostate apex on CT 

would have led to 6-13 mm of additional treatment outside of the tumor that was defined 

on MRI74. They recommend that MRI be used for delineation of OARs to avoid 

unnecessary radiation to the anus and penile structures74. Lastly, Khoo et al. evaluated 

OAR segmentation ability in independent observers of the prostate, rectum, bladder, and 

seminal vesicles and found that MRI provided an improvement to segmentation over CT 

for each studied structure75. 

One potential complicating factor in delineation accuracy occurs as a result of the 

susceptibility of both CT and MRI to motion artifacts from patient movement during the 

imaging session. When a patient breathes freely, the target will displace along the axis of 

respiratory motion and appear elongated. To mitigate these motion artifacts and increase 

reproducibility in patient position, breath-hold techniques are commonly incorporated. As 

breath hold scans require the full cooperation of the patient, scan times characteristically 

range from 10-25 seconds76. For this reason, sequences such as fast gradient echo (e.g. 

TrueFISP) and turbo-spin echo are frequently utilized in MRI for thoracic and abdominal 

regions where respiratory motion is considerable76,77. Four-dimensional CT (4DCT) or 

four-dimensional MRI are commonly used techniques for patients that are physically 

unable to undergo breath hold imaging. In 4DCT for example, a scan is acquired in free 

breathing over numerous respiratory cycles as a large number of projections is required 

for each breathing phase to provide an adequate signal to noise ratio78. During the scan, 

the respiratory waveform is also recorded. Images are then binned by phase or by 
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amplitude to generate multiple three-dimensional (3D) datasets at different stages of 

breathing79.  

Cardiac Imaging 

The heart can be imaged through several techniques, including but not limited to, 

radionuclide cardiac imaging, echocardiography, cardiac CT, and cardiac MR80. Cardiac 

MR is advantageous because not only does it have superb soft-tissue contrast for 

structure analysis, it also allows for the analysis of myocardial perfusion and function80. 

In RT however, there is no standard MR imaging sequence for segmenting the 

substructures of the heart as the concept of applying these structures to treatment 

planning in radiotherapy is an emerging area of interest.  

Whether cardiac segmentation is completed on MR images that are T1-weighted, 

T2-weighted, or weighted as a combination such as T2/T1 (i.e. TrueFISP), the standard 

of care for cardiac imaging is to suppress the blood (i.e. force it to be black on the image) 

during the acquisition81. This causes an increase in contrast between the rapidly moving 

blood and the cardiac muscle for improved visualization. Additionally, increased water 

(i.e. edema), as well as infarction appear bright on T2-weighted images. T2-weighted 

cardiac MR can also be used to differentiate acute coronary syndrome from non-acute 

coronary syndrome, as well as if an infarction occurred recently82-84. Lastly, T2-weighted 

cardiac MR allows for the distinction of the high risk location for both non-reperfused and 

reperfused myocardial infarction85-87. For these reasons, volumetric T2-weighted images 

are often included in protocols for cardiac MRI. The ViewRay MRIdian MR-linac 

(ViewRay, Mountain View, CA) utilizes a balanced steady-state free precession (b-SSFP) 

(i.e. TrueFISP) sequence. In the TrueFISP sequence, the signal is balanced and is 
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directly related to the T2/T1 value of the tissue. Throughout this body of work, both 

volumetric T2 images, as well as TrueFISP images were utilized. 

The vast majority of cardiac imaging is acquired at a comfortable expiration88. 

Although a patient may be able to hold their breath longer at end-inspiration, diaphragm 

position between inspirations is much more variable than it is at a repeated expiration88. 

In the absence of respiratory motion, the heart can still displace 3-8 mm between end-

systolic (i.e. contraction to pump blood) and end-diastolic (i.e. relaxation after contraction) 

phases, with the coronary arteries and the ventricles being the most mobile regions52. 

Initially established for coronary artery visualization89, ECG gating may be used to acquire 

images of the heart at a certain point in its cardiac cycle, through coupling the correlated 

ECG pulse with the MRI data53. ECG gating is often triggered by the R-wave as it is the 

strongest signal in the ECG pulse and represents the depolarization of the ventricular 

myocardium which activates the pumping contraction90. ECG gating may occur 

prospectively where imaging is triggered at predefined points in the cardiac cycle through 

the R-wave timing91. It may also occur retrospectively where images and ECG waves are 

collected over multiple cardiac cycles and rebuilt into specific intervals at a later time (e.g. 

5% intervals between R-waves for a 20-phase ECG gated dataset)53. ECG gating allows 

for cine cardiac motion studies where structural extent is examined. Protocols for 

diagnostic cardiac imaging may include contrast-enhanced, off axis planes, and cine 

sequences in order to evaluate cardiac anatomy and function. The latter two series are 

not often acquired in the axial plane, leading to challenges integrating them into treatment 

planning due to inaccurate co-localization and subsequent registration.  
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Additionally, coronary artery segmentations may be improved through the use of 

high resolution (e.g. 0.78 x 0.78 x 1.6 mm3) CT coronary angiography (CTCA) that uses 

contrast-enhancement92 to drastically increase the visualization of the coronary artery 

lumen and wall93. However, as acquiring CTCA predominantly occurs for evaluation of 

vascular disease94 (i.e. not always considered standard of care in RTP), and MRI can 

provide improved visualization without increased radiation dose or contrast, volumetric 

MRIs are utilized in this work. 

Image Segmentation Techniques 

The segmentation of an image can be defined as the splitting an image into two or 

more meaningful regions. More specifically, it is a process where each pixel in an image 

is assigned a label, and pixels with similar labels may be linked such that a visual or 

logical property is realized95. These groupings of pixels with the same label are called 

delineations, or segmentations. Once RT images are acquired, tumors and OARs are 

delineated, often by a physician, to enable consideration in the treatment planning 

process. Conducting segmentation manually can present numerous problems including 

being extremely time consuming and vulnerable to window and level settings47. Moreover, 

manual segmentations can introduce inter- and intra-observer variability96. 

Implementing automatic segmentation methods can drastically decrease the 

required time it takes to generate clinically usable delineations. Methods for automatic 

segmentation can be broadly split up into supervised and unsupervised. In unsupervised 

image segmentation, only the image itself is considered. Thus, unsupervised 

segmentation techniques utilize image intensity and gradient analysis, which perform well 

when boundaries in the image are distinctly defined97. On the contrary, supervised 
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segmentation techniques integrate prior knowledge about the image98. This prior 

knowledge is usually in the form of other similarly annotated images that can inform the 

current segmentation task (i.e. training samples). Based on a survey of the current 

literature at present, six major categories of image segmentation methodologies have 

been identified: (1) manual delineations, (2) image thresholding techniques, (3) graph-

based approaches, (4) atlas-based approaches, (5) machine learning methods, and (6) 

deep learning methods. The chief characteristics, limitations, and some examples of each 

segmentation category are outlined in Table 1.  

Segmentation 
Method 

Characteristics/Benefits Examples Limitations 

Manual -Visual inspection and 
interpretation for manual 
delineation96 

-Simple and straight-
forward96 

-Physician -Time consuming96  

-Vulnerable to window/level setting96 

-Sensitive to inter and intra-observer 
variability96 

Threshold 
(Binarization) 

-Thresholds are selected 
based on image histogram 
or manually selected seed 

pixel99 

-Simple implementation 
and highly efficient96 

-Edge detection 

-Seed growing  

-Only two classes are generated100 

-Difficult manual decision96 

-Highly sensitive to heterogeneities96, 
motion artifact96, and image noise99 

Graph Based -Image pixels are 
expressed as nodes on a 
graph99 

-Can be used to enhance 

thresholding techniques97 

-Graph cut 

-Maximum-flow 

-Morphological 

Watersheds 

-More complex implementation than 

thresholding99 

-Can result in cutting small sets of 
isolated nodes in a graph101 

-Ideally suited for obtaining a rough 
segmentation of an image’s principle 
regions97 

Atlas Based -Form of supervised 
learning where a 
predefined library of 
images informs new 
segmentations102 

-Probabilistic 

atlases 

-Statistical shape 
models 

-Number of selected atlases will affect 

result103 

-Long time to generate result104 

-Can depend on deformable image 
registration framework104 

Machine 
Learning 

-A nonlinear classifier 
where a model is trained 
and tuned97 

-Representations are built 
from pre‐specified filters 
and are not learned from 
the image itself97 

-Markov Random 
Fields 

-Conditional 
Random Fields 

-Random Forest 

-Support Vector 
Machine 

-More complex structure than above 
techniques97 

-High computational cost due to 
employing iterative schemes97 

-May have redundant features that 
cause overfitting97 

-Filter bank needs to be designed 

specifically for task97 
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Deep Learning -A model is trained and 
tuned but features are 
learned and guided by the 
training data and are not 
pre-specified97 

-Artificial neural 

networks 

-Convolutional 
neural networks 

-Recurrent neural 
networks 

-Most complex structure97 

-Possibility of overfitting if not enough 
variation in training data105 

-High computational cost97 

-Long training times105 

 
Table 1: Summary of characteristics, limitations and some common examples of various 

broad segmentation techniques. 
 

Image thresholding techniques, such as edge detection and seed growing 

methods, are easy to implement and are highly efficient. Thresholding an image involves 

selecting one or more points on an image’s histogram in order to bifurcate the image into 

distinct regions. These methods can also involve the user selecting an initial seed pixel 

and a value, for example τ. All pixels adjoining to the initial seed pixel with intensities ± τ 

are included in the segmentation. This process is repeated with all included pixels until a 

border is generated (i.e. pixel values greater than τ or less than -τ). These methods 

present a difficult decision to the user and can be limited by heterogeneities, motion 

artifacts, or noise in the image.  

Unlike unsupervised methods, such as image thresholding and graph-based 

techniques, supervised methods employ image delineations that have already been 

generated on similar datasets. Several atlas-based methods have been used in various 

applications of automatic segmentation and have been described in the literature106-111. 

The main differentiation between these atlas-based studies and others is the registration 

algorithm for mapping image coordinates onto the atlas102. However, as inter-subject 

registrations may yield considerable differences in shape, a trait that all aforementioned 

atlas-based methods have in common is that the transformations used are non-rigid102. 

The process of automatic segmentation with an atlas-based method is shown in Figure 
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2.  

 

Figure 2: Process of generating new segmentations on a target image set via atlas-
based automatic segmentation. 

 

The reference image set used for atlas-based automatic segmentation can be a single 

image or a library of multifarious pre-segmented datasets similar to the image set to be 

segmented, each with an associated set of ground truth contours102. A transformation 

using deformable image registration is then applied to the reference image data set and 

is assessed via a metric of accuracy (e.g. mutual information-based algorithms) to 

measure agreement with the target image data set. An iterative optimization process can 

then be used to refine the deformable image registration to improve the accuracy between 

the reference and target data set. The final transformation matrix (i.e. deformation vector 

field) can then be applied to the original ground truth contours to generate new 

segmentations on the target image data set (segmentation mapping in Figure 2). To 
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summarize, consider an atlas A, a reference image set R, and a target image set T, where 

each point in R has a corresponding equivalent in T. This correspondence is represented 

by the coordinate transformation F, that maps R onto T102. Thus, for a location (i,j) in T, 

the corresponding location in domain R is F(i,j). Through the association of R with A, the 

label at any location in T can be found using:102 

 (𝑖, 𝑗) ↦ 𝐴(𝐹(𝑖, 𝑗)) (2) 

The transformation F represents the deformable image registration (DIR) that 

characterizes an n-dimensional vector v97. Consequently, atlas based segmentation 

methods can be time consuming (converging on an optimal v) and highly dependent on 

DIR framework104.  

Artificial intelligence is a technique that enables a machine to mimic the behavior 

of a human. Machine learning is a subset of artificial intelligence, as shown by Figure 3 

which enables machines to achieve artificial intelligence through algorithms and statistical 

techniques trained with data. The training process informs the decisions made by the 

machine learning framework which allows for improvement as experience is gained112.  

Supervised machine learning methods for the automatic segmentation of images 

involves training and tuning a predictive model. Machine learning methods are able to 

improve upon the previously mentioned segmentation techniques by incorporating past 

labeled data. Machine learning utilizes numerous statistical tools to explore and analyze 

this previously labeled data with image representations being built from pre-specified 

filters tuned to a specific segmentation task. Although machine learning techniques are 

more efficient with image samples and have a less complicated structure, they are often 

not as accurate when compared to deep learning techniques for automatic image 
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segmentation97.  

 

Figure 3: Relationship between and descriptions of artificial intelligence, machine 
learning, and deep learning. 

 

Conditional random fields (CRF) are an example of a machine learning technique 

described in Table 1. The purpose of CRF are to create a relationship between the 

observed evidence (i.e. the image) and the hidden “true states” (i.e. probability map) in 

order to take the context of the image into account. The probability map (x pixels in Figure 

4) has encoded neighborhood information that can be based on several image features 

such as intensity, color, texture differences, edges, etc. The CRF seek to minimize the 

energy function E(x,y) (Equation 5) that is built of energy potentials φ(x,y) (i.e. unary 

potential, Equation 3) and ψ(x,y) (i.e. pairwise potential, Equation 4). The unary potential 

encodes the local information about a given pixel and how likely it is to belong to a certain 

ARTIFICIAL INTELLIGENCE 

MACHINE LEARNING 

DEEP 
LEARNING 

Approaches that allow a machine to emulate 
the behavior of a human. The machine may 

have the ability to recognize patterns, reason, 
classify, learn, and make predictions. 

Algorithms that learn from pre-existing 
data and make informed decisions 

based on what was learned. Decision 
making is improved with experience.  

Algorithms based on 
neural networks that can 

learn important image 
features automatically to 
discover hidden patterns 

and information. 
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class. The pairwise potential encodes the neighborhood information that considers how 

different a pixel’s label is from that of its neighbor. Thus, when the energy function E is 

minimized, the pairwise term encourages smooth annotations and the unary term causes 

annotations to become more localized (i.e. reducing holes in segmentations or far remote 

island annotations).  

 𝑈𝑛𝑎𝑟𝑦 = ∑ 𝜑(𝑥𝑖, 𝑦𝑖)𝑖  (3) 

 𝑃𝑎𝑖𝑟𝑤𝑖𝑠𝑒 =  ∑ 𝜓(𝑥𝑖, 𝑦𝑖)𝑖,𝑗   (4) 

 𝐸(𝑥, 𝑦) =  𝑈𝑛𝑎𝑟𝑦 + 𝑃𝑎𝑖𝑟𝑤𝑖𝑠𝑒 (5) 

 

Figure 4: Relationship between pixels in the image to be segmented (yi) and the pixels 
in the probability map (xi)113 

 

Deep learning is a subset of machine learning, as shown by Figure 3, which was 

originally designed to mimic the learning style of the human brain using neurons. Unlike 

machine learning where the “useful” features for the segmentation process must be 

decided by the user, with deep learning, the “useful” features are decided by the network 

without human intervention. If an image is considered as the input to a convolutional 

neural network (CNN), each pixel in the input image would then be fed to a neuron in the 

input layer of the network, represented by purple circles in Figure 5. Each channel (blue 
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lines in Figure 5) has a weight assigned to it, or wi, and all neurons have a unique number 

associated with them called bias, or Bi. The biases and weights of a network are learnable 

parameters that can either be initialized at 0, random values, or predetermined values114. 

The bias is added to the weighted sum of all inputs reaching a particular neuron and is 

shown in the following equation.  

 𝐻 = 𝐵1 + (𝑛1𝑤1 + 𝑛2𝑤2 + ⋯ + 𝑛𝑖𝑤𝑖) (6) 

The value H is then applied to an activation function, with an example activation function 

(σ) shown on the right of Figure 5. Thus, the activation function then becomes,  

 𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝜎(𝐻) (7) 

The result of the activation function determines if the neuron gets activated. For example, 

when using the sigmoid activation function shown in Figure 5, activation values greater 

than or equal to 0.5 activate the neuron. Every activated neuron passes on information to 

the following layers which continues in each layer until the second to last layer. The one 

neuron activated in the output layer corresponds to the decision of the network (i.e. the 

label of the pixel). This process occurs for all pixels in the training data and represents a 

forward pass of the data.  
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Figure 5: Left: An example of a neural network structure. Channels are represented as 
blue lines and neurons are represented as circles with the input layers shown in purple, 
the hidden layers in green, and the output layer in orange. Right: Equation and plot for 

the sigmoid activation function.  
 

After completing a forward pass of the training data, a backward pass then occurs 

through a process called backpropagation. Backpropagation is used to adjust the weights 

and biases to produce a well-trained network. Due to the training data having ground 

truth, weights and biases may be adjusted based on the error at each neuron (i.e. the 

difference between the current predicted value and the known truth value). The cost of 

the network is the cumulative error across the entire training dataset. In total, the goal of 

the backpropagation process is to compute the partial derivatives of each weight and bias 

in the network (i.e. ∂C/∂wn and ∂C/∂Bn), so that the negative gradient of the cost function 

may be applied to minimize the overall cost. The neural network is trained over copious 

forward and backward passes of the training samples so that there is convergence in the 

adjustment of the weights and biases. The typical number of utilized epochs ranges from 

50 to 1000115 and training times can span from 20 minutes to 100 hours depending on 

the size of the dataset and the employed hardware116. One forward pass and one 
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backward pass (i.e., backpropagation process) of all the training samples is called an 

epoch117.  

Recently, CNNs using deep learning have been applied to the complicated task of 

segmenting cardiac images with promising results118. This is achieved through the ability 

of the deep learning neural network to automatically learn complex features from image 

data rapidly. Coupling the ability for rapid feature extraction with advanced computer 

hardware, such as graphical processing units (GPUs), has allowed for automatic 

segmentation time to be radically decreased. A deep neural network (DNN) is able to 

learn a mapping function between an image and a corresponding feature map (i.e. 

segmented ground-truth) by incorporating multiple hidden layers between the input and 

output layer (Figure 5). Deep learning applications may be limited by the size of datasets 

made available in the field of radiation oncology. However, these limitations may be 

circumvented through the utilization of image augmentation. The U-Net119 is a DNN 

architecture that has shown great promise for generating accurate and rapid delineations 

for applications in RT120.  

The U-Net architecture was inspired by the original fully convolutional network from 

Long et al.121 and was implemented initially by Ronneberger et al.119 in 2015. The U-Net 

gets its name from its ‘U-shaped’ architecture, as shown in Figure 6. It was originally 

implemented to segment biomedical image data in an end-to-end setting utilizing 30 total 

annotated image sets. Starting from the top left of Figure 6, the input image (size 512 x 

512) undergoes two convolutions to generate a multi-channel feature map (purple boxes 

in Figure 6) with 64 initial feature channels. Next, a non-linear activation function is 

applied, as discussed in Figure 5 above, followed by a maximum pooling operation. The 
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maximum pooling operation reduces the x and y size by a factor of two for the feature 

map, which acts on each channel separately, and then the number of feature channels is 

doubled. This process of successive convolutions and maximum pooling operations (i.e. 

contraction pathway) gradually increases the “what” while gradually decreasing the 

“where.” In a standard classification neural network, such as the one shown in Figure 5, 

the network would stop at this point and all feature maps would be combined into a single 

output vector. However, the U-Net has an additional expansive path that creates a high-

resolution segmentation map. The expansion pathway (Figure 6, right) replaces the 

maximum pooling operations with up-convolutions to increase the resolution of the feature 

maps. Then, in order to localize, features from the contraction pathway are joined with 

the up-convolved feature map through concatenation119. The U-Net is an end-to-end 

solution with remarkable potential to segment medical images, even when the amount of 

training data is scarce122.   

 

Figure 6: Architecture for original U-Net by Ronneberger et al.119 with the contraction 
path shown on the left and the expansion path shown on the right. The original input 
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image has a size of 512 x 512. Feature maps are represented by purple rectangles with 
the number of feature maps on top of the rectangle.  

 

Overall, there are several commercial algorithms for automatic segmentation 

already available, but their core mechanics fall within atlas-based measures instead of 

machine learning strategies123. These atlas-based measures are highly reliant on the 

amount of contrast in the target organ for segmentation124. On the contrary, recent deep 

learning techniques125,126 are well poised for the task of accurate automatic segmentation 

with less reliance on organ contrast127,128 as the algorithm is designed to acquire higher 

order features from raw data125. Overall, deep learning techniques offer the potential for 

rapid and accurate cardiac substructure segmentations over other currently available 

segmentation methods.  
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CHAPTER 3 “CARDIAC SUBSTRUCTURE SEGMENTATION AND DOSIMETRY 
USING A NOVEL HYBRID MAGNETIC RESONANCE COMPUTED TOMOGRAPHY 
CARDIAC ATLAS”  
 
Introduction 

Increased risk of cardiotoxicity, including coronary artery disease and 

cardiomyopathy, has been linked to RT for many cancer sites in close proximity to the 

heart5-7. Moreover, major coronary events have been linked to radiation dose to the heart 

with a ~7%/Gy increase in rate of ischemic heart disease16. Radiation dose from breast 

cancer treatments specifically have also been correlated to myocardial infarction, 

congestive heart failure, and cardiovascular death more than 10 years after RT129.  

Therefore, minimizing cardiac dose due to RT treatments is critical and has been given 

recent attention130,131. 

Currently, OAR dose limits for breast cancer RTP account for the entire heart 

volume. For example, according to a cooperative group trial for left-sided breast cancers, 

no more than 5% of the whole heart may exceed 20 Gy19. However, heart substructures 

are not routinely included in RTP as they are not visible on standard CT-SIM datasets 

and dose limits are not currently well established. Furthermore, dose to these cardiac 

substructures may have prognostic inferences. In left breast cancer patients, the LADA is 

often exposed to the highest treatment-related radiation dose16 and increased dose has 

been linked to increased risk of late radiation induced cardiac morbidity30. Additionally, 

measurements of radiation dose to cardiac substructures, like the LV, may be useful in 

the prediction of future acute coronary events28. By localizing these sensitive 

substructures within the heart, we can then estimate the dose to these regions. This may 

further our understanding of their potential roles in radiation-related cardiotoxicity. 
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The current standard of care for radiation treatment planning is based on CT-SIM 

to enable electron density mapping for dose calculation. However, cardiac substructures 

are not easily discernible on standard CT-SIM datasets. Some single modality atlas 

methods have employed contrast-enhanced CT45,132,133. For coronary arteries such as 

the LADA, contrast-enhanced CT may aid in localization although the majority of the 

structure is not discernible134. At present, contrast-enhanced CT (either diagnostic or for 

CT-SIM) is not widely available for breast cancer patients, nor are they included in the 

current National Comprehensive Cancer Network breast cancer recommendations135 or 

cooperative clinical trial group guidelines for delineation 136-138. Thus, developing atlas 

solutions that can be applied to widespread, clinically available data, such as standard 

CT-SIMs, is advantageous.   

MRI also improves the visibility of cardiac substructures43,44 as illustrated in Figure 

1. Thus, numerous automatic segmentation methods have been established utilizing 

MRI139. However, MRIs are not frequently acquired and integrated into routine RTP. 

Recently, a multi-scale patch method was used to generate a multi-modality atlas (e.g. 

cardiac MRI and contrast-enhanced CT) for automatic segmentation of 7 substructures47.  

The purpose of the current study is to develop and validate a novel hybrid MR/CT 

segmentation atlas with the overall goal of segmenting 12 sensitive cardiac substructures 

and the whole heart on standard, non-contrast, treatment planning CTs. The completion 

of this work offers potential for widespread implementation and may provide important 

information for dosimetric assessment for OAR sparing.   
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Methods 

Image Acquisition 

Thirty-one patients who underwent RT for left-sided whole-breast cancer were 

enrolled on an Institutional Review Board approved study to acquire cardiac MRI scans. 

T2-weighted acquisitions were performed on a 3T Philips Ingenia (Philips Medical 

Systems, Cleveland, OH) with images acquired at end-expiration (EE). Patients were 

positioned supine and imaged in a multi-coil configuration with a 32-channel dStream 

Torso coil (Philips Medical Systems, Cleveland, OH) and a 20-channel integrated 

posterior coil. Imaging parameters included an 8 mm slice thickness, in-plane resolution 

0.7 x 0.7 mm2, and an echo time of 81 ms. This two-dimensional acquisition involved a 

single breath hold at EE with an average total acquisition time across all patients of 22.1 

± 4.4 seconds (range: 15.1-31.0 seconds). 

Non-contrast CT-SIM was performed on a Brilliance Big Bore CT Simulator (Philips 

Medical Systems, Cleveland, OH) with a 3 mm slice thickness. Eight patients underwent 

4DCT while the other 23 patients underwent a CT-SIM under free-breathing conditions 

(FBCT) based on institutional practices. FBCT and 4DCT images were acquired with an 

in-plane resolution of 1.1x1.1 mm2 – 1.4x1.4 mm2, 120-140 kVp, and 275-344 mAs. All 

patients were imaged in the supine position and immobilized on a Posiboard (Civco, The 

Netherlands) with their arms above their head.  

Image Registration 

A local, cardiac-confined, rigid registration was performed between the non-

contrast CT and axial T2-weighted MR in MIM (version 6.7.12, MIM Software Inc., 

Cleveland, OH). Rigid registrations were conducted using normalized mutual information 
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as the similarity metric, which has been shown to robustly align multi-modality images140. 

Visual inspection of the cardiac-confined rigid registration was performed by a radiation 

oncologist before completing manual segmentations. To compensate for respiratory 

motion, the 50% (EE) phase of the 4DCT was rigidly registered to the MRI for 8 subjects. 

Despite 23 patients being imaged with FBCT at arbitrary phases of the breathing cycle, 

visual inspection of the locally confined heart rigid registration by a physicist and radiation 

oncologist revealed that the registration quality was adequate for delineation purposes. 

Contour Delineation 

A radiation oncologist delineated 12 cardiac substructures and the whole heart, as 

outlined in Figure 7, with substructure selection based on CT and cardiac MRI auto-

segmentation atlases 132,139,141. Substructures were also selected based on their roles in 

major cardiac function and proximity to the radiation field.  
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Figure 7: Left: Axial planning CT, axial T2-weighted MRI, and contoured axial T2-

weighted MRI, shown at 4 different axial locations. Right: List of cardiac substructures 
assessed in this study. 

 

A radiation oncologist followed a published cardiac atlas consensus contouring 

guideline141 to delineate the substructures on the CT using a MR/CT rigid registration with 

a fixed window/level on CT (50/500 for large structures, 50/150 for cardiac vessels) and 

giving preference to MR anatomical information. However, as the epicardial border of the 

heart is visible on CT, the CT was used to generate the whole heart contour. Contours 

were verified by a radiologist with a cardiac subspecialty and 30 years of clinical 

experience. 
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Atlas Generation  

Non-contrast CT ground truth delineations derived from MR/CT hybrid information 

for a subset of 20 patients were inputted into an intensity-based deformable registration 

atlas in MIM. To perform a sample size estimation, an initial test cohort of 5 subjects was 

evaluated. To achieve 80% power (medium effective size on a repeated measure 

ANOVA, alpha error of 0.05 to compare the difference between 8 means), 10 patient 

cases were required. However, because the Dice similarity coefficient (DSC) was not 

normally distributed and a non-parametric Friedman test was to be used for analysis, the 

sample size (n=10) was then divided by a correction factor of 0.955 (i.e. the asymptotic 

relative efficiency)142, resulting in a required sample size of n=11 for the testing patient 

cohort. Thus, the deformable registration atlas was applied to 11 validation patients (i.e. 

test subjects).   

To generate the hybrid segmentation atlas, a reference structure set was first 

generated from a predetermined patient with average anatomy to act as a template143.  

The template patient was selected based on a moderate habitus, minimal motion artifact, 

and standard heart geometry and anatomical position. A local, cardiac-confined, rigid 

registration was then performed between the template patient and the 20 subsequent 

patients, including the template patient. The process of applying the atlas to a test subject 

is outlined in Figure 8. One of the 11 test subjects was then selected and a mutual 

information-based algorithm144 was used to locate the atlas subject(s) that were deemed 

the best matches to the test subject. A free-form DIR was then completed between each 

selected atlas subject and the test subject. The commercially available free-form intensity-

based DIR algorithm has limitless degrees of freedom and utilizes adequate regularity 
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(i.e. penalty term weight) to ensure smooth deformation145 and has been previously 

validated in CT/CT registrations yielding high segmentation accuracy146. Finally, the 

generated deformation vector field was used to propagate the ground truth segmentations 

from the best match to the test subject’s CT.  

To optimize atlas performance, three atlas approaches were evaluated (1) single-

atlas method, and two multi-atlas segmentation approaches (2) majority vote (MV) and 

(3) Simultaneous Truth and Performance Level Estimation (STAPLE). The single-atlas 

method (Figure 8, top row) deforms contours from the single best matching atlas subject 

to the test subject whereas multi-atlas approaches (Figure 8, bottom row) use various 

best matching atlas subjects. In MV, after multiple contours for the same substructure are 

deformably propagated to the test subject, the most frequent contour at each voxel is 

established as the true segmentation104. The STAPLE method uses a probability map to 

create an estimate of the true segmentation from a collection of contours by using an 

expectation-maximization algorithm147. The resultant segmentation is then formed by 

optimally combining the existing contours through assigning weights based on sensitivity 

and specificity147. 

To further optimize segmentation, the number of multi-atlas matches was iterated 

(3, 5, 10, and 15) for MV and STAPLE methods for the 11 validation datasets. Once final 

contours were obtained, post-processing including contour smoothing and filling was 

performed104. Image processing time was logged in MIM and tabulated for each approach 

for a representative validation patient. Image processing was conducted on a 64-bit 

Microsoft Windows PC with a quad-core Intel® Xeon® CPU-E5-1630 v4 at 3.70GHz and 

16GB of memory.  
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Figure 8: Process of generating an automatic segmentation with an atlas-based method 
using both a single-atlas (top row) and a multi-atlas (bottom row). Abbreviations: 

Majority vote (MV), Simultaneous Truth and Performance Level Estimation (STAPLE). 
 

Atlas Validation  

Atlas performance was assessed via DSC45,132,139 mean distance to agreement 

(MDA)148, and centroid displacement between propagated and ground truth delineations 

for the 11 test cases. The DSC is used to measure the spatial overlap between two 

structures (Equation 8) and is a value from 0, representing no overlap, to 1, representing 

perfect agreement. 

DSC =  
2|M∩N|

|M|+|N|
                                                        (8)  

 
Where M and N are the volumes of the manually delineated and propagated 

contour, respectively. MDA is used as a geometrical measure to assess the agreement 
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between two contours by averaging the per voxel shortest distance from each point on 

the test contour to the reference contour, with an increased agreement yielding a lower 

MDA148.    

To evaluate clinical acceptance of the auto-segmented contours, qualitative 

consensus scoring was completed for 12 cardiac substructures and whole heart contours 

on a subset of 5 of the 11 validation cases by 2 radiation oncologists and a radiologist 

with a cardiac subspecialty. Scores were assigned on a 5-point scale149: (1) clinically 

unacceptable, (2) major modifications required, (3) moderate modifications required, (4) 

minor modifications required, (5) clinically acceptable.  

Dosimetric Assessment 

A dosimetric assessment of left breast cancer patients was conducted to illustrate 

a potential clinical application of the validated atlas in the test cohort. For the 11 test 

subjects, the clinically approved and delivered treatment primary whole breast (tangential 

fields, 6-18 MV, 42.7-45.0 Gy) and boost (3D planned with 6-15 MV photons or 12 MeV 

electrons to 10.0-16.2 Gy) plans were exported from the Eclipse Treatment Planning 

System (Version 11.0, Varian Medical Systems, Palo Alto, CA) and into MIM for direct 

dose summation. Dosimetric evaluation of the cardiac substructures included 

measurements of the minimum, mean, and maximum dose to each substructure. The 

MHD, LV-V5, and left anterior descending artery mean and maximum doses (LADAmean, 

LADAmax) are highlighted as they have been shown to be predictive of acute cardiac 

events16,28 and are important indicators for ischemic heart disease30,150. 
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Statistical Analysis 

Data are presented as mean ± standard deviation (SD). Statistical analysis of DSC 

and MDA between atlas methods was performed using the Friedman test with a Wilcoxon 

signed ranks test for post hoc pairwise comparisons and were Bonferroni corrected. 

Statistical analyses between ground truth and auto-segmented volumes and doses were 

performed using a two-tailed Wilcoxon signed ranks tests with P < 0.05 considered 

statistically significant. All analyses were performed using SPSS version 25.0 (SPSS, 

Chicago, IL, USA). 

Results 

Contour Generation 

The average time for the manual delineation of the 12 cardiac substructures and 

the whole heart was ~3 hours per patient. For a representative test subject, the atlas auto-

segmentations took between 1-10 minutes depending on the selected amount of atlas 

matches. When applying the STAPLE method with 10 atlas matches to this same 

representative patient, the radiation oncologist required ~30 minutes of additional time to 

edit segmentations for all 12 substructures and the whole heart for clinical 

implementation. 

Atlas Performance Evaluation 

Figure 9 outlines atlas performance for single-atlas, MV, and STAPLE methods 

with 3, 5, 10, and 15 atlas matches for MV and STAPLE. Figure 9 (left) shows that median 

DSC values across all structures were between 0.71 and 0.80 for the single-atlas method 

and STAPLE method with 10 atlas matches (ST10), respectively.  



37 
 

 

 

Figure 9: Validation patient Dice Similarity Coefficient (DSC) results over all 
substructures (Left) and all high performing substructures (i.e. heart, cardiac chambers, 

and great vessels) (Right). Boxplots and line indicate the interquartile range and 
median, respectively. Whiskers indicate the minimum and maximum, with data points > 
1.5 times the interquartile range and > 3 times the interquartile range marked by circles 

and stars, respectively.   
 

In general, atlas approaches performed similarly, yielding mean DSCs > 0.75 for 

7/13 cardiac structures (heart, chambers, AA, and PA) over the 11 validation patients. 

Table 3 outlines DSC results for the single atlas method and select high performing multi-

atlas methods. Across the 11 test subjects, all coronary artery segmentations had DSC 

values < 0.42. The right side of Figure 9 summarizes the 11 validation patient mean DSC 

results after exclusion of the coronary arteries, where median DSC values range from 

0.75 to 0.85 for the single-atlas and ST10 method, respectively. In comparing atlas 

methods, ST10 generated the highest mean DSC and lowest MDA values for all high 

performing substructures (i.e. heart, chambers, and great vessels). The post hoc pairwise 

comparisons, shown in Table 2, revealed that ST10 outperformed the single-atlas for all 

substructures except the coronary arteries for both MDA and DSC (P < 0.05).  
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  Method 1/2 Heart AA LA LV RA RV PA PV SVC IVC 

DSC 

Single/MV10 0.95 0.78 0.01* 0.63 0.23 0.01* <0.01* 1.00 1.00 1.00 

Single/ST10 <0.01* <0.01* <0.01* <0.01* <0.01* <0.01* <0.01* <0.01* <0.01* <0.01* 

ST3/ST10 0.03* 0.01* <0.01* 0.01* 0.01* <0.01* <0.01* <0.01* 0.02* 0.11 

ST5/ST10 1.00 1.00 1.00 1.00 1.00 0.02* 0.05* 1.00 0.46 1.00 

MV10/ST10 0.26 0.10 1.00 0.01* 0.26 1.00 1.00 <0.01* <0.01* <0.01* 

MDA 

Single/MV10 1.00 1.00 1.00 <0.01* 1.00 0.46 0.95 <0.01* 0.09 1.00 

Single/ST10 <0.01* <0.01* <0.01* <0.01* <0.01* <0.01* <0.01* <0.01* 0.01* <0.01* 

ST3/ST10 0.04* 0.02* <0.01* 0.02* 0.04* <0.01* <0.01* <0.01* <0.01* 0.29 

ST5/ST10 1.00 1.00 1.00 0.70 1.00 <0.01* 0.14 1.00 1.00 1.00 

MV10/ST10 <0.01* 0.14 <0.01* 1.00 0.02* 0.18 0.01* 1.00 1.00 0.14 

Table 2: Statistical pairwise comparisons of mean distance to agreement (MDA) and 
Dice similarity coefficient (DSC) between select atlas methods for each high performing 

substructure. Statistical differences are marked by a star and represent method 2 
having a statistically higher median than method 1 (P < 0.05). Atlas methods are 
defined as single-atlas (Single), Majority Vote (MV), and Simultaneous Truth and 

Performance Level Estimation (ST) followed by the number of atlas matches.  
 

 However, the single atlas method’s DSCs and MDAs performed similarly to 

STAPLE and Majority Vote when fewer than 5 atlas matches were used (P > 0.05, results 

not shown). Regarding MDA, ST10 outperformed ST3 and ST15 for > 8 high performing 

substructures. Additionally, ST10 outperformed ST5 for the RV and PA DSCs at the 

expense of ~5 minutes processing time. Thus, all further analyses were conducted using 

ST10.  
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DSC from Atlas Application 

Consensus 
Score 

  Single MV10 ST10 ST10 

Per Structure Mean ± SD       

 
Heart 0.92 ± 0.03 0.94 ± 0.01 0.95 ± 0.01 4.2 ± 0.4 

 
Left Ventricle 0.83 ± 0.04 0.88 ± 0.01 0.91 ± 0.01 4.6 ± 0.5 

 
Right Atrium 0.80 ± 0.05 0.84 ± 0.04 0.87 ± 0.03 4.2 ± 0.4 

 
Left Atrium 0.77 ± 0.03 0.84 ± 0.03 0.86 ± 0.03 3.8 ± 0.4 

 
Pulmonary Artery 0.74 ± 0.07 0.81 ± 0.03 0.84 ± 0.03 4.0 ± 0.0 

 
Ascending Aorta 0.73 ± 0.09 0.79 ± 0.07 0.84 ± 0.03 4.4 ± 0.5 

 
Right Ventricle 0.71 ± 0.06 0.80 ± 0.05 0.83 ± 0.03 4.2 ± 0.4 

 
Superior VC 0.67 ± 0.09 0.66 ± 0.08 0.80 ± 0.04 4.0 ± 0.7 

 
Inferior VC 0.46 ± 0.23 0.55 ± 0.11 0.70 ± 0.07 4.0 ± 0.7 

 
Pulmonary Vein 0.47 ± 0.13 0.50 ± 0.06 0.64 ± 0.06 3.2 ± 0.4 

      Average over Heart, Chambers, 
and Great Vessels 

0.71 ± 0.08 0.76 ± 0.05 0.82 ± 0.03 4.1 ± 0.5 

 
LAD Artery 0.15 ± 0.14 0.04 ± 0.04 0.27 ± 0.09 1.8 ± 0.8 

 
RT Cor. Art. 0.14 ± 0.10 0.03 ± 0.05 0.22 ± 0.10 2.4 ± 0.9 

 
LT Main Cor. Art. 0.05 ± 0.08 0.00 ± 0.00 0.12 ± 0.12 1.4 ± 0.5 

 

Table 3: Mean and standard deviation (SD) results for select atlas methods showing the 
Dice Similarity Coefficient (DSC) per substructure and across all high performing 
substructures for the validation population (heart, chambers, and great vessels). 
Consensus scores from physician grading of the ST10 method are also shown.  

Abbreviations defined in text. 
 

Segmentation Results for ST10 

Figure 10 summarizes the mean MDA and DSC results between manually 

delineated ground truth contours and ST10 atlas generated contours over the 11 test 

cases. Over all 12 substructures and the whole heart, 9 had an MDA < 2.1 mm and a 

mean DSC > 0.70, suggesting excellent atlas performance. The coronary arteries 

performed the worst (mean DSC < 0.3 and MDA between 3.1-4.2 mm).   
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Figure 10: Mean distance to agreement (MDA) (Left) and Dice similarity coefficient 
(DSC) (Right) between ground truth and ST10 contours for all delineated substructures 

(n = 11). Error bars represent the standard error of the mean. 
 

Additionally, across the 11 test cases, over half of all contours had centroid 

displacements < 3.0 mm, with largest shifts in the coronary arteries. The greatest centroid 

displacements occurred in the superoinferior direction (predominantly superior). Three 

out of 12 substructures (left main coronary artery, pulmonary vein, and right coronary 

artery) had statistically significant differences in volumes between ST10 and manually 

generated contours (P < 0.05). Figure 11 highlights agreement for all auto-segmented 

cardiac substructures as compared to ground truth.  
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Figure 11: Three-dimensional rendering of substructures showing agreement between 
manually drawn ground truth (GT) contours and STAPLE 10 (ST) generated contours. 

 

Qualitative Contour Grading using ST10 

Physician consensus scores for the heart, ventricles, PA, RA, SVC, IVC, and AA 

were found to require only minor modifications, typically at the inferior boundary (average 

score: 4.2 ± 0.5). The pulmonary vein (PV) and LA scored between 3 and 4, requiring 

moderate modifications. Major modifications were necessary for the LADA (1.8 ± 0.8) and 

RCA 2.4 ± 0.9) although propagated contours were deemed useful for localization. The 

left main coronary artery (LMCA) yielded the lowest average score (1.4 ± 0.5), suggesting 

inadequate segmentation. The highest scoring segmentations occurred for the LVs and 

AAs, with 3 and 2 subjects requiring no modifications, respectively. Excluding the 

coronary arteries, average consensus scores across all validation patients were greater 

than 4 (Table 3), suggesting only minor modifications were necessary.   
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Dosimetric Assessment 

Figure 12 shows a representative dose volume histogram (DVH) for a test subject 

including the LV, LADA, and heart, as these structures fell within the tangential fields. All 

other cardiac substructures received negligible radiation dose (mean dose < 1.5 Gy, 

results not shown). The propagated contour yielded a LADAmean of 23.1Gy and LADAmax 

of 44.9Gy, which was within 3.4% and 0.1% of ground truth, respectively (LADAmean of 

22.4Gy, LADAmax 44.9 Gy). 

 

Figure 12: Left: Axial cross section of a treatment planning CT for a representative 
validation patient showing contours generated from STAPLE 10 (ST10) and ground 
truth, as well as percentage dose delivered to the left breast (substructure colors not 

represented in the dose volume histogram (DVH): Dark Blue-RA, Denim Blue-
RA_ST10, Pink-RV, Magenta-RV_ST10). Right: Corresponding DVH for the same 

validation patient. 
 

The Wilcoxon signed rank test showed no statistically significant differences 

between ST10 and ground truth contours for the minimum, mean, and maximum dose to 

the chambers and great vessels (P > 0.05). Additionally, there were no statistically 

significant differences in LADAmax, MHD, and LV-V5 (P > 0.05). However, there was a 

significant difference in dose for the LADAmean (P < 0.05). Excellent estimation of the dose 

to the heart and LV was observed across the 11 test subjects for the propagated contours 
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proving them to be robust for dosimetric endpoints. The summation of the primary and 

boost treatment plans for the 11 validation subjects yielded no statistically significant 

differences in dosimetric endpoints between ST10 and ground truth contours for the LV-

V5 (14.9 ± 7.0% vs. 15.3 ± 7.3%), MHD (2.7 ± 1.0 vs. 2.8 ± 1.0 Gy), and LADAmax (46.2 

± 6.9 vs. 43.2 ± 9.0 Gy) (P > 0.05). However, the difference in LADAmean was statistically 

significant (22.5 ± 11.2 vs. 18.3 ± 10.0 Gy) (P < 0.05). 

Discussion 

This work has optimized and validated a hybrid MRI/CT contouring atlas for cardiac 

substructure segmentation with the overarching goal of applying it to non-contrast 

enhanced CTs for RTP and dose assessment. After a promising segmentation approach 

was identified (i.e. ST10), accurate delineations were obtained for the heart, chambers, 

and great vessels (10 of 13 structures), although the coronary arteries were not 

adequately segmented (DSC < 0.3). While the current retrospective dosimetric evaluation 

focuses on cardiac substructures for left-sided breast cancer RT, the atlas may be applied 

to other disease sites, such as advanced stage lung or esophageal cancer, which can be 

explored in future work. 

Although cardiac substructure atlases have been described in the literature, to our 

knowledge, none have included hybrid MR/CT information for propagation to CT. 

STAPLE was recently applied to delineate heart chambers on non-contrast enhanced CT 

images via a fused contrast-enhanced CT132. With the introduction of MRI into our atlas, 

our work outperformed that of Zhou for the heart chambers (average improvements in 

DSC and MDA of 0.12 ± 0.02 and 2.8 ± 0.5 mm, respectively). A multi-atlas MV method 

was used to automatically segment cardiac chambers on CT angiography scans from a 
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large multicenter/multivendor database with little improvement in segmentation accuracy 

with > 5 atlas matches45. When applying MV in our work, a slight improvement in median 

and interquartile range was observed when using up to 15 atlas matches (Figure 9, right) 

at the expense of computational time (~10 minutes/dataset). While Zhuang et al. did 

incorporate MRI into their cardiac substructure atlas, they focused mostly on the large 

structures such as the heart, chambers, AA, and PA47 and also used contrast-enhanced 

CT. Our segmentation accuracy for ST10 was comparable for the same structures (DSC 

and MDA within 0.01 and 0.5 mm, respectively) after applying the MRI/CT atlas to 

standard RTP CTs.  

One limitation is that ground truth contours were generated by a single radiation 

oncologist. In their atlas implementation for automatic cardiac substructure segmentation 

on contrast enhanced CT, Zhou et al. found that inter-observer variability increased for 

the PV and coronary arteries where DSCs were less than 0.50 and MDAs were larger 

than 4.0 mm across experts132. Even though ground truth segmentations in this work were 

generated by a single radiation oncologist, contour verification by a radiologist and our 

consensus scoring provided additional clinical interpretation by multiple observers. 

Another limitation of this work is that the performance of the atlas has yet to be evaluated 

for deep-inspiration breath hold, which has been shown to provide additional cardiac 

sparing for left-breast cancer cases151. Finally, the volumetric T2-weighted cardiac MRI 

scans were not optimized for RTP (slice thickness=8 mm) although in-plane resolution 

was 0.7 x 0.7 mm2. Thinner slice thicknesses will improve contouring accuracy for small 

volumes, however at the expense of reduced signal-to-noise ratio. 
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The coronary arteries (i.e. LADA, RCA, and LMCA) were most challenging for our 

atlas, which is consistent with other studies132,133,152. Potential causes of this include 

complex and low contrast anatomy and image resolution limitations. Although we 

accounted for respiratory motion by utilizing a local cardiac confined registration, cardiac 

motion may have adversely impacted the MR/CT fusion accuracy which may introduce 

additional uncertainty in small structures, such as the arteries. In these cases, manual 

segmentation was difficult and required expertise. Additionally, significant motion from 

respiration and the cardiac cycle may present challenges in identifying the coronary 

arteries as they can often appear indistinct or noncontiguous141. A recently reported 

contouring atlas using landmarks like the atrioventricular and interventricular grooves has 

also shown to be useful in segmenting the coronary arteries without the use of contrast152.  

The 9 outliers (Figure 9, right) are due to PV segmentations from 2 validation patients 

where, in both cases, the atlas overestimated the volume and did not reach the inferior 

extent of the ground truth contours. Additionally, the 3 extreme outliers (DSC < 0.4) 

(Figure 9, right) were attributed to an inadequate IVC segmentation on a single patient, 

likely due to the liver appearing homogeneous on non-contrast enhanced CT. Thus, artery 

and vein segmentation will be further addressed in future work via the application of deep 

convolutional networks, which have shown promise for ventricle segmentation153. 

 The retrospective dosimetric evaluation revealed that for whole breast RT, few 

cardiac substructures may require assessment. Nevertheless, the maximum dose to the 

LADA (46.2 ± 6.8 Gy) was substantial, with possible consequences of acute cardiac 

events28 and ischemic heart disease30,150. Future work may include the evaluation of 

treatment planning strategies and extend this work to other disease sites that may benefit 
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from cardiac substructure sparing (e.g. esophagus, lung, or lymphoma). Additionally, 

further development of this atlas may incorporate the inclusion of cardiac valves and 

segments of the LV152.   

Conclusion 

Overall, applications of the hybrid MRI/CT atlas offer future potential for robust 

cardiac substructure sparing using standard simulation CTs that are in routine use for 

treatment planning (i.e., non-contrast CT/4DCT) when an MRI is unavailable. As virtually 

all patients receiving RT have a CT-SIM as needed for accurate dose calculation, our 

approach offers strong potential for widespread application. Our hybrid MR/CT atlas 

shows promise for cardiac substructure segmentation for use in routine treatment 

planning and dose assessment. 
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CHAPTER 4 “CARDIAC SUBSTRUCTURE SEGMENTATION WITH DEEP LEARNING 
FOR IMPROVED CARDIAC SPARING”  
 
Introduction 

 Increased risks of radiation-induced heart disease including acute (pericarditis) 

and late (congestive heart failure, coronary artery disease, and myocardial infarction) 

cardiotoxicities have been linked to dose from thoracic RT for lymphoma, lung, breast, 

and esophageal cancers5-7,16. Radiation-induced heart disease presents earlier than 

previously expected, beginning only a few years after RT and with elevated risk persisting 

for ~20 years16. Importantly, dose escalation evaluation for locally advanced non-small 

cell lung cancer in RTOG 061726 revealed that the volume of the heart receiving ≥ 5 and 

≥ 30 Gy were independent predictors of survival26. Further, heart dose/volume metrics 

are significantly associated with a patient’s quality of life27.   

At present, dosimetric evaluation is currently limited to simplified heart 

volume/dose relationships, such as those recommended by QUANTEC, where the heart 

is considered a single organ. It is currently recommended that < 10% of the heart receive 

> 25 Gy with the clinical endpoint of long-term cardiac mortality18. Despite having whole-

heart dose limits, evidence suggests that dose to sensitive cardiac substructures may 

lead to cardiac toxicities16,28,29 including cardiomyopathy, coronary artery disease, 

pericardial, and conduction system diseases9. Specifically, an increased rate of cardiac 

events and ischemic diseases have been associated with increased radiation dose to the 

LV28, LA29, and LADA154. Patel et al. found that the maximum dose > 10 Gy to the LADA 

was a significant threshold for increased odds of developing coronary artery calcification. 

When compared to MHD, maximum dose to the LADA had a stronger association with 

coronary artery calcification onset32. However, following these dosimetric thresholds is 
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currently limited by the poor visualization and ability to delineate these sensitive cardiac 

substructures on non-contrast CT-SIM scans. 

 Several studies have assessed atlas-based segmentation of cardiac substructures 

in RT48,132,155 to avoid the time consuming (6-10 hours/patient) and tedious task of manual 

delineation47. However, most atlases fail in segmenting the coronary arteries, with DSCs 

between ground-truth and auto-segmentation of the LADA ranging from 0.09-

0.2748,132,155,156. Incorporating multiple imaging modalities (i.e. contrast enhanced CT and 

MRI) has improved visualization and yielded successful chamber and great vessel 

segmentation, yet coronary artery segmentation remains an unmet need48,132.  

 Recently, DNNs, such as U-Net119, have shown great promise for generating 

accurate and rapid delineations for RT120. Here, a DNN learns a mapping function 

between an image and a corresponding feature map (i.e. segmented ground-truth). Payer 

et al. implemented a U-Net for substructure segmentation and obtained a DSC of 94% in 

the aorta as compared to ground-truth157. Various DNNs have been applied to medical 

image segmentation120, specifically for cardiac substructure segmentation. These include 

deep CNNs with adaptive fusion92 or multi-stage157 strategies, as well as generative 

adversarial networks (GANs)158. Adaptation of these segmentation strategies have 

greatly improved cardiac chamber157 and pulmonary artery92 segmentations on contrast 

enhanced CTs (DSCs > 85%). Additionally, deep residual learning techniques are 

currently being used to generate cardiac substructure segmentation models that are 

robust against the presence or absence of image contrast159. However, most of these 

models have not been applied to conventional CT-SIM images and have yet to implement 

segmentations of the PV and coronary arteries.  
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 The current work builds upon recent DNN results to develop an efficient and 

accurate cardiac substructure deep learning (DL) segmentation pipeline that can be 

implemented into routine practice on standard, non-contrast CT-SIMs, thus requiring no 

additional image acquisitions. Here, training is performed via labeled MRI/CT pairs 

inputted into a 3D U-Net coupled to predict cardiac substructure segmentations using a 

single non-contrast CT-SIM input. We further improve agreement to ground-truth 

delineations by introducing a 3D dense CRF as a post-processing step, which have been 

recently merged with DNNs for state-of-the-art results in medical image segmentation160. 

Overall, the overarching goal is to enable widespread implementation of DL to improve 

cardiac sparing in RTP accomplished via cardiac sparing trials and improved risk 

assessment evaluation.  

Methods 

Imaging and Ground-Truth Contour Delineation 

 Thirty-two left-sided whole-breast cancer patients, with 36 unique datasets, were 

consented to an Institutional Review Board approved study and underwent cardiac MRI 

scans (two-dimensional T2 single-shot turbo spin echo sequence, repetition time = 927.9 

ms, echo time = 81 ms, voxel size = 0.7 x 0.7 x 8.0 mm3) at EE on a 3T Philips Ingenia 

(Philips Medical Systems, Cleveland, OH). Imaging was completed in a single breath hold 

(acquisition time = 22.1 ± 4.4s). Non-contrast CT-SIM images were acquired on a 

Brilliance Big Bore CT simulator (Philips Medical Systems, Cleveland, OH) (voxel size = 

1.1 x 1.1 x 3.0 mm3-1.4 x 1.4 x 3.0mm3, 120-140 kVp, and 275-434 mAs) with patients 

immobilized in the supine position on a Posiboard (Civco, The Netherlands). Twenty-four 
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patients were imaged under free breathing conditions, while the other eight underwent 

4DCT.  

 To develop a mutual coordinate system between datasets, an automatic global 

rigid registration between the T2 MR (moving image) and CT-SIM (target image) images 

was performed in MIM (version 6.9.1, MIM Software Inc., Cleveland, OH). An automated 

local rigid registration was then applied via a manually drawn cardiac-confined bounding 

box. For both rigid registrations, normalized mutual information was used as the similarity 

metric as it has been shown to perform well with multimodality image registration tasks140. 

For patients who underwent 4DCT, the 50% phase was used as it most closely matched 

the EE MRI.  

 The evaluation and approval of the co-registration of the T2 MRI to the non-

contrast CT was performed through visual verification by a radiation oncologist. To 

generate the contours, a consensus atlas was followed141 as implemented in our previous 

work48. In brief, twelve cardiac substructures (left/right ventricles (LV, RV) and atria (LA, 

RA), superior/inferior venae cavae (SVC, IVC), pulmonary artery/veins (PA, PV), 

ascending aorta (AA), right coronary artery (RCA), left main coronary artery (LMCA), and 

LADA) were manually delineated by a radiation oncologist and verified by a radiologist 

with a cardiac subspecialty. Due to the enhanced soft tissue contrast that MRI provides, 

preference was given to anatomical information from the MRI.  

Data Preparation 

 All work was performed using an NVIDIA Quadro M4000 graphical processing unit 

(NVIDIA, Santa Clara, CA). To improve generalizability, zero-mean normalization161 

(subtracting the mean intensity from the image and dividing by the standard deviation of 
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the image) was performed to maintain intensity consistency across MRI/CT datasets and 

patients. To generate ground-truth images, substructure masks were combined into a 

single image volume (ground truth (GT) image in Figure 13) with intensity values for the 

12 substructures indexed every 20 grayscale values from 35 to 255 with no overlap 

among substructures. MR and CT images were all resampled to a 650 x 650 mm in-plane 

resolution using bilinear interpolation. Bilinear interpolation was also used to interpolate 

MR images in the z-direction to match the 3 mm CT slice thickness (final voxel size of 

1.27 x 1.27 x 3 mm3). Registered MR and CT image volumes were cropped to 64 slices 

(in-plane dimension of 128 x 128 pixels), centered on the centroid of the whole heart and 

padded with 32 blank slices both superiorly and inferiorly for a final size of 128 x 128 x 

128 pixels. 

Neural Network Architecture and Training 

 The proposed 3D U-Net, shown in Figure 13 was based on an existing architecture 

designed for brain tumor auto-segmentation162 with several customizations as follows: (1) 

including deep supervision, (2) training using the entire 3D image volume simultaneously 

via multi-channel data inputs (i.e., MRI, CT, and cardiac substructure ground-truth 

masks), (3) optimizing hyperparameters of a Dice-weighted multi-class loss function162, 

(4) utilizing deconvolution in the upsampling process, and (5) optimizing the number of 

feature maps used in the first layer.  
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Figure 13: 3D U-Net architecture with CT and MR inputs in different image channels, 
along with the ground-truth (GT) labels. Prediction maps are outputted for each 

substructure. 
 

 This 3D U-Net is composed of a contraction pathway (Figure 13, left) to aggregate 

high level information using context modules and an expansion pathway (Figure 13, right) 

to combine feature and spatial information for localization162. Context modules (Figure 13, 

left) were composed of a dropout layer with 30% probability between two 3 x 3 x 3 

convolutional layers. Deep supervision was implemented by adding segmentation layers 

at each step of the localization pathway (Figure 13, right). Deep supervision allows for the 

injection of gradient signals deep into the network163, as it speeds up convergence and 

enhances training efficiency when there is a small amount of available labeled training 

data162,164. An elementwise summation with upsampling was then applied across all 

added segmentation layers to generate the final segmentation. As coarse segmentation 

results may yield unrealistic results, skip connections were applied (i.e. concatenation) by 

fusing earlier layers in the network where the down-sampling factor is smaller to recover 
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the original spatial resolution165. To rebuild high-resolution feature maps, deconvolution 

was used in the localization pathway in order to learn the upsampling166.  

 To minimize model overfitting (ensuring the model remains generalizable to the 

hold-out dataset after being tuned to a training set), data augmentation119 including 

flipping, rotating (0-30°, 1° increments), scaling (± 25%, 1% increments), and translating 

(10 pixels in the left-right, anterior-posterior, and superior-inferior directions) was applied. 

Originally proposed as a novel objective function based on DSC167, a Dice-weighted multi-

class loss function was used162,168 to manage the different image features among 

substructures, as shown in Equation 9:  

ℒ𝐷𝑆𝐶 = −
2

|𝐵|
∑

∑ 𝑥𝑎,𝑏𝑦𝑎,𝑏𝑎

∑ 𝑥𝑎,𝑏𝑎 +∑ 𝑦𝑎,𝑏𝑎
𝑏∈𝐵                  (9) 

As label encoding is not sufficient for model training, 𝑦 represents the ground-truth 

segmentation map converted from categorical to binary variables (i.e. one-hot encoding). 

For training voxel 𝑎 in class 𝑏, 𝑥𝑎,𝑏 and 𝑦𝑎,𝑏 represent the prediction and ground-truth, 

respectively. As a larger DSC represents better overlap between ground-truth and the 

prediction, the loss function is negative due to it being minimized during the training. Each 

value of correspondence between both the training and validation datasets to ground-

truth are represented by an average across all 12 substructures. 

 An adaptive momentum estimation optimizer169 was used along with randomly 

initialized weights. Patience (i.e., number of epochs to wait without validation loss 

improvement before reducing the learning) was also implemented during training. An 

epoch is defined as one forward pass and one backward pass (i.e., backpropagation 

process) of all the training samples117. Optimized hyperparameters included an initial 



54 
 

 

learning rate of 5 x 10-4, 50% learning rate reduction, a batch size of 1, patience of 10 

epochs, and 16 base filters in the first layer of the localization pathway. 

 Patient data was split into 25 patients for training data and 7 (11 unique datasets) 

patients for a hold-out data set for network testing. No hold-out datasets used for testing 

were implemented in the network training. Training data was split via random assignment 

into 80% training and 20% validation data. Paired MRI and CT data were placed into 

separate image channels along with indexed ground-truth labels for 25 patients to train 

the 3D U-Net using the entire 3D MR and CT images and all substructures 

simultaneously. Training was considered to be sufficiently converged when the training 

error between two adjacent epochs (i.e. one forward and backward pass of all the training 

samples) was less than 0.001117.  

 All work was performed using Windows 10 operating system in Python version 3.6. 

The 64-bit Microsoft Windows system is equipped with a quad-core Intel® Xeon® CPU-

E5-1630 v4 at 3.70GHz and 16GB of memory. The employed graphics processing unit 

was an NVIDIA Quadro M4000 with 8 GB of RAM and 1664 CUDA cores where Keras 

2.0 was implemented with a TensorFlow backend. 

Contour Post-Processing and Optimization 

 As coarse output maps from the DL network may containing holes and spurious 

predictions from neural networks are common121, contour post-processing was performed 

on the 3D U-Net output using a fully connected CRF170 that imposes regularization 

constraints through minimizing an energy function113. A 3D-CRF model was developed 

based on an initial two-dimensional implementation113 and optimized to refine 
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segmentations by smoothing, filling holes and removing false positives, such as small 

remote regions.  

 3D-CRF was implemented on a GPU for improved computation and inference time. 

Inference here is with regard to the number of iterations applied to minimize the Kullback-

Leibler divergence113. Both bilateral171 (i.e. appearance kernel) and Gaussian113 (i.e. 

smoothness kernel) pairwise energies were used to account for the grayscale intensity 

similarity, as well as the spatial proximity of pixels. The applied kernel involves the sum 

of a smoothness and appearance kernel which are shown in the following equations113:  

𝑠𝑚𝑜𝑜𝑡ℎ𝑛𝑒𝑠𝑠 𝑘𝑒𝑟𝑛𝑒𝑙 =  𝑘𝑠 = 𝑒𝑥𝑝 (−
|𝑃𝛼−𝑃𝛽|

2

2𝜃𝑥
2 )   (10) 

𝑎𝑝𝑝𝑒𝑎𝑟𝑎𝑛𝑐𝑒 𝑘𝑒𝑟𝑛𝑒𝑙 =  𝑘𝑎 =  𝑒𝑥𝑝 (−
|𝑃𝛼−𝑃𝛽|

2

2𝜃𝑥
2 −

|𝑄𝛼−𝑄𝛽|
2

2𝜃𝑦
2 )   (11) 

 
𝑎𝑝𝑝𝑙𝑖𝑒𝑑 𝑘𝑒𝑟𝑛𝑎𝑙 = 𝑤1 ∗ 𝑘𝑠 +  𝑤2 ∗ 𝑘𝑎    (12) 

 
where 𝑃 and 𝑄 represent Intensity and position vectors at pixel (𝛼, 𝛽). The smoothness 

kernel works to remove small remote regions172 and is controlled by a scaling factor 𝜃𝑥. 

Parameter 𝜃𝑦 is an additional scaling factor in the appearance kernel, which controls the 

degree of similarity in predicted pixels. The appearance and smoothness kernel are 

equally weighted with weights 𝑤1 = 𝑤2 = 1.  

 CRF hyperparameters 𝜃𝑥 and 𝜃𝑦 were optimized automatically173 for each 

substructure by stepping through different parameter values and then comparing 

prediction results back to ground-truth through DSC. Based on the range of utilized values 

found in the current literature113,174,175, full integer values from 1-80 were stepped through 

for 𝜃𝑥 and in steps of 0.05 from 0-1 for 𝜃𝑦, yielding a total of 100 individual tests. As it was 

shown in113 that convergence may be reached in less than 10 iterations, 10 inference 
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steps per substructure prediction were used173. Finally, predictions both with and without 

CRF post-processing will be assessed by comparing agreement with ground-truth.  

 Network testing on the hold-out dataset was conducted using the remaining 11 test 

patient CTs containing the heart and thorax from seven unique patients. Binary mask 

segmentations were converted to contours in Digital Imaging and Communications in 

Medicine (DICOM) format and imported into MIM. 

Evaluations and Statistical Assessment 

 Quantitative evaluations between DL and ground-truth segmentations were 

performed via DSC176, MDA (average of the shortest distance between all voxels of the 

predicted and ground-truth segmentations148), Hausdorff distance (HD, maximum nearest 

neighbor Euclidean distance177), and centroid displacement in three cardinal axes. DL 

segmentations were also compared to our previously published multi-atlas (MA) results, 

which implemented STAPLE with 10 atlas matches48 using a shared cohort of 11 test 

subjects. Lastly, qualitative consensus scoring of DL segmentations was conducted to 

evaluate clinical utility. Before the qualitative grading was performed, three physicians 

(two radiation oncologists and a radiologist with a cardiac subspecialty) reviewed DL 

segmentations from a patient who was excluded from the grading. The physicians were 

instructed on the image grading system and a grading consensus scale was established 

for each substructure and then applied for five unique patients. Qualitative consensus 

scoring was completed on five of the test subjects as evaluated in our previously 

published atlas study48. Scoring was completed using a 5-point scale48,149 as follows: (1) 

not clinically acceptable, (2) clinically acceptable with major changes, (3) clinically 

acceptable with moderate changes, (4) clinically acceptable with minor changes, (5) 
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clinically acceptable. Contours were converted to a 0.25 mm high resolution display for 

final evaluation in MIM. 

 For volume size similarity assessment, 2-tailed Wilcoxon signed-ranks tests were 

performed between ground-truth and auto-segmented DL segmentations, with P < 0.05 

considered significantly different. Statistical assessments using 2-tailed Wilcoxon signed-

ranks tests were also used to compare DL segmentations to our previous MA method via 

DSC, MDA, and qualitative consensus scores.  

Results 

Segmentation and Post-Processing Time  

 The initial manual ground-truth delineations of the 12 cardiac substructures 

required ~ 3 hours per patient. The DL network stabilized in ~ 19.4 hours after training 

the network for 200 epochs, including ~ 2 hours after implementing data augmentation. 

Figure 14 shows the results for the training and validation datasets over the 200 epochs. 

The final training and validation DSC values were 83.1% and 81.5%, respectively 

(difference < 2%), which represents an average over all 12 substructures. 
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Figure 14: 3D U-Net training and validation results over 200 epochs. Values for mean 
Dice similarity coefficient (DSC) represent an average over all 12 substructures. 

 

 Augmentation led to an overall DSC increase of 5.0 ± 7.9% across all 

substructures, with greatest improvements in the coronary arteries (LMCA = 18.6 ± 

15.5%, RCA = 8.7 ± 9.1%, LADA = 7.8 ± 7.1%). Substructure contour generation (12 

substructures) for a new patient using a single non-contrast CT-SIM dataset input took 

5.0 ± 0.6 seconds. CRF post-processing time from a single test patient using 10 inference 

steps for 12 substructures was 9.3 ± 0.3 seconds, for a total DL generation time of 14.3 

seconds (range: 13.5-15.6 seconds). 

CRF Post-Processing 

 CRF hyperparameter optimization revealed that differing values of (𝜃𝑥,𝜃𝑦) provided 

maximal DSC when three different sets of optimized parameters were employed for (1) 

coronary arteries and PV (2.0, 0.40), (2) superior/inferior venae cavae (2.0, 0.50), and (3) 
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chambers and great vessels (8.0, 0.55). CRF applications lead to an average 

improvement in DSC, MDA, and HD over all substructures of 1.2 ± 2.5%, 0.11 ± 0.31 mm, 

and 5.58 ± 14.25 mm, respectively. The LMCA had the greatest improvement in DSC (6.2 

± 6.6%, range: 1-22%) after CRF application, whereas the RV and RA saw the least 

improvement (0.3 ± 0.2%, range: 0.0-1.0%). The LV showed the greatest improvement in 

MDA (0.3 ± 0.5 mm, range: 0.0-1.2 mm) and HD (34.4 ± 23.0 mm, range: 0.1-64.7 mm) 

after 3D-CRF application. Lastly, after applying CRF, the mean improvement in MDA 

ranged from 0.04 to 0.21 mm over the 12 substructures. 

Geometric Performance of Segmentation 

 DL segmentation results are presented in Table 4.  

 Segmentation Improvement   

Substructures Augmentation DSC CRF HD (mm) Final DSC Final MDA (mm) 

Chambers (LA, LV, RA, RV) 0.03 ± 0.03 10.23 ± 19.34 0.88 ± 0.03 1.53 ± 0.26 

Great Vessels (SVC, PA, AA) 0.03 ± 0.05 3.59 ± 10.79 0.85 ± 0.03 1.24 ± 0.31 

Inferior Vena Cava 0.00 ± 0.05 6.61 ± 15.23 0.78 ± 0.04 1.45 ± 0.45 

Pulmonary Veins 0.05 ± 0.04 2.82 ± 4.41 0.77 ± 0.04 1.04 ± 0.21 

Coronary Arteries 

     Left Anterior Descending Artery 0.08 ± 0.07 0.16 ± 0.27 0.53 ± 0.08 1.90 ± 0.90 

     Right Coronary Artery 0.09 ± 0.09 5.01 ± 15.86 0.50 ± 0.09 1.97 ± 0.46 

     Left Main Coronary Artery 0.19 ± 0.16 0.65 ± 0.96 0.50 ± 0.18 1.27 ± 0.68 

          

Table 4: Improvement in automatic segmentation performance in Dice similarity 
coefficient (DSC) after augmentation and in Hausdorff distance (HD) after 

implementation of conditional random fields (CRF) post-processing. The table also 
shows the final agreement to ground-truth via DSC and mean distance to agreement 

(MDA). Additional abbreviations defined in the text. 
 

Figure 15 presents comparisons between ground-truth and DL segmentations across 

substructures (LMCA not shown). The best-case patient (Figure 15, right) had chamber 

DSCs greater than 0.90 and MDAs less than 2 mm for all substructures with favorable 
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results for the RCA (DSC = 0.72, MDA = 1.67 mm). MDA (Figure 17, left) across all 12 

substructures was less than 2.0 mm (MDA = 1.46 ± 0.50 mm). 

 

Figure 15: Comparisons between contours generated via deep learning prediction and 
ground-truth (GT) in both two-dimensional axial slices (top) and 3D renderings (bottom) 

for the worst (left), average (center), and best (right) cases. 
 

 Wilcoxon signed-ranks tests revealed no significant differences in cardiac 

substructure volumes between DL and ground-truth (P > 0.05). Figure 16 summarizes 

the centroid shifts in all cardinal axes. On average, the smallest displacements (< 2 mm) 

occurred in the anterior-posterior direction for 11 substructures. The largest 

displacements occurred in the superior-inferior direction.  
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Figure 16: Substructure centroid displacements in the left-right (left), anterior-posterior 
(right), and superior-inferior (bottom) directions. Legend: interquartile range = box, 

median = line, minimum and maximum = whiskers, circles and stars = 1.5 and 3 times 
the interquartile range, respectively. 

 

DL vs. MA Segmentation  

 Figure 17 summarizes MDA and DSC results over 11 test cases and compares DL 

with our previously developed MA method for the same cohort48. MDA and DSC for all 

cardiac substructures improved with DL. Specifically, DSC agreement to ground-truth 

increased 3-7% for chambers, 9-11% for the superior/inferior venae cavae and PV and 

reached 23-35% for the coronary arteries. On average, MDA improved by ~1.4mm with 

DL, with greatest agreement in the SVC (MDA = 0.99 ± 0.15 mm) and worst agreement 

in the RCA (MDA = 1.97 ± 0.46 mm). For four test CTs, our DL method yielded LMCA 

contours, whereas our previous atlas-based model failed to produce any segmentation. 
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Overall, DL provided a significant improvement (P < 0.05) over the previous MA method 

for every substructure in terms of MDA and DSC. 

 

 

Figure 17: Agreement between manually drawn ground-truth and auto-segmentation 
methods (Blue: Previous multi-atlas method (MA), Red: Novel DL method) over 11 test 

cases. Left: Mean MDA, Right: Mean DSC. 
 

Qualitative Analysis  

 Physician consensus scores are summarized in Figure 18. All patients had 

clinically acceptable contours (score of 5) for the LV, RA, and RV (results not shown), 

while the SVC, PA, and PV had clinically acceptable contours for 4/5 patients with DL. 

For the cardiac chambers, 6/20 comparisons between DL and MA methods were 

equivalent, while all others improved by at least one grade with DL. The LMCA and RCA 

had the lowest average scores of 3.0 ± 1.0 and 3.8 ± 0.4, respectively, with all other 

substructures scoring an average of ≥ 4.4. DL provided significant improvements (P < 

0.05) over the MA method for the LADA, RCA, PV, PA, SVC, LA, RA, and RV. 

Improvements in 44/60 (5 patients, 12 substructures) qualitative scores were observed 

with DL. For only one instance, DL scored worse than MA (AA: grade 4 to 3). For two 
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LADA segmentations, MA yielded a grade of 1 (clinically unusable) and improved to a 5 

(clinically acceptable) with DL (Figure 18, right).  

 

Figure 18: Qualitative consensus scoring (not clinically acceptable, clinically acceptable 
with major changes, clinically acceptable with moderate changes, clinically acceptable 
with minor changes, clinically acceptable) of five patients for the multi-atlas (MA) and 

deep-learning (DL) based image auto-segmentations (chambers not shown). For each 
substructure column, the MA and DL methods are shown on the left and right, 

respectively. 
 

Discussion 

 This work presented a novel DL pipeline to segment sensitive cardiac 

substructures using a 3D U-Net with the principal goal of applying to non-contrast CT-

SIM for RT planning. Data augmentation and CRF post-processing improved DL contour 
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agreement with ground-truth. Overall, our method provided accurate segmentations of 

the chambers, great vessels and PVs, and led to promising results in coronary artery 

segmentation on non-contrast CT-SIM datasets178. 

 While cardiac substructure segmentation has been explored previously, to our 

knowledge, none have included paired MR/CT multi-channel data inputs to yield robust 

segmentations on non-contrast CT inputs. Several atlas segmentation methods have 

been recently published48,132,155 and report cardiac chamber DSCs > 0.75. However, 

these methods have had limited success segmenting coronary arteries as atlas methods 

rely on image registration quality and are unable to consider large amounts of patient data 

due to computational demands179. Our work parallels recent applications of DNNs where 

CTCA scans specifically optimized for cardiac imaging were utilized. Here, DSC in the 

RA (87.8%)157 and PA (85.1%)92 were within 1% of our DL method, while we were within 

5% of their chamber segmentation results. Our work adds to the current literature by 

including additional substructures and allowing for predictions to be made on non-contrast 

CT-SIM scans. 

 Data augmentation improved DL segmentation accuracy by ~5% across all 

substructures. Although no comparison values exist in the literature for cardiac 

substructure segmentation, this value is consistent with studies performed on liver lesion 

segmentation180,181. One extreme outlier (greater than 3 times the interquartile range) 

observed for the RV in the left-right axis occurred for the worst-case patient (Figure 15, 

left), where the heart was rotated clockwise and shifted posteriorly/left. While this patient’s 

anatomy was an anomaly, this result may be addressed in the future by further 

augmenting the data (i.e., rotation > 30o). Furthermore, both the LADA and RCA had 
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larger centroid shifts in the superior-inferior plane (Figure 16, bottom). This can be further 

visualized in Figure 15 (left), where the inferior extents of the LADAs and RCAs were 

underrepresented with some narrowing of these substructures observed in the midline 

axial slice. To address this, recent atlas-based methods have restricted the size of the 

LADA to 4 mm throughout its entire length156. Nevertheless, our DL pipeline performed 

well for coronary artery contours on non-contrast CTs (DSC ~ 0.50, MDA < 2.0 mm), 

particularly as compared to recent atlas results where coronary artery (LADA, RCA, and 

LMCA) DSCs ranged from 0.09-0.2748,132,155 and had MDAs > 4 mm132. Coronary artery 

segmentations may be improved through the use of high resolution (0.78 x 0.78 x 1.6 

mm3) CTCA92 that use contrast and yield DSCs ~ 60%182. Additionally, implementing a 

Dice loss function weighted on the inverse of the class size may improve the results for 

smaller substructures such as the coronary arteries. Originally proposed by Crum et al.183, 

the generalized Dice loss function has been shown to improve hyperparameter 

robustness for unbalanced tasks (i.e. when each class is not represented equally in the 

dataset), and improve overall segmentation accuracy for small structures184. 

 While rare cases involved the removal of spurious remote predictions that resided 

within the ground-truth delineation, 3D-CRF led to an overall improvement in 

segmentation agreement. The coronary arteries experienced the greatest improvement 

from CRF post-processing, with the LCMA improving ~ 6% in DSC. Additionally, there 

were improvements in MDA up to 1.21 mm and 1.96 mm for the LV and LA, respectively. 

Aside from removing spurious outlying points, CRFs also improved the smoothed 

appearance of the segmentations as needed for clinical application185. CRF tuning 

required different parameters for cardiac substructures based on size and shape, much 
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like the work completed by Rajchl et al.186. The improvement in segmentation agreement 

observed, along with the use of a 3D-CRF to remove spurious isolated regions, parallels 

other emerging uses of 3D-CRF post-processing in medical imaging187,188. Although this 

study implemented CRFs as a post-processing step, some current studies have 

integrated CRFs into the utilized neural network and have seen improved segmentation 

performance173,174,189 and can be explored in future work for possible coronary artery 

segmentation improvement.  

 The overall time to generate DL segmentations on pre-processed CT-SIM data 

was rapid: 14 seconds for all 12 substructures. This value can be compared to Mortazi et 

al. who segmented seven cardiac substructures in ~ 50 seconds on high resolution CTCA 

and 17 seconds on MRI92. Moreover, our previous MA method required ~ 10 minutes to 

generate substructure contours per patient without post-processing48.  

 Although the in-plane resolution was 0.7 x 0.7 mm2, our study may have been 

limited by the 8 mm slice thickness of the MRI. Despite our data augmentation techniques, 

increasing the training sample size may further improve segmentation results. However, 

similar training and testing cohort sizes with augmentation have been used previously190. 

While paired cardiac MRI/CT data are commonly limited for cancer patients, the training 

cohort may be expanded in the future by applying our DL model to generate additional 

ground-truth segmentations. Data quantity may also be increased through utilizing 

unlabeled images for unsupervised learning via generative models such as, a cycle-191 or 

a stacked-192 GAN, which implement multiple GANs for data synthesis. Recently, Zhang 

et al.158 proposed a novel cardiac chamber segmentation method using a GAN integrating 

cycle- and shape-consistency. They obtained DSCs comparable to atlas segmentations 
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(DSC ~ 0.75) on CT and MRI by using ~ 14% of real data and augmenting their dataset 

by incorporating synthetic MRI and CT data into training. Our model may be enhanced 

similarly by incorporating synthetic images in the network training, while also providing 

additional substructures, such as pulmonary veins and coronary arteries. Nevertheless, 

even with the current limited training dataset, our results outperform other currently 

available approaches. As shown in Figure 14, training and validation results increased to 

a point of stability with a difference of < 2% after convergence. Moreover, to further limit 

potential overfitting in this more limited cohort, data augmentation (i.e., flipping, scaling, 

rotating, and translating) and model regularization (dropout = 0.3) were implemented.  

 As both the CT and MR images were acquired in breath hold conditions, 

respiratory motion is assumed to be negligible during this study. However, due to 

extended scan times and heart rate, one limitation of this study is that numerous cardiac 

cycles are captured during imaging. Thus, the substructures are represented by their 

average position over the course of the scan and cardiac motion is not taken into 

consideration. Currently, cardiac motion is not managed clinically due to limitations in 

available treatment technologies. Nevertheless, the magnitude of cardiac motion is on the 

order of 3-8 mm52 suggesting internal motion may be incorporated into future margin 

design as has been previously proposed33,53.  

 As MR-guided RT and MR-only planning become more prevalent, future work will 

include training an MR-only model. It has been recently recommended that the LADA be 

included as an avoidance structure in RTP32, thus a natural clinical endpoint of this work 

includes dosimetric analysis and implementing cardiac avoidance strategies via accurate 

and efficient cardiac substructure segmentation made possible by DL. 
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Conclusion 

 These promising results suggest that our novel DL application offers major 

efficiency and accuracy gains for cardiac substructure segmentation over previously 

published MA results, using only non-contrast CT inputs. Future work involves further 

refinement of coronary artery segmentation using conditional random fields as a recurrent 

neural network and through expanding the patient cohort. Coupled with robust margin 

design, improved cardiac sparing in treatment planning can be realized. 
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CHAPTER 5 “QUANTIFYING INTRA-FRACTION MOTION AND INTER-FRACTION 
SETUP UNCERTIANTIES”  
 
Part 1 “Characterizing Sensitive Cardiac Substructure Excursion due to 
Respiration” 
 
Introduction 

Radiation dose to the heart from thoracic cancer treatments can increase the 

possibility of the patient experiencing diseases such as ischemic heart disease, 

cardiomyopathy, and artery atherosclerosis193,194. Currently, only whole heart dose 

estimates are considered for RTP in clinical practice16. However, recent studies have 

shown that dose to individual substructures in the heart may be better indicators of future 

cardiac events than whole heart dose metrics28. The superior soft tissue contrast that MRI 

provides allows for these sensitive cardiac substructures to be visualized. However, the 

use of MRI for thoracic cancer treatment is not the standard of care due to technical and 

accessibility limitations. For example, CT is more prevalent for diagnosis because it 

allows for lung nodule depiction down to 1-2 mm195, whereas MRI is sensitive to lung 

nodules of 5-11 mm196. Additionally, MRI may be limited in the diagnosis of lung cancers 

due to susceptibility artifacts caused by several air-tissue interfaces197. Through the use 

of MRI to inform cardiac substructure delineations on thoracic CT images, our objective 

is to quantify substructure excursion during respiration to identify dominant axes of 

displacement per substructure. Based on our segmentation work described previously, 

we were able to incorporate sensitive cardiac substructures into the treatment planning 

process, however accurate radiation dose assessment may be complicated by respiratory 

motion influences198. An example of the displacement of the heart over the respiratory 

cycle is shown in Figure 19.  
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Figure 19 displays both an end-inhalation (EI, 0% phase) and end-exhalation (EE, 

50%, phase) 4DCT image for a representative patient. In both the axial and sagittal views, 

a delineation of the whole heart on the EI phase is shown in red to reveal the cardiac 

displacement in various axes. Additionally, there is a difference map on the right side of 

Figure 19 for all cardinal axes. 

 
Figure 19: Example of whole heart displacement in between respiration at end 

inhalation (0% phase, column 1) and end exhalation (50% phase, column 2). Difference 
maps of the 0% minus the 50% phase are shown in column 3 with a representation in 
each cardinal axis. The end inhalation delineation of the heart is shown on each image 

in red.  
 

Several motion management techniques, including but not limited to, gating and 

breath-hold, have been incorporated clinically to manage a patient’s respiratory motion 

during radiation treatment or image acquisition199. DIBH techniques have been 
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implemented in cancer treatments to position the heart further from the irradiation field for 

left breast cancer treatments. However, even minor displacements can have a large 

dosimetric effect when using highly conformal radiation therapy techniques like intensity 

modulated radiation therapy (IMRT) or volumetric modulated arc therapy (VMAT)50,200. 

These dosimetric effects are heightened when small structures, like the coronary arteries, 

are introduced201.  

Various studies have reported on how intra-fractional motion affects dose delivery 

to the heart from thoracic cancer treatments. A study by George et al. studied the effects 

of intra-fractional motion for breast cancer treatments using IMRT at three different types 

of respiration (i.e. shallow, normal, and heavy)202. They found that lung and heart dose 

increase with respiration202. Yue et al. expanded on these findings by studying how intra-

fractional motion affects changes in DVH metrics for left breast treatments using 10-phase 

4DCT203. They found the maximum dose to the heart can vary up to 6 Gy in respiration203. 

Along with studying how intra-fractional motion in RT affects the heart in left-sided breast 

cancer treatments using 10-phase 4DCT, El-Sherif et al. included the LV, and LADA201. 

They found that even though the 95% confidence interval of the four-dimensional dose 

was ± 0.5 Gy for the whole heart, it varied ± 8.7 Gy for the LADA.  

In a similar fashion, Guzhva et al. completed a study using 10-phase 4DCT on 20 

patients to analyze the cardiac and respiratory combined intra-fractional motion influence 

on 12 cardiac substructures for patients undergoing RT for thoracic cancers50. Cardiac 

substructure segmentations were completed on the 50% phase and then deformably 

propagated to the remaining phases50. They found that the largest centroid displacements 

from intra-fractional motion were in the craniocaudal axis (i.e. superior-inferior), and that 
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the cardiac chambers experienced the smallest displacements overall (largest 

displacements in the coronary vessels)50. The work presented our study builds upon the 

current literature by providing population results and including additional cardiac 

substructures, such as the LMCA and the great vessels (i.e. SVC, AA, and PA). 

Additionally, the current study provides volume statistics across respiratory phases and 

a dosimetric analysis.  

In this study, we utilized 4DCT data and DIR to quantify the excursion of 12 cardiac 

substructures along with the whole heart during respiration to characterize displacement 

and identify dominant axes of excursion. The work completed here may be used to 

complete a future study on generating an accurate motion model for cardiac 

substructures, from which a robust safety margin can be defined. These safety margins 

would ensure adequate cardiac sparing and potentially prevent patients from 

experiencing future cardiac toxicities. 

Methods 

Patient Cohort and Imaging 

Eleven patients with cancer (8 left-sided breast cancer and 3 lung cancer patients) 

were retrospectively reviewed on an Institutional Review Board approved study 

conducted at the Henry Ford Cancer Institute. These patients either underwent 4-phase 

(n=8, breast cancer patients) or 10-phase (n=3, lung cancer patients) non-contrast 

4DCTs. All patients were imaged with a respiratory correlated 4DCT and cardiac gated 

T2-weighted MR in EE. Reconstructed data was exported from the clinical scanners and 

de-identified for analysis. The EE phase of the 4DCT was rigidly registered with the EE 
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MRI and the registration was refined with an assisted alignment surrounding the heart 

using MIM (version 6.9.1, MIM Software Inc., Cleveland, OH). 

Segmentation of Ground Truth 

Thirteen cardiac substructures including the heart, left/right ventricle (LV/RV), 

left/right atrium (LA/RA), pulmonary vein (PV), pulmonary artery (PA), ascending aorta 

(AA), superior/inferior vena cava (SVC/IVC), left anterior descending artery (LADA), left 

main coronary artery (LMCA), and right coronary artery (RCA) were automatically 

segmented using multi-atlas48 (n=8) and deep learning techniques204 (n=3) that used 

hybrid MRI/CT information on the EE phase of the 4DCTs. These EE delineations were 

verified and if needed, corrected by a physician before propagating contours to the other 

phases. All physician segmentation delineations and corrections followed a recent 

consensus contouring guideline for cardiac substructure segmentation141. 

Physician verified contours on the EE (i.e. 50% phase) of the 4DCT were deformed 

to the other phases using a constrained, intensity-based, free-form DIR based on Demons 

which minimizes the intensity differences between two single modality datasets205. The 

Demons DIR technique, originally proposed by Thirion et al.206, is widely used for its 

accuracy and computational efficiency207. This same DIR algorithm from MIM software 

has been implemented in several other CT to CT DIR studies and achieved high 

accuracy51,208,209. Specifically, Piper et al. applied a known deformation to a CT volume 

and found that this deformable image registration technique averaged 1.1 mm error from 

the gold standard145.  

The location of each substructure at end-inhalation (0%), end-exhalation (50%), 

and two intermediate phases (25-30%, 70-75%) were evaluated in this study. To conduct 
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the DIR, a box-based assisted alignment around the heart is completed. The DIR 

workflow creates a set of grid control points using a coarse-to-fine, multi-resolution 

approach and incorporates user-specified DIR locks208. Regularization is added to 

discourage folds and tears in the deformation field208. The multi-resolution approach 

prioritizes larger registration differences and then refines the registration to account for 

smaller local changes, which allows for anatomical alignment even when there are large 

differences present due to respiration208. With regard to expected registration uncertainty, 

residual registration deformation errors in the lung were 0.8 ± 0.4 mm208. Once DIR was 

used to propagate cardiac substructure segmentations to each phase of the 4DCT, final 

contour verification was conducted by a radiation oncologist.  

Analysis for Statistical and Quantitative Comparisons 

Measurements of centroid locations, volume at each respiratory phase, as well as 

maximum excursion between phases were exported from MIM for subsequent analysis. 

Maximum excursions in each direction were reported as mean ± SD. The displacements 

that exceeded 5 mm for each of the 3 cardinal axes were evaluated based on guidance 

provided by the respiratory motion management report produced by the American 

Association of Physicist in Medicine Task Group report number 76210. Paired t-tests were 

employed for statistical analysis of each substructure to compare volumes of the contours 

between all 4 phases. Any P-value less than 0.05 was considered as a statistically 

significant difference. All statistical analysis was performed using SPSS version 25.0 

(SPSS, Chicago, IL, USA).  
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Dosimetric Analysis 

Dosimetric assessment included all patients (n=11) and plans were originally 

completed on the 50% phase. Assessment consisted of tabulating the mean (Dmean) and 

maximum dose (Dmax) and locating the largest dosimetric change over the respiratory 

phases. As different treatment sites (i.e. breast lung) are represented in this patient 

cohort, percent variation in dose was also used to assess population values. 

Results 

Cardiac Substructure Centroid Displacement Summary 

Centroid displacements for the left-right (L-R), anterior-posterior (A-P), superior-

inferior (S-I), and vector shifts for the patient population are shown in Figure 20. Maximal 

vector displacements ranged from 5-10 mm across substructures. Vector displacements 

were largest for the IVC and the RCA, with displacements up to 17.9 mm. Of the three 

cardinal axes, intra-fraction centroid displacements were observed to be the largest in the 

S-I axis. Maximum displacements of greater than 5 mm were found for 24.8%, 8.5%, and 

64.5% of the cases in the L-R, A-P, and S-I axes, respectively. As shown by the green 

boxplots in Figure 20, 10 of the 13 structures considered in this study had median intra-

fraction centroid displacements that were equal to or greater than 5 mm of displacement 

in the S-I axis, as shown in Figure 20. Further, only the S-I axis had a 95th data percentile 

that extended past 15 mm (IVC). For 10/13 studied cardiac structures, data for the first 

three quartiles was less than 5 mm in the L-R axis. With regard to outliers, seven out of 

eight of the substructure outliers in the L-R axis can be attributed to a single patient, as 

discussed further in Figure 22. Over all substructures, the A-P was the axis with the least 

excursion. As shown in Figure 20, median excursions for 11/13 structures were smallest 
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in the A-P axis. Table 5 also summarizes the L-R, A-P, and S-I maximal displacements 

for each cardiac substructure over the patient population. 

 

 
Figure 20: Intra-fraction centroid displacement comparison between all 13 structures for 
each direction: left-right, anterior-posterior, superior-inferior, and vector. Boxplots, thick 

line, and whiskers represent the interquartile range (IQR), median, and 5th and 95th 
percentiles, respectively. Data points displayed as a small circle represent a value 

greater than 1.5 times the IQR and the star represents a value greater than 3 times the 
IQR. 

 

With regard to regional displacement, Table 5 reveals that the great vessels (i.e. 

the AA, SVC, and PA) had the least amount of excursion along each axis, also confirmed 

by Figure 20. Both the IVC and the RCA, cardiac substructures at the inferior aspect of 

the heart, had maximal centroid displacements that were greater than 15 mm. Figure 20 

and Table 5 also reveal that the IVC was the substructure with the largest displacements 

in the S-I axis. For the RCA, nine out of 11 patients had centroid displacements that 

exceed 5 mm in the S-I axis while the IVC had eight patients exceed this threshold. The 
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RCA and IVC each had the largest maximum vector displacements of greater than 9 mm, 

as shown by Table 5.  

Substructure L-R (mm) A-P (mm) S-I (mm) Vector (mm) 

Heart (n=9) 2.5 ± 2.7 1.5 ± 1.4 5.9 ± 2.5 6.6 ± 3.1 

LV 3.1 ± 2.6 2.4 ± 1.8 6.3 ± 2.8 7.6 ± 3.4 

LA 3.4 ± 2.0 1.9 ± 1.3 6.0 ± 2.2 7.0 ± 2.7 

RV 3.9 ± 3.1 2.1 ± 1.4 6.1 ± 3.0 7.7 ± 3.6 

RA 3.7 ± 2.5 2.1 ± 1.7 6.2 ± 2.6 7.5 ± 3.1 

PA 2.9 ± 2.2 1.6 ± 1.1 4.9 ± 2.0 6.0 ± 2.5 

AA 3.1 ± 2.5 1.4 ± 0.6 4.0 ± 1.7 5.4 ± 2.4 

SVC 2.8 ± 2.6 1.4 ± 0.9 5.0 ± 2.3 5.7 ± 2.8 

PV 3.9 ± 2.6 2.0 ± 1.2 5.2 ± 1.6 6.5 ± 2.5 

IVC 3.2 ± 2.7 3.8 ± 2.5 8.5 ± 3.3 9.8 ± 3.4 

RCA 5.3 ± 4.1 2.6 ± 1.2 7.8 ± 3.7 9.8 ± 4.1 

LADA 3.0 ± 1.5 4.1 ± 1.3 7.1 ± 2.6 8.7 ± 2.5 

LMCA 5.0 ± 3.5 2.7 ± 2.0 5.8 ± 2.4 8.2 ± 3.1 

 
Table 5: Maximum displacement of individual cardiac substructures over 11 patients 

throughout the respiratory cycle in each cardinal axis (left-right (L-R), anterior-posterior 
(A-P), and superior-inferior (S-I)) and vector displacements. Substructure abbreviations 

defined in the text. 
 

Volume and Statistical Analysis 

The paired t-tests revealed that out of 39 volume comparisons per patient (13 

structures, 4 phases), there were 4 instances in total where P < 0.05 for the volume 

comparisons, showing reasonable maintenance of geometric and anatomical properties. 

The average volume of the whole heart across all patients at the 50% phase was 742.9 

cc. On average, the percent difference in volume for the whole heart between the 0% and 

50% phases was 1.2 ± 0.5 %. The cardiac substructures with the largest variabilities in 
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volume between EE and EI had average volumes greater than 70 cc (PA and cardiac 

chambers) and are shown in Figure 21. The RA was the cardiac substructure with the 

largest volume differences between EE and EI of 7.8 ± 6.5 % (range: 0.9 to 20.2 %).    

 

Figure 21: Volume percent difference between end-inhalation and end-exhalation for 
select substructures over all studied patients  

 

Excursion analysis of the 4-phase 4DCTs revealed that 52.5% and 31.9% of 

maximum excursions occurred between the 0 and 50%, and the 0 and 70% (or 75%) 

trajectories, respectively. Maximum excursions only occurred between the 0 and 30% (or 

25%) phases 6.4% (9/141 instances) of the time. 

Individual Patient Cases 

Figure 22 shows substructure excursion between the 0% phase (bottom row) and 

the 50% phase (top row) images for two representative patients. Results for these 

patients are also shown in both the axial and sagittal axes. Patient 1 (Figure 22, left) was 

selected as it experienced minimal centroid displacement for cardiac substructures over 
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respiration. Patient 1 had smaller than average vector displacements for 11/13 cardiac 

structures (LMCA had the largest vector excursion for this patient of 11.8 mm).  

Even though the largest displacements were observed in the S-I axis across the 

population (as stated in the section above), Figure 22 also shows Patient 9 (Figure 22, 

right) as they experienced the largest L-R displacement across patients. This patient 

exhibited the largest substructure displacements in the L-R axis (contrary to the S-I 

tendency), with L-R intra-fraction displacements for 12 out of 13 cardiac structures 

exceeding 5 mm and displacements up to 13.5 mm for the LADA. In reference to Figure 

20, Patient 9 (Figure 22, right) accounts for eight out of nine of the substructure outliers 

in the L-R axis (blue dots and stars). In the S-I axis, Patient 9 had centroid displacements 

for all substructures greater than 5.0 mm and up to 8.7 mm. 
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Figure 22: Two representative patients showing substructure excursion between 0% 
(bottom row) and 50% phase (top row) images with the contours from each phase 

shown on both image sets for the axial and the sagittal axes. Left: Patient 1 selected for 
minimal displacement over respiration. Right: Patient 9 chosen for largest left-right (L-R) 

displacement across patients. Cardiac substructure abbreviations are defined in the 
text. 

 

Figure 23 displays results for Patient 3, where the average displacements across 

substructures for the L-R, A-P, and S-I directions were 5.1 ± 3.1 mm, 2.2 ± 1.6 mm, and 

10.0 ± 3.8 mm, respectively. As can be seen, there were intra-fraction centroid 

displacements for the RA and LV in the L-R axis (axial view of the 0% phase image), 

while the LA and RV had negligible displacements (less than 1 mm). The sagittal view, 

on the left of Figure 23, emphasizes that the maximum displacements occur in the S-I 

axis for the LA, AA, and heart. The large excursions found for this case may be attributed 

to the patient’s abnormal anatomy of preceding scoliosis. Additionally, the heart is rotated 

into the left lung as can be seen in Figure 23.  
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Figure 23: Representative patient (Patient 3) showing substructure excursion between 
0% (bottom row) and 50% phase (top row) images with the contours from each phase 

shown on both image sets for the axial (right) and the sagittal (left) planes. 
 

Dosimetric Analysis 

Over the eight studied breast cancer patients, the LADA Dmean varied 3.03±1.75 

Gy (range: 0.53 to 5.18) throughout respiration. Whereas, whole heart Dmean changed 

0.18±0.09 Gy (range: 0.06 to 0.37). Figure 24 shows two representative breast cancer 

patients with the heart, ventricles, and LADA displayed over respiratory phases. Both 

Patient 2 and Patient 6 were treated to 42.72 Gy in 16 fractions for a stage 1A malignant 
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neoplasm of the left breast. For these patients the LADA (Figure 6, green) had a Dmean 

that varied >3.5 Gy in respiration.  

 

Figure 24: Dose volume histograms for Patients 2 (Left) and 6 (Right) showing the 
dosimetric variation across respiratory phases for the heart and select cardiac 
substructures. Substructure color gradient transitions from dark to light as the 
respiratory phases pass from the 0% to the 70% phase, respectively. Cardiac 

substructure abbreviations defined in the text. 
 

Patient 9 (shown in Figure 22, right) received RT for a malignant neoplasm of the 

upper right lung bronchus (non-small cell lung cancer) of 60 Gy in 20 fractions. Of the 

three lung cancer patients studied, Patient 9 experienced the largest changes in dose 

across respiratory phases, which is shown in Figure 25. Patient 9 experienced an average 

change in Dmax of 3.2±2.9 Gy (range: 0.46 (PA) to 9.05 Gy (RA)) across cardiac 

substructures. With regard to Dmean, the average change across substructures was 

2.2±1.8 Gy. For the other two lung cancer patients, no cardiac substructure had Dmean 

differences >1.4 Gy (Dmax differences up to 5.6 Gy).  

Figure 25 shows DVHs for Patient 9 displaying the dosimetric variation across 

respiratory phases for the great vessels (top), the cardiac chambers (middle), and the 

coronary arteries (bottom). Each DVH also shows the dosimetric variation in respiration 

across the whole heart, which is shown in red. The great vessels and chambers had more 
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variation in dose throughout respiration as compared to the whole heart (Figure 25). 

Specifically, although changes in Dmean for the heart were <0.5 Gy, the SVC (shown in 

blue in Figure 25, top) had a Dmean difference up to 5.4 Gy. The bottom of Figure 25 also 

shows a DVH displaying coronary artery dosimetric variation in respiration. The LMCA, 

shown in burgundy, experienced a change in Dmean up to 4.6 Gy. 

Patient 3, represented in Figure 23, received RT for a malignant neoplasm of the 

left breast (state IIIA, T2, N2) of 45 Gy in 25 fractions. Between the 25% and 75% phase, 

the RV experienced an 8.7 Gy change in Dmax. Regarding Dmean, the LADA experienced 

a 4.2 Gy change between the 0% and 25% phases. For both Patient 3 and Patient 9 

however, changes in Dmax and Dmean for the heart were <0.5 Gy. The DVHs outlined 

highlight an increased dosimetric sensitivity through local dose changes that is not 

captured by the whole heart. 
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Figure 25: Dose volume histograms for Patient 9 showing the dosimetric variation 
across respiratory phases for the great vessels (top), the cardiac chambers (middle), 

and the coronary arteries (bottom). Substructure color gradient transitions from dark to 
light as the respiratory phases pass from the 0% to the 70% phase, respectively. 

Cardiac substructure abbreviations are defined in the text. 
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Discussion 

 By leveraging multi-phase 4DCT data, this work sought to quantify the intra-

fractional displacement of sensitive cardiac substructures throughout the respiratory 

cycle. Automatic segmentations were generated on the 50% phase of the 4DCT using 

previously validated multi-atlas and deep learning methods48,204. DIR was used to 

propagate physician delineated ground truth segmentations of 12 cardiac substructures 

and the whole heart to all other 4DCT phases. Intra-fraction centroid displacements over 

the 4DCT data were analyzed to determine the dominant axes of excursion.  

While other studies have evaluated intra-fraction heart displacement, our work 

helps to further quantify the primary axis of the displacement by quantitatively defining 

the excursion of the substructures contained within the heart. The work completed in this 

study is similar to that of a study by Guzhva et al. where they utilized 4DCT data with 

contour propagation in order to show the displacement experienced by the heart and its 

substructures due to respiration50. Guzhva et al. also propagated from the 50% phase to 

the other phases and then manually revised segmentations for final analysis50. They 

found that vector intra-fractional displacement of the cardiac substructures ranged from 

7 to 15 mm and was dominantly in the S-I axis50. Similarly, our work agrees with those 

findings in that substructure excursion from respiration was predominantly in the S-I axis, 

and maximal vector displacements ranged from 5 to 10 mm. Our study improved on the 

work conducted by Guzhva et al. by considering the LMCA and the LADA as separate 

cardiac substructures and through the consideration of the great vessels (i.e. SVC, PA, 

and AA)50. The current study also considered radiation dose and cardiac substructure 
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volume at different phases in respiration. However, both studies were limited as neither 

accounted for inter-observer contouring variability.  

With regard to the volume comparison between substructure volumes at EE and 

EI, it was found that the whole heart volume had small insignificant changes (~1%), which 

parallels results by Yue et al.203. Moreover, the dosimetric analysis in this work revealed 

that, although changes in Dmean and Dmax for the whole heart were less sensitive to 

respiration (< 0.5 Gy), large dose differences for individual substructures were 

experienced. This study also found that cardiac substructures towards the superior extent 

of the heart, the great vessels (i.e. AA, SVC, and PA), had the smallest displacements in 

each axis, where substructures at the inferior extent of the heart, the RCA and the IVC, 

had the largest displacements. Limited data are available for direct comparison, however 

it has been reported that tumor excursion in caudal lung lobes displace the most over the 

respiratory cycle211. Additionally, in a study by Wang et al., their 4DCT data showed that 

lung tumors with close proximity to the diaphragm experienced the most respiratory 

motion212. In the present study, the largest substructure centroid displacements occurred 

for the IVC, which is located at the inferior aspect of the heart, and passes through the 

diaphragm at the vena caval foramen213.   

 One limitation of this work is that the intra-fraction motion of cardiac substructures 

occurred in free breathing respiration and not under DIBH conditions. There have been 

abundant studies confirming that DIBH reduced cardiotoxicity risk214. However, it has also 

been shown that this reduction in risk may be accompanied by large inter-fraction setup 

errors215-217. The limitation of uncertainties associated with the DIR process (as outlined 

by American Association of Physicist in Medicine Task Group report number 132218) were 
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mitigated as segmentations at each phase of respiration were manually verified and 

corrected. Another limitation is that isolating cardiac excursion was not possible with 

respiratory-correlated 4DCTs, and thus, the excursions presented in this work 

represented a contribution from both respiratory and cardiac motion. However, it has been 

previously reported by Tan et al. that the LV and coronary arteries are the most mobile 

cardiac substructures through the cardiac cycle, displacing between 3-8 mm between 

end-diastolic and end-systolic phases in three dimensions52. Thus, cardiac motion may 

be managed through incorporation in future planning organ at risk volume design. This 

work may also be limited in that only four phases of the 4DCT were used instead of 10. 

However, in a recent 10-phase 4DCT study, there was no mention that all 10 phases 

were required or were at all advantageous over 4-phase 4DCT50. Additionally, our study 

presents statistics on which phases the maximum centroid displacement occurred 

between, which is a unique contribution. 

This work included both breast and lung cancer patients, which may have 

contributed to differing dominant axes of motion from cardiac and respiration influences. 

Guzhva et al. did find that patients with Hodgkin’s lymphoma had a tendency to have 

larger displacements in the S-I axis than patients with lung cancer, which could be due to 

the comorbidities accompanying smoking or otherwise compromised lung function (i.e. a 

hyperinflated lung)50. Therefore, inconsistencies in patient anatomy could also cause 

uncertainty in determining the dominant axes of excursion and may be circumvented 

through expanding the patient cohort, or grouping by disease site. Nevertheless, this work 

was done in order to validate the need for consideration of cardiac substructures through 
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the incorporation of a motion model. This would provide an opportunity to decrease 

cardiotoxicity risk during radiotherapy treatment.  

Conclusion 

This work characterized the independent intra-fraction displacement of the cardiac 

substructures through the respiratory cycle. This work has importance for possible cardiac 

substructure PRV generation for patients who are unable to comply with breath-hold 

conditions for thoracic cancer treatments. Future work to determine the dosimetric effect 

of sensitive cardiac substructure displacement in respiration is warranted.  
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Part 2 “Inter-Fraction Cardiac Substructure Displacement Assessed Via MR-
Guided Radiation Therapy” 
 
Introduction  

RT doses to the heart are strongly linked to cardiac toxicities such as coronary 

heart disease, heart failure, and even cardiac death15,16. Cardiotoxicity is often reported 

for breast, lung, and esophageal cancers as well as Hodgkin's disease5,6,8.  In RTOG 

061726 evaluating dose escalation for locally advanced NSCLC, volumes of the heart 

receiving ≥ 5 and ≥ 30 Gy were independent predictors of a patients’ quality of life27 and 

overall survival26. Yet, the heart is complex and dose to substructures (e.g., coronary 

arteries, ventricles, atria, great vessels, etc.) contained within the heart have been 

strongly linked to radiation-induced cardiac morbidity30 and future acute coronary 

events28,219. Thus, recent attention has been focused toward local radiation dose 

deposition to substructures contained within the heart. Sub-analysis of RTOG 0617 

revealed that atrial, ventricular, and pericardial doses showed a stronger association with 

overall survival than using standard whole heart dose metrics40,41,220. Furthermore, an 

association has been found between the incidence of coronary stenosis to the radiation 

dose received by the coronary arteries221, thus underscoring the need for cardiac 

substructure-specific dose assessment.    

However, one significant challenge with assessing dose to cardiac substructures 

is that they are difficult to discern on non-contrast treatment planning CTs and not typically 

considered in the treatment planning process18 due to their limited soft tissue contrast as 

shown in Figure 26 (center). MRI, on the other hand, substantially improves the visibility 

of cardiac substructures (Figure 26, right)43,44. Magnetic resonance-guided RT (MRgRT) 

offers significant advantages compared to x-ray based technologies for delineation, 
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localization, tumor tracking, and adaptive radiation therapy. Tumor and OAR visualization 

using 0.35 T MRgRT has been shown to be superior to cone-beam computed tomography 

(CBCT)222. MRgRT allows for simultaneous tracking to monitor intra-fraction motion 

during treatment delivery223 while avoiding radiation exposure due to the continuous 

imaging.  

In a prospective Phase 1 trial for MR-guided adaptive radiation therapy for ultra-

central lung cancer, the proximity of the lesion to the heart triggered plan adaptation for 

multiple treatment fractions, suggesting that inter-fraction displacement of the heart may 

be substantial224. Prior studies have shown that the average inter-fraction displacements 

of the whole heart and the LADA are typically < 7 mm in each orthogonal direction with 

the S-I displacement typically the greatest due to diaphragm motion49,225,226. To date, 

limited data are available to quantify inter-fraction displacement of other substructures 

other than the LADA. This study sought to leverage longitudinal MRgRT data to quantify 

inter-fraction displacements of 12 cardiac substructures to facilitate safety margin design.   
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Figure 26: (Top Left) ViewRay MR-linear accelerator, and two patient examples 
showing: (Middle) Treatment Planning CT that is low contrast and does not show 

sensitive cardiac substructures, (Right) 0.35 Tesla MR dataset with cardiac substructure 
contours evident and delineated via deep learning-based segmentation. Abbreviations 

defined in the text.  
 

Methods 

Patient Methods for Low-field MRI 

After obtaining Institutional Review Board approval, we retrospectively analyzed 

radiotherapy treatment data for 20 patients who underwent daily MRgRT using a ViewRay 

MRIdian 0.35T MR-linac (ViewRay, Mountain View, CA) (Figure 26, top left). Eleven 

patients had lung masses (64% metastatic and 36% primary bronchogenic malignancies), 

five had mediastinal and chest wall lesions, and the remaining four patients had liver 

tumors (i.e. hepatocellular carcinoma). SBRT was prescribed to 75% of the study cohort 

(4-5 fractions/patient) and the remaining were treated with conventionally fractionated 

IMRT (14-30 fractions/patient). All cases underwent 0.35 T MRI simulation (MR-SIM) on 

the MR-linac in the same respiratory condition used for treatment (11 imaged in EE, 7 in 
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EI, and two in free breathing). Breath-hold scans were conducted using a 17-25 second 

acquisition (1.5×1.5×3.0 mm3 resolution) while the free breathing scans utilized a 3-

minute acquisition (1.5×1.5×1.5 mm3 resolution). For each image acquisition, a b-SSFP 

sequence was utilized (TrueFISP, Siemens, MAGNETOM Avanto, Syngo MR B19). 

TrueFISP is commonly used in cardiac imaging due to its high signal-to-noise ratio and 

imperviousness to motion artifacts227,228. The first 3-4 daily MR scans for all cases were 

evaluated for cardiac substructure displacement (total = 79 fractions). 

Cardiac Substructure Segmentation 

Inter-fraction motion was assessed for 12 cardiac substructures including the 

left/right atria (LA, RA), ventricles (LV, RV), superior/inferior venae cavae (SVC, IVC), 

ascending aorta (AA), pulmonary artery/veins (PA, PV), LADA, right coronary artery 

(RCA), and left main coronary artery (LMCA). Of the 20 total patients studied, initial 

cardiac substructure segmentations were generated on MR-SIM datasets using a 

previously validated cardiac substructure segmentation atlas48 for 11 patients. For the 

remaining 9 patients, cardiac substructures were automatically generated using a three-

dimensional deep learning U-Net204 that was developed at a later date. The deep learning 

U-Net was implemented as it yielded reductions in substructure generation time and 

improved segmentation accuracy as compared to the atlas method. After the 

substructures were segmented on the initial MR-SIM image, the outputted segmentations 

were validated by one of two radiation oncologists. Contours underwent final verification 

by the more experienced of the two radiation oncologists with manual modifications made 

as needed to ensure clinically viable segmentations were rendered regardless of the initial 

segmentation approach.  
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A commercially available intensity-based free-form DIR algorithm (MIM Software, 

Cleveland, OH) was used to propagate contours from the MR-SIM image to each daily 

MRI, yielding a total of 3-4 registrations per patient (79 unique daily MRIs across all 

patients). Final propagated contours were again verified by one of two radiation 

oncologists and corrected as needed. In order to assess the inter-fraction substructure 

displacement due to daily patient positioning, a final translation-only rigid registration 

between the MR-SIM image and each daily MRI was performed by a physicist with an 

emphasis on aligning the PTVs. Figure 27 displays an example of substructure variation 

in position at breath-hold between MR-SIM and daily fractions for a representative patient. 

 

Figure 27: Example of substructure variation in position at breath-hold between MR 
simulation (MR-SIM, left), daily fraction 1 (center), and daily fraction 4 (right) for a 

representative patient. Substructure abbreviations are defined in the text.  
 

Statistical Analysis and Data Extraction 

A MIM workflow was developed to export centroid and volume information for the 

substructures after tumor-based rigid registrations. Inter-fraction differences for each 

cardiac substructure were quantified via centroid analysis in each cardinal direction, as 

well as in vector displacement. A two-tailed Wilcoxon signed ranks test was used to test 

for statistically significant differences in volume between the MR-SIM and each daily MRI, 
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for each substructure. A P-value less than 0.05 was considered statistically significant. 

All statistical analyses were conducted using SPSS version 26.0 (SPSS, Chicago, IL).  

Planning Organ at Risk Volume Generation 

ICRU 62 recommends the inclusion of a margin for OARs for the consideration of 

geometric uncertainties in RT229,230. This margin, called the planning organ at risk volume 

(PRV), is a measure to account for both systematic and random uncertainties in the 

radiation therapy process230. Random errors in RT can cause the dose distribution to blur 

by displacing high/low isodose lines closer/further from the region of interest230. 

Systematic errors displace the entire dose distribution closer or further from the region of 

interest230. Using the MR-SIM as the reference, mean centroid displacements and SD for 

each patient and substructure were calculated. The systematic error (Σ) was calculated 

by taking the SD of the mean displacement and the random error (σ) by calculating the 

root-mean-square of the SD53. Of note is that a measure of uncertainty induced by 

breathing is not included in this calculation as 18 out of 20 patients were treated in breath-

hold conditions231. The PRV was calculated to accommodate daily setup variations based 

on a previous study by McKenzie et al.230 with coefficients selected where the PRV 

maximum dose does not exceed the OAR maximum dose in 90% of cases230,231.   

 𝑃𝑅𝑉 = 1.3 ∗ 𝛴 + 0.5 ∗ 𝜎 (13) 

Results 

Patient Population Results 

Across the heart and substructures, inter-fraction displacements for 18.5% (L-R), 

17.4% (A-P), and 23.1% (S-I) fractions were greater than 5 mm. Fewer than 3.7% of all 

structures displaced at least 10 mm in any direction over the studied fractions, and these 
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were often due to lack of compliance with breath-hold conditions. Table 6 summarizes 

the maximum excursions across the patient population for all cardiac substructures in the 

L-R, A-P, S-I, and vector displacements. 

    

Structure  L-R  A-P  S-I  Vector  

Heart (average ± SD mm)  
% within 10 mm  

% within 5 mm  

2.5 ± 1.6  1.6 ± 1.7  3.1 ± 2.3  4.8 ± 2.4  

100.0  100.0  100.0  94.3  

91.4  91.4  85.7  57.1  

Left/Right Ventricles  
   
   

3.0 ± 2.8  2.9 ± 3.0  2.9 ± 2.5  5.9 ± 3.7  

96.2  96.8  97.5  89.2  

83.5  82.3  80.4  48.7  

Left/Right Atria  
   
   

3.0 ± 2.5  2.8 ± 2.8  3.2 ± 2.9  5.9 ± 3.8  

96.8  96.8  96.2  88.6  

82.3  82.9  81  46.8  

Great Vessels   
   
   

2.7 ± 2.4  2.3 ± 2.4  3.1 ± 2.5  5.5 ± 3.2  

97.5  98.3  98.3  92.4  

87.8  86.9  80.2  51.9  

Left Anterior Descending   Artery   
   

3.6 ± 3.5  4.7 ± 4.4  3.9 ± 3.4  8.2 ± 5.1  

94.9  89.9  94.9  74.7  

75.9  65.8  65.8  30.4  

Right Coronary Artery  
   
   

3.7 ± 3.0  3.7 ± 3.3  4.2 ± 3.1  7.5 ± 4.3  

96.2  93.7  93.7  74.7  

69.6  73.4  65.8  36.7  

Left Main Coronary Artery  
   
   

4.1 ± 4.2  2.8 ± 2.8  3.4 ± 3.0  6.9 ± 4.7  

91.1  96.2  94.9  84.8  

78.5  87.3  74.7  43.0  

 
Table 6: Average displacement for heart substructures for all studied MRI guided 

radiation therapy fractions with respect to the MRI simulation. Abbreviations Left-Right 
(L-R), Anterior-Posterior (A-P), Superior-Inferior (S-I).   

   

For the chambers, the median absolute displacements were 2.4, 1.8, and 2.4 mm 

in the L-R, A-P, and S-I directions, respectively. The RCA shifted similarly in all axes 

(median shifts 3.3-3.9 mm) whereas the LADA had the highest A-P, S-I, and vector shifts 

of all substructures evaluated. The great vessels (i.e. SVC, PA, and AA) showed a 

tendency to have larger displacements in the S-I direction, with 44.7% of shifts being 
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greater than 3 mm, whereas only 35.4 and 26.6% of displacements were observed in the 

L-R and A-P directions, respectively. Larger S-I displacements likely reflect the larger 

axial MRI slice thickness (3 mm vs. 1.5 mm) for most (18/20) patients.   

 

Figure 28: (Top row) Left ventricle and left anterior descending artery (bottom row) 
displacement across all treatment fractions with respect to positioning at MR simulation 

across each cardinal axis. 
 

Figure 28 shows the absolute centroid shifts from the MR-SIM for the LV (top) and 

LADA (bottom) across all four treatment fractions and in the L-R (Figure 28, left), A-P 

(Figure 28, center), and S-I (Figure 28, right) axis. Patients 7 and 11 exhibited the largest 

shifts (greater than 10 mm) in the L-R axis for the LV. Patient 7, who underwent SBRT 
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for an enlarged mediastinal lymph node is shown in the top row of Figure 29. Figure 

29 shows the MR-SIM image (left) and the fraction 4 MR image (right) localized to the 

centroid of the LV. Note the marked movement of LV, RV, LADA, RCA and RA in contrast 

to the heart that encountered minimal movement. Substructure delineations from each 

scan are represented on both images and reveal substructure shifts after a translation-

only rigid registration to align the PTVs. Similarly, Patient 11 exhibited the largest 

displacement of the LV between MR-SIM and the fourth treatment fraction in the L-R axis. 

Patient 11 underwent RT for a malignant neoplasm of the lower left lung lobe and is 

represented in the bottom row of Figure 29.  
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Figure 29: Patients 7 (top two rows) and 11 (bottom two rows) who experienced large 
left-right shifts between MR-simulation (left) and daily treatment (right). For each patient, 

both axial and coronal views are displayed for both the MR-simulation and the daily 
treatment. The lung contours highlight the lack of breath-hold compliance. 
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While most LADA shifts shown in Figure 28 were less than 10 mm, fraction 3 for 

patient 6 had a LADA centroid shift greater than 18 mm. Patient 6 received SBRT for a 

pulmonary nodule and is represented in Figure 30. Figure 30 shows both the axial (top 

row) and sagittal (bottom row) axes at the centroid of the LADA with the planned treatment 

dose. Note the marked movement of RV, LV, and LADA displacement, particularly in the 

inferior direction, moving the substructures further away from the high dose region. 

Substructure delineations from both the MR-SIM and fraction 3 images are represented 

on both images and represent substructure shifts after a translation-only rigid registration 

to align the PTVs.  

  

 
Figure 30: Displacement of cardiac substructures and planned dose between the 0.35 T 
MR simulation on axial (top row) and sagittal (bottom row) axes compared to fraction 3 
0.35 T MRI for Patient 6 undergoing stereotactic body radiation therapy for a pulmonary 

nodule. Substructure abbreviations defined in the text.   
 

Patient 20 received SBRT for an anterior liver dome hepatocellular carcinoma and 

is represented in Figure 31. SBRT localization at our institution includes an initial bony 

alignment conducted at breath-hold and then breath-hold compliance is assessed using 
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landmarks such as the dome of the diaphragm or liver. Once confirmed, a soft tissue 

match is then conducted in the tumor region. In the case of Patient 20, Fraction 2, the 

clinical net soft tissue correction from bony alignment for this case was 1.35 cm in the 

lateral direction. Figure 31 shows the displacement of select cardiac substructures 

between the MR-SIM (Figure 31, top left) and the second treatment fraction (Figure 31, 

top right) along with the planned dose. Figure 31 also highlights a DVH illustrating the 

expected dose to cardiac substructures at both timepoints. As can be seen in Figure 28, 

Patient 20 had the largest centroid displacement for the LV over any other displacement 

in the A-P axis. Additionally, the second fraction of this patient’s treatment, shown in 

Figure 31, had centroid displacements for the LV greater than any other fraction for this 

patient by more than 5 mm. The DVH shown in Figure 31 shows that after the alignment 

of the treatment target shown in red, the substructures in the fraction 2 placement 

received additional radiation dose. More specifically, the mean dose to the IVC increased 

by 3.6 Gy when comparing MR-SIM planning dose to the second treatment fraction.   
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Figure 31: Top Row: Displacement of cardiac substructures and planned dose between 
MR-simulation (MR-SIM) in an axial view compared to fraction 2 MR for Patient 20 
receiving stereotactic body radiation therapy for anterior liver dome hepatocellular 

carcinoma. Bottom: Dose Volume Histogram (DVH) showing planning dose to cardiac 
substructures at both timepoints. Substructure abbreviations defined in the text.   

 

Planning Organ at Risk Volume Calculation 

 Table 7 shows the calculated systematic and random errors across cardiac 

substructures, as well as the PRV.   

  Systematic Error (Σ) Random Error (σ) PRV (mm) 

Substructure L-R A-P S-I L-R A-P S-I L-R A-P S-I 

LV 2.19 2.25 1.97 2.16 2.30 2.07 4 4 4 

LA 2.29 2.24 2.72 1.79 2.05 1.91 4 4 4 

RV 2.16 1.87 1.70 1.89 1.97 1.92 4 3 3 
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RA 1.86 2.28 2.04 1.64 2.14 2.23 3 4 4 

PV 2.17 1.67 1.66 2.33 1.92 2.13 4 3 3 

PA 1.91 1.46 1.81 1.98 2.02 1.86 3 3 3 

AA 2.12 1.74 1.93 1.60 1.88 1.98 4 3 3 

SVC 1.76 2.19 1.61 1.62 1.72 2.29 3 4 3 

IVC 1.27 1.88 2.67 2.20 2.12 2.92 3 4 5 

RCA 2.37 2.32 2.33 2.17 2.81 2.43 4 4 4 

LADA 2.74 2.53 2.69 2.51 3.23 2.60 5 5 5 

LMCA 3.11 1.86 2.31 3.24 2.39 2.23 6 4 4 

 
Table 7: Systematic (left) and random error (center) used to calculate the planning 

organ at risk volume (PRV) (right) across 12 cardiac substructures for the population (n 
= 20) 

  

 As shown by Table 7, isotropic margins of 4 mm were determined for the LV, LA, 

and RCA. The largest isotropic margin of 5 mm was calculated for the LADA, while the 

LMCA had a 6 mm margin in the L-R axis. The great vessels (i.e. SVC, PA, AA) 

experienced the smallest PRVs with the majority of axes being 3 mm. 

Discussion 

 By leveraging MRgRT, this work sought to quantify the inter-fraction displacement 

of sensitive cardiac substructures over the SBRT treatment course. Recent MRgRT 

advances and auto-segmentation work were utilized to accurately and efficiently delineate 

12 cardiac substructures. Centroid shifts over unique longitudinal MRgRT data were 

analyzed and allowed for safety margin design.  

 The trends observed in this current work are largely consistent with those from 

prior studies. One study by Jagsi et al. investigated the inter-fraction reproducibility of the 

LADA of 10 patients who underwent adjuvant RT for breast cancer under active breathing 

control49. The displacements of the LADA from the planning CT scan to that from 11 

treatment fractions were assessed at EE and DIBH states with spine-based image 
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registration49. They reported the long-term reproducibility, defined as the SD, of the LADA 

position to be 4.5 mm in the L-R, 3.3 mm in the A-P, and 6.0 mm in the S-I axis at EE, 

and 2.7 mm in the L-R, 3.4 mm in the A-P, and 6.8 mm in the S-I axis during DIBH49. In 

the current study, the displacements of the LADA were 3.6 ± 3.5 mm (L-R), 4.7 ± 4.4 mm 

(A-P), and 3.9 ± 3.4 mm (S-I) which are consistent with the values reported by Jagsi et 

al.49. Two prior studies investigated the inter-fraction displacement of the heart. One 

series by Alderliesten et al. included breast cancer patients who received adjuvant RT at 

DIBH215. The heart position relative to the breast surface, as captured by surface imaging 

with AlignRT system, was measured with a planning CT and daily CBCTs215. Based on 

data from 378 fractions of 20 patients, the displacement of the heart was 2.1 ± 2.0 mm 

(L-R), 0.8 ± 3.3 mm (A-P), and -2.2 ± 7.8 mm (S-I)215. In a similar study by Comsa et al., 

the largest average “shift of heart position” (measured as the distance between the heart 

and the chest on daily CBCT images) at moderate DIBH in five breast cancer patients 

was reported to be 6.2 mm226. In comparison, our study reported a heart displacement of 

2.5 ± 1.6 mm (L-R), 1.6 ± 1.7 mm (A-P), 3.1 ± 2.3 mm (S-I), and 4.8 ± 2.4 mm (vector), 

which agree with these prior studies. However, our study is unique as it is the first study 

to report inter-fraction displacements of several cardiac structures other than the heart 

and LADA. 

 PRVs for 12 cardiac substructures were calculated in this study. Li et al. utilized 

20-phase electrocardiogram gated data and a reference of the end-systolic phase to 

determine PRVs for coronary arteries53. Using the method of margin calculation 

mentioned here (previously proposed by McKenzie et al. for small and/or serial 

organs230), they calculated a range of margins between 3-8 mm53. Similarly, Topolnjak et 
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al. studied the geometrical uncertainty of the heart using left-sided breast cancer 

patients231. They calculated PRVs from inter-fractional motion of the whole heart, derived 

from CBCT images, to be 1.6, 1.4, and 2.1 mm in the L-R, A-P, and S-I, respectively231. 

The values from these two studies can be compared to the 3-6 mm range of PRVs derived 

from the current study. The discrepancy from Li et al. is likely due to their coronary artery 

segmentations being standardized at 2 mm diameter, whereas our coronary artery 

segmentations were not standardized and were larger (~4-6 mm). Whereas, Topolnjak et 

al. had smaller PRV values as they only assessed the whole heart.  

 One limitation of our study is that the utilized MR images were not cardiac gated 

and therefore did not take into consideration cardiac motion. As the image acquisition 

time ranged from 17 seconds to 3 minutes, numerous cardiac cycles were captured 

throughout the course of imaging and therefore, the cardiac substructures are 

represented by their average position over the course of the scan. The cardiac motion 

captured in these scans may have presented challenges in identifying the coronary 

arteries as they can become indistinct and noncontiguous141. This was managed by 

consensus ground truth segmentations being generated by two radiation oncologists. 

Although cardiac motion can be on the order of 3-8 mm52, it is currently not taken into 

consideration clinically as cine-angiography or echocardiography are required232. Yet, as 

the cardiac substructure excursions from this work are on the order of cardiac motion, the 

internal motion may be merged with the inter-fraction variability in a future safety margin 

design. Topolnjak et al. incorporated a term for the PRV calculation to accommodate 

respiratory motion which is not addressed in this work as 18 out of 20 patients were 

treated in breath-hold231. 
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 Another limitation of this work is that only 0.35 T TrueFISP MRgRT datasets 

acquired at breath-hold were evaluated. To translate the work to other field strengths such 

as the 1.5 T offered with the Unity MR-linac (Elekta AB, Stockholm, Sweden), the deep 

learning segmentation pipeline would need to be retrained for the higher field MRI 

datasets for the MRI sequence of interest. Additionally, the increased signal-to-noise ratio 

at higher field strengths may provide an improvement to automatic segmentation 

accuracy.  Nevertheless, the inter-fraction substructure displacements quantified at a low 

MRI field strength under breath-hold conditions may be applied regardless of field 

strength.   

 As current studies are considering cardiac substructures in RT, it is crucial that 

inter-fraction variation is considered. Patel et al. has recently recommended that the 

LADA is incorporated as a cardiac substructure to avoid during the RT planning process 

due, as radiation dose to it has been strongly tied to coronary artery calcification32. A 

study by Aldridge et al. found that the integration of cardiac substructures into the re-

optimization of retrospective thoracic RT plans drastically reduced radiation dose to 

sensitive cardiac substructures233. This reduction was achieved with a negligible increase 

in plan complexity while maintaining PTV coverage and clinical endpoints for other critical 

OARs233. Examples of cardiac substructure sparing through VMAT was shown by Ferris 

et al. who achieved significant improvements in mean dose to the chambers, great 

vessels, and coronary arteries234. These studies outline the importance in considering 

cardiac substructures in planning which will require adequate setup and motion margin 

consideration. 
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 The increased presence of RT indications for peri-cardiac tumors, especially 

metastatic lesions, mandate the development of realistic cardiac sparing margins. 

Anisotropic cardiac substructure-specific planning margins for OARs may be warranted 

to accommodate differential inter-fractional shifts. While these results suggest that these 

margins may need to be patient-specific, more precise margin definition will require 

further confirmation in a larger cohort stratified by respiratory status and accounting for 

systematic and random uncertainties. 

Conclusion 

 This exploratory work quantified the inter-fraction displacement of critical cardiac 

substructures and is a first step in deriving substructure-specific safety margins to ensure 

highly effective cardiac sparing. Individual cardiac substructure displacement 

demonstrated variability in magnitude and dominant axis, suggesting that anisotropic 

substructure-specific PRVs may be warranted. These findings require validation in a 

larger cohort for applications in prospective clinical trials. 
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CHAPTER 6 “TREATMENT PLANNING COMPARISONS AND TRANSLATING 
TECHNOLOGIES TO AN MR-LINAC” 
 
Part 1 “Incorporating Sensitive Cardiac Substructure Sparing into Radiation 
Therapy Planning”  
 
Introduction 

Cardiac toxicity is a major complication of cancer treatment and can occur during, 

shortly after, and even many years after treatment has been delivered. Long-term follow 

up of patients undergoing thoracic radiation, such as lymphoma, lung, breast, and 

esophageal cancers, has shown that in particular, RT can lead to radiation-induced 

cardiac toxicities such as congestive heart failure, pericardial effusion, coronary artery 

disease, and myocardial infarction5-7.   

Yet, when a patient’s RT plan is created, only simple whole heart metrics (i.e. 

MHD) are routinely considered for cardiac risk assessment in the current standard of care. 

The QUANTEC report assesses dose to the heart as a whole and recommends less than 

10% of it receives greater than 25 Gy (in 2 Gy fractions) to keep the conservatively 

estimated risk of long term cardiac mortality less than 1%18. Importantly, these whole-

heart dose metrics do not provide any information on where dose is distributed.  

The heart is a complex organ and dose to its substructures (e.g., coronary arteries, 

ventricles, atria, great vessels, etc.) have been strongly associated with radiation-induced 

cardiac morbidity30 and future acute coronary events28,219. For example, dose to the LADA 

has been linked to an increased risk of myocardial infarction31 and development of 

coronary artery calcifications32. Similarly, higher doses at the base of the heart (i.e. 

ascending aorta, superior vena cava, and pulmonary artery) are associated with lower 

rates of patient survival35. Importantly, recent RTOG 0617 sub-analyses suggest that 
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dose to the atrial and ventricular cardiac substructures are more strongly associated with 

survival than assessing dose/volume relationships to the entire heart volume40,41,235. In a 

recent study by van den Bogaard et al.28, dose to the LV-V5 predicted major coronary 

events better than MHD. A study by Hoppe et al. highlighted the importance of quantifying 

substructure dose as the MHD becomes less correlated to substructure dose with 

increasingly conformal delivery236. Furthermore, a study by Jacob et al. outlines how the 

MHD does not accurately predict dose to the LV and coronary arteries237. 

To date, reducing dose to sensitive cardiac substructures has been severely 

limited because they are not readily visible on standard x-ray-based imaging used for 

both RT planning (i.e. CT-SIM) and RT delivery (i.e. CBCT). Thus, leveraging the superb 

soft tissue contrast of MRI may be advantageous, as MRI improves cardiac substructure 

visibility43,44. Furthermore, the recent introduction of MR-linacs (Figure 32, left) has 

yielded improved tumor and critical structure visualization at 0.35 T MRI as compared to 

CBCT222. MRgRT allows for continuous anatomical visualization of the patient’s heart and 

target volume throughout treatment which may offer advantages for improved cardiac 

sparing. Therefore, to advance towards mitigating cardiotoxic side effects from RT, 

approaches for considering cardiac substructures during treatment planning are urgently 

needed. 

This work sought to apply a multimodality workflow (treatment planning CTs 

coupled with low-field MR-linac MRIs) to integrate sensitive cardiac substructures into 

treatment planning. This multi-modality workflow allowed us to quantify potential 

dosimetric advantages for improved cardiac sparing through plan re-optimization and for 

cases that may benefit, beam angle modifications. 
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Figure 32: (Left) ViewRay 0.35T MR-linac, (Middle) treatment planning CT, (Right) 
0.35T MR dataset with cardiac substructure contours evident and delineated. PTV: 
planning target volume (malignant neoplasm of lower left lung bronchus). Cardiac-

related abbreviations are defined in the text. 
 

Methods 

Patient Cohort and Image Acquisition 

Fifteen patients with 16 pericardial lesions (i.e. 16 individual plans) who underwent 

MRgRT for upper thoracic treatments of the lung, mediastinum, and esophagus were 

retrospectively reviewed on an Institutional Review Board approved study. Of these, 11 

were treated with stereotactic body radiation therapy (3-5 fractions to a total dose of 30-

50 Gy), 2 underwent conventional fractionation (25-35 fractions to a total dose of 50-70 

Gy), and the remaining three were moderately hypo-fractionated (14-20 fractions to a total 

dose of 36-60 Gy). Patients were imaged in various breathing states (7 end-exhalation, 7 

end-inhalation, 2 free-breathing) on a 0.35 T ViewRay MRIdian linear accelerator 

(ViewRay, Mountain View, CA). 

All patients were imaged with a b-SSFP (i.e. TrueFISP) acquisition sequence 

(Siemens, MAGNETOM Avanto, Syngo MR B19) with 15/16 patients with mobile tumors 

undergoing daily 17-25 second MRIs (1.5×1.5×3 mm3) under breath-hold conditions. One 
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patient with a left chest wall lesion could not tolerate breath-hold and thus underwent a 

175 second free-breathing MRI for treatment planning. TrueFISP is commonly used in 

cardiac imaging due to high signal-to-noise ratio and imperviousness to motion 

artifacts227,228. All treatment planning was conducted and dose was calculated on a non-

contrast CT-SIM in a manner similar to what has been reported for MRgRT of thoracic 

lesions224. All CT-SIMs were acquired on a Brilliance Big Bore CT Simulator (Philips 

Medical Systems, Cleveland, OH) with a 3 mm slice thickness. MR and CT-SIM sessions 

were conducted on the same day and patients were immobilized in the supine position 

using molded vacuum cushions.  

Segmentation and Registration 

Assessed cardiac substructures included the heart, left/right ventricles (LV, RV), 

atria (LA, RA), superior/inferior venae cavae (SVC, IVC), ascending aorta (AA), 

pulmonary artery/veins (PA, PV), left anterior descending artery (LADA), right coronary 

artery (RCA), and left main coronary artery (LMCA). For 11 patients, a cardiac 

substructure segmentation atlas48 automatically generated the cardiac substructures on 

the CT-SIM dataset for treatment planning with the final contours displayed on the low-

field MRI at Figure 32, right. For the remaining 5 patients evaluated at a later date, 

automatic cardiac substructure segmentation on the CT-SIM was performed using a 

three-dimensional U-Net204, a deep learning model that improved the accuracy and 

substructure generation time as compared to the atlas method.  

While automatic segmentation methods (i.e. multi-atlas and deep learning 

methods) provided initial substructure contours on the CT-SIM datasets, a radiation 

oncologist consulted the co-registered low field MRI to modify and confirm the final 
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contours used for treatment planning. As shown by the lack of contrast in the planning 

CT (Figure 32, center), the enhanced soft tissue contrast from the MRI assisted the 

generation of more reliable cardiac substructure delineations on the corresponding 

planning CT. Co-registration involved an automatic rigid registration based off a manually 

drawn, local, cardiac confined bounding box. Normalized mutual information was used as 

the similarity metric as it has been shown to accurately align multi-modality images140. 

Treatment Planning 

For all patients, the CT-SIM was used as the primary image set for treatment 

planning as has been reported in the literature for MRgRT of thoracic lesions224. The co-

registration of the low-field MR image to the CT-SIM to elucidate the cardiac substructures 

was a critical step in allowing the physician to verify the cardiac substructure auto-

segmentations. Step-and-shoot IMRT planning was used to generate all 16 RT plans at 

a dose rate of 600 cGy/minute. The MR-linac utilizes a fast Monte Carlo dose calculation 

algorithm238 and plans were calculated using a 1x1 mm dose grid with 1% dose 

uncertainty239. Plans were prescribed to 95% of the planning target volume with total 

doses for the original treatment plans varying from 30-70 Gy delivered in 4-35 fractions. 

The original treatment plans for all patients included clinical dose constraints for whole 

heart endpoints. Specifically, less than 15.0 cc of the whole heart was to receive 24-42 

Gy and a maximum dose no greater than 30-40 Gy (ranges were dependent on 

prescription dose). All clinical treatment plans met physician objectives using standard 

QUANTEC240,241 and TG-10131 dosimetric endpoints for OARs.   

Along with adding substructure segmentations retrospectively to the original 

clinical treatment plans for dose assessment, all plans were re-optimized to spare cardiac 
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substructures (SPARE plan). Strategies for substructure sparing included evaluating the 

original plan to identify which cardiac substructures were near the PTV and thus received 

the most dose. Optimization objectives were then added with increased priority on the 

substructures receiving higher doses. If the dose limit was unachievable, constraints were 

relaxed with the overall objective to minimize substructure dose. If the dose to a particular 

substructure was minimal in the original plan, an additional objective was added in the 

IMRT optimization to ensure consistency was maintained. 

In addition to adding substructures to the optimization, possible further cardiac 

sparing improvement was also assessed through modifying the beam arrangement (New 

Angles plan) after the substructures had already been incorporated into the optimization. 

Each plan was evaluated for the presence of beams entering or exiting the heart that 

could potentially be removed or modified to further spare the heart and substructures. 

The proximity of the patient’s lesion to the heart was evaluated as a potential reason for 

a patient benefiting from beam angle modification. IMRT techniques were used for all 

SPARE and New Angles plans with the substructures integrated into the optimization 

while maintaining tumor volume coverage and minimizing OAR dose. Table 8 outlines the 

dosimetric considerations during plan optimization, derived from the literature, when 

cardiac substructures were included. All plans were converted using the equivalent dose 

to 2 Gy fractions (EQD2, α/β = 2) for evaluation.   

 

 

 

 



113 
 

 

 

 

Substructure Mean Dose Maximum Dose 
Additional 
Endpoint 

Right Ventricle - Minimize42 V4542 

Left Ventricle - Minimize42 
LV-V528 
V4542 

Left Atrium 
8.5 Gy35 

Minimize42,242 
Minimize37 V4542 

Right Atrium 
8.5 Gy35 

Minimize42 
- V4542 

Superior Vena 
Cava 

8.5 Gy35 - D9037 

PA, PV, AA 8.5 Gy35 -  

Left Anterior 
Descending Artery 

Minimize243 
< 10 Gy32 

Minimize243 
V4542 

 

RCA, LMCA - - V4542 

 
Table 8: Summary of cardiac substructure sparing utilized in planning optimization for 
the re-optimization (SPARE) plan and the New Angles plan. Abbreviations defined in 

the text. 
 

Dosimetric and Statistical Assessment 

Original, SPARE, and when applicable, New Angle plans were exported from the 

ViewRay planning system and imported into MIM (version 6.9.4, MIM Software Inc., 

Cleveland, OH) for automated evaluation. Dosimetric assessment included mean doses, 

LV-V5, and Dose to 0.03 cc (D0.03cc, surrogate for maximum dose) for 12 cardiac 

substructures and the whole heart. To ensure clinical acceptable plans were still 

achieved, differences in PTV coverage and dose to the OARs were also assessed. Lastly, 

total MU and treatment time were evaluated and compared to the original clinical 

treatment plan as metrics of plan complexity. Dosimetric and planning data were 

summarized via mean ± SD. As the data was not normally distributed, dosimetric 
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comparisons for each metric were conducted using a 2-tailed Wilcoxon signed ranks test 

with P < 0.05 considered statistically significant. Statistical assessments were conducted 

in SPSS version 25.0 (SPSS, Chicago, IL).   

Results 

Contour Generation and Plan Complexity 

The treatment time per fraction (a metric of plan complexity) across the 16 patients 

after plan re-optimization was 6.57 ± 3.50 minutes (range: 2.60 to 12.41) for the clinical 

treatment plan and was 6.93 ± 3.27 minutes (range: 2.75 to 11.99) after re-optimizing (P 

> 0.05). The percent difference between the original and re-optimized delivered MUs was 

1.7 ± 11.3 % (range: -21.6 to 15.8%) which were not statistically different (P > 0.05).  

Four patients benefited from New Angles plans where the number of original 

treatment beams (range: 7 to 11) shifted between -1 and +3 (range: 8 to 14). For two of 

the four patients, lesions were directly adjacent to the heart (i.e. a pericardial lymph node 

and a malignant neoplasm of the lung (Figure 37)). The other two patients presented with 

upper lung lobe lesions that were greater than 9 cm away from the heart. The average 

treatment time for these patients after beam angle modification was 6.12 ± 3.68 minutes 

which was not significantly different (P > 0.05) from the original treatment time for these 

4 patients (6.54 ± 3.31 minutes). Lastly, the number of MUs for patients benefiting from 

beam angle modification were 9.5 ± 16.8% (range: -16.6 to 23.8%) different on average 

from the original plan (P > 0.05).  

Cardiac Substructure Sparing 

The radiation dose to the whole heart after plan re-optimization met all clinical 

objectives240,241. All sparing plans significantly reduced the MHD (P < 0.05) with an 
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average reduction of 0.7 ± 0.6 Gy (range: 0.1 to 2.5 Gy). Further, D0.03cc to the heart was 

reduced by 8.6 ± 12.1 Gy (range: -8.6 to 39.9 Gy) across all patients after plan re-

optimization (P < 0.05).  

Figure 33 outlines a subset of dose objectives from Table 8 representing the 

difference in radiation dose received by the LADA, LA, and LV between the original and 

clinical treatment plans across all 16 patients. Re-optimized SPARE plans reduced LADA 

mean and D0.03cc (0.0 to 63.9% and 0.0 to 17.3 Gy, respectively, Figure 33 left). For the 5 

patients that had LADA0.03cc doses greater than 10 Gy (threshold for coronary artery 

calcification32 presented in Table 1), 4 were brought below 10 Gy after re-optimization 

(average reduction for these patients was 13.4 ± 7.0 Gy). D0.03cc for the remaining patient 

was reduced from 29.0 to 11.2 Gy. Moreover, patient 6 (Figure 33) had a 4 Gy reduction 

in mean dose to the LADA after plan re-optimization. Similarly, D0.03cc to the LV was 

reduced in 14 cases (range: 0.05 to 12.85) with 10 patients having greater than 1.5 Gy 

reductions. A large reduction (> 7%) in LV-V5 was observed in 6 cases (Figure 33, right) 

and was significantly reduced over all patients (P < 0.05). LA mean dose (Figure 33, 

center) was either equivalent or reduced (average reduction 0.9 ± 1.2 Gy) for all SPARE 

plans. For Patient 3, the left atrial mean dose was reduced below 8.5 Gy which has been 

shown to be a threshold associated with decreased survival35. Lastly, the left atrial 

maximum dose that has been significantly associated with non-cancer death37 was 

reduced by 2.3 ± 6.4 Gy across all 16 patients. 
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Figure 33: Dose sparing possible by incorporating cardiac substructures into IMRT 
optimization during MR-guided radiation therapy planning. The mean dose for all 16 

patients is shown for the left anterior descending artery (left) and the left atrium (center). 
The left ventricular volume receiving 5 Gy (LV-V5) is shown on the right.  

 

Table 9 summarizes the change in mean dose and D0.03cc to all cardiac 

substructures. The mean doses to all substructures and the heart were significantly 

reduced after re-optimization (P < 0.05). Moreover, D0.03cc was significantly reduced after 

plan re-optimization in 8/12 substructures, as well as for the whole heart. The LMCA mean 

and D0.03cc doses were reduced for all patients and was the substructure with the largest 

reduction in mean dose across all patients (average reduction in LMCA mean dose: 1.13 

± 1.15 Gy). Lastly, the volume of the heart receiving 25 Gy (V25) was significantly reduced 

on average (n = 12 patients who met the V25 threshold) by 1.08 ± 1.47% (P < 0.05). 

Further cardiac substructure dose sparing beyond re-optimization was achieved 

for 4 patients with beam angle modification where the mean dose reduction across all 

substructures was 0.6 ± 0.4 Gy (highest reduction in PA of 1.5 ± 2.0 Gy). The D0.03cc, 

mean dose, and V25 to the heart were further reduced by 5.4 ± 4.1 Gy, 0.5 ± 0.7 Gy, and 

4.2 ± 2.9%, respectively. For the LV, after re-optimization coupled with beam angle 

modification, D0.03cc and LV-V5 were further reduced by 2.1 ± 2.9 Gy and 2.0 ± 1.9%, 

respectively. Lastly, the SVC D90 improved 3.3 ± 4.0% after the beam angles were 

modified.  
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Organs at Risk (OARs) and Planning Target Volume (PTV) Coverage 

All re-optimized plans met the original clinical prescription dose to the PTV while 

doses to the OARs met all objectives based on clinically acceptable guidelines240,241. 

Table 9 outlines the average change in the mean dose and D0.03cc for the PTV and OARs. 

Across all patients, the esophagus had a negligible change in mean dose after plan re-

optimization (0.25 ± 0.70 Gy, P > 0.05). Additionally, differences in clinical endpoints such 

as the volume of the lung receiving 20 Gy (V20) and volume of the esophagus receiving 

35 Gy (V35) were negligible after re-optimization (P > 0.05). No statistically significant 

changes were observed in the mean dose, D0.03cc, and other clinical endpoints for the 

PTV and OARs (P > 0.05).  
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 Average Change After Re-optimization  

Structure Mean Dose (Gy) 
D0.03cc (Gy) 

Other Clinical Endpoint 

  PTV 0.37 ± 1.85 
1.95 ± 3.67 

PTV95: 0.03 ± 0.21 Gy 

Organs at Risk Spinal Cord 0.06 ± 0.25 0.38 ± 1.37 

Total Lung -0.01 ± 0.26 
1.32 ± 2.70 

V20: 0.03 ± 0.71 % 

Esophagus 0.25 ± 0.70 
0.39 ± 4.06 

V35: 0.53 ± 2.46 %   (n=5) 

Heart and 

Substructures 
Heart -0.68 ± 0.60* 

-8.57 ± 12.06* 

V25: -1.08 ± 1.47* %  (n=11) 

LV -0.53 ± 0.70* 
-3.27 ± 4.08* 

LV-V5: -6.33 ± 5.57* % (n=12) 

LA -0.85 ± 1.22* -2.30 ± 6.42 

RV -0.55 ± 0.74* -4.12 ± 4.81* 

RA -0.52 ± 0.94* -1.38 ± 4.47 

AA -0.83 ± 1.13* -2.23 ± 3.42* 

PA -0.95 ± 1.60* -2.84 ± 8.53 

PV -0.89 ± 1.09* -2.71 ± 5.69* 

SVC -0.57 ± 1.19* 
-1.08 ± 3.65* 

D90: -0.10 ± 1.23 Gy* 

IVC -0.16 ± 0.38* -0.74 ± 1.91 

LADA -0.91 ± 1.18* -4.05 ± 5.32* 

LMCA -1.13 ± 1.15* -1.31 ± 1.55* 

RCA -0.65 ± 1.26* -1.64 ± 3.38* 

 
Table 9: Change in D0.03cc and mean dose after plan re-optimization for the planning 

target volume (PTV), heart and its substructures, and other organs at risk. The asterisk 
indicates significant reduction in dose after re-optimization. N = 16 for all structures 

except for the esophagus where n = 10. For the heart V25, esophagus V35, and LV-V5, 
results were reported only for structures with a non-zero value for the corresponding 

dosimetric endpoint. There were no significant increases in dose after re-optimization. 
Abbreviations are defined in the text. 

 

For the four patients that benefited from beam angle modification, negligible 

changes were observed for all of the PTV D95 metrics (range: 0 to -0.30 Gy) and 3 out of 

4 patients’ D0.03cc (< 0.5 Gy). However, one patient had an increase in D0.03cc of 3.7%, or 

6.2 Gy, with beam angle modification when compared to the original clinical treatment 
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plan. Negligible changes (< 1%) in clinical endpoints were observed for the esophagus 

(V35 and V50) and lungs (mean dose and V20) as compared to the original clinical 

treatment plan while the spinal cord D0.03cc was reduced by 2.3 ± 1.9 Gy with beam angle 

modification as compared to re-optimization alone.  

Individual Patient Results 

Figure 34 shows DVHs for three patients selected to represent an example of the 

least effective cardiac substructure sparing (Patient 1), highly effective sparing (Patient 

2), and an average case (Patient 13). Each DVH shows the PTV, involved OARs, and 

relevant cardiac substructures for both the original clinical treatment plan and the re-

optimized plan. Patient 2 benefited from beam angle modifications, and thus, that plan is 

represented as well. Figure 34 highlights that for the patients shown, negligible 

differences (< 1 Gy) were observed for the mean lung dose and D0.03cc to the spinal cord 

indicating comparable plan quality was achieved even when cardiac substructure sparing 

was implemented. Radiation doses to the whole heart and total lung (results not shown 

for all patients) were reduced for all patients after re-optimization, with even further 

reductions after beam angles were modified. For patient 2, the mean esophageal dose 

decreased by 3.0 Gy from the original clinical plan and 4.5 Gy from the reoptimized plan 

after modifying the beam angles, all while reducing the mean. 
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Figure 34: Dose volume histograms (DVH) for three patients of the least effective 

cardiac substructure sparing (Patient 1), highly effective sparing (Patient 2), and an 
average case (Patient 13) showing dose from the original clinical treatment plan and 

after re-optimization. The modified beam angle plan is also shown for Patient 2. 
Abbreviations defined in the text. 
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Figure 35 illustrates the initial clinical treatment plan of a malignant neoplasm of 

the lower left lung bronchus (left) treated to 48 Gy in 4 fractions and the corresponding 

cardiac SPARE treatment plan (right) for Patient 11. This figure highlights cardiac 

substructure sparing with greater than 10 Gy reductions in D0.03cc to the LV, LA, and PV. 

Specifically, note the removal of the 5 and 10 Gy isodose lines from many heart 

substructures (LA, AA, RA, PV, and RV) after the re-optimization.  

 
Figure 35: (Left) Initial clinical treatment plan and (Right) corresponding cardiac SPARE 

treatment plan. The planning target volume (PTV) is shown in red. Abbreviations 
defined in the text. 

 
Figure 36 shows the clinically used radiation treatment plan for Patient 2 (DVH also 

shown in Figure 34) that originally met all whole-heart dose endpoints for a locally 

advanced lung cancer patient treated to 60 Gy in 20 fractions. Cardiac sparing after re-

optimization is shown with the original clinical treatment plan shown (top left), the cardiac 

SPARE plan (top right), and the difference map (bottom left). The dose metric table 

(bottom right) highlights that standard whole heart dose metrics (< 3 Gy and < 2% 

absolute difference) do not reflect the local dose deposition that the substructure metrics 

are able to capture. For example, the LV-V5 was reduced from 30.6% to 14.7% after re-

optimization. Furthermore, the mean dose to the AA was reduced by ~6 Gy and the LADA 

D0.03cc was reduced below 10 Gy (threshold for coronary artery calcification32 presented 

in Table 8) with sparing. 
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Figure 36: Top row: (Left) Clinically treated plan for an advanced stage lung cancer 
patient. (Right) Cardiac substructure spared plan. Bottom row: (Left) Dose difference 
map (clinical less cardiac spared plan) highlighting major dose reductions to cardiac 
substructures. (Right) Dose metric table showing select standard whole heart dose 

metrics and substructure metrics. Maximum dose defined as dose to 0.03 cc volume. 
Abbreviations defined in the text. DVH shown in Figure 34. 

 

Optimal beam arrangements led to further cardiac substructure dose reduction in 

4 patients. Figure 37 shows the original clinical plan (left), re-optimized SPARE plan 

(center), and New Angles plan (right) for Patient 5 who had a left lung cancer treated to 

48 Gy in 4 fractions. This figure shows that although there was a slight change for the 

cardiac substructures after plan re-optimization (mean reduction over all substructures: 

0.2 ± 2.1 Gy), increased sparing after beam angle modification was possible (mean 

reduction over all substructures: 1.0 ± 1.4 Gy). For example, the mean dose to the 

pulmonary vein was only reduced by 0.2 Gy after re-optimization but was further reduced 
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by another 1.1 Gy after beam angle modification. Moreover, beam angle modification 

allowed for further sparing of the LADA and LA with mean dose reductions of 0.9 and 0.8 

Gy, respectively, as compared to the SPARE plan.  

 

 
Figure 37: Top row: Original clinical plan (left), re-optimized SPARE plan (center), and 

New Angles plan (right) for a patient with a left lung tumor. Bottom row: Difference maps 
comparing the re-optimized SPARE plan and the New Angles plan to the original clinical 
plan. Difference maps are the original plan less the new plan. Abbreviations are defined 

in the text.   
 

Discussion 

This work introduced cardiac substructures into CT-based treatment planning 

incorporating a co-registered low-field MRI to quantify potential dosimetric advantages for 

improved cardiac sparing. This was completed through the retrospective re-optimization 

of treatment plans, as well as modifying the original beam angle arrangement to minimize 

cardiac substructure radiation dose, all while attempting to maintain PTV coverage and 

continuing to meet clinical endpoints for other critical OARs.  
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Even though current cooperative trials use volumetric measures based only on 

MHD endpoints19,20, introducing cardiac substructure segmentation into radiation 

treatment planning may help better study and define radiation-induced cardiac injury. 

Some studies have aimed to investigate the dosimetric impact of different types of therapy 

on cardiac substructure sparing. A study by Ferris et al.234 evaluated cardiac substructure 

sparing for optimized VMAT and intensity modulated proton therapy (IMPT) and found 

that cardiac-optimized plans led to statistically significant improvements in mean dose to 

the chambers, great vessels, and coronary arteries. Our findings agree with Ferris et al. 

with respect to significant reductions in the maximum dose to the LADA and RV (greater 

than 4 Gy on average) while maintaining or improving clinical OAR (e.g., lung, esophagus, 

and spinal cord) constraints and PTV coverage. Likewise, Lester et al.244 created re-

optimized VMAT plans to reduce radiation dose to the coronary arteries and cardiac 

valves. At present, few studies have integrated cardiac substructures into treatment 

planning optimization. Ferris et al. evaluated cardiac spared plans using VMAT and IMPT 

with CT for locally advanced non-small lung cancer patients with a conventional 

fractionation to 60 Gy under free-breathing conditions234. Lester et al. focused on cardiac 

spared planning for mediastinal lymphomas by incorporating ECG-gated CT and coronary 

angiography acquired at deep inspiration breath hold244. These patient populations were 

different from the present study of 11 out of 16 lung cancer stereotactic body radiation 

therapy cases (3-4 fractions) with 7 end-exhalation, 7 end-inhalation, 2 free-breathing to 

test different conditions. In addition, the present study incorporated a low-field MRI as an 

adjunct to treatment planning CTs whereas the Lester et al. study used CT 

angiography244. While MRgRT was employed in this work, the dosimetry strategies of re-
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optimization using cardiac substructures and beam angle arrangement modification are 

applicable to other x-ray-based treatment planning modalities as our atlas and deep 

learning substructure segmentations work on CT-SIM image inputs.  

Negligible increases in treatment time per fraction and MUs delivered after plan re-

optimization were observed, suggesting similar complexity of the radiation treatment plan. 

Moreover, even though the modified beam angles plans involved either adding or 

removing beams in the revised treatment plan, the differences in treatment time per 

fraction and MUs delivered were negligible (P < 0.05). 

Modifying the beam angle and number of beams used to consider cardiac 

substructures after the plan has been re-optimized also has the potential to increase 

cardiac substructure radiation sparing. However, much like the findings by Lester et al.244, 

the results were patient specific as lesion location and proximity to the heart and its 

substructures played a role in if the patient would benefit from plan re-optimization and 

beam modification. Patients that benefited from beam angle modification varied in both 

the number of beams added or removed and in the proximity of the lesion to the heart 

(i.e. directly adjacent). So, although beam angle modification was shown to provide 

improvements over solely re-optimizing the plan for select cases (4/16 cases), re-

optimization alone provided the majority of cardiac substructure sparing. Tumor location 

also plays a role in the extent a substructure is able to be spared. For example, the LA 

for Patient 2 was directly adjacent to the tumor volume yet the mean dose difference after 

re-optimization of the LA as shown in Figure 33 revealed only minor improvement (< 1 

Gy) was possible. Thus, this suggests that sparing substructures closer to the tumor 
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volume may be difficult although accurately quantifying the dose to substructures offers 

value for clinical risk assessment.    

There was a statistically significant sparing of mean dose to all studied cardiac 

substructures achieved after plan re-optimization. This may be due to the added weight 

in the optimizer for when the substructures are included. However, Figure 36 highlights 

that standard whole heart dose metrics had decreased sensitivity to a cardiac sparing 

treatment planning approach, whereas individual substructure endpoints clearly identified 

dosimetric, and clinically meaningful gains (i.e., associated with clinical outcomes). The 

insufficiency of quantifying the MHD alone has been recently affirmed by studies 

recommending the inclusion of cardiac substructures as RT treatments become more 

conformal (i.e. intensity modulated RT)245,246. For example, the LV-V5, which has been 

shown to be more predictive of acute cardiac events than mean heart dose28, was 

reduced ~15% and the mean dose to the AA was reduced by ~6 Gy, suggesting that with 

confirmation in a larger cohort, further sparing may offer potential for improved survival35. 

This underscores the importance of using more sensitive metrics for dose evaluation and 

not simple whole-heart evaluations that are currently being implemented.  

Respiratory motion was managed via breath-holding for the majority of the 

patients. At breath-hold, there is still the potential impact of cardiac motion which was not 

accounted for in this study due to not having cardiac gated 0.35 T MR-linac images. It 

has been shown that even under breath-hold conditions, cardiac substructures may 

displace ~5-7 mm throughout the cardiac cycle 247,248. Thus, incorporating a PRV 

representing the variability of the cardiac substructures over a patient’s imaging and 

treatment course will be the next step of this work. However, as substructure PRV 
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recommendations do not currently exist for each substructure and this study was unable 

to account for cardiac motion, they were beyond the scope of the current work. This may 

be possible through the use of van Herk’s formalism249, which was used by Levis et al.248 

to estimate PRVs for the coronary arteries. Additionally, while this work was based off of 

CT-based treatment planning that enables more widespread applicability to x-ray-based 

approaches, MR-only treatment planning is gaining popularity, and a future direction 

includes translating the work to MR-only plans. Furthermore, increasing the size of the 

patient cohort with varied target locations will help identify the patient geometries that will 

benefit most from cardiac substructure sparing. However, the size of the patient cohort in 

the current study is consistent with the previously mentioned studies where 7-8 patients 

were used244,248. This may be completed through applying this work to a prospective 

clinical trial, like that of Jacob et al.129, or be applied to multi-institutional studies, such as 

the study recently completed by Dess et al.250, to determine if cardiac substructure 

dosimetric sparing has an effect on clinical outcomes. 

Conclusion 

This work applied a multimodality workflow to enable robust dose sparing of 

cardiac substructures, as well as maintain PTV and OAR doses. New treatment plans did 

not substantially increase delivery time or required monitor units, suggesting a negligible 

increase in plan complexity when cardiac substructure sparing was introduced. Validation 

in a larger cohort with appropriate margins will offer the potential to reduce radiation-

related cardiac toxicities and the dose assessment of currently overlooked radiosensitive 

substructures.  
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Part 2 “A Deep Learning Cardiac Substructure Pipeline for MR-Guided Cardiac 
Applications” 
 
Introduction 

Radiation dose from thoracic RT treatments is strongly associated with radiation-

induced heart disease, which includes both acute and late cardiotoxicities5,6,16. In RT, the 

current standard of care is to delineate and consider the entire heart as a single organ 

and use simple metrics like MHD and dose/volume relationships to evaluate cardiac 

risks18. Importantly, these whole-heart dose metrics do not provide any information about 

where the dose is being distributed. Yet, radiation dose to individual cardiac 

substructures, like the LV, LA, and LADA, have been more strongly linked to late cardiac 

morbidities than the commonly used whole-heart dose metrics28,41,42. However, cardiac 

substructures are not currently considered in treatment planning as they are poorly 

visualized on standard CT simulation datasets18. With the improved soft tissue contrast 

provided by MRgRT, sensitive cardiac substructures can now be visualized in MR-guided 

treatment planning (Figure 38) and considered for dose evaluation. Recently, MRI has 

been coupled with a linear accelerator offering this increased visibility of tumors and 

OARs in real time251. Still, even with proper visualization, online delineation of cardiac 

substructures is impractical as it may take over four hours per patient45,46.  

Several recent atlas-based techniques have been developed for automatic cardiac 

substructure segmentation48,132,155. Yet, atlases require long processing times179 and are 

heavily reliant on the quality of image registration between new patients and those 

existing in the atlas. DNNs including the U-Net204, GANs158, and CNNs92 have also been 

applied for automated cardiac substructure segmentation and have shown great promise 

for rapidly generating contours.  
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Cardiac substructure segmentation for RT applications has been primarily focused 

on CT datasets as this is the imaging modality that is the standard of care for generating 

a patient’s radiation treatment plan132,155. On CT images, studies by Zhou et al. and 

Kaderka et al. were able to achieve good agreement in the cardiac chambers with DSCs 

greater than 0.7132,155. The U-Net, originally designed by Ronneberger et al.119 for medical 

image segmentation, has been applied to both MR and CT volumes for state-of-the-art 

segmentation results157,204. Through incorporating the U-Net, Payer et al. was able to 

achieve excellent agreement between aorta volumes when comparing generated 

segmentations to physician delineated ground truth157. Similarly, our previous work 

yielded DSCs ≥ 0.84 in the cardiac chambers by training a multi-channel (3.0 T MRI and 

CT) 3D U-Net for predictions on non-contrast CT204. 

 Regarding MR-only results, Mortazi et al. conducted automated segmentation of 

seven substructures using a 3D b-SSFP sequence acquired in free breathing at 1.5 T in 

17 seconds using a multi-planar deep CNN with adaptive fusion92. Similarly, Avendi et al. 

utilized a deep CNN and stacked auto-encoders combined with a deformable model-

based approach to automatically segment the left ventricle252. This was completed using 

a b-SSFP sequence acquired with a dedicated eight-element cardiac coil for cardiac 

gating and during end-expiration breath hold92,252,253.  

There are numerous strategies to improve the variability and diversity of available 

data, without the need to collect new unique samples, which is referred to as data 

augmentation. Data augmentation has been shown in numerous studies to improve auto-

segmentation accuracy, as well as minimize model overfitting92,204,252. The use of inter-

fractional data for model augmentation has been incorporated previously, such as in the 
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study by Brion et al., where the utilization of a patient’s daily cone-beam CTs had, for the 

purpose of augmenting the deep learning model, been shown to significantly increase 

segmentation accuracy in RT254. However, this method of deep learning model 

augmentation has not been implemented for applications in MRgRT.  

To address the unmet need of cardiac segmentation for MRgRT, we have 

implemented a novel custom DL framework to efficiently generate segmentations on low-

field (i.e. 0.35 Tesla) MRI with the overarching goal of integrating cardiac substructures 

into daily dose assessment and to facilitate enhanced cardiac sparing. This work 

developed and validated an efficient and accurate deep learning pipeline for automated 

segmentation of 12 cardiac substructures on MR-linac images. The novelty of this work 

lies in the custom deep learning framework was developed for low-field MR-linac images 

where daily inter-fractional MR images were incorporated for data augmentation (Figure 

38). The successful completion of this work will enable the integration cardiac 

substructures for dose assessment and improved cardiac sparing for future MR-linac 

implementation in prospective clinical trials using MRgRT.  

 
Figure 38: Axial views at the same thoracic level highlighting positional variations in 

cardiac substructures acquired at breath-hold between various 0.35T MR-linac fractions 
for a representative patient. Abbreviations: MR = magnetic resonance; PV = pulmonary 

vein; LV = left ventricle; RV = right ventricle; LA = left atrium; RA = right atrium; AA = 
ascending aorta; RCA = right coronary artery; LADA = left anterior descending artery. 
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Methods 

Patient Cohort 

Twenty-three patients who underwent RT for either thoracic or abdominal cancer 

were retrospectively reviewed on an Institutional Review Board approved study. Patient 

treatments ranged from 30-70 Gy in 4-35 treatment fractions. Treatments consisted of 

esophageal, right and left lung, chest wall, lymph node (pericardial), stomach (gastric 

lymphoma), and liver dome lesions. Of the 23 patients, 17 were SBRT and the other 6 

were conventional treatments.  

Imaging Methods 

Patients were imaged using a balanced T1/T2 b-SSFP sequence (TrueFISP, 

Siemens, MAGNETOM Avanto, Syngo MR B19) on a 0.35 Tesla ViewRay MRIdian linear 

accelerator (ViewRay, Mountain View, CA). The TrueFISP sequence is often used in 

cardiac imaging due to its high signal-to-noise ratio and imperviousness to motion 

artifacts227. The four utilized scans are outlined in Table 10 where each used a flip angle 

of 60°, phase encoding in the anterior posterior plane, and a transversal orientation. The 

generalized auto-calibrating partially parallel acquisitions, or GRAPPA method, was 

utilized for breath-hold sequences to accelerate image acquisition255. 
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Sequence Slices 
Time 

(s) 
FOV 
(cm3) 

Resolution 
(cm3) 

TE 
(ms) 

TR 
(ms) 

Bandwidth 
(Hz/Px) 

GRAPPA  

1 80 17 45x45x24 0.16x0.16x0.30 1.62 3.83 385 2 

2 144 25 50x45x43 0.15x0.15x0.30 1.27 3.00 599 2 

3 288 172 50x45x43 0.15x0.15x0.15 1.45 3.37 535 N/A 

4 240 175 54x30x36 0.15x0.15x0.15 1.45 3.38 534 N/A 

 
Table 10: Description of utilized MR sequences and their different parameters. 

Abbreviations: FOV = field of view; TE = echo time; TR = repetition time; Px = pixel; 
GRAPPA = generalized auto-calibrating partially parallel acquisitions. 

 

Twenty-one patients were treated under breath-hold conditions (17-25 seconds, 14 end-

inhalation and 7 end-exhalation, 1.5x1.5x3 mm3) and two under free breathing conditions 

(3-minute scan, 1.5 mm3 isotropic resolution) as shown in Figure 39.  

 

Figure 39: Axial MR slices for 3 patients illustrating end-exhalation breath-hold (Left: 17 
seconds, Center: 25 seconds) and free breathing (Right: 3 minutes) conditions with 

physician delineations of select cardiac substructures. Abbreviations: PV = pulmonary 
vein; LV = left ventricle; RV = right ventricle; LA = left atrium; RA = right atrium; AA = 
ascending aorta; RCA = right coronary artery; LADA = left anterior descending artery. 

 

Clinical imaging included an MR-simulation (MR-SIM) and 3-4 daily MRI series per 

patient for a total of n=114 unique image sets (4-5 unique daily MRIs) with an example 

patient’s daily MRIs shown in Figure 38. To avoid preferential weighting due to the number 
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of fractions, if a patient underwent a treatment with more than four daily fractions, the first 

four were used. Ground truth segmentations of 12 cardiac substructures were delineated 

on each patient’s MR-SIM. The manual segmentation effort of the ground truth was split 

between two radiation oncologists. The more experienced of the two radiation oncologists 

verified delineations for every patient. Studied cardiac substructures included the left/right 

ventricles (LV, RV) and atria (LA, RA), superior/inferior vena cavae (SVC, IVC), 

pulmonary artery/veins (PA, PV), ascending aorta (AA), left anterior descending artery 

(LADA), right coronary artery (RCA), and left main coronary artery (LMCA). Deformable 

image registration (DIR) was then used to transfer segmentations from the MR-SIM to 

each daily MRI using a commercially available free-form intensity-based registration (MIM 

Software, Cleveland, OH). This DIR algorithm has limitless degrees of freedom, employs 

regularity (i.e. penalty term weight) to ensure the deformation was smooth145, and has 

provided high segmentation accuracy (i.e. lowest mean absolute difference in a 

comparison of eleven different deformable image registration algorithms) for previous 

single-modality (e.g. CT to CT or MR to MR) registrations146. All propagated contours 

were then verified and corrected as needed with a split effort between two radiation 

oncologists. The more experienced radiation oncologist then completed a final verification 

of each patient and each daily image set for continuity. MR images were resampled to 1 

x 1 x 1.5 mm3 and then cropped to a 128 x 128 in-plane resolution over 64 slices. Image 

cropping was competed around the heart centroid and then padded axially to 128 x 128 

x 128.  
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Deep Learning Methods 

Figure 40 shows the deep learning architecture of the modified 3-dimensional Neural 

Network (i.e. 3D U-Net) used in this study. This architecture is based off of a previously 

validated 3D U-Net204 but has been optimized for the end point of automatic predictions 

on low-field MR images. In total, eighteen patients, with 90 total unique MRIs, were used 

to train a 3D U-Net on all 12 substructures simultaneously in 3D.  

 

Figure 40: 3D U-Net architecture for cardiac substructure segmentation with low field 
MR inputs. Predictions were outputted for each substructure. 

 

The 3D U-Net shown in Figure 40 comprises of contraction and expansion 

pathways. The contraction pathway utilizes context modules (previously described204) to 

aggregate high-level feature information (Figure 40, left)162. The expansion pathway 

allows for the assembly of feature information for localization (Figure 40, right)162. As 

shown by the blue boxes in Figure 40, deep supervision was also implemented and was 

described previously204. To maximize information gained from high resolution features, 

double convolutions were used in the first and second layers of the 3D U-Net. Strided 
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convolutions were used instead of maximum pooling operations in the context pathway 

(Figure 40, left) as they have been shown to increase model accuracy if the computational 

load allows256. An adaptive momentum estimation (Adam) optimizer169 was used with an 

initial learning rate of 5e-4, a batch size of 1, and randomly initialized weights. During 

training, if the validation loss did not improve within 20 epochs (i.e., one forward pass and 

one backward pass of all the training samples), the learning rate was reduced by 50%. 

Training data (n = 18 unique patients) was split into 78% (n = 79 unique image sets) 

training and 22% validation data (n = 20 unique datasets or 4 unique patients). The 78/22 

split was used to ensure only complete individual patient datasets were considered in 

either the training or validation datasets. Sixteen input filters were used initially, and filter 

number doubled along the context pathway.  

A loss function based on Dice allows for a way to circumvent the imbalanced ratio 

of foreground to background pixels in medical images105. Additionally, as the training data 

has ground truth segmentations, optimizing DSC is what is desired throughout training. 

As the DSC is to be maximized to improve the segmentation result, the loss function 

needs to be minimized and is thus represented in Equation 14257.  

                                          𝑈𝑛𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐷𝑖𝑐𝑒 𝐿𝑜𝑠𝑠 =  ∑ 1 − 𝐷𝑆𝐶𝑡𝑡                                    (14) 

The Dice-weighted loss function allows for multiple classes (i.e. substructures t ∈ T) to be 

learned during the training and is shown in Equation 15258. 

             𝑇𝐷𝑆𝐶 =
∑ 𝑤𝑡∗𝑡𝐷𝑆𝐶𝑡∈𝑇 +𝛼

∑ 𝑤𝑡𝑡∈𝑇 +𝛼
                                                   (15) 

Where wt is each class’s predicted weight. For numerical stability, a small value α is 

included258. The specific problem of substructure segmentation involves classes that are 

highly imbalanced due to differences in size and shape. Furthermore, as easily 
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segmented substructures comprise most of the loss and dominate the gradient, we 

applied a variable weighting scheme using a Dice-weighted focal loss, as shown in 

Equation 16257.                                  

           𝐹𝑜𝑐𝑎𝑙 𝐷𝑖𝑐𝑒 𝐿𝑜𝑠𝑠 =  ∑ 𝑤𝑡(1 − 𝐷𝑆𝐶𝑡

1
𝛽⁄

)𝑡                               (16) 

The value β is a tunable hyperparameter and as it increases, the well segmented classes 

are down-weighted259). This focal Dice loss function emphasized the more difficult 

substructure segmentation tasks to manage any class imbalances as extreme class 

imbalances overwhelm the cross-entropy loss during training. Additionally, the focal DSC 

loss function helps to minimize the false known correlation between a larger volume and 

an improved DSC118. Furthermore, the focal Dice loss function has been shown to 

improve hyperparameter robustness for unbalanced tasks, and improve overall 

segmentation accuracy for small structures260.  

Materials  

Experiments were performed using Python v3.6 in Windows 10 (64-bit 10 core 

Intel® Xeon® CPU-E5-2690 v4 at 2.60 GHz and 112 GB of random-access memory 

(RAM)) with an NVIDIA Tesla P100 GPU with 16 GB of RAM and 3584 CUDA cores 

(Keras 2.0 with TensorFlow backend). Beyond including 3-4 daily MRIs per patient, data 

were augmented through flipping, rotating (0-30°, 1° increments), scaling (± 25%, 1% 

increments), and translating (up to 10 pixels in 3 cardinal planes). These augmentation 

techniques, along with a 50% dropout, were implemented to minimize model overfitting. 

Post-Processing, Testing, and Parameter Optimization 

We further improved the agreement to ground truth delineations by introducing 

fully connected 3D dense CRF as a post-processing step160,204. The 3D CRF post-
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processing has been described in detail in our previous work204 and was used to correct 

for remote island segmentations and improve overall smoothness. Five unique test 

patients (n=5 as only MR-sim datasets were considered for testing) were held out from 

the training patient cohort. DSC and MDA were used to compare DL segmentations to 

ground truth. The learning rate schedule was tuned for optimal segmentation (i.e. initial 

learning rate, decay, and patience). Lastly, the β hyperparameter from the above equation 

was assessed at integer values from 2-5.  

Statistical Assessment 

Two-tailed Wilcoxon signed ranks tests were completed for statistical analysis 

between ground truth and auto-segmented volumes, with P < .05 considered statistically 

significant. Volumetric and geometric measures were assessed. All statistical analysis 

was completed in SPSS (Version 26.0, Chicago, IL). 

Results 

The model stabilized after training for 340 epochs (training error < 0.001) which 

took 32 hours to complete. Substructure contour generation for a new patient input took 

20 seconds. Wilcoxon signed ranks test revealed that there 11/12 cardiac substructures 

did not have significant differences in volume between 3D U-Net auto-segmentations and 

ground truth for any cardiac substructure (P > 0.05). There was, however, a 0.47 cc (or 

80%) average difference in LMCA volume which was statistically significant. 

Shown in Table 11 are DSC results across the analyzed cardiac substructures.  
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Table 11: DSC for current method using a 3D U-Net with focal Dice loss for low field MR 
(n = 5 test patients, column 2), previously published 3D U-Net with hybrid diagnostic 3T 

MR/CT information (n = 11 test patients, column 3)204, current literature for cardiac 
substructure segmentation at 1.5-3.0T, and high-resolution CTCA data (voxel size 0.4 
mm3) from the literature across substructures. Abbreviations are defined in the text. 

 

It was found that DL provided accurate segmentations for the chambers (DSC = 0.85 ± 

0.01), great vessels (DSC = 0.78 ± 0.05), and pulmonary veins (DSC = 0.70 ± 0.08). DSC 

for the coronary arteries was 0.43 ± 0.10. The results in Table 11, column 2, reflect a β 

value of 4 (Equation 16), which yielded the highest DSC values across test patients. Table 

11 also reveals DSC results from our previous work204 where cardiac substructure 

segmentations were generated on non-contrast CTs. Lastly, Table 11 shows DSC results 

from the current literature for the cardiac chambers and great vessels at MR field 

strengths between 1.5T and 3.0 T and for coronary artery segmentations generated on 

CTCA.  

 MDA results across all cardiac substructures are shown in Figure 41.  

Substructure 

0.35T MR-linac 

Focal Dice Loss 

+ CRF (n=5) 

 Hybrid Diagnostic  

3T MR/CT-SIM + 

CRF204
 

(n=11) 

MR Literature 

(1.5T – 

3.0T)92,157,252 

CTCA 

Literature (High 

Resolution 

0.4mm3)182 

  Left Ventricle 0.89 ± 0.02 0.91 ± 0.01 0.88-0.92 - 

  Left Atrium 0.83 ± 0.02 0.87 ± 0.02 0.81-0.88 - 

  Right Ventricle 0.84 ± 0.02 0.84 ± 0.02 0.77-0.88 - 

  Right Atrium 0.84 ± 0.04 0.87 ± 0.02 0.83-0.87 - 

 Great Vessels 0.78 ± 0.05 0.81 ± 0.00 0.72-0.79 - 

  Left Main CA 0.42 ± 0.14 0.50 ± 0.18 - 0.60-0.70 

  Right CA 0.43 ± 0.11 0.50 ± 0.09 - 0.60-0.70 

  Left Anterior 

Descending CA 
0.45 ± 0.10 0.53 ± 0.08 - 0.60-0.70 
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Figure 41: Mean distance to agreement (MDA) results across all cardiac substructures 
for the current MR-only deep learning model (blue, n = 5) and the previous hybrid 

MR/CT deep learning model204 (red, n = 11).  
 

As shown in Figure 41, MDA across all substructures was less than 3 mm. The IVC and 

SVC experienced the smallest MDA across test patients of 1.7 ± 1.0 mm and 1.8 ± 0.8 

mm, respectively. The LADA had the largest MDA on average of 2.9 ± 1.4 mm. Centroid 

displacements for all cardiac substructures between the manually generated ground truth 

and the DL auto-segmentations in the L-R, A-P, and S-I axes are shown in Table 12. On 

average centroid displacements between manually drawn ground truth and DL were 2.15 

± 2.52 mm in the L-R, 2.10 ± 1.38 mm in the A-P, 3.39 ± 2.67 mm in the S-I. 
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Substructure L-R (mm) A-P (mm) S-I (mm) 

LV 0.82 ± 0.65 1.24 ± 1.20 1.04 ± 0.55 

LA 1.32 ± 0.68 0.98 ± 0.57 3.26 ± 0.80 

RV 1.08 ± 0.39 1.78 ± 1.68 3.40 ± 4.01 

RA 0.98 ± 0.47 1.30 ± 0.76 2.70 ± 2.53 

AA 0.80 ± 0.84 1.06 ± 1.52 1.62 ± 1.42 

SVC 0.46 ± 0.29 0.92 ± 0.89 2.12 ± 2.54 

PA 1.90 ± 1.47 5.06 ± 1.57 3.20 ± 2.29 

IVC 0.70 ± 0.79 2.00 ± 2.30 2.16 ± 2.65 

PV 8.98 ± 7.82 2.36 ± 3.38 3.56 ± 2.05 

LADA 5.30 ± 5.74 4.72 ± 3.15 10.58 ± 5.91 

RCA 2.54 ± 1.77 1.74 ± 1.23 6.18 ± 6.73 

LMCA 0.96 ± 1.06 2.02 ± 1.55 0.86 ± 0.26 

 
Table 12: Centroid displacements for all cardiac substructures between the manually 
generated ground truth and the DL auto-segmentations in the L-R, A-P, and S-I axes 

 

 Three-dimensional results for the best case, Patient 1, are shown in Figure 42. 

Patient 1 was diagnosed with esophageal cancer and was treated to 32 Gy in 13 fractions. 

For the cardiac chambers, great vessels, and IVC, (9/12 substructures) DSCs were 

greater than 0.80 for this patient. With regard to the coronary arteries (i.e. LADA, LMCA, 

and RCA), DSCs were greater than 0.55 and MDA was 1.60 ± 1.03 mm. When comparing 

the RV, AA, and LADA, for example from Figure 42, the deep learning segmentations 

appear more smoothed due to the application of CRF for post-processing. 
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Figure 42: Three-dimensional results for the best case, Patient 1, showing both coronal 
and sagittal views of the manually drawn ground truth compared to the MR-only deep 

learning model segmentation predictions. Substructure abbreviations are defined in the 
text. 

 

Shown in Figure 43 are axial images displaying results for Patient 2 and Patient 4. 

Each axial image shows both manually segmented ground truth segmentations, as well 

as DL auto-segmentations. Patient 2 was diagnosed with a malignant neoplasm of the 

upper right bronchus (limited stage small cell cancer) which was treated to 60 Gy in 20 

fractions. The malignant neoplasm, shown in the left side of the top left image in Figure 

43, caused the DL model to be unable to generate a segmentation prediction for the right 

PV (manually drawn ground truth shown in pink). For this reason, Patient 2 had the lowest 

DSC value for the PV across test patients of 0.57. Patient 4, shown on the right side of 

Figure 43, was diagnosed with a malignant neoplasm of the lower left lung lobe 

(adenocarcinoma grade 2) which was treated to 48 Gy in 4 fractions. Located in the center 

of both images for Patient 4 is a high intensity artifact. As nothing like this was included 

in the training cohort, this artifact negatively affected the PA, LA, and LMCA automatic 

segmentation results for Patient 4, as can be seen in Figure 43.  
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Figure 43: Axial images for two different test patients (Left: Patient 2, Right: Patient 4) 
revealing how abnormal patient anatomy or image artifacts affected deep learning 

automatic segmentation results. Each axial image shows both manually segmented 
ground truth segmentations, as well as DL auto-segmentations 

 

Shown in Figure 44 is an axial MR slice comparing the manually drawn ground 

truth and DL segmentations for Patient 5. Patient 5 was diagnosed with liver cell 

carcinoma with an anterior dome lesion which was treated to 50 Gy in 5 fractions. Figure 

44 also shows the delivered dose.  
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Figure 44: Axial MR slice comparing ground truth (GT) and deep learning (DL) 
segmentations for a patient undergoing liver treatment. Substructure abbreviations are 

defined in the text. 
 

Discussion 

 This work developed a novel deep learning pipeline to segment cardiac 

substructures with the principle goal of applications in MRgRT. Several methods were 

used for data augmentation including the unique contribution of incorporating 3-4 daily 

MR images per patient to improve model accuracy and to minimize model overfitting. This 

pipeline lead to accurate segmentations of the chambers and great vessels and yielded 

promising coronary artery results on low-field MR images.   

 With the importance of cardiac substructures being shown in the pathogenesis of 

radiation-associated heart disease, automatic cardiac segmentation has been the topic 

of much recent exploration132,139,204. However, to our knowledge, it has not been applied 
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to images for applications in MRgRT. Additionally, for RT applications, the use of daily 

MR images for each patient provides a unique methodology for data augmentation. Atlas-

based models have been widely explored for cardiac substructure segmentation yielding 

DSCs greater than 0.75 in the chambers and great vessels, but fail to segment the 

coronary arteries (DSCs less than 0.27)48,132,155. Atlas methods are limited as they rely 

heavily upon the quality of a registration between patients and are unable to consider 

large amounts of patient data179. 

 This current work follows more closely current applications of deep neural 

networks where hybrid MR/CT information was used to train the model204, or studies 

where CTCA was utilized92,157. When comparing to our previous study that utilized hybrid 

MR/CT information, shown in Table 11, cardiac chamber and great vessel results from 

the current study were within 0.04 DSC. Coronary artery DSC results from the present 

study were within 0.08 DSC, as can be seen in Table 11, which is promising as this study 

did not incorporate contrast-enhancement or cardiac gating. This work adds to the current 

available literature by allowing for substructures to be automatically generated on low-

field MR images for applications in MRgRT.  

To further improve automatic segmentation accuracy, fully connected 3D CRF 

were implemented for post-processing of cardiac substructures and was discussed in 

length in our previous work204. Several data augmentation techniques were also utilized 

to create variation in the model training and enhance automatic segmentation results. 

However, despite including 3-4 daily MRIs to augment the data for each patient, automatic 

segmentation agreement may improve with a larger training cohort. Nevertheless, studies 

with training and validation sizes similar to this one have been used previously190,204.   
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Centroid displacements were largest in the S-I axis likely due to the larger slice 

thickness of 3 mm for each of the five test patients, as compared to the 1.5x1.5 mm in-

plane resolution. As there is a known correlation between signal-to-noise ratio and MR 

field strength261, similarity results using the strategy described in this work may be 

improved upon at higher field strengths, which should be assessed. At 1.5 Tesla, Mortazi 

et al. utilized an image resolution of (1.6~2) × (1.6~2) × (2~3.2) mm92, which is 

comparable to what was used in this study. When comparing DSC results for the AA, PA, 

and cardiac chambers, results from the current study were within 0.04 and exceeded their 

AA DSC by 0.0792. It is important to note, however, that MRIs from the current study were 

not ECG gated. MR-linacs do exist at field strengths of 1.5 Tesla, such as the Unity MR-

linac (Elekta AB, Stockholm, Sweden). However, considering images at a different field 

strength would require the deep learning segmentation pipeline to be retrained as there 

would be variation in image intensity and relevant features.  

The utilized MR images were not cardiac gated and therefore, we did not account 

for cardiac motion in this study. Even though cardiac displacements can be 3-8 mm52, 

cine-angiography or echocardiography would be required, and they are currently not 

considered clinically232. Respiratory motion was accounted for through breath-hold 

techniques in 21/23 patients, but scan acquisition times ranged from 17-25 seconds and 

consequently captured multiple cardiac cycles. Thus, the delineated cardiac 

substructures used in training represent an average position over the scan course. This 

cardiac motion captured in the MR may introduce inter-observer variability by presenting 

difficulties in coronary artery segmentation as they can become indistinct and 

noncontiguous141. To combat this, cardiac substructure segmentations were verified by 
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two radiation oncologists. Cardiac motion may be considered in future studies through 

the implementation of a safety margin around the substructure which has been previously 

proposed33,53. 

Now that cardiac substructures can be generated efficiently on low-field MR 

images, dosimetric analysis and strategies for cardiac avoidance can be considered. 

Recently in RT planning, the LADA has been suggested as an avoidance structure32. 

Additionally, numerous recent studies have employed cardiac SBRT treatments for non-

invasive radio-ablation for arrythmias198,262, cardiac fibromas263, and other cardiac 

indications264. Efficient and accurate automatic segmentation of cardiac substructures for 

MRgRT may be a useful application to cardiac SBRT studies for rapid OAR and target 

localization. 

Conclusion 

Even at the decreased in-plane resolution of the low field MR-linac, our 

implementation of a novel 3D U-Net has provided promising preliminary results for cardiac 

substructure segmentations. This significant work opens the door to conduct studies on 

determining cardiac substructure dosimetric limitations through a prospective clinical trial 

using MR-guided radiation therapy. This work also has applications in future 

methodologies for cardiac SBRT.  
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CHAPTER 7 “CONCLUSIONS AND FUTURE WORK”  

Summary of Findings 

 In this body of work, several image processing pipelines were developed and 

validated to segment cardiac substructures to better quantify potential opportunities for 

enhanced cardiac sparing in RTP. Specifically, pipelines were generated for automatic 

segmentation on non-contrast CT and low-field MRI to lay the groundwork for future 

prospective studies on the radiation dose to cardiac substructures.  

 In Aim 1, the automatic segmentation of 12 cardiac substructures and the whole 

heart on non-contrast CT was achieved through optimization of a novel intensity-based 

deformable registration atlas that employed a volumetric T2 MRI rigidly registered to CT-

SIM datasets. Three atlas approaches were assessed including a single-atlas method 

and two multi-atlas approaches (i.e. MV and STAPLE with 1-15 atlas matches (MV1-

MV15 and ST1-ST15)). Segmentation performance was also assessed via consensus 

scoring by three physicians. When averaged over five validation patients, all three atlas 

approaches performed similarly with seven out of 13 cardiac structures (heart, chambers, 

AA, and PA) having DSC > 0.75. ST10 was deemed a promising segmentation approach 

as it provided the highest DSC and lowest MDA for 8/10 substructures, and half of all 

validation contours had centroid displacements < 3.4 mm. Dosimetric assessment of the 

ST10 generated segmentations revealed no statistically significant differences from 

ground truth for LADAmax, MHD, and LV-V5 (P > 0.05). Qualitative consensus grading 

revealed that eight substructures required minor modifications in order to become 

clinically acceptable. With average DSCs < 0.3, the coronary arteries were not segmented 

adequately but provided value for general localization. It was found that, on average, 
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automatic cardiac substructure segmentations for a single patient required ~10 minutes. 

This initial work is significant in that it offers potential to accurately localize large cardiac 

substructures on standard non-contrast CT for radiation sparing even when an MRI is 

unavailable and laid the groundwork for the next aim of the work to further improve 

substructure segmentation efficiency and accuracy using deep learning.  

 The second Aim, covered in Chapter 4, focused on further improving substructure 

segmentation through inputting paired MRI and CT data into separate image channels to 

train a 3D neural network. The network was trained in ~19 hours using the entire 3D 

image along with deep supervision and a Dice-weighted multiclass loss function. The 

hyperparameter optimization of the 3D CRF showed that maximal accuracy was achieved 

when cardiac substructures were grouped into three categories, which correlated to 

substructure size and complexity. Implementing 3D CRF as a post-processing measure 

improved DSC results by 1.2 ± 2.5%. Similarly, it was found that augmenting the data 

improved the DSC results by 5.0 ± 7.9%. For the coronary arteries, DSC improved by 

26.4 ± 4.2% from the previous MA method. In total, with the DL method, the MDA across 

all substructures was less than 2 mm. There were four instances where the DL model 

was able to generate automatic segmentations for the LMCA, where the multi-atlas 

method failed. From the qualitative consensus grading, it was found that the DL method 

provided clinically acceptable segmentations in all 5 validation patients for three out of 

four cardiac chambers. When comparing qualitative consensus grades to the previous 

MA method, improvements were seen in ~75% of cases with the DL method. Overall, 

generation of automatic substructure segmentations took ~14 seconds per patient as 

compared to ~10 minutes for the multi-atlas method. This work is significant in that state-
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of-the-art cardiac substructure segmentation, requiring a single, non-contrast CT input, 

was achieved rapidly and more accurately than other methods presently available. 

 The first portion of Chapter 5 was dedicated to characterizing the excursion of 

cardiac substructures due to respiration. Measurements of cardiac substructure centroid 

at 4 phases of respiration over 11 patients showed that overall shifts were largest in the 

S-I plane and for cardiac substructures at the inferior aspect of the heart (i.e. the IVC and 

RCA). The IVC and the RCA had maximum excursion displacements > 6 mm (maximum 

vector displacements of greater than 9 mm). Over all substructures, the A-P was the axis 

with the least excursion, and substructures at the base of the heart had smallest 

displacements (i.e. the great vessels). As shown in Figure 20, median excursions for 

11/13 cardiac structures were smallest in the A-P axis (median displacements for all 

substructures were less than 5 mm). It was found that the whole heart volume had 

insignificant volume changes (~1%) between EE and EI, which parallels results by Yue 

et al.203. Moreover, dosimetric analysis across respiratory phases revealed that, although 

changes in Dmean and Dmax for the whole heart were less sensitive to respiration (< 0.5 

Gy), large dose differences for individual substructures were experienced. Thus, this work 

reveals the lack of sensitivity in only considering measurements of the whole heart. As 

substructure motion throughout the respiratory cycle is not considered in radiotherapy 

treatment planning, this work is significant in that quantifying substructure changes over 

the respiratory cycle allows for their potential use in improving OAR sparing during 

radiation treatments, especially when a patient is unable to comply with breath-hold 

conditions for thoracic cancer treatments. 
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Another challenge in the evaluation of cardiac substructure doses is the inter-

fraction setup uncertainties that may occur over the treatment course and potential 

challenges with intra-fraction motion due to respiration as presented in Chapter 5 part 2. 

Because the variability of cardiac substructure position after tumor localization has not 

been well characterized, the work completed in part one of this Aim leveraged unique 

longitudinal MRgRT data to evaluate inter-fraction displacements of cardiac substructures 

to facilitate safety margin design. Cardiac substructures were generated utilizing the 

previously mentioned multi-atlas and deep learning methods for automatic segmentation. 

It was found that across the heart and substructures, inter-fraction displacements for 

18.5%, 17.4%, and 23.1% were > 5 mm (i.e. threshold for motion management210) in the 

L-R, A-P, and S-I axis respectively. For the chambers, the median absolute 

displacements were less than 2.5 mm in any cardinal plane. Generally speaking, S-I 

displacements were larger than the other axes, largely due to the axial MRI slice 

thickness. Individual cardiac substructure displacement demonstrated variability in 

magnitude and dominant axis, where PRVs from 3-6 mm were determined as anisotropic 

substructure-specific margins. Thus, anisotropic cardiac substructure-specific planning 

margins for OARs may be warranted to accommodate differential inter-fractional shifts. 

This work is significant in that quantifying the inter-fraction displacement of critical cardiac 

substructures is a first step in deriving substructure-specific safety margins to ensure 

highly effective cardiac sparing. Furthermore, the cardiac substructure segmentations 

from this study laid the groundwork for the second portion of Aim 4 of translating 

automated cardiac substructure segmentation into low-field MRgRT planning.  
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Aim 4, the final Aim, which was described in Chapter 6, investigated translating 

these previously described technologies to an MR-guided environment using an MR-linac 

and treatment planning comparisons. The goal of the first part of this Aim was to translate 

automated cardiac substructure segmentation into CT-based planning for low-field 

MRgRT and quantify potential dosimetric advantages for improved cardiac sparing 

through plan re-optimization and for cases that may benefit, potential beam angle 

modifications. It was found that while cardiac sparing plans did reduce the MHD (0.7 ± 

0.6 Gy), whole heart dose metrics do not reflect the local dose deposition that the 

substructure metrics were able to capture and were not as sensitive. It was also found 

that four out of 16 patients benefited from new beam arrangements, leading to further 

dose reductions. However, the results were patient specific as lesion location and 

proximity to the heart played a role in if the patient would benefit from plan re-optimization 

and beam modification. Although beam angle modification was shown to provide 

improvements over solely re-optimizing the plan for select cases, re-optimization alone 

provided the majority of cardiac substructure sparing. The new treatment plans did not 

substantially increase delivery time or required monitor units (P > 0.05), suggesting a 

negligible increase in plan complexity when cardiac substructure sparing was introduced. 

Additionally, there was no statistical difference in clinical endpoints to the PTV, lung, 

esophagus, or spinal cord after re-optimization. Moreover, even though the modified 

beam angle plans involved either adding or removing beams in the revised treatment 

plan, the differences in treatment time per fraction and MUs delivered were negligible. 

This work is significant in that it provides dose assessments of the radiosensitive cardiac 
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substructures that are currently overlooked in the RT clinical setting, which may help 

better study and define radiation-induced cardiac injury. 

 Lastly, part 2 of Aim 4 outlined the development and validation of a deep learning 

cardiac substructure pipeline for MRgRT applications. Here, cardiac substructures were 

automatically segmented through a novel deep learning pipeline optimized for the 

principle goal of applications in MRgRT on low-field MRI. The use of daily MRIs for each 

patient provided a unique methodology for data augmentation and led to accurate 

automatic segmentations of the cardiac chambers, great vessels, and IVC. Additionally, 

even though the utilized patient images were at a decreased resolution, not contrast-

enhanced, and were not cardiac gated, promising results were also yielded for the 

coronary arteries. When comparing to our previous study that utilized hybrid MR/CT 

information, cardiac chamber and great vessel results from the current study were within 

0.04 DSC and coronary artery DSC results were within 0.08 DSC. In total, it was found 

that substructure contour generation for a new patient input took ~20 seconds. Centroid 

displacements were largest in the S-I axis likely due the larger slice thickness of 3 mm for 

each of the five test patients, as compared to the 1.5x1.5 mm in-plane resolution. This 

work is significant in that it opens the door to conduct studies on determining cardiac 

substructure dosimetric limitations through a prospective clinical trial using MRgRT. 

Additionally, strategies for cardiac avoidance can be considered. 

 Overall, we have provided the ability to automatically and efficiently generate 

accurate cardiac substructure segmentations on both non-contrast CT and low-field MRI, 

quantify their excursion in respiration and between daily fractions, as well as through 

dosimetric analysis, show the utility of their inclusion in radiation therapy planning.  
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Limitations and Future Work 

 Although much has been completed to incorporate cardiac substructures into RT 

for improved cardiac sparing, widespread implementation is still hindered by challenges 

that were outside the scope of this work. Additionally, there are some improvements that 

may be made upon this work including the consideration of cardiac motion, coronary 

artery segmentation accuracy, and further refining the deep learning methodology.  

To build a dynamic motion model of the heart, a 3D MRI with cine information and 

high temporal resolution would be required. This type of data can be acquired during a 

cardiac angiography scan, but it is not the standard of care in RT. Thus, the available 

data and sequences are not optimized for the endpoint of creating a cardiac motion model 

and would possibly require a prospective clinical trial which could be completed in future 

work. Most of the patient data from the studies covered here come from a pre-existing 

Breast Cancer Research Foundation Study where the utilized sequences were optimized 

for an endpoint unrelated to our study. The MRIs used in this body of work, both the T2-

weighted single-shot turbo spin echo and the TrueFISP sequence, are taken under 

breath-hold conditions and are not ECG gated (i.e. they do not provide temporal data 

across the cardiac cycle). Therefore, respiratory motion is assumed to be negligible 

during the scan. However, due to extended scan times and heart rate, several cardiac 

cycles are captured during the scan. Thus, the heart and its substructures on the T2-

weighted and TrueFISP scans are represented by their average position over the course 

of the scan. For the purpose of this work, the average position of the cardiac 

substructures, with an added PRV generated from inter-fractional motion, provides a good 
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surrogate for representing how the cardiac substructures might be handled clinically and 

for treatment planning comparisons.  

Clinically, cardiac motion in RT is not managed, as dose volume parameters for 

the whole heart are not significantly influenced by motion from the cardiac cycle51. 

Additionally, there are uncertainties in the magnitude of the long delivery time, which can 

be upwards of 10 minutes, versus the frequency of the beating heart, as well as the inter-

fraction setup uncertainty between treatments. Yet, there is work being done to suggest 

planning organ at risk volumes (3-4 mm33,53) as the coronary arteries and the ventricles 

are the most mobile regions of the heart, displacing 3-8 mm between end-diastolic and 

end-systolic phases52,247,248. Nevertheless, researchers treating atrial fibrillation and 

ventricular tachycardia through cardiac ablation are not considering a motion model of 

the heart. For example, when conducting radio-ablation for atrial fibrillation, Maguire et al. 

utilized a Synchrony system to track respiratory motion, and then added a margin to the 

target volume to compensate for cardiac motion265. Moreover, several studies state that 

an extra margin, on top of the one placed for machine accuracy, does not need to be 

generated as the cardiac motion is small and has a likely negligible impact on 

dosimetry198,265-269. Dynamic motion modeling of the heart will, however, play a significant 

role in treatment planning when techniques like flash RT are used at an ultra-high dose 

rate. 

 The work presented here improved upon studies like that of Luo et al. where 

coronary arteries were not considered for automatic segmentation270. However, there is 

still room for improvement in the coronary artery segmentations presented here as DSCs 

were less than 0.60. This is complicated as shown by the several studies that have 
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experienced increased inter-observer variability when segmenting the coronary arteries 

versus other cardiac substructures. While generating a whole heart segmentation atlas, 

Feng et al. found when segmenting the heart and left ventricle, there were contour 

overlaps greater that 90%141. However, segmentation overlaps of the RCA were only 24% 

on average141. Similarly, Zhou et al. had a heightened variability in coronary artery 

segmentations than for the chambers and whole heart132. They postulated that fusions of 

non-gated CT scans will affect smaller structures more due to imperfect image 

resolution132. Luo et al. also claimed that segmenting these smaller structures may also 

be complicated by tumor invasion and calcification270.  

Although numerous measures were taken to advance automatic cardiac 

substructure segmentation, including multi-channel inputs, deep supervision, 3D-CRF, 

etc., there may still be room for improvement. In this work, the CRF were implemented as 

a post-processing step. In future work, the CRF may be directly embedded into a modified 

3D U-Net to create an end-to-end workflow with improved efficiency. This would require 

that the CRF be coded as a recurrent network, placed in the final layer271, and trained 

together with the 3D U-Net. As a known drawback of skip connections is that they 

duplicate low resolution contents, a residual pathway may be included through the use of 

a modified U-Net, much like the work by Seo et al.97. For substructure accuracy 

improvements in small structures like the coronary arteries, as suggested by Seo et al., 

the number of pooling operations for small structures may also be reduced as compared 

to those of large structures due to the resolution loss that occurs after pooling 

operations97. The selection of the convergence (i.e. loss) function to be utilized in the 

deep learning architecture also will have an effect on the resultant automatic 
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segmentation. For example, a generalized Dice loss function may be used in place of a 

focal Dice loss function to only consider class imbalances due to size and not 

segmentation difficultly183,184. Additionally, loss functions not based on Dice, such as 

mean-squared pixelwise error, have shown promise for RT applications and may be 

explored in future work272. As it is a known issue in RT that the amount of labeled and/or 

paired samples can be severely limited, segmentation accuracy may also be improved by 

leveraging the large amount of unpaired, unlabeled, multi-modality cardiac datasets 

available at our institution. The use of a cycle-GAN191 architecture would allow for 

valuable data without manually drawn ground truth segmentations being used in the 

training process. As this data was collected at various sequences, parameters, etc., 

unsupervised domain adaptation may be used which allows for implementation on various 

imaging platforms273. Specifically, generative pixel-level domain adaptation models 

perform similar distribution alignment in raw pixel space in order to translate source data 

to the target domain274. Thus, a deep learning model may be generated to train two 

competing networks simultaneously: a generator network to synthesize data and a 

discriminator network to distinguish between synthesized and real data, which often 

outperforms atlas and convolutional models275. Lastly, implementing optical flow 

techniques to both track motion and improve segmentation accuracy may be 

incorporated276. Although these presented ideas are outside the scope of this body of 

work and would require curated datasets, they may be implemented in the future.  

This work may also be incorporated in a prospective clinical trial (viable for studies 

in lung, breast, lymphoma, esophageal cancers, etc.) to evaluate the associations 

between cardiac substructure dose and survival, cardiac events, and quality of life 



157 
 

 

measures in a diverse patient population. These data may then further reveal that 

radiation doses to cardiac substructures are more precisely associated with the incidence 

of cardiac events and overall survival than whole heart dose metrics, which is the current 

standard of care. A reduction in radiation-related cardiac toxicities may be acquired using 

the highly effective cardiac substructure sparing techniques mentioned in this work to 

maximize therapeutic gain. These results may also be extended to a trial using cardiac 

gated RT for avoidance or targeting of atrial fibrillation198 and ventricular 

tachycardia262,277. Lastly, future directions may include evaluating changes in radiomics 

as imaging biomarkers from serial heart images and integrating functional MRI to facilitate 

functional sparing. 
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Growing evidence suggests that radiation therapy (RT) doses to the heart and 

cardiac substructures (CS) are strongly linked to cardiotoxicities, though only the whole 

heart is considered clinically. This work aimed to utilize the superior soft tissue contrast 

of magnetic resonance (MR) to segment CS on non-contrast enhanced computed 

tomography (CT) and low-field MR, quantify uncertainties in their position, and assess 

their effect on treatment planning.  

Automatic segmentation of 12 CS was completed using a novel hybrid MR/CT 

atlas method and was improved upon using a 3-dimensional neural network (U-Net) from 

deep learning (DL). Intra-fraction motion from respiration was then quantified. Inter-

fraction setup uncertainties were also assessed to derive planning organ at risk volumes 

(PRVs) for substructures utilizing a novel MR linear accelerator (MR-linac). Treatment 

planning comparisons were performed with and without CS and methods to reduce 

radiation dose were evaluated. Lastly, the 3D U-Net was translated to a low-field MR-

linac and a segmentation pipeline was generated.  
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The hybrid MR/CT atlas was able to generate accurate segmentations for the 

chambers and great vessels (Dice similarity coefficient (DSC) ≥0.70) but coronary artery 

segmentations were unsuccessful (DSC<0.27). After implementing DL on CT and low-

field MRI, DSC for the chambers and great vessels improved to ≥0.83 along with a 

coronary artery enhancement (DSC>0.4). Regarding mean distance to agreement, DL 

segmentations were within 2mm (hybrid MR/CT) and 3mm (low-field MR). Auto-

segmentations required ~10 minutes/patient where DL only required 14-20 

seconds/patient. Intra-fraction motion caused mean dose variations over 5 Gy for CS in 

respiration. PRVs from 3-6mm were determined from inter-fraction motion yielding 

anisotropic substructure-specific margins. The inclusion of CS in treatment planning did 

not yield statistically significant changes in plan complexity, planning target volume dose, 

or organ at risk dose. 

Segmentation results from DL pose major efficiency and accuracy gains offering 

high potential for rapid implementation into RT planning for improved cardiac sparing. 

Introducing CS into treatment planning presented an opportunity for more effective 

sparing with limited increase in plan complexity. This work may be applied to a 

prospective clinical trial to determine the effect the dosimetric sparing of CS has on clinical 

outcomes. 

 

  



197 
 

 

AUTOBIOGRAPHICAL STATEMENT 

ERIC DANIEL MORRIS 

 
EDUCATION 
2015-2020 Ph.D. Medical Physics, Wayne State University (WSU), Detroit, Michigan  
2013-2015 B.S. Physics, Michigan Technological University, Houghton, Michigan 
2011-2013 Honors A.S. Delta College, University Center, Michigan  
CERTIFICATION 
2018  Certificate in Radiomics and Deep Learning 
2016  American Board of Radiology Part 1 
PROFESSIONAL APPOINTMENTS 
2016-2020 Graduate Research Assistant, Henry Ford Health System 
  Department of Radiation Oncology (Dept. of RO), Detroit, MI 
2016-2017 Graduate Teaching Assistant, Wayne State University 
2015-2016 Volunteer Research Assistant, Henry Ford Health System & WSU 
  Department of Radiation Oncology, Detroit, MI 
2014-2015 Research Assistant/Laboratory Instructor, Michigan Technological Univ. 
  Department of Biomedical Engineering, Houghton, Michigan 
AWARDS & COMMITTEE APPOINTMENTS 
2020             Henry Ford Cancer Institute Outstanding Clinical Manuscript of the Year 
2019 23rd Annual WSU School of Medicine Graduate Research Oral Presentation 

Competition 2nd Place 
2019 AAPM John R. Cameron Young Investigators Symposium 3rd Place  
2019      2018 Best general medical physics paper in JACMP 
2018-  AAPM Working Group for Student and Trainee Research: Member 
2019-  AAPM Student and Trainee Subcommittee: Member 
2018  AAPM National Meeting Medical Physics SLAM competition 2nd Place 
2018,19 AAPM Great Lakes Chapter (GLC) Medical Physics SLAM competition 1st Place 
2018,19 WSU Graduate Student Research Award competition 1st Place  
2018  AAPM Expanding Horizons Travel Grant Recipient 
2018,19 AAPM GLC Young Investigators Symposium 1st Place (runner-up 2017) 
2016,17 WSU Graduate Professional Scholarship Recipient  
2016,17,18,19 WSU Graduate Student Professional Travel Award    
PUBLICATIONS 
1. E. Morris, A. Ghanem, M. Dong, M. Pantelic, E. Walker, C. Glide‐Hurst. “Cardiac 

substructure segmentation with deep learning for improved cardiac sparing.” Medical Physics 
47, no. 6 (2020): 576-586.  

2. C. Miller, D. Mittelstaedt, N. Black, P. Klahr, S. Nejad‐Davarani, H. Schulz, L. Goshen, X. 

Han, A. I Ghanem, E. Morris, C. Glide‐Hurst. “Impact of CT reconstruction algorithm on auto‐
segmentation performance.” JACMP 20, no. 9 (2019): 95-103. 

3. E. Morris, A. Ghanem, M. Pantelic, E. Walker, X. Han, and C. Glide-Hurst. "Cardiac 
Substructure Segmentation and Dosimetry Using a Novel Hybrid MR/CT Cardiac Atlas." 
IJROBP 103, no. 4 (2019): 985-993. 

4. E. Morris, R. Price, J. Kim, L. Schultz, M. Siddiqui, I. Chetty, and C. Glide-Hurst. "Using 
synthetic CT for partial brain radiation therapy: Impact on image guidance." Practical 
radiation oncology 8, no. 5 (2018): 342-350. 

5. E. Morris, J. Kim, P. Klahr, and C. Glide‐Hurst. "Impact of a novel exponential weighted 
4DCT reconstruction algorithm." JACMP 19, no. 6 (2018): 217-225. 


	Incorporating Cardiac Substructures Into Radiation Therapy For Improved Cardiac Sparing
	Recommended Citation

	tmp.1611251283.pdf.eQKmp

