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1

CHAPTER 1 BACKGROUND : STANDARD MODEL

1.1 Elementary particle fields

The standard model (SM) of particle physics describes three fundamental interactions

in nature using quantum field theory. Quantum electrodynamics (QED) describs the elec-

tromagnetic interaction, which is responsible for attraction between electrons and neuclei

in atoms and molecules. Quantum chromodynamics (QCD) describes the strong nuclear

interactions between particles. QCD is responsible for the binding of quarks inside nucleons

(protons and neutrons). The weak force is behind processes such as beta decay. This weak

interaction can transmute protons into neutrons, and it played a vital role in synthesizing

heavy elements in the early stages of universe [1]. The Glashow-Weinberg-Salam (GWS) the-

ory [2,3] pointed out that electromagnetic interaction and weak interaction can be described

by a single theory, which is known as electro-weak theory.

In the SM, there are matter fields and force mediating fields. The matter fields are

associated with intrinsic spin 1/2, and they are known as fermions. Whereas force-carrying

fields are associated with integer spins. These force-carrying fields are also known as gauge

bosons.

There are four force-carrying gauge fields in SM. The photon, which is obtained by the

quantization of the electromagnetic field, mediates the electromagnetic interaction. The

massive W± and Z0 gauge bosons mediate the weak interaction. The gluons mediate the

strong nuclear interactions.

Finally, the Higgs boson is obtained by quantizing the Higgs field. Scalar Higgs field is

involved with the mechanism that generates mass to the massive gauge bosons and matter

fields except, perhaps, for neutrinos (see sec. 1.3.3).

The fermion fields are separated into two segments, which are known as quarks and

leptons. The quarks have six flavors, which are up (u), down (d), charm (c), strange (s), top

(t), and bottom (b). There are six leptons in the lepton family. They are electron (e), muon

(µ), tau (τ), electron neutrino (ve), muon neutrino (vµ) and tau neutrino (vτ ).
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The SM elementary particle fields are summarized in figure 1.1.

Figure 1.1: Summary of the SM elementary particles [4] .

In figure 1.1, the particles that are denoted by purple and green colors represent the

matter fields. The red color represents the spin-one gauge bosons. The color yellow represents

the Higgs boson.

1.2 Symmetries in particle physics

Symmetry transformation is an operation that can be performed on a particular system,

which leaves the system invariant. The symmetries are important because they provide

the conservation laws that govern the dynamics of the system. In particular, Noether’s

theorem connects the symmetries with the corresponding conservation laws [5]. For exam-

ple, Noether’s theorem connects the space and time translation symmetries to energy and

momentum conservation, respectively [6].
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1.2.1 Discrete symmetries

Discrete symmetries are associated with the non-continuous change of the system. Under

the discrete transformations, the system suddenly changes from one state to another. In

particle physics, three important discrete symmetries govern the interactions, and they are

known as parity (P), charge conjugation (C) and time reversal (T).

The parity symmetry implies that the physical processes are invariant under flipping of

the sign of space coordinates. This can be used to test whether the fundamental interactions

are invariant under parity. The experimental evidence implies that the electromagnetic

and strong interaction are invariant under parity. However, the weak interaction does not

preserve the parity invariance [7].

The charge conjugation transformation changes the sign of all the electromagnetic charges

in the system. This implies an operator that changes the particle into an anti-particle. The

strong and electromagnetic interaction both preserve charge conjugation, whereas the weak

interaction does not remain invariant under C.

The time reversal symmetry implies that the invariance of the physical processes under

the reversal of time. For example, under the T transformation a particle moving from point

A to B along a certain path will reverse its direction from B to A on the same path [8].

The time reversal operator is an anti-unitary operator. This means the T operators act on

quantum numbers as well as the operators [9], which provides

T (c− number )ψ = (c− number )∗Tψ (1.1)

1.2.2 Continuous symmetries

Continuous transformations gradually change the system from its original state to an-

other. These continuous transformations play an important role in understanding elemen-

tary particle interactions. The elementary particle fields are defined using the complex-valued

mathematical spaces. Under the continuous symmetries, the physical process remains invari-
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ant when the fields are rotated. For instance, electromagnetic interaction is invariant when

the fields are rotated by a complex phase eiα, where α is a real number. This symmetry

is known as U(1) symmetry, and it is an abstract internal symmetry of the electromag-

netic field. Similarly, the massless weak boson and fermion fields satisfy another abstract

symmetry called SU(2)L. These symmetries are based on the field rotations of two and

three-dimensional spaces.

As the Yang-Mills theory [10] points out, the associated Lagrangian for these interacting

fields should be invariant under local gauge transformations. This means the Lagrangian

remains the same after an internal rotation. However, this theory seems to work well only

for massless gauge fields such as photon field and gluon field. The heavy vector bosons, such

as W and Z, require another mechanism to generate their masses. For this, a scalar field

called Higgs field is employed.

Unlike the other fields, the lowest energy state of the Higgs field is a vacuum state

(a state free of excitations) with non zero field value v, where v is known as the vacuum

expectation value (vev). Thus, the system spontaneously chooses a new vacuum. This

makes the ground state only posses a subset of the symmetries of Lagrangian. This process

is known as spontaneous symmetry breaking. The broken Higgs field provide the source for

the accumulation of mass for massless fermion and boson fields (see section 1.3.3) [11].

The standard model is specified by the special unitary group SU(3)c× SU(2)L×U(1)Y .

QCD has non-abelian gauge symmetry called SU(3)C , the weak and electromagnetic in-

teractions exhibit SU(2)L × U(1)Y symmetry. As stipulated by the Higgs mechanism, the

SU(2)L×U(1)Y breaks to electromagnetic subgroup U(1)EM . The coupling for strong, weak,

and electromagnetic interactions are given by gs for strong interaction, g′ for weak hyper-

charge U(1)Y , and g for weak isospin SU(2)L. Y denotes the generator of week hypercharge,

and the three generators of week isospin are given by τ i where i = 1, 2, 3. For the SU(3)C ,

there are eight generators, which are denoted by T a, where a = 1, ..., 8. Since the interactions

between these fields have a complex structure, it is easier to divide the SM Lagrangian into
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several sectors for the following analysis.

1.3 Constructing the SM Lagrangian

1.3.1 The gauge sector

The gauge field for strong interactions are given by Ga
µ, for the SU(2)L the gauge field

is given by W i
µ and the gauge field for the U(1)Y is given by Bµ. The corresponding

abelian/non-abelian field strength tensors for these gauge fields are given as follows:

Bµν = ∂µBν − ∂νBµ

W i
µν = ∂µW

i
ν − ∂νW i

µ − gεijkW j
µW

k
ν

Ga
µν = ∂µG

a
ν − ∂νGa

µ − gsfabcGb
µG

c
ν

(1.2)

In the SM Lagrangian gauge sector is realized as follows:

Lgauge = −1

4
BµνB

µν − 1

4
W i
µνW

i,µν − 1

4
Ga
µνG

a,µν (1.3)

1.3.2 The fermionic sector

The fermionic sector contains the matter fields. Also, it exhibits the SU(2)L × U(1)Y

symmetry, which accounts the weak and electromagnetic interactions. There are three gen-

erations of fermions each consist of neutrino (vi) with electromagnetic charge Qi = 0, lepton

(li) with Qi = −1, up type quark with Qi = +2/3 and down type quark with Qi = −1/3.

The SU(2)L determines the transformation properties of these fermion fields under weak

charge. These fields are arrange as a 2×1 column vector. This is known as 2 representation.

For an example, uL and dL together form 2 representation of SU(2)L. Similarly, veL and eL

also transform together to form doublet. On the other hand, right handed fields transform

as singlets under SU(2)L.

The representation of U(1)Y is the hypercharge of the field. The hypercharge is assigned

based on the final electromagnetic charge of the fermion. The representation of SU(3)C is

determined by the color charge. The left and right handed quarks comes in three colors
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as 3 × 1 column vector. This is the 3 representation in SU(3)C . Leptons do not carry a

color. They are in the singlet representation of SU(3)C . Altogether, for an example, the

transformation of up type quark under SU(3)c × SU(2)L × U(1)Y is

uL ∼ (3, 2,
1

3
) (1.4)

The interaction between the matter and gauge fields is captured by the covariant derivative.

Dµ = ∂µ + ig′BµY + igW i
µτ

i + igsG
a
µT

a (1.5)

Using this the fermionic part of the standard model Langrangian can be written as:

Lfermionic =
3∑
i=1

(
Ēi
Li /DE

i
L + Q̄i

Li /DQ
i
L + ēiRi /De

i
R + ūiRi /Du

i
R + d̄iRi /Dd

i
R

)
(1.6)

where

Ei
L = PL

 νi

ei

 =


 νe

e


L

,

 νµ

µ


L

,

 ντ

τ


L


QL = PL

 ui

di

 =


 u

d


L

,

 c

s


L

,

 t

b


L

 ,

(1.7)

PL/R = (1∓ γ5) /2.

1.3.3 Higgs sector

As discussed in the section 1.2, the Higgs field is needed as a mass generating mechanism

to heavy vector bosons. The Lagrangian is [11–13]:

LH = (Dµφ)† (Dµφ) +
1

2
µ2φ†φ− 1

4
λ
(
φ†φ
)2

+ Lgauge (1.8)
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where

〈φ〉 =

 φ+

φ0

 =
1√
2

 φ3 + iφ4

φ1 + iφ2

 (1.9)

Here µ and λ are both real parameters. However, the minimum of the Higgs potential

is not at 〈φ〉 = 0. Thus, the potential term provides the spherical shell of minima at a

radius v =
(
µ2

λ

) 1
2
. On the surface of this spherical shell there are infinitely many equivalent

vacua. The Higgs field spontaneously pick one of these vacua and breaks the symmetry. For

simplicity, consider the following vacuum field configuration:

(φ0
1)2 =

2µ2

λ
= 2v2, φ0

2 = 0 φ0
3 = 0 φ0

4 = 0 (1.10)

More concisely,

〈φ〉 =

 0

v

 (1.11)

The symmetry breaking SU(2)L × U(1)Y → U(1)Q does not break all the symmetries.

For instance, our choice of vacuum given in equation (1.11) is still invariant under Û =

ei(
Y
2

+I3τ3)α(x) transformation. In fact Q = Y
2

+ I3 where Q is the electromagnetic charge.

Using this the above transformation can be written as Û = eiQα(x). According to the Yang-

Mills theory this is equivalent to a U(1) transformation. Therefore, the electromagnetic

interaction emerges unbroken from this symmetry breaking.

The excitation above the vacuum state of the Higgs field is given below:

φ(x) =

 0

v + h(x)√
2

 (1.12)



8

The first term in the Higgs Lagrangian becomes

(D†µφ)(Dµφ) =
1

2
(∂µh(x))2 +

g2v2

4
(W 1

µ)2 +
g2v2

4
(W 2

µ)2 +
v2

4
(gW 3

µ − g′Bµ)2 (1.13)

Note that the mass term of a spin-1 field has the form 1
2
(mass)2 × (field)2. Following from

this, the W 1
µ and W 2

µ fields obtain a mass M2
W = g2v2

2
. The linear combination of the fields

(gW 3
µ − g′Bµ) also becomes massive. The Higgs field components φ2, φ3 and φ4 disappeared

from the interaction Lagrangian. The massive excitation of the scalar field is known as Higgs

boson.

The linear combination g′W 3
µ +gBµ does not appear in the above Lagrangian. Therefore,

this combination is identified as the massless photon field. The Weinberg angle is defined as

the ratio of coupling constants g and g′ as tan θW = g′

g
. Using this angle two new fields are

defined as:  Zµ

Aµ

 =

cos θW − sin θW

sin θW cos θW


 W 3

µ

Bµ

 (1.14)

where Zµ is the Z boson field and Aµ is the photon field.

1.3.4 Yukawa sector

The Higgs couplings to the fermions in the SM is described by the Yukawa Lagrangian.

The Lagrangian needs to be Lorentz invariant and have mass dimension 4. Its general form

is

LYukawa 3 −yψψ̄RφψL + c.c, (1.15)

where ψ and φ are fermion field and scalar field respectively. yψ is the dimensionless coupling

between the scalar and fermion fields, which is known as the Yukawa coupling.
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1.3.4.1 Lepton sector

Using the above definition, the Yukawa term in the Lagrangian can be obtained for the

SU(2)L doublet EL = (νL, eL)T as follows:

LYukawa 3 −
[
yeeRΦ†EL + y∗eELΦeR

]
(1.16)

The coupling ye is obtained using

ye√
2

=
me

v
(1.17)

Also, this can be extended to all three generations in SM. This gives a generalized lepton

sector as

Llepton 3 −
[
YijeRjΦ

†ELi + Y ∗ijELiΦeRj
]
, (1.18)

where Yij is the matrix element of the Yukawa matrix. Due to the absence of νRi fields, in

SM neutrinos do not couple to Higgs field. The neutrinos do not get their mass from the

Higgs mechanism.

1.3.4.2 Quark sector

Similarly, the Yukawa interaction between SU(2)L quark doublet QL = (uL, dL)T and down

type quark singlet dR can be written as

LYukawa 3 −
[
yddRΦ†QL + y∗dQLΦdR

]
(1.19)
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The mass generation of up type quarks is obtained by using the conjugate doublet transfor-

mation in SU(2). The conjugate Higgs doublet is given by

φ̃ ≡ iσ2φ∗ = i

 0 −i

i 0


 φ−

φ0∗

 =

 φ0∗

−φ−

 (1.20)

As an artifact of this, we obtain Y = −1
2
. Using this, another gauge invariant term can be

obtained,

LYukawa 3 −
[
yuuRφ̃

†QL + y∗uQLφ̃uR

]
(1.21)

As shown before, the quark masses and the Higgs vev determine the Yukawa couplings. This

can also be generalized to all 3 generations of quarks as well. The complete Yukawa term,

−LYukawa = Y d
ijQLiφdRj + Y u

ijQLiφ̃uRj + Y e
ijELiφeRj + h.c. (1.22)

Also, this term is the source of all flavor interactions [14].

1.3.5 The Standard Model Lagrangian

Considering all the possible interactions between the gauge bossons, fermions and scalars

the final Lagrangian that describes the SM can be written as follows:

LSM = L fermionic + gauge + L Higgs + L Yukawa . (1.23)

In the table 1.1 we summarize all the SM constituents and their corresponding gauge mul-

tiplets.
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Table 1.1: Constituents of the SM

Type spin Field Multiplet

Vector 1

Bµ (1,1,0)

Wµ (1,3,0)

Gµ (8,1,0)

Spinor 1
2

ELi (1,2,−1
2
)

QLi (3,2,1
6
)

eRi (1,1,-1)

uRi (3,1,2
3
)

dRi (3,1,−1
3
)

Sacalar 0 φ (1,2,1
2
)

1.3.6 Cabibbo-Kobayashi-Maskawa (CKM) matrix

Consider equations (1.19) and (1.21). They can be generalized to all three generations

of quarks in the SM.

Lquark
Yukawa = −

3∑
i=1

3∑
j=1

[
yuijūRiφ̃

†QLj + ydij d̄Riφ
†QLj

]
+ h.c. (1.24)

The dimensionless Yukawa couplings now become 3 × 3 matrices. These matrices contain

18 complex parameters. As shown in the section 1.3.3, replacing the Higgs by its vacuum

configuration φ = (0, v/
√

2)T provides the mass term.

LqYukawa ⊃ − (ū1, ū2, ū3)RM
u


u1

u2

u3


L

−
(
d̄1, d̄2, d̄3

)
R
Md


d1

d2

d3


L

+ h.c., (1.25)
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where

Mu
ij =

v√
2
yuij, Md

ij =
v√
2
ydij. (1.26)

The Mu
ij and Md

ij are known as the quark mass matrices in the generation space. The

diagonalization of these mass matrices provide the quark mass eiganstates. This is done by

multiplying the mass matrices by unitary matrices UL, UR, DL and DR. They are defined by


u1

u2

u3


L,R

= UL,R


u

c

t


L,R

,


d1

d2

d3


L,R

= DL,R


d

s

b


L,R

, (1.27)

where u, c, t, d, s and b are quark mass eigenstates. This gives us the diagonalized mass

matrices.

U−1
R M

uUL =


mu 0 0

0 mc 0

0 0 mt

 , D−1
R M

dDL =


md 0 0

0 ms 0

0 0 mb

 . (1.28)

Also, Mu and Md diagonalizes Yukawa matrices yuij =
√

2
v
Mu

ij and ydij =
√

2
v
Md

ij.

These mass eigenstates (physical states) of up and down type quarks can be coupled in

charged current interactions.

J+µ
L = (ū1, ū2, ū3)L γ

µ


d1

d2

d3

 = (ū, c̄, t̄)LU
†
Lγ

µDL


d

s

b


L

= (ū, c̄, t̄)Lγ
µV


d

s

b


L

.(1.29)

Here V = U †LDL is known as the Cabibbo-Kobayashi-Maskawa (CKM) matrix, and it is given
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by

VCKM =


Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

 . (1.30)

The CKM is unitary

V †V =
(
U †LDL

)† (
U †LDL

)
= D†LULU

†
LDL = 1 (1.31)

Since the CKM matrix is a 3 × 3 matrix it is defined by nine complex parameters (18 real

numbers). The constraint V †abVbc = δac reduce this to nine real parameters. The redefinition

qL → eiαqLqL can technically remove six phases because there are six different quark fields.

However, the common phase redefinition of all the quarks does not affect the CKM matrix.

This, in turn, reduces the number of nonphysical phases to five. Altogether, there are 9−5 =

4 independent parameters to describe the CKM matrix. There is no unique parameterization

for the CKM matrices. The most common ones are “ Standard parametarization” [16] and

“Wolfenstein parameterization” [17].

1.3.6.1 Standard Parameterization

The Standard parameterization is given by

VCKM =


c12c13 s12c13 s13e

−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −s23c12 − s12c23s13e

iδ c23c13

 , (1.32)

where sij = sin θij and cij = cos θij(i = 1, 2, 3). The phase δ is necessary for the CP violation,

and its range 0 ≤ δ ≤ 2π. The measurements of CPV in K decays constrain this range to

0 ≤ δ ≤ π [15].

The s13 and s23 are in the order of 10−3, and c13 = c23 = 1 [18]. This leaves 4 independent
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parameters

s12 = |Vus| , s13 = |Vub| , s23 = |Vcb| , δ (1.33)

1.3.6.2 Wolfenstein Parameterization

The Wolfenstein Parameterization can be obtained by expressing the independent parameters

in standard parameterization by λ,A, ρ, η [19].

s12 = λ, s23 = Aλ2, s13e
−iδ = Aλ3(%− iη) (1.34)

This is an approximate parameterization, in which each CKM elements is expanded in power

series of small parameter λ = |Vus| = 0.22. This gives us

V̂ =


1− λ2

2
λ Aλ3(%− iη)

−λ 1− λ2

2
Aλ2

Aλ3(1− %− iη) −Aλ2 1

+O
(
λ4
)
. (1.35)

1.3.6.3 Unitarity triangles

Unitarity relationships can be expressed by triangle relations defined in a complex plane.

For example,

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0

VusV
∗
ub + VcsV

∗
cb + VtsV

∗
tb = 0

VudV
∗
us + VcdV

∗
cs + VtdV

∗
ts = 0

VudV
∗
td + VusV

∗
ts + VubV

∗
tb = 0

VcdV
∗
td + VcsV

∗
ts + VcbV

∗
tb = 0

VudV
∗
cd + VusV

∗
cs + VubV

∗
cb = 0

(1.36)
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The area of the unitarity triangles provide the measurement of CP violation. This measure-

ment is obtained by [20]

|JCP| = 2 · A∆ (1.37)

where |JCP | is the Jarlskog invarient and A∆ is the area of the unitarity triangle. There-

fore, precise measurements of the CKM parameters along with these unitarity relationships

gives us important information on CP violation. Also, unitarity triangles are important for

understanding the flavor changing neutral current processes (see sec. 1.3.7.2).

1.3.7 Flavor physics

In flavor physics, the interactions between different flavors are studied extensively. Mass-

less gauge bosons such as gluons and photons do not distinguish between different flavors.

However, the weak and the Yukawa interactions are directly affected by the flavor of the

participants in the interaction. When it comes to beyond the standard model interactions,

there may be some new degrees of freedom that are affected by the flavors.

During a flavor changing interaction, flavor quantum numbers change. There are two

types of flavor changing interactions. If the interaction is between both up type and down

type flavors or charged leptons and neutrinos, then it involves flavor changing charged current

(FCCC). For the interactions between either up type or down type flavors but not both

and/or either charged leptons and neutrinos but not both, then it involves the flavor changing

neutral currents (FCNC). No term in the SM Lagrangian changes flavor in Z0, g and γ

interactions. Therefore, it makes FCNC are highly sensitive to the new physics.

1.3.7.1 Weak interactions

The weak interactions are summarized in the following form

LEW
int = LCC + LNC (1.38)

where LCC and LNC describe the charged current and the neutral current interactions. In
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particular, the CC is given by [15]

LCC =
g

2
√

2

(
J+
µW

+µ + J−µW
−µ) , (1.39)

where

J+
µ = J1

µ + iJ2
µ = ŪLγµDL + l̄γµνL, (1.40)

UL is an up type quark, D is a down type quark, l is a lepton and v is a neutrino. The NC

is given by

LNC = −eJem
µ Aµ +

g

2 cos θW
J0
µZ

µ, (1.41)

where e is the QED coupling. The neutral electromagnetic and weak currents are given by

Jem
µ =

∑
f Qffγµf

J0
µ =

∑
f fγµ (vf − afγ5) f

(1.42)

where

vf = T f3 − 2Qf sin2 θW , af = T f3 . (1.43)

The Qf and T f3 denotes the charge and the third component of the weak isospin of the

left-handed fermion. The photonic and gluonic vertices are vector-like (V), the W± vertices

involve only vector-axial minus vector-like (V − A) and the Z0 vertices involve both V − A

and V + A structures. Also, the vertices that involve Higgs play an important role. This

relates the CP-violating decays and transitions.
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1.3.7.2 FCNC

At one loop order the possible FCNC interactions are summerized by triple and quartic

effective vertices. In the literature these vertices are known as penguin and box diagrams.

The name “penguin” was coined by J.Ellis [24]. Penguin diagrams are defined by a single

exchange of a W boson. Whereas, the box diagrams contain two W exchanges.

The importance of the penguin diagrams was pointed out in the work of Vainshtein,

Zakharov, and Shifman [25]. For instance, penguin diagrams are responsible for the en-

hancement of the ∆I = 1/2 amplitude compared to the ∆I = 3/2 amplitude in weak

K → ππ decays. The importance of the penguins to CP violation was first pointed out by

Bander, Silverman and Soni [26]. They showed that the interference between the tree level

diagrams and the penguin diagrams can give a large CP asymmetry in B decays.

In b transitions to lighter quarks such as s and d, the penguin effects are rather pro-

nounced. In these penguins the t quark is primarily contributing to the loop. This is

because the amplitude of the penguin is proportional to the kinematic factor (mq/MW )2 and

(mt/MW )2 � (mc,u/MW )2 (see sec 1.3.8). Also, there is a large coupling between b and t

because |Vtb| ∼ 1. This feature of b penguins makes b→ s and b→ d transitions sensitive to

|Vts| and |Vtd|.

In particular, the decays such as b→ s(d) are classified into a class of diagrams that are

known as electromagnetic penguins. In these decays a hard photon is emitted from a charged

particle. This hard photon is an excellent experimental signature. The Feynman diagram

for b→ s, dγ transition is given in figure 1.2.

Figure 1.2: The electromagnetic penguin diagram [28].

The figure 1.2 shows that the b → s, dγ transition is a loop suppressed process. In the
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SM there exist no tree level diagrams for these FCNC transitions.

1.3.8 GIM mechanism

The suppression of the b→ s(d) was further explained by the Glashow-Illiopoulos-Maiani

(GIM) mechanism. The amplitude of figure 1.2 is given by [29]

M = eqµεν ū (ps)σ
µν

(
1 + γ5

2

)
u (pb)

mb

M2
W

g2

16π2
· I, (1.44)

where

I =
∑
i=u,c,t

VibV
∗
isF

(
m2
i

M2
W

)
. (1.45)

The term g2

16π2 is a loop factor, and it can be given as g2

16π2 ∼ α
4π cos2 θW

. We insert the b quark

mass mb to flip the chirality of the b quark.

In equation (1.45), the function F (x) arises by the explicit calculation of the diagram.

Since mt � MW , we cannot safely Taylor expand the function F (mi/MW ). The function I

is invariant under F (x) → F (x) + constant from the unitarity of the CKM matrix. Under

this transformation F (0) = 0 without loss of generality. Besides, the unitarity of the CKM

matrix elements provide VtbV
∗
ts = −

∑
i=u,c VibV

∗
is. Following from this, we obtain

I = −VcbV ∗cs
(
F

(
m2
t

M2
W

)
− F (

m2
c

M2
W

)

)
− VubV ∗us

(
F

(
m2
t

M2
W

)
− F (

m2
u

M2
W

)

)
. (1.46)

Since mu,mc �MW , the term F (m2
u,c/M

2
W ) can be expanded in Taylor series. This gives

I = −VcbV ∗cs
(
F

(
m2
t

M2
W

)
− F ′(0)

m2
c

M2
W

)
− VubV ∗us

(
F

(
m2
t

M2
W

)
− F ′(0)

m2
u

M2
W

)
+ · · ·

= F

(
m2
t

M2
W

)
VtbV

∗
ts + F ′(0)

∑
i=u,c

VibV
∗
is

m2
i

M2
W

+ · · ·

∼ ε2F

(
m2
t

M2
W

)
,

(1.47)
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where ε2 = Aλ2 in the Wolfenstein parameterization. The combination of loop suppres-

sion, mass suppression and CKM suppression is provided by GIM mechanism. As a result,

the FCNC are highly suppressed in the SM. Also, the contribution from F (m2
u/M

2
W ) and

F (m2
c/M

2
W ) is negligible compared to the F (m2

t/M
2
W ). Thus, the virtual top quark exchanges

dominate the b→ s(d) amplitude.

1.3.9 Effective weak interactions

In the SM, the coupling of the W± bosons to the fermions are the only flavor changing

interactions [30]. At low energies, i.e. E � MW , we can ignore the effects of the heavy

bosons. This is known as integrating out of the heavy degrees of freedom (see sec 2.2).

As a result, a full SM interaction is converted into a local four fermion interaction. The

effective Lagrangian can be expressed by a series of effective vertices and their effective

coupling constants (see sec 2.1.1). These effective coupling constants provide the short

distant (high energy) physics, and they are known as Wilson coefficients (Ci). The long

distant (low energy) physics is given by effective operators 〈Qi〉. Since the Wilson coefficients

are associated with high energy scales, where αs
π
∼ 0.1, they can be perturbatively expanded

in αs. This is because at high energy scales the Ci are obtained by matching the effective

diagrams with the full theory diagrams at the weak scale (µ ∼ MW ). For example, the

explicit form of the first two Wilson coefficients are [30]

C1(µ) = 1 + 3
Nc

αs(µ)
4π

(
ln

M2
W

µ2
− 11

6

)
+O (α2

s)

C2(µ) = −3αs(µ)
4π

(
ln

M2
W

µ2
− 11

6

)
+O (α2

s)
(1.48)

In equation (1.48) C1 and C2 are expanded in terms of αs
π

ln
M2
W

µ2
instead of αs

π
. The αs

π
ln

M2
W

µ2
∼

0.8. These large logarithmic terms needs to resummed to all orders.

The solution to the problem of large logarithms is by using renormalization-group (RG)

improved perturbation theory. It treats αs ln M
µ

as O(1) and αs � 1. In appendix A we

provide the RG evaluation of the dominant Wilson coefficients of B̄ → Xsγ.
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CHAPTER 2 BACKGROUND : EFFECTIVE FIELD THEORY

APPROACH

In explaining natural phenomena, the separation of scales plays an important role. For

instance, to explain the dynamics of gasses, we use a set of macroscopic variables such

as pressure, volume, and temperature, which do not provide insight about the molecular

(microscopic) structure of the gas molecules. The molecular description of gas is not useful

to explain the most day to day phenomena. The microscopic nature of the molecules is

needed to understand the chemical structure of these atoms [31]. In the above example, the

macroscopic view of gasses is the effective theory of the microscopic picture. This effective

approach is prevalent in many branches of Physics. As another example, in the quantum

mechanical (QM) description of a hydrogen atom does not involve in dynamics of quarks

and gluons inside the proton. However, if we zoom in to the hydrogen nucleus, then the

dynamics of the quarks and gluons inside the proton becomes essential. More rigorously, the

term “zoom in” can be thought of as an increase in the energy scale that is being probed.

2.1 Operator product expansion (OPE)

The effective description of a decay process is given by the effective Hamiltonian. For

instance, consider the effective Hamiltionian for β decay,

H(β)
eff =

GF√
2

cos θc [ūγµ (1− γ5) d⊗ ēγµ (1− γ5) νe] (2.1)

where equation (2.1) describe the underlying quark process of the β decay and θc is the

Cabibbo angle. This effective interaction is shown in figure 2.1.
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Figure 2.1: Underlying quark process of β decay. (a) represent the SM description and (b)
represent the effective representation [32] .

In general, the phenomenology of any weak hadronic decay is given by the following

effective Hamiltonian.

Heff =
GF√

2

∑
i

V i
CKMCi(µ)Qi(µ). (2.2)

Here Qi are relavent local operators that govern the particular decay, Ci(µ) are the Wilson

coefficients, which describe the strength of a given operator that enters the Hamiltonian

and V i
CKM is the relevent CKM matrix element to the decay. Simply, the equation (2.2)

can be thought of as a series of vertices multiplied by effective coupling constants Ci [32].

This effective series is known as an operator product expansion (OPE) [33–35]. The local

operators (vertices) in the OPE involved with the strong and weak interactions, and they

can be classified with respect to the Dirac structure, color structure and the type of quarks

and leptons relevant for the decay.

2.1.1 OPE for B meson decays

The B meson is a bound state of a b quark and a parton (light quark). The decay of B

is governed by the processes that involve W,Z and t quark, and they represent the physics
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at short distance (high energy) scales O(MW,Z ,mt). At the long distance (energy∼ ΛQCD)

scale, the hadronization process govern the decay since αs(ΛQCD) ∼ O(1), where at ΛQCD the

nonperturbative effects become prominent. The hadronic decay atO(mb) is given by effective

point like vertices, which are represented by local operators Qi. The Wilson coefficients can

be thought of as the coupling constants associated with these Qi.

For instance, the non-leptonic B meson decays involve the following set of local operators.

Current-Current:

Q1 = (c̄αbβ)V−A (s̄βcα)V−A Q2 = (c̄b)V−A(s̄c)V−A

(2.3)

QCD-Penguins :

Q3 = (s̄b)V−A
∑

q=u,d,s,c,b(q̄q)V−A Q4 = (s̄αbβ)V−A
∑

q=u,d,s,c,b (q̄βqα)V−A

Q5 = (s̄b)V−A
∑

q=u,ds,c,b
(q̄q)V+A Q6 = (sαbβ)V−A

∑
q=u,ds,c,b

(q̄βqα)V+A

(2.4)

Electroweak-Penguins :

Q7 = 3
2
(s̄b)V−A

∑
q=u,d,s,c,b eq(q̄q)V+A Q8 = 3

2
(s̄αbβ)V−A

∑
q=u,d,s,c,b eq (q̄βqα)V+A

Q9 = 3
2
(s̄b)V−A

∑
q=u,d,s,c,b eq(q̄q)V−A Q10 = 3

2
(s̄αbβ)V−A

∑
q=u,d,s,c,b eq (q̄βqα)V−A

, (2.5)

where α and β are corresponding color indices, eq is the electric charge of quarks. The oper-

ators Q2, Q3−6 and Q7, Q9 are generated due to the tree level W± exchange, gluon penguin

and γ, Z0 penguin diagrams respectively. The Wilson coefficients provide the contribution

of the short distant ( energy scale higher than µ ) physics. Since QCD is asymptotically free,

these Wilson coefficients can be perturbatively calculated. The Ci include the contributions

from the t quark, W , Z, Higgs and SM extensions. In general, Wilson coefficients depend

on mt and the masses of new particles from SM extensions.

The scale µ separates the physics contribution to the decay amplitude to long distance

and short distance. Short distance physics governs the interaction at energies that are higher
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than the value of µ. Whereas, long distance physics governs the interaction at the energies

lower than the value of µ. In practice µ is chosen at the order of mb (mass of the decaying

hadron). Since µ = O(mb)� ΛQCD, the Ci can be calculated perturbatively in B decays.

Long distance physics are contained in local matrix elements 〈Qi(µ)〉. Using the renor-

malization group equation (RGE) we evolve the scale from µ = O(MW ) down to O(mb).

The full amplitude is independent of µ, and it implies the cancellation of the µ dependence

in Ci with the µ dependence of 〈Qi(µ)〉.

2.1.1.1 Inclusive and exclusive B decays

Exclusive decays imply the measurement of energy and momenta of all the final state parti-

cles. Whereas, in inclusive decays the probability of particle decay into a sum of final states

(X) with a given set of global quantum numbers such as energy and momentum is measured.

The amplitude for exclusive decays such as B decay in to final states F = πνν̄, ππ,DK

is given by

A(M → F ) = 〈F |Heff |B〉 =
GF√

2

∑
i

V i
CKMCi(µ) 〈F |Qi(µ)|B〉 (2.6)

where 〈F |Qi(µ)|B〉 are the hadronic matrix elements of operators Qi between the initial

B meson state and the final state F . Evaluation of this matrix element is necessary for

the calculation of the exclusive amplitude. The Wilson coefficients Ci(µ) in equation (2.6)

depends on both the scale µ and the renormalization scheme that was used for local operators.

This is calculated in the renormalization group improved perturbation theory. The hadronic

matrix elements 〈Qi〉 also depend on both µ and the renormalization scheme.

The evaluation of 〈Qi(µ)〉 requires nonperturbative methods such as lattice calculations,

the 1/Nc expansion (Nc is the number of colors), QCD sum rules, hadronic sum rules, chiral

perturbation theory and so on. Also, for some B meson decays these matrix elements can

be analyzed using the heavy quark effective theory (HQET).
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The amplitude for an inclusive B decay is given by

A(B → X) =
GF√

2

∑
f∈X

V i
CKMCi(µ) 〈f |Qi(µ)|B〉 (2.7)

Unlike the exclusive decays, the scheme dependence in inclusive decay matrix elements can

be effectively evaluated. Because of this, the cancellation of this scheme dependence with

the scheme dependence in Ci can be systematically studied [36]. Therefore, studying the

inclusive B meson decays become important from the practitioner’s point of view.

Inclusive decays have two main advantages over exclusive decays.

� The bound state related effects such as Fermi motion [36] of heavy quark inside the

hadron can be systematically described by heavy quark expansion

� The bound state effects related to the final state hadrons are removed due to the

consideration of final state as a sum of hadronic channels.

The second feature is realized due to the application of quark hadron duality [37, 38]. This

suggests that at high energy scales (µ) the cross section of hadronic decays, which are

averaged over the energy range, can be approximately given by the cross sections that are

evaluated by quark and gluon pertrurbation theory.

2.2 Heavy quark effective theory (HQET)

2.2.1 Heavy quark symmetry

Due to asymptotic freedom [40] at large momentum transfer (short distance scale), the

effective coupling constants Ci become small. Whereas at low energy transfer (long-distance

scale), the coupling becomes strong, and the process becomes nonperturbative. This prop-

erty of QCD makes studying the processes that include decay of heavy quarks easier than

the processes that include only the light quarks. These nonperturbative phenomena are

dominated at the scale Rhad ∼ 1/ΛQCD ∼ 1 fm [41]. This scale also determines the size of

the hadrons. When a mass of a quark (MQ) is much larger than the ΛQCD (MQ � ΛQCD),

then we call it a heavy quark. In the SM c, b and t quarks are considered as heavy.
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The system of heavy quark and light quarks is a bound state, which is complicated to

analyze. The typical momentum exchange between these heavy and light constituents are

of O(ΛQCD). This bound state of heavy quark and light quarks can be thought of as heavy

quark sitting at the center of the strongly interacting cloud of partons (light quarks). The

corresponding Compton wavelength (λQ) for a heavy quark is much less than the size of

hadron λQ � Rhad. This means the heavy quark’s quantum numbers are resolved at very

small distances compared to Rhad. In contrast, the soft gluons exchanged between the heavy

quark and the light quarks are resolved at much larger distances than the heavy quark. Due

to this, the light degrees of freedom become blind to the flavor and spin orientation of the

heavy quark. These light quarks will only feel the color field generated by the heavy quark,

and it is extended over a larger area compared to the scale of the heavy quark. As shown

above, this nature of the interactions between heavy quark and the partons provide a clear

separation of scales, which makes this bound state a suitable candidate for an EFT analysis.

Since the heavy quark is irrelevant for the effective analysis, we use the limit MQ →∞ in

deriving the theory. Also, in this limit, the differences between various hadronic states that

have different heavy flavors tend to have the same configuration. In fact, the configuration

of these different hadronic states is determined by the configuration of the light quarks. This

property provides the relation between the heavy meson states such as B,D,B∗ and D∗ or

between the heavy baryon states such as Λb and Λc. This means if we change the heavy

quark with velocity v in the system with another heavy quark with the same four-velocity

and different flavor or spin, the configuration of the light quarks remains the same. Both

heavy quarks will remain as static color sources. Therefore, we obtain a new symmetry in

the effective theory, which includes Nh number of heavy quarks. This symmetry is known

as heavy quark symmetry, and it is SU(2Nh) internal continuous symmetry [41].

2.2.2 Constructing the HQET Lagrangian

Since the presence of the heavy quark is irrelevant for the configuration of light quarks,

at low energies, we can construct a low energy theory in which the heavy degrees of freedom



26

does not appear. This is known as the “integrating out”. This integrating out procedure is

similar to the above discussed Fermi theory of weak interactions.

The heavy quark effective theory (HQET) is constructed to simplify the complicated

interaction between the heavy quark and the partons by the exchange of soft gluons [42–45].

The heavy quark masses MQ is the high energy scale of the theory. Whereas, we construct

the theory to study the interactions at the scale of ΛQCD. As shown in the section 2.1.1,

scale µ separates long distance and short distance physics contributions. The short distance

physics are obtained at the energy scales larger than the heavy quark mass. By considering

these two limits for the scale µ, we introduce the scale as in the range ΛQCD � µ�MQ [41].

Since we assume the heavy quark is static inside the heavy hadron’s rest frame, heavy

quark’s velocity is equal to the hadron’s velocity v. Therefore, the momentum of the heavy

quark inside the bound state is given by

pµQ = MQv
µ + kµ, (2.8)

where v is the four-velocity of the heavy meson, and it is given by v = (1, 0, 0, 0). The

v · v = 1 and k is the residual momentum. The k determines the off-shellness of heavy

quarks due to the interactions with light partons. This provides k ∼ ΛQCD � MQv. The

changes to the heavy quark velocity v due to these soft interactions are small, and they

vanish as ΛQCD/mQ → 0.

As shown in [30,31] the near on shell Dirac spinor has two large and two small components,

using this, the quantum field for the heavy quark can be defined as follows:

Q(x) = e−iMQυ·x[hυ(x) +Hυ(x)]. (2.9)

Where hυ(x) = eiMQυ·x (1 + /υ)

2
Q(x) represents the large “upper” component and Hυ(x) =

eiMQυ.x
(1− /υ)

2
Q(x) represents the small “lower” components. These large and small com-
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ponent fields satisfy /vhv = hv and /vHv = −Hv. Now the full QCD Lagrangian

LQ = Q̄
(
i /D −mQ

)
Q (2.10)

can be re written as follows:

LQ = h̄viv ·Dhv − H̄v (iv ·D + 2mQ)Hv + h̄vi /D⊥Hv + H̄vi /D⊥hv, (2.11)

where Dµ
⊥ = Dµ − vµv · D is the orthogonal component of the covariant derivative to the

heavy quark velocity (v · D⊥ = 0). In the rest frame of the heavy quark D⊥ only contains

the spatial components of the covariant derivative (D⊥ = (0, ~D)). From equation (2.11), we

find that hv describes massless degree of freedom. Whereas, the Hv describes a heavy degree

of freedom with mass 2MQ. The third and fourth terms in the equation (2.11) describe

pair creation and anhilation of heavy quark and heavy anti-quark. These heavy degrees of

freedom can be eliminated using the equation of motion. The HQET equation of motion

provides

(iv ·D + 2MQ)Hv = i /D⊥hv (2.12)

by solving the equation (2.12) for Hv

Hv =
1

2MQ + iv ·D
i /D⊥hv (2.13)

This eliminate the small component of the heavy quark field in the equation (2.11).

Leff = h̄viv ·Dhv + h̄vi /D⊥
1

2MQ + iv ·D
i /D⊥hv (2.14)

In momentum space the derivatives that are acting on hv produce powers of residual momen-

tum k. Because of k � MQv, we expand the equation (2.13) in a Taylor series. Applying
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this expansion in equation (2.14):

Leff = h̄viv.Dhv + h̄v
i /D⊥
2MQ

(
1 +

∞∑
n=0

(
−iv ·D

2MQ

)n)
i /D⊥hv (2.15)

For n = 0 the above expression can be further simplified using the following identity

/D⊥ /D⊥ = gµνD
µ
⊥D

ν
⊥ − iσµνD

µ
⊥D

ν
⊥ (2.16)

where σµν = i
2

[γµ, γν ]. Following from this the resulting Lagrangian is obtained as an

expansion in 1/Mn
Q.

Leff = h̄υ

(
iυ ·D − D2

2MQ

− g

4MQ

σµνG
µν

)
hυ +O

(
1

M2
Q

)
, (2.17)

where, Gµν is Chromo-electromagnetic field strength tensor.

In the limit MQ →∞ only the first term in equation (2.17) remains

L∞ = h̄viv ·Dhv. (2.18)

2.2.2.1 Operators at order O(1/MQ) in the HQET Lagrangian

Consider the second and the third terms in equation (2.17). The operator,

Okin =
1

2MQ

h̄v (iD⊥)2 hv → −
1

2MQ

h̄v(i ~D)2hv, (2.19)

is the kinematic energy of the heavy quark’s residual motion. The operator, Omag defined in

equation (2.20) is the color-magnetic coupling between heavy quark spin and gluon field.

Omag =
gs

4MQ

h̄vσµνG
µνhv → −

gs
MQ

h̄v ~S · ~Bchv, (2.20)
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where ~S are the Pauli spin matrix elements, and Bi
c = −1

2
εijkGjk, which are the components

of color magnetic field. [46–48].

2.3 Non-relativistic QCD

HQET describes systems that include a single heavy quark and light partons. In HQET

the heavy quark’s kinetic energy is considered as a power correction. When considering

multiple heavy quarks the strong interaction between them at short distances is determined

by a single gluon exchange [12]. This gluon exchange is defined by a Coulomb potential,

and for Q̄Q in a color single state this potential is an attractive potential. This attractive

potential is then compensated by heavy quark kinetic energy. This makes the kinetic energy

of the heavy quark field play an important role in stabilizing the heavy mesons. The heavy

quark kinetic energy cannot be treated as a power correction. Thus, we use a different power

counting scheme in NRQCD compared to HQET. This difference is further illustrated in the

following example.

Consider the figure 2.2, which represents a box diagram with two heavy quarks exchange

gauge particles (gluons or photons).

Figure 2.2: Box diagram for two heavy quark exchanging gauge particles

The integral I that corresponds to the figure 2.2 is given by [31]

I ∼
∫

ddq

(2π)d
1

q0 + iε

1

−q0 + iε

1

(q + k)2 + iε

1

(q − k)2 + iε
(2.21)

In the equation (2.21), we find two poles at q0 = ±iε. These poles are coming from
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the heavy quark propagators, and they cause a “pinch singularity”. As a result, we cannot

deform the contour of the integration without crossing one of these poles [31]. To overcome

this singularity we need to introduce a new power counting scheme. In this new power

counting scheme the importance of the heavy quark kinetic energy is pronounced.

In NRQCD the quarkonium is described by an effective Lagrangian, which is expanded

as a power series in v/c, where c is the vacuum speed of light. The NRQCD Lagrangian can

be obtained by using the c→∞ limit in the full QCD Lagrangian.

2.3.1 NRQCD Lagrangian

As shown above, the difference between the HQET and NRQCD is manifested in the first

two terms of the effective Lagrangian.

L = Q†(iD0)Q+Q†
D2

2m
Q. (2.22)

In HQET the first term is of O(ΛQCD) and second term is considered as a correction term

of O(Λ2
QCD/m). Whereas, in NRQCD both terms are of O(mv2). Because of this, the heavy

quark propagator in both effective theories have different forms. For instance, the heavy

quark propagator in HQET is given by i/ (k0 + iε). The NRQCD heavy quark propagator

is given by

i

(k0 − k2/2m+ iε)
(2.23)

This full NRQCD propagator causes problems in matching calculations. As shown above,

the HQET propagator is mQ independent. Because of this we count the powers of 1/mQ

directly from the vertex factors. For instance, if s < r the effective vertex of O(1/mr
Q) does

not provide any contribution to terms of O(1/ms
Q). Then the matching in HQET is done

by expanding Greens function to the desired order in 1/mQ. But the NRQCD propagator

contains additional power suppressed factors. These factors can wreck the simple power

counting of Greens function [31]. The solution for this problem is provided in [55].
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In [55] the full NRQCD propagator is expanded, and the extra terms were treated as a

perturbation. The expansion of full NRQCD propagator is given by

1

k0 − k2/2m+ iε
=

1

k0
+

k2

2m (k0)2 + · · · (2.24)

The series expansion of propagator prevents the appearance of positive powers of the mass

terms. Whereas, the full NRQCD propagator provides these positive powers. Thus, by

expanding the NRQCD propagator the NRQCD and HQET matching conditions can be

computed using the same procedure.

The NRQCD Lagrangian upto dimension seven (O(1/m3)) is provided in equation (4.43).

This Lagrangian is computed to one loop, and it only considers the terms that are bilinear

in fermions [55]. In equation (4.56) we provide the dimension eight Lagrangian. This is first

obtained in our work [56].

2.4 Applications

2.4.1 Heavy quark spectroscopy

As shown in the section 2.2.1, the dynamics of hadronic bound state with one heavy

quark does not depend on its heavy quark’s flavor or spin. Because of this, states with

different heavy quark flavors can be related to each other. The hadronic states, therefore,

are classified by the quantum numbers of the light degrees of freedom [59]. From the spin

symmetry we find that the total spin of these partons are doubly degenerated with total spin

J = j ± 1
2

[60].

The mass of a hadron HQ is related to it’s heavy quark as follows:

MHQ = MQ + Λ̄ +
∆M2

2MQ

+O
(
1/M2

Q

)
, (2.25)

where Λ̄ = MHQ − MQ and ∆M2 is originated from the order 1/MQ terms in effective
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Lagrangian. In particular, the mass splitting (∆M2) for heavy hadrons are defined as

∆M2 = −λ1 + 2

[
J(J + 1)− 3

2

]
λ2, (2.26)

where λ1 and λ2 are nonperturbative parameters, which parametrize the kinetic energy and

the chromo-magnetic interaction of heavy quark in heavy hadron. For instance, consider the

B and B∗ mesons. These hadronic states are the members of spin doublet j = 1
2
, and they

are ground-sate pseudo scalar (J = 0) and vector (J = 1) states respectively. Using the

equations (2.25) and (2.26) we obtain

MB = Mb + Λ̄− λ1

2Mb

− 3λ2

2Mb

M∗
B = Mb + Λ̄− λ1

2Mb

+
λ2

2Mb

(2.27)

Therefore, the mass splitting between these states is given by

M2
B∗ −M2

B = 4λ2 +O (1/Mb) (2.28)

PDG average for the B and B∗ mass spliting is

M2
B∗ −M2

B = 0.478± 0.003 GeV2 (2.29)

From this we obtain

λ2 = 0.119± 0.001 GeV2 (2.30)

These results are obtained by assuming the mb →∞ limit.

The nonperturbative parameter λ1 contains the information about “smearing” in heavy
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quark momentum [63]. This parameter is defined as

2λ1 = −〈HQ|h̄vD2
⊥hv|HQ〉. (2.31)

The λ1 can be calculated using the QCD sum rule approch [63].Theoretical estimate for the

λ1 is given in [64].
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CHAPTER 3 BACKGROUND : THE B̄ → XSγ DECAY

The inclusive radiative B̄ → Xsγ decay is an important new physics probe. Since this is a

FCNC process, it does not occur at tree level in the SM. Therefore, it can be highly sensitive

to new physics. In particular, these new physics sources can modify the Wilson coefficient

C7γ, and they may introduce new weak phases that can enhance the SM CP asymmetry.

The b → sγ is the underlying partonic decay of the inclusive B → Xsγ decay. This b

to s transition is one of the most reliably calculable FCNC processes in SM [66]. The final

states Xs represent a final state that contains a s quark

The current SM next to-next to leading (NNLO) prediction for the B̄ → Xsγ branching

ration is BSM
Xsγ

= (3.36 ± 0.23) × 10−4 [27, 69]. The experimental world average is Bexp
Xsγ

=

(3.32±0.15)×10−4 [70–76]. The experimental uncertainty on the branching ratio is expected

to reduce from ±4.5% to around ±2.6% in future thanks to Belle II measurements [79]. With

these new precision measurements, SM prediction can strongly constrain the BSM. Therefore,

improving the precision of the theoretical prediction is important.

The uncertainty of the SM prediction arise from several sources. These uncertainties

were combined in quadrature to obtain the total uncertainty (±6.8%). The breakdown of

these uncertainties is as follows: The nonperturbative contribution to the uncertainty is

±5% [78], parametric uncertainty is ±2%, perturbative uncertainty is ±3%, the uncertainty

from interpolating the charm mass in two-loop is ±3% [69].

Since the nonperturbative uncertainty provides the largest contribution to the total un-

certainty, we would like to explore the possibility of improving this estimate. The question

that we are prompt to ask is “how do we reduce this uncertainty?”. In the following work, we

address the issue of reducing the nonperturbative contribution of the theoretical prediction.

3.1 The inclusive decay rate

The inclusive decay rate for the B̄ → Xsγ is obtained by using the optical theorem. This

theorem relates the decay rate to the imaginary part of the forward scattering amplitude.
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The B̄ → Xsγ decay is can be written as

Γ
(
B̄ → Xsγ

)
=

1

MB

Im
〈
B̄|T|B̄

〉
, (3.1)

where T is related to the effective Lagrangian. However, instead of effective Lagrangian we

use the effective Hamiltonian (Heff)

T = i

∫
d4xT {Heff(x),Heff(0)} , (3.2)

where Heff is obtained after integrating out the W boson [78]. The effective Hamiltonian is

given by

Heff =
GF√

2

∑
q=u,c

λq

(
C1Q

q
1 + C2Q

q
2 +

∑
i=3,...,6

CiQi + C7γ Q7γ + C8gQ8g

)
, (3.3)

where λq = VqbV
∗
qs, Ci are the Wilson coefficients and Qi are the effective operators. This

Hamiltonian describes the underlying are weak interaction in the decay process.

The decay rate and the photon spectrum related to the restricted discontinuity of forward

scattering matrix element [78].

dΓ
(
B̄ → Xsγ

)
∝ Discrestr

[
i

∫
d4x

〈
B̄
∣∣∣H†eff(x)Heff(0)

∣∣∣ B̄〉] , (3.4)

where the restricted discontinuity implies that the discontinuity is restricted by the require-

ment that the cut must be applied on photon and strange quark propagators.

3.1.1 Kinematics of the decay

In its rest frame, the B meson is decaying into a hadronic jet, which carries a momentum

PX , and to a photon, which carries a momentum q. The momentum of the heavy hadron

is MBv = PX + q, where v is the four velocity of the B meson. In the B meson rest frame

v = (1, 0, 0, 0). We can align ~q in the negative z direction and define two light-like vectors

nµ = (1, 0, 0, 1) and n̄µ = (1, 0, 0,−1). These n and n̄ vectors satisfy n̄ + n = 2v, n̄ · n = 2
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and n · v = n̄ · n = 1 [80]. In general, any four vector can be decomposed as

aµ = n̄ · an
µ

2
+ n · an̄

µ

2
+ aµ⊥. (3.5)

For the choice of v, n, n̄ the transverse component (⊥) is spanned by (0, 1, 0, 0) and (0, 0, 1, 0).

These transverse indices can be contracted using

gµν⊥ = gµν − nµn̄ν + nνn̄µ

2
, εµν⊥ =

1

2
εµναβn̄αnβ (3.6)

where we use the following convention for the levi-civita tensor ε0123 = 1.

The conservation of four momentum provides that there is only one independent kine-

matical variable in B̄ → Xsγ decay that is the photon energy Eγ.

3.1.2 Factorization

At the leading order the B̄ → Xsγ decay can be thought of as a decay of constituent b

quark decaying into an s quark and a photon. This constituent quark decay is expressed by

the electromagnetic dipole operator Q7γ

Q7γ = −emb
8π2 s̄σµν(1 + γ5)F µνb. (3.7)

However, this is not the only way to produce a photon. For instance, a gluon or a quark pair

that was produced at the weak vertex can be converted to a photon, and these processes are

described by the operators Q8g = (−g/8π2)mbsσµνG
µν (1 + γ5) b and Qc

1 = (cb)V−A(sc)V−A

respectively. The effective Hamiltonian for B̄ → Xsγ needs to account for all of these

operators to accutrately describe the decay process.

The major contribution to the effective Hamiltonian arises from the operators Qq
1, Q7γ

and Q8g [78]. This is because the Wilson coefficients of these operators are relatively larger

than the rest.

At the leading order the only the operator pair Q7γ −Q7γ contributes to the decay rate.
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The contributions from operators such as Qq
1 and Q8g give higher order contributions, and

they either “cost” a factor of αs or 1/mb in the decay rate calculation.

The shape of the B̄ → Xsγ photon spectrum probes the nonperturbative hadronic physics

in the decay. At the leading order this photon spectrum is related to a universal shape

function that parametrizes the b quark momentum in the B meson bound state. This

shape function also parameterizes the leading order bound state effects of semileptonic decay

B̄ → Xulν. However, the contributions of operators other than Q7γ − Q7γ to B̄ → Xsγ

make the analysis of the photon spectrum more involved than the semileptonic B̄ → Xulν

decays. This is manifested in their corresponding factorization theroms. For instance, the

factorization theorem for the B̄ → Xulν decay in the end point region can be schematically

expressed as follows [81–83]:

dΓ
(
B̄ → Xulν̄

)
=
∞∑
n=0

1

mn
b

∑
i

H
(n)
i J

(n)
i ⊗ S

(n)
i , (3.8)

where the hard functions H
(n)
i paramterize the physics at the scale of mb, the jet functions

J
(n)
i provides the physics of hadronic final state Xu, which has the invariant mass MX ∼√
mbΛQCD, and the soft function S

(n)
i describes the hadronic physics at the scale ΛQCD.

These soft functions are defined as forward scattering non-local HQET matrix elements.

The symbol ⊗ represents convolusion [78].

The higher order processes that were discussed above are known as resolved photon con-

tributions [78]. These processes describe the photon coupling to light partons instead of

directly connecting to the effective weak vertex. The presence of the resolved photon con-

tributions complicates the decay rate calculation compared to the processes that contain

only the direct photon coupling processes. By considering all these effects the factorization
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theorem for the B̄ → Xsγ decay can be schematically represented as [78]:

dΓ
(
B̄ → Xsγ

)
=
∞∑
n=0

1

mn
b

∑
i

H
(n)
i J

(n)
i ⊗ S

(n)
i

+
∞∑
n=1

1

mn
b

[∑
i

H
(n)
i J

(n)
i ⊗ S

(n)
i ⊗ J̄

(n)
i +

∑
i

H
(n)
i J

(n)
i ⊗ S

(n)
i ⊗ J̄

(n)
i ⊗ J̄

(n)
i

]
.

(3.9)

Note that equation (3.9) contains both direct contributions, which are similar to the contri-

butions present in equation (3.8), and resolved photon contributions. The resolved photon

contributions probe the hadronic substructure of the photon at the scale
√

2EγΛQCD. The

effect of these new sub-processes requires new jet functions J̄
(n)
i . In equation (3.9), we find

two types of resolved photon contributions. The term
∑

iH
(n)
i J

(n)
i ⊗S

(n)
i ⊗ J̄

(n)
i refers to sin-

gle resolved photon contribution. Whereas, the term
∑

iH
(n)
i J

(n)
i ⊗S

(n)
i ⊗ J̄

(n)
i ⊗ J̄

(n)
i refers to

double resolved photon contributions. The graphical illustration of B̄ → Xsγ factorization

is provided in the figure 3.1

Figure 3.1: Graphical illustration of the factorization for B̄ → Xsγ decay [78]

Note that this notation is symbolic. Because of this different quantities in different terms

can be represented by the same symbol.
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3.1.3 Review of the known results

The factorization formula for the CP-averaged B̄ → Xsγ photon spectrum at the end

point region is

dΓ

dEγ
=
G2
Fα|VtbV ∗ts|2

2π4
m2
b(µ)E3

γ

[
|Hγ(µ)|2

∫ Λ̄

−p+
dωmb J

(
mb(ω + p+), µ

)
S(ω, µ)

+
1

mb

∑
i≤j

Re
[
C∗i (µ)Cj(µ)

]
Fij(Eγ, µ) + . . .

]
,

(3.10)

where p+ ≡ mb − 2Eγ = O (ΛQCD), Λ̄ is defined as Λ̄ = MB −mb and the ellipses denotes

the order 1/m2
b terms. The b quark mass is defined in the MS scheme (see appendix 7.2 ).

The first line in the equation represents the leading power contribution, and an extensive

discussion regarding this contribution can be found in [80, 85]. The hard function Hγ(µ) is

the matching coefficient, and it is Hγ(µ) = C7γ(µ) +O(α). In particular, this was obtained

by matching the leading current operator to the soft collinear effective field theory (SCET).

Also, this current receives contributions from all the operators in the effective Hamiltonian.

The dominant contribution is received from Q7γ, and this is known to O(α2
s) [86]. The

contributions from the operators other than Q7γ are known for O(αs) [78]. The Hγ(µ)

receives virtual corrections of the scale µh ∼ mb.

By matching the current operator further onto HQET the single jet function J (p2, µ) =

δ (p2) + O (αs) arises. The jet functions describe the cut dependent effects. Specifically,

J (p2, µ) is obtained by the discontinuity of the quark propagator in the axial gauge [87]. In

particular, the jet function describe the properties of the final state hadronic jet. In the end

point region the mass of jet scales as µhc ∼
√
mbΛQCD.

The shape function S(ω, µ) is a soft function defined by the HQET matrix element [88]:

S(ω, µ) =

∫
dt

2π
e−iωt

〈
B̄(v)

∣∣h̄(tn)Sn(tn)S†n(0)h(0)
∣∣ B̄(v)

〉
2MB

, (3.11)
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where the soft Wilson line is defined by

Sn(x) = P exp

(
ig

∫ 0

−∞
dun · As(x+ un)

)
. (3.12)

The path ordering P in equation (3.12) means that the fields with larger u value are placed to

the left of those fields with smaller u values. The conjugate Wilson line S†n has the opposite

path ordering relative to Sn. The combination Sn(tn)S†n(0) = [tn, 0] is a straight line seg-

ment, which connects the points tn and 0. The soft function S encodes the nonperturbative

hadronic physics associated with the soft scale µs ∼ p+ ∼ ΛQCD.

The power suppressed terms in the equation (3.10) are given by [78]

F77 (Eγ, µ) =
CFαs(µ)

4π

∫ Λ̄

−p+
dω

(
16 ln

mb (ω + p+)

µ2
+ 9

)
S(ω, µ) + F SSF

77 (Eγ, µ)

F88 (Eγ, µ) =
CFαs(µ)

4π

∫ Λ̄

−p+
dω

(
2

9
ln
mb (ω + p+)

µ2
− 1

3

)
S(ω, µ) + 4παs(µ)f88 (−p+, µ)

F78 (Eγ, µ) =
CFαs(µ)

4π

10

3

∫ Λ̄

−p+
dω S(ω, µ) + 4παs(µ) Re

[
f

(I)
78 (−p+, µ) + f

(II)
78 (−p+, µ)

]
F17 (Eγ, µ) =

CFαs(µ)

4π

(
−2

3

)∫ Λ̄

−p+
dω S(ω, µ) +

∑
q=c,u

δq Re f17,q (−p+, µ)

F11 (Eγ, µ) = F18 (Eγ, µ) =
CFαs(µ)

4π

2

9

∫ Λ̄

−p+
dωS(ω, µ), (3.13)

where

F SSF
77 (Eγ, µ) =p+S (−p+, µ) + s (−p+, µ)− t (−p+, µ) + u (−p+, µ)− v (−p+, µ)

− παs(µ)
[
f (s)
u (−p+, µ) + f (s)

v (−p+, µ)
]

+O
(
αs(µ)

4π

)
.

(3.14)

The soft functions in F SSF
77 are called subleading shape function, and they describe the direct

photon contributions from the operator pair Q7γ − Q7γ [89]. The definitions of the soft
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functions S, s, t, u, v, fu and f
(s)
v are given as [80,89]:

〈
(h̄S)0

(
S†h
)
x−

〉
=

∫
dωe−

i
2
ωn̄·xS(ω)〈

i

∫
d4zT

{
(h̄S)0

(
S†h
)
x−
L(2)
h (z)

}〉
=

1

mb

∫
dωe−

i
2
ωn̄·xs(ω)

〈
h̄(0)/nh [0, x−] (i 6 D⊥h) (x−)

〉
=

∫
dω e−

i
2
ωn̄·xt(ω)

−i
∫ n̄·x/2

0

dt
〈
h̄(0)[0, tn] (iD⊥)2 (tn) [tn, x−]h (x−)

〉
=

∫
dω e−

i
2
ωn̄·xu(ω)

−i
∫ n̄·x/2

0

dt〈h̄(0)
/n

2
[0, tn]σ⊥µν gG

µν
⊥ (tn) [tn, x−]h (x−)〉 =

∫
dω e−

i
2
ωn̄·xv(ω),

(3.15)

and

2(−i)2

∫ n̄·x/2

0

∫ n̄·x/2

t1

dt2

〈[
(h̄S)0ta

]
k

[
ta
(
S†h
)
x−

]
l
[(q̄S)t2n]l µ

[(
S†q
)
t1n

]
k

〉
=

∫
dωe−

i
2
ωn̄·xfu(ω)

n̄ · x/2n̄ · x/2

2(−i)2

∫ 0

0

dt1

∫ n̄·x/2

t1

dt2

〈[
(h̄S)0ta

]
k
6 µγ5

[
ta
(
S†h
)
x−

]
l
[(q̄S)t2n]l µγ5

[(
S†q
)
t1n

]
k

〉
=

∫
dωe−

i
2
ωn̄·xfv(ω),

(3.16)

where k,l are color indices and

〈h̄ . . . h〉 ≡ 〈B̄(v)|h̄ . . . h|B̄(v)〉
2mB

. (3.17)

The term Lh in equation (3.15) is the next-to-leading term in the HQET Lagrangian, which

was defined in equation (2.17). Following from this, we find

L(2)
h =

1

2mb

[
h̄ (iDs)

2 h+
Cmag

2
h̄σµνgG

µν
s h

]
. (3.18)

Only the operators Qq
1−Q7γ, Q7γ−Q8g are Q8g−Q8g arise at order 1/mb in equation (3.10).
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The resolved photon contribution provide the largest uncertainty on the decay rate. Because

of this, it is important to understand the nature of these operators. In the next section we

describe them.

3.1.3.1 Contribution from Qq
1 −Q7γ

In the equation (3.13) the direct photon contributions from F17 are given by

F17 (Eγ, µ) =
CFαs(µ)

4π

(
−2

3

)∫ Λ̄

−p+
dωS(ω, µ) (3.19)

The resolved photon contribution of the operator pair Qq
1 − Q7γ is suppressed by a factor

ΛQCD/mb. By matching this operator pair to the SCET we obtain the diagram in the figure

3.2 (a). Also, by integrating out the (anti)-hard collinear fields we obtain the diagram in the

figure 3.2 (b) [78].

(a) (b)

Figure 3.2: Figure (a) represent the diagram arised by matching the Qq
1 − Q7γ operator to

SCET. Figure (b) represents the diagram obtained by matching same process to HQET [78].

The single resolved photon contribution of the operator Qq
1−Q7γ is given by a non local

soft function [78]

f17,q(ω, µ) =
2

3

∫ ∞
−∞

dω1

ω1 + iε

[
1− F

(
m2
q − iε

(mb + ω)ω1

)]
g17 (ω, ω1, µ) , (3.20)
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where the penguin function F is defined as

F (x) = 4x arctan2

(
1√

4x− 1

)
. (3.21)

The expansion of F (x) around x = 0 is

1− F (x) = − 1

12x
− 1

90x2
− 1

560x3
− . . . (3.22)

The soft function g17 (ω, ω1, µ) is defined as

g17 (ω, ω1, µ) =

∫
dr

2π
e−iω1r

∫
dt

2π
e−iωt

×

〈
B̄
∣∣∣(h̄Sn) (tn)~η (1 + γ5)

(
S†nSn̄

)
(0)iγ⊥α n̄β

(
S†n̄gG

αβ
s Sn̄

)
(rn̄)

(
S†n̄h

)
(0)
∣∣∣ B̄〉

2MB

,

(3.23)

where r and t are defined utilizing the topology of the HQET diagrams. For example,

the weak vertex in the figure 3.2 (b) is at x = tn+ x+ + x⊥ and the vertex of the soft gluon

is defined at y = rn̄+ y− + y⊥.

The variables ω and ω1 in equation (3.23) are defined using the light cone projections of

parton momenta in B meson. Since the total parton momenta including b quark is equal to

MBv, the momentum of the partons in the B meson can be given as

∑
i 6=b

n · pi + n · k = Λ̄,
∑
i 6=b

n̄ · pi + n̄ · k = Λ̄, (3.24)

where k is the residual momentum and Λ̄ = MB − mb. Also, note that these light cone

projections of parton momenta n · pi and n̄ · pi are non negative. This provides (n.k, n̄ · k) >

−mb for i 6= b. Besides, it implies −∞ < n · k ≤ Λ̄ and 0 ≤ n · pi < ∞ in the heavy quark
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limit. These conditions are extended to n̄ · k and n̄ · pi as well. Intuitively, the ω in soft

function g17 can be thought of as the residual momentum component n ·k of the initial state

heavy quark. The ω1 corresponds to either the momentum component n · pg in final state

B meson or the component −n · pg in initial state B meson. Furthermore, this implies that

−∞ < ω ≤ Λ̄, and −∞ < ω1 <∞.

The direct photon contributions and resolved photon contributions are combined into the

final expression for F17 in equation (3.13) as

F17 (Eγ, µ) =
CFαs(µ)

4π

(
−2

3

)∫ Λ̄

−p+
dωS(ω, µ) +

∑
q=c,u

δq Re f17,q (−p+, µ) , (3.25)

where

δq =
Re
[
λqC1(µ) (−λ∗t )C∗7γ(µ)

]
|λt|2 Re

[
C1(µ)C∗7γ(µ)

] , λq = VqbV
∗
qs. (3.26)

3.1.3.2 Q7γ −Q8g contribution

The direct photon contribution from the operator pair Q7γ −Q8g is given by

F
(a)
78 (Eγ, µ) =

CFαs(µ)

4π

mb

2Eγ

10

3

∫ Λ̄

−p+
dωS(ω, µ) (3.27)

The operator Q8g provides two SCET operators, and these operators are combined with the

tree level SCET operator arising in Q7γ. These two operators provide the Q7γ−Q8g contribu-

tion. Figure 3.3 was obtained by matching the SCET operators onto HQET operators [78].
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(a) (b)

(c) (d)

Figure 3.3: Figure (a) and (c) represent the diagrams arised by matching the Q7γ − Q8g

operator to SCET. Figure (b) and (d) represents the diagrams obtained by matching same
processes to HQET [78].

The contribution from the operator pair Q7γ − Q8g to the photon spectrum is provided

as [78]

F78 (Eγ, µ) =
CFαs(µ)

4π

mb

2Eγ

10

3

∫ Λ̄

−p+
dωS(ω, µ)

+ 4παs(µ)
mb

2Eγ
Re
[
f

(I)
78 (−p+, µ) + f

(II)
78 (−p+, µ)

]
,

(3.28)

where f (I) and f (II) are soft functions that encode the long distance physics. Unfortunately

there is little information on these functions. The effect of these soft functions can be roughly

approximated using vacuum insertion approximation (VIA). In VIA, the matrix elements

are evaluated by inserting vacuum states between light quark fields. Since the Q7γ − Q8g

operators involve light quark fields, the vacuum insertion model provides an estimate to the
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matrix element. Using the VIA model f (I) and f (II) as obtained as [78]

∫ Λ̄

−∞
dωf

(II)
78 (ω, µ)

∣∣∣∣∣
VIA

= −espec
F 2(µ)

8

(
1− 1

N2
c

){
1

λ2
B(µ)

+ 2πi

∫ ∞
0

dω

[
φB+(ω, µ)

]2
ω

}
∫ Λ̄

−∞
dωRe f

(II)
78 (ω, µ)

∣∣∣∣∣
VIA

= −espec
F 2(µ)

8

(
1− 1

N2
c

)
1

λ2
B(µ)

, (3.29)

where λB =
∫∞

0
dωφB+(ω, µ)/ω and φB+ is the leading light cone distribution amplitude

[96]. The nonperturbative quantity F (µ) is the HQET matrix element that relates to the

asymptotic value of fB
√
MB|Mb→∞ and fB is the B meson decay constant.

3.1.3.3 Q8g −Q8g contribution

The direct photon contribution of Q8g −Q8g is given by [78]

F
(a)
88 (Eγ, µ) =

CFαs(µ)

4π

(
mb

2Eγ

)2 ∫ Λ̄

−p+
dω

(
2

9
ln
mb (ω + p+)

µ2
+

1

9
− 4

9
cRS

)
S(ω, µ), (3.30)

where cRS is a scheme dependent coefficient. For instance, in M̄S scheme cM̄S = 0. In the

dimensional reduction scheme, which set d = 4 instead of d = 4 − 2ε for Dirac algebra, the

cDR = 1. The equation (3.30) is further simplified as

F
(a)
88 (Eγ, µ) =

CFαs(µ)

4π

(
mb

2Eγ

)2 ∫ Λ̄

−p+
dω

(
2

9
ln
mb (ω + p+)

µ2
− 1

3

)
S(ω, µ), (3.31)

The Q8g−Q8g receives double resolved photon contributions. This is shown in the figure 3.4
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(a) (b)

(c) (d)

Figure 3.4: Figure (a) and (c) represent the diagrams arised by matching the Q8γ − Q8g

operator to SCET. Figure (b) and (d) represents the diagrams obtained by matching same
processes to HQET [78].

The double resolved contribution to the photon spectrum is given by [78]

F
(b)
88 (Eγ, µ) = 4παs(µ)

(
mb

2Eγ

)2

f88 (−p+, µ) , (3.32)

where f88 encodes the long distance physics. This function is defined as

f88(ω, µ) =
2

9

∫ ∞
−∞

dω1

ω1 + iε

∫ ∞
−∞

dω2

ω2 − iε
gcut

88 (ω, ω1, ω2, µ) , (3.33)

where non-local matrix element gcut
88 is given by
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gcut
88 (ω, ω1, ω2, µ)

=

∫
dr

2π
e−iω1r

∫
du

2π
eiω2u

∫
dt

2π
e−iωt

×

〈
B̄
∣∣∣(h̄Sn) (tn)TA

(
S†nSn̄

)
(tn)Γ̄n̄

(
S†n̄s
)

(tn+ un̄) (s̄Sn̄) (rn̄)Γn̄

(
S†n̄Sn

)
(0)TA

(
S†nh

)
(0)
∣∣∣ B̄〉

2MB

(3.34)

The matrix element in equation (3.34) is obtained by summing over soft intermediate

states with strangeness S = −1 (Xs).

3.1.4 Resolved photon contributions to the total rate

If the photon spectrum is integrated over a much larger interval in the phase space than

the end point region (integrated rate), then the direct photon contributions can be further

simplified. Typically, the direct photon contributions are given by a series of hard coefficients

that are multiplyed by a set of forward B meson matrix elements of local operators. The

correction terms of order
ΛQCD

mb
are integrated to zero. This is due to the abscence of local

gauge operators that can account such terms at the order
ΛQCD

mb
. However, the resolved

photon contributions do not reduced to such matrix elements of local operators [78]. The

effects of these operators on total rate should be addressed by using non-local operators [84]

As shown in [78], single resolved photon contributions arise from the operator pairs

Q8g − Q7γ and Qc
1 − Q7γ. In addition, double resolved photon contributions arise from the

operator pairs Q8g −Q8g, Q
c
1−Qc

1 and Qc
1−Q8g. Direct photon contributions arise from all

the operator pairs.

The breakdown of the operators in leading order, next-to-leading order, and next-to-

next-to-leading order in HQET power counting is as follows:

� The contribution of the operators Q7γ −Q7γ is the leading power correction.

� The operators Qq
1 − Q7γ, Q8g − Q8g and Q8g − Q7γ, are order 1/mb in the power
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corrections.

� The operators Qc
1 − Qc

1 and Qc
1 − Q8g contribute at order 1/m2

b . Since our primary

focus is on improving the order 1/mb corrections, we do not consider these order 1/m2
b

operators in our analysis.

In the following, we discuss these order 1/mb corrections.

3.1.5 Contribution from nonperturbative correction

The function FE quantifies the effects of resolved photon contributions to the total rate

[78]

FE(∆) =
Γ(E0)− Γ(E0)|OPE

Γ(E0)|OPE

, (3.35)

where ∆ = mb−2E0. The Γ(E0)|OPE [90] is obtained by a local operator product expansion,

which does not consider the nonlocal power corrections from resolved photon contributions.

The contribution from 1/mb operators is

FE(∆) =
C1(µ)

C7γ(µ)

Λ17 (m2
c/mb, µ)

mb

+
C8g(µ)

C7γ(µ)
4παs(µ)

Λspec
78 (µ)

mb

+

(
C8g(µ)

C7γ(µ)

)2 [
4παs(µ)

Λ88(∆, µ)

mb

− CFαs(µ)

9π
ln

∆

mb

]
+ . . . ,

(3.36)

where

Λ17

(
m2
c

mb

, µ

)
= ec Re

∫ ∞
−∞

dω1

ω1

[
1− F

(
m2
c − iε
mbω1

)
+
mbω1

12m2
c

]
h17 (ω1, µ)

Λspec
78 (µ) = Re

∫ ∞
−∞

dω1

ω1 + iε

∫ ∞
−∞

dω2

ω2 − iε
h

(5)
78 (ω1, ω2, µ)

Λ88(∆, µ) = e2
s

[∫ ΛUV

−∞

dω1

ω1 + iε

∫ ΛUV

−∞

dω2

ω2 − iε
2hcut

88 (∆, ω1, ω2, µ)− CF
8π2

∆

(
ln

ΛUV

∆
− 1

)]
.

(3.37)

The functions h17, h88 and h78 are non-local HQET matrix elements that encode the long-
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distance nonperturbative effects [78]. These soft functions cannot be determined from the

first principles, and the evaluation of their contribution to the total rate requires modeling.

In the following, we provide a concise review regarding past evaluations their contribution.

3.1.5.1 Estimating FE|17

In equation (3.37) the soft function h17 is defined as

h17 (ω1, µ) =

∫ Λ̄

−∆

dωg17 (ω, ω1, µ) ≈
∫ Λ̄

−∞
dωg17 (ω, ω1, µ)

=

∫
dr

2π
e−iω1r

〈
B̄
∣∣∣(h̄Sn̄) (0)/̄niγ⊥α n̄β

(
S †
n
gGαβ

s Sn̄
)

(rn̄)
(
S†n̄h

)
(0)
∣∣∣ B̄〉

2MB

(3.38)

The moments of the function h17 in equation (3.38) are related to the nonperturbative

HQET parameters. Based on this feature, we can construct phenomenological models to

describe this non-local function. For instance, in [78] there were several phenomenological

models for function h17 that are related to the zeroth moment of h17 over ω1 (〈ω0
1h17(ω1)〉).

Consider the following model

h17 (ω1, µ) =
2λ2√
2πσ

ω2
1 − Λ2

σ2 − Λ2
e−

ω21
2σ2 , (3.39)

where σ is the width of the Gaussian function and Λ is a ad-hoc parameter. Scanning through

different values for σ and Λ in h17 the maximum and minimum values for Λ17 obtained as [78]

−60MeV < Λ17 < 25MeV. (3.40)

Based on this estimate of Λ17 the FE|17 from equation (3.36)

FE|17 =
C1(µ)

C7γ(µ)

Λ17 (m2
c/mb, µ)

mb

(3.41)
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3.1.5.2 Estimating FE|78

The contribution of the operator pair Q7γ − Q8g is obtained by using the flavor symmetry

of the strong interaction. The flavor averaged estimate of the FE|78 is given by [78]

Favg
E (∆)|78 = −(1± 0.3)

∆0−

3
, (3.42)

where ∆0− is the isospin asymmetry, which is given by

∆0− =
Γ
(
B̄0 → Xsγ

)
− Γ (B− → Xsγ)

Γ
(
B̄0 → Xsγ

)
+ Γ (B− → Xsγ)

(3.43)

Also, FE|78 can be evaluated by using the vacuum insertion approximation (VIA). From

equation (3.36)

FE|78 =
C8g(µ)

C7γ(µ)
4παs(µ)

Λspec
78 (µ)

mb

, (3.44)

In the unbrocken SU(3) flavor symmetry limit, the nonperturbative parameter Λspec
78 is

Λspec
78 |SU(3) = especΛ

(8)
I=1, (3.45)

where espec is the electric charge of the spectator quark (i.e espec = 2/3 for B± and espec =

−1/3 for B0(B̄0)). The soft function that encodes the long distance physics from Q7γ −Q8g

operator pair can be written as a SU(3) octet matrix element. The Wigner-Ekchart theorem

is used to decompose the matrix element into isospin zero and isospin one components. The

Λ
(8)
I=1 is the isospin 1 component of the SU(3) octet. Using the VIA the estimate for Λ

(8)
I=1

is obtained as Λ
(8)
I=1|VIA ∈ [−386,−35] MeV [78]. This estimate is used in equation (3.45) to
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obtain FE|78.

3.1.5.3 Estimating FE|88

In equation (3.36) the contribution from operator pair Q8g −Q8g is

FE|78 =

(
C8g(µ)

C7γ(µ)

)2 [
4παs(µ)

Λ88(∆, µ)

mb

− CFαs(µ)

9π
ln

∆

mb

]
. (3.46)

Compared to the first term, the second term in the equation (3.46) provides a very small

contribution to the FE|78 [78]. The first term in FE|78 is defined using the nonperturabtive

function Λ88, which was defined in equation (3.37). Currently there is not much information

on the soft function that describes Λ88, and it is, however, estimated by [78]

Λ88(∆, µ) ≈ e2
sΛ(µ), Λ(µ) > 0, (3.47)

where Λ(µ) is a parameter of order ΛQCD. The electromagnetic charge of the s quark gives

e2
s = 1

9
. The range of the Λ(µ) is defined as 0 < Λ(µ) < 1 GeV [78]. Based on this range the

phenomenological estimate for the FE|88 was obtained.

3.1.5.4 Phenomenological estimates of theoretical error

At order 1/mb, FE depends on Q1 −Q7γ, Q8g −Q8g and Q8g −Q7γ; The contribution from

each of these operators were obtained by Benzke et al. (2010) [78]:

FE|17 ∈ [−1.7,+4.0]%

FE|88 ∈ [−0.3,+1.9]%

(3.48)

and

FE|VIA
78 ∈ [−2.8,−0.3]%

FE|exp
78 ∈ [−4.4,+5.6]% (95%CL)

(3.49)
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In total, the estimate for FE is obtained by using both experimental and theoretical estimates

of Λspec
78 . For instance, the 2010 theoretical estimate of uncertainty using VIA is [78].

−4.8% < FE(∆) < +5.6% (VIA for Λspec
78 ) . (3.50)

Here the estimate for FE|VIA
78 is obtained by plugging the value of Λ

(8)
I=1|VIA.

The 2010 estimate of Λspec
78 , which is obtained using isospin asymmetry ∆0−, is given by

−6.4% < FE(∆) < +11.5% (Λspec
78 from ∆0−) , (3.51)

where ∆0− = (−1.3 ± 5.9)%, which was measured by BaBar collaboration [71, 91], and the

uncertainty of ∆0− is 95% confidence level (CL) [78].

3.2 The CP asymmetry

The CP violation (CPV) due to direct photon in B̄ → Xsγ arises by the interference

of a weak phases in the CKM matrix elements and the possible BSM corrections to Wilson

coefficients with the strong phases arising in the process [94]. These strong phases can be

obtained by calculating the imaginary parts of the local operators in the effective Hamiltonian

given in equation (3.3). For instance, the imaginary parts first arise atO(αs) in loop diagrams

that contains c quarks or light partons [94]. The CP asymmetry is given by [95],

AXsγ =
Γ(B̄ → Xsγ)− Γ(B → Xs̄γ)

Γ(B̄ → Xsγ) + Γ(B → Xs̄γ)
. (3.52)

In [95] the SM estimate for CP asymmetry is provided as

−0.6% < ASM
Xsγ < 2.8% (3.53)

This estimate is compared to the PDG average of the experimental measurement 1.5%±1.1%

[18]. These were first considered in [95]. The resolved photon contributions that arise in the

photon spectrum is important to the analysis of the direct CP asymmetry.
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The experimental measurement of the CP asymmetry (AXsγ (E0)) depend on the photon

cut Eγ ≥ E0. Where E0 is in the range 1.9 GeV < E0 < 2.2 GeV, and ∆ = mb − 2E0 =

few×ΛQCD [95]. This cut related CP asymmetry is known as partially inclusive asymmetry

[95]. The direct photon contributions to the CP asymmetry can be expressed by using a

power series in ∆/mb and ΛQCD/∆. At the O(αs), the direct photon contribution to AXsγ is

Adir
Xsγ = αs

{
40

81
Im

C1

C7γ

− 4

9
Im

C8g

C7γ

− 40Λc

9mb

Im

[
(1 + εs)

C1

C7γ

]
+O

(
Λ2

QCD

m2
b

)}
, (3.54)

where the C1, C7γ and C8g are the Wilson coefficients (effective couplings) of current-current

four quark operator (Qq
1), electromagnetic dipole operator (Q7γ) and gluon dipole operator

(Q8g) respectively. Also, the parameter Λc is defined as

Λc ≡
m2
c

mb

(
1− 2

5
ln
mb

mc

+
4

5
ln2 mb

mc

− π2

15

)
, (3.55)

The Λc ∼ ΛQCD is obtained by plugging mb = 4.65 GeV and mc = 1.13 GeV in equation

(3.55). Following from this we obtain Λc ∼ 0.38 GeV. The parameter εs is the ratio of CKM

matrix elements, and it is defined as [94]

εs =
vu
vt

=
V ∗usVub
V ∗tsVtb

≈ λ2(iη − ρ) = O
(
10−2

)
, (3.56)

where the parameters λ, ρ and η are Wolfenstein parameters defined as λ = sin θC ≈ 0.22

and ρ, η = O(1). Only the third term in the equation (3.54) is non-zero in the SM. This

term is triply suppressed by the αs, Im(εs) and (mc/mb)
2 ∼ ΛQCD/mb.

3.2.1 Resolved photon contributions to the CP asymmetry

Using the factorization formula provided in equation (3.9) the effects of resolved photon

operators to the partially inclusive CP asymmetry can be evaluated. For instance, these

nonlocal effects arise from the interference of Q7γ − Q7γ amplitude with Q
(u,c)
1 − Q7γ and
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Q7γ − Q8g amplitudes. Following from this, the resolved photon contribution to the CP

asymmetry is obtained as

Ares
Xsγ =

π

mb

{
Im

[
(1 + εs)

C1

C7γ

]
Λ̃c

17 − Im

[
εs
C1

C7γ

]
Λ̃u

17 + Im
C8g

C7γ

4παs Λ̃B̄
78

}
, (3.57)

where

Λ̃u
17 =

2

3
h17(0)

Λ̃c
17 =

2

3

∫ ∞
4m2

c/mb

dω

ω
f

(
m2
c

mbω

)
h17(ω)

Λ̃B̄
78 = 2

∫ ∞
−∞

dω

ω

[
h

(1)
78 (ω, ω)− h(1)

78 (ω, 0)
] (3.58)

and

f(x) = 2x ln
1 +
√

1− 4x

1−
√

1− 4x
. (3.59)

In the unbroken SU(3) limit, the Λ̃78 is defined as

Λ̃B̄
78 ≈ espec Λ̃78 ≈ espec

2f 2
BMB

9

∫ ∞
0

dω

[
φB+(ω)

]2
ω

, (3.60)

where the fB is the B meson decay constant and it is evaluated as fB ≈ 193 MeV [95].

The φB+ is the leading light cone distribution amplitude [96]. Using the models provided in

sections 3.1.5.1 and 3.1.5.3 the parameters Λ̃ij can be obtained [95]

−330MeV < Λ̃u
17 < +525MeV,

−9MeV < Λ̃c
17 < +11MeV,

17MeV < Λ̃78 < 190MeV.

(3.61)

The complete theoretical estimate of the CP asymmetry is obtained by combining the direct

and the resolved photon contributions. Therefore, the SM estimate of the CP asymmetry is
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obtained by using the expressions in equations (3.54) and (3.57), and they provide

ASM
Xsγ ≈ π

∣∣∣∣ C1

C7γ

∣∣∣∣ Im εs

(
Λ̃u

17 − Λ̃c
17

mb

+
40αs
9π

Λc

mb

)

=

(
1.15× Λ̃u

17 − Λ̃c
17

300MeV
+ 0.71

)
%,

(3.62)

where the following estimates for the Wolfenstein parameters are used: λ = 0.2254,

ρ = 0.144, η = 0.342. The Wilson coefficients are evaluated at µ = 2 GeV, they are

provided as: C1 = 1.204, C7γ = −0.381 and C8g = −0.175 [95].

3.3 Reevaluating the resolved photon contributions

3.3.1 Updates on the FE|78

A recent update on ∆0− from Belle [93] provide ∆0− = [−0.48± 1.49(stat)± 0.97(sys)±

1.15(f+−/f00)]%, where the last uncertainty is coming from the uncertainties attached to

the production ratio of B+B− to B0B̄0 in Υ(4S) decays [92]. The PDG average is ∆0− =

(−0.6 ± 2.0)% [71, 91, 93]. As shown in the equation (3.51), the uncertainty of the ∆0− is

calculated in 95% CL. Using this in equation (3.42) we find

FE|exp
78 ∈ [−1.4,+2]%. (3.63)

Comparing the estimates found in equation (3.48) and (3.63), we find that the currently

the largest contribution to the FE comes from the operator pairQq
1−Q7γ. Therefore, reducing

the theoretical error generated by this operator pair is essential for the precise calculation of

the branching ratio.
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CHAPTER 4 NEW RESULTS : ON HQET AND NRQCD OPERATORS OF

DIMENSION 8 AND ABOVE

As shown in section 3.1.5.1, the moments of the soft function h17 are related to the

HQET parameters. The contribution from the operator pair Qq
1 − Q7γ is obtained using

the information on these moments. To reevaluate the Qq
1 − Q7γ contribution, we develop

a new model for h17 based on higher moments of h17. These higher moments are related

to the HQET matrix elements of mass dimension seven and above. The HQET matrix

operators contain two heavy quark fields and covariant derivatives. The HQET and NRQCD

Lagrangian operators are defined up to and including dimension seven in [55]. In section

2.3, we showed that these Lagrangians differ in power counting, but they can be related to

each other using the field redefinition. The HQET/NRQCD operators up to and including

the dimension seven are provided in [55]. There are six spin-independent operators and five

spin-dependent operators at dimension seven. The comparison between the dimension seven

HQET matrix elements and dimension seven HQET and NRQCD operators provides the

following: for the spin-dependent operators the number is the same as the numbers of the

spin-dependent matrix elements considered in [62], while the spin independent number of

operators is different. Why is there a difference and what is the relation between these two

bases? [56]

More recently, the NRQED Lagrangian up to and including power 1/M4 was calculated

in [99]. It includes NRQED operators of dimension eight and below. The Lagrangian was

constructed by considering all the possible rotationally invariant, P and T even, Hermi-

tian combinations of iDt, iD, E, B, and σ. The analogous construction of the NRQED

Lagrangian up to 1/M2 was explicitly demonstrated in [100]. For higher power of 1/M ,

corresponding to higher dimensional operators, this construction becomes tedious. There

can be different choices for the form of the operators. It is not immediately clear if a pair of

operators is linearly independent and what is the total number of linearly independent op-

erators. It would be useful to find a simpler way to construct these operators. Furthermore,
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the 1/M4 NRQED Lagrangian contains four spin-independent and eight spin-dependent op-

erators. This is less than the number of matrix elements considered in [62]. Presumably the

rest correspond to NRQCD operators that do not exist for NRQED. What are they?

In the following work we address these questions by considering a general decomposition

of a matrix elements into linearly independent tensors. These matrix elements have the

following form
〈
H
∣∣h̄iDµ1 . . . iDµn

(
sλ
)
h
∣∣H〉, whereH represent a pseudo scalar heavy meson

state, h represent the heavy quark field, and sλ is the four dimension generalization of Pauli

matrices.

4.1 General method

4.1.1 Definitions

The chromo-electric and magnetic fields are defined as

[Dt,D] ≡ igE

[Di,Dj] ≡ −igεijkBk,
(4.1)

where E = EaT
a, E = BaT

a, and T a are SU(3) generators. The commutator and anti-

commutators are defined as [X, Y ] ≡ XY − Y X and {X, Y } ≡ XY + Y X respectively.

Finally, we define the matric gµν as gµν = diag(1,−1,−1,−1) and heavy quark four velocity

(v) as v = (1, 0, 0, 0).

The form of a generic operator in dimension n+ 3 is [61]

O(r)
µ1,µ2···µn = h̄ (iDµ1) (iDµ2) · · · (iDµn) Γh, (4.2)

where n is a positive integer. The Dirac matrix Γ in equation (4.2) is expanded in the basis

{1, γ5, γµγ5γµ, σµν}. The Γ is sandwiched between projection operator P+, which is defined

by

P+ =
1

2
(1 + /v), (4.3)
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where /v = γαvα. Using the projection operators we transform the Dirac basis as follows [61]:

1→ P+ =
1

2
(1 + /v)

γµ → P+γµP+ = vµP+ (4.4)

γµγ5 → P+γµγ5P+ = sµ

γ5 → P+γ5P+ = 0 (4.5)

(−i)σµν → P+(−i)σµνP+ = ivαεαµνβs
β, (4.6)

where the sign of the Levi-Civita tensor is ε0123 = −1 and ε0123 = 1. Since v · s = 0, there

are only three independent sµ. The Dirac matrix Γ then expanded into the four matrices 1

and sµ as [61]:

P+ΓP+ =
1

2
P+ Tr {P+Γ} − 1

2
sµ Tr {sµΓ} . (4.7)

Following from the equation (4.7), the generic operator can be reduced to following two

forms:

Spin independent operators = h̄ (iDµ1) (iDµ2) · · · (iDµn)h

Spin dependent operators = h̄ (iDµ1) (iDµ2) · · · (iDµn) sλh
(4.8)

4.1.2 Constraints on matrix elements

The basis for the HQET matrix elements is constructed using the constraints obtained

from the discrete symmetries, Hermiticity of the matrix elements, HQET equation of motion,

and color structure.

4.1.2.1 Constraints from discrete symmetries and Hermiticity

HQET and NRQCD are invariant under P and T discrete symmetries. Therefore, the HQET

matrix elements and HQET and NRQCD operators also satisfy these symmetries. In the

table 4.1 we provide the P and T and PT transformation of momentuum (p), four velocity
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(v), covariant derivative (iDµ), and generalized Pauli matrix (sλ) [56]

Table 4.1: Transformation of p, v, iDµ and sλ under P, T and PT symmetries

Operator Transformation under P Transformation under T transformation under PT

p (p0,−~p) (p0,−~p) (p0, ~p)

v (v0,−~v) (v0,−~v) (v0, ~v)

iDµ (−1)µ(iDµ) (−1)µ(iDµ) iDµ

sλ −(−1)λsλ (−1)λsλ −sλ

These transformations allow us to show that

〈
H
∣∣h̄iDµ1 . . . iDµnh

∣∣H〉 PT= 〈
H
∣∣h̄iDµ1 . . . iDµnh

∣∣H〉∗ (4.9)

〈
H
∣∣h̄iDµ1 . . . iDµnsλh

∣∣H〉 PT= − 〈H ∣∣h̄iDµ1 . . . iDµnsλh
∣∣H〉∗ , (4.10)

where the complex conjugation arises due to the anti-linear T . It is important to note that

there is a relative minus sign between PT transformation of spin-independent operators and

spin-dependent operators. This implies that the spin-independent matrix elements are real,

whereas spin-dependent matrix elements are imaginary.

Since h̄h, h̄sλh, and iDµ are Hermitian, we use Hermitian conjugation to put further

constraints on the matrix elements

〈
H
∣∣h̄iDµ1 . . . iDµn

(
sλ
)
h
∣∣H〉 =

〈
H
∣∣∣(h̄iDµ1 . . . iDµn

(
sλ
)
h
)†∣∣∣H〉∗ =

=
〈
H
∣∣h̄iDµn . . . iDµ1

(
sλ
)
h
∣∣H〉∗ (4.11)

Combining the constraints from PT symmetry and Hermitian conjugation we obtain a new

symmetry, which we call “inversion symmetry”. The spin-independent (dependent) matrix
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elements are symmetric (anti-symmetric) under inversion symmetry.

The state H is a pseudo scalar. The matrix element of 〈H|h̄ iDµ1 . . . iDµn(sλ)h|H〉 can

only depend on vµi and gµiµj and εαβρσ. Following the notation in [62] we define Πµν =

gµν − vµvν . In general, we have vµΠµν = 0 and vνΠ
µν = 0. For v = (1, 0, 0, 0) we obtain Π00

and Πij = −δij. Also, note that all four indices in εαβρσ cannot be orthogonal to v in a four

dimensional space-time. As a result, we can replace εαβρσ → εαβρσvα [56].

In four dimension, a given tensor can have four independent directions only. Following

from this, we found certain tensors with more than four indices become not independent

although they have different combination of indices. For instance, three indices must be

the same in the tensor Πµνεαβρσvα. Because of this, not all the tensors obtained by the

permutations of Πµν and εαβρσvα can be linearly independent.

The decomposition gives a correspondence between the operators h̄ iDµ1 . . . iDµn(sλ)h

and non-perturbative parameters. Questions such as the linear independence of a given

set of operators, and the number of linearly independent operators of a given dimension

are answered by considering the vector space of non-perturbative parameters of a given

dimension1 [56].

4.1.2.2 Constraints from HQET equation of motion

As shown in section 2.2.2, the equation of motion obtained from the HQET Lagrangian

provides

iv ·Dh = 0. (4.12)

This equation provides that the multiplication of matrix element by vµ1 or vµn yields zero,

and it implies that the vµ1 and vµn are orthogonal to v [61]. This relation holds in the

NRQED and NRQCD as well [56]. As a consequence, the operators of the form · · · iv ·Dψ
1A potential caveat to this argument is that one can imagine an operator that has a zero matrix element.

The only such example is the operator h̄ iv ·Dh, which is the first term in the HQET and NRQCD (NRQED)
Lagrangians. This term is unique in the sense that it is the only one that includes iv · D in the HQET
Lagrangian or iDt (not in a commutator) in the NRQCD (NRQED) Lagrangian.
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or ψ†iv ·D · · · can be removed by field redefinition.

4.1.2.3 Constraints on possible color structures

The covariant derivative Dµ = ∂µ + igAµaT a combines the unit matrix in color space (color

singlet) and a product of an octet vector field Aµa with octet of SU(3) color matrices.

Gauge invariance stipulates that both Aµa and ∂u must appear together. Because of this,

the covariant derivatives does not have an independent color singlet and octet parts .On

the other hand, the product of two covariant derivatives can be decomposed into a com-

mutator and an anti-commutator matrices. These commutators only contain a color octet

part. Whereas, the anti-commutators possess both singlet and octet parts, which cannot be

separated. The product of three covariant derivatives has an analogous structure to the two

covariant derivatives [56].

For the product of four covariant derivatives we obtain products of commutators and anti-

commutators for the first time. For instance, consider the NRQCD operator ψ†Ei
aT

aEi
bT

bψ

[101]. This operator contains a product of SU(3) color matrices, which is given by

{
T a, T b

}
=

1

3
δab + dabcT c. (4.13)

In equation (4.13) the singlet and octet parts are not connected by gauge invariance and

they give rise to two operators with different color structure. Instead of a singlet and an

octet we can choose the basis of
{
T a, T b

}
and δab. Thus we have two different operators

with two chromo-electric fields: ψ†Ei
aE

i
b

{
T a, T b

}
ψ and ψ†Ei

aE
i
bδ
abψ. Only the first one

is generated by commutator and anti-commutators of covariant derivatives. The second

operator is generated when we consider the one-loop self-energy corrections to the first

operators. Thus a one gluon exchange between ψ† and ψ in ψ†Ei
aE

i
b

{
T a, T b

}
ψ gives the

color structures [56]:

T cij
{
T a, T b

}
jk
T ckl =

{
T a, T b

}
jk

(
1

2
δilδkj −

1

6
δijδkl

)
=

1

2
δabδil −

1

6

{
T a, T b

}
il
, (4.14)
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where i, j, k, l = 1, 2, 3 and a, b, c = 1, · · · 8. Here we used a color identity for T cijT
c
kl. In

other words, when calculating observables at tree level only ψ†Ei
aE

i
b

{
T a, T b

}
ψ appears [55].

At one loop we need to consider also ψ†Ei
aE

i
bδ
abψ. The case of five covariant derivatives is

discussed in sections 4.2.6 and 4.3.6. The appearance of color singlet structures at one loop-

level was first pointed out in [101]. This was incorporated into our general decomposition of

matrix elements.

4.2 Spin-independent operators upto and including dimension 8

Consider the generic HQET matrix element in the form of
〈
H
∣∣h̄iDµ1 . . . iDµn

(
sλ
)
h
∣∣H〉.

We then decompose this matrix element in terms of nonperturbative parameters multiplies

by tensors (Πµiνj) [56].

4.2.1 Dimension three

The dimension 3 operator does not contain any covarint derivatives.

1

2MH

〈H|h̄h|H〉 = 1 (4.15)

4.2.2 Dimension four operators

At dimension four we have one covariant derivative. This matrix element needed to be

decomposed into tensor structure with one Lorentz index. The only possible choice is vµ1 .

Using the HQET equation of motion (iv ·Dh = 0) we obtain

1

2MH

〈
H
∣∣h̄iDµ1h

∣∣H〉 = 0. (4.16)

4.2.3 Dimension five operators

Dimension five spin independent operator contains two covariant derivatives. Thus the

matrix element can be decomposed into tensor with two Lorentz indices. The natural choice

is Πµiµj . Hence we have
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1

2MH

〈
H
∣∣h̄iDµ1iDµ2h

∣∣H〉 = a(5)Πµ1µ2 , (4.17)

where coefficient a(5) related to nonperturbative HQET parameter.

4.2.4 Dimension six operators

We need to consider 〈H|h̄ iDµ1iDµ2iDµ3h|H〉. The tensor ερµ1µ2µ3vρ is ruled out by parity.

This is most easily seen by taking v = (1, 0, 0, 0) which requires µ1, µ2, µ3 to be space-like.

Hence the matrix element has a an odd number of space-like covariant derivatives and is

zero by parity. The only possible tensor combination is a product of a v and Π. We must

use Πµ1µ3 and we find only one possible non-perturbative parameter [56]:

1

2MH

〈
H
∣∣h̄iDµ1iDµ2iDµ3h

∣∣H〉 = a(6)Πµ1µ3vµ2 , (4.18)

where the coefficient a(6) is a nonperturbative parameter. Under inversion Πµ1µ3vµ2 →

Πµ3µ1vµ2 = Πµ1µ3vµ2 .

4.2.5 Dimension seven operators

Here we need more than one tensor structure. We can have a product of two Π’s or a

product of Π and two v’s. For products of two Π’s we can contract µ1 with µ2, µ3, or µ4 using

Π. The other two indices are also contracted by Π. In total we have three such combinations

of two Π’s. Using two v’s, they can only be contracted with µ2 and µ3 giving us a fourth

tensor. In total we have

1

2MH

〈H|h̄ iDµ1iDµ2iDµ3iDµ4h|H〉 = a
(7)
12 Πµ1µ2Πµ3µ4 + a

(7)
13 Πµ1µ3Πµ2µ4 +

+ a
(7)
14 Πµ1µ4Πµ2µ3 + b(7)Πµ1µ4vµ2vµ3 . (4.19)

It is easy to check that each tensor separately is invariant under inversion. Our notation
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for the parameters is such that the subscript denotes the first two indices that are contracted

via Π’s in numerical order, and the dimension of the operators appears in the superscript.

We also use a different letters for tensors with a different number of v’s.

As was mentioned in the introduction, the NRQED Lagrangian has four spin-independent

operators. We will show in section 4.4 that these can be related to the four operators above.

It should be clear already though that it is easier to tabulate the operators as was done here

than to construct them from E,D, and B.

As was pointed out in [101] and discussed in section 4.1.2.3, there can be more than

one color structure for operators constructed from four covariant derivatives. This is most

easily seen when one constructs NRQCD operators and then consider the possible color

structure, as we do in section 4.4. But we can anticipate the result by considering structures

of the form h̄ {[iDµi , iDµj ], [iDµk , iDµl ]}h. It is a symmetric product of two SU(3) color

matrices that give rise to two possible color structures: a singlet and an octet. There can be

three different structures h̄ {[iDµ1 , iDµ2 ], [iDµ3 , iDµ4 ]}h, h̄ {[iDµ1 , iDµ3 ], [iDµ2 , iDµ4 ]}h, and

h̄ {[iDµ1 , iDµ4 ], [iDµ2 , iDµ3 ]}h, corresponding to the possible partitions of four indices into

two pairs. In order to form scalar operators, we need to multiply these structures by one of

the four possible tensors on the right hand side of equation (4.19): Πµ1µ2Πµ3µ4 , Πµ1µ3Πµ2µ4 ,

Πµ1µ4Πµ2µ3 , and Πµ1µ4vµ2vµ3 . We find only two linearly independent combinations from all

of the contractions, namely, a
(7)
13 − a

(7)
14 , and b(7). We confirm this result in section 4.4.1.3.

We conclude that we can form only two such operators with two possible color structures

each. Including the possible color structures, there are in total six possible NRQCD (HQET)

operators.

4.2.6 Dimension eight operators

We have five covariant derivatives, so we must have an odd number of v’s. We cannot

have five v’s and there is only one tensor with 3 v’s: Πµ1µ5vµ2vµ3vµ4 . As a result of the

inversion symmetry, tensors with one v must be of the form vµ2Π Π + vµ4Π Π or vµ3Π Π. All

together we find seven possible tensors:
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1

2MH

〈H|h̄ iDµ1iDµ2iDµ3iDµ4iDµ5h|H〉 = a
(8)
12 (Πµ1µ2Πµ3µ5vµ4 + Πµ1µ3Πµ4µ5vµ2) +

a
(8)
13 (Πµ1µ3Πµ2µ5vµ4 + Πµ3µ5Πµ1µ4vµ2) + a

(8)
15 (Πµ1µ5Πµ3µ4vµ2 + Πµ1µ5Πµ2µ3vµ4) +

b
(8)
12 Πµ1µ2Πµ4µ5vµ3 + b

(8)
14 Πµ1µ4Πµ2µ5vµ3 + b

(8)
15 Πµ1µ5Πµ2µ4vµ3 +

c(8)Πµ1µ5vµ2vµ3vµ4 . (4.20)

Our notion is same as in section 4.2.5, but we used different letters for the coefficients of

these tensor structures.

We also need to consider the issue of possible color structures. Multiple colors structures

for a given operator arise from the anti-commutator of two color octets. For five covariant

derivatives there are two possibilities of color octets: [iDµi , iDµj ] and [iDµk , [iDµl , iDµm ]]. If

we combine them together we get two structures2 h̄ {[iDµi , iDµj ], [iDµk , [iDµl , iDµm ]]}h and

h̄ {[iDµi , iDµj ], [iDµm , [iDµk , iDµl ]]}h. There are
(

5
2

)
× 2 = 20 such structures. We can also

combine {[iDµi , iDµj ], [iDµk , iDµl ]} with an anti-commutator of a fifth covariant derivative3:

h̄ {iDµm , {[iDµi , iDµj ], [iDµk , iDµl ]}}h. There are
(

5
1

)
× 3 = 15 such structures. Contracting

each of the possible structure with the tensors on the left hand side of (4.20), we find only one

non-zero linear combination: a
(8)
12 −a

(8)
15 −b

(8)
14 +b

(8)
15 from h̄ {iDµm , {[iDµi , iDµj ], [iDµk , iDµl ]}}h.

We will obtain the same result in section 4.4.1.4. Including the two possible color structures

there are eight operators in total.

4.3 Spin dependent matrix elements upto and including dimension 8

The spin dependent matrix elements are given by
〈
H
∣∣h̄iDµ1 . . . iDµnsλh

∣∣H〉, where n =

operator dimension-3. As we did in section 4.2, the matrix elements are decomosed into

nonperturbative constants multiplied by tensor structures that are allowed by symmetries.

2A third possible structure h̄ {[iDµi , iDµj ], [iDµl , [iDµm , iDµk ]]}h is related to the first two by the Jacobi
identity.

3using a commutators does not give a new structures since [iDµm , {[iDµi , iDµj ], [iDµk , iDµl ]}] =
{[iDµi , iDµj ], [iDµm , [iDµk , iDµl ]]}+ {[iDµk , iDµl ], [iDµm , [iDµi , iDµj ]]}.
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4.3.1 Dimension three operators

At dimension three the matrix element contains only one covariant derivative. The

matrix element is decomposed into tensor structure with one Lorentz index, which is vµλ .

Contracting the matrix element by four velocity we obtain v · s = 0 in the left hand side.

Therefore, at dimension three there are no spin dependent matrix elements.

1

2MH

〈
H
∣∣h̄sλh∣∣H〉 = 0 (4.21)

4.3.2 Dimension four operators

The dimension four matrix element contains one covariant derivative. This provides two

Lorentz indices. The matrix is then decomposed into Πµ1λ. This is because the contracting

by vµ1 and vλ yields zero. For the choice v = (1, 0, 0, 0), the Dµ1 is a space-like, which is due

to h̄v ·D = 0. The matrix element with odd number of space-like derivatives gives zero due

to the parity. Hence at the dimension four the spin dependent matrix element vanishes.

1

2MH

〈
H
∣∣h̄iDµ1sλh

∣∣H〉 = 0 (4.22)

4.3.3 Dimension five operators

The operator h̄ iDµ1iDµ2sλh has three indices, all of which are orthogonal to v. As a

result, we cannot use three v’s or a product of one Π and one v. There is only one possible

structure:

1

2MH

〈
H
∣∣h̄iDµ1iDµ2sλh

∣∣H〉 = iã(5)ερµ1µ2λvρ (4.23)

The tensor ερµ1µ2λvρ is antisymmetric under inversion as required.
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4.3.4 Dimension six operators

There is only one possible tensor, a product of v and ε. Thus

1

2MH

〈
H
∣∣h̄iDµ1iDµ2iDµ3sλh

∣∣H〉 = iã(6)vµ2ερµ1µ3λvρ (4.24)

Again the inversion symmetry is manifest.

4.3.5 Dimension seven operators

For the matrix elements of dimension seven spin-dependent operators there are five in-

dependent tensors. One has 2 v’s and ε and four that have Π and ε. Thus

1

2MH

〈H|h̄ iDµ1iDµ2iDµ3iDµ4sλh|H〉 =

iã
(7)
12

(
Πµ1µ2ερµ3µ4λvρ − Πµ4µ3ερµ2µ1λvρ

)
+ iã

(7)
13

(
Πµ1µ3ερµ2µ4λvρ − Πµ4µ2ερµ3µ1λvρ

)
+

+ iã
(7)
14 Πµ1µ4ερµ2µ3λvρ + iã

(7)
23 Πµ2µ3ερµ1µ4λvρ + ib̃(7)vµ2vµ3ερµ1µ4λvρ, (4.25)

where we have imposed the inversion symmetry by combining tensors in the second line of

equation (4.25) with the same non-perturbative parameters.

Naively it might seem that there are two other possible independent tensors that involve

Πλµi , namely Πµ1λερµ2µ3µ4vρ − Πµ4λερµ3µ2µ1vρ and Πµ2λερµ1µ3µ4vρ − Πµ3λερµ4µ2µ1vρ. But this

would be an over-counting. The tensor Πµνεσαβρvσ has five indices orthogonal to v, but in

four space-time dimensions there can be only three different indices orthogonal to v. Since

α 6= β 6= ρ and µ = ν, it follows that three of the indices in the set {α, β, ρ, µ, ν} are equal.

Therefore, if λ is equal to any µi it is also equal to some µj and hence µi = µj and already

included in the tensors of equation (4.25).

For the dimension seven spin-independent case one can construct operators with the same

Lorentz structure but different color structure. We can check whether this is possible for the

spin-dependent operators by contracting h̄ {[iDµi , iDµj ], [iDµk , iDµl ]}h with the tensors on
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the right hand side of equation (4.25). We find that all of these vanish, so there are no such

operators. We will find the same result in section 4.4.2.3.

4.3.6 Dimension eight operators

For the matrix elements of the dimension eight spin-dependent operators we can have

one tensor with 3 v’s, vµ2vµ3vµ4ερµ1µ5λvρ, and tensors which are of the form vΠ ε. Following

the discussion above, the Π’s should depend only on µi. Once we fix vµi to be vµ2 , vµ3 , or

vµ4 , there are four indices left, which gives six pairs {µj, µk} for Π. Including the constraints

from inversion symmetry, we find

1

2MB

〈B|h̄ iDµ1iDµ2iDµ3iDµ4iDµ5sλh|B〉 =

iã
(8)
12

(
vµ3Πµ1µ2ερµ4µ5λvρ − vµ3Πµ4µ5ερµ2µ1λvρ

)
+ iã

(8)
14

(
vµ3Πµ1µ4ερµ2µ5λvρ − vµ3Πµ5µ2ερµ4µ1λvρ

)
+

+ iã
(8)
15 v

µ3Πµ1µ5ερµ2µ4λvρ + iã
(8)
24 v

µ3Πµ2µ4ερµ1µ5λvρ +

+ ib̃
(8)
13

(
vµ2Πµ1µ3ερµ4µ5λvρ − vµ4Πµ5µ3ερµ2µ1λvρ

)
+ ib̃

(8)
14

(
vµ2Πµ1µ4ερµ3µ5λvρ − vµ4Πµ5µ2ερµ3µ1λvρ

)
+

+ ib̃
(8)
15

(
vµ2Πµ1µ5ερµ3µ4λvρ − vµ4Πµ1µ5ερµ3µ2λvρ

)
+ ib̃

(8)
34

(
vµ2Πµ3µ4ερµ1µ5λvρ − vµ4Πµ3µ2ερµ5µ1λvρ

)
+

+ ib̃
(8)
35

(
vµ2Πµ3µ5ερµ1µ4λvρ − vµ4Πµ3µ1ερµ5µ2λvρ

)
+ ib̃

(8)
45

(
vµ2Πµ4µ5ερµ1µ3λvρ − vµ4Πµ2µ1ερµ5µ3λvρ

)
+

+ ic̃(8)vµ2vµ3vµ4ερµ1µ5λvρ. (4.26)

The possible multiple color structures are obtained by contracting the

As for the spin-independent case we can check if there are operators with the same Lorentz

structure but different color structure by contracting h̄ {[iDµi , iDµj ], [iDµk , [iDµl , iDµm ]]}h,

h̄ {[iDµi , iDµj ], [iDµm , [iDµk , iDµl ]]}h, and h̄ {iDµm , {[iDµi , iDµj ], [iDµk , iDµl ]}}h with the

tensors of the right hand side of equation (4.26). We find six linearly-independent combi-

nations, indicating that there will be six operators with two possible color structures. We

will find the same result in section 4.6.2. Including these possible color structures, there

seventeen NRQCD (HQET) operators in total.
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4.4 HQET operators

Using the tensor decomposition of the spin independent and spin dependent matrix el-

ements provided in the sections 4.2 and 4.3, we now relate the matrix elements to HQET

parameters. This list of HQET parameters are found in [62]. As discussed in the section

4.1.2.3, the tree level matching of power corrections to inclusive B decays are relevant to

octet color structures. The list of HQET parameters provided in [62] are relevant to these

tree level operators. We list the color singlet operators along with the color octet operators

in the section 4.6.2.

4.4.1 Spin independent operators

4.4.1.1 Dimension five

The dimension five spin independent operator is defined by [61]

1

2MH

〈
H(v)

∣∣Q̄viD
µ1iDµ2Qv

∣∣H(v)
〉

=
1

3
λ1Πµ1µ2 . (4.27)

In [62] the matrix elements is defined as

1

2MB

〈B|b̄v iDµ1iDµ2bv|B〉Πµ1µ2 = −µ2
π. (4.28)

Using the Πµ1µ2Πµ1µ2 = 3 and tensor decomposition of dimension five matrix element we

obtain −µ2
π = λ1 = 3a(5). It is important to note that the µ2

π is not defined in the heavy

quark limit. The parameter µ2
π is defined using the full QCD b fields [62]. Following from

this we obtain a relation between µ2
π and λ1, which contains 1/mb corrections.

4.4.1.2 Dimension six

The dimension six spin independent matrix element is defined as [61]

1

2MH

〈H(v)|Q̄v iD
µ1iDµ2iDµ3Qv|H(v)〉 =

1

3
ρ1Πµ1µ3vµ2 . (4.29)
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while in [62] the same matrix element is defined as

1

2MB

〈B|h̄
[
iDµ1 ,

[
iDµ2 , iDµ3

]]
h|B〉1

2
Πµ1µ3vµ2 = ρ3

D. (4.30)

Comparing this to equation (4.18), we find that ρ3
D = ρ1 = 3a(6).

4.4.1.3 Dimension seven

In the dimension seven there are four matrix elements [62]

2MBm1 = 〈B|b̄v iDρiDσiDλiDδ bv|B〉 1
3

(
ΠρσΠλδ + ΠρλΠσδ + ΠρδΠσλ

)
2MBm2 = 〈B|b̄v

[
iDρ, iDσ

][
iDλ, iDδ

]
bv|B〉 Πρδvσvλ

2MBm3 = 〈B|b̄v
[
iDρ, iDσ

][
iDλ, iDδ

]
bv|B〉 ΠρλΠσδ

2MBm4 = 〈B|b̄v
{
iDρ,

[
iDσ,

[
iDλ, iDδ

]]}
bv|B〉 ΠσλΠρδ (4.31)

Using the tensor decomposition in equation (4.19) we find

m1 = 5
[
a

(7)
12 + a

(7)
13 + a

(7)
14

]
, m2 = 3b(7), m3 = 12

[
a

(7)
13 − a

(7)
14

]
, m4 = 12

[
a

(7)
12 − 2a

(7)
13 + a

(7)
14

]
.

(4.32)

4.4.1.4 Dimension eight

In [62] seven spin-independent matrix elements are listed4 as:

2MBr1 = 〈B|b̄ iDρ (iv ·D)3 iDρ b|B〉

2MBr2 = 〈B|b̄ iDρ (iv ·D) iDρ iDσ iD
σ b|B〉

2MBr3 = 〈B|b̄ iDρ (iv ·D) iDσ iD
ρ iDσ b|B〉

4The change bv → b is presumably a typo in [62].



72

2MBr4 = 〈B|b̄ iDρ (iv ·D) iDσ iD
σ iDρ b|B〉

2MBr5 = 〈B|b̄ iDρ iD
ρ (iv ·D) iDσ iD

σ b|B〉

2MBr6 = 〈B|b̄ iDρ iDσ (iv ·D) iDσ iDρ b|B〉

2MBr7 = 〈B|b̄ iDρ iDσ (iv ·D) iDρ iDσ b|B〉 (4.33)

Comparison between these operators with our tensor decomposition in equation (4.20)

yields

r1 = 3c(8)

r2 = 3
[
3a

(8)
12 + a

(8)
13 + a

(8)
15

]
, r3 = 3

[
a

(8)
12 + 3a

(8)
13 + a

(8)
15

]
, r4 = 3

[
a

(8)
12 + a

(8)
13 + 3a

(8)
15

]
r5 = 3

[
3b

(8)
12 + b

(8)
14 + b

(8)
15

]
, r6 = 3

[
b

(8)
12 + b

(8)
14 + 3b

(8)
15

]
, r7 = 3

[
b

(8)
12 + 3b

(8)
14 + b

(8)
15

]
.(4.34)

4.4.2 Spin dependent operators

The dimension three and four matrix elements are zero. We find the first non zero matrix

element at dimension five.

4.4.2.1 Dimension five

The dimension five spin dependent matrix element is defined as [61]

1

2MH

〈H(v)|Q̄v iD
µ1iDµ2sλQv|H(v)〉 =

1

2
λ2 iε

ρµ1µ2λvρ, (4.35)

The same matrix element is defined as [62]

1

2MB

〈B|b̄v [iDµ1 , iDµ2 ](−iσµ1µ2)bv|B〉Πµ1µ2 = µ2
G. (4.36)

Using the relationship between σµν and sλ defined in equation (4.6), we found µ2
G = 3λ2 =

−6ã(5). Similar to µ2
π in section 4.4.1.1, the relationship between µ2

G and λ2 receives correc-

tions at order 1/mb.
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4.4.2.2 Dimension six

The dimension six spin dependent matrix element is defined by [61]

1

2MH

〈H(v)|Q̄v iD
µ1iDµ2iDµ3sλQv|H(v)〉 =

1

2
ρ2 ivνε

νµ1µ3λvµ2 , (4.37)

The same matrix element is defined in [62] as

1

2MB

〈B|b̄v
1

2

{
iDµ1 , [iDµ2 , iDµ3 ]

}
(−iσαβ)bv|B〉Πµ1αΠµ3βvµ2 = ρ3

LS. (4.38)

Comparing these expressions with the tensor decomposition obtained in equation (4.24), we

found ρ3
LS = 3ρ2 = −6ã(6).

4.4.2.3 Dimension seven

In the dimension seven there are five matrix elements. They are defined as [62]

2MBm5 = 〈B|b̄v
[
iDρ, iDσ

][
iDλ, iDδ

](
− iσαβ

)
bv|B〉 ΠαρΠβδvσvλ

2MBm6 = 〈B|b̄v
[
iDρ, iDσ

][
iDλ, iDδ

](
− iσαβ

)
bv|B〉 ΠασΠβλΠρδ

2MBm7 = 〈B|b̄v
{{
iDρ, iDσ

}
,
[
iDλ, iDδ

]}(
− iσαβ

)
bv|B〉 ΠσλΠαρΠβδ

2MBm8 = 〈B|b̄v
{{
iDρ, iDσ

}
,
[
iDλ, iDδ

]}(
− iσαβ

)
bv|B〉 ΠρσΠαλΠβδ

2MBm9 = 〈B|b̄v
[
iDρ,

[
iDσ,

[
iDλ, iDδ

]]](
− iσαβ

)
bv|B〉 ΠρβΠλαΠσδ . (4.39)

Comparing this result with the tensor decomposition in equation (4.25) we found

m5 = 6b̃(7), m6 = 6
[
−2ã

(7)
13 + ã

(7)
14 + ã

(7)
23

]
, m7 = −12

[
4ã

(7)
12 − 3ã

(7)
14 + 3ã

(7)
23

]
m8 = 48

[
3ã

(7)
12 − ã

(7)
14 + ã

(7)
23

]
, m9 = 12

[
5ã

(7)
12 − 4ã

(7)
14 − 3ã

(7)
14 + 2ã

(7)
23

]
(4.40)
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4.4.2.4 Dimension eight

The dimension eight matrix elements are defined as [62]

2MBr8 = 〈B|b̄ iDµ (iv ·D)3 iDν (−iσµν) b|B〉

2MBr9 = 〈B|b̄ iDµ (iv ·D) iDν iDρ iD
ρ (−iσµν) b|B〉

2MBr10 = 〈B|b̄ iDρ (iv ·D) iDρ iDµ iDν (−iσµν) b|B〉

2MBr11 = 〈B|b̄ iDρ (iv ·D) iDµ iD
ρ iDν (−iσµν) b|B〉

2MBr12 = 〈B|b̄ iDµ (iv ·D) iDρ iDν iD
ρ (−iσµν) b|B〉

2MBr13 = 〈B|b̄ iDρ (iv ·D) iDµ iDν iD
ρ (−iσµν) b|B〉

2MBr14 = 〈B|b̄ iDµ (iv ·D) iDρ iD
ρ iDν (−iσµν) b|B〉

2MBr15 = 〈B|b̄ iDµ iDν (iv ·D) iDρ iD
ρ (−iσµν) b|B〉

2MBr16 = 〈B|b̄ iDρ iDµ (iv ·D) iDν iD
ρ (−iσµν) b|B〉

2MBr17 = 〈B|b̄ iDµ iDρ (iv ·D) iDρ iDν (−iσµν) b|B〉

2MBr18 = 〈B|b̄ iDρ iDµ (iv ·D) iDρ iDν (−iσµν) b|B〉 . (4.41)

Comparing this with the dimension eight matrix tensor decomposition, which is given in

equation (4.26), we found

r8 = 6c̃(8)

r9 = −6
[
b̃

(8)
14 + b̃

(8)
15 − b̃

(8)
34 − b̃

(8)
35 − 3b̃

(8)
45

]
, r10 = 6

[
3b̃

(8)
13 + b̃

(8)
14 − b̃

(8)
15 + b̃

(8)
34 − b̃

(8)
35

]
,

r11 = 6
[
b̃

(8)
13 + 3b̃

(8)
14 + b̃

(8)
15 + b̃

(8)
34 − b̃

(8)
45

]
, r12 = 6

[
−b̃(8)

13 + b̃
(8)
15 + b̃

(8)
34 + 3b̃

(8)
35 + b̃

(8)
45

]
,

r13 = −6
[
b̃

(8)
13 − b̃

(8)
14 − 3b̃

(8)
15 − b̃

(8)
35 + b̃

(8)
45

]
, r14 = 6

[
b̃

(8)
13 + b̃

(8)
14 + 3b̃

(8)
34 + b̃

(8)
35 + b̃

(8)
45

]
,

r15 = 6
[
3ã

(8)
12 − ã

(8)
15 + 3ã

(8)
24

]
, r16 = 6

[
−2ã

(8)
12 + 2ã

(8)
14 + 3ã

(8)
15

]
,

r17 = 6
[
2ã

(8)
12 + 2ã

(8)
14 + 3ã

(8)
24

]
, r18 = 6

[
3ã

(8)
14 + ã

(8)
15 + ã

(8)
24

]
,

(4.42)
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4.5 NRQED and NRQCD operators

In the following section we will relate the NRQED and NRQCD operators to tensor

decomposition provided in sections 4.2 and 4.3. The NRQCD Lagrangian upto and including

the order 1/M3 is provided in [55].

Ldim≤7
NRQCD = ψ†

{
iDt + c2

D2

2M
+ cFg

σ ·B
2M

+ cDg
D ·E −E ·D

8M2
+ icSg

σ · (D ×E −E ×D)

8M2
+

+c4
D4

8M3
+ icMg

{Di, (D ×B −B ×D)i}
8M3

+ cW1g
{D2,σ ·B}

8M3
− cW2g

Diσ ·BDi

4M3
+

+cp′pg
σ ·DB ·D +D ·Bσ ·D

8M3
+ cA1g

2 (Bi
aB

i
b −Ei

aE
i
b) T

aT b

8M3
− cA2g

2 E
i
aE

i
b T

aT b

16M3
+

+cA3g
2 (Bi

aB
i
b −Ei

aE
i
b) δ

ab

8M3
− cA4g

2 E
i
aE

i
b δ

ab

16M3

−cB1g
2σ · (Ba×Bb −Ea ×Eb)f

abcT c

16M3
+ cB2g

2σ · (Ea ×Eb)f
abcT c

16M3

}
ψ. (4.43)

The operators in the last line are specific to NRQCD they do not appear in the NRQED.

Also, in NRQED the operators corresponding to coefficients cA1 and cA3 (cA2 and cA4) are

identical.

The NRQED Lagrangian at order 1/M4 (dimension eight) is given by

Ldim=8
NRQED = ψ†

{
cX1g

[D2,D ·E +E ·D]

M4
+ cX2g

{D2, [∂ ·E]}
M4

+ cX3g
[∂2∂ ·E]

M4

+ icX4g
2{Di, [E ×B]i}

M4
+ icX5g

Diσ · (D ×E −E ×D)Di

M4
+ icX6g

εijkσiDj[∂ ·E]Dk

M4

+ cX7g
2σ ·B[∂ ·E]

M4
+ cX8g

2 [E · ∂σ ·B]

M4
+ cX9g

2 [B · ∂σ ·E]

M4

+ cX10g
2 [Eiσ · ∂Bi]

M4
+ cX11g

2 [Biσ · ∂Ei]

M4
+ cX12g

2σ ·E × [∂tE − ∂ ×B]

M4

}
ψ . (4.44)

Some of these operators need to be rewritten in a form appropriate for NRQCD operators,

e.g. not assuming that E and B commute. We will do that below.

The general procedure we will follow is to take a general NRQCD (NRQED) operator of

the form ψ†Oψ where O is written in terms of D,E,B. We change ψ → h and ψ† → h̄ and

write O in terms of covariant derivatives iDµ contracted with Π and v. The matrix element
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of the resulting operator can be written in terms of the parameters of section 4.1. The utility

of this method is that given two NRQCD operators we can immediately determine if they

are linearly independent, based on the linear combination of parameters that corresponds to

each operator. Possible multiple color factors for operators with the same Lorentz structure

are considered separately. We will illustrate this procedure in detail below.

4.5.1 Spin independent operators

4.5.1.1 Dimension four

In equation (4.43) there is one operator with time-like cavariant derivative (ψ†iDtψ) at

dimension four. The corresponding HQET operator is h̄iv · Dh. Therefore, the matrix

element vanishes at dimension four.

4.5.1.2 Dimension five

At dimension five, there is only one spin independent operator in equation (4.43), which is

ψ†D2ψ. This operator can be written as iDµ1iDµ2Πµ1µ2 . Using this operator and changing

ψ† → h̄ and ψ → h we found

ψ†D2ψ → 1

2MH

〈
H
∣∣h̄iDµ1iDµ2Πµ1µ2h

∣∣H〉 = 3a(5) (4.45)

4.5.1.3 Dimension six

At dimension six, there is only one spin independent operator in equation (4.43), which

is gψ†(D · E − E ·D)ψ. By re-writing this equation as −vµ2Πµ1µ3 [iDµ1 , [iDµ2 , iDµ3 ]] and

changing ψ† → h̄ and ψ → h we found

−ψ†vµ2Πµ1µ3 [iDµ1 , [iDµ2 , iDµ3 ]]ψ → − 1

2MH

〈
H
∣∣h̄vµ2Πµ1µ3 [iDµ1 , [iDµ2 , iDµ3 ]]h

∣∣H〉 = −6a(6)

(4.46)

4.5.1.4 Dimension seven

In equation (4.43) there are six spin independent operators at dimension seven. They are

ψ†D4ψ, gψ† {Di(D× B −B ×D)i}ψ, g2ψ† (Bi
aB

i
b −Ei

aE
i
b)T

aT bψ, −g2ψ†Ei
aE

i
bT

aT bψ,
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g2ψ† (Bi
aB

i
b −Ei

aE
i
b) δ

abψ. Changing the ψ† → h̄ and ψ → h we found

ψ†D4ψ → 1

2MH

〈H|h̄ iDµ1iDµ2iDµ3iDµ4h|H〉Πµ1µ2Πµ3µ4 = 3
(

3a
(7)
12 + a

(7)
13 + a

(7)
14

)
,

ψ† g{Di, (D ×B −B ×D)i}ψ → 1

2MH

〈H|h̄
{
iDµ1 , [iDµ2 , [iDµ3 , iDµ4 ] ]

}
h|H〉Πµ1µ4Πµ2µ3

= 12
(
a

(7)
12 − 2a

(7)
13 + a

(7)
14

)
,

g2ψ†
(
Bi
aB

i
b −Ei

aE
i
b

)
T aT bψ, g2ψ†

(
Bi
aB

i
b −Ei

aE
i
b

)
δabψ →

−1

2

1

2MH

〈H|h̄ [iDµ1 , iDµ2 ] [iDµ3 , iDµ4 ]h|H〉gµ1µ3gµ2µ4 = 3
(
−2a

(7)
13 + 2a

(7)
14 + b(7)

)
,

−g2ψ†Ei
aE

i
b T

aT bψ, −g2ψ†Ei
aE

i
b δ

abψ → − 1

2MH

〈H|h̄ [iDµ1 , iDµ2 ] [iDµ3 , iDµ4 ]h|H〉gµ1µ3vµ2vµ4

= −3b(7).

(4.47)

All these linear combinations of a
(7)
12 , a

(7)
13 , a

(7)
14 , and b(7) are independent of each other. As

shown in the section 4.19, there are two operators with different color structures that has

same Lorentz structure. The linear combinations for those two operators are a
(7)
12 , a

(7)
13 , and a

(7)
14 .

4.5.1.5 Dimension eight

The NRQED Lagrangian in equation (4.44) provide four spin independent operators at di-

mension eight. These operators can be generalized to the NRQCD by using gψ† {D2, [∂ ·E]}ψ →

gψ† {D2, [Di,Ei]}ψ and gψ† [∂2∂ ·E]ψ → gψ†[Di, [Di, [Dj,Ej]]]ψ. The operator g2ψ†{iDi, [E×

B]i}ψ provides color octet and singlet structures, and they are 1
2
g2ψ†

{
iDi, εijkEj

aB
k
b

{
T a, T b

}}
ψ

and g2ψ†
{
iDi, εijkEj

aB
k
b δ

ab
}
ψ. By replacing the ψ† → h̄ and ψ → h we obtain:

gψ†[D2, {Di,Ei}]ψ → − 1

2MH

〈H|h̄ [iDµ1iDµ2 , {iDµ3 , [iDµ4 , iDµ5 ]}]h|H〉vµ4Πµ1µ2Πµ3µ5

= −6
(

3b
(8)
12 + b

(8)
14 + b

(8)
15

)
,
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gψ†{D2, [Di,Ei]}ψ → − 1

2MH

〈H|h̄ {iDµ1iDµ2 , [iDµ3 , [iDµ4 , iDµ5 ]]}h|H〉vµ4Πµ1µ2Πµ3µ5

= −6
(

6a
(8)
12 + 2a

(8)
13 + 2a

(8)
15 − 3b

(8)
12 − b

(8)
14 − b

(8)
15

)
,

ψ† g[Di, [Di, [Dj,Ej]]]ψ →

→ − 1

2MH

〈H|h̄ [iDµ1 , [iDµ2 , [iDµ3 , [iDµ4 , iDµ5 ]]]]h|B〉vµ4Πµ1µ2Πµ3µ5

= −6
(

8a
(8)
12 + 4a

(8)
13 + 8a

(8)
15 − 5b

(8)
12 − 3b

(8)
14 − 7b

(8)
15

)
,

g2

2
ψ† {iDi, εijkEj

aB
k
b {T a, T b}}ψ, g2ψ† {iDi, εijkEj

aB
k
b δ

ab}ψ →

→ 1

2

1

2MH

〈H|h̄ {iDµ1 , {[iDµ2 , iDµ3 ], [iDµ4 , iDµ5 ]}}h|B〉vµ2Πµ1µ4Πµ3µ5

= 6
(
a

(8)
12 − a

(8)
15 − b

(8)
14 + b

(8)
15

)
. (4.48)

The NRQCD contains three other operators that are absent in NRQED. We will list

these operators in section 4.6.2.

4.5.2 Spin dependent operators

For the Levi-Civita tensor we used the sign convention ε0123 = −1 and ε0123 = +1.

Therefore, the three dimension operators such as εijkA
iBjCk are generalized to the four

dimension as −ε0µναAµBνCµ. The overall minus sign arises due to three space-like contrac-

tions. For example, the covariant derivative Dµ = (D0,−D) provides a overall minus sign

when considering a triple product of space-like derivatives.

4.5.2.1 Dimension five

At dimension five we find the first non vanishing spin dependent operator in equation (4.43),

and it is given by gψ†σ ·Bψ. This operator can be rewritten as − i
2
ψ†εijkσi

[
iDj, iDk

]
ψ.

The generalization of the three dimensional tripple product to four dimension provides an

additional minus sign. As a result, the dimension five spin dependent matrix element is

written as εijkσi
[
iDj, iDk

]
→ −ερλµ1µ2vρsλ [iDµ1 , iDµ2 ]. Changing the ψ† → h̄ and ψ → h

provides:

gψ†σ ·Bψ → 1

2MH

1

2
iερµ1µ2λv

ρ
〈
H
∣∣h̄sλ [iDµ1 , iDµ2 ]h

∣∣H〉 = 6ã(5) (4.49)



79

4.5.2.2 Dimension six

In equation (4.43), there is only one dimension six spin dependent operator, which is igψ†σ ·

(D×E −E ×D)ψ. As shown in the above, we construct the corresponding HQET matrix

element as follows:

igψ†σ · (D ×E −E ×D)ψ → − 1

2MH

iερλµ1µ3v
ρvµ2

〈
H
∣∣h̄sλ {iDµ1 , [iDµ2 , iDµ3 ]}h

∣∣H〉 =

= −12ã(6) (4.50)

4.5.2.3 Dimension seven

In equation (4.43), there are five spin dependent operators at dimension five. They are

gψ† {D2,σ ·B}ψ, gψ†Diσ ·BDiψ, gψ†σ ·DB ·D+D ·Bσ ·Dψ, g2ψ†σ ·(Ba ×Bb) f
abcT cψ,

and g2ψ†σ ·(Ea ×Eb) f
abcT cψ. At dimension seven there are no operators with multiple color

structures. Changing the ψ† → h̄ and ψ → h provides:

gψ†{D2,σ ·B}ψ → 1

2MH

1

2
iερµ3µ4λv

ρΠµ1µ2〈H|h̄ sλ{iDµ1iDµ2 , [iDµ3 , iDµ4 ]}h|H〉 =

= 12
(

3ã
(7)
12 − ã

(7)
14 + ã

(7)
23

)
,

gψ†Diσ ·BDiψ → 1

2MH

1

2
iερµ2µ3λv

ρΠµ1µ4〈H|h̄ sλiDµ1 [iDµ2 , iDµ3 ]iDµ4 h|H〉 =

= 6
(
−2ã

(7)
12 + 2ã

(7)
13 + 3ã

(7)
14

)
,

gψ†σ ·DB ·D +D ·Bσ ·Dψ → − 1

2MH

1

2
iερµ1µ2µ3v

ρΠλµ4〈H|h̄ sλiDµ1 [iDµ2 , iDµ3 ]iDµ4 h|H〉

− 1

2MH

1

2
iερµ4µ2µ3v

ρΠλµ1〈H|h̄ sλiDµ1 [iDµ2 , iDµ3 ]iDµ4 h|H〉 = −12
(
ã

(7)
12 − ã

(7)
13 + ã

(7)
14

)
,

g2ψ†σ · (Ba ×Bb)f
abcT cψ → 1

2MH

1

2
iερµ1µ2µ4v

ρΠλµ3〈H|h̄ sλ[iDµ1 , iDµ2 ][iDµ3 , iDµ4 ]h|H〉 =

= 6
(

2ã
(7)
13 − ã

(7)
14 − ã

(7)
23

)
,

g2ψ†σ · (Ea ×Eb)f
abcT cψ → 1

2MH

ıερµ2µ4λv
ρvµ1vµ3〈H|h̄ sλ[iDµ1 , iDµ2 ][iDµ3 , iDµ4 ]h|H〉 =

= −6b̃(7). (4.51)
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4.5.2.4 Dimension eight

There are eight spin-dependent dimension-eight operators in the 1/M4 NRQED Lagrangian

in equation (4.44). For the NRQCD operators we rewrite ψ†εijkσiDj[∂·E]Dkψ as ψ†εijkσiDj[Dl,El]Dkψ.

The operator g2ψ†σ ·B[∂ · E]ψ corresponds to two possible NRQCD operators 1
2
g2ψ†{σ ·

BaT
a, [Di,Ei]bT

b}ψ and g2ψ†σ · Ba[D
i,Ei]aψ. The notation is such that [Di,Ei]a =

∇ ·Ea + gfabcAb ·Ec [101]. Similarly g2ψ†[E ·∂σ ·B]ψ corresponds to 1
2
g2ψ†{Ei

aT
a, [Di,σ ·

B]bT
b}ψ and g2ψ†Ei

a[D
i,σ ·B]aψ, g2ψ†[B · ∂σ ·E]ψ corresponds to 1

2
g2ψ†{Bi

aT
a, [Di,σ ·

E]bT
b}ψ and g2ψ†Bi

a[D
i,σ · E]aψ, g2ψ†[Eiσ · ∂Bi]ψ corresponds to 1

2
g2ψ†{Ei

aT
a, [σ ·

D,Bi]bT
b}ψ and g2ψ†Ei

a[σ·D,Bi]aψ, and g2ψ†[Biσ·∂Ei]ψ corresponds to 1
2
g2ψ†{Bi

aT
a, [σ·

D,Ei]bT
b}ψ and g2ψ†Bi

a[σ ·D,Ei]aψ. The last operator in equation (4.44) contains two

parts: σ ·E× [∂tE] and −σ ·E× [∂×B]. The second part can be expressed in terms of other

operators in equation (4.44), so we will not consider it below. The first part corresponds to

two possible NRQCD operators 1
2
g2ψ†εijkσiEj

a [Dt,E
k]b {T a, T b}ψ and g2ψ†εijkσiEj

a [Dt,E
k]a ψ.

Changing ψ → h, ψ† → h̄ we get

igψ†Diσ · (D ×E −E ×D)Diψ →

→ 1

2MH

(−i)ερλµ2µ4vρΠµ1µ5vµ3〈H|h̄ sλiDµ1{iDµ2 , [iDµ3 , iDµ4 ]}iDµ5h|H〉 =

= 12
(

2ã
(8)
12 − 2ã

(8)
14 − 3ã

(8)
15 − b̃

(8)
13 + b̃

(8)
14 + 3b̃

(8)
15 + b̃

(8)
35 − b̃

(8)
45

)
,

igψ†εijkσiDj[Dl,El]Dkψ →

→ 1

2MH

iερλµ1µ5v
ρΠµ2µ4vµ3〈H|h̄ sλiDµ1 [iDµ2 , [iDµ3 , iDµ4 ]]iDµ5h|H〉 =

= 12
(

2ã
(8)
12 + 2ã

(8)
14 + 3ã

(8)
24 − b̃

(8)
13 − b̃

(8)
14 − 3b̃

(8)
34 − b̃

(8)
35 − b̃

(8)
45

)
,

1

2
g2ψ†{σ ·BaT

a, [Di,Ei]bT
b}ψ, g2ψ†σ ·Ba[D

i,Ei]aψ →

→ − 1

2MH

i

4
ερλµ1µ2v

ρΠµ3µ5vµ4〈H|h̄ sλ{[iDµ1 , iDµ2 ], [iDµ3 , [iDµ4 , iDµ5 ]]}h|H〉 =

= 6
(

3ã
(8)
12 − ã

(8)
15 + ã

(8)
24 − 6b̃

(8)
13 − 2b̃

(8)
14 + 2b̃

(8)
15 − 2b̃

(8)
34 + 2b̃

(8)
35

)
,
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1

2
g2ψ†{Ei

aT
a, [Di,σ ·B]bT

b}ψ, g2ψ†Ei
a[D

i,σ ·B]aψ →

→ − 1

2MH

i

4
ερλµ4µ5v

ρΠµ2µ3vµ1〈H|h̄ sλ{[iDµ1 , iDµ2 ], [iDµ3 , [iDµ4 , iDµ5 ]]}h|H〉 =

= 6
(

4b̃
(8)
13 − 4b̃

(8)
15 + b̃

(8)
34 − 2b̃35 + b̃45

)
,

1

2
g2ψ†{Bi

aT
a, [Di,σ ·E]bT

b}ψ, g2ψ†Bi
a[D

i,σ ·E]aψ →

→ 1

2MH

i

4
ερµ1µ2µ3v

ρΠλµ5vµ4〈H|h̄ sλ{[iDµ1 , iDµ2 ], [iDµ3 , [iDµ4 , iDµ5 ]]}h|H〉 =

= −6
(
ã

(8)
12 + ã

(8)
14 − ã

(8)
24 − 2b̃

(8)
13 + b̃

(8)
14 − b̃

(8)
15 + b̃

(8)
34 − b̃

(8)
35

)
,

1

2
g2ψ†{Ei

aT
a, [σ ·D,Bi]bT

b}ψ, g2ψ†Ei
a[σ ·D,Bi]aψ →

→ 1

2MH

i

4
ερµ2µ4µ5v

ρΠλµ3vµ1〈H|h̄ sλ{[iDµ1 , iDµ2 ], [iDµ3 , [iDµ4 , iDµ5 ]]}h|H〉 =

= −6
(
b̃

(8)
13 − b̃

(8)
15 − b̃

(8)
34 + 2b̃

(8)
35 − b̃

(8)
45

)
,

1

2
g2ψ†{Bi

aT
a, [σ ·D,Ei]bT

b}ψ, g2ψ†Bi
a[σ ·D,Ei]aψ →

→ 1

2MH

i

4
ερµ1µ2µ5v

ρΠλµ3vµ4〈H|h̄ sλ{[iDµ1 , iDµ2 ], [iDµ3 , [iDµ4 , iDµ5 ]]}h|H〉 =

= −6
(
ã

(8)
12 − ã

(8)
14 + ã

(8)
15 − 2b̃

(8)
13 + b̃

(8)
14 − b̃

(8)
15 + b̃

(8)
34 − b̃

(8)
35

)
,

1

2
g2ψ†εijkσiEj

a [Dt,E
k]b {T a, T b}ψ, g2ψ†εijkσiEj

a [Dt,E
k]a ψ →

→ − 1

2MH

i

2
ερλµ2µ5v

ρvµ1vµ3vµ4〈H|h̄ sλ{[iDµ1 , iDµ2 ], [iDµ3 , [iDµ4 , iDµ5 ]]}h|H〉 =

= 6c̃(8). (4.52)

The NRQCD contains extra operators that are not presented in NRQED. We list these

extra operators in section 4.6.2

4.6 Applications

4.6.1 Tensor decomposition of Dimension nine spin independent HQET matrix

element

We extended the general tensor decomposition of HQET matrix elements discussed in

section 4.2 to dimension nine. At dimension nine the matrix elements contain six covariant

derivatives. The matrix element is decomposed into tensors that contains zero v’s, two v’s

or four v’s. Thus we obtain 24 tensors for the spin independent matrix element, which are
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given by

1

2MH

〈
H
∣∣h̄iDµ1iDµ2iDµ3iDµ4iDµ5iDµ6h

∣∣H〉 = a
(9)
12,34Πµ1µ2Πµ3µ4Πµ5µ6+

+ a
(9)
12,35 (Πµ1µ2Πµ3µ5Πµ4µ6 + Πµ1µ3Πµ2µ4Πµ5µ6) + a

(9)
12,36 (Πµ1µ2Πµ3µ6Πµ4µ5 + Πµ1µ4Πµ2µ3Πµ5µ6) +

+ a
(9)
13,25Πµ1µ3Πµ2µ5Πµ4µ6 + a

(9)
13,26 (Πµ1µ3Πµ2µ6Πµ4µ5 + Πµ1µ5Πµ2µ3Πµ4µ6) +

+ a
(9)
14,25Πµ1µ4Πµ2µ5Πµ3µ6 + a

(9)
14,26 (Πµ1µ4Πµ2µ6Πµ3µ5 + Πµ1µ5Πµ2µ4Πµ3µ6) +

+ a
(9)
15,26Πµ1µ5Πµ2µ6Πµ3µ4 + a

(9)
16,23Πµ1µ6Πµ2µ3Πµ4µ5 + a

(9)
16,24Πµ1µ6Πµ2µ4Πµ3µ5+

+ a
(9)
16,25Πµ1µ6Πµ2µ5Πµ3µ4 + b

(9)
12,36 (Πµ1µ2Πµ3µ6vµ4vµ5 + Πµ1µ4Πµ5µ6vµ2vµ3) +

+ b
(9)
12,46 (Πµ1µ2Πµ4µ6vµ3vµ5 + Πµ1µ3Πµ5µ6vµ2vµ4) + b

(9)
12,56Πµ1µ2Πµ5µ6vµ3vµ4+

+ b
(9)
13,26 (Πµ1µ3Πµ2µ6vµ4vµ5 + Πµ1µ5Πµ4µ6vµ2vµ3) +

+ b
(9)
13,46Πµ1µ3Πµ4µ6vµ2vµ5 + b

(9)
14,26 (Πµ1µ4Πµ2µ6vµ3vµ5 + Πµ1µ5Πµ3µ6vµ2vµ4) +

+ b
(9)
14,36Πµ1µ4Πµ3µ6vµ2vµ5 + b

(9)
15,26Πµ1µ5Πµ2µ6vµ3vµ4+

+ b
(9)
16,23 (Πµ1µ6Πµ2µ3vµ4vµ5 + Πµ1µ6Πµ4µ5vµ2vµ3) +

+ b
(9)
16,24 (Πµ1µ6Πµ2µ4vµ3vµ5 + Πµ1µ6Πµ3µ5vµ2vµ4) + b

(9)
16,25Πµ1µ6Πµ2µ5vµ3vµ4+

+ b
(9)
16,34Πµ1µ6Πµ3µ4vµ2vµ5 + c(9)Πµ1µ6vµ2vµ3vµ4vµ5 (4.53)

The multiple color structures arise from the structures: [iDµi , iDµj ] , [iDµi , [iDµj , iDµk ]] and

[iDµi , [iDµj , [iDµk , iDµl ]]]]. However, we did not consider the possible operators arise from

these structures in this discussion.

4.6.2 NRQCD Lagrangian at order 1/M4

As shown in the sections 4.5.1.5 and 4.5.2.4, there are three spin independent and three

spin dependent operators that cannot be obtained from the generalization of NRQED op-

erators to NRQCD. The NRQCD operators contains commutators of chromoelectric and

chromomagnetic fields. These NRQCD operators do not arise in the NRQED. As a result,

we list the set of new spin independent operators that are obtained from the commutator
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relationships of the chromoelectric and chromomagnetic fields as follows:

g2ψ†
[
Ei,

[
iDt,E

i
]]
a
T aψ →

→ 1

2MH

〈
H
∣∣h̄ [[iDµ1 , iDµ2 ] , [iDµ3 , [iDµ4 , iDµ5 ]])h

∣∣H〉 vµ1vµ3vµ4Πµ2µ5 = −6c(8)

ig2ψ†
[
Bi, (D ×E +E ×D)i

]
a
T aψ →

→ 1

2MH

〈
H
∣∣h̄ [[iDµ1 , iDµ2 ] , [iDµ3 , [iDµ4 , iDµ5 ]])h

∣∣H〉 vµ4Πµ1µ3Πµ2µ5 = 12
(
b

(8)
14 − b

(8)
15

)
ig2ψ†

[
Ei, (D ×B +B ×D)i

]
a
T aψ →

→ − 1

2MH

〈
H
∣∣h̄ [[iDµ1 , iDµ2 ] , [iDµ3 , [iDµ4 , iDµ5 ]]h|H〉vµ1Πµ3µ4Πµ2µ5 =

= 12
(
a

(8)
12 − 2a

(8)
13 + a

(8)
15

)
(4.54)

These operators are linearly independent to the operators found in equation (4.48).

In section 4.5.2.4 we considered the set of dimension eight NRQCD spin dependent

operators that are obtained by generalizing the NRQED operators. They are: OX7 ≡
1
2
g2ψ†{σ ·B, [Di,Ei]}ψ, OX8 ≡ 1

2
g2ψ† {Ei, [Di,σ ·B]}ψ,OX9 ≡ 1

2
g2ψ† {Bi, [Di,σ ·E]}ψ,

OX10 ≡ 1
2
g2ψ†{Ei, [σ ·D,Bi]}ψ, and QY11 = 1

2
a2ψ† {Bi, [σ ·D,Ei]}ψ, where the notion

follows from equation (4.44). The corresponding NRQCD operators can be obtained by

replacing the commutators by anti-commutators in these operators and vice versa. Out of

OX7, OX9, OX10 or OX7, OX9, OX11 or OX8, OX9, OX11 we can choose any set of operators to

modify. In the following we modified the operators OX7, OX9, OX10 to obtain their NRQCD

counterpart. We have:

g2ψ†[σ ·B, {Di,Ei}]aT aψ →

→ − 1

2MH

i

2
ερλµ1µ2v

ρΠµ3µ5vµ4〈H|h̄ sλ[[iDµ1 , iDµ2 ], {iDµ3 , [iDµ4 , iDµ5 ]}]h|H〉 =

= −12
(

3ã
(8)
12 − ã15 + ã24

)
,

g2ψ†[Bi, {Di,σ ·E}]aT aψ →

→ 1

2MH

i

2
ερµ1µ2µ3v

ρΠλµ5vµ4〈H|h̄ sλ[[iDµ1 , iDµ2 ], {iDµ3 , [iDµ4 , iDµ5 ]}]h|H〉 =

= 12
(
ã

(8)
12 + ã

(8)
14 − ã24 − b̃14 + b̃15 + b̃34 − b̃35

)
,
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g2ψ†[Ei, {σ ·D,Bi}]aT aψ →

→ 1

2MH

i

2
ερµ2µ4µ5v

ρΠλµ3vµ1〈H|h̄ sλ[iDµ1 , iDµ2 ], {iDµ3 , [iDµ4 , iDµ5 ]}]h|H〉 =

= −12
(
b̃13 + b̃15 − b̃34 + b̃45

)
. (4.55)

All these operators are linearly independent to the operators found in equation (4.52).

4.6.2.1 Constructing the NRQCD Lagrangian at order 1/M4

Since we found the exclusive set of NRQCD operators, we list the dimension 8 Lagrangian.

Ldim=8
NRQCD = ψ†

{
cX1g

[D2, {Di,Ei}]
M4

+ cX2g
{D2, [Di,Ei]}

M4
+ cX3g

[Di, [Di, [Dj,Ej]]]

M4

+ icX4ag
2

{
Di, εijkEj

aB
k
b

{
T a, T b

}}
2M4

+ icX4bg
2

{
Di, εijkEj

aB
k
b δ

ab
}

M4

+ icX5g
Diσ · (D ×E −E ×D)Di

M4
+ icX6g

εijkσiDj
[
Dl,El

]
Dk

M4

+ cX7ag
2

{
σ ·BaT

a, [Di,Ei]b T
b
}

2M4
+ cX7bg

2σ ·Ba [Di,Ei]a
M4

+ cX8ag
2

{
Ei
aT

a, [Di,σ ·B]b T
b
}

2M4
+ cX8bg

2E
i
a [Di,σ ·B]a

M4

+ cX11ag
2

{
Bi
aT

a, [σ ·D,Ei]b T
b
}

2M4
+ cX11bg

2B
i
a [σ ·D,Ei]a

M4

+ c̃X12ag
2
εijkσiEj

a

[
Dt,E

k
]
b

{
T a, T b

}
2M4

+ c̃X12bg
2
eijkσiEj

a

[
Dt,E

k
]
a

M4

+ icX13g
2 [Ei, [Dt,E

i]]

M4
+ icX14g

2 [Bi, (D ×E +E ×D)i]

M4
+ icX15g

2 [Ei, (D ×B +B ×D)i]

M4

+cX16g
2 [σ ·B, {Di,Ei}]

M4
+ cX17g

2 [Bi, {Di,σ ·E}]
M4

+ cX18g
2 [Ei, {σ ·D,Bi}]

M4

}
ψ (4.56)
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CHAPTER 5 NEW RESULTS : REEVALUATING THE UNCERTAINTIES

IN B̄ → XSγ

As shown in section 3.1.5.1, the moments of the subleading shape function (g17) are used

to construct phenomenological models for non-local function h17. These models were then

used in estimating the Qq
1 −Q7γ contribution to the uncertainty on total rate (FE|17). The

moments of the h17 are related to the higher dimensional HQET matrix elements. In sections

4.2 and 4.3 we constructed a general tensor decomposition of these matrix elements up to

and including dimension eight. In the following, we will use this general decomposition to

relate the higher order moments of h17 to nonperturbative HQET parameters. The updated

estimates for these HQET parameters are found in [64]. These estimates were obtained using

moments of the semileptonic B decay spectra and information based on lowest lying state

saturation approximation. Then a global fit was performed to these HQET parameters to

estimate them. In our work, we use the information on HQET parameters to estimate the

higher order moments of the h17 function. Based on these estimates we construct a new

model, and use it to better constrain FE|17 and the SM estimate of the CP asymmetry in

B̄ → Xsγ decay.

5.1 Moments of the sub-leading shape function g17

Equation (3.38) relates the nonlocal function h17 to subleading shape function g17. Since

g17 is a function of both ω and ω1, we consider three types of moments. They are moments of

g17 over ω1 alone, moments over ω alone and moments over both ω and ω1. In the previous

sections we derive the general expression for these moments.

5.1.1 Moments in ω1 alone

Using equation (3.23), we obtain the moments of g17 over ω1 as follows [92]:

〈ω0 ωk1 g17〉 ≡
∫ Λ̄

−∞
dω

∫ ∞
−∞

dω1 ω
k
1 g17(ω, ω1, µ) =

= (−1)k
1

2MB

〈B̄|
(
h̄Sn̄

)
(0) /̄n(1 + γ5) iγ⊥α n̄β (in̄ · ∂)k

(
S†n̄ gG

αβ
s Sn̄

)
(rn̄)

(
S†n̄h

)
(0)|B̄〉

∣∣
r=0

,

(5.1)
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where γ⊥ represents only the γ1 and γ2, n = (1, 0, 0, 1) and n̄ = (1, 0, 0,−1). The integrals

over ω and ω1, generates the delta functions of r, t. These delta functions restricts the eval-

uation of the matrix element at r = 0, t = 0. Using the identity in̄ · ∂
(
S†n̄(x)O(x)Sn̄(x)

)
=

S†n̄(x)[in̄ ·D,O(x)]Sn̄(x), which is proved in appendix 7.2, we obtain

〈ω0 ωk1 g17〉 ≡
∫ Λ̄

−∞
dω

∫ ∞
−∞

dω1 ω
k
1 g17(ω, ω1, µ) =

= (−1)k
1

2MB

〈B̄|h̄ /̄n(1 + γ5) iγ⊥α n̄β
[
in̄ ·D,

[
in̄ ·D, · · · [in̄ ·D︸ ︷︷ ︸
k times

, gGαβ
s

]
· · ·
]]
h|B̄〉 =

= (−1)k
1

2MB

〈B̄|h̄ /̄n(1 + γ5) γ⊥α
[
in̄ ·D,

[
in̄ ·D, · · · [in̄ ·D︸ ︷︷ ︸
k times

,
[
iDα, in̄ ·D

]
· · ·
]]
h|B̄〉.

(5.2)

The identity
[
iDµ, iDν

]
= igGµν was used in the last line.

The Dirac structures in the matrix elements are simplified using the projection operators

P+, which are defined in section 4.1.1. As shown in equation (4.5), the action of projection

operators on γλγ5 provides sλ. Using this we simplify the Dirac structure. For example,

consider the term /̄nγ⊥α . The orthogonality between α and n̄ provides that /̄nγ⊥α = −iσµα⊥n̄µ.

Equation (4.6) provides the relationship between σµα and sλ. Note that we used the conven-

tion ε0123 = −1. As a result, we obtain /̄nγ⊥α → ivρερµα⊥λs
λn̄µ. The Dirac structure /̄nγ5γ⊥α

is then simplified using equation (4.7), which provides P+ /̄nγ5γ⊥α P+ → −sα⊥ . Using this we

obtain

〈ω0ωk1g17〉 ≡
∫ Λ̄

−∞
dω

∫ ∞
−∞

dω1 ω
k
1 g17(ω, ω1, µ) =

= (ivρερµα⊥λn̄
µ − gα⊥λ) (−1)k

1

2MB

〈B̄|h̄
[
in̄ ·D,

[
in̄ ·D, · · · [in̄ ·D︸ ︷︷ ︸
k times

,
[
iDα, in̄ ·D

]
· · ·
]]
sλh|B̄〉,

(5.3)

where the parameters gµν⊥ and εµν⊥ are defined in equation (3.6). The nested commutators

in equation (5.3) implies that the odd moments of g17 over ω1 vanishes. This is due to
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the odd number of commutators of Hermitian operators is a Hermitian operator. Thus

the corresponding HQET matrix element becomes real. As shown in the chapter 4, the

spin dependent matrix elements are imaginary [56]. As a result, the real matrix elements

obtained from the odd moments in ω1 must vanish.

We use the general decomposition constructed in the sections 4.2 and 4.3 to obtain the

moments in ω1 up to third moment. The moments of g17 over ω1 are listed :

〈ω0 ω0
1 g17〉 ≡

∫ Λ̄

−∞
dω

∫ ∞
−∞

dω1 g17(ω, ω1, µ) = 4ã(5) = 2λ2 = 2µ2
G/3

〈ω0 ω1
1 g17〉 ≡

∫ Λ̄

−∞
dω

∫ ∞
−∞

dω1 ω1 g17(ω, ω1, µ) = 0

〈ω0 ω2
1 g17〉 ≡

∫ Λ̄

−∞
dω

∫ ∞
−∞

dω1 ω
2
1 g17(ω, ω1, µ) = 4

(
−4ã

(7)
12 + 2ã

(7)
13 + 3ã

(7)
14 − ã

(7)
23 + b̃(7)

)
=

=
2

15
(5m5 + 3m6 − 2m9)

〈ω0 ω3
1 g17〉 ≡

∫ Λ̄

−∞
dω

∫ ∞
−∞

dω1 ω
3
1 g17(ω, ω1, µ) = 0. (5.4)

The zeroth moment is a known result, and the second moment was first obtained in [92].

5.1.2 Moments in ω alone

The moments of g17 over ω are obtained by evaluating

〈ωk ω0
1 g17〉 ≡

∫ Λ̄

−∞
dω ωk

∫ ∞
−∞

dω1 g17(ω, ω1, µ) =

=

∫ Λ̄

−∞
dω ωk

∫
dt

2π
e−iωt

1

2MB

〈B̄|
(
h̄Sn

)
(tn) /̄n(1 + γ5)S†n(0) iγ⊥α n̄β gG

αβ
s (0)h(0)|B̄〉 =

=

∫ Λ̄

−∞
dω ωk

∫
dt

2π
eiωt

1

2MB

〈B̄|
(
h̄Sn

)
(0) /̄n(1 + γ5)S†n(tn) iγ⊥α n̄β gG

αβ
s (tn)h(tn)|B̄〉 =

=

∫
dt δ(t)

1

2MB

〈B̄|h̄(0)Sn(0) (in · ∂)kS†n(tn) /̄n(1 + γ5) iγ⊥α n̄β gG
αβ
s (tn)h(tn)|B̄〉. (5.5)

In the above expression we used the transnational invariace of nonlocal matrix elements

along n. Using the identity S†n(tn) in ·D = in · ∂ S†n(tn) we obtain a general expression for

the moments over ω:
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〈ωk ω0
1 g17〉 ≡

∫ Λ̄

−∞
dω ωk

∫ ∞
−∞

dω1 g17(ω, ω1, µ) =

= (ivρερµα⊥λn̄
µ − gα⊥λ)

1

2MB

〈B̄|h̄ (in ·D)k
[
iDα, in̄ ·D

]
sλh|B̄〉.

(5.6)

We used the general decomposition defined in sections 4.2 and 4.3 to obatin the moments

up to and including 〈ω3ω0
1g17〉.

〈ω0 ω0
1 g17〉 ≡

∫ Λ̄

−∞
dω

∫ ∞
−∞

dω1 g17(ω, ω1, µ) = 4ã(5) = 2λ2 = 2µ2
G/3

〈ω1 ω0
1 g17〉 ≡

∫ Λ̄

−∞
dω ω

∫ ∞
−∞

dω1 g17(ω, ω1, µ) = −2ã(6) = −ρ2 = −ρ3
LS/3

〈ω2 ω0
1 g17〉 ≡

∫ Λ̄

−∞
dω ω2

∫ ∞
−∞

dω1 g17(ω, ω1, µ) = −2
(

2ã
(7)
12 − ã

(7)
14 + ã

(7)
23 + b̃(7)

)
=

= − 1

60
(20m5 + 2m7 +m8)

〈ω3 ω0
1 g17〉 ≡

∫ Λ̄

−∞
dω ω3

∫ ∞
−∞

dω1 g17(ω, ω1, µ) =

= −2
(

2ã
(8)
12 − ã

(8)
15 + ã

(8)
24 + 2b̃

(8)
13 + b̃

(8)
14 − b̃

(8)
15 − 2b̃

(8)
35 − b̃

(8)
45 + c̃(8)

)
=

= − 1

15
(5r8 − r9 + 2r10 + r11 − 2r12 − r13 + 2r15 − r16 + r17)

(5.7)

The first moment was derived in [78], and the third and fourth moments were first derived

in [92].

5.1.3 Moments in both ω1 and ω

General expression for mixed moments of g17 over ω and ω1 can be obtained as follows:



89

〈ωl ωk1 g17〉 ≡
∫ Λ̄

−∞
dω ωl

∫ ∞
−∞

dω1 ω
k g17(ω, ω1, µ) = (ivρερµα⊥λn̄

µ − gα⊥λ) (−1)k ×

× 1

2MB

〈B̄|h̄ (in ·D)l
[
in̄ ·D,

[
in̄ ·D, · · · [in̄ ·D︸ ︷︷ ︸
k times

,
[
iDα, in̄ ·D

]
· · ·
]]
sλh|B̄〉. (5.8)

Using the tesnor decomposition of HQET matrix elements we found the mixed moments

of ω and ω1 up to dimension eight matrix elements. They are :

〈ω1 ω1
1 g17〉 ≡

∫ Λ̄

−∞
dω ω

∫ ∞
−∞

dω1 ω1 g17(ω, ω1, µ) = 2
(
−4ã

(7)
12 + 2ã

(7)
13 + 3ã

(7)
14 − ã

(7)
23 + b̃(7)

)
=

=
1

15
(5m5 + 3m6 − 2m9)

〈ω2 ω1
1 g17〉 ≡

∫ Λ̄

−∞
dω ω2

∫ ∞
−∞

dω1 ω1 g17(ω, ω1, µ) =

= 2
(

3ã
(8)
12 − ã

(8)
14 − 2ã

(8)
15 + ã

(8)
24 − 3b̃

(8)
13 + b̃

(8)
14 + 4b̃

(8)
15 + 3b̃

(8)
35 − b̃

(8)
45 + c̃(8)

)
=

=
1

15
(5r8 − r9 − 3r10 + r11 + 3r12 + 4r13 + 3r15 − 2r16 + r17 − r18)

〈ω1 ω2
1 g17〉 ≡

∫ Λ̄

−∞
dω ω1

∫ ∞
−∞

dω1 ω
2
1 g17(ω, ω1, µ) =

= 2
(

3ã
(8)
12 − ã

(8)
14 − 2ã

(8)
15 + ã

(8)
24 + 3b̃

(8)
13 + b̃

(8)
14 − 2b̃

(8)
15 + 2b̃

(8)
34 − b̃

(8)
35 + b̃

(8)
45 − c̃(8)

)
=

=
1

15
(−5r8 + r9 + 3r10 + r11 − r12 − 2r13 + 2r14 + 3r15 − 2r16 + r17 − r18) (5.9)

These moments were all first obtained in [92].

5.2 Applications

5.2.1 Estimating the moments of subleading shape function

As shown in the section 5.1, the moments of the subleading shape function are related

to nonperturbative HQET parameters. In [64] the numerical estimates for these HQET

parameters were provided up to and including dimension eight. For this, the moments of

the semileptonic B decay spectra and lowest lying saturation approximation (LLSA) were

used [62, 102]. Using the LLSA the higher dimensional matrix elements were related to the
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lower dimensional matrix elements and to the excitation energy ε [64]. This approximation

provides 50− 100% accuracy [102]. Based on the central values and the standard deviation

provided in the table 2 of [64] we obtain the moments of the g17 as follows:

〈ω0 ω0
1 g17〉 = 0.237± 0.040 GeV2

〈ω0 ω2
1 g17〉 = 0.15± 0.12 GeV4

〈ω1 ω0
1 g17〉 = 0.056± 0.032 GeV3

〈ω2 ω0
1 g17〉 = 0.015± 0.021 GeV4

〈ω3 ω0
1 g17〉 = 0.008± 0.011 GeV5

〈ω1 ω1
1 g17〉 = 0.073± 0.059 GeV4

〈ω2 ω1
1 g17〉 = −0.034± 0.016 GeV5

〈ω1 ω2
1 g17〉 = 0.027± 0.014 GeV5, (5.10)

The errors of the HQET parameters were added in the quadrature. In [64] the errors of the

HQET parameters were reported without the correlated error. Therefore, in our work we

did not consider the correlated error as well.

Even though the relative errors of these nonperturbative parameters are large, they still

provide useful information regarding the moments of the subleading shape function. For ex-

ample, using the model provided in [78] for h17 we found that 〈ω0 ω2
1 g17〉 ∈ [−0.31, 0.49] GeV4.

This should be compared to the 〈ω0 ω2
1 g17〉 = 0.15±0.12 GeV4 in equation (5.10). The range

of 〈ω0 ω2
1 g17〉 found in [78] is roughly three times bigger compared to the new one.

The nonperturbative HQET parameters that are defined in [62] and listed in [64] used

the full QCD b fields. Whereas, the HQET matrix elements are defined in heavy quark limit.

As a result, there is a 1/mb difference between the parameters defined in these two basis.

For instance, the relation between λ2 and µ2
G contains a 1/mb correction term. However, this

difference is not numerically important. This is due to the relatively large error bars in our
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Figure 5.1: A comparison of the extremal models for h17 as a sum of two lowest even
Hermite polynomials times a Gaussian of width 0.5 GeV used in [78] (dashed blue) to the
same models allowed by current (2019) data (solid black). Left hand side: The model with
2010 smallest possible second moment of −0.31 GeV4 compared to 2019 smallest possible
second moment of 0.03 GeV4. Right hand side: The model with 2010 largest possible second
moment of 0.49 GeV4 compared to 2019 largest possible second moment of 0.27 GeV4.

moment estimates. To illustrate this further, consider the value of µ2
G/3 obtained in [64].

We compare this estimate of µ2
G/3 to the λ2, which is extracted from the B and D meson

spectroscopy. Note that the value of λ2 is defined in the heavy quark limit.

We define the mass split as ∆mH = m∗H − mH , where mH is a pseudo-scalar and m∗H

is vector heavy meson containing a heavy quark of mass mQ. At order 1/mb the λ2 =

∆mHmH/2. We extractred the value of λ2 using the isospin-averaged meson mass data [18].

Following from this, we obtain λ2 = 0.119±0.001 GeV2 for B meson data. For the D meson

data we obtain λ2 = 0.13193± 0.00002 GeV2 [92].

At order O(1/m2
b) the expression for λ2 is [103]

λ2 (mb) =
∆mBm

2
B −∆mDm

2
D

2 (mB − κ (mc)mD)
(5.11)

Equation (5.11) provides λ2 = 0.112 ± 0.001 GeV2. In comparison, µ2
G/3 = 0.118 ±

0.020 GeV2 [64] is equal to all these values of λ2 within the error. As a result, it is cur-

rently not possible to distinguish between λ2 and µ2
G. Hence, in the following work we use

µ2
G/3 from [64], and we assume a similar behavior for all other HQET parameters. This
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situation can be improved with the availability of the future Belle II data and Lattice QCD.

These new data can improve the estimates of HQET parameters and the moments.

5.2.2 Resolved photon contributions for Qq
1 −Q7γ

In the following work, we will use the moments of subleading shape function to bet-

ter constrain the resolved photon contributions from the Qq
1 − Q7γ. As shown in [78] the

contribution from Qu
1 −Q7γ vanishes. The contribution from Qc

1 −Q7γ is given by

F17
E =

C1(µ)

C7γ(µ)

Λ17(m2
c/mb, µ)

mb

, (5.12)

where the nonperturbative quantity Λ17 is defined in equation (3.37), and it depends on

non-local forward scattering matrix element h17. Since the h17 cannot be obtained from

first principles, we use its moments to construct a phenomenological model to describe h17.

Using the general decomposition provided in sections 4.2, 4.3 and the numerical estimates

of HQET parameters found in [64] we construct new model to better constraint F17
E .

The Qq
1−Q7γ part of the resolved photon contribution to the estimate of CP asymmetry

is given in equation (3.62). This contribution is defined by the nonperturbative parameters

Λ̃u
17 and Λ̃c

17. With the new information on the moments of subleading shape function h17

we would like to revisit the evaluation of these nonperturbative parameters. In addition, we

consider the uncertainty generated in evaluation of charm and bottom quark masses.

5.2.2.1 Uncertainty due to the running quark masses

For the evaluation of CP averaged rate we use the mc = mc(µ) defined in the MS scheme with

µ = 1.5 GeV. Whereas, the evaluation of CP asymmetry is carried out by using mc = mc(µ)

defined in the MS scheme with µ = 2.0 GeV.

The running of the quark masses is given as [15]

m(µ) = m (µ0)

[
αs(µ)

αs (µ0)

] γ(0)m
2β0

[
1 +

(
γ

(1)
m

2β0

− β1γ
(0)
m

2β2
0

)
αs(µ)− αs (µ0)

4π

]
, (5.13)

where αs, v(µ), γ0,1
m , and β0,1 are given by
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αs(µ) =
αs (MZ)

v(µ)

[
1− β1

β0

αs (MZ)

4π

ln v(µ)

v(µ)

]
, (5.14)

and

v(µ) = 1− β0
αs (MZ)

2π
ln

(
MZ

µ

)
γm (αs) = γ(0)

m

αs
4π

+ γ(1)
m

(αs
4π

)2

β0,1 (αs) = a1
αs
4π

+ a2

(αs
4π

)2

γ(0)
m = 6CF γ(1)

m = CF

(
3CF +

97

3
N − 10

3
f

)
(5.15)

CF = N2−1
2N

, where N is the number of color charges, and f is the number of effective

flavors. In the 2019 update of the 2018 PDG listing we found mc(mc) = 1.27±0.02 GeV [18].

The coupling constant is given by αs(µ = mc) = 0.38 ± 0.03 [18]. Using these values and

equation (5.13) we obtain mc(1.5 GeV) = 1.20 ± 0.03 GeV and mc(2.0 GeV) = 1.10 ± 0.03

GeV.

In [78] the estimate of Λ17 was obtained by using the mc = 1.131 GeV. This charm quark

mass is based on smaller vale of mc(mc) [104], and it was used in [90, 105] as well. This

change in the charm mass tends to slightly affect the estimates of Λ17, Λ̃
c
17.

The mass of the bottom quark is obtained by using the shape function scheme [78, 83].

The updated HFLAG [106] value of mb is 4.58± 0.03 GeV. This value should be compared

to the mb = 4.65 GeV used in [78].

5.2.2.2 Λ17 estimates based on expanded penguin function

As shown in the equation (3.37), the soft function h17, which appears in the expression of

Λ17, is convoluted with the penguin function (F (x)), where F is defined in equation (3.21).

The expansion of the 1− F (x) is given in equation (3.22), which is obtained for x > 1/4.

In the region ω1 � 4m2
c/mb ≈ 1.2 − 1.3 GeV we can expand the F (x) and obtain the
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Λ17 in terms of moments of the subleading shape function. Starting from the expression of

Λ17 [78]

Λ17

(m2
c

mb

, µ
)

= ec Re

∫ Λ̄

−∞
dω

∫ ∞
−∞

dω1

ω1

×

{(
mb + ω

mb

)3 [
1− F

(
m2
c − iε

(mb + ω)ω1

)]
+
mb ω1

12m2
c

}
g17(ω, ω1, µ) .(5.16)

Using the definition of h17 we have 〈ω0 ωk1 g17〉 = 〈ωk1 h17〉. Then the expansion of the penguin

function provides [92]:

Λexpanded
17 = − ecm

3
b

560m6
c

〈ω0 ω2
1 g17〉+ · · · = −6± 5 MeV + · · · , (5.17)

where · · · denotes the contributions from the higher order moments over ω1. Tradition-

ally, the contribution from the zeroth moment in ω1 is subtracted in equations (3.37) and

(5.16), and its magnitude is −ecmb2λ2/(12m2
c) = −42 ± 7 MeV. The contributors to the

uncertainty in the equation (5.17) are 〈ω0 ω2
1 g17〉, mb, and mc. These uncertainties were

added in quadrature.

In the past, the size of the contribution from higher operators was a concern for the

authors in [107–110]. They have noticed the numerical suppression arising from the expansion

of the penguin function [92]. They have noticed the numerical suppression arising from

the expansion of the penguin function, but the lack of knowledge of the matrix elements

prevented them from making conclusive statements.

The first term in the equation (3.22) is suppressed by a factor ∼ 50 compared to the

third term. However, when the third term is combined with the second moment, we obtain

−6 MeV. This is only suppressed by a factor of 7 compared to the zeroth moment. This

smaller suppression is consistent with the power counting of m2
c ∼ mbΛQCD, which disfavors

the expansion of the penguin function [92].

Consider the 1/mn
b corrections to Λexpanded

17 , which are obtained by expansion of F (x) in
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ω/mb. By definition, Λexpanded
17 = δΛ

(0)
17 . For δΛ

(1)
17 we have [92]:

δΛ
(1)
17 = − ec

3m2
c

〈ω1 ω0
1 g17〉 −

ecmb

18m4
c

〈ω1 ω1
1 g17〉 −

3ecm
2
b

280m6
c

〈ω1 ω2
1 g17〉+ · · ·

= (−9± 5 MeV) + (−6± 5 MeV) + (−1± 1 MeV) + · · · = −16± 7 MeV + · · · .

(5.18)

Again in the equation (5.18), we observe a slow convergence. Only in the third term we

see a suppression compared to the first two terms. Although δΛ
(1)
17 is a ΛQCD/mb correction,

equation (5.18) indicates that the δΛ
(1)
17 is comparable in size to Λexpanded

17 . Even if we add

the contribution of 〈ω0 ω0
1 g17〉 to Λexpanded

17 , δΛ
(1)
17 is only suppressed by a factor of three [92].

The Λ2
QCD/m

2
b correction to the Λexpanded

17 is given by

δΛ
(2)
17 = − ec

2mbm2
c

〈ω2 ω0
1 g17〉 −

ec
9m4

c

〈ω2 ω1
1 g17〉+ · · ·

= (−0.8± 1.1 MeV) + (1.2± 0.6 GeV) + · · · = 0.4± 1.3 MeV + · · · . (5.19)

The convergence generated by the expansion of F (x) is again provide a slow convergence

in the series. Finally, the Λ3
QCD/m

3
b correction for Λexpanded

17 is given by

δΛ
(3)
17 = − ec

3m2
b m

2
c

〈ω3 ω0
1 g17〉 = −0.06± 0.08 MeV + · · · . (5.20)

As we expected, the δΛ
(3)
17 is order of magnitude smaller than the δΛ

(2)
17 correction.

The ΛQCD/mb expansion for δΛ17 works well with the exception of the first term. We

speculate that this is due to the vanishing of 〈ω0 ω1
1 g17〉, which makes the zeroth term in

the expansion Λ17 given in equation (5.16) smaller than it “should” be. Since in general for

l > 0 the moments 〈ωl ωk1 g17〉 do not vanish, there is no such suppression beyond the zeroth

term [92]. Altogether we find Λexpanded
17 + δΛ

(1)
17 + δΛ

(2)
17 + δΛ

(3)
17 = −22 ± 9 MeV, where the

uncertainties were added in quadrature.



96

Since the assumtons on the support of h17 and resulting expansion of the penguin function

are too restrictive [78,92], we will turn to a different approach to analyze the Λ17.

5.3 Modeling of h17

The h17 is an even function, and it has a dimension of mass and in the heavy quark limit.

As shown in the section 3.1.3.1, the ω1 is defined in the domain of −∞ ≤ ω1 ≤ ∞. For

the modeling of h17 it is beneficial to have a systematic expansion of h17, e.g. in terms of a

complete orthonormal set of basis functions [92]. In [111] such a expansion was suggested

to describe the leading order shape function. In our work we use an expansion in terms of

Hermite polynomials multiplied by a Gaussian of width σ [92]:

h17(ω1, µ) =
∑
n

a2nH2n

(
ω1√
2σ

)
e−

ω21
2σ2 , (5.21)

where H2n are even Hermite polynomials, and the coefficients a2n are related to the

moments of the h17. In the following we refer to these models by the numbers of Hermite

polynomials they contain. It is important to note that the 2k-th moment of h17 only depends

on the coefficients a2n with n ≤ k, for a given value of σ. This is due to the orthogonality

between Hermite polynomials. For instance, the zeroth moment of h17 only depends on a0

and the second moment of h17 only depends on a0 and a2. As a result, we use the first 2k-th

moments to determine a2n with n ≤ k. Using 〈ω0 ωk1 g17〉 = 〈ωk1 h17〉 we obtain a0 and a2 [92]:

a0 =
〈ω0

1 h17〉√
2π|σ|

, a2 =
〈ω2

1 h17〉 − σ2〈ω0
1 h17〉

4
√

2π|σ|3
. (5.22)

Since the h17 is a soft function, it can be further constrained by using |h17(ω1, µ)| ≤ 1 GeV.

as in [78], that it should not have any significant structures, such as peaks or zeros, outside

the range |ω1| ≤ 1 GeV. This allows us to restrict the range of σ. For example, assuming

a model of a sum of two Hermite polynomials, for given values of 〈ω0
1 h17〉 and 〈ω2

1 h17〉, the

requirement on significant structures only for |ω1| ≤ 1 GeV gives an upper bound on σ and the

condition |h17(ω1, µ)| ≤ 1 GeV gives a lower bound on σ. For example, assuming the central
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values for 〈ω0
1 h17〉 = 0.237 GeV2 and 〈ω2

1 h17〉 = 0.15 GeV4 gives 0.27 GeV < σ < 0.62 GeV.

For other values of 〈ω0
1 h17〉 and 〈ω2

1 h17〉 within their one standard deviation range, the range

of σ can be larger, but we restrict σ to be less than 1 GeV. As we will see below, this does

not affect our estimates in practice since the extremal values we obtain are for σ < 1 GeV

anyway [92].

In the following, we consider models up to and including four Hermite polynomials. The

models with one and two hermite polynomials are defined using known moments. However,

models with three and four Hermite polynomials are defined with unknown moments.

5.3.1 One Hermite polynomial model

The σ is not defined by the moments of h17. As a result, we use both zero and second

moments to fix the value of σ in one Hermite polynomial model. Following from this, we

define the one Hermite polynomial model

hmodel-1
17 (ω1) =

〈ω0
1 h17〉√
2π|σ|

e−
ω21
2σ2 . (5.23)

The second moment of hmodel-1
17 implies σ =

√
〈ω2

1 h17〉/〈ω0
1 h17〉. This is also the condition

for a2 = 0 in (5.22) [92].

When we fix the value of the second moment to 〈ω2
1 h17〉 = 0.27 GeV4, the σ exceeds

1 GeV for almost all the values of 〈ω0
1 h17〉 within its one standard deviation range. Based

on the above constrains we reject such models. Even if we include these models we obtain

Λ17, Λ̃
u
17, and Λ̃c

17 that are included in the ranges for the two Hermite polynomials model

below. The one Hermite polynomial model provides Λ17 ∈ [−8,−1] MeV, Λ̃c
17 ∈ [0, 7.5]

MeV, and Λ̃u
17 ∈ [45, 220] MeV [92].

5.3.2 Sum of two Hermite polynomial model

Including the zeroth and second moments of h17 we construct the two Hermite polynomial

model. The corresponding coefficients a0 and a2 for a given σ are provided in equation (5.22).

Numerically scanning over the one standard deviation range of the moments and the

possible values of σ in increments of δσ = 0.01 GeV, and based on the restrictions above
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on h17 gives Λ17 ∈ [−21,−1] MeV. The lower value is obtained for 〈ω0
1 h17〉 = 0.197 GeV2,

〈ω2
1 h17〉 = 0.27 GeV4, σ = 0.44 GeV, mc = 1.17 GeV, and mb = 4.61 GeV. The upper value

is obtained for 〈ω0
1 h17〉 = 0.277 GeV2, 〈ω2

1 h17〉 = 0.03 GeV4, σ = 0.14 GeV, mc = 1.23 GeV,

and mb = 4.55 GeV. Thus the extremal values are obtained for extremal values of the two

moments, anti-correlated, and the extremal values of mc and mb, anti-correlated [92].

The dependence on mb and mc can be illustrated as follows: consider the set 〈ω0
1 h17〉 =

0.197 GeV2, 〈ω2
1 h17〉 = 0.27 GeV4, σ = 0.44 GeV that leads to Λ17 = −21 MeV. Changing

mb = 4.61 to mb = 4.55 GeV while keeping mc = 1.17 GeV changes Λ17 by +1 MeV. Thus

the dependance on the value of mb is rather mild. Changing mc = 1.17 GeV to mc = 1.23

GeV while keeping mb = 4.61 GeV changes Λ17 by +6 MeV. Thus the dependance on the

value of mc is more pronounced [92].

Similarly, we find the values of Λ̃c
17. We have Λ̃c

17 ∈ [0, 10] MeV. The lower value is

obtained for 〈ω0
1 h17〉 = 0.277 GeV2, 〈ω2

1 h17〉 = 0.03 GeV4, σ = 0.14 GeV, mc = 1.13 GeV,

and mb = 4.55 GeV. The upper value is obtained for 〈ω0
1 h17〉 = 0.197 GeV2, 〈ω2

1 h17〉 =

0.27 GeV4, σ = 0.58 GeV, mc = 1.07 GeV, and mb = 4.61 GeV. Again the extremal values

are obtained for extremal values of the two moments, anti-correlated, and the extremal values

of mc and mb, anti-correlated [92].

Finally, we consider the Λ̃u
17. Using the parameterization above we have the expression

Λ̃u
17 =

2

3
h17(0) =

3σ2〈ω0
1 h17〉 − 〈ω2

1 h17〉
3
√

2π|σ|3
. (5.24)

Since both moments are positive within their one standard deviation range, we can easily

make h17(0) negative by choosing a small value of σ. Thus the smallest value of h17(0)

based on |h17(ω1, µ)| ≤ 1 GeV is −1 GeV. For example, for the central values of 〈ω0
1 h17〉

and 〈ω2
1 h17〉, the value of σ = 0.27 GeV gives h17(0) = −1 GeV. To make h17(0) reach

its highest possible value, we can choose the smallest value of 〈ω2
1 h17〉, 0.03 GeV4 and the

largest value of 〈ω0
1 h17〉, 0.277 GeV2. The extremal value of h17(0) = 0.33 GeV is obtained
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for σ =
√
〈ω2

1 h17〉/〈ω0
1 h17〉 = 0.33 GeV. Based on this we find that Λ̃u

17 ∈ [−660, 220]

MeV [92].

5.3.3 Sum of three Hermite polynomial model

The sum of three Hermite polynomial model is obtained by using the fourth moment of

h17. For a given value of σ we find the coefficient a6 as [92]

a4 =
〈ω4

1 h17〉 − 6σ2〈ω2
1 h17〉+ 3σ4〈ω0

1 h17〉
96
√

2π|σ|5
. (5.25)

The fourth moment is currently unknown since it relates to dimension 9 HQET matrix

elements. The impact of this moment can be assessed, however, by considering the conserva-

tive bound 〈ω4
1 h17〉 ∈ [−0.3, 0.3] GeV6. Note that this range covers all the numerical values

obtained in equation (5.10). The bounds on Λ17, Λ̃c
17 and Λ̃u

17 were obtained by restrictions

of the values, zeros, and extremal points of h17 to be below 1 GeV [92].

Numerically scanning over the one standard deviation range of the known zero and second

moments, the range [−0.3, 0.3] GeV6 for the unknown fourth moment in increments of 0.05

GeV and the possible values of σ based on the restrictions above gives Λ17 ∈ [−24, 3] MeV.

The lower value is obtained for 〈ω0
1 h17〉 = 0.277 GeV2, 〈ω2

1 h17〉 = 0.27 GeV4, 〈ω4
1 h17〉 =

0.3 GeV6, σ = 0.32 GeV, mc = 1.17 GeV, and mb = 4.61 GeV. The upper value is obtained

for 〈ω0
1 h17〉 = 0.237 GeV2, 〈ω2

1 h17〉 = 0.03 GeV4, 〈ω4
1 h17〉 = −0.1 GeV6, σ = 0.34 GeV,

mc = 1.17 GeV, and mb = 4.61 GeV. The obtained range is only slightly different from

the two Hermite polynomial model and reflects our generous range for the unknown fourth

moment.

Similarly we find the range for Λ̃c
17. The positive values are included in the range obtained

for a sum of two Hermite polynomials. We also get negative values in the range [−5.6, 0]

MeV. The smallest value is obtained for 〈ω0
1 h17〉 = 0.277 GeV2, 〈ω2

1 h17〉 = 0.03 GeV4,

〈ω4
1 h17〉 = −0.11 GeV6, σ = 0.34 GeV, mc = 1.07 GeV, and mb = 4.61 GeV.

Unlike the two Hermite polynomial model we can make h17(0) reach a value of 1 GeV. For

example, taking the central values of the zeroth and second moment 〈ω0
1 h17〉 = 0.237 GeV2,
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〈ω2
1 h17〉 = 0.15 GeV4 we find that for 〈ω4

1 h17〉 = 0.1 GeV6 and σ = 0.25 GeV h17(0) = 1

GeV. This result is not surprising. The moments are global properties of the function and

it is hard to restrict using them values of the function at a single point. We conclude that

for this model Λ̃u
17 can be as large as 660 MeV, which is the largest value possible under the

condition |h17(ω1, µ)| ≤ 1 GeV [92].

5.3.4 Sum of four Hermite polynomials model

The four Hermite polynomial model is constructed by considering the conservative es-

timate of [−0.3, 0.3] GeV8 for the sixth moment 〈ω6
1 h17〉. This moment is related to the

coefficient of the sixth Hermite polynomial (H6).

Scanning over the values of the fourth and sixth moment we find that the smallest

value of Λ17 is −22 MeV, i.e. in the range we obtained for three Hermite polynomials.

The highest value we obtain is 5 MeV for 〈ω0
1 h17〉 = 0.277 GeV2, 〈ω2

1 h17〉 = 0.03 GeV4,

〈ω4
1 h17〉 = −0.1 GeV6, 〈ω6

1 h17〉 = −0.2 GeV8, σ = 0.29 GeV, mc = 1.17 GeV, and mb = 4.61

GeV. This should be compared to the maximum value of −1 MeV and 3 MeV for the two

and three Hermite polynomial models, respectively.

For Λ̃c
17 we find positive values that are already included in the ranges of the two and three

Hermite polynomial models above. The smallest negative value we find for Λ̃c
17 is −7 MeV for

〈ω0
1 h17〉 = 0.277 GeV2, 〈ω2

1 h17〉 = 0.03 GeV4, 〈ω4
1 h17〉 = −0.1 GeV6, 〈ω6

1 h17〉 = −0.2 GeV8,

σ = 0.29 GeV, mc = 1.07 GeV, and mb = 4.61 GeV.

Since Λ̃u
17 obtains its smallest and largest possible values for the two and three Hermite

polynomial models, there is no need to check the effect of the four Hermite polynomials

model [92].

5.3.5 Sum of five and six Hermite polynomials model

Similarly, we can continue with five and six Hermite polynomial models. For this we

assume k-th moment is in the range [−0.3, 0.3] GeV k+2. Scanning over the ranges in incre-

ments of 0.1 GeV k+2 we find that there are no solutions that satisfy our requirements on

h17(0). One reason is the fast growth of the value of Hn(0). Thus the coefficient of Hn(0)
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needs to be smaller to maintain |h17(0)| ≤ 1 GeV.

5.3.5.1 Summary

Using a two Hermite polynomial model we find Λ17 ∈ [−21,−1] MeV, Λ̃c
17 ∈ [0, 10] MeV, and

Λ̃u
17 ∈ [−660, 220] MeV. Using a three Hermite polynomial model we find Λ17 ∈ [−24, 3] MeV,

where 〈ω4
1 h17〉 is assumed to be in the range [−0.3, 0.3] GeV6. The range for Λ̃c

17 is found

as Λ̃c
17 ∈ [−5.6, 0] MeV. Also, the larges value of Λ̃u

17 is 660 MeV, which is based on our

assumptions for h17. Using the four Hermite polynomial model with similar assumptions on

the fourth and sixth moments changes the highest value of Λ17 to 5 MeV and the lowest

value of Λ̃c
17 to −7 MeV.

Altogether, we find Λ17 ∈ [−24, 5] MeV, Λ̃c
17 ∈ [−7, 10] MeV, and Λ̃u

17 ∈ [−660, 660] MeV

after rounding to the closes integer.

5.3.6 Phenomenological estimates

The 2010 phenomenological estimates of FE|17 were given in section 3.1.5. Based on the

new estimates of Λ17, Λ̃
u
17 and Λ̃c

17 we update the results found in [78] and [95].

The Qq
1 − Q7γ contribution to the total uncertainty was evaluated by using C1(µ) =

1.257, C7(µ) = −0.407 (calculated at µ = 1.5 GeV) and mb = 4.58 GeV. This gives [92,112]:

FE|17 ∈ [−0.3,+1.6]% (5.26)

This should be compared to the range givn in equation (3.48) [78]. The total uncertainty

of the rate can be obtained by using FE|88 ∈ [−0.3,+1.9]% [78] along with either FE|VIA
78 ∈

[−2.8,−0.3]% or the new experimental value from PDG, FE|exp
78 ∈ [−1.4,+2]%, which was

obtained in section 3.1.5.3. Scanning over various contributions give [92,112]

−3.4% < FE(∆) < +3.2% ( using VIA) (5.27)

This new range should be compared with the 2010 range given in equation (3.50), and it
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implies a reduction to the total error by a third. In contrast, by using the experimental

estimate the new range becomes

−2.0% < FE(∆) < +5.5% using exp. (5.28)

Compared to the 2010 range given in equation (3.51), the new estimate reduces the total

error by a half [92,112].

Plugging in our new estimates for Λ̃u
17 and Λ̃c

17 found in the section 3.2.1 to the following

expression

ASM
Xsγ =

(
1.15× Λ̃u

17 − Λ̃c
17

300MeV
+ 0.71

)
% (5.29)

gives us −1.9% < ASM
Xsγ

< 3.3%. This should be compared to the 2010 range −0.6% <

ASM
Xsγ

< 2.8% in [95]
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CHAPTER 6 NEW RESULTS : SEMILEPTONIC DECAYS OF HEAVY

MESONS WITH ARTIFICIAL NEURAL NETWORKS

The study of semileptonic decays is an important new physics probe. For example, the

recent analysis of semileptonic B decays provides an anomaly in measurement related by

lepton universality requirements. The advent of higher precision data provides new op-

portunities to explore whether similar anomalies exist in semileptonic decays of charmed

particles [113–116].

Accurate theoretical description on charmed semileptonic decays provides useful infor-

mation to extract the CKM matrix elements. Specifically, the decays of charmed D0, D+,

or Ds mesons provide one of the simplest way to determine the magnitudes of quark mixing

parameters [117]. To extract these CKM matrix elements we use the knowledge of matrix

elements of quark currents that describe strong interaction effects. Following from this,

we find accurate description of semileptonic transitions, which is also needed for improve-

ment of our understanding of quark hadronization mechanisms in QCD [117]. The exclusive

semileptonnic transition between two meson states makes it a suitable system to theoreti-

cally analyze matrix elements of flavor changing currents. These flavor changing currents

are parameterized by momentum dependent form factors. These form factors describes the

hadronic part of the decay amplitude given by [117]

〈K(π)(pK(π))|q̄γµc|D(pD)〉 = F+(q2)

(
Pµ −

m2
D −m2

K(π)

q2
qµ

)
+F0(q2)

m2
D −m2

K(π)

q2
qµ , (6.1)

where P = pD + pK(π) and q = pD − pK(π). The differential decay rates (dΓ/dq2) provide

the means to study these form factors. By neglecting the final state fermion mass we write

the differential decay rate for the semileptonic decay D → K(π)`ν` as [117]:

dΓ(D → K(π)`ν`)

dq2
=
G2
F |Vcq|

2

24π3

∣∣pK(π)

∣∣3 ∣∣F+(q2)
∣∣2 , (6.2)
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where
∣∣pK(π)

∣∣ is the magnitude of the K(π) 3-momentum vector in the D-meson rest

frame. Equation (6.2) implies that only the F+(q2) contributes for the analysis.

Accurate calculations of the non-perturbative form factors F+/0(q2) in the whole momen-

tum range are very challenging [117]. Currently, we do not have a complete description of

these form factors. Only Lattice QCD (LQCD) [118] and QCD sum rules (QCDSR) [119]

provide a model independent description in a limited q2 range. However, these calculations

are still improving.

We use rather general arguments based on analyticity of F+(q2) to put constraints on

shape of the form factors. The z expansion is one of the popular approaches that uses the

analyticity requirement to derive constraints on form factors. Here we series expand the

form factor at some point t = q2. This series can be improved by employing a conformal

transformation to the parameter z

z(q2) =

√
t+ − t0 −

√
t+ − q2

√
t+ − t0 +

√
t+ − q2

, (6.3)

where the transformation z(q2) maps the interval −∞ < q2 < t+ onto the line segment

−1 < z < 1. t0 is a free parameter that corresponds to the values of q2 that maps onto

z = 0, and t± = (mD ±mπ)2 [117]. Then the form factor is expanded as

F+(q2) =
1

Φ(q2, t0)

∞∑
k=0

ak(t0)zk(q2, t0), (6.4)

where Φ(q2, t0) is an arbitrary function that is analytic anywhere but the unitarity cut

[117,120,121]. If there are poles present in between q2 = 0 and the beginning of the unitarity

cut, then the function Φ(q2, t0) can be written as Φ(q2, t0) = P (q2)φ(q2, t0), where P (q2) =

z(q2,m2
V ). For example, in B → π transitions such a pole present at mV = mB∗ [122, 123].

For the B → π transitions the expansion in equation (6.4) is converging rapidly, so only a

few terms in the expansion are really needed. Thus the results from LQCD and QCDSR can

be used to constrain the coefficients ak to provide a model-independent parameterization of
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the form factor [117].

Since the form factors cannot be obtained from the first principles, phenomenological

parameterizations are used to describe them. The “simple pole” model is the common

parameterization, where “pole” refers to the lowest mass vector resonance formed in the

t-channel with quantum numbers of the quark current [117]. For instance, the D? vector

state with quantum numbers 1− is the dominant pole in the D → πeν̄e decay. The simple

pole model is given as follows [117]:

F pole
+ (q2) =

F+(0)

1− q̂2
, (6.5)

where F+(0) is the value of the form factor at zero momentum recoil that has to be

fixed either from the lattice QCD or from other arguments, and q̂2 = q2/m2
D∗ . The mD∗ is

often taken as a fit parameter. However, physical masses of the states D∗(2010) (for D → π

transition) or D∗s(2112) (for D → K transition) could be used as well. Using more effective

poles we construct more complicated models [117]

F+(q2) =
F+(0)

(1− α)

1

1− q2/m2
V

+
N∑
k=1

ρk

1− 1
γk

q2

m2
V

, (6.6)

where α provides the strength of the dominant pole, ρk is the strength of the kth term

in the expansion, and γk = m2
Vk
/m2

V , with mVk are masses of the higher mass states with

vector quantum numbers. We can improve the accuracy of a given model by considering

more effective poles. For example, a popular model that is due to Becirevic and Kaidalov

(BK) [124] is given as

FBK
+ (q2) =

F+(0)

(1− q̂2)(1− aBK q̂2)
, (6.7)

where aBK is a fit parameter. Note that this model is obtained for theN = 1 truncation of the

expansion in equation (6.6). As shown in the simple pole model, a good fit to experimental

distribution is obtained by considering mV as a fit parameter. Further extension to the BK
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model is obtained by Ball and Zwicky [125],

FBZ
+ (q2) =

F+(0)

1− q̂2

(
1 +

rBZ q̂
2

1− aBZ q̂2

)
, (6.8)

where rBZ and aBZ are the shape parameters.

In this work we are interested in learning whether choosing a specific functional form

for the form factor induces a bias in the interpretation of an experimental analysis. This is

analyzed in the machine learning (ML) approach. In particular, we are using the artificial

neural networks (ANN) for this analysis. As shown in [126, 127], ANN can be used as

an unbiased estimator of data. This fact has been used by the NNPDF collaboration to

parameterize nucleon’s parton distribution functions (PDF) [128–130], and in form factor

analysis of nucleon data [131,132].

In the following we build a statistical interpolating model based on ANNs, which con-

tains information on experimental uncertainties and correlations. Nevertheless, ANN does

not introduce theoretical bias. Following from [128, 129], we employ an approach based on

multilayer feed-forward neural networks trained using the back-propagation learning algo-

rithm [117].

6.1 Artificial Neural Networks

6.1.1 Basic facts

Recently, artificial neural networks are gaining traction in both academia and industry.

As a result, ANN are widely used in experimental particle physics analysis. Specifically,

the ANNs are extensively used in the jet finding algorithms [133]. A neural network can

be thought of as a nonlinear function that connects the input and output data. In [117],

we explored another feature of ANNs, which is their ability to provide unbiased universal

approximants to incomplete data [126,127]
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Figure 6.1: Structure of an artificial neural network with two hidden layers [117].

ANN mimic the structure of human neurons and consists of a set of interconnected units (see

Figure. 6.1) called neurons or nodes [117]. The activation state of a neuron is determined by

the activation function (g(x)), which is determined by the activation status of the i neurons

connected to it. Each pair of these neurons is connected by a synapsis, which is characterized

by a weight ωi. Also, we add a threshold θi to control the activation state (“fire”) of neurons.

In ANNs we categorize groups of neurons into layers. The first layer is called as input layer,

which is associated with the input information. In the following work we used the value of q2

for each bin in q2 distribution of the CKM matrix element times the semileptonic form factor

(VcdF+(q2)) [117]. Furthermore, We used two nodes in the input layer, which improved the

stability and the efficiency of the ANN. In section 6.2.2, we provide further information on

the input nodes. The final layer of the ANN is the output layer. The output layer provides

fit for the VcdF+(q2) data along with its uncertainty. Conventionally, the layers between

input and output layers are known as hidden layers. Our ANN employs two hidden layers.

Each of these hidden layers contain hundred nodes as well.
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6.1.2 Forward propagation

In the ANN training process we incrementally update the weights and thresholds so that

they obtain optimal set of ωi and θi. This is achieved by minimizing the error function,

E[ω, θ] ≡ 1

2

np∑
A=1

(o(q2
A)− yA)2 , (6.9)

where np is the number of pseudo-data used to train an ANN, o(q2
A) is the output, which

is given by the ANN’s fit for a given input data q2
A. Here the target data point yA, is

obtained from the magnitude of the CKM matrix element times the semileptonic form factor,

|VcdF+(q2)|. Note that the differential distribution of Eq. (6.2) is proportional to |VcdF+(q2)|2.

The o(q2
A) is obtained using forward propagation. In order to achieve this we pass the input

through a network of hidden nodes. The output from the first hidden layer with n1 number

of nodes is [117]

ξ[1] = g

(
n1∑
i=1

ω
[1]
i q

2 − θ[1]

)
. (6.10)

In this equation the response of each neuron is given by [117]

g(x) ≡ 1

1 + e−x
, (6.11)

which is the sigmoid activation function, and the summation over the q2 data points is

implied. The ξ[1] is then used as an input for the second hidden layer with n2 number of

hidden nodes, and so on. The process is continued until the output layer of ANN is reached.

In general, we can construct the output from `th hidden layer with n` number of nodes

as [117]

ξ[`] = g

(
n∑̀
i=1

ω
[`]
i ξ

[`−1] − θ[`]

)
. (6.12)
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where ξ[`−1] is the output from the (`− 1)th layer. The fit of the L layer ANN o(q2) is then

defined as

o(q2) = ξ[L]. (6.13)

As shown above, the error function needed to be minimized. The popular choice of mini-

mization is the gradient descent (GC). Instead, we decided to use the non-linear conjugate

gradient (NLCG) method [134,135] to minimize equation (6.9). In each iteration the ωi and

the θi update as [117]

δω[`] = −η ∂E
∂ω[`]

,

(6.14)

δθ[`] = −η ∂E
∂θ

[`]
i

,

where η is the learning rate at a given iteration. The NLCG method employed here does

not require a pre-defined learning rate. The learning rate is initially determined by using

line search algorithms [134], and then iteratively updated based on the gradients that are in

a conjugate direction to original gradient used in the line search algorithm. As it turns out,

the NLCG method converges much faster than steepest descent method for the fits employed

in this in this work. For more details on the NLCG method, see Ref. [135].

6.1.3 Back propagation

The gradients of the error function are obtained by using the method of back propagation

[136]. Back propagation can be thought of as a consecutive application of the chain rule. By

applying the chain rule to the Lth layer we find [117]

∆[L] = g′(h[L])[o(q2)− y] (6.15)
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where g′(h[L]) is the derivative of the activation function with respect to h[L] and

h[L] =

nL−1∑
i=1

ω[L]ξ
[L−1]
i − θ[L] (6.16)

The derivatives with respect to ωi and θi for layer L are given by [117]

∂E

∂ω
[L]
i

= ∆[L]ξ
[L−1]
i ; i = 1, . . . , nL−1 ,

∂E

∂θ
[L]
i

= −∆[L]. (6.17)

The output of equation (6.15) is used to obtain the derivatives of the (L−1)th layer, ∆
[L−1]
j ,

∆
[L−1]
j = g′l(h[L−1])∆

[L]
i ω[L] . (6.18)

The procedure is repeated for the hidden layers to find derivatives of error function with

respect to ωi and θi in each layer [117],

∂E

∂ω
[`]
ij

= ∆
[`]
i ξ

[`−1]
j ; i = 1, . . . , n`, j = 1, . . . , n`−1 ,

∂E

∂θ
[`]
i

= −∆
[`]
i , i = 1, . . . , n`, (6.19)

Using these we can obtain the numerical gradient of the error function and find the corrections

to the weights and thresholds.

6.2 Neural network training

6.2.1 Preparation of the data set

The neural network training is performed on the real and artificial (pseudo) data. The

pseudo data is generated based on the information from experimental data. Here we used

the uncorrelated data, correlated data, normalized data, or some combination of these data

types. These pseudo data was generated by following the method provided in [130]. The ex-
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perimental data set that is required to generate the pseudo data were provided in [137]. This

experimental data set contains both uncorrelated and correlated statistical and systematic

uncertainties. Also, the data set is provided with correlation matrices. The artificial data is

generated as [117]

∣∣VcdF+(q2)
∣∣(art),(k)

i
=
∣∣VcdF+(q2)

∣∣(exp)

i
+ r

(k)
t,i σt,i +

Nsys∑
j=1

r
(k)
sys,jσsys,ji +

Nstat∑
m=1

r
(k)
stat,mσstat,mi (6.20)

where i = 1, ..., Ndata is the number of experimental data entries, which is equal to the number

of q2 bins. The term |VcdF+(q2)|(exp)
i is the central value of the experimental data point for

a given q2. The last three terms in the right hand side of the equation (6.20) provide the

variation in the pseudo data sample. These terms represent total uncorrelated, correlated

systematic, and correlated statistical uncertainties respectively. Following from the [130],

we use all these information to generate the pseudo data samples. Here each “uncertainty

term” is multiplied by a Gaussian random number r
(k)
t,i , r

(k)
sys,j, or r

(k)
stat,m [117]. These random

numbers have the mean of zero, and their standard deviation is equal to the bin uncertainty

provided in [137]. The total uncorrelated uncertainty, σt,i, is defined as

σt,i =

Nu,sys∑
j=1

σ̃sys,ji +

Nu,sys∑
m=1

σ̃stat,mi (6.21)

where the σ̃sys,ji is uncorrelated systematic uncertainty and σ̃stat,mi statistical uncertainty.

In [137] we find the correlation matrix elements, corr(j, i) as

σj,i =
√
σ̃iσ̃j corr(j, i), (6.22)

where σ̃i is the uncorrelated uncertainty in the i-th bin of data. The q2 values were randomly

generated with a flat prior across the entire q2 bin. Thus, every value of dΓ(art)/dq2 has a

different q2 input.
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6.2.2 Feature engineering

We divided the generated pseudo data into 100 batches (one batch per network). Each

batch has an average q2 and a standard deviation relating to the q2 values, which are used

to scale the each value of q2 which we have generated. Using the scaled q2 data as a

secondary input is recommended to improve the stability and the performance of ANNs [138].

In particular, data standardization is a popular data scaling choice, and it is defined as

q̃2
iρ =

(
q2
iρ − q̄2

ρ

)
/σρ, where ρ is the batch number and i is a single q2 value in the batch. With

this transformed data, each of our ANNs has the structure (2, 100, 100, 1), as the two hidden

layers, each with 100 nodes, provide the most efficient structure without compromising the

performance or accuracy. With a higher number of nodes, the ANN’s fit would be more

accurate, but the training speed would also be reduced. This data transformation, along

with the conjugate gradient method, provides the minimum of the error function at 100

iterations. In contrast, steepest descent method with a constant learning rate provides a

comparable result only at 20000 iterations [117].

6.3 Form factor parameterization with neural networks

The 2× 106 data points were generated for each of the 14 q2 bins. As shown above, this

data set was divided to hundred subsets, and each of these subsets contains with 280,000

unique pseudo-data points. After training all networks individually, we found the average

ANN curve, with uncertainty, at every calculated q2 value. The differential decay rate,

dΓ/dq2, and the |VcdF+(q2)| curves are shown in Fig. 6.2 and Figure 6.3 respectively. Further

results of the ANN training and relevant graphs are available at the URL https://s.wayne.

edu/hepmachinelearning/.

https://s.wayne.edu/hepmachinelearning/
https://s.wayne.edu/hepmachinelearning/
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Figure 6.2: The averaged ANN result for the differential decay rate plotted against the ex-
perimental measurement [117]. The purple data points are the experimental data from [137].
The black and cyan curves are the average value and one standard deviation, respectively,
from the output of our averaged ANN .

In figure 6.3 ANN fit is compared with some common form factor models: simple pole,

the BK model (or modified pole), and the BZ model [124,125] .
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Figure 6.3: ANN fits for |VcdF+(q2)| plotted against the three models described in the
text [117]. The black and cyan curves are the average value and one standard deviation,
respectively, from the output of our neural network. The dotted red curve is the simple
pole model. The dot-dashed green curve is the modified pole model. The dashed magenta
curve is the BZ model. The purple data points are calculated from the experimental data in
Ref [137].

The |VcdF+(0)| obtained from the model fits are roughly consistent with the ANN fit of

the semileptonic decay data.
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CHAPTER 7 CONCLUSION AND FUTURE WORK

7.1 Conclusion

Flavor physics is the study of different species of elementary particles [139], and it provides

tools to expand the boundaries of SM. For example, the radiative FCNC decay B̄ → Xsγ is

considered as one of the standard candles of BSM [30]. As another example, semileptonic

decays of heavy mesons provide the means to extract the CKM matrix elements. Due to the

effects of QCD, these decays are plagued with nonperturbative uncertainties. Therefore, it is

important to control these uncertainties to the understand new physics in above processes.

In this work we discussed the controlling the nonperturbative uncertainties in B̄ → Xsγ

and semileptonic D → πlv. In chapter 4, we provided the construction of a new basis for the

tensor decomposition of HQET and NRQCD matrix elements of any dimension. In chapter

5, we used the new basis for HQET/NRQCD to obtain the higher dimensional moments of

subleading shape function. This function parameterizes the nonperturbative effects. We used

these moments to model the subleading shape function and reevaluate the nonperturbative

uncertainties. Finally, in chapter 6, we used artificial neural networks to parameterize the

shape of the form factor F+(q2), which describes the nonperturbative effects of D → πlv.

7.1.1 On HQET and NRQCD operators of dimension eight and above

In chapter 4, we provided the method to construct operators for the HQET and NRQCD

Lagrangians at any given dimension. Although these theories employ different power count-

ing schemes, the Lagrangians are closely related [55]. We analyzed operators that contain

two HQET fields or two NRQCD (NRQED) fields with an arbitrary number of covariant

derivatives. These matrix elements can be written as nonperturbative HQET parameters

multiplied by tensors constructed from the heavy quark velocity, the metric tensor, and the

Levi-Civita tensor. We also use constraints coming from the time-reversal (T) and parity

(P) symmetries, hermitian conjugation, and the fact that we work in 3 + 1 dimension. At

a given dimension, the number of allowed HQET operators are equivalent to the number of

HQET parameters up to a possible color factor.
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The new basis of HQET matrix elements allows us to easily determine the number of

allowed HQET/NRQCD operators at a given dimension. This decomposition of matrix

elements allows us to check whether given operators are linearly independent. The method

also allows relating operators to one another easily. Following this, we constructed the HQET

and NRQCD Lagrangian at mass dimension 8 for the first time.

As shown in [101], operators that contain symmetric product of two color matrices,

such as ψ†Ei
aT

aEi
bT

bψ, can be decomposed in terms of a color octet and a color singlet

operators, ψ†Ei
aE

i
b d

abcT cψ and ψ†Ei
aE

i
bδ
abψ. Since they only differ in their color structure,

both will give the same linear combination of parameters. Alternatively we can use the

basis of ψ†Ei
aE

i
b

{
T a, T b

}
ψ and ψ†Ei

aE
i
bδ
abψ. The operator ψ†Ei

aE
i
b

{
T a, T b

}
ψ is generated

by commutator and anti-commutators of covariant derivatives, and it is the only of the two

that appears when calculating observables at tree level. The operator ψ†Ei
aE

i
bδ
abψ will be

generated when considering radiative corrections [55]. For applications to inclusive B decays,

this operator arises only at order αs/m
4
b , beyond the current level of precision [56]. Using

the method presented above allows determining how many linearly independent operators

there are for possible different color structures.

In section 4.4, we relate the HQET parameters of operators of dimension four, five,

six, seven, and eight known from the literature to our basis. NRQCD operators up to

dimension seven and NRQED operators up to dimension eight were previously known in the

literature. We related these operators to the corresponding HQET matrix elements. The

relation between the HQET/NRQCD operators and the matrix elements allows us to write

the operators in terms of nonperturbative HQET parameters. [56].

In section 4.6, we analyzed dimension nine spin-independent HQET parameters. Here we

found 24 possible parameters (not including multiple color structures). Most importantly, we

constructed the dimension eight NRQCD operators that do not appear in the 1/M4 NRQED

Lagrangian. These allow presenting for the full 1/M4 bilinear NRQCD Lagrangian.
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7.1.2 Reevaluating the uncertainties in B̄ → Xsγ

The section 5.1 provides the moments of subleading shape function using data given

in [64] and the basis developed in chapter 4 [56]. This subleading shape function relates

to the soft function h17, which parameterize the nonperturbative uncertainty. The function

h17 defined in equation (3.38), and it has the following properties: it is a real and even

function over gluon momentum ω1, it’s odd moments over ω1 vanish and it has dimensions

of mass. Based on these properties we developed a new model for soft function h17 based

on a combination of Hermite polynomials multiplied Gaussian. The explicit form of the new

model is given in section 5.3.

The h17 is is a soft function, so one expects it not to have significant structures beyond

ω1 ≤ 1 GeV. This provides other constraints such as |h17 (ω1)| ≤ 1 GeV, and it limits the

function from having structures beyond |ω1| ≤ 1 GeV. Scanning through different values of

moments, we found a new estimate for Qq
1−Q7γ. Our estimate reduced the 2010 estimate [78]

by a third. Also, we combined the new estimate for Q7γ−Q8g with our new result for Qq
1−Q7γ

to obtain a new range for the total rate. Following from this we found that the uncertainty

of the total rate is reduced by half compared to the 2010 values [78].

The SM prediction for CP asymmetry is obtained by nonperturbative parameters Λ̃u
17 and

Λ̃c
17. These parameters are also related to h17. We reevaluated their ranges using our analysis.

From this we found a new estimate for SM CP asymmetry as −1.9% < ASM
Xsγ

< 3.3%, which

is an increased range compared to the 2010 estimate [95]. This is because of the increased

range of the Λ̃u
17.

7.1.3 Semileptonic decays of heavy mesons with artificial neural networks

The CKM matrix element |Vcd| can be extracted most easily from semileptonic D → πlν

decays. This decay is parameterized by the form factor F+(q2), which describes the hadronic

part of the decay amplitude. Experimentally, this form factor is studied by analyzing the

differential decay rate of dΓ/dq2. The lack of precise information about these form factors

from the first principles of QCD is one of the main sources of uncertainties when extracting
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the CKM parameters. In spite of the recent progress from lattice QCD (LQCD), still, there

is no ab-initio approach to describe the shape of the form factors in the whole physical region

of momentum transfer q2.

In view of the lack of first principle calculation for decay rates, phenomenological pa-

rameterizations of form factors are used to model the shape. These models first estimate

the hadronic form factor at one kinematic point and then extrapolate based on the assumed

functional shape of the form factor. What systematic uncertainty does choosing a particular

function brings to such extrapolation? To answer this question, we use machine learning

(ML) framework. In section 6.1, we used artificial neural networks (ANN) as an unbiased

estimator of data.

We used an average of 100 feed-forward ANN with two hidden layers to obtain the

unbiased estimate for |Vcd|F+(q2). Each hidden layer contains 100 nodes [117]. The ANN

performance was improved by using NLCG optimization method. We observed that NLCG

method is 200 times faster compared to the common optimization methods such as gradient

descent. The python code for ANN, results of the ANN training and relevant graphs are

available at https://s.wayne.edu/hepmachinelearning/. The comparison between our

ANN extrapolation of |Vcd|F+(q2) against the existing models is provided in figure 6.3. From

this we observe ANN fit is consistent with all the phenomenological models at low q2 region.

This implies that the ANN successfully extrapolated the |Vcd|F+(q2) data to q2 → 0. Most

importantly, our ANN fit provides model independent parameterization of the F+(q2) shape

for the first time in literature. This was instrumental in developing the unitarity constraints

on the form factor, which allowed for model-independent bounds on Vcd [117].

7.2 Future work

We conclude with a remark on future developments. In section 4.1, we provided a general

method of writing down all the possible HQET operators of any given dimension. It would be

interesting to automatize the procedure using a computer program to construct these higher

dimensional operators and the NRQCD Lagrangian. Also, certain multiple color structures

https://s.wayne.edu/hepmachinelearning/
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were considered separately from the general method. It would be desirable to find a method

that automatically generates these color structures.

We have not considered operators with more than two HQET or NRQCD (NRQED)

fields. The one non-relativistic fermion sector can be combined with an additional non-

relativistic field or an additional relativistic field. Results for each case were presented in

the literature [99, 140–143], but not for an arbitrary operator dimension.

With the new information on the moments, we can better control the hadronic effects.

However, the scale dependence on 1/mb corrections is not fully controlled because, currently,

we treat them at the leading order in αs. Therefore, to improve the Qq
1 −Q7γ contributions

further, we need to take account of the αs corrections.

Our model relies on the numerical estimates of the matrix elements of dimension eight

operators. Still, it could further be improved if we knew the numerical estimates of dimension

nine matrix elements. With the Belle II data, we can hope to have improvements on this.

In section 5.1, we only considered the quantities that are integrated over photon energy.

The above moment information can be used to model Qq
1 −Q7γ contributions for quantities

that are not integrated over photon spectrum.

The large amount of data that will be obtained at the B factory Belle II will be ideal for

deep learning. The extraction of CKM parameters using machine learning can be further

improved with the new knowledge of optimization methods and deep learning. For example,

our work provided in section 6.1 uses the nonlinear conjugate methods (NLCG) to minimize

the error function in the training process. The NLCG is a local optimizer. Whereas stochastic

methods such as simulated annealing could have been more successful in optimizing the error

function, and they are more suitable for deep learning. This is because these stochastic

methods provide global optimization. With a large data set, we expect to develop deep

neural networks utilizing parallel computation and graphical processing units.
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APPENDIX A : RUNNING OF WILSON COEFFICIENTS C1, C7 AND C8G

The expressions for the running of Wilson coefficients C1, C7 and C8g are found in [12,15].

C
(0)
j (µb) =

8∑
i=1

kjiη
ai (j = 1, . . . , 6)

C
(0)eff
7γ (µb) = η

16
23C

(0)
7γ (µW ) +

8

3

(
η

14
23 − η

16
23

)
C

(0)
8G (µW ) + C

(0)
1 (µW )

8∑
i=1

hiη
ai

C
(0)eff
8G (µb) = η

14
23C

(0)
8G (µW ) + C

(0)
1 (µW )

8∑
i=1

hiη
ai

(1)

where

η =
αs (µW )

αs (µb)
(2)

To evaluate the Wilson coefficients at µ = 1.5 GeV we use following boundary conditions

[18,144].

mZ = (91.188± 0.002) GeV

mW = (80.379± 0.001) GeV

αs(MZ) = 0.1181(1)

mpole
t = 172.9± 0.4 GeV

mb = 4.180.03
−0.02 GeV

(3)

Note that the quark masses are given in pole mass scheme. However, pole masses of quarks

can be converted into MS scheme as follows [18]:

mq = mpole
q

(
mpole
q

)(
1−

4αs
(
mpole
q

)
3π

+O
(
α2
s

))
(4)

The top quark mass obtained in equation (4) is scaled down to µ = MW . Therefore, this

gives us mMS
t (µ = MW ) = 175.05 GeV.
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In addition, the C
(0)
7γ , C

(0)
8G and C

(0)
1 are given by:

C
(0)
1 (µW ) = 1

C
(0)
7γ (µW ) =

3x3t−2x2t
4(xt−1)4

lnxt +
−8x3t−5x2t+7xt

24(xt−1)3
≡ −1

2
D′0 (xt)

C
(0)
8G (µW ) =

−3x2t
4(xt−1)4

lnxt +
−x3t+5x2t+2xt

8(xt−1)3
≡ −1

2
E ′0 (xt)

(5)

where xt =
m2
t

M2
W

Also, running of the C1 is given by

C
(0)
1 (µ) =

1

2
η−12/23 +

1

2
η6/23 (6)
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APPENDIX B : USEFUL IDENTITY

The Wilson line

Sn̄(x) = P exp

(
ig

∫ 0

−∞
du n̄ · As(x+ un̄)

)
, (7)

obeys the equation in̄ ·DSn̄(x) = 0, where iDµ = i∂µ + gAµ, see, e.g., [?] for a derivation.

Thus in̄ · ∂Sn̄(x) = −gn̄ · A(x)Sn̄(x). Taking the Hermitian conjugate of this identity gives

in̄ · ∂S†n̄(x) = S†n̄(x)gn̄ · A(x). Consider now in̄ · ∂
(
S†n̄(x)O(x)Sn̄(x)

)
, where O(x) is an

operator. Using the identities above we have

in̄ · ∂
(
S†n̄(x)O(x)Sn̄(x)

)
=

=
(
in̄ · ∂S†n̄(x)

)
O(x)Sn̄(x) + S†n̄(x)

(
in̄ · ∂ O(x)

)
Sn̄(x) + S†n̄(x)O(x)

(
in̄ · ∂Sn̄(x)

)
= S†n̄(x)gn̄ · A(x)O(x)Sn̄(x) + S†n̄(x)

(
in̄ · ∂ O(x)

)
Sn̄(x)− S†n̄(x)O(x)gn̄ · A(x)Sn̄(x) =

= S†n̄(x)[gn̄ · A(x), O(x)]Sn̄(x) + S†n̄(x)
[
in̄ · ∂,O(x)

]
Sn̄(x) = S†n̄(x)

[
in̄ ·D,O(x)

]
Sn̄(x).(8)

In the last line we have used the identity
[
in̄·∂,O(x)

]
f(x) =

(
in̄·∂ O(x)

)
f(x) for an arbitrary

function f(x). Thus we have the identity

in̄ · ∂
(
S†n̄(x)O(x)Sn̄(x)

)
= S†n̄(x)

[
in̄ ·D,O(x)

]
Sn̄(x). (9)
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ABSTRACT

EFFECTIVE FIELD THEORY AND MACHINE LEARNING APPROACHES
TO CONTROLLING NONPERTURBATIVE UNCERTAINTIES IN FLAVOR

PHYSICS

by
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Advisor: Dr. Gil Paz
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Degree: Doctor of Philosophy

The radiative decay B̄ → Xsγ and semileptonic heavy meson decay D → πlν are im-

portant flavor physics probes of new physics. However, these decays are plagued with non-

perturbative uncertainties that are needed to be controlled to obtain a theoretically clean

description. In this dissertation, we provide effective field theory and machine learning ap-

proaches to controlling these uncertainties

In B̄ → Xsγ, the largest uncertainty on the total rate arises from Q1 − Q7γ operator

pair. This contribution is given by a soft function whose moments are related to nonpertur-

bative heavy quark effective theory (HQET) operators’ matrix elements. The extraction of

higher-order moments requires the knowledge of higher dimensional HQET operators. We

present a general method that allows for an easy construction of HQET and non-relativistic

quantum-chromo dynamics (NRQCD) operators containing any number of covariant deriva-

tives. As an application, we list, for the first time, all operators in the dimension eight

NRQCD Lagrangian. Then we use recently extracted HQET matrix elements to reevaluate

the nonperturbative uncertainty of B̄ → Xsγ total decay rate and CP asymmetry.

The decay rate of semileptonic D → πlν is proportional to the hadronic form factors.

Currently, these form factors cannot be determined analytically in the whole range of avail-

able momentum transfer q2, but can be parameterized with a varying degree of model de-

pendency. We propose a machine learning approach with artificial neural networks trained
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from experimental pseudo-data to predict the shape of these form factors with a prescribed

uncertainty. This provides the first model-independent parameterization of D → πlν vector

form factor shape in the literature.
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