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Chapter 1 : Introduction 

Background 

MEMS-based flexible devices have been extensively studied for decades.  From 

various wearable electronics to miniaturized tools for cutting-edge researches, these 

flexible devices have become indispensable components of our daily lives and solved 

many scientific challenges.  Flexible textures and skins, a typical example of flexible 

electronics, have been constructed in different forms for a diversity of applications [1].  

Rakesh et al. integrated silicon flexible skins with canvas fabrics by a sewing machine [2]. 

The reported technology allowed various sensing capabilities to be incorporated into 

flexible fabrics without losing its durability and mechanical strength.  Huang et al. reported 

a yarn-based piezo-resistive sensor by twisting piezo-resistive polyester fibers, and 

successfully demonstrated its feasibility of being used in the respiration monitoring 

system [3].  Based on the technology of 2-dimensional flexible texture and skin,  advanced 

flexible yarns and tubes have also been studied and developed for some pivotal 

applications [4].  Wu et al. reported a flexible and conductive nanofiber-based yarn sensor 

for ammonia (NH3) detecting [5].  The conductive yarn was made by combining core-

sheath polyaniline (PANI) and polyacrylonitrile (PAN) through the electrospinning method.  

Tao et al. and Yalong et al. developed a flexible strain sensor with excellent mechanical 

and electrical properties by using carbon/graphene composites thermoplastic 

polyurethane yarn, which also can be readily incorporated with textiles for various 

applications [6, 7].   

The flexible MEMS technology has contributed significantly to biomedical 

researches such as neural activity exploration and cell culture.  For example, recently 
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flexible neural probes have been replacing traditional rigid silicon-based probes mainly 

due to their less adverse effect on brains and tissues  [8-12].  Benefits of flexible 

biocompatible probes have been demonstrated, and many efforts have been spent not 

only on improving the durability, stability, and feasibility, but also providing superb 

performance and multiple functionalities [13-16].  In the next section,  a series of different 

types of biomedical probes will be reviewed, and the pros and cons of each type will be 

discussed.   

Literature review 

With the rapid advance of microfabrication technology, a large variety of biomedical 

sensors and devices in the form factor of micro probes or needles have been developed 

[17, 18].  The microfabrication technology enables the integration of various sensing 

elements such as pH or oxygen sensors [19], and the adoption of multiple electrode 

arrays (MEAs) for better spatial resolution [20-22].  In addition, recent studies have been 

focusing on integrating multiple functionalities into microfabricated probes such as drug 

delivery and optogenetics to realize simultaneous measurements of multiple chemicals 

and multiplexed interactions between electrodes and tissues [23, 24].  Hence, this section 

will outline the early and recent research on the microfabricated probes and their 

applications.   

The most common type of biomedical probes is neural probe which is widely used 

for neural recording and stimulating such as deep brain stimulation (DBS).  Neural probes 

are designed for invasive analysis due to their better resolution and accuracy compared 

to electroencephalography (EEG) and electrocorticography (ECoG) technologies.  Early 

studies exploited microwire arrays (MWAs) due to the relatively simple assembly and 
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long-term stability for chronical brain signal monitoring [25].  Various commercially 

accessible metals or metal alloys are employed including tungsten, platinum, gold, and 

platinum-iridium alloys [26-29].  Nevertheless, the assembly protocol for such probes is 

based on manually packing up the insulated wires with exposed tips.  Although the MWAs 

have been utilized for decades, they nonetheless present some practical limitations.  

Firstly, to perform the multi-sites measurement, more electrodes need to be integrated.  

Since a wire could only hold one electrode, bundling up wires will result in an escalation 

of probe size that causes tissue damage during implantation. Secondly, most MWAs tend 

to be bent during implantation and splayed inside tissues over time.  Such a tendency 

results in inaccurate recording locations and displacement of tissues.  Lastly, the 

electrodes for MWAs are merely the portion of uninsulated wires, precise control of 

impedance will be problematic.   

Recently, silicon has become the most commonly used material for neural probes 

not only because of its exellent mechanical and electrical properties but also due to its 

well-established micromachining techniques.  Unlike microwire probes, silicon-based 

probes can accommodate multiple electrodes in a single probe shank.  Furthermore, the 

position, pitch, and size of multiple electrodes can be precisely controlled in micron scale 

for better spatial resolution.  Thus, with MEMS techniques, high density and highly 

integrated silicon-based probe arrays become attainable without compromising the small 

size [30].  The impedance is determined by the area of an electrode and the type of 

material that is used.  Since the space for putting highly dense electrode arrays is 

restricted by the size of a probe, it is more essential to adopt appropriate material for low 

impedance.   
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The Michigan probe is one well-known example of silicon-based, and taper-shaped 

probe with multiple metal electrodes with accurate size and positioned in precise pitches.  

A typical Michigan probe has a thickness of 15-50 µm with 30-50 µm wide silicon shank 

[31].  The basic microfabrication flow based on a series of photolithography processes 

has been described in detail previously [32].  To thin down the bulk substrate to the 

required thickness, the boron-doped layer or buried oxide layer is used as a so-called 

etch stop layer [33-35]. The Michigan probe is the beginning of the concept and a 

foundation that provided numerous ideas for other groups (Fig. 1-1 (a)).  NeuroNexus 

commercialized Michigan probes and provides highly customizable probes with various 

choices for electrode materials, the number of electrodes and the size of the probes.  The 

performance has been proved to be reliable in both acute and chronic monitoring [36].  

Fig. 1-1 (b) shows a neural probe from NeuroNexus.  

Recently, Raducanu et al. from KU Leuven reported a high channel count CMOS 

active neural probe with 1344 recording sites and 12 reference sites [37]. As seen in Fig. 

1-1 (c), the recording electrode and reference electrode have a dimension of 20 µm x 20 

µm and 20 µm x 80 µm respectively, and they are densely arrayed on a 100 um wide, 8 

mm long shank.  To amplify the source signal, a specialized circuit was embedded under 

each electrode.  Traditionally, the essential aspect that restricts the number of electrodes 

is that a majority portion of the shank space would be taken by metal traces.  To overcome 

this limit, the time-division multiplexing technique has been adopted in their research to 

realize a highly compact electrode array.   
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Figure 1-1. (a) Single-crystal silicon ribbon cables that introduced in Michigan in 1989 
[32].   (b) A standard multi-shank probe from NeuroNexus by using MEMS technologies 

originally from the University of  Michigan [36] (c) A time-division multiplexed neural 
probe with 1356 recording sites [37] 

 

The primary issue for a silicon-based stiff probe is its mechanical mismatch with 

the soft brain tissue [38].  Recently, there has been an increasing interest in making soft 

probes.  Studies have shown some advantages of flexible probes, including: 1) minimized 

tissue damage [39], 2) conformal contact with tissue, 3) lightweight and 4) low cost [40].  

However, these benefits were accompanied by the intrinsic implantation difficulty due to 

the low Young’s Modulus of soft materials.  For this reason, early flexible probes were 

mainly designed to be used at the surface, or with a penetrating depth of a few millimeters.  

In order to reach deep brain structures, two typical methods are employed for most 

studies.  The first one is achieved by coating a biodegradable layer of material to make 

the probe temporally stiff during implantation.  Such materials that have been reported 
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include polyethylene glycol (PEG), maltose and sucrose gel [41-48].  The other attempt 

is to use a removable shuttle to reinforce the probe during implantation [49-52].    

Traditionally used materials for flexible probes include polyimide, parylene, SU-8 

and PDMS due to their biocompatibility and mechanical match with tissues which is 

essential for chronic implantation with minimal inflammation [39].  Mercanzini et al. 

presented a polyimide-based neural probe for cortical recording [53]. As shown in Fig. 1-

2 (a), two layers of platinum electrodes are used to increase the number of recording sites 

without compromising probe size.  As shown in Fig. 1-2 (b) Kim et al.  reported a flexible 

neural probe based on hybrid silicon-parylene structure [54].  The locally flexible parylene 

portion was designed to reduce the mechanical mismatch between probe and tissues, 

and traditional implantation difficulty for polymer probes was also minimized due to the 

rigid silicon part.  Xie et al. from Harvard University developed a three-dimensional 

macroporous nanoelectronic brain probe (Fig 1-2 (c)) that combines ultra-flexibility and 

subcellular feature sizes to overcome the limit of stability in chronic monitoring for silicon-

based probes [55].  The microfabrication methods of stiff and polymer probes are 

generally similar.  However, thanks to material properties, some creative structures are 

possible for polymer probes.  Wu et al. from the University of Michigan reported a flexible 

fish-bone-shaped neural probe with biodegradable silk coating for implantation [56].  As 

shown in Fig. 1-2 (d), such design is beneficial for the minimum tissue reaction and has 

a large separation between the electrodes and shanks.  The presented silk coating would 

be completely degraded within 30 minutes to 25 hours according to the condition of water 

annealing. 
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Figure 1-2. (a) Polyimide based neural probe for cortical recording [53]   (b) a flexible 
neural probe based on hybrid silicon-parylene  structure [54] (c) A three-dimensional 
macroporous nanoelectronics brain probe [55] (d) a flexible fish-bone-shaped neural 

probe with biodegradable silk coating for implantation [56] 
 

One of the disadvantages of soft probes is that it couldn’t withstand severe tissue 

environments such as spinal cord.  To improve the mechanical property of soft probes, 

Kim et al. from Drexel University developed a braided multi-electrode probe.  As seen in 

Fig. 1-3(a) – (c), the authors used up to 24 ultra-thin polyimide insulated nichrome wires 

interwoven into a tubular structure probe with multiple electrodes.  It showed a 4 to 21 

times improved mechanical compliance compares to a 50 µm nichrome wire [57].  In 



8 

 

addition, Do and Visell developed stretchable, twisted conductive microtubules by twisting 

two highly stretchable elastomer tubules.  Each tubule was simply made by using a roller 

coating process along with a subsequent liquid conductor injection.  Fig. 1-3 (d) and (e) 

show the method of constructing a woven electronics fabric by using twisted microtubules.  

Such a technique can be adopted in various applications such as human motion sensing, 

motion sensing for cable-driven robotic systems and stretchable electronics, etc [58]. 

 

Figure 1-3. (a)-(c) Braided flexible multi-electrode probe [57]. (d) and (e) Different 
numbers of turns per twisted wires and woven electronics sensing fabric using twisted 

conductive microtubules [58]. 
 

For the last two decades, neural probes are becoming very versatile, providing 

functionalities more than just neural recording or stimulating.  More advanced 
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multifunctional miniaturized probes have been developed by either integrating various 

electronic elements into the current structure or modifying the fabrication process. The  

representative applications are optogenetic [23] and drug delivery [24]. 

Optogenetics as a technique of neuromodulation takes advantage of photo-

sensitive proteins expressed on a neuron cell membrane.  Thus the targeted neuron could 

be activated or inhibited optically.  There are two typical light delivery methods: (1) using 

built-in waveguide such as optic fibers with a laser illumination source and (2) integrating 

micro-LEDs directly on probes.  LeChasseur et al. reported dual-core fiber optic-based 

microprobes [59].  As shown in Fig. 1-3 (a), the probe contained a hollow core that was 

filled with an electrolyte solution (1-3 M NaCl) to record electrical activity and an optical 

core which was a waveguide for collecting sufficient light efficiently to the tapered tip.  A 

488-nm laser was used to stimulate ChR2 and eYFP with pulses of light.  Wu et al. 

reported a silicon neural probe by monolithically integrating recording sites and 

microscopic LEDs on the probe for optogenetic applications [60].  As shown in Fig. 1-3 

(b), the µLEDs and recording sites were designed to be similar to pyramidal neuron soma 

and a total number of 12 µLEDs and 32 recording sites were on this four-shank probe.  

60 nW power had been used for inducing spiking and fast population oscillations were 

induced in microwatts range. In addition, Kim et al. reported injectable, cellular-scale 

optoelectronics with applications for wireless optogenetics [61].  As shown in Fig. 1-3 (c), 

the polyimide-based flexible probes provide minimal damage to tissues and can be split 

into five different layers.  Each layer has its own element: the first layer is Pt 

microelectrode; the second layer is silicon µ-IPD for optical measurement; the third layer 
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is µILEDs for optical stimulation; the fourth layer was a serpentine Pt resistor for 

temperature sensing; and the last layer was microfluidic channels for chemical delivery. 

Integrating the drug delivery system to current miniaturized probes can address 

challenges that conventional drug delivery systems are confronting.  A conventional drug 

delivery system such as oral or intravenous administration has limits for some of the 

modern drug candidates because of their large biomolecules with low bioavailability, and 

small therapeutic windows.  Furthermore, some areas in a human body are very 

challenging to reach with conventional intravenous method because of the physical 

barrier that separates some organs from blood [24].  Lee et al. presented a multifunctional 

neural probe by combining a drug delivery system to realize chemical stimulation and 

individual neuron signal recording simultaneously [62].  As shown in Fig. 1-3 (d), a 

chemical outlet with a diameter of 60 µm and eight iridium electrodes with a dimension of 

19 x 19 µm were included in a single probe.  A constant air pressure controlled by an MFC 

(Mass Flow Controller) was used for a constant flow rate.  A similar approach has also 

been reported by Petit-Pierre et al.  As shown in Fig. 1-3 (f), the group reported a droplet-

based microdialysis collection system by integrating a microfluidic channel into a neural 

recording and stimulation probe [63].   Furthermore, Liu et al. developed a silicon-parylene 

hybrid neural probe with microfluidic channel integrated as shown in Fig. 1-3 (e) [64].  The 

antibiotics were delivered through the microfluidic channels to reduce tissue inflammation, 

and such structure induced less tissue reaction comparing to the conventional neural 

probes.  

Taken together, many MEMS-based probe techniques have been used for a variety 

of applications in neuroscience.  Despite researchers have made tremendous efforts on 
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improving the performance of biomedical probes, many challenges have yet to be 

conquered due to the complexity of the neuron network of the human body.  Thus, it is 

important to prioritize the desired features based on the specific applications when 

designing the device, and some of the functions can be compromised to strengthen other 

important ones.  Our research aims to develop biomedical probes that are biocompatible, 

durable, reliable and multifunctional along with high sensitivity.  In this dissertation, some 

of our recent works on how we attempt to achieve this aim will be discussed in detail.            
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Figure 1-4. (a) A dual-core fiberoptic-based microprobes [59] (b) a silicon neural probes 
by monolithically integrating recording sites and µLED on the probe [60] (c) an 

injectable, cellular-scale optoelectronics with applications for wireless optogenetics [61] 
(d) a multifunctional neural probe with combining a drug delivery system [62] (e) a 
silicon-parylene hybrid neural probe with microfluidic channel integrated [64] (f) a 

droplet-based microdialysis collection system by integrating a microfluidic channel into a 
neural recording and stimulation probe [63] 
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Chapter 2 : General methods of microfabrication 

As mentioned in the previous chapter, biomedical microprobes made from rigid 

and flexible substrates mostly share similar MEMS-based microfabrication processes that 

enable the precise patterning of miniaturized structure.  In this chapter, the core 

processes for most of the fabrications in our work are outlined, and the basic operating 

principles of the tools are briefly described. In addition, the parameters along with the 

specific products that were used for each step are specified. 

Photolithography 

Most of the microfabrication processes start with photolithography, a technique that 

transfers the patterns from a designed mask onto a substrate such as a silicon wafer.  

Among alternative photolithography techniques, the one using UV as a light source is 

most widely used in modern IC and MEMS fabrication.  Such a technique exploits a UV 

light source to expose photoresist thin film through a micropatterned photomask.  The 

photoresist is mainly composed of a resin-based polymer, a sensitizer, and solvent. The 

structure of the polymer changes when exposed to the UV light, the sensitizer controls 

the chemical reaction, and the solvent enables a controllable thin layer using the spin 

coating system [65].  Generally, photoresists can be categorized into positive photoresist 

and negative photoresist.  

For the positive photoresist, the UV exposed portion generates carboxylic acids 

that are soluble in the base chemical (called developer).  The most frequently used 

positive photoresist is able to absorb from below 300 nm and up to 435 nm of UV light. 

On the contrary, an exposed portion of the negative photoresist is crosslinked and 

becomes insoluble in the developer.  One of the disadvantages of negative photoresist is 
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that the resolution is limited by the film thickness.  This is because the cross-linking 

process needs to compete with polymerization, thus, the exposure time should be greater 

for thick resist than the thin resist to make it insoluble.    

Depending on the pattern geometry, cost, speed and resolution requirements, etc., 

the photoresist tone will be chosen accordingly.  In this work, feature sizes for most of the 

device designs range from a few microns and up to hundreds of microns.  Positive 

photoresists have been employed for most of the processes because of the excellent 

plasma etch resistance. KEMLAB KL5310 was used for general exposures, and for the 

processes that need thick photoresist, AZ P4620 and DOW MEGAPOSIT SPR220-7 have 

been used.  According to the minimum feature size of the work presented in the 

dissertation, mylar masks from FineLine Imaging in Colorado Springs, CO were used for 

most of processes.   

Reactive Ion Etching 

Reactive Ion Etching (RIE) is one of the methods of dry etching.  It’s widely used 

thanks to the properties that allow good vertical profile, dielectric etching, and high 

resolution.  RIE is a physical-chemical etching, which is a method that combines the 

advantages of pure physical etching such as sputtering, and pure chemical etching such 

as plasma etching. An RIE etching chamber typically consists of two electrodes that 

create an RF electromagnetic field with a frequency of 13.56 MHz.  The difference of an 

RIE system comparing to other dry etch systems is that the powered electrode is the 

cathode.  The ionized gas species are attracted by the cathode and bombard at the 

surface of the sample, making the surface reactive for neutral gas plasma.  It’s worth 

noting that most of the etching in the RIE system is done by neutral radicals rather than 
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ion bombardment.  When gases are introduced into the chamber, they are partially ionized 

in the RF power to generate the plasma and release free electrons simultaneously.  Part 

of the free electrons is absorbed in the sample platter and build up negative charges that 

induce a DC bias between reactive species and samples (sheath area). Ions are 

accelerated due to the high electric field in the sheath area and strike to the samples, 

clear out the passivation layer on the surface of the samples or make the surface more 

reactive for neutral radicals.  

In this work, RIE is the key process for most of the fabrications. Oxygen is mostly 

used for etching polymers like parylene and photoresist at a flow rate of 30 sccm. Carbon 

tetrafluoride (CF4) in combinations with oxygen is used for silicon dioxide and silicon 

nitride etching. Sulfur hexafluoride (SF6), butylene (C4H8), and Argon (Ar) are used for 

silicon deep etching.  Detailed parameters will be presented in Chapter 3.  

Deep Reactive Ion Etching 

Deep Reactive Ion Etching (DRIE), as a subclass of RIE, has acted as an important 

role for etching silicon in this work.  Deep RIE shares a similar system configuration as 

RIE.  One thing that differentiates it from the RIE system is that the Deep RIE system has 

an even bigger anode electrode than RIE, which enables higher current density and 

sheath voltage.  In addition, Deep RIE system operates through its unique process called 

Bosch process which provides a highly vertical sidewall profile by rapidly switching sulfur 

hexafluoride (SF6), which is for isotropic etching of silicon, and octafluorocyclobutane 

(C4F8) which is used to form a passivation layer mainly on sidewalls to keep them from 

being etched, then remove the passivation layer at the bottom by Ar+ sputtering. Literally, 

given an adequate feature size, DRIE can achieve as deep as hundreds of microns with 
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a vertical profile.  By taking the benefits of these advantages, microfabricated elements, 

which are even irregularly arranged, can be readily released from wafers. Likewise, deep 

trenches, which are required by most of our work, can be formed easily.  In this work, 

most of the DRIE process has been done by Plasma-Therm 970 SLR, and detailed 

parameters will be presented in Chapter 3. 

Xenon Difluoride Silicon Isotropic Etching 

Xenon difluoride (XeF2) is known as a strong oxidizing agent, but in MEMS, it is 

particularly used as an etchant of silicon.  XeF2 etching of silicon is a spontaneous, non-

plasma, pure chemical etching.  XeF2 etches silicon in every direction (isotropic) at room 

temperature under a certain pressure. It does not need any kinds of power to activate 

etchant or other agents.  The whole etching process between silicon and XeF2 is 

described as below: 

2𝑋𝑒𝐹2  +  𝑆𝑖 → 2𝑋𝑒 (𝑔) + 𝑆𝑖𝐹4 (𝑔) 

The etch rate is somewhat fast in this reaction without any non-volatile byproducts and 

remaining residue.  Thus the etching process is usually split into multiple cycles to ensure 

the exact target depth.  In addition, XeF2 has a high selectivity for silicon from the typical 

masking materials such as SiO2 and photoresist.  By taking these advantages and the 

nature of isotropic etching, a unique hollow parylene tube structure is developed and 

characterized. Detailed techniques and parameters will be discussed in Chapter 3.   

Electron beam evaporation 

Electron beam evaporation, as one of the methods of PVD (physical vapor 

deposition), is a commonly used process for metal deposition. In an electron beam 

evaporation system, electrons are either excited or extracted, depending on the source 
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type, from a tungsten filament and magnetically directed to the metal source in a low-

pressure chamber. The electrons then strike the metal source, and when high enough 

energy is transferred during the collision, the metal melts and starts evaporating, being 

deposited on all surfaces of the chamber including the substrate.  In this work, a model 

of BJD-1800 is used for most of the process.  A combination of titanium and gold is used 

for electrodes, and aluminum is used for a metal mask.  Other materials such as platinum 

will also be considered for future works.  

Parylene Chemical Vapor Deposition 

Parylene is a  material that is chemically polymerized with Poly (P-xylylene).  It is 

a generic name for some variants such as Parylene N, D, and C which show similar 

properties like dielectric and good moisture resistance. Nevertheless, with the different 

bonding materials, each of them has its own benefit in different applications.  Parylene 

coating is a process of chemical vapor deposition.  First, the precursor dimer is vaporized 

into a gaseous phase at 135 ºC, then the gas is pyrolyzed into monomeric gas after it 

goes through a furnace that is heated up to 690 ºC.  Eventually, monomeric gas is 

condensed and deposited everywhere in the chamber at room temperature, and the 

coated Parylene thin film is highly uniform and conformal. In this work, Parylene C is 

employed by most of our devices due to its superb bio-compatibility and moisture barrier 

property.  I make use of PDS2010 CVD machine of Specialty Coating Systems. 
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Chapter 3 A flexible Ag/AgCl micro reference electrode based on a parylene tube 
structure1 

Introduction 

Recently, there have been many efforts to develop miniaturized electrochemical 

sensors for microfluidic lab-on-chip analyses or in-vivo biological monitoring. The 

reference electrode is an essential component of electrochemical sensors and thus has 

received considerable attention [67]. The most widely used reference electrodes are 

Ag/AgCl (silver/silver chloride) electrodes, which are constructed by immersing a silver 

wire coated with AgCl in KCl (potassium chloride) or other Cl−ion-rich solution. The 

electrochemical reaction on the Ag/AgCl reference electrode is represented by the 

following equation: 

𝐴𝑔𝐶𝑙 (𝑠) +  𝑒− ↔ 𝐴𝑔 (𝑠) + 𝐶𝑙− (𝑎𝑞) 

Many micro reference electrodes have been developed based on this mechanism 

[67]. In some cases, the reference electrodes are simply thin-film Ag/AgCl electrodes 

without a filling solution [68].  They have the advantage of a simple microfabrication 

process.  However, a disadvantage of a thin film Ag/AgCl is a short lifetime due to the 

small amount of Ag/AgCl. Furthermore, their potential is very sensitive to the testing 

solution due to the lack of a filling solution.  Therefore, their application as reference 

electrodes is limited.  To reduce the sensitivity of these electrodes to Cl- ions and the pH 

value, Ag/AgCl films can be covered by gels filled with electrolytes.  For example, Huang 

 

 

1 Text and figures reprinted with permission from [66] E. Kim, H. Tu, C. Lv, H. Jiang, H. 
Yu, and Y. Xu, “A robust polymer microcable structure for flexible devices,” Applied Physics 
Letters, vol. 102, no. 3, pp. 033506-033506-4, 2013. 
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et al. used agarose gels filled with KCl, which function both as a solid internal electrolyte 

and an ion diffusion membrane [69].  Liao et al. mixed KCl with agar gel for the inner 

electrolyte and used chloroprene rubber for the liquid junction and insulator [70].  Due to 

the finite amount of Cl-, these types of electrodes may still suffer from stability issues 

during long-term applications. 

To make more stable reference electrodes, there have been a number of efforts to 

integrate a reservoir of KCl or other Cl- ion rich solutions in these electrodes. Suzuki et al. 

developed a liquid-junction Ag/AgCl reference electrode with microfabrication techniques 

[71].  The solution reservoir was fabricated on a silicon substrate using anisotropic etching.  

In later work, this group formed the electrolyte layer by screen-printing a paste containing 

fine KCl powder and encapsulating it using silicone [72].  The electrolyte layer was then 

activated by injecting a solution saturated with KCl and AgCl. 

The miniaturization of the reference electrode is a challenging task [67].  The lack 

of a reliable, long-lived reference electrode limits the performance of 

microelectrochemical sensors.  Here we report a novel hybrid approach to developing a 

flexible microfabricated reference electrode with an internal electrolyte reservoir and a 

Ag/AgCl metal wire.  This approach combines several advantages.  Compared with thin 

films, a Ag/AgCl wire can provide large amounts of Ag and AgCl, preventing the failure of 

the electrode due to the consumption of Ag or AgCl.  In addition, an internal electrolyte 

reservoir can lead to a stable reference voltage.  Unlike its glass pipette counterparts, the 

flexibility makes this device very robust during application. In addition, its compatibility 

with microfabrication allows the integration of other components, leading to truly 

miniaturized electrochemical sensors or sensing systems. 
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Experiments 

Design and fabrication process 

The proposed reference electrode is schematically illustrated in Fig. 3-1.  The 

reference electrode is formed by inserting a silver wire coated with a AgCl layer into a KCl 

filled parylene tube.  Note that the central parylene tube is filled with electrolyte through 

one of the two side channels, whose inlets locate at ends of the two silicon beams. The 

tip of the tube is sealed with agarose gel saturated with KCl. For pH sensing, a pH 

indicating electrode is integrated on the top surface of the tube. The contact pad of this 

electrode is on the silicon pedestal, which also facilitates the handling and microfluidic 

coupling to the parylene tube. 

 

Figure 3-1. 3D schematic of the new reference electrode. 
 

The fabrication process of parylene micro-tubes is based on XeF2 isotropic etching 

and parylene conformal coating [22, 54, 73, 74].  The simplified process is summarized 

in Fig. 3-2. The left column shows cross-sections along the longitudinal direction of the 

parylene tube, whereas the right column shows the transverse direction. The fabrication 
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starts with the etching of 8 µm wide trenches into the silicon wafer using deep reactive 

ion etching (DRIE). 

 

Figure 3-2. Simplified fabrication process: (a) Parylene C coating on a silicon wafer; (b) 
Patterning discontinuous holes on parylene; (c) XeF2 etching to completely undercut 
the handling wafer and form underlying channels; (d) 2nd parylene deposition to seal 

the previously opened parylene windows; (e) Ti/Au deposition to form 
electrodes/traces/pads; (f) 3rd parylene layer to insulate the metal layer; (g) Patterning 
the parylene layer; (h) Backside DRIE etching to release the device from silicon wafer; 

and (i) Insertion of the Ag/AgCl wire and sealing of the tip with agarose gel. 
 

Subsequently, parylene-C is deposited onto the surface of the silicon by chemical 

vapor deposition (CVD).  Thanks to the conformal deposition of parylene, deep trenches 
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will be refilled as shown in Fig. 3-2 (a). The resulting parylene structures in trenches form 

sidewalls for microchannels and barb structures in the salt bridge region to mechanically 

anchor the cured agarose gel. In the next step shown in Fig. 3-2 (b), parylene is patterned 

using an Al mask and oxygen reactive ion etching (RIE) to form discontinuous 8 µm x 20 

µm holes that expose the silicon wafer.  Then a gas phase etchant known as XeF2 is used 

to etch silicon beneath the holes. Since this etch is isotropic, the silicon becomes undercut, 

and eventually, the cavities formed around each hole join to form a single continuous 

groove.  A second deposition of parylene greater than 4 µm, shown in Fig. 3-2 (d) serves 

to coat the walls of the XeF2 etched groove with parylene and seal the XeF2 etch holes in 

the surface.  This creates a sealed, continuous microchannel buried beneath the silicon.  

Next, as shown in Fig. 3-2 (e), a titanium/gold thin film layer of 250 nm is deposited by 

electron beam evaporation and patterned to form the shapes of microelectrodes, contact 

pads, and traces.  These metal structures are insulated by the third layer of parylene 3 

µm thick, which is subsequently patterned to expose electrodes and contact pads, as 

shown in Fig. 3-2 (f) and (g).  During this etching, excess parylene around the device is 

also removed.  Finally, as shown in Fig. 3-2 (h), silicon is patterned by backside DRIE, 

removing silicon from parylene structures intended to be free-standing, as well as shaping 

the silicon parts of the device.  Assembly is completed with the insertion of an Ag/AgCl 

wire into the microchannel, loading of the electrolyte solution, and pulling of the agarose 

gel into the tip of the tube. 
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Figure 3-3. Prototype of a fabricated reference electrode.  

 

Fabricated device 

Fig. 3-3 shows a fabricated device.  The parylene tube is around 17.3 mm long. 

The initial width of the tube is 342 µm and it narrows down to 237 µm at the distal end.  

The magnified view of the distal end of the device is shown in Fig. 3-4, where the pH 

indicating electrode, arrays of sealed etching holes, and the transition from wide to narrow 

tubes can be clearly observed. 

 

Figure 3-4. The distal end of the parylene tube. 
 

The narrow tube is achieved by converging two rows of parylene windows into a 

single row for XeF2 etching.  The length of the salt bridge area can be adjusted to get an 

appropriate impedance.  Fig. 3-5 (a) and (b) show SEM images of the overall device and 
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a cross-sectional view of the parylene tip, respectively.  The parylene tube can be easily 

bent without causing any damage as illustrated in Fig. 3-6. 

 

Figure 3-5. a) SEM image of an overall view of the reference electrode. b) SEM cross-
sectional view of the parylene tip. 

 

 

Figure 3-6. A curved parylene tube illustrating its flexibility. 
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Device assembly 

A silver wire with a 50 µm diameter is chosen for the reference electrode.  This 

diameter allows the formation of a thick AgCl layer while retaining sufficient Ag, preventing 

the failure of the device due to the limited amount of Ag or AgCl.  A simple electrochemical 

method is used to convert Ag to AgCl.  Note that an appropriate ratio of silver and silver 

chloride is important for good stability and reproducibility.  To achieve optimal performance, 

10–25% of silver should be converted to silver chloride according to [75].  In our 

experiment, a constant voltage of 500 mV is applied between an Ag wire and a large Pt 

electrode in a 1 M KCl solution for one hour.  Fig. 3-7 plots the current as a function of 

time during AgCl growth.  A drastic initial current rise can be observed at the start of the 

reaction, and it drops rapidly and saturates after the Ag surface is completely covered by 

the AgCl film. From the current, the total number of electrons that took part in the reaction 

is 5.66 × 1017.  From Eq. (1), it can be observed that the generation of one AgCl molecule 

is accompanied by the transfer of one electron.  Therefore, the amount of AgCl created is 

9.4 × 10-7 mol or 1.347 × 10-4 grams.  For a 2 cm long Ag wire with a 50 µm diameter, 

24 % of Ag was converted, leading to a 7.4 µm thick AgCl film.  
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Figure 3-7. Current during AgCl electrochemical growth. 
 

To assemble the reference electrode, a Ag/AgCl wire was first inserted into the 

parylene tube from the opening at the edge of the silicon interface chip.  Since both the 

channel and wire are on a micro scale, this work was performed under a microscope with 

a pair of fine tweezers.  Once the Ag/AgCl wire reached the other end of the channel, it 

was stopped because of the smaller size of the salt bridge area as illustrated in Fig. 3-4. 

The Ag/AgCl wire was fixed by applying a small amount of marine epoxy at the tube inlet 

on the silicon pedestal.  Then the inner electrolyte, saturated KCl and AgCl solution, was 

injected into the parylene tube using a syringe through one of the polyimide tubes glued 

on the two silicon beams. Note that both silicon beams host a microfluidic inlet to the 

parylene tube. When electrolyte was injected through one polyimide tube, the other was 

sealed. During this process, the device was carefully observed under a microscope to 

avoid air bubbles inside the tube.  Next, the smaller parylene tube at the distal tip was 

filled with 2% agarose gel saturated with KCl, which functions as the salt bridge of the 

reference electrode [76].  It was achieved by applying negative pressure to the syringe 
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on the polyimide tube, while the probe tip was dipped into an agarose solution.  The 

temperature of the agarose solution was kept above 80 ºC during drawing to keep it in 

the liquid phase.  The agarose solution inside the tube tip gelled quickly after the probe 

was removed from the hot solution.  The agarose gel column is about 3 mm long.  Finally, 

to avoid the inner aqueous electrolyte solution from evaporating, the end of the polyimide 

tube was sealed by epoxy.  In order to maintain the integrity of the gel, the assembled 

device is stored in a saturated KCl solution. 

 

Figure 3-8. a) Prototype of an assembled reference electrode. b) Salt bridge area with 
barb structures. 

 

An assembled micro-reference electrode is presented in Fig. 3-8 (a). Polyimide 

tubing is used here for the injection of the inner electrolyte and the drawing of the agarose 

gel to form the salt bridge as discussed previously.  In order to mechanically anchor the 

gel, barb structures are implemented inside the tube as shown in Fig. 3-8 (b). 
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Characterization 

We measured the potential difference between our electrode and a commercial 

reference electrode in 1X phosphate-buffered saline (PBS) solution, DI water and three 

different pH solutions as shown in Fig. 3-9.  The commercial reference electrode is a 

LowProfile Ag/AgCl gel electrode (3.5 mm OD) from PINE Research Instrumentation, 

which is filled with 4 M KCl gel and has a typical variance of ±3–5 mV.  The pH buffer 

solutions were purchased from EMD, and have pH values of 4, 7, and 10, respectively. 

The test started with a 1X PBS solution by connecting two reference electrodes to an 

electrometer (Keithley 6514).  The voltage difference between the two electrodes was 

stable at around -36 mV for the duration of a 10-h experiment.  Then, after a quick rinse, 

the test solution was changed to a pH 4 solution and monitored for another 10 h.  The 

voltage difference was still stable at around -35 mV.  Then the device was tested in pH 7 

and pH 10 solutions, respectively.  We observed that for devices immersed in PBS 1X 

and pH buffers at 4, 7 and 10, the maximum deviation of the average voltage recorded 

over at least 10 h was no more than 5 mV between solutions.  In addition, the maximum 

variation of the recorded voltage over 10 h for each solution is less than 2 mV. The device 

has also been tested in DI water.  As can be observed, the output is less stable than in 

other cases. However, the overall drift over the testing period is less than 5 mV. 
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Figure 3-9. The potential difference between our reference electrode and a commercial 
reference electrode in different solutions. 

 

Our device has been tested in KCl solutions with different concentrations and the 

results are plotted in Fig. 3-10.  It can be observed that our reference electrode is 

insensitive to KCl concentration due to the internal electrolyte reservoir.  The potential 

variation is less than 3 mV for KCl concentrations ranging from 0.1 M to 2 M. 
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Figure 3-10. The potential difference between our reference electrode and a commercial 
reference electrode in KCl solutions with different concentrations. The average value 

and standard deviation are calculated based on a one-hour measurement. 
 

The impedance of the new reference electrode has been characterized from 200 

Hz to 20000 Hz with an LCR meter (HEWLETT PACKARD 4284A).  The measured 

impedance is mainly resistive and approximately 60 kΩ, similar to the commercial 

reference electrode whose resistive impedance is around 1.5 kΩ. 

To further investigate the response to pH, we combined our reference electrode 

with a glass-based commercial pH indicating electrode (Orion 350 PerpHect Meters, 

Thermo) and measured their voltage in different pH solutions. A sensitivity of -54.6 mV/pH 

is obtained, close to the ideal Nernstian slope of -59.19 mV/pH [75]. 

In our experiment, the overall operation time of the tested device has exceeded 

100 h.  Note the operation time and stability of the reference electrode are affected by 

multiple factors such as the amounts of Ag/AgCl and Cl- in the electrolyte. Many micro 

reference electrodes have a shorter operation time compared to their macro counterparts 

because the limited AgCl can be rapidly consumed due to the reduction of Cl ions in the 
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electrolyte [68].  To obtain a long operation time and stable reading for the reference 

electrode, we use Ag/AgCl wire instead of a thin film and integrate an internal electrolyte 

reservoir. 

Our current device utilizes a 50 µm diameter Ag wire of which 24% is converted to 

AgCl.  In the future, we plan to use thicker Ag wires, i.e., 75 µm.  We will also integrate a 

larger reservoir on the silicon base in the next generation devices to significantly increase 

the electrolyte volume.  It is also worth noting that the current reference electrode needs 

to be stored in a saturated KCl solution, in a way similar to commercial ones.  This not 

only keeps a sufficient Cl- concentration but also prevents the gel from dehydration. 

A miniaturized pH sensor based on the reference electrode 

To prove our approach can lead to miniaturized electrochemical sensors, a pH 

sensor has been demonstrated.  The pH indicating electrode is formed by 

electrochemically depositing iridium oxide on the integrated gold electrode on the 

parylene tube surface. The electro-deposition was performed using a Princeton Applied 

Research Potentiostat/Galvanicstat Model 273A by sweeping a positive bias between 0 

and 0.575 V (versus Ag/AgCl) at 50 mV/s for 50 cycles first, which enables the deposition 

of the high-quality thin film.  Then a second pulse of 1 Hz between 0 and 0.575 V was 

performed for 3200 iterations [77].  The impedance has been measured in 1X phosphate-

buffered saline (PBS) solution (a physiologically pH buffered solution with isotonic sodium 

chloride) through an LCR meter (HEWLETT PACKARD 4284A) shown in Fig. 3-11.  The 

frequency range was set from 200 to 20000 Hz in 200 increments, and the voltage applied 

was set to 10 mV.     
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Figure 3-11. The impedance before and after IrOx coating. 
 

To evaluate the IrOx as a working electrode, we first characterized it by measuring 

the voltage difference with a commercial reference electrode (LowProfile Ag/AgCl gel 

electrode,3.5 mm OD from PINE Research Instrumentation) as shown in the Fig. 3-12 (a), 

(b).  A sensitivity of -65.06 mV/pH was obtained at 23 ºC.   

 

(a) 
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(b) 

Figure 3-12. (a) The voltage difference of our IrOx versus commercial reference 
electrode in three pH buffer solutions. (b) Sensitivity measured in compliance with the 

result of (a). 
 

On the other hand, We also characterized the pH sensor by measuring the voltage 

difference between our reference electrode and the integrated pH indicating electrode in 

three different pH buffer solutions for one hour. The results are plotted in Figure 3-13 (a).  

The drift over the one-hour period is between -5 mV and -10 mV, which is moderate 

compared to those observed by others [78, 79].  This drift is probably caused by different 

diffusion rates of anions and cations [79].  As shown in Fig. 3-13 (b), a sensitivity of -66.5 

mV/pH was obtained with our pH indicating electrode, slightly larger than the ideal 

Nernstian slope of -59.16 mV/pH.  It has been reported that activated iridium oxide 

(AIROF) and electrodeposited iridium oxide (EIROF) typically exhibits a sensitivity from -

60 mV/pH to -70 mV/pH [78, 80, 81].  Therefore, our miniaturized sensor has a sensitivity 

that matches reported values in the literature. 
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(a) 

 

(b) 
Figure 3-13. (a) The voltage difference of our IrOx versus our reference electrode in 

three pH buffer solutions. (b) Sensitivity measured in compliance with the result of (a). 
Conclusion 

 

A novel flexible microfabricated reference electrode has been successfully 

developed.  By taking advantage of a unique parylene tube structure, we successfully 

integrated a Ag/AgCl wire and a reservoir for the inner electrolyte, leading to a long 

operational life and stable output.  Compared to reference electrodes based on glass 
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capillaries, the flexible parylene tube makes the new electrode more robust.  Our novel 

micro-reference electrode exhibited good stability in PBS and pH buffer solutions with a 

drift of 1-2 mV over 10 h.  When the pH value is increased from 4 to 10, the voltage 

variation is less than 5 mV.  The device has exceeded 100 operational hours without 

significant deviation from that observed with a commercial Ag/AgCl reference electrode.  

By combining a monolithically integrated IrOx pH indicating electrode, a miniaturized pH 

sensor has been demonstrated.  This MEMS-based flexible reference electrode will be 

useful for 3D cell culture monitoring, in vivo electrochemical sensing, or other applications 

that request miniaturized electrochemical sensors.  
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Chapter 4 Flexible deep brain neural probes based on a parylene tube structure2 

Introduction 

A large variety of silicon neural probes have been developed using micromachining 

techniques to precisely form microneedles that carry thin-film microelectrodes [82-85].  

Numerous groups are also attempting to make probes flexible to reduce the stress caused 

by the micromotions of brain tissues [86]. Polymers such as parylene, polyimide and SU-

8 are widely investigated as flexible neural probe materials due to their good 

biocompatibility and microfabrication compatibility [41, 87-90].  Meanwhile, most of the 

microneedle probes have limited length, and thus are not able to reach many deep brain 

structures and brains of large animals.  The main challenge is that ultra-long shanks may 

buckle or fracture during implantation.  One simple way to increase the mechanical 

strength of ultra-long shanks is to increase the lateral dimension.  For instance, Hajj-

Hassan et al. [91] fabricated 10.5 mm long silicon shanks with a thickness of 50 μm and 

a width tapering from 150 μm to 50 μm.  Ultra-long silicon probes with integrated 

microchannels have been developed as well by Fekete and others [92, 93].  Successful 

in vivo animal tests have been demonstrated using these multi-functional deep brain 

probes [94, 95].  The fracture of ultra-long silicon probes with integrated microchannels 

has also been studied [92].  Alternatively, the strength of the ultra-long shanks can be 

enhanced by attaching another mechanical supporter, either permanently or temporarily.  

NeuroNexus® developed deep brain probes by inserting silicon shanks inside a stainless 

steel tube (315–400 μm OD) permanently [96].  Plexon® also developed ultra-long probes 

 

 

2 © IOP Publishing.  Reproduced with permission.  All rights reserved 
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by manually assembling metal wires along half-opened metal tubes [97].  Pothof et al 

developed deep probes by wrapping polyimide foils with electrodes into 0.8 mm diameter 

cylinders and fill the hollow cylinders with epoxy [98].  Removable rigid insertion shuttles 

have been used to strength soft polymer probes during implantation [49-52].  In addition, 

polymer probes have been coated or injected with dissolvable or degradable materials 

such as polyethylene glycol (PEG), maltose and sucrose gel [41-48].  Moreover, silk 

coating has proven to be a reliable strategy for probe insertion due to its good mechanical 

and biodegradable properties [99, 100]. 

Here we report a new type of ultra-long neural probes based on a unique parylene 

tube structure.  The 3D schematic in Fig. 4-1 shows the basic design of a single-shank 

ultra-long deep brain probe.  The shank body is made of a hollow parylene tube.  During 

implantation, metal wire can be inserted into the tube to reinforce the shank and 

strengthen it for insertion into neural tissue.  The distal tip of the parylene tube can be 

either open or closed.  When the tip is open, the protruding metal needle can facilitate the 

piercing of tough brain tissues such as the dura mater.  The metal wire can be easily 

removed after implantation, leaving only the parylene shank in the brain tissue.  Potentially, 

the flexibility of the parylene shank can minimize the stress caused by the micromotions 

of brain tissues and improves chronic stability responses [50, 101-107].  The inlet of the 

tube is located at the proximal edge of the silicon island.  For the proof-of-concept purpose, 

the design is a single-shank device that has four electrodes.  However, there are no 

fundamental obstacles that prevent developing multi-shank devices with high-density 

electrodes. 
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Figure 4-1. 3D schematic showing the concept design of the super long neural probe 
reinforced with an insert. In this diagram, green is parylene, yellow is gold, and gray is 

silicon. 
 

Materials and Methods 

Microfabrication and assembly 

The microfabrication is based on a well-established process we demonstrated in 

our previous work [22, 54, 77, 108, 109].  Similar microchannel fabrication methods based 

on isotropic etching and sealing with polysilicon or SiO2 have been reported by other 

groups to integrate the microfluidic capability to neural probes [110, 111].  The process 

flow, including both cross-sectional views and 3D schematics, is illustrated in Fig. 4-2.  To 

start, a 300 μm silicon wafer was thermally oxidized and the resulting oxide layer was 

patterned at parylene tube area.  Then a Ti/Au/Ti layer with a thickness of 20/250/20 nm 

was evaporated and patterned to form electrodes, interconnects, and contact pads.  The 

second titanium layer serves to enhance the adhesion to the following parylene layer, and 
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it will be chemically removed later to release the gold electrodes.  Note that the oxide was 

removed at parylene tube area to avoid cracking, but remained underneath bonding pads, 

as shown in the 3D schematic.  Then DRIE (Plasmatherm SLR-770) was used to form 

130-140 μm deep and 10 μm wide trenches on the silicon substrate.  The standard Bosch 

process was used, with the process periods of 5 s, 2 s, and 6 s for passivation layer 

deposition, etch A (Ar sputtering) and etch B (SF6 plasma etching), respectively.  The 

average etch rate was 0.5 μm/loop. These trenches were subsequently refilled by 5 μm 

vapor-phase deposited parylene C (PDS2010, Specialty Coating System), forming the 

sidewalls of the parylene tube. Windows with a dimension of 20 μm × 8 μm on the 

parylene layer were opened using oxygen reactive ion etching (200 mTorr and 200 W) 

with an aluminum mask.  Next, silicon between parylene walls was completed etched 

away by XeF2, a gas phase silicon etchant.  The XeF2 silicon etching was performed using 

a pulse mode. For every pulse, the XeF2 vapor filled the etch chamber (800 mTorr), etched 

the silicon sample for 2 min, and was pumped away.  The transverse dimension of the 

etched channel was controlled to be 140 μm × 140 μm.  A total number of 50 etch cycles 

was performed to reach the target depth.  Note the etch rate is mass-transport limited and 

a function of etch depth and exposed silicon area.  Frequent inspection and measurement 

under the microscope are required to control the etch depth accurately.  Due to the 

isotropic nature, XeF2 etching through a 1D array of discrete parylene windows results in 

a continuous channel in the silicon substrate.  The parylene sidewalls, previously defined 

by DRIE etching and refilled by parylene, serve to limit the lateral extent of the XeF2 silicon 

etch.  Next, a second 7 μm parylene C layer is deposited.  Due to the conformal nature, 

this parylene layer deposited inside the silicon channel and sealed the parylene windows, 
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resulting in a closed continuous parylene tube.  In the next step, oxygen plasma was 

carried out to expose the electrodes and bonding pads, and define the lateral shape of 

the parylene tube.  Finally, DRIE was carried out from the backside to release the parylene 

tube and define the silicon base. 

 

 

Figure 4-2. The fabrication process of the flexible deep brain neural probe. (a) SiO2 
growth. (b) SiO2 patterning. (c) Metal evaporation and patterning. (d) Deep RIE to form 
trenches. (e) Parylene C deposition to fill trenches. (f) Opening parylene windows. (g) 

XeF2 silicon isotropic etching. (h) Parylene C deposition to seal the tubular structure. (i) 
Exposure of electrodes and contact pads. (j) Deep RIE to release the device from the 

wafer. 
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The assembly of the device includes the tube insert and making electrical contact 

to the interface chip at the base of the device.  The insertion of the metal wire to the 

parylene tube was performed under a stereomicroscope.  A funnel structure is 

implemented at the tube inlet to facilitate the insertion of the metal wire.  Since parylene 

is transparent, the progression of the metal wire can be clearly observed.  In addition, the 

diameter of the stainless steel wire was made to be slightly smaller than that of the 

parylene tube.  Consequently, the insertion and removal of the stainless steel wire do not 

cause any damage to the parylene tube.  

A horizontal 4-pin FFC (flexible flat cable) connector (Hirose Electric. Part#: 

FH19C-4S-0.5SH) was clamped to the bonding pads on the silicon island, making 

electrical contact with the 4 gold traces.  The connector subsequently was encapsulated 

by marine epoxy to prevent potential short circuits due to the seeping of water or moisture 

condensation. 

Insertion Force characterization 

Mechanical insertion tests were performed using 0.6% agarose gel as a neural 

tissue phantom.  The test setup is shown in Fig. 4-3. Agarose gel was attached directly 

to a Transducer Techniques GSO series load cell (GS0-10) with a resolution of 0.021 mN 

so that the force of insertion could be monitored during the course of insertion.  The force 

gauge was attached to a caliper stage so that its relative position to the neural probe can 

be easily adjusted.  The movement of the neural probe toward the agarose gel was 

generated using a syringe pump (MODEL NO. BS-8000).  The insertion speed was set to 

0.34 mm s-1. 
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Figure 4-3. Testing setup for the characterization of insertion force. 
 

In vivo animal test protocol 

Aseptic surgery was conducted to implant the ultra-long probe into the right 

amygdala of an adult male Spragure-Dawley rat (100–120 d of age).  Among the brain 

structures of rats, the amygdala was chosen because it is the deepest if implanted 

dorsoventrally.  Briefly, anesthesia was induced and maintained by inhalation of a mixture 

of isoflurane (2-3% v/v) and air (0.4 l min−1).  A stereotaxic frame was used to identify the 

position of the amygdala.  A craniotomy was performed to provide access to the right 

amygdala. Specifically, a small hole was drilled on the skull above the right basal/central 

nuclei of the AMG (From bregma, the posterior -1.2 mm, DV -4.5 mm, ML 3.0 mm).  Prior 

to implantation, the tip of the electrode was dipped in 3% 1,1′-dioctadecyl-3,3,3′,3′- 

tetramethylindocarbocyanine perchlorate (DiI) solution to label the tracks of insertion [112]. 

Electrophysiological recording from the amygdala was conducted using a Tucker-Davis 

Technologies Z-series electrophysiological data acquisition system. Neural signals were 

preamplified and bandpass filtered (300–3000 Hz), and the threshold was set at 2 times 

the root mean square level.  The sampling rate was 25 kHz.  The rat’s body temperature 
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was maintained at 37 °C during the implantation.  All surgical and non-surgical procedures 

were in accordance with the guidelines by the IACUC at Wayne State University. 

Result 

Microfabrication 

The results of the fabrication and assembly are shown in Fig. 4-4.  In Fig. 4-4 (a) 

and (b), the device can be seen prior and after the insertion of a stainless-steel wire.  The 

hollow parylene shank is 18.2 mm long, a significant length compared to many other 

MEMS probes, and very easy to deflect with minimal force, a property desirable to 

improve chronic stability.  The electrodes are 22 μm wide and 73 μm long.  The minimum 

width of the metal traces is 16 μm.  The reinforcing wire is a stainless steel needle with a 

diameter of approximately 130 μm.  In the inset of Fig. 4-4 (b), electrodes, stainless steel 

needle insert, and the transparent parylene tube can be clearly observed.  It is worth 

noting that the inserted metal wire, which does not need to have a sharp tip, is stopped 

by the tapered sidewalls of the parylene tube.  Fig. 4-5 shows a packaged device with an 

inserted stainless steel needle (130 μm diameter) a 4-pin FFC connector (Hirose Electric. 

Part#: FH19C-4S-0.5SH) encapsulated by the marine epoxy. 
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Figure 4-4. (a) Image of the super long probe after fabrication. (b) Image of the super 
long probe reinforced by a 130 μm diameter stainless steel needle. The inset shows the 

magnified view of the tip area. Scale bar: 200 μm.  
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Figure 4-5. Image of the packaged device. An FFC connector was encapsulated with 
marine epoxy to avoid potential short circuits. 

 

Fig. 4-6 shows a scanning electron microscope (SEM) image of an ultra-long probe 

shank cut in cross-section to reveal the hollow interior.  As discussed in the process flow, 

the vertical parylene side walls are formed by refilling deep silicon trenches etched by 

DRIE.  Marks of resealed etch windows can be observed on the top surface.  Note that 

the deformation of the cross-section was caused during cutting of the shank by a razor 

blade. 

 

Figure 4-6. SEM image showing the shank of the probe cut in cross-section. 
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Insertion force Characterization 

We repeated the insertion force tests multiple times, and the results showed good 

reproducibility.  The testing results are summarized in Fig. 4-7.  Dashed lines represent 

individual tests.  The solid line is the average of the load cell readouts of the insertion 

force.  It seems that the probe needs to penetrate a barrier on the surface with a much 

larger force.  The maximum force during this initial barrier region has an average value of 

11.6 mN and a standard deviation of 1.3 mN.  This number matches very well with the 11 

mN penetration force through rat dura mater of sharpened silicon probes reported by 

Fekete et al [113]. Goncalves et al reported that the maximum insertion force of 180 μm 

wide silicon shank in 0.5% agarose gel is 2.65 mN and 12.5 mN in the porcine brain [114].  

After passing this barrier, the insertion force dropped abruptly to 1.4 mN and then slowly 

increased to 2.0 mN when it stopped at a penetration depth of 11 mm.  This value is 

comparable to the reported 1.15 ± 0.51 mN force of a 150 μm diameter tungsten electrode 

for rat pia mater [115]. 
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Figure 4-7. The calibrated plot of average axial force encountered by the long probe 
versus distance as it advanced into 0.6% agarose gel with a speed of 0.34 mm s-1. The 

average penetration depth is 11 mm. 
 

Impedance characterization 

Based on finite element simulation, the bending radius of the shank needs to be 

less than 1.5 mm to possibly break the gold traces.  In the agarose gel test, no buckling 

or significant deflection of the probe was observed during the course of the insertion due 

to the inserted metal wire.  Therefore, the ultra-long probe will not be damaged during 

implantation.  To confirm this, the impedance of each electrode was measured before and 

after multiple insertion tests.  As shown in Fig. 4-8, the impedance of all electrodes remain 

almost unchanged, proving that metal traces and probe are well protected by inserted 

metal wire from a large deflection. 
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Figure 4-8. Electrode impedances of four sites before and after the agarose insertion 
test. 

 

Modeling for buckling properties characterization result 

The buckling force of the parylene tube shank enhanced by a 130 μm diameter 

stainless steel wire is estimated using a mechanical model shown in Fig. 4-9.  The critical 

buckling force for a slender beam based on Euler–Bernoulli beam theory is shown below: 

𝐹𝑐 =
𝜋2(𝐸1𝐼1 + 𝐸2𝐼2)

(𝐾𝐿)2
 

where K is effective column factor, and L is the length of the beam. E1, E2, I1, and I2 are 

Young’s moduli and area moments of inertia of parylene tube and stainless steel wire, 

respectively. In our calculation, Young’s modulus of parylene C is chosen to be 2.8 GPa 

[116] and that of stainless steel is 193 GPa [117]. The beam length L is 18.2 mm. It is 

worth noting that E1I1 is only approximately 3% of E2I2.  Therefore, the buckling force is 

dominated by the stainless steel wire.  By assuming one end of the beam is fixed and the 
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other end is pinned, the effective column factor K is 0.699.  Based on these values, the 

estimated buckling force of the 18.2 mm long shank is about 160 mN.  Sharp et al used 

a flat-tipped 100 μm diameter stainless-steel probe to penetrate through all sub-cranial 

connective tissue, including dura, into cerebrum of mouse brains and reported an average 

penetration force of 10.9 mN [118].  Therefore, our super-long probes, enhanced by 

stainless steel needles, should be able to penetrate the dura layer.  Fekete et al reported 

insertion forces of 11 mN for sharpened and 49 mN for unsharpened silicon probes in rats 

[113].  Based on these two buckling forces, the estimated maximum achievable length of 

our probe enhanced by 130 μm stainless steel wire would be 67 mm and 31 mm 

respectively. 

 

Figure 4-9. A mechanical model for buckling force calculation. 
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It is worth noting that after implantation, the stainless steel wire can be easily 

removed since the lateral dimension of the parylene tube is slightly larger than the 

diameter of the metal wire.  The left-behind flexible parylene tube probe is able to reduce 

the stress caused by micromotions [119].  Furthermore, an optical fiber can be inserted, 

delivering light to deep brain structures for optogenetic modulation.  For example, in Fig. 

4-10 (a) the probe tip where green laser light emitted from an optical fiber can be clearly 

observed.  Fig. 4-10 (b) illustrates the light emitted from the tip of the probe inserted in 

0.6% agarose gel.  In this demonstration, a 125 μm diameter, 50 μm core multimodal 

optic fiber (Thorlabs, FG050LGA. 0.22 NA) was used and connected to a green diode-

pumped solid-state (DPSS) laser (SLOC, GL532T3-100FC, 532 nm) via an FC/PC 

connector.  The cone shape emitted light from the end of the fiber has an angle of about 

60°. 

 

(a) 
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(b) 

Figure 4-10. (a) Micrograph of the probe tip where green laser light emitted from an 
optical fiber can be clearly seen through the transparent parylene sheath (b) image of 
the light-emitting from the tip of the probe inserted into 0.6% agarose gel. The shank 

and emitted cone shape light were delineated by dashed lines. 
 

Animal test result 

An image of the rat with an acutely implanted ultra-long probe is shown in Fig. 4-

11 (a).  Local field potential (LFP) has been successfully recorded as shown in Fig. 4-11 

(b) [77].  One channel (the third electrode) had a high noise level.  After implantation, the 

impedance of this electrode was found to be 132 kΩ at 1 kHz, about 3-4 times of the other 

three electrodes.  This was probably caused by an accidental large bending of the probe 

during handling.  Further studies may help characterize the recording abilities of this 

probe; however, the preliminary data suggests the probe serves the function we set out 

to achieve. 
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(a) 

 

(b) 

Figure 4-11. (a) Photograph showing surgical implantation of the ultra-long probe and 
electrophysiological recording setup. Note that the second hole in the back of the rat’s 
head was drilled in order to release intracranial pressure to avoid a brain hernia during 

experimentation. (b) LFP data recorded from the amygdala. 
 

Discussion 

The main purpose of this paper is to introduce a new technology of developing 

ultra-long neural probes that can target deep brain structures or brains of large animals.  

To prove the concept, we only developed single-shank devices.  Using an identical 
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fabrication process, we can readily fabricate multi-shank devices, and also devices with 

multiple silicon islands which can be folded to make 3D arrays of the electrode [120, 121].  

The current 18.2 mm long shank enhanced by 130 μm stainless steel wire has a buckling 

force of ~160 mN. Based on the 11 mN maximum penetration force [113], the probe length 

can be extended to 67 mm.  The diameter of the inserted metal wire can be increased to 

further increase the length.   

The microfabrication of parylene tube is based on DRIE, parylene conformal 

coating and XeF2 isotropic silicon etching, which is a robust and well-established process.  

Other groups reported similar methods based on isotropic silicon etching and sealing with 

polysilicon or SiO2 to integrate microchannels with silicon neural probes [110, 111].  In our 

method, the silicon is completely removed, resulting in flexible parylene tube probes.  The 

structure is actually asymmetric with the top parylene layer thicker than the bottom layer.  

However, this asymmetric mechanical structure will not be an issue during implantation 

since the rigidity is dominated by the inserted metal wire.  To avoid damage to the 

parylene tube during the process of inserting and removing the stainless steel wire, the 

diameter of the stainless steel wire was sanded to be slightly smaller than that of the 

parylene tube. 

More comprehensive animal tests will be carried out in the future.  For instance, 

chronic in vivo tests to compare the tissue responses of parylene tubes with and without 

metal wires will be of great interest.  The parylene tube can also function as a microfluidic 

channel for chemical delivery.  Such a capability is highly desirable for probing neural 

circuits as demonstrated by others [94, 95].  Thanks to the transparency of parylene, an 

optical fiber can be inserted (Fig. 4-8), enabling the delivery of light to deep brain 
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structures for optogenetic modulation.  A unique feature of our device is that the inserted 

optical fiber can move along the depth of the parylene tube, modulating neurons at 

different layers.  A multi-lumen structure, readily fabricated by adding additional parylene 

side walls, can be implemented to enable both optogenetic modulation and chemical 

delivery.  Therefore, ultra-long neural probes developed by this technology can be 

integrated with multi-modal modulation capabilities without complicating the fabrication 

process at all. 

Conclusion 

Ultra-long probes based on a parylene tube structure have been successfully 

demonstrated.  Single-shank prototypes with a shank length of 18.2 mm have been 

microfabricated based on a process consisting of parylene filling of deep silicon trenches, 

XeF2 isotropic silicon etching and parylene resealing.  The flexible parylene tube shank 

can be mechanically strengthened by inserting a metal wire.  The insertion force with a 

130 μm stainless steel reinforcing wire has been characterized in an agarose brain 

phantom.  A prototype has been implanted into the amygdala of a rat and recorded neural 

signals.  By taking advantage of the parylene tube, more advanced ultra-long probes 

integrated with electrical, chemical and optogenetic modulation capabilities can be readily 

developed to interrogate neural circuits of deep brain structures or brains of large animals.  
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Chapter 5 Braided electronics and sensors based on parylene smart tubes3 

Introduction 

Wearable electronics and sensors have received a lot of attention recently due to 

their potential impact on healthcare, entertainment, and military applications. Among 

various methods of developing wearable devices, one approach of special interest is 

based on functional fibers, yarns, or tubes. For instance, conventional cotton threads 

have been transformed into smart yarns using a polyelectrolyte-based coating with 

carbon nanotubes [122]. Mostafalu et al. reported pH sensors and microfluidics-based on 

cotton yarns [123]. Tang et al. developed highly stretchable silicone protected core-sheath 

piezoresistive fibers using a wet-spinning method [124].  Piezoelectric fiber 

nanogenerators have been developed by cylindrically covering carbon fibers with textured 

zinc oxide (ZnO) thin films [125]. 

Braiding and weaving techniques have been employed to enhance the functionality 

and mechanical strength of smart fibers or smart yarns. For instance, conductive fibers 

were developed by twisting or spinning carbon nanotubes [126, 127] and served as 

artificial muscles [128]. Do and Visell reported flexible and stretchable sensors formed by 

twisting two silicone microtubes filled with liquid metal [58]. Huang et al. reported yarn-

based piezoresistive sensors by wrapping the carbon-coated fibers with regular polyester 

fibers [3]. Electrospinning is also a common method to develop smart fibers, such as the 

nanofiber-structured single yarn sensor reported by Wu et al. [5]. 

 

 

3 © 2019 IEEE. Reprinted, with permission, from Zhiguo Zhao, Yong Xu, Braided 
Electronics and Sensors Based on Parylene Tubes, IEEE Sensors Letters, and 3/2019 
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In this work, we report the development of a new type of braided sensors and 

electronics based on parylene tubes. The unique advantage is its post-CMOS and post-

MEMS compatibility, which enables the integration of high-performance circuits and 

sensors [73, 108]. In this work, metal piezoresistors are integrated for proof-of-concept 

purpose. The tubular structure also allows the further tuning of mechanical properties and 

the incorporation of more functionalities. 

Design and fabrication 

Design 

The device design is schematically shown in Fig. 5-1. The three hollow parylene 

tubes, which will be braided together, are integrated with metal piezoresistors. Tube 

structure is considered to be more robust than ribbon and enables the incorporation of 

multiple functions such as chemical and drug delivery. The contact pads of piezoresistors 

are formed on the silicon pedestal. The silicon pedestal is also connected with three 

injection legs with channel inlets, which enable the filling of the parylene tubes with 

strengthening materials such as polydimethylsiloxane (PDMS). 
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Figure 5-1. A 3-D schematic of device design with a parylene tube cross-sectional view 
and a magnified view of integrated piezoresistors. 

 

Fabrication 

The device was microfabricated based on a well-established process we have 

reported in the past work [129]. Fig. 5-2 shows a cross-sectional view of each step of the 

fabrication flow. First, deep reactive ion etching or DRIE (Plasmatherm SLR-770) was 

performed on a silicon wafer to form 8 µm wide and 100 µm deep trenches. Subsequently, 

these trenches were refilled with 10 µm parylene-C (PDS2010, Specialty Coating System), 

serving as the sidewalls of parylene tubes. Next, columns of discrete holes with a 

dimension of 8 µm  20 µm and a pitch of 40 µm were opened using oxygen plasma 

(DryTek, DRIE 184) in the parylene-C layer between trenches formed in the first step. 

Then through these openings, XeF2 etching was performed to etch the silicon underneath. 

Since XeF2 silicon etching is isotropic, the discrete parylene holes would lead to a 

continuous channel in the silicon substrate. The channel depth was controlled to be 

around 125 µm, and the width was limited by previously formed parylene sidewalls, which 
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were 100 µm apart. Then, another 9 µm parylene-C was deposited to form an enclosed 

parylene tube by coating inside of the channel and seal the etching holes simultaneously, 

by taking advantage of the conformal nature of parylene deposition. Next, a combination 

of the Ti/Au/Ti layer was e-beam evaporated to a thickness of 20/200/20 nm and patterned 

to form piezoresistors and contact pads. Then, the third layer of parylene was deposited 

to isolate metal traces. Next, contact pads were opened, and the outer lines of the device 

were delineated using oxygen plasma.   Lastly, frontside and backside DRIE were 

performed to release the devices. 

 

Figure 5-2. Cross-section view of the simplified fabrication flow. a. DRIE to form vertical 
trenches; b. Parylene deposition to refill the trenches; c. Oxygen plasma RIE to open 
discontinuous holes; d. XeF2 isotropic silicon etching to form a continuous channel; e. 

Parylene deposition to form a sealed channel;  f. Ti/Au/Ti E-beam evaporation; g. 
Parylene deposition to insulate metal layer; h. Oxygen plasma RIE to expose contact 

pads and delineate device outer line; i. Release the parylene tube by front and backside 
DRIE. 
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Braiding and assembly 

Among many triple-strand braiding methods, we have chosen the most traditional 

method for its simplicity. To facilitate the braiding process, each parylene tube was glued 

with a polymer extension wire with a similar diameter. As shown in Fig. 5-3, to start 

braiding, the left and right extension wires were attached to a rotary bar with an opening 

angle around 15 º while the middle wire remained freestanding. Then after the middle 

wire was moved up slightly (step 1), the rotary bar was rotated by 180 º to twist left and 

right wires (step 2). Next, the middle wire was moved down (step 3) and subsequently the 

rotary bar was rotated by another 180 º to cross the left and right wires over the middle 

one (step 4). This braiding loop then repeated, and the pitch length between each twist is 

mainly determined by the initial open-angle of the left and right wires. Finally, marine 

epoxy was used to glue the ends of three tubes. 

 

Figure 5-3. A simplified illustration of braiding method: 1. move the middle wire up; 2. 
rotate the rotary bar by 180 º to form a cross between left and right tubes; 3. move the 
middle wire down over the cross; 4. rotate the bar by another 180 º to form the second 

cross above the middle tube. 
 

Fabricated and assembled devices 

A fabricated device with three parylene tubes is shown in Fig. 5-4 (a).  In this work, 

both triple-shank and single-shank devices were fabricated with identical dimensions of 
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parylene tubes. The total length and width of each parylene tube are 21.3 mm and 100 

µm respectively. In addition, polyimide tubes can be connected to the legs of the silicon 

pedestal to inject PDMS or other aiding materials into parylene tubes. Fig. 5-4 (b) shows 

the SEM (Scanning Electron Microscopy) image of three braided parylene tubes. The 

piezoresistor was designed as a U-shape metal trace which is partially shown in Fig. 5-4 

(c). The resistances were in a range of 400 to 600 Ω. 

 

Figure 5-4. (a) Fabricated three-shank device; (b) SEM image of a braided device 
based on three parylene tubes; (c) magnified SEM image of parylene tubes. 
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Characterization 

Deflection and Stretching force 

We first characterized the stretching force for three different devices: empty single 

parylene tube, PDMS-filled single parylene tube, and three-shank braided device. The 

testing setup consists of a 150-gram TRANSDUCER TECHNIQUES load cell and a 

NEWPORT linear moving stage & piezo motion controller set, as shown in Fig. 5-5. The 

load cell excitation voltage was 10 V and the speed of the moving stage was set to 0.4 

mm/s. The voltage output of the load cell was amplified and measured with a sampling 

rate of 10 Hz using a National Instrument data acquisition board (NI-DAQmx). 

 

Figure 5-5. Measurement setup for mechanical property and strain gauge sensitivity 
characterization. 

 

Fig. 5-6 shows the deflection force as a function of displacement with a sampling 

rate of 10 Hz between a single-shank device and a single-shank device filled with PDMS 
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(10:1) in the parylene tube.  The force was applied at the same position of each shank, 

and the output voltage was calibrated, and converted into force.  The measurement was 

conducted for the purpose of investigating the maximum curvature force, and it started 

from an initial force of 1.1 mN which was generated by the fixture of the sensor.  From the 

figure, the deflection force for the single-shank with PDMS was 0.45 mN, larger than the 

single-shank which is 0.1 mN due to the mechanical support of PDMS. From Fig. 5-7, it 

can be observed that PDMS makes little contribution to the tensile strength of the parylene 

tube due to the much higher Young’s module of parylene-C (2.8 GPa) [116]. On the other 

hand, the injected PDMS can enhance the transverse bending strength and avoid kinks 

of parylene tubes [73]. Both single parylene tube devices fractured when the strains 

reached 2 %. In comparison, the braided device fractured at the strain of 3.4 % and a 

larger stretching force was observed. 

 

Figure 5-6. Comparison of deflection force between single and single shank filled with 
PDMS as a function of displacement.    

 



63 

 

 

Figure 5-7. Comparison of stretching forces of the single parylene tube, single parylene 
tubes filled with PDMS, and braided device. 

 

Strain gauge 

In order to demonstrate the capability of our device to work as a strain gauge, we 

monitored the strain and piezoresistor simultaneously. As shown in Fig. 5-8, the gauge 

factor of the piezoresistor on a single parylene tube was around 1.04. The device under 

test fractured at a force of 267 mN and the total resistance change during this period is 

around 26 Ω. 



64 

 

 

Figure 5-8. Average resistance changes as a function of the strains of a single tube 
device. 

 

The strain sensitivity of braided devices was characterized by applying cyclic 

strains as shown in Fig. 5-9 (a). Baseline shifts are observed in the latter half of 0.95% 

strain test and 1.42% strain test since the initial status was difficult to control for a yarn or 

string type device. In addition, the movement among the parylene tubes could lead to 

baseline drift. Such an issue can be avoided by coating another layer of parylene to 

prevent braided tubes from moving. The average resistance change as a function of the 

mechanical strain is plotted in Fig. 5-9 (b). The average gauge factor is about 1.05 which 

is consistent with reported values in literature [130, 131].  
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Figure 5-9. (a) Piezo-resistive sensitivities for the braided device under cyclic strains. (b) 
Average resistance changes as a function of mechanical strain. 
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Applications 

For a real application, preliminary respiratory monitoring has been demonstrated 

for the proof-of-concept purpose. The braided device was simply attached directly to the 

chest of a healthy male subject by using isolation tape. The person under test kept his 

usual breathing pace. The measurement lasted for half a minute with a sampling rate of 

100/s. As shown in Fig. 5-10, the respiration was successfully detected by the braided 

device. The resistance change was between 5 to 10 Ω, depending on the depth of the 

breath. Based on the resistance change, the maximum strain experienced by the braided 

device was 1.2% and the corresponding stress was 1.8107 Pa. 

 

Figure 5-10. Respiration monitoring result by measuring the piezoresistor of a braided 
device attached to the chest.   

 

Beyond wearable applications, the developed technology can also benefit medical 

implants. For instance, one potential application of our braided device is a spinal cord 

neural probe. The spinal cord is probably the most challenging site to implant neural 

probes due to the large motion of the spinal cord [57]. The mechanical flexibility and 

strength of our technology make it an excellent candidate for developing spinal cord 

interfaces. Compared to the device reported in [57], the new technology reported here 

allows the integration of multiple electrodes or other active devices along the length 
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direction. Moreover, the tubular structure enables in-situ chemical delivery or other 

functions such as pneumatic actuation and optogenetic modulation [22]. The reliability of 

the braided device will be improved by implementing serpentine metal traces and smaller 

braiding pitches. 

Conclusion 

In summary, we have demonstrated a method for making yarn-like stretchable 

electronics and sensors by braiding parylene tubes. In this work, metal piezoresistors 

were integrated into the parylene tubes for the purpose of proof-of-concept. The devices 

have been braided using a traditional three-strand method.  Stretching tests show that 

the yield strain and strength of braided devices are larger than those of single parylene 

tubes. In addition, the piezoresistive sensing of the braided device has been 

characterized and demonstrated for respiration monitoring. It is worth noting that the 

fabrication process is post-CMOS and post-MEMS compatible, enabling the integration 

of high-performance circuits and sensors based on high-temperature materials. For 

instance, silicon MOSFETs (metal-oxide-semiconductor field-effect transistors) [73], 

silicon pressure sensors and flow sensors [108] have been successfully integrated on 

parylene tubes previously. This capability, together with the tubular structure, will greatly 

enhance the functionality of braided devices.  



68 

 

CHAPTER 6 : FUTURE WORK 

So far we have introduced a flexible Ag/AgCl micro reference electrode, flexible 

deep brain neural probes, and probes that are braided to enhance the mechanical 

properties.  The results of the work have shown the tremendous possibilities of integrating 

even more functions and sensors on a single device.  Our future work will not only focus 

on the further optimization of the device characteristics but also realizing the diverse 

applications by integrating different sensors and modifying the device structures.  Fig. 6-

1 shows an example of a concept how we are going to approach the ideas of the 

integration.  Each probe has its unique function which would either work itself or provide 

certain conditions for other probes.  The first one is chemical sensing electrodes that are 

based on our previously presented reference electrodes.  The number of the sensing 

elements can be flexible based on the target elements in which we are interested.  For 

example, three sensing electrodes can possibly be put into the design, each of them 

would work as a pH sensing, Oxygen sensing, or other ionic elements sensing electrode 

by depositing ionic sensitive materials such as IrOx for pH sensing.  The second and the 

third one can both act as the neural probes with different objectives.  Stimulation and 

recording electrodes can be interchangeably distributed on each probe, and the number 

could be quite flexible which allows the electrode arrays.  Both the second and the third 

probes have been designed to be hollow that allows simultaneous optic modulation by 

inserting an optic fiber, and drug delivery by injecting the chemicals through the inlet. 

Although each probe may have the slightly different physical structures to each 

other that make them look challenging to be fabricated through single process flow,  they 



69 

 

in effect share very similar and well-established fabrication flow and nothing different 

compared to the one for making a single probe.     

Further investigations of materials for sensing electrodes, optic fibers, and 

chemicals will be done.  If successful, dynamic and comprehensive in-vivo studies will be 

enabled by simultaneous data collecting and analyzing.   

 

Figure 6-1. A concept of the multifunctional micro probe that is integrated with a 
chemical sensing probe, a neural probe with optic modulation, and a neural probe with 

drug delivery function. 
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ABSTRACT 

PARYLENE BASED FLEXIBLE MULTIFUNCTIONAL BIOMEDICAL PROBES AND 

THEIR APPLICATIONS 

by 

ZHIGUO ZHAO 

August 2020 

Advisor: Dr. Yong Xu 

Major: Electrical and Computer Engineering 

Degree: Doctor of Philosophy 

MEMS (Micro Electro Mechanical System) based flexible devices have been 

studied for decades, and they are rapidly being incorporated into modern society in 

various forms such as flexible electronics and wearable devices.  Especially in 

neuroscience, flexible interfaces provide tremendous possibilities and opportunities to 

produce reliable, scalable and biocompatible instruments for better exploring 

neurotransmission and neurological disorders.  Of all the types of biomedical instruments 

such as electroencephalography (EEG) and electrocorticography (ECoG), MEMS-based 

needle-shape probes have been actively studied in recent years due to their better spatial 

resolution, selectivity, and sensitivity in chronical invasive physiology monitoring.  In order 

to address the inherent issue of invasiveness that causes tissue damage, research has 

been made on biocompatible materials, implanting methods and probe structural design. 

In this dissertation, different types of microfabricated probes for various 

applications are reviewed. General methods for some key fabrication steps include 

photolithography patterning, chemical vapor deposition, metal deposition and dry etching 

are covered in detail.  Likewise, three major achievements, which aim to the tagets of 
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flexibility, functionality and mechanical property are introduced and described in detail 

from chapter 3 to 5.  The essential fabrication processes based on XeF2 isotropic silicon 

etching and parylene conformal deposition are covered in detail, and a set of 

characterization is summarized.  
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