
Wayne State University Wayne State University 

Wayne State University Dissertations 

January 2020 

The Wedge Family Of The Cohomology Of The C-Motivic Steenrod The Wedge Family Of The Cohomology Of The C-Motivic Steenrod 

Algebra Algebra 

Hieu Trung Thai 
Wayne State University 

Follow this and additional works at: https://digitalcommons.wayne.edu/oa_dissertations 

 Part of the Mathematics Commons 

Recommended Citation Recommended Citation 
Thai, Hieu Trung, "The Wedge Family Of The Cohomology Of The C-Motivic Steenrod Algebra" (2020). 
Wayne State University Dissertations. 2427. 
https://digitalcommons.wayne.edu/oa_dissertations/2427 

This Open Access Dissertation is brought to you for free and open access by DigitalCommons@WayneState. It has 
been accepted for inclusion in Wayne State University Dissertations by an authorized administrator of 
DigitalCommons@WayneState. 

http://digitalcommons.wayne.edu/
http://digitalcommons.wayne.edu/
https://digitalcommons.wayne.edu/oa_dissertations
https://digitalcommons.wayne.edu/oa_dissertations?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F2427&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F2427&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wayne.edu/oa_dissertations/2427?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F2427&utm_medium=PDF&utm_campaign=PDFCoverPages


THE WEDGE FAMILY OF THE COHOMOLOGY

OF THE C-MOTIVIC STEENROD ALGEBRA

by

HIEU THAI

DISSERTATION

Submitted to the Graduate School

of Wayne State University,

Detroit, Michigan

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

2020

MAJOR: MATHEMATICS

Approved By:

———————————————————–
Advisor Date

———————————————————–

———————————————————–

———————————————————–



c© COPYRIGHT BY

HIEU THAI

2020

All Rights Reserved



DEDICATION

To my family and my teachers

ii



ACKNOWLEDGEMENTS

I would like to express my deepest gratitude and appreciation to my advisor, Professor

Daniel Isaksen, who offered me the opportunity and the privilege to work under his super-

vision. He has brought me to the beautiful world of mathematics and given me a lot of

thoughtful advice to follow this academic journey.

I am taking this opportunity to thank Professor Robert Bruner, Professor Andrew Salch,

and Professor Guozhen Wang for serving on my committee as well as giving several advice

and feedback.

I am thankful to Professor Leonid Makar-Limanov, Professor John Klein, Professor

Kazuhiko Shinki, Professor William Cohn, Professor Sheng Zhang and Professor Cather-

ine Lebiedzik for contributing to my development in mathematics by their time, lectures and

discussions.

I appreciate my boss man, Mr. Richard Pineau as well as Ms. Shereen Schultz and Mr.

Christopher Leirstein who have trained me and supported me on teaching and many other

educational aspects. I will always remember that all the faculty and staff of the Mathematics

Department treated me warmly during my graduate study. I am also grateful to all of my

friends in Detroit for making my life here more colorful and joyful.

Finally, I thank my family for not only encouraging me to pursue higher education but

also providing me with their best support. They taught me patience and perseverance to

achieve my goals. I would like to share this special moment with my family and teachers. I

am indebted to them for their endless care, guidance, and patience.

iii



TABLE OF CONTENTS

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

CHAPTER 1: INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 The stable homotopy groups of sphere spectrum . . . . . . . . . . . . . . . . 1

1.2 Motivation for this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

CHAPTER 2: SPECTRAL SEQUENCES . . . . . . . . . . . . . . . . . . . . . 9

2.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Constructing a spectral sequence . . . . . . . . . . . . . . . . . . . . . . . . 10

CHAPTER 3: THE MOTIVIC ADAMS SPECTRAL SEQUENCE . . . . . 17

3.1 The motivic approach to homotopy theory . . . . . . . . . . . . . . . . . . . 17

3.2 The motivic Adams spectral sequence . . . . . . . . . . . . . . . . . . . . . . 19

CHAPTER 4: THE COHOMOLOGY OF THE MOTIVIC STEENROD
ALGEBRA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1 The algebra structure and vector space structure of ExtA(M2,M2) . . . . . . 21

4.2 The motivic May spectral sequence . . . . . . . . . . . . . . . . . . . . . . . 22

4.3 The cohomology Ext . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.4 The cohomology ExtA(2)(M2,M2) . . . . . . . . . . . . . . . . . . . . . . . . 26

4.5 Comparison to the h1-localization of Ext . . . . . . . . . . . . . . . . . . . . 27

4.6 Comparison via Chow degree zero isomorphism . . . . . . . . . . . . . . . . 32

iv



CHAPTER 5: THE MOTIVIC WEDGE FAMILY . . . . . . . . . . . . . . . . 33

5.1 The et0g
k family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.2 The ∆h1e
t
0g

k family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.3 The wedge at filtrations f = 4k and f = 4k + 1 for k ≥ 2 . . . . . . . . . . . 46

5.4 The wedge chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

CHAPTER 6: THE C-MOTIVIC UNSTABLE ADAMS SPECTRAL SE-
QUENCE PROGRAM . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.1 The classical unstable Adams spectral sequence . . . . . . . . . . . . . . . . 49

6.2 Looking for a C-motivic Lambda algebra . . . . . . . . . . . . . . . . . . . . 52

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Autobiographical Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

v



LIST OF FIGURES

Figure 1: The C-motivic wedge through the 70-stem . . . . . . . . . . . . . . . . . . 48

vi



1

CHAPTER 1 INTRODUCTION

1.1 The stable homotopy groups of sphere spectrum

The questions of determining the homotopy groups [Sn+k, Sn] of spheres turns out to be

one of the most important questions in algebraic topology. The groups [Sn+k, Sn] are the

groups of homotopy classes of continuous based maps f : Sn+k → Sn between two spheres

which describe how spheres of different dimensions can wrap around each other.

The Freudenthal Suspension Theorem gives a fundamental relationship between the

groups [Sn+k, Sn] when k is fixed and n varies. To be precise, the suspension from Sn to

Sn+1 induces a group homomorphism

[Sn+k, Sn] → [Sn+k+1, Sn+1].

This group homomorphism is isomorphic when n > k + 1. In other words, the groups

[Sn+k, Sn] depend only on k when n > k + 1.

Definition 1.1. When n > k + 1, the group πk = [Sn+k, Sn] is called the k-th stable

homotopy group of spheres or k-stem.

Example 1.2. The group π0 = [Sn, Sn] ∼= Z.

When n ≤ k + 1 the group [Sn+k, Sn] is called unstable. The stable homotopy groups

have additional structure making them more amenable to compute than the unstable ones.

In this thesis, we are mostly interested in the stable case. The unstable case is one of our

long term projects which will be discussed in Chapter 6.

Example 1.3. When k = 1, the groups [S2, S1] ∼= 0 and [S3, S2] ∼= Z are unstable. The

groups [S4, S3] ∼= [S5, S4] ∼= [S6, S5] ∼= . . . ∼= Z/2 are stable.

Theorem 1.4. The group πk is finite and abelian for all k ≥ 1.
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Theorem 1.5. [The Primary Decomposition Theorem] Let G be an abelian group of order

m > 1 and let the unique factorization of m into distinct prime powers be

m = pα1

1 pα2

2 · · · pαk

k

then

G ∼= A1 × A2 × · · · ×Ak

for |Ai| = pαk

i .

Theorems 1.4 and 1.5 suggest to study πk one prime at a time. In other words, we will

compute the p-primary component of πk for all primes p and then combine these components

to obtain a uniquely determined finite abelian group which is defined in Theorem 1.5.

Remark 1.6. For abelian groups the Sylow p-groups are called the p-primary components.

In this thesis we use the latter name.

In this thesis, we will focus on the 2-primary component π̂k of πk. For the study at odd

primes, we suggest readers to see Ravenel’s book [31].

The knowledge about the stable homotopy groups has important applications in the

study of high-dimensional manifolds. One of the well known examples is the Kervaire in-

variant problem. Kervaire and Milnor reduced the classification of smooth structures to a

computation of stable homotopy groups.

The Adams spectral sequence appears to be one of the most effective tools to compute

the stable homotopy groups. The spectral sequence has been studied by J. F. Adams [1] [2],

M. Mahowald [4] [22], M. Tangora [35], J. P. May [25] and others [6].

1.2 Motivation for this Thesis

In 1999, Morel and Voevodsky introduced motivic homotopy theory [27]. One of its

consequences is the realization that almost any object studied in classical algebraic topology
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could be given a motivic analog. In particular, we can define the motivic Steenrod algebra

A [40], the motivic stable homotopy groups of spheres [27] and the motivic Adams spectral

sequence [12]. In the motivic perspective, there are many more non-zero classes in the motivic

Adams spectral sequence, which allows the detection of otherwise elusive phenomena. Also,

the additional motivic weight grading can eliminate possibilities which appear plausible in

the classical perspective.

Let M2 denote the motivic cohomology of a point, which is isomorphic to F2[τ ] where

τ has bidegree (0, 1) [38]. The motivic Steenrod algebra A is the M2-algebra generated by

elements Sq2k and Sq2k−1 for all k ≥ 1, of bidegrees (2k, k) and (2k − 1, k − 1) respec-

tively, subject to Adem relations [40] [39]. Let ExtA(M2,M2) denote the cohomology of the

motivic Steenrod algebra. To run the motivic Adams spectral sequence, one begins with

ExtA(M2,M2). The cohomology ExtA(M2,M2) has an M2-algebra structure. Inverting τ in

ExtA(M2,M2) gives the cohomology ExtAcl
(F2,F2) of the classical Steenrod algebra Acl [18].

Given a classical element, there are many corresponding motivic elements. We typically want

to find the corresponding element with the highest weight. For example, the classical element

g corresponds to the motivic elements τkg for all k ≥ 1. The element τg has weight 11, but

there is no motivic element of weight 12 that corresponds to the classical element g.

The algebra ExtA(M2,M2) is infinitely generated and irregular. A natural approach is

to look for systematic phenomena in ExtA(M2,M2). One potential candidate is the wedge

family in ExtA(M2,M2).

The classical wedge family was studied by M. Mahowald and M. Tangora [21]. It is a

subset of the cohomology ExtAcl
(F2,F2) of the classical Steenrod algebra, consisting of non-

zero elements P igjλ and gjt in which λ is in Λ, t is in T, i ≥ 0 and j ≥ 0. The sets Λ and

T are specific subsets of ExtAcl
(F2,F2). The wedge family gives an infinite wedge-shaped

diagram inside the cohomology of the classical Steenrod algebra, which fills out an angle

with vertex at g2 in degree (40,8) (i.e. g2 has stem 40 and Adams filtration 8), bounded
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above by the line f = 1
2
s − 12, parallel to the Adams edge [1], and bounded below by the

line s = 5f , in which f is the Adams filtration and s is the stem. The wedge family is a large

piece of ExtAcl
(F2,F2) which is regular, of considerable size and easy to understand.

Using this idea we build the motivic version of the wedge. However, it appears to be

more complicated than the classical one. The highest weights of the motivic wedge elements

follow a somewhat irregular pattern. We will discuss this irregularity in more detail later.

Let A(2) denote the M2-subalgebra of A generated by Sq1, Sq2 and Sq4. Let

ExtA(2)(M2,M2) denote the cohomology of A(2). The finitely generated algebra

ExtA(2)(M2,M2) is fully understood by [17]. We use a new technique of comparison to

ExtA(2)(M2,M2) which makes the proof of the non-triviality of the wedge elements easy.

We consider the ring homomorphism φ from ExtA(M2,M2) to ExtA(2)(M2,M2) induced by

the inclusion from A(2) to A. We use the map φ to detect structure in ExtA(M2,M2). Most

of the elements studied in this article have non-zero images via φ [17]. Therefore, they are

all non-trivial elements in ExtA(M2,M2).

We define set-valued operations P and g on ExtA(M2,M2). Classically, g is an element

of the cohomology of the classical Steenrod algebra. However, this is not true motivically.

Rather, τg is an element in ExtA(M2,M2), while g itself does not survive the motivic May

spectral sequence. Consequently, multiplication by g does not make sense motivically. Also,

P is not an element in ExtA(M2,M2) either. We instead consider the set-valued operations

P and g whose actions can be seen as multiplications by P and g in ExtA(2)(M2,M2) respec-

tively.

For any λ in ExtA(M2,M2), i ≥ 0 and j ≥ 0, let Pigjλ be the set consisting of all

elements x in ExtA(M2,M2) such that φ(x) = P igjφ(λ) in ExtA(2)(M2,M2).

We define the wedge family via the actions of P and g. The wedge is the set consisting

of all elements in Pigjλ with i ≥ 0 and j ≥ 0, where λ is contained in a specific 16-element

subset Λ of ExtA(M2,M2) to be defined in Table 5.
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The motivic wedge family takes the same position and same shape as the classical one

(Figure 1). However the vertex of the motivic wedge is at τg2 in degree (40, 8, 23) having

weight 23. Note that g2 in degree (40, 8, 24) does not survive the motivic May spectral

sequence [18]. Our main result, Theorem 5.8, states that the subsets Pigjλ are non-empty

and consist of non-zero elements for all λ in Λ.

However, our main result is not optimal, in the sense that there exist elements of weight

greater than the weight of elements in Pigjλ for some values of i, j, and λ. Some such

elements are listed in Table 6.

We can not even conjecture the optimal result in general. However, we know a bit more

about elements in the set et0g
k for t ≥ 0 and k ≥ 0, which are part of the wedge. We will

show that τet0g
k is non-empty for all t ≥ 0 and k ≥ 0. We do not know whether et0g

k is

non-empty in general, but we make the following conjecture.

Conjecture 1.7. The set et0g
k is non-empty if and only if k = (

∑t

i=1 2
ni) − t for some

integers ni ≥ 1.

The conjecture is equivalent to the conjecture that e0gk is non-empty if and only if k+1

is a power of 2, since

et0g
k ⊇ e0g

2n1−1 · · · e0g
2nt−1.

By explicit computations we know that e0, e0g and e0g
3 are non-empty and e0g

2 and

e0g
4 are empty [18]. This means that the subsets e0g

k are non-empty sometimes but empty

other times. The analogous classical question is trivial, since et0g
k is a product of et0 and gk.

1.3 Notation

We will use the following notation.

1. M2 = F2[τ ] is the mod 2 motivic cohomology of a point, where τ has bidegree (0,1).
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2. A is the mod 2 motivic Steenrod algebra over C.

3. A(2) is the M2-subalgebra of A generated by Sq1, Sq2 and Sq4.

4. Acl is the mod 2 classical Steenrod algebra.

5. Ext is the trigraded ring ExtA(M2,M2), the cohomology of the motivic Steenrod alge-

bra.

6. ExtA(2) is the trigraded ring ExtA(2)(M2,M2), the cohomology of the M2-subalgebra of

A generated by Sq1, Sq2 and Sq4.

7. Extcl is the bigraded ring ExtAcl
(F2,F2), the cohomology of the classical Steenrod

algebra.

8. We use the notation of [19] for elements in Ext.

9. We use the notation of [17] for elements in ExtA(2), except that we use a and n instead

of α and ν respectively.

10. An element x in Ext has degree of the form (s, f, w) where:

(a) f is the Adams filtration, i.e., the homological degree.

(b) s+f is the internal degree, i.e., corresponds to the first coordinate in the bidegrees

of A.

(c) s is the stem, i.e., the internal degree minus the Adams filtration.

(d) w is the motivic weight.

11. The Chow degree of an element of degree (s, f, w) is s+ f − 2w.

12. The coweight of an element of degree (s, f, w) is s− w.
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1.4 Organization

Here is a brief organization of this thesis.

Chapter 1. This chapter contains some background material to study the thesis. In

particular, we introduce the history of the study of the homotopy groups of spheres and how

it gives rise to the stable approach to study the homotopy groups of the sphere spectrum.

We also give a brief introduction to the motivic perspective in studying homotopy groups

which is the main purpose of this thesis.

Chapter 2. This chapter introduces the general approach to spectral sequences which is

our main tool (Adams spectral sequence, May spectral sequence) in studying the homotopy

groups of the sphere spectrum. We introduce how to construct a spectral sequence using

exact couples or filtrations. We also discuss a little bit on recovering the desired objects from

spectral sequences.

Chapter 3. In this chapter, we introduce the motivic computation program to study

the homotopy groups of the motivic sphere spectrum. The motivic Adams spectral sequence,

the motivic version of the classical Adams spectral sequence, is our main technique in this

study.

Chapter 4. Chapter 4 studies the cohomology Ext of the motivic Steenrod algebra A

serving as the E2-term of the motivic Adams spectral sequence. The cohomology Ext is

infinitely generated and irregular. We also discuss the cohomology of A(2), a subalgebra of

A and the h1-localization technique which are two of the most important tools in studying

Ext.

Chapter 5. Chapter 5 is the main part of the thesis where we study the C-motivic wedge

family of the cohomology Ext of the motivic Steenrod algebra. The wedge is an infinite subset

of Ext which is regular and easy enough to study. We also state two conjectures about two

other families in Ext which rise naturally from the study of the wedge.
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Chapter 6. Chapter 6 is a side project. We study the motivic Lambda algebra which is

expected to be the motivic version of the classical Lambda algebra. Our purpose is to use

the motivic Lambda algebra to study the unstable homotopy groups of the motivic sphere

spectrum.
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CHAPTER 2 SPECTRAL SEQUENCES

2.1 Definition

The well known definition of spectral sequences is as follows.

Definition 2.1. A spectral sequence E = {En} consists of a sequence of Z-bigraded R

modules En = {En
p,q} together with differentials

dn : En
p,q → En

p−n,q+n−1

such that En+1 ∼= H∗(E
n).

Let Z1 be the kernel of d1 and B1 be the image of d1. Then E2 = H∗(E
1) = Z1/B1 and

we can see d2 as the map

d2 : Z1/B1 −→ Z1/B1.

Repeating this process we can see Er as Zr−1/Br−1 and

dr : Zr−1/Br−1 −→ Zr−1/Br−1.

The map dr has kernel Zr/Br−1 and image Br/Br−1. Then we have the following sequence

of submodules

0 = B0 ⊂ B1 ⊂ . . . ⊂ Z2 ⊂ Z1 ⊂ Z0 = E1.

We denote Z∞ =
⋂∞

r=1 Z
r, B∞ =

⋃∞
r=1B

r and E∞
p,q = Z∞

p,q/B
∞
p,q.

In practice, spectral sequences are sometimes trigraded depending on the objects we

are dealing with. For example, the motivic May spectral sequence and the motivic Adams

spectral sequence are trigraded but the classical ones are bigraded. Also, the grading of the

differential dn is not always as defined in Definition 2.5. Depending on the problems we are

working with, we can choose a suitable grading for dn. The grading of a spectral sequence is

possibly different from that of another spectral sequence.
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2.2 Constructing a spectral sequence

2.2.1 Exact couples

Nowadays, people usually construct a spectral sequence by using exact couples or filtra-

tions.

Definition 2.2. Let D and E be modules over a ring R. An exact couple C = 〈D,E; i, j, k〉

is a diagram

D D

E

i

jk

in which i, j and k are module homomorphisms satisfying Kerj = Im i,Ker k = Im j and

Ker i = Im k.

If d = jk : E → E, then d ◦ d = (jk)(jk) = j(kj)k = 0 since kj = 0. As a result, (E, d)

has a chain complex structure and we can define the homology H∗(E, d).

We construct C′ = 〈D′, E ′; i′, j′, k′〉 by letting

D′ = i(D), E ′ = H∗(E, d),

i′ = i|i(D), j′(i(x)) = (j(x)) = j(x) + jk(E), k′(y) = k′(y + jk(E)) = k(y).

In other words, i′ is a restriction of i and j′ and k′ are induced from j and k by passing to

homology. It is easy to check that j′ and k′ are well-defined. We can also easily prove the

following result.

Proposition 2.3. C′ = 〈D′, E ′; i′, j′, k′〉 is an exact couple.

By iterating the above construction we can define

C(n) = 〈Dn, En; i(n), j(n), k(n)〉,

By denoting dn = j(n)k(n) we have the spectral sequence (En, dn). We grade
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|i| = (1,−1), |j| = (0, 0) and |k| = (−1, 0).

As a result

|i(n)| = (1,−1), |j(n)| = (−n+ 1, n− 1) and |k(n)| = (−1, 0).

Therefore |dn| = |j(n)k(n)| = (−n, n− 1), and we have

dn : En
p,q → En

p−n,q+n−1.

As we mentioned, this way of grading is not unique. Practitioners can choose another grading

which is helpful to his/her computations.

2.2.2 Filtrations

In algebraic topology, it is usual that we want to compute the homology H∗(A) of a

chain complex A. However, this computation is not always easy to be carried out in high

dimensions. An approach is that we first look for a “simpler" version E0H∗A of H∗(A) then

recover the structure of H∗(A) from the structure of E0H∗(A).

Definition 2.4. Let (A, d) be a Z-graded complex of R-modules. An increasing filtration of

A is a sequence of subcomplexes

. . . ⊂ Fp−1A ⊂ FpA ⊂ Fp+1A ⊂ . . .

of A. The associated graded complex E0A is the bigraded complex defined by

E0
p,qA = (FpA/Fp−1A)p+q

with differential d0 induced by d.

The inclusions FpA →֒ A induce the module homomorphisms i∗ : H∗(FpA) → H∗A. The

homology H∗(A) is then filtered by

FpH∗(A) = Im i∗
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and we can define E0H∗A.

We observe that an element x in E0
p,qH∗A is the class of an element x at degree p+q in A

on the filtration FpA with respect to the quotient by Fp−1A. In other words, x = x+Fp−1A.

Denote E0
pA = FpA/Fp−1A. We have the following short exact sequence of chain com-

plexes

0 Fp−1A FpA E0
pA 0i j

in which i is the inclusion and j is the surjection. This short exact sequence induces a long

exact sequence

. . . Hn(Fp−1A) Hn(FpA) Hn(E
0
pA) Hn−1(Fp−1A) . . .

i∗ j∗ k∗

Let D1
p,q = Hp+q(FpA) and E1

p,q = Hp+q(E
0
pA). Then we have the following exact couple

〈D1, E1; i∗, j∗, k∗〉.

As a result, we have the spectral sequence EnA. The following theorem is a key result to the

spectral sequence computations.

Theorem 2.5. If A =
⋃

p FpA and for each n there exists s(n) such that Fs(n)An = 0, then

we have the following isomorphism of modules

E∞
p,qA

∼= E0
p,qH∗(A).

We say that the spectral sequence {En} converges to H∗A and write

E2
p,qA ⇒ Hp+q(A).

The key idea is that we will compute the module E0H∗A via a spectral sequence and use

it to recover H∗A. Unfortunately, there is no general way to recover H∗A from E0H∗A. It

depends on the chain complex A, the spectral sequence we are dealing with and the structure

we want to recover. We will discuss more about it in the next Section.
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The equivalence of two approaches. We have discussed two approaches to construct

a spectral sequence. They are filtrations and exact couples. These two approaches give us

the same spectral sequences.

Proposition 2.6. [26, Proposition 2.11] For a filtered differential graded module, the spectral

sequence associated to the filtration and the spectral sequence associated to the exact couple

are the same.

2.2.3 Recovering H∗(A) from E∞-page and the hidden extension problem

Roughly speaking, the E∞-page is just a graded filtered version of H∗(A). Unfortunately,

these two objects are possibly very different from each other. The reason lies in the so-called

hidden extension problem which is as follows.

Consider an R-module M and its submodule N . Then we have the following short exact

sequence.

0 −→ N −→ M −→ M/N −→ 0.

The module M plays as H∗(A), the targeted object we want to compute. The filtration is

0 ⊂ N ⊂ M and then E∞-page is N/0⊕M/N . The problem is that how to learn M from N

and M/N . Unfortunately, there is no unique answer for M . Let us see the following example.

Example 2.7. Consider the following short exact sequence.

0 −→ Z/2 −→ M −→ Z/2 −→ 0.

The module M can be Z/2⊕ Z/2 or Z/4.

2.2.4 Vector space structure

The following result plays a key result in our work with spectral sequences.
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Definition 2.8. A module P is projective if for every surjective module homomorphism

f : A → B and every module homomorphism g : P → B, there exists a homomorphism

h : P → A such that f ◦ h = g.

A

P B

f
∃h

g

Example 2.9. Every vector space is a projective module.

Proposition 2.10. The short exact sequence

0 N M P 0i j

is split, i.e. M ∼= N ⊕ P , if P is a projective module.

Proof. Since P is a projective module and j : M → P is surjective, we have

M

P P

j∃h

i

in which i : P → P is the identity map.

Since j ◦ h = i, the map h is injective. Therefore, we can identify P with its image in M .

Similarly, we identify N with its image in M . For y in N ∩P since P ∼= M/N , the element y

has to be zero. Then N ∩P = {0}. For any x in M , since we identify P with h(P ) contained

in M , the element h(j(x)) is in P . Consider the element z = x− h(j(x)) we have

j(z) = j(x)− j(h(j(x))) = j(x)− j(x) = 0,

in which the second identity is because j ◦ h = i. As a result, z belongs to ker(j) = im(i).

Since we identify N with i(n), we can see z as an element in N . Therefore, x = z + h(j(x))

which is a summation of an element in N and an element in P . We obtain the desired

statement.
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Proposition 2.11. Suppose that V is a vector space and V has the filtration V0 ⊂ V1 ⊂

. . . ⊂ Vn = V in which Vi is a subspace of V for all 0 ≤ i ≤ n. Then

V = V0 ⊕ V1/V0 ⊕ V2/V1 ⊕ . . .⊕ Vn/Vn−1.

Proof. Since any vector space is a projective module, by Proposition 2.12 we have

V1
∼= V0 ⊕ V1/V0 and V2

∼= V1 ⊕ V2/V1.

It implies that

V2
∼= V0 ⊕ V1/V0 ⊕ V2/V1.

By repeating this argument for V3, V4, . . . we get

V = V0 ⊕ V1/V0 ⊕ V2/V1 ⊕ . . .⊕ Vn/Vn−1

as desired.

Theorem 2.12. If H∗(A) is a vector space, then H∗(A) ∼= E0H∗(A) as vector spaces.

Proof. It is straight forward from Proposition 2.11 and the definition of the associated graded

algebra E0H∗(A).

Ring/Product structure and Massey product. Unfortunately, we do not have a

nice result like Theorem 2.12 to recover the product structure of H∗(A) from the E∞-page.

Let us consider the following example.

Example 2.13. We filter the polynomial ring A = R[x] as follows.

R[x] ⊃ 〈x〉 ⊃ 〈x2〉 ⊃ 〈2x2〉 ⊃ 0

in which F1 = 〈x〉, F2 = 〈x2〉 and F3 = 〈2x2〉.

We consider non-zero classes x and 2x in E0
1A = F1/F2. The product x · 2x is an element

in E0
2A = F2/F3, because of degree reasons, then it is zero.
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We say that the associated graded algebra E0R[x] with respect to the given filtration

hides some of the product structure of R[x]. We do not have a general way to recover this

product structure. In the May spectral sequence, Massey products are a very efficient tool

which will be discussed in this thesis.

2.2.5 Summary

To compute a complicated homology H∗A which is hard to compute directly, we can filter

A and then this filtration will give rise to a spectral sequence Er having E∞ isomorphic

to the associated graded module E0H∗A which is a filtered version of H∗A. If the E1-

page is infinitely generated, it is possible that we will never obtain the E∞-page of spectral

sequences (eg: May spectral sequence, Adams spectral sequence). However, we can restrict

our computation to some finite range, then we will definitely obtain the E∞-page up to the

chosen range after finite steps.

In this section, we only introduce the spectral sequence with module structure. In prac-

tice, spectral sequences (eg: May spectral sequence, Adams spectral sequence) can enjoy

multiplicative structure. In that case, the multiplication on E∞ is induced from that on

A. Unfortunately, spectral sequences usually do not preserve the multiplicative structure of

A. Depending on the objects and the spectral sequences we are working on, we need suit-

able methods to recover the multiplicative and module structures of A. Moreover, there are

higher structures in our study such as Massey products in the May spectral sequence and

Toda brackets in the Adams spectral sequence. It is possible that we are not able to recover

the targeted objects completely from spectral sequences. We just do it as much as possible.

Usually, we input some data to a spectral sequence to learn some output. However, there

are cases that we use known outputs to study inputs via spectral sequences. This often

happens to the Serre spectral sequence.
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CHAPTER 3 THE MOTIVIC ADAMS SPECTRAL SE-

QUENCE

3.1 The motivic approach to homotopy theory

Model and Voevodsky study the motivic homotopy theory in [27]. The motivic homotopy

theory is a homotopy theory for algebraic varieties. In other words, people use the techniques

from homotopy theory to study algebraic varieties. The starting point is the category built

out of smooth schemes over a field k. In this thesis, we are mostly interested in the complex

base field C. The case over the real base field R will be our future project. Unfortunately,

this category is not good enough for homotopical purposes since it does not have homotopy

colimits serving as gluing constructions.

There is a realization functor from the motivic homotopy theory over C to the ordinary

homotopy theory. For any complex scheme X, there is an associated topological space XC

of C-valued points. Almost any object studied in classical algebraic topology can be given a

motivic analogue. In particular, we can define the motivic stable homotopy groups of spheres.

In [18] Isaksen shows that we have very good calculational control over this realization

functor. The functor will help us not only deduce motivic facts from classical results but also

deduce classical facts from motivic results which is the key idea of our research.

The cohomology of a point. To run the motivic Adams spectral sequence, we need to

know the motivic cohomology M2 of a point.

Theorem 3.1 (Voevodsky). The motivic cohomology M2 is the polynomial ring F2[τ ] on

one generator τ of bidegree (0, 1).

In a bidegree (p, q), we refer to p as the topological degree and q as the weight.

The polynomial ringM2 = F2[τ ] is an F2-vector space. It is also an A-module with trivial

actions of Sqi for all i ≥ 1.

The motivic Adem relation. For the motivic Steenrod operations Sq2k of bidegrees
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(2k, k) and Sq2k−1 of bidegrees (2k − 1, k − 1) for k ≥ 1 and a < 2b the motivic Adem

relations are as follows [40, §10].

SqaSqb =
∑

c

(

b− 1− c

a− 2c

)

τ ?Sqa+b−cSqc.

The symbol ? stands for either 0 or 1, depending on which value makes the formula balanced

in weight. It is easy to prove that τ appears when a and b are even and c is odd. By removing

τ from the motivic Adem relations, we obtain the classical Adem relation [28].

Example 3.2. We have Sq2Sq2 = τSq3Sq1 motivically since the weight of Sq3Sq1 is 1 but

the weight of Sq2Sq2 is 2. Classically, Sq2Sq2 = Sq3Sq1.

Remark 3.3. The right hand side of the Adem relation can contain a monomial term. For

example, Sq1Sq2 = Sq3.

The motivic Steenrod algebra. The motivic Steenrod algebra A is the ring of stable

cohomology operations on mod 2 motivic cohomology. In addition, this ring is generated by

the Steenrod operations Sqi over M2, subject to the motivic Adem relations. To be precise,

we have the following result.

Theorem 3.4. [40, §11] The motivic Steenrod algebra A is the M2-algebra generated by

elements Sq2k and Sq2k−1 for all k ≥ 1, of bidegrees (2k, k) and (2k − 1, k − 1) respectively,

and satisfy the motivic Adem relations.

The dual of the motivic Steenrod algebra. We denote A∗,∗ = HomM2
(A,M2) for

the dual of the motivic Steenrod algebra. The algebra A∗,∗ has a very nice description which

will be very helpful in studying the motivic May spectral sequence.

Theorem 3.5. [40] The dual A∗,∗ of the motivic Steenrod algebra is equal to

M2[τ0, τ1, . . . , ξ1, ξ2, . . .]

τ 2i = τξi+1
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in which

1. the generator τi has bidegree (2i+1 − 1, 2i − 1),

2. the generator ξi has bidegree (2i+1 − 2, 2i − 1).

3.2 The motivic Adams spectral sequence

Let H be the mod 2 motivic Eilenberg-Mac Lane spectrum, i.e., the motivic spectrum

that represents the mod 2 motivic cohomology. We construct an Adams resolution for the

motivic sphere spectrum S0,0 as follows.

K2 K1 K0

. . . X2 X1 X0 S0,0g2

f2

g1

f1

g0

f0

where each Ki is a motivic finite type wedge of suspensions of H , Xi → Ki is surjective on

mod 2 motivic cohomology, and Xi+1 is the homotopy fiber of Xi → Ki. Applying π∗ = π∗,u,

for each u, we have a long exact sequence

π∗(Xs+1) π∗(Xs) π∗(Ks) π∗(Xs+1)
π∗(gs) π∗(fs) δs,∗

We denote D1 = π∗(Xs) and E1 = π∗(Ks). In particular, Ds,t
1 = πt−s(Xs) and Es,t

1 =

πt−s(Ks). We also denote,

i1 = πt−s(gs) : D
s+1,t+1
1 −→ Ds,t

1 ,

j1 = πt−s(fs) : D
s,t
1 −→ Es,t

1 ,

and

k1 = δs,t−s : E
s,t
1 −→ Ds+1,t

1 .

We obtain the following exact couple which gives rise to the motivic Adams spectral sequence.
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D1 D1

E1

i1

j1k1

Denote d = j1k1 : E1 −→ E1. We have E2 = H(E1, d), the homology of E1 with respect to

d. The E2-term of the motivic Adams spectral sequence is isomorphic to ExtA(M2,M2).

Convergence. The motivic Adams spectral sequence converges to the homotopy groups

of the H-nilpotent completion of the motivic sphere spectrum [12]. Classically, the E∞-page

Es,t
∞ of the classical Adams spectral sequence is the subquotient im πt−s(Xs)/im πt−s(Xs+1).

After computing E∞ we have to use other methods such as Toda brackets to solve the

extension problems and recover the group π∗(X) [18].
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CHAPTER 4 THE COHOMOLOGY OF THE MO-

TIVIC STEENROD ALGEBRA

Adams suggests the study of the cohomology Extcl of the classical Steenrod algebra which

appears to be the E2-page of the classical Adams spectral sequence [2]. There are at least

three different methods to compute Extcl. Adams computed Extcl as the homology of the

cobar construction. The second method is using the May spectral sequence. The third one

is computing the homology of the classical Lambda algebra. If we do it by hand, even with

the minimal resolution of the Steenrod algebra, the cobar construction is very large and the

computation is very slow and cumbersome. The same story happens to the computation of

the homology of the classical Lambda algebra. However, nowadays with the use of modern

computers, these computations become much easier.

In this thesis, we study the cohomology ExtA(M2,M2) of the motivic Steenrod algebra

serving as the E2-page of the motivic Adams spectral sequence which is mostly computed

by the motivic May spectral sequence.

4.1 The algebra structure and vector space structure of

ExtA(M2,M2)

First of all, we recall that M2 has an A-module structure with trivial actions of Sqi for

all i ≥ 1. To construct ExtA(M2,M2) one begins with a projective resolution

. . . −→ P1 −→ P0 −→ M2 −→ 0,

in which Pn is an A-projective module for all n ≥ 0. Then we remove M2 and form the

cochain complex

0 −→ HomA(P0,M2) −→ HomA(P1,M2) −→ . . . .

Finally, ExtA(M2,M2) is the cohomology of this chain complex.

Moreover, the Steenrod algebra A is an F2-vector space and we usually choose Pn =



22

A⊗A⊗ · · · ⊗A (n factors). In addition, M2 is an F2-vector space. It is easy to check that

HomA(Pn,M2) is an F2-vector space for all n. As a result, ExtA(M2,M2) is an F2-vector

space. This vector space structure plays a key role in recovering the abelian group structure

of ExtA(M2,M2) from the E∞-page of the May spectral sequence.

4.2 The motivic May spectral sequence

We use the motivic May spectral sequence to compute the cohomology Ext of the C-

motivic Steenrod algebra. In addition, we will need some information from the cohomology

of the classical Steenrod algebra which has been verified only by machine. We construct the

motivic May spectral sequence by filtering the motivic Steenrod algebra. This filtration will

induce a filtration on the dual of the Steenrod algebra and the cobar complex. The induced

filtration will give rise to the motivic May spectral sequence.

To be more precise, we denote I to be the kernel of the augmentation map A → M2.

Because of degree reasons, I is equal to the two-sided ideal of the motivic Steenrod algebra

generated by Sqi for all i ≥ 1. Let GrI(A) denoted the associated graded algebra

A/I ⊕ I/I2 ⊕ I2/I3 ⊕ · · · .

The associated algebra GrI(A) is trigraded with two gradings from A and one from the

I-adic valuation which is referred as the May filtration.

The motivic May spectral sequence has the form

E2 = Ext
s,(a,b,c)
GrI (A) (M2,M2) ⇒ Ext

s,(b,c)
A

(M2,M2).

Remark 4.1. The A-module structure on M2 is trivial since every Sqi acts by zero for

all i ≥ 1 because of degree reasons. Consequently, we can define ExtGrI(A)(M2,M2) and

ExtA(M2,M2).

We can also obtain the motivic May spectral sequence by filtering the cobar complex in

the first place.
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Now we discuss how to study the E2-term of the motivic May spectral sequence from its

classical analog. Let Icl be the ideal of the classical Steenrod algebra Acl that is generated

by Sqi for all i ≥ 1.

Proposition 4.2. [12, Proposition 5.2]

1. The trigraded algebras GrI(A) and GrIcl(Acl)⊗F2 F2[τ ] are isomorphic.

2. The quadruply-graded rings ExtGrI(A)(M2,M2) and ExtGrIcl (Acl)(F2,F2) ⊗F2 F2[τ ] are

isomorphic.

The classical E2-term is studied in great detail by J.P. May [24]. It can be computed as

the homology of the differential graded algebra

F2[hij |i > 0, j ≥ 0],

with differential given by

d(hij) =
∑

0<k<i

hkjhi−k,k+j.

By Proposition 4.2, the motivic E2-term is the homology of the differential graded algebra

F2[τ, hij|i > 0, j ≥ 0]

where

1. τ has degree (0, 0, 0,−1).

2. hi0 has degree (i, 2i − 2, 1, 2i−1 − 1).

3. hij has degree (i, 2j(2i − 1)− 1, 1, 2j−1(2i − 1)) if j > 0,

with differential given by

d(hij) =
∑

0<k<i

hkjhi−k,k+j.
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There is no τ in the above formula since the weights on the both sides are balanced.

The motivic May differential is given by the same formula as the classical one together

with d(τ) = 0. However, the motivic and classical differentials are different in some cases.

This happens because of the motivic weight. For example, classically we have d2(h
2
20) =

h3
11 + h2

10h12. Motivically, the element h3
11 has weight 3 whereas h2

20 and h2
10h12 both have

weight 2. As a result, d2(h
2
20) = τh3

11 + h2
10h12 motivically. It leads to a very important

consequence. Classically, d2(h11h
2
20) = h4

1. Then h1 is nilpotent in Extcl(F2,F2). However,

motivically d2(h11h
2
20) = τh4

11. Actually, hn
1 is not hit by any differentials in the motivic May

spectral sequence for all n. In other words, it is not nilpotent in Ext.

Table 1: Some differences between the classical and motivic differentials.

Classical Motivic
d2(b20) = h3

11 + h2
10h12 d2(b20) = τh3

11 + h2
10h12

d2(h11b20) = h4
11 d2(h11b20) = τh4

11

4.2.1 F2-vector space structure

By Theorem 2.11 the E∞-page of the May spectral sequence preserves completely the

F2-vector space structure of Ext. In other words, Ext∼= E∞ as F2-vector spaces.

4.2.2 Ring structure and M2-module

By ring structure we mean the product structure and by M2-module structure we mean

the multiplication with τ . The May spectral sequence hides some of the product structure

and M2-module structure in the sense that there exist elements x and y in Ext such that xy

is non-zero in Ext but xy = 0 in E∞ or τx is non-zero in Ext but τx is zero in E∞. In [18]

Isaksen studied all possible hidden extensions by τ , h0, h1 and h2. There are several tools

but the four main are
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1. Comparing with classical hidden extensions,

2. Shuffle relations with Massey products,

3. Steenrod operations,

4. The isomorphism at Chow degree zero.

We will discuss several examples using the above methods. In [7], Bruner uses a computer

to compute the cohomology of the classical Steenrod algebra by constructing a minimal

resolution. By looking at Bruner’s computation, we can figure out a lot of classical hidden

extensions which can be used to obtain motivic hidden extensions.

Example 4.3. Classically we have the hidden extension h0 · e0g = h4
0x in Extcl. Motivically,

we have τ 2 · hoe0g = h4
0x in Ext.

Example 4.4. We have h0 · h
2
2g = h3

1h4c0 in Ext.

Proof. We use the shuffle

h3
1h4〈h1, h0, h

2
2〉 = 〈h3

1h4, h1, h0〉h
2
2

and the Massey products 〈h1, h0, h
2
2〉 = c0 and 〈h3

1h4, h1, h0〉 = h0g.

4.3 The cohomology Ext

Relationship between motivic and classical calculations. The following theorem

plays a key role in comparing the motivic and the classical computations, saying that they

become the same after inverting τ .

Theorem 4.5. [12, Proposition 3.5] There is an isomorphism of rings

Ext⊗M2
M2[τ

−1] ∼= Extcl ⊗F2 F2[τ, τ
−1].
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Roughly speaking, the elements x in Ext which are killed by some power of τ , i.e. τnx = 0

for some n, will map to zero via the above isomorphism.

The motivic Adams line of slope 1
2
. Classically, Adams shows that Extcl vanishes

above a certain line of slope 1
2
, called the Adams line, with the exception of the elements hk

0

in the 0-stem. Motivically, by inspection of the Adams chart [16] we see that Ext does not

vanish above the same line of slope 1
2
. However, Ext vanishes above a line of slope 1. Further

inspection shows that in a large range, all elements above the Adams line of slope 1
2

are

h1-local, in the sense that they are h1-divisible and support infinitely many multiplications

by h1.

Theorem 4.6. [15, Theorem 1.1] Let s > 0, the map

h1 : Ext
s,f,w
A

(M2,M2) −→ Exts+1,f+1,w+1
A

(M2,M2)

is an isomorphism if f ≥ 1
2
s+ 2, and it is a surjection if f ≥ 1

2
s + 1

2
.

4.4 The cohomology ExtA(2)(M2,M2)

The cohomology ExtA(2)(M2,M2) is a finitely generated algebra which is understood fully

by [17]. It plays as a “lighthouse" in our study of the cohomology Ext of the motivic Steenrod

algebra. Specifically, we can study an element in Ext via its image in ExtA(2)(M2,M2).

The subalgebra A(2). We recall that the bigraded M2 is the polynimial ring F2[τ ] on

one generator τ having bidegree (0, 1).

Definition 4.7. The algebra A(2) is the M2-subalgebra of the motivic Steenrod algebra A

generated by Sq1, Sq2 and Sq4.

Comparison to ExtA(2). The inclusion A(2) →֒ A induces a homomorphism φ : Ext

→ ExtA(2) which allows us to detect some structure in Ext via ExtA(2). We emphasize that
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ExtA(2) is described completely in [17, Theorem 4.13]. Table 2 gives some values of φ that

we will need.

Table 2: Some values of the map φ : Ext −→ ExtA(2).

Ext ExtA(2) (s, f, w)
i Pn (23, 7, 12)
k dn (29, 7, 16)
r n2 (30, 6, 16)
m ng (35, 7, 20)

∆h1d0 ∆h1 · d0 (39, 9, 21)
τg2 τ · g2 (40, 8, 23)

τ∆h1g τ ·∆h1 · g (45, 9, 24)
h2g

j h2 · g
j (20j + 3, 4j + 1, 12j + 2)

P id0 P i · d0 (8i+ 14, 4i+ 4, 4i+ 8)
P ie0 P i · e0 (8i+ 17, 4i+ 4, 4i+ 10)

Remark 4.8. In some cases, φ(x) is decomposable in ExtA(2) when x is indecomposable in

Ext. For example, the element ∆h1d0 in Ext is indecomposable but φ(∆h1d0) = ∆h1 · d0 is

the product of ∆h1 and d0 in ExtA(2).

Remark 4.9. We know values of φ by comparing the May spectral sequence computing Ext

and the May spectral sequence computing ExtA(2).

4.5 Comparison to the h1-localization of Ext

If we invert h1 on Ext, then Ext[h−1
1 ] becomes simpler. We can use Ext[h−1

1 ] to detect

some structure in Ext. The following theorems describe Ext[h−1
1 ] and ExtA(2)[h

−1
1 ].

Definition 4.10 (Direct Limit). Let 〈I,≤〉 be a directed set. Let {Ai : i ∈ I} be a family of

modules indexed by I and fi,j : Ai → Aj be a homomorphism for all i ≤ j with the following

properties:

1. fi,i is the identity of Ai, and
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2. fi,k = fj,k ◦ fi,j for all i ≤ j ≤ k.

The pair 〈Ai, fi,j〉 is called a direct system over I.

The direct limit lim−→Ai of the direct system 〈Ai, fi,j〉 is the unique up to isomorphism

module L satisfying the following universal mapping property: there are maps fi : Ai → L

such that fi = fj ◦ fi,j for every pair i ≤ j, and if there is a module C together with maps

τi : Ai → C such that τi = τj ◦ fi,j for every pair i ≤ j, then there is a unique module

homomorphism τ : L → C with τi = τ ◦ fi.

Ai C

L

fi

τi

τ

The construction of the direct limit is as follows. Let M be the direct sum of the Ai,

and let N be the submodule of M generated by all elements of the form a − fij(a) for all

i ≤ j and all a ∈ Ai. Then M/N , together with fi the compositions of the natural maps

Ai → M → M/N , satisfy the mapping property for the direct limit.

Lemma 4.11. Let lim−→Ai be the direct limit of a directed system of modules. Then for any

element x of lim−→Ai, there exists an element a in some Ai such that x = fi(a).

Proof. It is straight forward from the construction of the direct limit.

Definition 4.12. The h1-localization Ext[h−1
1 ] of Ext is the direct limit of the sequence

Ext Ext Ext . . .
h1 h1 h1

in which the map h1 is multiplication with h1.

Roughly speaking, if two elements x and y in Ext satisfy hn
1x = hm

1 y for some n and

m then x and y become identical in Ext[h−1
1 ]. The most important observation is that all

elements x which are killed by some power of h1 in Ext, i.e. hn
1x = 0, become zero in Ext[h−1

1 ].



29

Theorem 4.13. [14, Theorem 1.1] The h1-localization Ext[h−1
1 ] is a polynomial algebra

over F2[h
±1
1 ] on generators v41 and vn for n ≥ 2, where:

• the element v41 has degree (8, 4, 4).

• the element vn has degree (2n+1 − 2, 1, 2n − 1).

Theorem 4.14. [14, Proposition 3.7] The h1-localization ExtA(2)[h
−1
1 ] is a polynomial al-

gebra

ExtA(2)[h
−1
1 ] ∼= F2[h

±1
1 , a1, v

4
1, v2]

in which a1 has degree (11, 3, 7); v41 has degree (8, 4, 4); and v2 has degree (6, 1, 3).

We can use h1-localization to prove the non-existence of certain elements x in Ext. Guillou

and Isaksen [14, §5] used the May spectral sequence analysis of Ext[h−1
1 ] to determine the

localization map

L : Ext −→ Ext[h−1
1 ]

in a range. Some values of L are given in Table 3 [14, Table 13].

Table 3: Some values of the localization map L : Ext → Ext[h−1
1 ]

x L(x)
P kh1 h1v

4k
1

P kd0 h2
1v

4k
1 v22

P ke0 h3
1v

4k
1 v3

e0g h7
1v4

There is also a localization map L : ExtA(2) −→ ExtA(2)[h
−1
1 ] [14, §5.1]. The following

diagram is commutative [14].

Ext ExtA(2)

Ext[h−1
1 ] ExtA(2)[h

−1
1 ]

φ

L L

φ
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Definition 4.15. Let t be a non-negative integer. We define α(t) to be the number of 1’s in

the binary expansion of t.

Lemma 4.16. Let t, k and s be non-negative integers, s ≥ 1. We have

• α(t) ≤ t.

• α(t+ k) ≤ α(t) + α(k).

• α(2st) = α(t).

Proof. Suppose that t =
∑n

i=1 2
mi in which mi ≥ 0 and mi 6= mj if i 6= j. Consequently,

α(t) = n. Since t =
∑n

i=1 2
mi ≥ 1 · n = n, we obtain the first inequality.

With the above t we suppose further that k =
∑p

i=1 2
qi in which qi ≥ 0 and qi 6= qj if

i 6= j. Consequently, α(k) = p. We have

t+ k =
n

∑

i=1

2mi +

p
∑

j=1

2qj

where the right hand side has n+p powers of 2. If there is no pair (mi, qj) such that mi = qj ,

then α(t + k) = n + p = α(t) + α(k). If there exists at least one pair (mi, qj) such that

mi = qj = c, since 2mi + 2qj = 2c+1 we have α(t + k) < n + p = α(t) + α(k). Therefore,

α(t+ k) ≤ α(t) + α(k).

The last identity can be proven by the observation that if t =
∑n

i=1 2
mi, then 2st =

∑n

i=1 2
mi+s.

Lemma 4.17. The map φ : Ext[h−1
1 ] −→ ExtA(2)[h

−1
1 ] takes v41 to v41 and for all n ≥ 2, φ

maps vn to h
−3(2n−2−1)
1 a2

n−2−1
1 v2.

Proof. This statement is stated as Conjecture 5.5 in [14] by Guillou and Isaksen. They also

prove that if a “C-motivic modular forms” spectrum exists, then the conjecture holds [14,
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Proposition 6.4]. This spectrum has recently been constructed by Gheorghe, Isaksen, Krause

and Ricka [13, §5], so we obtain the desired statement.

Lemma 4.18. The image of

φ : Ext[h−1
1 ] −→ ExtA(2)[h

−1
1 ]

is spanned by the monomials hd
1v

4a
1 vb2a

c
1 where a, b and c are non-negative integers for which

α(b+ c) ≤ b and d is an integer.

Proof. Denote by G the M2-submodule of ExtA(2)[h
−1
1 ] spanned by the monomials hd

1v
4a
1 vb2a

c
1

where a, b and c are non-negative integers for which α(b+ c) ≤ b and d is an integer.

Using Lemma 4.17 to get

φ : v4a1
∏

j∈J

vj 7−→ h
−3

∑
j∈J(2

j−2−1)

1 v4a1 vm2 a
∑

j∈J(2
j−2−1)

1

in which J is a sequence (j1, . . . , jm) of length m such that jk ≥ 2 (repeats are allowed).

Consequently, the image of φ equals theM2-submodule H of ExtA(2)[h
−1
1 ] spanned by the

monomials of the form hd
1v

4a
1 vm2 a

∑
j∈J(2

j−2−1)

1 in which J is a sequence (j1, . . . , jm) of length

m such that jk ≥ 2 (repeats are allowed).

Since J has length m,

α(m+
∑

j∈J

(2j−2 − 1)) = α(
∑

j∈J

2j−2) ≤ m.

As a result, H is contained in G.

Conversely, for any monomial hd
1v

4a
1 vb2a

c
1 for which α(b + c) ≤ b, we can suppose that

b + c =
∑

j∈J 2
j where J is a sequence (j1, . . . , jr) of length r ≤ b such that jk ≥ 0 for k in

{1, . . . , r}. By replacing 2j by 2j−1 + 2j−1 as necessary, we can rewrite b+ c as

b+ c =
∑

i∈I

2i
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where I is a sequence (i1, . . . , ib) of length b such that ik ≥ 0 for k in {1, . . . , b}. Then

c =
∑

i∈I

2i − b =
∑

i∈I

(2i − 1).

This shows that G is contained in H.

4.6 Comparison via Chow degree zero isomorphism

We remind that the Chow degree of an element of degree (s, f, w) is s+f −2w. The part

of Ext at Chow degree 0 is isomorphic to Extcl.

Theorem 4.19. [18, Theorem 2.1.12] There is an isomorphism from Extcl to the subalgebra

of Ext consisting of elements in degrees (s, f, w) such that s+f−2w = 0. This isomorphism

takes classical elements of degrees (s, f) to motivic elements of degrees (2s+f, f, s+f), and it

preserves all higher structure including products, squaring operations, and Massey products.

In other words,

Ext|s+f−2w=0
∼= Extcl.

Some elements of Ext at Chow degree zero and their corresponding elements in Extcl via

the Chow degree zero isomorphism are shown in the following table.

Table 4: Some elements of Ext and their corresponding elements via the Chow degree zero
isomorphism.

Ext Extcl
h1 h0

h2 h1

hn hn−1

h2g
j P jh1

We will show in the next chapter that the element h2g
j in Ext corresponds to the element

h1P
j in Extcl via the Chow isomorphism.
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CHAPTER 5 THE MOTIVIC WEDGE FAMILY

The classical wedge family was studied by M. Mahowald and M. Tangora [21]. It is a

subset of the cohomology ExtAcl
(F2,F2) of the classical Steenrod algebra, consisting of non-

zero elements P igjλ and gjt in which λ is in Λ, t is in T, i ≥ 0 and j ≥ 0. The sets Λ and

T are specific subsets of ExtAcl
(F2,F2). The wedge family gives an infinite wedge-shaped

diagram inside the cohomology of the classical Steenrod algebra, which fills out an angle

with vertex at g2 in degree (40,8) (i.e. g2 has stem 40 and Adams filtration 8), bounded

above by the line f = 1
2
s − 12, parallel to the Adams edge [1], and bounded below by the

line s = 5f , in which f is the Adams filtration and s is the stem. The wedge family is a large

piece of ExtAcl
(F2,F2) which is regular, of considerable size and easy to understand. Using

this idea we build the motivic version of the wedge.

Recall that the inclusion A(2) →֒ A induces a homomorphism of algebras φ : Ext →

ExtA(2).

Definition 5.1. For any λ in Ext, i ≥ 0 and j ≥ 0, Pigjλ is the set which consists of all

elements x in Exts,f,w such that φ(x) = P igjφ(λ) having degree (s, f, w) in ExtA(2).

Example 5.2. The set g2r contains m2 because φ(m2) = g2n2 = g2φ(r).

Remark 5.3. We differentiate P and g with P and g. By the bold P and g we mean set-

valued operations from Ext to Ext. Remember that P and g do not exist in Ext as elements.

By P and g, we mean elements in ExtA(2).

Remark 5.4. We sometimes write the symbols P and g in a different order for consistency

with standard notation. For example:

• By e0g
2 we mean g2(e0). The set e0g

2 is empty (See Corollary 5.30).

• By τ∆h1g
j+1 we mean the set gj(τ∆h1g).

• By τPigj+1 we mean Pigj+1(τ).
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• The same convention is applied for τgk, τet0g
k and many others.

Remark 5.5. From Definition 5.1 we have Pigjx ·Pagby ⊆ Pi+agj+bxy. However, the inverse

inclusion is not correct generally. For example, by low dimension calculation [18] we have

e0 · τ
2g = {e0}{τ

2g}  τ 2e0g = {τ 2e0g, τ
2e0g + h3

0x}.

Definition 5.6. We define Λ to be the following sixteen elements of Ext.

Table 5: Sixteen elements of the set Λ

element (s, f, w) element (s, f, w)
τg2 (40,8,23) d0r (44,10,24)

τ∆h1g (45,9,24) d0m (49,11,28)
gr (50,10,28) τe20g (54,12,31)
gm (55,11,32) τ∆h1e

2
0 (59,13,32)

τ∆h1e0 (42,9,22) d0l (46,11,26)
e0r (47,10,26) τe30 (51,12,29)
e0m (52,11,30) τ∆h1d0e0 (56,13,30)
τe0g

2 (57,12,33) d0e0r (61,14,34)

Remark 5.7. The elements in the set Λ are not optimal in the sense that there may exist

elements of weight greater than the weight of elements in Λ (see Table 6). For example, the

element τe30 in Λ has weight 29 but the element e30 in Ext has weight 30. The reason for this

choice is that our proof for Theorem 5.8 works for τe30 but does not work for e30. The same

story happens to τ∆h1e0, τe20g, τ∆h1e0 and τ∆h1d0e0.

The following theorem is our main result.

Theorem 5.8. For any λ in Λ, i ≥ 0, j ≥ 0 and k ≥ 0, the set τkPigjλ is non-empty and

consists of non-zero elements.

Combining all elements of τkPigjλ with i ≥ 0, j ≥ 0, k ≥ 0 and λ in Λ, we obtain an

infinite wedge-shaped diagram, filling out the angle with vertex at τg2 in degree (40, 8, 23),

bounded above by the line f = 1
2
s− 12 parallel to the Adams edge [15], and bounded below
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by the line s = 5f in Ext (Figure 1). We call this set the wedge. To be precise, we have the

following definition.

Definition 5.9. For i ≥ 0, j ≥ 0, k ≥ 0, and λ ∈ Λ the set

{x ∈ Ext : x ∈ τkPigjλ}

is called the wedge family of the cohomology of the motivic Steenrod algebra.

We need a couple of preliminary results before proving Theorem 5.8.

Lemma 5.10. The sets Pid0, Pie0 and Pi∆h1e0 are non-empty for i ≥ 0.

Proof. Since d0, e0 and ∆h1e0 are generators in Ext, the statement is trivial when i = 0.

We now consider the case i > 0. The Adams periodicity operator P i is an isomorphism

on Ext in specified ranges [20, Theorem 1.4]. Since the element d0 lies in these ranges, then

Pid0 contains the element P id0. Therefore, the set Pid0 is non-empty. The same argument

is applied for Pie0 and Pi∆h1e0.

Lemma 5.11. Let x be an element in Ext such that h3
1φ(x) = 0. Then Pi+1gx contains the

non-empty set Pid20x for all i ≥ 0. As a result, Pi+1gx is non-empty.

Proof. Since Pid0 is non-empty by Lemma 5.10, the set Pid20x is non-empty. Consider an

element β in Pid20x. Since φ(d0) = d and d2 = Pg+h3
1 ·∆h1 in ExtA(2) [17, Table 8], we have

φ(β) = P id2φ(x) = P i(Pg + h3
1 ·∆h1)φ(x)

= P i+1gφ(x) + P i∆h1 · h
3
1φ(x) = P i+1gφ(x)

Consequently, Pi+1gx contains the element β of Pid20x.

Lemma 5.12. Consider j ≥ 2 and suppose that j = 2r(2k + 1) for r ≥ 0 and k ≥ 0. We

have the differential: d2r+2(P j) = h5
0xj for some xj in the classical May spectral sequence.
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Proof. Since j ≥ 2, we do not consider r = 0 and k = 0. When r = 0 and k ≥ 1 we have

d4(P
2k+1) = d4(P ) · P 2k + d4(P

2k) · P

= d4(P ) · P 2k

= h4
0h3 · P

2k.

In the E4 page of the classical May spectral sequence we have

P 2 · h3 = h2
0i+ τPh1d0.

Then

h4
0h3 · P

2k = h4
0 · P

2k−2 · P 2h3

= h4
0 · P

2k−2 · (h2
0i+ τPh1d0)

= h5
0 · h0P

2k−2i.

When r ≥ 1 we have

d2r+2(P 2r(2k+1)) = d2r+2(P 2r(2k) · P 2r)

= d2r+2(P 2r) · P 2r(2k) + d2r+2(P 2r(2k)) · P 2r

= d2r+2(P 2r) · P 2r+1k.

Using Nakamura’s formula [29, §4 page 14] we get

d2r+2(P 2r) · P 2r+1k = h2r+2

0 hr+3 · P
2r+1k

= h5
0 · h

2r+2−5
0 hr+3P

2r+1k.

We denote by x̃j the motivic element of Chow degree zero corresponding to xj (defined

in Lemma 5.12) via the Chow degree zero isomorphism in Theorem 4.19.

Remark 5.13. In the proof of Lemma 5.12, we actually show that d2r+2(P j) = h6
0yj for some

yj in the classical May spectral sequence. However, in order to prepare for Lemma 5.14, we
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prefer the statement stated in Lemma 5.12.

Lemma 5.14. In Ext, for j ≥ 2, the Massey product 〈h2, h1, h
4
1x̃j〉 equals h2g

j.

Proof. The motivic elements h2g
j, h2, h1 and h4

1x̃j all have Chow degree zero. They corre-

spond to classical elements P jh1, h1, h0 and h4
0xj via the Chow degree zero isomorphism in

Theorem 4.19.

Classically we have P jh1 = 〈h1, h0, h
4
0xj〉. We obtain the desired identity by the Chow

degree zero isomorphism.

Remark 5.15. The g in h2g
j in the above argument is not the operator g. We write h2g

j

for the element of Ext which corresponds to the classical element P jh1 via the Chow degree

zero isomorphism in Theorem 4.19.

Lemma 5.16. The sets gjm, gjl and gjr are non-empty for all j ≥ 0.

Proof. For j = 0 the set gjm contains m, gjl contains l and gjr contains r. For j = 1 the

set gjm contains gm, gjl contains e0m and gjr contains gr. For j ≥ 2 we have

h2〈h1, h
4
1x̃j , m〉 = 〈h2, h1, h

4
1x̃j〉 ·m = h2g

j ·m

in which the last identity is by Lemma 5.14. Consider an element β in 〈h1, h
4
1x̃j , m〉. We

apply φ to get

h2φ(β) = h2g
jφ(m) = h2ng

j+1.

By inspection of ExtA(2), we have

φ(β) = ngj+1.

Therefore gjm contains β, and is non-empty.

The same argument is applied to gjl and gjr.

Lemma 5.17. The set τ∆h1g
j+1 is non-empty for all j ≥ 0.
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Proof. The set τ∆h1g is non-empty since it contains τ∆h1g.

When j ≥ 1, the set τ∆h1g
j+1 ⊇ r · gj−1m is non-empty since gjm is non-empty by

Lemma 5.16. Here we are using the identity τ∆h1g · g = φ(r) · φ(m) in ExtA(2).

Lemma 5.18. The set τgj is non-empty for any j ≥ 0.

Proof. The claim for j = 0 and j = 1 is proven by explicit low dimension calculation [18] [12].

By Lemma 5.14

〈τ, h4
1x̃j , h1〉h2 = τ〈h4

1x̃j , h1, h2〉 = τh2g
j.

Consider an element γ in 〈τ, h4
1x̃j , h1〉. We apply φ to get

φ(γ)h2 = τh2g
j.

By inspection of ExtA(2) [17, Theorem 4.13],

φ(γ) = τgj.

Therefore τgj contains γ, and is non-empty.

Lemma 5.19. The set τPigj+1 is non-empty for i ≥ 0 and j ≥ 0.

Proof. The case i = 0 is established in Lemma 5.18. Now we assume i > 0. When j = 0, by

Lemma 5.10 the set Pi−1d0 is non-empty. Consequently, τPi−1d20 is non-empty. We consider

an element x in τPi−1d20. The set Pi(τg) contains x because

φ(x) = τP i−1d20 = τP i−1(Pg + h3
1∆h1) = τP ig.

When j ≥ 1, consider x in τgj. Since h3
1φ(x) = h3

1 ·τg
j = 0 in ExtA(2), Pigx is non-empty

by Lemma 5.11. Therefore τPigj+1 = Pigx is non-empty.

Example 5.20. The set τPg contains τd20.

Now we can prove Theorem 5.8.
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Proof. We will prove that Pigjλ is non-empty. For all i ≥ 0 and j ≥ 0 we have the following

inclusions of sets.

Pigjτ∆h1e0 ⊇ τgj ·Pi∆h1e0,

Pigje0r ⊇ Pie0 · g
jr,

Pigje0m ⊇ Pie0 · g
jm,

Pigjτe0g
2 ⊇ Pie0 · τg

j+2,

Pigjd0r ⊇ Pid0 · g
jr,

Pigjd0m ⊇ Pid0 · g
jm,

Pigjτe20g ⊇ Pie20 · τg
j+1,

Pigjτ∆h1e
2
0 ⊇ τgj ·Pi∆h1e0 · e0,

Pigjd0l ⊇ Pid0 · g
jl,

Pigjτe30 ⊇ τgj ·Pie30,

Pigjτ∆h1d0e0 ⊇ τgj ·Pi∆h1e0 · d0,

Pigjd0er ⊇ Pid0 · g
jr · e0.

The set τgj ·Pi∆h1e0 consists of all products x · y in which x is an element of τgj and y is

an element of Pi∆h1e0. The same interpretation is applied for other sets on the right hand

side.

The sets on the right hand side are all non-empty because of Lemmas 5.10, 5.16 and 5.18.
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For example, since τgj and Pi∆h1e0 are non-empty,

Pigjτ∆h1e0 ⊇ τgj ·Pi∆h1e0

is non-empty. Therefore, the sets on the left are all non-empty.

Several values of λ remain.

Now consider λ = τg2. The set Pigj(τg2), or τPigj+2, is non-empty by Lemma 5.19.

Next consider λ = gr. The case i = 0 is established in Lemma 5.16. We consider i > 0.

Since gjr is non-empty by Lemma 5.16, we consider any element x in gjr. Since h3
1φ(x) =

h3
1n

2 · gj = 0 [17, Theorem 4.13], then Pigjλ = Pigx is non-empty by Lemma 5.11. The

same argument is applied for λ = gm.

Finally, consider λ = τ∆h1g. The case i = 0 is established in Lemma 5.17. We consider

i > 0. When j > 0, since τ∆h1g
j is non-empty by Lemma 5.17, we consider any element

x in τ∆h1g
j . Since h3

1φ(x) = h3
1τ∆h1 · g

j = 0 [17, Theorem 4.13], then Pigjλ = Pigx is

non-empty by Lemma 5.11. When j = 0, since

φ(τP i−1d0 · d0∆h1) = τP i−1d20∆h1

= τP i−1(Pg + h3
1∆h1)∆h1

= P iτ∆h1g,

Piτ∆h1g contains τP i−1d0 ·∆h1d0, so it is non-empty. Therefore, the set τkPigjλ is non-

empty. The non-triviality of elements in τkPigjλ is obtained by comparison to ExtA(2).

The multiplicative structure of the wedge family. We are mostly interested in

the M2-module structure of the wedge. However, it also has multiplicative structure. To be

precise, the wedge is closed under multiplication.

Proposition 5.21. For i ≥ 0, j ≥ 0, k ≥ 0 and λ ∈ Λ, the set

{x ∈ Ext : x ∈ τkPigjλ}
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is closed under multiplication.

Proof. It is sufficient to prove that for i ≥ 0, j ≥ 0, k ≥ 0 and λ ∈ Λ the subset

{τkP igjφ(λ)}

of ExtA(2) is closed under multiplication. This is done by using [17, Theorem 4.13].

5.1 The et0g
k family

The wedge family is not optimal in the sense that there exist elements of weight greater

than the weight of elements in Λ. For example, the wedge element τe20g in Λ being of weight

31 is not optimal because the element e20g in Ext is of weight 32. Table 6 lists all such elements

in Λ. The analysis of elements in Λ leads us to the study of two families et0g
k and ∆h1e

t
0g

k.

Unfortunately, these two families have complicated behavior. We state two conjectures on

them. If these two conjectures are correct, then we obtain two other systematic phenomena

in Ext.

Table 6:

element of the wedge weight element of higher weight weight
τ∆h1e0 22 ∆h1e0 23
τe30 29 e30 30

τ∆h1d0e0 30 ∆h1d0 · e0 31
τe20g 31 e0 · e0g 32

τ∆h1e
2
0 32 ∆h1e0 · e0 33

Remark 5.22. By gj we mean gj(1) which is understood in the sense of Definition 5.1.

Lemma 5.23. The set gj is empty for all j ≥ 0.

Proof. We prove the statement via contradiction. Suppose that gj is non-empty. Consider

any element x in gj. Since x maps to the non-zero element gj in ExtA(2), x is non-zero.
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Furthermore, because x has Chow degree zero, x corresponds to a classical element at degree

(8j, 4j) in Extcl via the Chow degree zero isomorphism. However, Extcl is zero in degrees

(8j, 4j) for all non-negative integers j [1]. Therefore, x does not exist.

Lemma 5.24. The set d0g contains e20.

Proof. We have φ(e20) = e20 = gd. The last identity is because e20 = gd in ExtA(2).

We study the behavior of the sets Pigjτe30, P
igjτ∆h1e0, Pigjτ∆h1d0e0, Pigjτe20g and

Pigjτ∆h1e
2
0 for i ≥ 0 and j ≥ 0.

Theorem 5.25. The sets Pigjτe30, P
igjτ∆h1e0, Pigjτ∆h1d0e0, Pigjτe20g and Pigjτ∆h1e

2
0

contain an element divisible by τ if

• i ≥ 0 and j = 0, or

• i ≥ j ≥ 1, or

• 1 ≤ i < j ≤ 3i.

Proof. Consider Pigjτe30. When i = 0 and j = 0, the element τe30 is divisible by τ . When

i ≥ 1 and j = 0, the set τPie30 contains the element τ · P ie30 which is divisible by τ. Apply

Example 5.20 and Lemma 5.24 to get:

• When i ≥ j ≥ 1, the set τPigje30 contains the element τ · d2j0 ·P i−je30 which is divisible

by τ .

• When 1 ≤ i < j ≤ 3i, the set τPigje30 contains the element τ · d3i−j
0 · e

2(j−i)+3
0 which is

divisible by τ.

The same argument can be used for Pigjτ∆h1e0, Pigjτ∆h1d0e0, Pigjτe20g and

Pigjτ∆h1e
2
0.
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There are unknown cases from Theorem 5.25. Consider Pigjτe30. When i = 0 and j ≥ 1,

the set τe30g
j is not known fully. When 3i < j, the set Pigjτe30 contains the set τe4i+3

0 gj−3i

which is not known fully. The same story happens to Pigjτ∆h1e0, Pigjτ∆h1d0e0, Pigjτe20g

and Pigjτ∆h1e
2
0 which leads us to an observation that there are two sets ∆h1e

t
0g

k and et0g
k

for k ≥ 0 and t ≥ 1 which are not known fully.

Remark 5.26. By “not known fully" we mean that we do not know if the sets ∆h1e
t
0g

k and

et0g
k are non-empty in general. The low dimension calculations show that they are empty

with some values of t and k and non-empty with some other values.

Remark 5.27. Since ∆h1 is not an element of Ext, ∆h1g
k is not defined. Therefore, we do

not consider the set ∆h1e
t
0g

k when t = 0. We do not consider the set etgk when t = 0 either

because the set gk is known to be empty by Lemma 5.23.

Lemma 5.28. If et0g
k is non-empty, then et0g

k consists of elements which are non-zero in

the h1-localization Ext[h−1
1 ].

Proof. For any element x in et0g
k and any non-negative integer n, we have φ(hn

1x) = hn
1e

t
0g

k

which is non-zero in ExtA(2) [17, Theorem 4.13]. Consequently, hn
1x is non-zero in Ext. In

other words, x is non-zero in the h1-localization ExtA[h−1
1 ].

Proposition 5.29. Let t and k be non-negative integers. If α(t+k) > t, then et0g
k is empty.

Proof. (Via contradiction) Suppose that et0g
k is non-empty. As a result, its elements survive

the h1-localization by Lemma 5.28. Note that elements of et0g
k have Chow degree t and

coweight (7t + 8k). By Theorem 4.13, after considering Chow degrees, any element of et0g
k

maps to a summation of monomials of the form

v4n1 vm2

t−4n−m
∏

i=1

vmi

in ExtA[h−1
1 ] for some n,m and mi ≥ 3. By comparing coweights, we have

7t+ 8k = 4n+ 3m+
t−4n−m
∑

i=1

(2mi − 1).
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Then

8t+ 8k = 8n+ 4m+
t−4n−m
∑

i=1

2mi.

Since mi ≥ 3, m has to be even, i.e., m = 2m′ for some non-negative integer m′. We obtain

t + k = n+m′ +

t−4n−m
∑

i=1

2mi−3.

By Lemma 4.16,

α(t+ k) ≤ α(n) + α(m′) + t− 4n−m = t+ (α(n)− 4n) + (α(m′)− 2m′) ≤ t.

Corollary 5.30. If e0gk is non-empty, then k = 2n − 1 for some non-negative integer n.

Proof. Since e0g
k is non-empty, α(1+ k) ≤ 1 by Proposition 5.29. Then 1+ k = 2n for some

non-negative integer n.

We state the following conjecture.

Conjecture 5.31. The set e0gk is non-empty if and only if k = 2n−1 for some non-negative

integer n.

We mention some evidence supporting the conjecture. The elements e0g and e0g
3 survive

in Ext (by explicit computations). Also, the conjecture fits nicely with the properties of the

h1-localization of Ext [14].

Theorem 5.32. Suppose that e0g2n−1 is non-empty for every non-negative integer n. Then

et0g
k is non-empty if and only if k = (

∑t

i=1 2
ni)− t for some non-negative integers ni.

Proof. If et0g
k is non-empty, then by Proposition 5.29 we have α(k + t) ≤ t. As a result,

k + t =
∑t

i=1 2
ni for some non-negative integers ni. In other words,

k = (
t

∑

i=1

2ni)− t.
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Conversely, if k = (
∑t

i=1 2
ni)− t, since e0g

2ni−1 is non-empty for all ni then

et0g
k ⊇ e0g

2n1−1 · · · e0g
2nt−1

is non-empty.

Remark 5.33. The condition k = (
∑t

i=1 2
ni)− t is equivalent to α(k+ t) ≤ t. In practice, we

use the latter condition rather than the former one.

5.2 The ∆h1e
t
0g

k family

Proposition 5.34. If α(1 + k + t) > t for t ≥ 1 and k ≥ 0, then the set ∆h1e
t
0g

k is empty.

Proof. (Via contradiction) Recall the following commutative diagram [14]

Ext ExtA(2)

Ext[h−1
1 ] ExtA(2)[h

−1
1 ]

φ

L L

φ

Suppose that ∆h1e
t
0g

k is non-empty. Then it contains an element x. The element x maps

to the element ∆h1e
t
0g

k in ExtA(2), surviving h1-localization. The element ∆h1e
t
0g

k maps to

h−2k−5
1 v41a

2+2k+t
1 vt2 + h−2k+1

1 v4+t
2 a2k+t

1

in ExtA(2)[h
−1
1 ] via L.

Since α(1+k+ t) > t, the term h−2k−5
1 v41a

2+2k+t
1 vt2 is not in the image of φ : Ext[h−1

1 ] −→

ExtA(2)[h
−1
1 ] by Lemma 4.18.

Lemma 5.35. For any integer k ≥ 0, there is no element x in Ext such that φ(x) = ∆h1g
k

in ExtA(2).

Proof. We apply the same argument as in Proposition 5.34.
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By Proposition 5.34, a necessary condition for the set ∆h1e0g
j to be non-empty is α(2+

j) ≤ 1, or j = 2n − 2 for some non-negative integer n. Unfortunately, we do not know if it

is sufficient. We state the following conjecture.

Conjecture 5.36. The set ∆h1e0g
j is non-empty if and only if j = 2n − 2 for some non-

negative integer n.

Theorem 5.37. Suppose that e0g2n−1 and ∆h1e0g
2n−2 are non-empty for every non-negative

integer n. Then ∆h1e
t
0g

k is non-empty if and only if k = (
∑t

i=1 2
ni) − t − 1 for some non-

negative integers ni.

Proof. If ∆h1e
t
0g

k is non-empty, then α(1 + k + t) ≤ t or k = (
∑t

i=1 2
ni) − t − 1 for some

non-negative integers ni.

Conversely, if k = (
∑t

i=1 2
ni) − t − 1 for some non-negative integers ni, then ∆h1e

t
0g

k

contains the set

∆h1e0g
2
ni1−2e0g

2
ni2−1 · . . . e0g

2
nit−1

which is non-empty.

5.3 The wedge at filtrations f = 4k and f = 4k + 1 for k ≥ 2

At filtrations f = 4k + 2 and f = 4k + 3 for k ≥ 2, the wedge is optimal in the sense

that all elements are of the greatest weight. At filtrations f = 4k and f = 4k + 1 for k ≥ 2,

the wedge is not optimal in the sense that there exist elements in Ext which are of weight

greater than the weight of the wedge elements.

Theorem 5.38. Suppose that e0g2n−1 is non-empty for every non-negative integer n. Then

at filtration f = 4k for k ≥ 2 the set τes0g
k−s contains an element divisible by τ if s ≥ α(k)

and does not contain any element divisible by τ if s < α(k).
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Proof. If s ≥ α(k), by Theorem 5.32 and Remark 5.33 the set es0g
k−s contains an element x.

Then τes0g
k−s contains the element τ · x divisible by τ .

If s < α(k), we suppose that τes0g
k−s contains an element τ ·y divisible by τ . The element

τ · y maps to τes0g
k−s in ExtA(2). Then y maps to es0g

k−s in ExtA(2). In other words, y is an

element of the set es0g
k−s. However, since s < α(k), the set es0g

k−s is empty by Proposition

5.29.

Theorem 5.39. Suppose that e0g2n−1 and ∆h1e0g
2n−2 are non-empty for every non-negative

integer n. Then at filtration f = 4k+1 for k ≥ 2 the set τ∆h1e
s
0g

k−s−1 contains an element

divisible by τ if s ≥ α(k) and does not contain any element divisible by τ if s < α(k).

Proof. If s ≥ α(k), then by Theorem 5.37 the set ∆h1e
s
0g

k−s−1 contains an element x. Then

τ∆h1e
s
0g

k−s−1 contains the element τ · x divisible by τ .

If s < α(k), we suppose that τ∆h1e
s
0g

k−s−1 contains an element τ · y divisible by τ . The

element τ · y maps to τ∆h1e
s
0g

k−s−1 in ExtA(2). Then the element y maps to ∆h1e
s
0g

k−s−1 in

ExtA(2). In other words, y is an element of the set ∆h1e
s
0g

k−s−1. However, since s < α(k),

the set ∆h1e
s
0g

k−s−1 is empty by Proposition 5.34.

Corollary 5.40. At filtration f = 4k + 1 and f = 4k for k ≥ 2 and s < α(k), all elements

in the sets τes0g
k−s and τ∆h1e

s
0g

k−s−1 are optimal.

5.4 The wedge chart

This chart shows the wedge from its vertex to stem 70.

• Solid dots and open circles indicate copies of M2.

• Solid dots indicate elements which behave irregularly, as in Propositions 5.29 and 5.34.

• Open circles indicate elements which behave regularly.
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Figure 1: The C-motivic wedge through the 70-stem
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CHAPTER 6 THE C-MOTIVIC UNSTABLE ADAMS

SPECTRAL SEQUENCE PROGRAM

6.1 The classical unstable Adams spectral sequence

We recall that the suspension from Sn to Sn+1 induces a group homomorphism

[Sn+k, Sn] → [Sn+k+1, Sn+1].

This group homomorphism is not isomorphic when n ≤ k + 1 in general. In that case, the

group πn+k(S
n) = [Sn+k, Sn] is called the unstable homotopy groups of spheres. Unfortu-

nately, computing the unstable homotopy groups is much harder than that for the stable

ones. One of the reasons is that the unstable homotopy groups do not have many structures

allowing computations.

Much of the knowledge about the unstable homotopy groups comes from homology groups

via the Hurewicz theorem, the Serre spectral sequence, the Hopf fibrations and the EHP

spectral sequence.

We discuss how to use the Hopf fibration

S1 →֒ S3 −→ S2

to compute the group π3(S
2). The above Hopf fibration gives rise to the following long exact

sequences of homotopy groups

. . . π3(S
1) π3(S

3) π3(S
2)

π2(S
1) π2(S

3) . . .

δ

Since π3(S
1) ∼= 0, π2(S

1) ∼= 0, π2(S
3) ∼= 0 and π3(S

3) ∼= Z we have the following short exact

sequence

0 −→ Z −→ π3(S
2) −→ 0 −→ 0.

Then π3(S
2)/Z ∼= 0 or π3(S

2) ∼= Z.
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Remark 6.1. We have

• πm(S
1) ∼= 0 for all m > 1.

• πm(S
n) ∼= 0 for all m < n.

• πn(S
n) ∼= Z for all n ≥ 1.

Unfortunately, there are only four Hopf fibrations of spheres. Also, the use of the Serre

spectral sequence or the EHP spectral sequence to compute the homotopy groups of spheres

is complicated and not able to carry to high dimensions.

The success of the classical Adams spectral sequence for stable homotopy groups suggests

to look for an unstable version for the Adams spectral sequence.

6.1.1 The classical unstable Adams spectral sequence

We denote π∗(X) = ⊕k≥0πk(X).

The each space X being simply connected, Curtis [9] defines a spectral sequence which

converges to π∗(X). Then Rector [32] defines a mod-p version of this spectral sequence

converging to the p-primary component of the group π∗(S
n) and it appears to be a good

candidate for an Unstable Adams spectral sequence.

6.1.2 The classical Lambda algebra

The classical Lambda algebra is defined by Bousfield et al. However, in this thesis we

prefer using John Wang’s description for the Lambda algebra.

Definition 6.2. The classical (mod-2) Lambda algebra Λ is an associative bigraded F2-

algebra with generators λn ∈ Λ1,n+1 (n ≥ 0) and relations

λiλ2i+1+n =
∑

j≥0

(

n− j − 1

j

)

λi+n−jλ2i+1+j
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for i, n ≥ 0 with differential

d(λn) =
∑

j≥1

(

n− j

j

)

λn−jλj−1.

Remark 6.3. The Lambda algebra is not commutative.

We can define the mod-p Lambda algebra. However, as mentioned before, in this thesis

we always choose p = 2.

Remark 6.4. For the purpose of studying the homotopy groups of spheres, we would like to

use the bigrading Λn,1 instead of Λ1,n+1 as defined in Definition 6.2.

The Lambda algebra has chain complex structure. Its homology is isomorphic to the

E2-page of the classical Adams spectral sequence for the sphere spectrum or the cohomology

Extcl of the classical Steenrod algebra.

Theorem 6.5 (Bousfield et al). The homology of Λ with respect to the differential d is

isomorphic to the cohomology of the classical Steenrod algebra,

H(Λ) = Extcl.

The defining relations of the Lambda algebra suggest the following definition.

Definition 6.6. A monomial λi1λi2 · · ·λis in Λ is admissible if 2ir ≥ ir+1 for 1 ≤ r < s.

Λ(n) is the subcomplex of Λ spanned by the admissible monomials with i1 < n.

Theorem 6.7 (Rector). The homology of Λ(n) is isomorphic to the E2-page of the (classical)

unstable Adams spectral sequence converging to π∗(S
n),

H(Λ(n)) ∼= E2(S
n).

6.1.3 Computing the homology of the Lambda algebra

Now we discuss how to compute H(Λ) and H(Λ(n)). Unfortunately, because of the non-

commutativity of Λ, the computation by hand is very ineffective at high dimensions or with
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large values of n. The key to this computation is to choose the right basis. We will discuss

Curtis’s idea to set aside the vast majority of monomials which are irrelevant.

One of the advantages of the Lambda algebra over the May spectral sequence in com-

puting the E2 page of the Adams spectral sequence is that all the product structure of the

E2 shows up. (We discussed in the chapter about spectral sequences how spectral sequences

lose product structure.)

6.2 Looking for a C-motivic Lambda algebra

Our main purpose is to construct a C-motivic version of the unstable Adams spectral

sequence converging to the homotopy groups π∗(S
p,q) of the motivic sphere Sp,q. However,

we still do not know how to do it. One easier problem, suggested by Theorem 6.7, is to

define a C-motivic version ΛC of the classical Lambda algebra. We hope that the homology

of ΛC gives information about the E2-page of the desired C-motivic unstable Adams spectral

sequence. The author wants to thank Eva Belmont for her useful suggestion to this problem.

The desired motivic Lambda algebra ΛC should have its homology isomorphic to the

cohomology Ext of the motivic Steenrod algebra. We emphasize that we already know Ext

up to at least the 70th stem [18]. The main problem of this section is as follows.

Problem 6.8. Define a C-motivic version ΛC of the classical Lambda algebra such that

H(ΛC) ∼= Ext.

Priddy suggests another approach to construct the classical Lambda algebra. Unfortu-

nately, it does not work in the C-motivc context where we work on the M2-algebra structure

rather than the F2-algebra structure as in the classical case. However, this approach suggests

a very interesting algebra which is expected to be the desired motivic Lambda algebra. With

an abuse of names, we will call it the motivic Lambda algebra ΛC.

We recall that M2 is the polynomial ring F2[τ ] with one generator τ having bidegree
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(0, 1).

Definition 6.9. The motivic (mod-2) Lambda algebra ΛC is a trigraded M2-algebra with

generators λn ∈ Λn,1,⌊n+1

2
⌋ (n ≥ 0) and the relations

λiλ2i+1+n =
∑

j≥0

(

n− j − 1

j

)

τ ?λi+n−jλ2i+1+j

for i, n ≥ 0 with the differential d(λ0) = 0 and

d(λn) =
∑

j≥1

(

n− j

j

)

λn−jλj−1.

Remark 6.10. Using Priddy’s method, we assign λn to Sqn+1 having motivic weight ⌊n+1
2
⌋.

We refer to the third degree of ΛC as its weight.

Remark 6.11. If n < k, then
(

n

k

)

= 0.

The motivic Lambda algebra is very similar to the classical Lambda algebra. There are

two differences. First of all, the motivic Lambda algebra is an M2-algebra. Secondly, it is

trigraded. As a result, τ appears in the relations. The symbol ? stands for either 0 or 1,

depending on which value makes the formula balanced in weight. The element τ does not

appear in the formula for the differential because the weights on both sides are already

balanced.

Unfortunately, we still do not know if the homology of ΛC is isomorphic to Ext. We have

the following conjecture.

Conjecture 6.12. The homology of the motivic Lambda algebra is isomorphic to the

cohomology of the motivic Steenrod algebra,

H(ΛC) ∼= Ext.

We use the shorthand a for λa and a b for λaλb. In the classical case we have 1 0 2 1 = 1 1 1 1

but motivically we have 1 0 2 1 = τ(1 1 1 1) because of weight reasons. It leads to a very

important differential.
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Proposition 6.13. We have

d(2 2 1) = τ(1 1 1 1).

Proof. It is straight forward from the formula for the differential and the relation 1 0 2 1 =

τ(1 1 1 1).

If Conjecture 6.12 is correct, then the homology class λ1, a generator, in H(ΛC) maps

to the element h1 in Ext because of degree reasons. The above differential implies that the

class τ(λ1)
4 = 0 in H(ΛC). As a result, τh4

1 = 0 in Ext which fits perfectly our knowledge

about Ext. Unfortunately, this is the only motivic fact we know on H(ΛC) which fits our

knowledge about Ext.

Lemma 6.14. For any integer x, we denote p(x) to be the exponent of 2 in the prime

factorization of x. For any integers n ≥ 1 and k > 0 such that 2n > k we have

p(2n − k) = p(k).

Proof. We suppose that k = 2my for some integers m ≥ 0 and y odd. Then 2n − k =

2m(2n−m − y). Since 2n > k then n > m. It implies that (2n−m − y) is odd. Consequently,

p(2n − k) = p(k) = m.

Lemma 6.15. For a positive integer n we suppose that 2s is the highest power of 2 which is

not greater than n, i.e. 2s ≤ n ≤ 2s+1 − 1. Then

1. p(n!) = ⌊n
2
⌋ + ⌊ n

22
⌋+ . . . ⌊ n

2s
⌋.

2. For x = (n + 1)(n+ 2) . . . (2n) we have

p(x) ≥ ⌊
n

2
⌋ + ⌊

n

22
⌋ + . . . ⌊

n

2s
⌋+ 1.

Proof. The first statement is straight forward from the observation that from 1 to n there

are exactly ⌊ n
2k
⌋ numbers which are divisible by 2k.
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To prove the second statement we first observe that in n consecutive positive integers

there are at least ⌊ n
2k
⌋ numbers which are divisible by 2k for k ≤ s. Consequently, we have

p(x) ≥ ⌊
n

2
⌋+ ⌊

n

22
⌋+ . . . ⌊

n

2s
⌋.

Since 2s ≤ n ≤ 2s+1−1 then n+1 ≤ 2s+1 ≤ 2n. The power 2n+1 contributes one more factor

2 to x. It then implies the desired inequality.

Proposition 6.16. For all n ≥ 0 we have

d(λ2n−1) = 0.

Proof. Since d(λ0) = 0 we only have to prove the statement for n ≥ 1. By the differential

formula we have

d(λ2n−1) =
∑

j≥1

(

2n − 1− j

j

)

λ2n−1−jλj−1.

We only have to consider non-zero coefficients
(

2n−1−j

j

)

on the right hand side. We will show

that
(

2n−1−j

j

)

is an even integer for all n. As a result, all coefficients on the right hand side

of the above formula are zero. We have
(

2n − 1− j

j

)

=
(2n − 2j)(2n − 2j + 1) · · · (2n − j − 1)

(j)!
.

By Lemma 6.14 we have p(2n − 2j) = p(2j), . . . , p(2n − j − 1) = p(j + 1). Then

p[(2n − 2j)(2n − 2j + 1) · · · (2n − j − 1)] = p[(2j)(2j + 2) . . . (j + 1)].

By Lemma 6.15 we have p[(2j)(2j + 2) . . . (j + 1)] ≥ p(j!) + 1. Then the number
(

2n−1−j

j

)

is

even.

Proposition 6.16 gives a class of generators of H(ΛC) containing only one element λi for

some i. By degree reasons, if Conjecture 6.12 is correct, then the generators λ2n−1 of H(ΛC)

correspond to the generators hn of Ext. The proof of Proposition 6.16 also works for classical

case.
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Definition 6.17. A monomial λi1λi2 · · ·λis in Λ is admissible if 2ir ≥ ir+1 for 1 ≤ r < s.

ΛC(n) is the subcomplex of ΛC spanned by the admissible monomials with i1 < n.

If ΛC satisfies Problem 6.8, then we can compute the homology of ΛC(n). We expect that

this homology is isomorphic to the E2-page of a motivic unstable Adams spectral sequence

which we are looking for.

Problem 6.18. Compute H(ΛC(n)).

What can we learn from H(ΛC(n))? Classically, the subcomplex Λ(n) is the input to

compute π∗(S
n). However, the motivic spheres Sp,q are bigraded. As a result, in order to

compute π∗S
p,q we need a bigraded input. There is a possibility that H(ΛC(n)) may give

information about ⊕qπ∗S
p,q but it is still an unknown problem.
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Computing the stable homotopy groups of the sphere spectrum is one of the most im-

portant problems of stable homotopy theory. Focusing on the 2-complete stable homotopy

groups instead of the integral homotopy groups, the Adams spectral sequence appears to be

one of the most effective tools to compute the homotopy groups. The spectral sequence has

been studied by J. F. Adams, M. Mahowald, M. Tangora, J. P. May and others.

In 1999, Morel and Voevodsky introduced motivic homotopy theory. One of its conse-

quences is the realization that almost any object studied in classical algebraic topology could

be given a motivic analog. In particular, we can define the motivic Steenrod algebra A, the

motivic stable homotopy groups of spheres [27] and the motivic Adams spectral sequence. In

the motivic perspective, there are many more non-zero classes in the motivic Adams spectral

sequence, which allows the detection of otherwise elusive phenomena. Also, the additional

motivic weight grading can eliminate possibilities which appear plausible in the classical

perspective.

To run the motivic Adams spectral sequence, one begins with ExtA(M2,M2). The alge-

bra ExtA(M2,M2) is infinitely generated and irregular. A natural approach is to look for

systematic phenomena in ExtA(M2,M2). One potential candidate is the wedge family in

ExtA(M2,M2).

The classical wedge family was studied by M. Mahowald and M. Tangora [21]. It is a

subset of the cohomology ExtAcl
(F2,F2) of the classical Steenrod algebra, consisting of non-

zero elements P igjλ and gjt in which λ is in Λ, t is in T, i ≥ 0 and j ≥ 0. The sets Λ and
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T are specific subsets of ExtAcl
(F2,F2). The wedge family gives an infinite wedge-shaped

diagram inside the cohomology of the classical Steenrod algebra, which fills out an angle

with vertex at g2 in degree (40,8) (i.e. g2 has stem 40 and Adams filtration 8), bounded

above by the line f = 1
2
s − 12, parallel to the Adams edge [1], and bounded below by the

line s = 5f , in which f is the Adams filtration and s is the stem. The wedge family is a large

piece of ExtAcl
(F2,F2) which is regular, of considerable size and easy to understand.

Using this idea we build the motivic version of the wedge. However, it appears to be more

complicated than the classical one. The motivic wedge family takes the same position and

same shape as the classical one. However the vertex of the motivic wedge is at τg2 in degree

(40, 8, 23) having weight 23. Note that g2 in degree (40, 8, 24) does not survive the motivic

May spectral sequence [18]. Our main result, Theorem 5.8, states that the subsets τkPigjλ

are non-empty and consist of non-zero elements for all λ in Λ.
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