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1

CHAPTER 1 INTRODUCTION

ARM architecture has been wildly adopted in smart mobile phones and Internet of

Things (IoT). In recent years, smart mobile phones and IoT devices become prevalent and

important to our daily life. Unfortunately, these devices suffers from a variety of malware

threats and internet attacks. According to the latest McAfee threats report, more than 1.5

million new malware samples on mobile device has been detected during the third quarter

of 2018 [161]. To defend against these malware attacks, researchers need to analyze these

samples to understand their behavior so that effective defenses can be developed.

As the most representative platform for mobile phones and IoT devices, Android dom-

inate the mobile operate system market with more than 75% market share by the end of

2018 [238]. The dominative market also attracts the attentions of malicious developers

and security researchers. To avoid of being detected by the analysis systems designed by

the security researchers, the malicious developers play with the special Java virtual ma-

chine deployed in Android and adopt various techniques to hide the malicious behavior in

the application [5, 42, 48, 113, 114, 151, 198, 248]. Specifically, these techniques aim to

obfuscate the bytecode inside the application and mislead the analysis systems.

Other than the special techniques for Android, the traditional evasion trick helps the

malware escape from being detected by the malware analysis system on ARM platforms.

For example, some of the malware analysis systems on ARM platforms [73, 245, 277]

are based on emulation or virtualization technology, and a series of anti-emulation and

anti-virtualization techniques [131, 193, 258] have been developed to challenge them. To

address this challenge, researchers study the malware on bare-metal devices via modify-
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ing the system software [85, 194, 244, 294] or leveraging OS APIs [55, 295] to monitor

the runtime behavior of malware. Although bare-metal based approaches eliminate the

detection of the emulator or hypervisor, the artifacts introduced by the analysis tool itself

are still detectable by malware. Moreover, privileged malware can even manipulate the

analysis tool since they run in the same environment. How to build a transparent malware

analysis system on ARM platform is still a challenging problem.

This transparency problem has been well studied in the traditional x86 architecture,

and milestones have been made from emulation-based analysis systems [15, 234] to hardware-

assisted virtualization analysis systems [76, 77, 147], and then to bare-metal analysis sys-

tems [140, 141, 236, 285]. As the state-of-the-art solution to the transparency problem

on x86 architecture, [285] provide us a insight that the hardware-based design brings a

better transparency for the analysis system.

The goal of our work it to provide a practical solution for the security-related problems

on the ARM platforms. As the first attempt, we design a novel program transformation

system that reveals the hidden code in Android applications to analyzable pattern via

instruction-level extracting and reassembling. With this transformation, the hidden code

protected by the aforementioned evasion techniques on Android (i.e., packing, reflection,

dynamic loading and self-modifying) would be detectable for existing static analysis tools.

Our system collects bytecode and data when they are executed and accessed, and re-

assembles the collected result into a valid DEX file for static analysis tools. One of the key

challenges in our system is to reassemble the instructions into a valid and accurate DEX

file. Hence, we design a novel reassembling approach to construct the entire executed con-

trol flows including self-modifying code. Additionally, we implement the first prototype of
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force execution on Android and use it as our code coverage improvement module. Since

we extract all executed instructions, our system is able to uncover the malicious behavior

of the applications equipped with Android-specific evasion technique.

Next, to handle the traditional evasion techniques, we present a transparent malware

analysis framework on ARM platform by leveraging hardware features including TrustZone

technology, Performance Monitoring Unit (PMU), and Embedded Trace Macrocell (ETM).

We implement a prototype of the framework that embodies a trace subsystem with dif-

ferent tracing granularities and a debug subsystem with a GDB-like debugging protocol

on ARM Juno development board. In the prototype, we also protect the system registers

via hardware traps and memory protection to keep the analysis system transparent to the

target application.

Due to the heavy use of the hardware debugging features, we also dig into the ARM

debugging architecture to acquire a comprehensive understanding of the debugging fea-

tures. Although the debugging architecture has been presented for years, its security is

under-examined by the community since it normally requires physical access to use these

features. However, the real security aspects of the debugging architecture remains un-

clear. During the analysis, we find that physical access is not actually required to make

use of the hardware debugging features. Consequently, we summarize a series of the se-

curity implications that is caused by the assumption of physical access. By exploiting these

implications, we craft a novel attack scenario that works on a processor running in a low-

privileged mode and accesses the high-privileged content of the system without restriction

via the misusing the hardware debugging features.

The revealed privilege escalation vulnerability has raised our concern on the security
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of the Trusted Execution Environment (TEE) and Cyber-physical Systems (CPS). For the

security of TEE, we conduct an analysis on the widely deployed TEEs and summarize the

challenges in securing these TEEs. A study of the deploying the TEEs on edge platform

is also presented. For the security of CPS, we also perform an analysis on the real-world

traffic signal systems to understand their security problems.
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CHAPTER 2 BACKGROUND

In this section, we introduce the basic concepts used in this paper. First, we explain the

Java virtual machines deployed in Android. Then, I describe the design of ARM TrustZone

and trusted firmware. The ARM debugging architecture is also explained.

2.1 Dalvik, Android Runtime, and Android Java Bytecode

Dalvik is a special Java virtual machine running in the Android system. It is used to in-

terpret Android specified bytecode format since the first release of Android. To improve the

performance, Google has introduced Just-In-Time (JIT) compilation and Ahead-Of-Time

(AOT) compilation since Android 2.2 and Android 4.4, respectively. The JIT compilation

continually compiles frequently executed bytecode slices into the machine code. As an

upgrade, the AOT compilation compiles most bytecode in the application into the machine

code during the installation. Dalvik equipped with AOT compilation is renamed to Android

Runtime (ART). Since Android 5.0, Dalvik has been completely replaced by ART.

In both Dalvik and ART, the Java source code is compiled to Dalvik Executable (DEX)

files which includes the bytecode for the Android Java virtual machine. The bytecode

in DEX files is organized in units of methods. The minimum code unit for JIT and AOT

compilation is a method, indicating that a single method cannot contain both bytecode and

machine code. Methods such as constructors and abstract methods require the bytecode

interpreter even in ART. Moreover, a single method or the entire ART can be configured to

run in the interpreter mode.

The Java bytecode in Android is chained by instructions. Each instruction contains an

opcode and arguments related to the opcode. The opcodes are different from the ones in
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regular Java bytecode and the bit-length of an instruction varies according to the opcode.

In the interpreter, instructions are listed in an array of 16-bit (2 bytes) units. An instruction

occupies at least one unit with a maximum number of units up to five.

2.2 ARM TrustZone and Trusted Firmware

ARM TrustZone technology [31] introduces a hardware-assisted security concept that

divides the execution environment into two isolated domains, i.e., secure domain and non-

secure domain. Due to security concerns, the secure domain could access the resources

(e.g., memory and registers) of the non-secure domain, but not vice versa. In ARMv8

architecture, the only way to switch from normal domain to secure domain is to trigger a

secure exception [20], and the exception return instruction eret is used to switch back to

the normal domain from the secure domain after the exception is handled.

ARM Trusted Firmware [30] (ATF) is an official implementation of secure domain pro-

vided by ARM, and it supports an array of hardware platforms and emulators. While en-

tering the secure domain, the ATF saves the context of the normal domain and dispatches

the secure exception to the corresponding exception handler. After the handler finishes

the handling process, the ATF restores the context of the normal domain and switches

back with eret instruction. ATF also provides a trusted boot path by authenticating the

firmware image with several approaches like signatures and public keys.

2.3 ARM Debugging Architecture

The ARM architecture defines both invasive and non-invasive debugging features [18,

20]. The invasive debugging is defined as a debug process where a processor can be

controlled and observed, whereas the non-invasive debugging involves observation only
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without the control. The debugging features such as breakpoint and software stepping

belong to the invasive debugging since they are used to halt the processor and modify its

state, while the debugging features such as tracing (via the Embedded Trace Macrocell)

and monitoring (via the Performance Monitor Unit) are non-invasive debugging.

The invasive debugging can be performed in two different modes: the halting-debug

mode and the monitor-debug mode. In the halting-debug mode, the processor halts and

enters the debug state when a debug event (e.g., a hardware breakpoint) occurs. In the de-

bug state, the processor stops executing the instruction indicated by the program counter,

and a debugger, either an on-chip component such as another processor or an off-chip

component such as a JTAG debugger, can examine and modify the processor state via the

Debug Access Port (DAP). In the monitor-debug mode, the processor takes a debug excep-

tion instead of halting when the debug events occur. A special piece of software, known as

a monitor, can take control and alter the process state accordingly.

2.4 Advanced Transportation Controller and Roadside Cabinets

The traffic signals in the intersections are controlled by the Advanced Transportation

Controller (ATC). The ATC makes logical decisions based on its inputs and configuration

settings to implement traffic patterns. This configuration, based upon what is called the

signal timing plan [257], holds parameters such as what duration to run which traffic

patterns along with the minimum and maximum times to run the pattern.

According to the ATC standard [2] released by American Association of State High-

way and Transportation Officials (AASHTO) [1], Institute of Transportation Engineers

(ITE) [124], and National Electrical Manufacturers Association (NEMA) [171], the ATC
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is built upon a Linux kernel with BusyBox integration, supporting a capable networking

stack and access to most typical Linux shell operations such as FTP and SSH. On top of the

kernel, the actual control logic is left to the individual software running in the ATC, and

the municipalities may use different software according to their specific requirements and

existing infrastructure.

The ATC is normally placed in a roadside cabinet. There are mainly two standards for

the cabinet, i.e., the TS-2 standard [170] designed by NEMA and the Intelligent Trans-

portation System (ITS) standard [115] developed by ITE.

The TS-2 Cabinet Standard [170] is a traffic signal cabinet standard that was initially

commissioned by NEMA in 1998. The core feature of the modern TS-2 cabinet is its use of

a single IBM SDLC serial bus for inter-device communications within the cabinet. The ITS

Cabinet standard [115] is designed to supersede the NEMA TS-2 standard. By effectively

using two serial buses, the ITS Cabinet maintains separation between the control plane of

the traffic signal’s relays and the supervisory bus shared between the traffic controller unit

and fail-safe unit. Since the control planes (failure handling, signal control, environmen-

tal sensing) is separated into different buses, the congestion and latency on the bus are

reduced.

2.4.1 Malfunction Management Unit and Cabinet Monitor Unit

As specified in the NEMA TS-2 Cabinet specification, the Malfunction Management

Unit (MMU) is designed to accomplish the detection of, and response to, improper and

conflicting signals. If an MMU detects that any monitoring parameter is out-of-range or in

disagreement with the expectation, the MMU will override the control of the ATC, and the

intersection is placed into a known-safe state called “conflict flash”. Conflict flash is a state
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in that all intersection operations are halted and individual traffic signal will be instructed

to strobe their red lights. In order to return the operation of an intersection to a normal

state, the MMU must be manually reset by a technician on-site.

The functionality of the Cabinet Monitor Unit (CMU) in the ITS cabinet is similar to

the MMU in the TS-2 cabinet. The ITS Cabinet specification states that the minimum func-

tionality of CMU is as least that provided by the NEMA TS-2 MMU. Additionally, the CMU

offers enhanced monitoring and logging capabilities for items such as electrical voltages

seen on cabinet peripherals, operating temperatures, and access controls.
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CHAPTER 3 REASSEMBLEABLE BYTECODE EXTRACTION ON
ANDROID

3.1 Introduction

For a better understanding of the malware behaviors on Android, a series of static

analysis tools [33, 58, 98, 148, 265] and dynamic analysis tools [85, 244, 245, 277, 294]

are designed. However, these tools suffer from some common disadvantages.

First, static analysis tools identify the malicious behavior of an application by investi-

gating bytecode in Dalvik Executable (DEX) files, which is compiled from the Java source

code and embedded in the Android Package (APK) file of the application. Due to the pop-

ular usage of the public packing platforms [5, 42, 114, 151, 198, 248], the original DEX

file of the application may be encrypted and replaced by another shell DEX file, while the

shell DEX file would decrypt the original DEX file and release it at runtime. In this case,

static analysis tools are completely unarmed as they can only fetch the shell DEX file but

not the encrypted original DEX file. Existing solutions [278, 293] to the packing technique

assume that there is a point when all original code is unpacked in memory, which is not

held with sophisticated adversaries [48, 113]. Moreover, the Java reflection and dynamic

loading code are still a challenging task for the static analysis tools [33, 58, 98].

Second, although the dynamic analysis tools [85, 244, 245, 277, 294] do not suffer

from the aforementioned techniques, they have their own drawbacks. The automatic dy-

namic taint flow analysis tools [85, 244, 294] cannot handle implicit taint flows while

static analysis tools [148, 265] can solve them. Moreover, the huge performance overhead

makes it difficult to implement a complicated analysis mechanism, so there is a trade-

off between the accuracy and performance. Meantime, the code coverage problem also
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threatens the accuracy of the dynamic analysis tools [245, 277, 294].

We present DexLego, a novel program transformation system that reveals the hidden

code in Android applications to analyzable pattern via instruction-level extracting and

reassembling. DexLego collects bytecode and data when they are executed and accessed,

and reassembles the collected result into a valid DEX file for static analysis tools. Since we

extract all executed instructions, our system is able to uncover the malicious behavior of

the packed applications or malware with self-modifying code. One of the key challenges

in DexLego is to reassemble the instructions into a valid and accurate DEX file. Hence,

we design a novel reassembling approach to construct the entire executed control flows

including self-modifying code. Additionally, we implement the first prototype of force

execution on Android and use it as our code coverage improvement module.

Moreover, our system helps static analysis tools improve the analysis accuracy on re-

flection samples. The Java reflection obscures the control flows of the application by re-

placing the direct function call or field access with a call to the reflection library functions

which take the name string of the function or field as parameter. Previous reflection solu-

tions [45] and static analysis tools [33, 58, 98] on Android assume that the name strings

of the reflectively invoked method and its declaring class are reachable. However, the

name string can be encrypted in some cases [204] and the advanced malware could even

use reflective method calls without involving any string parameter [83]. A solution on

traditional Java platform [49] requires load-time instrumentation which is not supported

in Android [33]. Thus, DexLego implements a similar idea in Android and replaces the

reflective call with direct call.

We evaluate DexLego on real-world packed applications and DroidBench [83]. The
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evaluation result shows DexLego successfully unpack and reconstruct the behavior of the

applications. The F-measures (i.e., analysis accuracy) of FlowDroid [33], DroidSafe [98],

and HornDroid [58] on DroidBench increase 33.3%, 31.1%, and 23.6%, respectively. More-

over, static analysis tools with the help of DexLego provide a better accuracy than existing

dynamic analysis systems TaindDroid [85] and TaindART [244]. The code coverage exper-

iments on open source samples from F-Droid [86] show that our force execution module

helps to improve the coverage of dynamic analysis and increases the coverage of state-of-

the-art fuzzing tool, Sapienz [158], from 32% to 82%.

3.2 Related Work

3.2.1 Static Analysis Tools

FlowDroid [33] is a static taint-analysis tool for Android applications, and it achieves

a high accuracy by mitigating the gaps between lifecycle methods and callback methods.

Amandroid [265] and IccTA [148] aim to resolve the implicit control flows during inter-

component communication. EdgeMiner [59] links the callback methods with their regis-

tration methods to facilitate the static analysis tools in gaining more precise results. Droid-

Safe [98] implements a simplified model of the Android system and solves native code in

the Android framework by manually analyzing the source code and writing stubs for them

in Java. HornDroid [58] generates Horn clauses from the bytecode of application and

performs both value-sensitive and flow-sensitive analysis on the clauses. HSOMiner [189]

uses machine learning algorithms to discover the hidden sensitive operations by analyzing

the branch instructions and their related conditional branches.
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3.2.2 Dynamic Analysis Tools

DroidScope [277] provides an instrumentation tool to monitor the executed bytecode

and native instructions to help analysts learn the malware manually. VetDroid [294] exe-

cutes the Android applications by a custom application driver and performs a permission

usage behavior analysis. CopperDroid [245] traces the system calls and reconstructs the

behavior of the target application. TaintDroid [85] and TaintART [244] are taint flow

analysis system on different Android Java virtual machines. They track the information

flow of the target application at runtime and report the data leakage from sink methods.

DexHunter [293] focuses on how to dump the whole DEX file from memory at a "right

timing". AppSpear [278] leverages the key data structures in Dalvik to reassemble the

DEX file and claims that these data structures are reliable. Both DexHunter and AppSpear

assume that there is a clear boundary between the unpacking code and the original code.

However, the unpacking code and malicious code may intersperse with each other. More-

over, advanced malware can modify bytecode and data in the DEX file at runtime, and

thus the previous dump-based unpacking systems will miss the content modified after the

dump procedure.

3.2.3 Hybrid Analysis Tools

Harvester [204] collects runtime values and injects these values into the DEX file for

the accuracy improvement of analysis tools. However, some limitations still exist. Firstly,

marking logging points and backward slicing are based on the original DEX file. If pack-

ing is considered, Harvester loses its target like other static analysis tools. In contrast,

DexLego does not analyze the original DEX file. Additionally, Harvester greatly facilitates
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Figure 1: Overview of DexLego.

static analysis tools on solving reflections as they reduce the parameters back into con-

stant strings. However, malware can use advanced reflection code to evade the analysis.

Since DexLego replaces the reflective call with direct call, we do not care about how the

adversaries use reflection.

3.2.4 Unpacking and Reassembling in Traditional Platforms

Ugarte et al. [256] present a summary of recent unpacking tools and develop an anal-

ysis framework for measuring the complexity of a large variety of packers. CoDisasm [50]

is a dissembler tool that takes memory snapshot during execution and disassembles the

captured memory. Uroboros [264] aims to disassemble binaries with a reassembleable

approach. Their reassembling method is based on the disassembling output of Uroboros.

DexLego is different from these systems as we do not disassemble the binary or monitor

memory. [276] collects the instruction trace at runtime and performs taint analysis on the

trace. Unlike [276], DexLego aims to facilitate the other static analysis tools and outputs

a standardized DEX file, which could be used for state-of-the-art static analysis tools to

perform different kinds of analysis including taint analysis.
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3.3 System Overview

As Figure 1 shows, instead of directly feed the target application to static analysis

tools, we firstly execute the target application with DexLego. In executing, we use Just-

in-Time (JIT) collection to extract data/instructions and output them to files right before

used by ART. In the meantime, we use a code coverage improvement module to increase

the code coverage. Next, we reassemble the collected files to a DEX file and use the

reassembled DEX file to replace the one in the original APK. Finally, the new APK file is fed

to the static analysis tools. The architecture of DexLego contains three main components:

1) the collecting component that collects bytecode and data, 2) the offline reassembling

component that reassembles a new DEX file based on the collection result, and 3) the code

coverage improvement module that helps DexLego to achieve a high code coverage. Next,

we will discuss the three components respectively.

3.3.1 Bytecode and Data Collection

Figure 2 shows the JIT collection we used in DexLego. During the execution of an

application, ART firstly extracts the DEX file from the original APK file and passes it to

the class linker. The class linker then loads and initializes the classes in the DEX file, and
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our JIT collection method collects the metadata of the class (e.g., super class) at this point.

Next, when a method is invoked, ART extracts its bytecode from the DEX file, and leverages

the interpreter to execute them. The interpreter fetches the entire bytecode (organizing in

a 16-bit array) of the method and executes the bytecode instructions one by one. Thus,

according to our JIT policy, we collect the executed instructions of the method and their

related objects (e.g., string) via instruction-level extracting. Note that the execution of

the code in the dynamic loaded DEX file also follows the same flow.

The state-of-the-art static analysis tools do not accept machine code as their input.

However, ART executes most methods based on the machine code, and the translation

from the machine code to the bytecode is a challenging task. To simplify the task, DexLego

configures all methods in the application to be executed by the interpreter.

3.3.2 DEX File Reassembling

After the collecting, all the output files are reassembled to a new DEX file offline fol-

lowing the format of a DEX file, and we replace the DEX file in the original APK file with

the reassembled one. The modified APK file is finally fed to static analysis tools to study

the malicious behavior.

This reassembling is not trivial, and we consider this is the key contribution of this

work. In the DEX file format, each method contains only one instruction array. However,

due to different control flows (e.g., execution is led to different branches of a branch

statement) or self-modifying code, one method may contain different instruction arrays in

the collection stage. To correctly combine the collected instructions, we thus design a tree

model and a novel collecting and reassembling mechanism. More details are discussed in

Section 3.4.1 and Section 3.4.2.
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3.3.3 Code Coverage Improvement Module

To improve the code coverage of dynamic analysis systems, there already exists a series

of tools or theories like: 1) Input generators or fuzzing tools [6, 41, 97, 105, 157], 2)

Symbolic or concolic execution [12, 57, 166, 204, 270, 279] based systems, 3) Force exe-

cution [75, 139, 191] based systems. Our code coverage improvement module can be one

of them or a combination of them. Note that most of the systems mentioned in 1) and 2)

are implemented in Android, and we can directly use them to conduct the execution of the

target application with little engineering effort. However, to the best of our knowledge, the

idea of force execution has not been applied on Android platform. Thus, we implement a

prototype of force execution as a supplement of our code coverage improvement module.

To use force execution in DexLego, we identify the Uncovered Conditional Branches

(UCB) and calculate the path to each UCB. By monitoring and manipulating the branch

instructions in the interpreter, we force the control flow to go along the calculated path to

reach each UCB.

3.4 Design and Implementation

We implement DexLego in an LG Nexus 5X with Android 6.0. Based on the Android

Open Source Project [94] (AOSP), we build a customized system image and flash it into

the device by leveraging a third-party recovery system [247].

A DEX file consists of data structures that represent different data types used by the

interpreter [96]. DexLego collects these data structures directly from memory while they

are used by ART at the runtime. Moreover, we leverage instruction-level tracing to collect

executed instructions and reassemble them back to a method structure. In this section, we
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1 package com.test;
2

3 public class Main extends Activity {
4 private static final String PHONE = "800-123-456";
5 protected void onCreate(Bundle savedInstanceState) {
6 // ...
7 advancedLeak();
8 }
9

10 public void advancedLeak() {
11 String a = getSensitiveData(); // source
12 for (int i = 0; i < 2; ++i) {
13 normal(a);
14 bytecodeTamper(i);
15 }
16 }
17

18 public void normal(String param) {
19 // do something normal
20 }
21

22 public void sink(String param) {
23 // send param through text message.
24 SmsManager.getDefault().sendTextMessage(PHONE, null, param, null, null); // sink
25 }
26

27 /* While i = 0:
28 * modify Line 11 to String a = "non-sensitive data"
29 * modify Line 13 to sink(a)
30 * While i = 1:
31 * modify Line 11 to String a = getSensitiveData()
32 * modify Line 13 to normal(a) */
33 public void native bytecodeTamper(int i);
34 }

Code 1: An Example of Self-Modifying Code.

discuss 1) bytecode collection, 2) bytecode reassembling, 3) data collection, and 4) DEX

file reassembling separately. The approaches to handle reflection and force execution are

also discussed in this section.

3.4.1 Bytecode Collection

In ART, after the instruction array of a method is passed to the interpreter, the inter-

preter executes the instructions one by one following the control flow indicated by them.

To expose the behavior of the method, DexLego aims to collect all instructions executed in

the method. However, existing systems [278, 293] that use method-level collection cannot

defend against dynamic bytecode modification, and the detailed limitation is described as

below.
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Inadequacy of Method-level Collection. Consider Code 1 as an example. While enter-

ing the method advancedLeak, the smali code 1 of the method is represented by Code 2.

After the first execution of the native method bytecodeTamper, the code of the method

advancedLeak is modified to Code 3. In Code 3, the native method has modified the byte-

code to hide the source (Lines 2-4 are changed from Code 2 to Code 3), but the sensitive

data is already stored in the register v0. During the second execution of the for loop, the

sensitive data in the register v0 is leaked through the method sink (Lines 9-10 in Code 3).

Then, the native method resumes the code back to Code 2. The instruction array of the

method advancedLeak in memory is either Code 2 or 3 at any time point (e.g., before and

after JNI code), which means that the method-level collection (e.g., DexHunter [293] and

AppSpear [278]) can only collect Code 2 or 3 even when multiple collections are involved.

However, in the static taint flow analysis, the red lines in Code 2 (Lines 2-4) represent a

source, but the data fetched from the source are sent to the blue lines (Lines 9-10) which

are not a sink. In Code 3, the red lines (Lines 9-10) are a sink, but the received data are

obtained from the blue lines (Lines 2-4) which are not a source. Thus, the leak of the

sensitive data can be identified from neither Code 2 nor Code 3, and the key reason is that

the code representing the source and sink are modified on purpose to hide the taint flow.

AppSpear claims that it implements an instruction-level tracing mechanism, however, as

we will explain below, simply tracing the instructions does not satisfy the requirement of

static analysis tools.

Instruction-level Collection and Tree Model. In light of the shortcoming of method-level

collection as described above, the DexLego leverages instruction-level collection to defend

1The smali code is a more readable format of the bytecode.
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1 .method public advancedLeak()V
2 invoke-virtual p0 , \
3 Lcom/test/Main;->getSensitiveData()Ljava/lang/String;
4 move-result-object v0
5 const/4 v1, 0
6 :L0
7 const/4 v2, 2
8 if-ge v1, v2, :L1
9 invoke-virtual p0, v0 , \

10 Lcom/test/Main;->normal(Ljava/lang/String;)V
11 invoke-virtual { p0, v1 }, \
12 Lcom/ecspride/Main;->bytecodeTamper(I)V
13 add-int/lit8 v1, v1, 1
14 goto :L0
15 :L1
16 return-void
17 .end method

Code 2: Smali representation of the method advancedLeak while entering and leaving
it.

against self-modifying code such as Code 1. One simple approach for instruction-level col-

lection is to list all the executed instructions one by one; however, this approach leads to a

code scale issue. Take the loop as an example, since the instructions in a loop are executed

for multiple times, the simple approach would lead to a large number of repeating in-

structions. Moreover, the branch statements and self-modifying code make it possible that

different executions of a single method lead to different instruction sequences. However,

the format of the DEX file [96] allows only one instruction sequence for a single method.

1 .method public advancedLeak()V
2 const-string v0, "non-sensitive data"
3 nop
4 nop
5 const/4 v1, 0
6 :L0
7 const/4 v2, 2
8 if-ge v1, v2, :L1
9 invoke-virtual p0, v0 , \

10 Lcom/test/Main;->sink(Ljava/lang/String;)V
11 invoke-virtual { p0, v1 }, \
12 Lcom/ecspride/Main;->bytecodeTamper(I)V
13 add-int/lit8 v1, v1, 1
14 goto :L0
15 :L1
16 return-void
17 .end method

Code 3: Smali representation of the method advancedLeak after the first execution of
the method bytecodeTamper.
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Figure 3: Data Structure Storing All Instructions in a Method During a Single Execution.
The right tree structure shows the collection result for a method during a single execution.
The left rectangle describes the data structure of each tree node. For each execution of a
method, we generate a collection tree.

To address the code scale issue, DexLego eliminates repeating instructions by compar-

ing the instructions with same indices. As mentioned above, the bytecode of a method is or-

ganized in a 16-bit unit array and passed to the interpretation functions (ExecuteSwitchI-

mpl and ExecuteGotoImpl functions). In these functions, the interpreter uses a variable

dex_pc to represent the index of the executing instruction in the array. In light of this,

we identify repeating instructions by comparing the executing instructions with the same

dex_pc values. Moreover, the self-modifying code can also be identified by the comparison.

Different instructions with the same dex_pc value actually indicate a runtime modification.

Algorithm 1 illustrates the comparison-based instruction collection algorithm, and Fig-

ure 3 shows the related data structures. We consider the first execution of an instruction

as a baseline and any different instructions with the same dex_pc value as a divergence

branch. Thus, each divergence branch indicates a piece of self-modifying code. Note that

self-modifying code might also exist in the divergence branch (like multiple layers of self-

modifying). The divergence branches in a method then form a tree structure. The right

part of Figure 3 shows an example of the final collecting result. Nodes 1-3 represent three
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Algorithm 1 Bytecode Collection Algorithm
1: procedure BYTECODECOLLECTION

2: create node root
3: current = root
4: for each executing instruction ins do
5: let index of ins be dex_pc
6: if dex_pc exists in current.IIM then
7: pos_in_IL = current.IIM.get(dex_pc)
8: old_ins = current.IL.get(pos_in_IL)
9: if !SameIns(ins, old_ins) then

10: create a child node child
11: child.parent = current
12: child.start_pos = dex_pc
13: current = child
14: else
15: continue
16: end if
17: else if current has a parent then
18: parent = current.parent
19: if dex_pc exists in parent.IIM then
20: pos_in_IL = parent.IIM.get(dex_pc)
21: old_ins = parent.IL.get(pos_in_IL)
22: if SameIns(ins, old_ins) then
23: current.end_pos = dex_pc
24: current = parent
25: continue
26: end if
27: end if
28: end if
29: pos_in_IL = current.IL.size()
30: current.IL.add(ins)
31: current.IIM.push(pair(dex_pc, pos_in_IL))
32: end for
33: end procedure

pieces of self-modifying code on the root node, and Nodes 4-5 represent two pieces of self-

modifying code on Node 2. The left rectangle in Figure 3 shows the TreeNode structure

which represents a node in the tree structure. The Instruction List (IL) in the structure

includes the list of executed instruction and their metadata. The instructions in IL are

recorded by the order of their first execution and the IL plays the role of baseline in the

node. The dex_pc value of an instruction may be different from its index in IL due to

branch statements, and we use an Instruction Index Map (IIM) to maintain the mapping
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between the instruction’s dex_pc value and its index in IL for further comparison. sm_start

and sm_end indicate the starting and ending dex_pc value of the divergence branch, while

parent and children represent the parent and all children of the node, respectively. With

the tree structure, DexLego records all executed instructions in a single execution of a

method and maintains the code size similar to the original instruction array.

In Algorithm 1, we only update one node during the execution of a single instruction,

and this node is considered as the current node. DexLego creates an empty root node

as the current node while entering a method. Once an instruction is executed, we check

IIM of the current node to find whether the dex_pc value of this instruction has been

recorded. If it does not exist in IIM, DexLego pushes the instruction into IL and updates

IIM. If the dex_pc value already exists in IIM, we add a check procedure to find whether

the instruction is the same as the one we recorded before. A positive result means that the

same instruction in the same position is executed again, and DexLego does not record it.

In contrast, the negative result indicates that modification has occurred to this instruction

since its last execution. Then, we create a child node of the current node to represent

the divergence branch, and the new node becomes the current node. After that, DexLego

treats the instruction as a new instruction and pushes it into IL of the current node. In a

divergence branch, another check procedure is added to each instruction, and this check

procedure aims to identify whether the current divergence branch converges to its parent.

If the same instruction with the same dex_pc value has been found in the parent’s IL, we

consider that the divergence branch converges back to its parent (e.g., current layer of

self-modifying code ends) and make the parent node to be the new current node.

Listing 1 shows a high-level semantic view of the collection result of the method
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advancedLeak in Code 1. When Line 13 in Code 1 is executed for the first time, an in-

vocation of the method normal is recorded. Then, in the second run, an invocation of the

method sink is detected. However, by comparing with the recorded instructions, DexLego

finds that it is a divergence point. A child node is forked and the instruction is pushed

into the IL of the child node. Furthermore, a convergence point is found when Line 14 is

executing. Thus, the collection tree contains a root node and a child node, and the child

node contains only one instruction. With the tree, the executed instructions and the con-

trol flows in the method are well maintained. Note that the modification to the Line 11 is

ignored since the modified instructions are never executed.

1 Root Node:
2 String a = getSensitiveData();
3 for (int i = 0; i < 2; ++i) {
4 normal(a);
5 bytecodeTamper(i);
6 }
7

8 Child Node: (Line 13 in Code 1)
9 sink(a);

Listing 1: High-level Semantic View of the Collection Result of the Method
advancedLeak in Code 1.

For the issue of multiple instruction sequences for a single method, we generate multi-

ple collection trees for multiple executions of the method and keep only the unique trees.

The trees are further combined together with the approach detailed in Section 3.4.2.

3.4.2 Bytecode Reassembling

The offline reassembling-phase merges the collected trees into a DEX file while holding

all the executed instructions and control flows. There are two steps in this phase: 1)

converting each tree into an instruction array. 2) merging instruction arrays into the DEX

file.
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1 String a = getSensitiveData();
2 for (int i = 0; i < 2; ++i) {
3 if (Modification.com_test_Main_advancedLeak_0) {
4 normal(a);
5 } else {
6 sink(a)
7 }
8 bytecodeTamper(i);
9 }

Code 4: Reassembled Result of the Method advancedLeak in Code 1.

Converting a Tree into an Instruction Array. Each node in the collection tree generated

from the collection phase contains an independent Instruction List (IL), and the goal of

this phase is to combine the ILs in the nodes together without losing any control flows or

instructions. To simplify the combination process, we traverse the nodes with the bottom-

up fashion since the leaf nodes contain no child node.

To merge a single leaf to its parent, DexLego inserts an additional branch instruction in

the divergence point (indicated by sm_start, self-modifying start, as defined in the above

subsection 3.4.1), with one branch of the instruction pointing to the leaf. To make both

conditional branches reachable, the conditional expression of the added branch instruction

is calculated based on a static field of an instrument class with random values. Note that

the random value produces indeterminacy problem on the additional branch instruction,

and we consider it acceptable since the static analysis tool will take both branches of the

instruction as reachable.

Once the leaf nodes are recursively merged into their parents, the root node becomes a

complete set of the collected instructions including different control flows triggered during

the execution.

Code 4 demonstrates the reassembled result of Listing 1. The static field com_test_Mai-

n_advancedLeak_0 in our instrument class Modification indicates the divergence point in
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Line 13 of Code 1. When this result is fed to static analysis tools, they treat both normal

and sink as reachable and detect the taint flow from sensitive data to text message in

Code 1.

Merging Instructions Arrays. For each executed method, the previous phase outputs

unique instruction arrays which indicate different executions of the method. Similar to the

approach discussed above, we create a method variant for each instruction array and use

additional branch instructions to cover different method variants.

3.4.3 Data Collection and DEX Reassembling

As mentioned in Section 3.3.1, besides bytecode instructions, DexLego uses JIT collec-

tion to collect the metadata of DEX file. The collected data is written into collection files

and further used to reassemble a new DEX file offline.

In Code 1, before any method or field in Main is accessed, the class Lcom/example/Main;

is loaded and initialized. During the process, we firstly store string Lcom/example/Main;

into a string structure and record the index of this string structure. Then with the in-

dex, a type structure is constructed and stored. Finally, a corresponding class structure

related to the type is extracted. The collection occurs again when the class is initialized.

The initialization procedure links the methods and fields to the class, and initializes the

static fields. In Code 1, methods onCreate, advancedLeak, normal, and sink are linked to

the class. While the static field PHONE is initialized, DexLego stores its name PHONE, type

Ljava/lang/String; and initial value 800-123-456. Lastly, a field structure is created

and recorded. The method structures and the bytecode inside them are collected before

and during the execution of the methods, respectively.

After the collection process, all collection files including bytecode are combined offline
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according to the format of the DEX file. Finally, we leverage the Android Asset Packaging

Tool integrated with Android SDK to replace the DEX file in the original APK file with the

reassembled one. To verify the soundness of our extracting and reassembling algorithm,

we perform extensive tests against real-world applications, and the evaluation results in

Section 3.5.1, Section 3.5.2, and Section 3.5.4 show that the reassembled DEX file retains

the semantics of the real-world application and can be correctly processed by the state-of-

the-art static analysis tools.

3.4.4 Handling Reflection

Currently, reflection is a serious obstacle for static analysis tools, and even the state-of-

the-art static analysis tools [33, 58, 98, 204] cannot provide a precise result when reflec-

tion is involved in an application. FlowDroid [33], DroidSafe [98], and HornDroid [58]

can solve the reflection only when the parameters are constant strings. However, the name

string can be encrypted in some cases [204], and advanced malware can use reflection

without involving any string parameter [83].

The TamiFlex [49] system on traditional Java platform uses load-time instrumentation

to log reflective method calls and transform them to direct calls at offline. However, the

required load-time instrumentation class java.lang.instrument is not supported in An-

droid [33]. Meanwhile, since the target of the reflective method calls is parsed in ART at

runtime, DexLego actually knows the target of each reflection. Thus, we apply the similar

idea in ART by replacing the reflection calls with direct calls in the collecting stage.

3.4.5 Force Execution

As a supplement of the code coverage improvement module, we implement a prototype

of force execution which executes the target application in an iterative fashion. Note that
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Figure 4: Iterative Force Execution.

our force execution starts from the execution result of the previous execution, and the pre-

vious execution could be any kind of execution like fuzzing, symbolic execution, another

force execution, or simply open the application and close. Figure 4 shows the workflow of

the iterative force execution. In each iteration, we first use branch analysis to identify the

Uncovered Conditional Branch (UCB) from the result of the previous execution. Next, we

calculate the control flow path to each UCB. A path to an UCB consists of branch instruc-

tions and the offsets of the conditional branches leading to the UCB. We save each path

into a file and use these files as the input of the next iteration together with the original

application. Finally, in the interpretation functions, the outcome of the corresponding con-

ditional expression is automatically manipulated at runtime following the path files. With

this approach, DexLego ensures that the runtime control flow goes along the path to the

UCB. If no more new UCB are generated after the iteration, we terminate the execution

and continue the collecting stage. Otherwise, the next iteration is scheduled.

Since the idea of force execution breaks the normal control flow of the original appli-

cation, the application may crash due to the control flow falls to an infeasible path [139,

191]. To avoid crash triggered by force execution, we monitor the unhandled exception

in the interpreter and tolerate it by directly clear the exception. This strategy helps us to

avoid terminations due to infeasible paths while does not affect our runtime bytecode and
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data collection.

3.5 Evaluation

In this section, we evaluate DexLego with DroidBench [83] and real-world applications

downloaded from Google Play and other application markets. In particular, we aim to

answer five research questions:

RQ1. Can we correctly reconstruct the behavior of apps?

RQ3. How is DexLego compared with other tools?

RQ4. Can DexLego work with real-world packed apps?

RQ5. What is the coverage of our force execution prototype?

RQ6. What is the runtime performance overhead?

3.5.1 RQ1: Test with Open-source Apps and Public Packers

To verify the correctness of the reassembled result, we pick up four open source ap-

plications (i.e., HTMLViewer, Calculator, Calendar, and Contacts) from AOSP [94] and

use DexLego to reveal them. By manually comparing the instructions and control flows

in each method, we ensure that the instructions and control flows in the source code are

completely included in the reassembled result. In regard to Calendar and Contacts, we

use Soot framework [143] to build a complete call graph since the numbers of instructions

(78,598 and 103,602 instructions, respectively) are too large for a manual analysis. By

examining the call graph, we confirm that the control flows in these two applications are

properly maintained in the reassembled DEX.

Next, to check the functionality against packers, we use different public packing plat-

forms to pack these applications and then use DexLego to reveal them again. Table 1
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Table 1: Test Result of Different Packers.

Applications HTMLViewer Calculator Calendar Contacts

# of Instructions 217 2,507 78,598 103,602

360 [198] X X X X
Alibaba [5] X X X X
Tencent [248] X X X X
Baidu [42] X X X X
Bangcle [44] X X X X
NetQin [179] The service is offline now
APKProtect [14] Unresponsive to packing requests
Ijiami [114] Samples are rejected by human agents

shows the result of the experiments. For the packers including 360 [198], Alibaba [5],

Tencent [248], Baidu [42], and Bangcle [44], DexLego succeeds in both collection and re-

assembling stages. By using the same approach described above, we ensure that DexLego

correctly rebuilds the behavior of each application. Note that NetQin packer [179] men-

tioned in AppSpear [278] is no longer available. The APKProtect [14] is unresponsive

to the packing requests, and there are no logs of the occurred errors. The packing ser-

vice provided by Ijiami [114] requires manual audits by their agents, and they reject our

applications for the reason that the applications are not actually developed by us.

3.5.2 RQ2: Test with Existing Tools

Static Analysis Tools

DroidBench [83] is a set of open-source samples that leak sensitive data in various

ways. It is considered as a benchmark for Android application analysis and widely used

among recent analysis tools [33, 58, 98, 148, 265]. The latest release of DroidBench con-

tains 119 applications, including both leaky and benign samples. The leaky samples leak

a variety of sensitive data fetched from sources (API calls that fetch sensitive information)
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Table 2: Analysis Result of Static Analysis Tools. The columns in "Original" represent the
analysis result of the original samples, and the columns in "DexLego" represent that of the
samples reassembled by DexLego. The column "TP" and "FP" indicate the number of true
positives and false positives of the analysis result, respectively.

# of
Samples

# of
Malware

Original DexLego

TP FP TP FP

FlowDroid [33] 134 111 81 10 95 4
DroidSafe [98] 134 111 95 12 105 7
HornDroid [58] 134 111 98 9 106 4

to sinks (API calls that may leak information), and the benign samples contain no such

information flows. As a supplement, we contribute another 15 samples involving usage of

advanced reflection (5 samples), dynamic loading (3 samples), self-modifying (4 samples),

and unreachable taint flows (3 samples). Current static analysis tools [33, 58, 98] cannot

precisely analyze these newly added samples. Besides this benchmark, we choose three

representative static analysis tools (FlowDroid [33], DroidSafe [98], and HornDroid [58])

to conduct the experiments.

Our experiment involves 134 samples (119 samples in the newest release plus 15 sam-

ples we contributed) in DroidBench. Since the lines of code in DroidBench samples are

small, we simply choose the state-of-the-art fuzzing tool Sapienz [158] to generate the

inputs for the execution. We first use the static analysis tools to analysis the original sam-

ples and the samples processed by DexLego, and the result is shown in Table 2. The table

shows that DexLego increases more than 8 true positives by resolving advanced reflections,

extracting self-modifying code and dynamic loading code. Moreover, The JIT collection

ensures that the extracted data reflects the performed behavior of the target application.

Thus, at least 5 false positives introduced by dead code blocks are removed. Next, with-



32

out losing generality, we use one of the most popular packers tested in Section 3.5.1,

360 packer, to pack the original samples and process the packed samples with DexLego,

DexHunter [293], and AppSpear [278], respectively. The analysis result of the processed

samples is shown in Table 3. Note that DexHunter and AppSpear lead to the same result

since they can extract the original DEX files and the result is same as analyzing the original

DEX. Compared to DexLego, they fail to deal with self-modifying code and reflection. As

shown in the table, DexLego provides more than 5 true positives and reduces more than

5 false positives than DexHunter and AppSpear. We note that DexLego fails to cover taint

flow in only one application among all samples. In this sample, sensitive data only leaks

in the tablet, and it cannot be detected as we execute it in a mobile phone.

Sensitivity =
tp

tp+ fn
, Specificity =

tn

tn+ fp
,

F-Measure = 2× Sensitivity × Specificity

Sensitivity + Specificity

(3.1)

The F-Measure [58] is a standard measure of the performance of a classification, and

it is calculated by Formula (3.1). Figure 5 illustrates the changes of F-Measures after

involving DexHunter, AppSpear, and DexLego. Once DexLego is involved, the F-Measure of

FlowDroid increases from 63% to 84% on DroidBench, and that of DroidSafe increases from

61% to 80%. In regard to the most recent static analysis tool, HornDroid, the F-Measure

increases from 72% to 89%. The percentages of incremental values are 33.3%, 31.1%, and

23.6%, respectively. In the meantime, the improvement introduced by DexHunter and

AppSpear is less than 3%.
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Table 3: Analysis Result of Packed Samples. The columns in "DH", "AS", and "DexLego" rep-
resent the analysis result of the samples processed by DexHunter [293], AppSpear [278],
and DexLego, respectively. The column "TP" and "FP" indicate the number of true positives
and false positives of the analysis result, respectively.

# of
Samples

# of
Malware

DH [293] / AS [278] DexLego

TP FP TP FP

FlowDroid [33] 134 111 84 10 95 4
DroidSafe [98] 134 111 98 12 105 7
HornDroid [58] 134 111 101 9 106 4

Dynamic Analysis Tools

Dynamic analysis tools can be circumvented through implicit taint flows, and a recent

work [204] shows that a representitive dynamic analysis tool, TaintDroid [85], misses

leakage on some samples of DroidBench. We pick these samples and analyze them with

both TaintDroid and another recent dynamic analysis tool TaintART [244]. Next, we use

DexLego to analyze it again. The reassembled result is fed to HornDroid, the most recent

static analysis tool, for comparison.

Table 4 shows the taint flow analysis results of TaintDorid, TaintART, and combing

DexLego and HornDroid. As shown in Table 4, the static analysis result of reassembled APK

file by DexLego detects the taint flows and is more precise than dynamic analysis tools. In

Button1 and Button3, the sensitive data are leaked via callback methods, and we solve it

properly while the dynamic analysis tools miss it. As TaintDroid executes applications on

emulator, the sample EmulatorDetection1 evades the analysis. Both TaintDroid and Tain-

tART cannot detect the implicit taint flows in ImplicitFlow1, and using HornDroid with

DexLego provides a precise analysis result. One of the taint flows in PrivateDataLeak3

leaks the sensitive data through writing/reading an external file, and all tested tools fail to
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Figure 5: F-measures of Static Analysis Tools.

Table 4: Analysis Result of Dynamic Analysis Tools and DexLego. The columns "TD" and
"TA" represent the taint flows detected by TaintDroid [85] and TaintART [244], respec-
tively. The last column shows the detected taint flows by feeding the revealed result of
DexLego to HornDroid [58].

Samples Leak # # of Leak Detected

TD [85] TA [244] DexLego + HD [58]

Button1 1 0 0 1
Button3 2 0 0 2
EmulatorDetection1 1 0 1 1
ImplicitFlow1 2 0 0 2
PrivateDataLeak3 2 1 1 1

detect this flow since they do not take this case into account. Note that these missed taint

flows are not caused by code coverage issue, but due to the weakness of dynamic analysis

tools on implicit taint flows.

Note that DexLego is not a dynamic analysis tool. We believe we should not directly

compare DexLego with dynamic analysis tools, and the dynamic analysis tools have their

advantages. However, the experiment conducted in this subsection is to show that DexLego

can help static analysis tools make up some deficiencies of dynamic analysis tools.
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3.5.3 RQ3: Test with Real-world Packed Applications

A previous work [259] has downloaded more than one million applications from Google

Play by a crawler in 2014, and we select the packed applications from this set. Since the

DEX file in an application packed by the public packing platforms contains only the classes

needed to unpack the original DEX file, the number of the classes in the DEX file is less

compared to normal applications. In light of this, we perform a coarse-grain analysis to

screen the applications which contains less than 50 classes from the top rated 10, 000 ap-

plications. Next, we select the first 9 applications from the screened result by manually

checking and reverse engineering. Without loss of generality, we download the latest ver-

sion of these applications from three different popular application markets: 1) Google

Play [93] (denoted as set A), 2) 360 Application Market [199] (denoted as set B), and 3)

Wandoujia Application Market [261] (denoted as set C).

For these real-world packed applications, we use FlowDroid to provide a quick scan

on the original applications, and then execute them with DexLego for 5 minutes. Next,

the reassembled APK file is analyzed again by FlowDroid. Table 5 shows the result of our

experiment. Although no taint flow can be detected from the original samples, FlowDroid

detects several taint flows from these revealed applications. From the analysis result,

we find that all of these applications send device ID (IMEI number) to remote servers.

Moreover, three of them leak location information and two of them leak SSID. This result

also shows that DexLego successfully reveals the latest packed real-world applications.
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Table 5: Analysis Result of Packed Real-world Applications. The column "Sample Set" is
defined in Section 3.5.3, which indicates the source of the application. The column "# of
Installs" shows the installation number provided by the application markets. The column
"Original" represents the number of detected taint flows in the original application while
the column "Revealed" is the number of detected taint flows in the revealed APK file.

Package Name Version Sample Set # of Installs Original Revealed

com.lenovo.anyshare 3.6.68 A 100 million 0 4
com.moji.mjweather 6.0102.02 A 1 million 0 5
com.rongcai.show 3.4.9 A 100 thousand 0 3

com.wawoo.snipershootwar 2.6 B 10 million 0 4
com.wawoo.gunshootwar 2.6 B 10 million 0 5
com.alex.lookwifipassword 2.9.6 B 100 thousand 0 2

com.gome.eshopnew 4.3.5 C 15.63 million 0 3
com.szzc.ucar.pilot 3.4.0 C 3.59 million 0 5
com.pingan.pabank.activity 2.6.9 C 7.9 million 0 14

3.5.4 RQ4: Code Coverage

To evaluate the code coverage of our force execution engine, we pick up five open

source applications from the random page [87] of F-Droid [86] project. For each appli-

cation, we first execute it with Sapienz [158] and use Java Code Coverage Library (Ja-

CoCo) [125] for Android Studio to calculate the coverage. Next, based on the result of

Sapienz, we execute it again using the force execution engine as the code coverage im-

provement module.

Table 6 shows the details of the samples including package name, version number, the

number of instructions, and the total size of the dump files after fuzzing by Sapienz. Note

that the size of the dump files is not only related to the number of the instructions in the

application, but also related to the size of other data structures in the DEX file (e.g., num-

ber of classes, number of methods, size of strings, and so on.) and the code coverage of the

fuzzing. Table 7 shows the average coverage of these samples with different granularities.
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Table 6: Samples from F-Droid [86].

Package Name Version # of Instructions Dump File Size

be.ppareit.swiftp 2.14.2 8,812 47.26 KB
fr.gaulupeau.apps.InThePoche 2.0.0b1 29,231 771.81 KB
org.gnucash.android 2.1.7 56,565 2.40 MB
org.liberty.android.fantastischmemopro 10.9.993 57,575 1.55 MB
com.fastaccess.github 2.1.0 93,913 3.18 MB

Table 7: Code Coverage with F-Droid Applications.

Class Method Line Branch Instruction

Sapienz [158] 44% 37% 32% 20% 32%
Sapienz + DexLego 87% 88% 82% 78% 82%

The results show that the force execution significantly improves the coverage and achieves

an average instruction coverage of 82%. By manually check the source code, we group

the cause of missed instructions into three main categories: 1) Dead code blocks. As an

example, the CmdTemplate class is never involved in the application be.ppareit.swiftp,

thus the entire instructions in this class are not included while calculating coverage. 2)

Native crashes. Although DexLego clears the unhandled exceptions in the interpreter, the

abnormal control flows may lead the native code to crash. This may be mitigated by the

on demand runtime memory allocation mechanism applied in [191]. 3) Instructions in ex-

ception handlers. During force execution, the expected exceptions in the try-catch blocks

may not be thrown due to abnormal control flow, and it may be solved by treating these

blocks as branch instructions in the branch analysis. We leave it as a future work.

3.5.5 RQ5: Performance

As DexLego traces and extracts instructions at runtime, it slows the ART during in-

struction execution. To learn the performance overhead introduced by DexLego, we use
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Table 8: Time Consumption of DexLego. The column "Original" represents the mean and
standard deviation (STD) of the launch time with unmodified ART, while the last column
represents launch time with DexLego.

Application Version Original With DexLego

Mean STD Mean STD

Snapchat 9.43.0.0 826.9ms 52.11ms 1,664.7ms 16.08ms
Instagram 9.7.0 608.5ms 45.6ms 1,275.8ms 25.37ms
WhatsApp 2.16.310 236.4ms 12.24ms 480.2ms 84.3ms

CF-Bench [61] to compare the performance of the unmodified ART and ART with DexLego.

For each environment, we run CF-Bench for 30 times, and the results are presented in Fig-

ure 6. A higher score indicates a better performance. It shows that DexLego brings 7.5x,

1.4x, 2.3x overhead on Java score, native score, and overall score, respectively.

Moreover, we evaluate the launch time of three popular applications (i.e., Snapchat, In-

stagram, and WhatsApp) downloaded from Google Play. While an activity in an application

is launching, the ActivityManager reports the time usage for initializing and displaying.

We launch each application for 30 times and the result is summarized in Table 8. The result

shows that DexLego introduces about two times slowdown on the launch time, and this
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result matches the overall overhead tested by CF-Bench.

Since our system is designed for security analyst instead of traditional users, we do not

take performance as a critical factor. In summary, we consider the overhead is acceptable

and leave the further improvement as our future work.
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CHAPTER 4 TRANSPARENT MALWARE ANALYSIS ON ARM

4.1 Introduction

We consider that an analysis system consists of an Environment (e.g., operating system,

emulator, hypervisor, or sandbox) and an Analyzer (e.g., instruction analyzer, API tracer,

or application debugger). The Environment provides the Analyzer with the access to the

states of the target malware, and the Analyzer is responsible for the further analysis of the

states. Consider an analysis system that leverages the emulator to record the system call

sequence and sends the sequence to a remote server for further analysis. In this system, the

Environment is the emulator, which provides access to the system call sequence, and both

the system call recorder and the remote server belong to the Analyzer. Evasive malware

can detect this analysis system via anti-emulation techniques and evade the analysis.

To build a transparent analysis system, we propose three requirements. Firstly, the En-

vironment must be isolated. Otherwise, the Environment itself can be manipulated by the

malware. Secondly, the Environment exists on an off-the-shelf (OTS) bare-metal platform

without modifying the software or hardware (e.g., emulation and virtualization are not).

Although studying the anti-emulation and anti-virtualization techniques [131, 193, 224,

258] helps us to build a more transparent system by fixing the imperfections of the Environ-

ment, we consider perfect emulation or virtualization is impractical due to the complexity

of the software. Instead, if the Environment already exists in the OTS bare-metal platform,

malware cannot detect the analysis system by the presence of the Environment. Finally, the

Analyzer should not leave any detectable footprints (e.g., files, memory, registers, or code)

to the outside of the Environment. An Analyzer violating this requirement can be detected.
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In light of the three requirements, we present Ninja 2, a transparent malware analysis

framework on ARM platform based on hardware features including TrustZone technology,

Performance Monitoring Unit (PMU), and Embedded Trace Macrocell (ETM). We imple-

ment a prototype of Ninja that embodies a trace subsystem with different tracing granu-

larities and a debug subsystem with a GDB-like debugging protocol on ARM Juno devel-

opment board. Additionally, hardware-based traps and memory protection are leveraged

to keep the use of system registers transparent to the target application. The experimen-

tal results show that our framework can transparently monitor and analyze the behavior

of the malware samples. Moreover, Ninja introduces reasonable overhead. We evaluate

the performance of the trace subsystem with several popular benchmarks, and the result

shows that the overheads of the instruction trace and system call trace are less than 1%

and the Android API trace introduces 4 to 154 times slowdown.

4.2 Related Work

4.2.1 Transparent Malware Analysis on x86

Ether [77] leverages hardware virtualization to build a malware analysis system and

achieves high transparency. Spider [76] is also based on hardware virtualization, and it

focuses on both applicability and transparency while using memory page instrument to

gain higher efficiency. Since the hardware virtualization has transparency issues, these

systems are naturally not transparent. LO-PHI [236] leverages additional hardware sen-

sors to monitor the disk operation and periodically poll memory snapshots, and it achieves

a higher transparency at the cost of incomplete view of system states.

2A Ninja in feudal Japan has invisibility and transparency ability
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MalT [285] increases the transparency by involving System Manage Mode (SMM), a

special CPU mode in x86 architecture. It leverages PMU to monitor the program execution

and switch into SMM for analysis. Comparing with MalT, Ninja improves in the following

aspects: 1) The PMU registers on MalT are accessible by privileged malware, which breaks

the transparency by checking the values of these registers. By leveraging TrustZone tech-

nology, Ninja configures needed PMU registers as secure ones so that even the privileged

malware in the normal domain cannot access them. 2) MalT is built on SMM. However,

SMM is not designed for security purpose such as transparent debugging (originally for

power management); frequent CPU mode switching introduces a high performance over-

head (12 µs is required for a SMM switch [285]). Ninja is based on TrustZone, a dedicated

security extension on ARM. The domain switching only needs 0.34 µs. 3) Besides a de-

bugging system, Ninja develops a transparent tracing system with existing hardware. The

instruction and system call tracing introduce negligible overhead, which is immune to

timing attacks while MalT suffers from external timing attack.

BareCloud [141] and MalGene [140] focus on detecting evasive malware by executing

malware in different environments and comparing their behavior. There are limitations to

this approach. Firstly, it fails to transparently fetch the malware runtime behavior (e.g.,

system calls and modifications to memory/registers) on a bare-metal environment. Sec-

ondly, it assumes that the evasive malware shows the malicious behavior in at least one

of the analysis platforms. However, sophisticated malware may be able to detect all the

analysis platforms and refuse to exhibit any malicious behavior during the analysis. Lastly,

after these tools identify the evasive malware from the large-scale malware samples, they

still need a transparent malware analysis tool which is able to analyze these evasive sam-
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ples transparently. Ninja provides a transparent framework to study the evasive malware

and plays a complementary role for these systems.

4.2.2 Dynamic Analysis Tools on ARM

Emulation-based systems. DroidScope [277] rebuilds the semantic information of both

the Android OS and the Dalvik virtual machine based on QEMU. CopperDroid [245] is

a VMI-based analysis tool that automatically reconstructs the behavior of Android mal-

ware including inter-process communication (IPC) and remote procedure call interaction.

DroidScibe [73] uses CopperDroid [245] to collect behavior profiles of Android malware,

and automatically classifies them into different families. Since the emulator leaves foot-

prints, these systems are natural not transparent.

Hardware virtualization. Xen on ARM [273] migrates the hardware virtualization based

hypervisor Xen to ARM architecture and makes the analysis based on hardware virtual-

ization feasible on mobile devices. KVM/ARM [72] uses standard Linux components to

improve the performance of the hypervisor. Although the hardware virtualization based

solution is considered to be more transparent than the emulation or traditional virtual-

ization based solution, it still leaves some detectable footprints on CPU semantics while

executing specific instructions [224].

Bare-metal systems. TaintDroid [85] is a system-wide information flow tracking tool.

It provides variable-level, message-level, method-level, and file-level taint propagation by

modifying the original Android framework. TaintART [244] extends the idea of TaintDroid

on the most recent Android Java virtual machine Android Runtime (ART). VetDroid [294]

reconstructs the malicious behavior of the malware based on permission usage, and it is

applicable to taint analysis. DroidTrace [295] uses ptrace to monitor the dynamic load-
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ing code on both Java and native code level. BareDroid [169] provides a quick restore

mechanism that makes the bare-metal analysis of Android applications feasible at scale.

Although these tools attempt to analyze the target on real-world devices to improve trans-

parency, the modification to the Android framework leaves some memory footprints or

code signatures, and the ptrace-based approaches can be detected by simply check the

/proc/self/status file. Moreover, these systems are vulnerable to privileged malware.

4.2.3 TrustZone-related Systems

TZ-RKP [38] runs in the secure domain and protects the rich OS kernel by event-driven

monitoring. Sprobes [275] provides an instrumentation mechanism to introspect the rich

OS from the secure domain, and guarantees the kernel code integrity. SeCReT [129] is

a framework that enables a secure communication channel between the normal domain

and the secure domain, and provides a trust execution environment. Brasser et al. [52]

use TrustZone to analyze and regulate guest devices in a restricted host spaces via re-

mote memory operation to avoid misusage of sensors and peripherals. C-FLAT [4] fights

against control-flow hijacking via runtime control-flow verification in TrustZone. Trust-

Shadow [103] shields the execution of an unmodified application from a compromised

operating system by building a lightweight runtime system in the ARM TrustZone secure

world. The runtime system forwards the requests of system services to the commodity

operating systems in the normal world and verifies the returns. Unlike previous systems,

Ninja leverage TrustZone to transparently debug and analyze the ARM applications and

malware.
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Figure 7: Architecture of Ninja.

4.3 System Architecture

Figure 7 shows the architecture of Ninja. The Ninja consists of a target executing plat-

form and a remote debugging client. In the target executing platform, TrustZone provides

hardware-based isolation between the normal and secure domains while the rich OS (e.g.,

Linux or Android) runs in the normal domain and Ninja runs in the secure domain. We

setup a customized exception handler in EL3 to handle asynchronous exceptions (i.e., in-

terrupts) of our interest. Ninja contains a Trace Subsystem (TS) and a Debug Subsystem

(DS). The TS is designed to transparently trace the execution of a target application, which

does not need any human interaction during the tracing. This feature is essential for au-

tomatic large-scale analysis. In contrast, the DS relies on human analysts. In the remote

debugging platform, the analysts send debug commands via a secure serial port and the

DS then response to the commands. During the execution of an application, we use secure

interrupts to switch into the secure domain and then resume to the normal domain by

executing the exception return instruction eret.



46

4.3.1 Reliable Domain Switch

Normally, the smc instruction is used to trigger a domain switch by signaling a Secure

Monitor Call (SMC) exception which is handled in EL3. However, as the execution of the

smc instruction may be blocked by privileged malware, this software-based switch is not

reliable.

Another solution is to trigger a secure interrupt which is considered as an asynchronous

exception in EL3. ARM Generic Interrupt Controller (GIC) [27] partitions all interrupts

into secure group and non-secure group, and each interrupt is configured to be either

secure or non-secure. Moreover, the GIC Security Extensions ensures that the normal

domain cannot access the configuration of a secure interrupt. Regarding to Ninja, we

configure PMI to be a secure interrupt so that an overflow of the PMU registers leads to

a switch to the secure domain. To increase the flexibility, we also use similar technology

mentioned in [241] to configure the General Purpose Input/Output (GPIO) buttons as the

source of secure Non-Maskable Interrupt (NMI) to trigger the switch. The switch from

secure domain to normal domain is achieved by executing the exception return instruction

eret.

4.3.2 The Trace Subsystem

The Trace Subsystem (TS) provides the analyst the ability to trace the execution of the

target application in different granularities during automatic analysis including instruction

tracing, system call tracing, and Android API tracing. We achieve the instruction and

system call tracing via hardware component ETM, and the Android API tracing with help

of PMU registers.



47

By default, we use the GPIO button as the trigger of secure NMIs. Once the button

is pressed, a secure NMI request is signaled to the GIC, and GIC routes this NMI to EL3.

Ninja toggles the enable status of ETM after receiving this interrupt and outputs the tracing

result if needed. Additionally, the PMU registers are involved during the Android API trace.

Note that the NMI of GPIO buttons can be replaced by any system events that trigger an

interrupt (e.g., system calls, network events, clock events, and etc.), and these events can

be used to indicate the start or end of the trace in different usage scenarios.

Another advanced feature of ETM is that PMU events can also be configured as an

external input source. In light of this, we specify different granularities of the tracing. For

example, we trace all the system calls by configure the ETM to use the signal of PMU event

EXC_SVC as the external input.

4.3.3 The Debug Subsystem

In contrast to the TS, the Debug Subsystem (DS) is designed for manual analysis. It

establishes a secure channel between the target executing platform and the remote debug-

ging platform, and provides a user interface for human analysts to introspect the execution

status of the target application.

To interrupt the execution of the target, we configure the PMI to be secure and adjust

the value of the PMU counter registers to trigger an overflow at a desired point. Ninja

receives the secure interrupt after a PMU counter overflows and pauses the execution of

the target. A human analyst then issues debugging commands via the secure serial port

and introspects the current status of the target following our GDB-like debugging protocol.

To ensure the PMI will be triggered again, the DS sets desirable values to the PMU registers

before exiting the secure domain.
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Moreover, similar to the TS, we specify the granularity of the debugging by monitoring

different PMU events. For example, if we choose the event INST_RETIRED which occurs

after an instruction is retired, the execution of the target application is paused after each

instruction is executed. If the event EXC_SVC is chosen, the DS takes control of the system

after each system call.

4.4 Design and Implementation

We implement Ninja on a 64-bit ARMv8 Juno r1 board. There are two ARM Cortex-A57

cores and four ARM Cortex-A53 cores on the board, and all of them include the support for

PMU, ETM, and TrustZone. Based on the ATF and Linaro’s deliverables on Android 5.1.1

for Juno, we build a customized firmware for the board. Note that Ninja is compatible

with commercial mobile devices because it relies on existing deployed hardware features.

4.4.1 Bridge the Semantic Gap

As with the VMI-based [126] and TEE-based [285] systems, bridging the semantic gap

is an essential step for Ninja to conduct the analysis. In particular, we face two layers of

semantic gaps in our system.

Gap between Normal and Secure Domains

In the DS, Ninja uses PMI to trigger a trap to EL3. However, the PMU counts the

instructions executed in the CPU disregarding to the current running process. That means

the instruction which triggers the PMI may belong to another application. Thus, we first

need to identify if the current running process is the target. Since Ninja is implemented in

the secure domain, it cannot understand the semantic information of the normal domain,

and we have to fill the semantic gap to learn the current running process in the OS.
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Figure 8: Semantics in the Function ExecuteGotoImpl.

In Linux, each process is represented by an instance of thread_info data structure, and

the one for the current running process could be obtained by SP & ∼(THREAD_SIZE - 1)

, where SP indicates the current stack pointer and THREAD_SIZE represents the size of the

stack. Next, we can fetch the task_struct, which maintains the process information (like

pid, name, and memory layout), from the thread_info. Then, the target process can be

identified by the pid or process name.

Gap in Android Java Virtual Machine

Android maintains a Java virtual machine to interpret Java bytecode, and we need

to figure out the current executing Java method and bytecode during the Android API

tracing and bytecode stepping. DroidScope [277] fills the semantic gaps in the Dalvik to

understand the current status of the VM. However, as a result of Android upgrades, Dalvik

is no longer available in recent Android versions, and the approach in DroidScope is not
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applicable for us.

By manually analyzing the source code of ART, we learn that the bytecode interpreter

uses ExecuteGotoImpl or ExecuteSwitchImpl function to execute the bytecode. The ap-

proaches we used to fill the semantic gap in these two functions are similar, and we use

function ExecuteGotoImpl as an example to explain our approach. In Android, the byte-

code of a Java method is organized as a 16-bit array, and ART passes the bytecode array

to the function ExecuteGotoImpl together with the current execution status such as the

current thread, caller and callee methods, and the call frame stack that stores the call stack

and parameters. Then, the function ExecuteGotoImpl interprets the bytecode in the array

following the control flows, and a local variable dex_pc indicates the index of the current

interpreting bytecode in the array. By manual checking the decompiled result of the func-

tion, we find that the pointer to the bytecode array is stored in register X27 while variable

dex_pc is kept by register X21, and the call frame stack is maintained in register X19. Fig-

ure 8 shows the semantics in the function ExecuteGotoImpl. By combining registers X21

and X27, we can locate the current executing bytecode. Moreover, a single frame in the call

frame stack is represented by an instance of StackFrame with the variable link_ pointing

to the previous frame. The variable method_ indicates the current executing Java method,

which is represented by an instance of ArtMethod. Next, we fetch the declaring class of

the Java method following the pointer declaring_class_. The pointer dex_cache_ in the

declaring class points to an instance of DexCache which is used to maintain a cache for

the DEX file, and the variable dex_file_ in the DexCache finally points to the instance of

DexFile, which contains all information of a DEX file. Detail description like the name

of the method can be fetched via the index of the method (i.e., dex_method_index_)
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in the method array maintained by the DexFile. Note that both ExecuteGotoImpl and

ExecuteSwitchImpl functions have four different template implementations in ART, and

our approach is applicable to all of them.

4.4.2 Secure Interrupts

In GIC, each interrupt is assigned to Group 0 (secure interrupts) or Group 1 (non-secure

interrupts) by a group of 32-bit GICD_IGROUPR registers. Each bit in each GICD_IGROUPR

register represents the group information of a single interrupt, and value 0 indicates Group

0 while value 1 means Group 1. For a given interrupt ID n, the index of the corresponding

GICD_IGROUPR register is given by n/ 32, and the corresponding bit in the register is n mod

32. Moreover, the GIC maintains a target process list in GICD_ITARGETSR registers for each

interrupt. By default, the ATF configures the secure interrupts to be handled in Cortex-A57

core 0.

As mentioned in Section 4.3.1, Ninja uses secure PMI and NMI to trigger a reliable

switch. As the secure interrupts are handled in Cortex-A57 core 0, we run the target

application on the same core to reduce the overhead of the communication between cores.

In Juno board, the interrupt ID for PMI in Cortex-A57 core 0 is 34. Thus, we clear the bit

2 of the register GICD_IGROUPR1 (34 mod 32 = 2, 34 / 32 = 1) to mark the interrupt 34 as

secure. Similarly, we configure the interrupt 195, which is triggered by pressing a GPIO

button, to be secure by clearing the bit 3 of the register GICD_IGROUPR6.

4.4.3 The Trace Subsystem

Instruction Tracing

Ninja uses ETM embedded in the CPU to trace the executed instructions. Figure 9
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Figure 9: ETM in Juno Board.

shows the ETM and related components in Juno board. The funnels shown in the figure

are used to filter the output of ETM, and each of them is controlled by a group of CoreSight

Trace Funnel (CSTF) registers [22]. The filtered result is then output to Embedded Trace

FIFO (ETF) which is controlled by Trace Memory Controller (TMC) registers [23].

In our case, as we only need the trace result from the core 0 in the Cortex-A57 cluster,

we set the EnS0 bit in CSTF Control Register of funnel 0 and funnel 2, and clear other slave

bits. To enable the ETF, we set the TraceCaptEn bit of the TMC CTL register.

The ETM is controlled by a group of trace registers. As the target application is always

executed in non-secure EL0 or non-secure EL1, we make the ETM only trace these states

by setting all EXLEVEL_S bits and clearing all EXLEVEL_NS bits of the TRCVICTLR register.

Then, Ninja sets the EN bit of TRCPRGCTLR register to start the instruction trace. In regard

to stop the trace, we first clear the EN bit of TRCPRGCTLR register to disable ETM and then

set the StopOnFl bit and the FlushMan bits of FFCR register in the TMC registers to stop

the ETF. To read the trace result, we keep reading from RRD register until 0xFFFFFFFF is

fetched. Note that the trace result is an encoded trace stream, and we use an open source

analyzer ptm2human [112] to convert the stream to a readable format.
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System Call Tracing

The system call of Linux in ARM platforms is achieved by supervisor call instruction

svc, and an immediate value following the svc instruction indicates the corresponding

system call number. Since the ETM can be configured to trace the PMU event EXC_SVC,

which occurs right after the execution of a svc instruction, we trace the system calls via

tracing this event in ETM.

As mentioned in Section 4.3.2, we can configure the ETM to trace PMU events during

the instruction trace. The TRCEXTINSELR register is used to trace at most four external input

source, and we configure one of them to trace the EXC_SVC event. In Cortex-A57, the event

number of the EXC_SVC event is 0x60, so we set the SEL0 bits of the TRCEXTINSELR register

to be 0x60. Also, the SELECT bits of the second trace resource selection control register

TRCRSCTLR2 (TRCRSCTLR0 and TRCRSCTLR1 are reserved) is configured to 0 to select the

external input 0 as tracing resource 2. Next, we configure the EVENT0 bit of TRCEVENTCTL0R

register to 2 to select the resource 2 as event 0. Finally, the INSTEN bit of TRCEVENTCTL1R

register is set to 0x1 to enable event 0. Note that the X bit of PMU register PMCR_EL0 should

also be set to export the events to ETM. After the configuration, the ETM can be used to

trace system calls, and the configuration to start and stop the trace is similar to the one in

instruction tracing.

Android API Tracing

Unlike the instruction trace and system call trace, we cannot use ETM to directly trace

the Android APIs as the existence of the semantic gap. As mentioned in Section 4.4.1, each

Java method is interpreter by ExecuteGotoImpl or ExecuteSwitchImpl function, and ART
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jumps to these functions by a branch instruction bl. Since a PMU event BR_RETIRED is fired

after execution of a branch instruction, we use PMU to trace the BR_RETIRED event and

reconstruct the semantic information following the approach described in Section 4.4.1 if

these functions are invoked.

There exist six PMU counters for each processor on Juno board, and we randomly select

the last one to be used for the Android API trace and the DS. Firstly, the E bit of PMCR_EL0

register is set to enable the PMU. Then, both PMCNTENSET_EL0 and PMINTENSET_EL1 reg-

isters are set to 0x20 to enable the counter 6 and the overflow interrupt of the counter

6. Next, we set PMEVTYPER5_EL0 register to 0x80000021 to make the counter 6 count the

BR_RETIRED event in non-secure EL0. Finally, the counter PMEVCNTR5_EL0 is set to its max-

imum value 0xFFFFFFFF. With this configuration, a secure PMI is routed to EL3 after the

execution of the next branch instruction. In the interrupt handler, the ELR_EL3 register,

which is identical to the PC of the normal domain, is examined to identify whether the ex-

ecution of normal domain encounters ExecuteGotoImpl or ExecuteSwitchImpl function.

If true, we fill the semantic gap and fetch the information about the current executing

Java method. By the declaring class of the method, we differentiate the Android APIs

from the developer defined methods. Before returning to the normal domain, we reset the

performance counter to its maximum value to make sure the next execution of a branch

instruction leads to an overflow.

4.4.4 The Debug Subsystem

Debugging is another essential approach to learn the behavior of an application. Ninja

leverages a secure serial port to connect the board to an external debugging client. There

exists two serial port (i.e., UART0 and UART1) in Juno board, and the ATF uses UART0 as
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the debugging input/output of both normal domain and secure domain. To build a secure

debugging bridge, Ninja uses UART1 as the debugging channel and marks it as a secure

device by configuring NIC-400 [21]. Alternatively, we can use a USB cable for this purpose.

In the DS, an analyst pauses the execution of the target application by the secure NMI or

predefined breakpoints and send debugging commands to the board via the secure serial

port. Ninja processes the commands and outputs the response to the serial port with a

user-friendly format. The information about symbols in both bytecode and machine code

are not supported at this moment, and we consider it as our future work.

Single-instruction Stepping

The ARMv8 architecture provides instruction stepping support for the debuggers by the

SS bit of MDSCR_EL1 register. Once this bit is set, the CPU generates a software step excep-

tion after each instruction is executed, and the highest EL that this exception can be routed

is EL2. However, this approach has two fundamental drawbacks: 1) the EL2 is normally

prepared for the hardware virtualization systems, which does not satisfy our transparency

requirements. 2) The instruction stepping changes the value of PSTATE, which is accessible

from EL1. Thus, we cannot use the software step exception for the instruction stepping.

Another approach is to modify the target application’s code to generate a SMC exception

after each instruction. Nonetheless, the modification brings the side effect that the self-

checking malware may be aware of it.

The PMU event INST_RETIRED is fired after the execution of each instruction, and we

use this event to implement instruction stepping by using similar approach mentioned in

Android API tracing. With the configuration, Ninja pauses the execution of the target after
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the execution of each instruction and waits for the debugging commands.

Moreover, Ninja is capable of stepping Java bytecode. Recall that the functions Execute-

GotoImpl and ExecuteSwitchImpl interpret the bytecode in Java methods. In both func-

tions, a branch instruction is used to switch to the interpretation code of each Java byte-

code. Thus, we use BR_RETIRED event to trace the branch instructions and firstly ensure the

pc of normal domain is inside the two interpreter functions. Next, we fill the semantic gap

and monitor the value of dex_pc. As the change of dex_pc value indicates the change of

current interpreting bytecode, we pause the system once the dex_pc is changed to achieve

Java bytecode stepping.

Breakpoints

In ARMv8 architecture, a breakpoint exception is generated by either a software break-

point or a hardware breakpoint. The execution of brk instruction is considered as a soft-

ware breakpoint while the breakpoint control registers DBGBCR_EL1 and breakpoint value

registers DBGBVR_EL1 provide support for at most 16 hardware breakpoints. However, sim-

ilar to the software step exception, the breakpoint exception generated in the normal do-

main could not be routed to EL3, which breaks the transparency requirement of Ninja.

MalT [285] discusses another breakpoint implementation that modifies the target’s code

to trigger an interrupt. Due to the transparency requirement, we avoid this approach to

keep our system transparent against the self-checking malware. Thus, we implement the

breakpoint based on the instruction stepping technique discussed above. Once the analyst

adds a breakpoint, Ninja stores its address and enable PMU to trace the execution of in-

structions. If the address of an executing instruction matches the breakpoint, Ninja pauses
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the execution and waits for debugging commands. Otherwise, we return to the normal

domain and do not interrupt the execution of the target.

Memory Read/Write

Ninja supports memory access with both physical and virtual addresses. The TrustZone

technology ensures that EL3 code can access the physical memory of the normal domain,

so it is straight forward for Ninja to access memory via physical addresses. Regarding to

memory accesses via virtual addresses, we have to find the corresponding physical ad-

dresses for the virtual addresses in the normal domain. Instead of manually walk through

the page tables, a series of Address Translation (AT) instructions help to translate a 64-bit

virtual address to a 48-bit physical address3 considering the translation stages, ELs and

memory attributes. As an example, the at s12e0r addr instruction performs stage 1 and 2

(if available) translations as defined for EL0 to the 64-bit address addr, with permissions

as if reading from addr. The [47:12] bits of the corresponding physical address are stor-

ing in the PA bits of the PAR_EL1 register, and the [11:0] bits of the physical address are

identical to the [11:0] bits of the virtual address addr. After the translation, Ninja directly

manipulates the memory in normal domain according to the debugging commands.

4.4.5 Interrupt Instruction Skid

In ARMv8 manual, the interrupts are referred as asynchronous exceptions. Once an

interrupt source is triggered, the CPU continues executing the instructions instead of wait-

ing for the interrupt. Figure 10 shows the interrupt process in Juno board. Assume that

an interrupt source is triggered before the MOV instruction is executed. The processor then

sends the interrupt request to the GIC and continues executing the MOV instruction. The

3The ARMv8 architecture does not support more bits in the physical address at this moment
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...
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GIC

interrupt 
triggered

send interrupt
request

signal interrupt
instruction skid

Figure 10: Interrupt Instruction Skid.

GIC processes the requested interrupt according to the configuration, and signals the in-

terrupt back to the processor. Note that it takes GIC some time to finish the process, so

some instructions following the MOV instruction have been executed when the interrupt

arrives the processor. As shown in Figure 10, the current executing instruction is the ADD

instruction instead of the MOV instruction when the interrupt arrives, and the instruction

shadow region between the MOV and ADD instructions is considered as interrupt instruction

skid.

The skid problem is a well-known problem [237, 260] and affects Ninja since the cur-

rent executing instruction is not the one that triggers the PMI when the PMI arrives the

processor. Thus, the DS may not exactly step the execution of the processor. Although the

skid problem cannot be completely eliminated, the side-effect of the skid does not affect

our system significantly, and we provide a detailed analysis and evaluation in Section 4.6.6.

4.5 Transparency

As Ninja is not based on the emulator or other sandboxes, the anti-analysis techniques

mentioned in [131, 193, 258] cannot detect the existence of Ninja. Moreover, other anti-

debugging techniques like anti-ptrace [281] do not work for Ninja since our analysis does

not use ptrace. Nonetheless, Ninja leaves artifacts such as changes of the registers and
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MRS X0, PMCR_EL0
MOV X1, #31

AND X0, X1, X1 LSR #10
...

...
MOV X0, #0x41013000

exception 
return

trap

Normal Domain Secure domain

Figure 11: Protect the PMCR_EL0 Register via Traps.

the slow down of the system, which may be detected by the target application. Next, we

discuss the mitigation of these artifacts.

4.5.1 Footprints Elimination

Since Ninja works in the secure domain, the hardware prevents the target application

from detecting the code or memory usage of Ninja. Moreover, as the ATF restores all

the general purpose registers while entering the secure domain and resumes them back

while returning to the normal domain, Ninja does not affect the registers used by the

target application as well. However, as we use ETM and PMU to achieve the debugging

and tracing functions, the modification to the PMU registers and the ETM registers leaves

a detectable footprint. In ARMv8, the PMU and ETM registers are accessible via both

system-instruction and memory-mapped interfaces.

System-Instruction Interface

The system-instruction interface makes the system registers readable via MRS instruc-

tion and writable via MSR instruction. In Ninja, we ensure that the access to the target

system registers via these instructions to be trapped to EL3. The TPM bit of the MDCR_EL3

register and the TTA bit of the CPTR_EL3 register help to trap the access to PMU and ETM

registers to EL3, respectively; then we achieve the transparency by providing artificial val-
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ues to the normal domain. Figure 11 is an example of manipulating the reading to the

PMCR_EL0 register and returning the default value of the register. Before the MRS instruc-

tion is executed, a trap is triggered to switch to the secure domain. Ninja then analyzes the

instruction that triggers the trap and learns that the return value of PMCR_EL0 is stored to

the general-purpose register X0. Thus, we put the default value 0x41013000 to the general-

purpose register X0 and resume to the normal domain. Note that the PC register of the

normal domain should also be modified to skip the MRS instruction. We protect both the

registers that we modified (e.g., PMCR_EL0, PMCNTENSET_EL0) and the registers modified by

the hardware as a result of our usage (e.g., PMINTENCLR_EL1, PMOVSCLR_EL0).

Memory Mapped Interface

Each of the PMU or ETM related components occupies a distinct physical memory re-

gion, and the registers of the component can be accessed via offsets in the region. Since

these memory regions do not locate in the DRAM (i.e., main memory), the TrustZone Ad-

dress Space Controller (TZASC) [31], which partitions the DRAM into secure regions and

non-secure regions, cannot protect them directly. Note that this hardware memory region

is not initialized by the system firmware by default and the system software such as ap-

plications and OSes cannot access it because the memory region is not mapped into the

virtual memory. However, advanced malware might remap this physical memory region

via functions like mmap and ioremap. Thus, to further defend against these attacks, we

intercept the suspicious calls to these functions and redirect the call to return an artificial

memory region.

The memory size for both the PMU and ETM memory regions is 64k, and we reserve a
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128k memory region on the DRAM to be the artificial PMU and ETM memory. The ATF for

Juno board uses the DRAM region 0x880000000 to 0x9ffffffff as the memory of the rich OS

and the region 0xa00000000 to 0x1000000000 of the DRAM is not actually initialized. Thus,

we randomly choose the memory region 0xa00040000 to 0xa00060000 to be the region for

artificial memory mapped registers. While the system is booting, we firstly duplicate the

values in the PMU and ETM memory regions into the artificial regions. As the function

calls are achieved by bl instruction, we intercept the call to the interested functions by

using PMU to trigger a PMI on the execution of branch instructions and compare the pc of

the normal domain with the address of these functions. Next, we manipulate the call to

these functions by modification to the parameters. Take ioremap function as an example.

The first parameter of the function, which is stored in the register X0, indicates the target

physical address, and we modify the value stored at the register to the corresponding

address in the artificial memory region. With this approach, the application never reads

the real value of PMU and ETM registers, and cannot be aware of Ninja.

4.5.2 Defending Against Timing Attacks

The target application may use the SoC or external timers to detect the time elapsed in

the secure domain since the DS affects the performance of the processor and communicates

with a human analyst. Note that the TS using ETM does not affect the performance of the

processor and thus is immune to the timing attack.

The ARMv8 architecture defines two types of timer components, i.e., the memory-

mapped timers and the generic timer registers [20]. Other than these timers, the Juno

board is equipped with an additional Real Time Clock (RTC) component PL031 [29] and

two dual-timer modules SP804 [25] to measure the time. For each one of these compo-
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nents, we manipulate its value to make the time elapsed of Ninja invisible.

Each of the memory-mapped timer components is mapped to a pre-defined memory

region, and all these memory regions are writable in EL3. Thus, we record the value of

the timer or counter while entering Ninja and restore it before existing Ninja. The RTC

and dual-timer modules are also mapped to a writable memory region, so we use a similar

method to handle them.

The generic timer registers consist of a series of timer and counter registers, and all of

these registers are writable in EL3 except the physical counter register CNTPCT_EL0 and the

virtual counter register CNTVCT_EL0. For the writable registers, we use the same approach

as handling memory-mapped timers to manipulate them. Although CNTPCT_EL0 is not di-

rectly writable, the ARM architecture requires a memory-mapped counter component to

control the generation of the counter value [20]. In the Juno board, the generic counter

is mapped to a controlling memory frame 0x2a430000-0x2a43ffff, and writing to the mem-

ory address 0x2a430008 updates the value of CNTPCT_EL0. The CNTVCT_EL0 register always

holds a value equal to the value of the physical counter register minus the value of the vir-

tual offset register CNTVOFF_EL2. Thus, the update to the CNTPCT_EL0 register also updates

the CNTVCT_EL0 register.

Note that the above mechanism only considers the time consumption of Ninja, and does

not take the time consumption of the ATF into account. Thus, to make it more precise, we

measure the average time consumption of the ATF during the secure exception handling

and minus it while restoring the timer values. Besides the timers, the malware may also

leverage the PMU to count the CPU cycles. Thus, Ninja checks the enabled PMU counters

and restores their values in a similar way to the writable timers.
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Table 9: Comparing with Other Tools. The source lines of code (SLOC) of the TCB is
calculated by sloccount [255] based on Android 5.1.1 and Linux kernel 3.18.20.

ATF = ARM Trusted Firmware, AOS = Android OS, LK = Linux Kernel

Ninja TaintDroid TaintART DroidTrace CrowDroid DroidScope CopperDroid NDroid

No VM/emulator X X X X X

No ptrace/strace X X X X X X

No modification to Android X X X X X X

Analyzing native instruction X X X X X X

Trusted computing base ATF AOS + LK AOS + LK LK LK QEMU QEMU QEMU

SLOC of TCB (K) 27 56, 355 56, 355 12, 723 12, 723 489 489 489

The external timing attack cannot be defended by modifying the local timer since ex-

ternal timers are involved. As the instruction tracing in Ninja is immune to the timing

attack, we can use the TS to trace the execution of the target with DS enabled and dis-

abled. By comparing the trace result using the approaches described in BareCloud [141]

and MalGene [140], we may identify the suspicious instructions that launch the attack and

defend against the attack by manipulating the control flow in EL3 to bypass these instruc-

tions. However, the effectiveness of this approach needs to be further studied. Currently,

defending against the external timing attack is an open research problem [77, 285].

4.6 Evaluation

To evaluate Ninja, we fist compare it with existing analysis and debugging tools on

ARM. Ninja neither involves any virtual machine or emulator nor uses the detectable Linux

tools like ptrace or strace. Moreover, to further improve the transparency, we do not

modify Android system software or the Linux kernel. The detailed comparison is listed in

Table 9. Since Ninja only relies on the ATF, the table shows that the Trusted Computing

Base (TCB) of Ninja is much smaller than existing systems.
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4.6.1 Output of Tracing Subsystem

To learn the details of the tracing output, we write a simple Android application that

uses Java Native Interface to read the /proc/self/status file line by line (which can

be further used to identify whether ptrace is enabled) and outputs the content to the

console. We use instruction trace of the TS to trace the execution of the application, and

also measure the time usage. The status file contains 38 lines in total, and it takes about

0.22 ms to finish executing. After the execution, the ETF contains 9.92 KB encoded trace

data, and the datarate is approximately 44.03 MB/s. Next, we use ptm2human [112] to

decode the data, and the decoded trace data contains 1341 signpost instructions (80 in

our custom native library and the others in libc.so). By manually introspect the signpost

instructions in our custom native library, we can rebuild the whole execution control flow.

To reduce the storage usage of the ETM, we can use real-time continuous export via either

a dedicated trace port capable of sustaining the bandwidth of the trace or an existing

interface on the SoC (e.g., a USB or other high-speed port) [26].

4.6.2 Tracing and Debugging Samples

We randomly pickup two samples ActivityLifecycle1 and PrivateDataLeak3 from

DroidBench [83] project and use Ninja to analyze them. We choose these two specific

samples since they exhibit representative malicious behavior like leaking sensitive infor-

mation via local file, text message, and network connection.

Analyzing ActivityLifecycle1. To get an overview of the sample, we first enable the

Android API tracing feature to inspect the APIs that read sensitive information (source) and

APIs that leak information (sink), and find a suspicious API call sequence. In the sequence,
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the method TelephonyManager.getDeviceId and method HttpURLConnection.connect

are invoked in turn, which indicates a potential flow that sends IMEI to a remote server.

As we know the network packets are sent via the system call sys_sendto, we attempt to

intercept the system call and analyze the parameters of the system call. In Android, the

system calls are invoked by corresponding functions in libc.so, and we get the address of

the function for the system call sys_sendto by disassembling libc.so. Thus, we use Ninja

to set a breakpoint at the address, and the second parameter of the system call, which is

stored in register X1, shows that the sample sends a 181 bytes buffer to a remote server.

Then, we output the memory content of the buffer and find that it is a HTTP GET request

to host www.google.de with path /search?q=353626078711780. Note that the digits in the

path is exactly the IMEI of the device.

Analyzing PrivateDataLeak3. Similar to the previous analysis, the Android API tracing

helps us to find a suspicious API call sequence consisting of the methods TelephonyManage-

r.getDeviceId, Context.openFileOutput, and SmsManager.sendTextMessage. As the

Android uses the system calls sys_openat to open a file and sys_write to write a file, we

set breakpoints at the address of these calls. Note that the second parameter of sys_openat

represents the full path of the target file and the second parameter of sys_write points to

a buffer writing to a file. Thus, after the breakpoints are hit, we see that sample writing

IMEI 353626078711780 to the file /data/data/de.ecspride/files/out.txt. The API

SmsManager.sendTextMessage uses binder to achieve IPC with the lower-layer SmsService

in Android system, and the semantics of the IPC is described in CopperDroid [245]. By

intercepting the system call sys_ioctl and following the semantics, we finally find the

target of the text message "+49" and the content of the message 353626078711780.
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(a) Reading PMU Register in an Appli-
cation.

(b) EL3 Output in the Secure Console.

Figure 12: Accessing System Instruction Interface.

4.6.3 Transparency Experiments

Accessing System Instruction Interface

To evaluate the protection mechanism of the system instruction interface, we write

an Android application that reads the PMCR_EL0 and PMCNTENSET_EL0 registers via MRS

instruction. The values of these two registers represent whether a performance counter

is enabled. We first use the application to read the registers with Ninja disabled, and

the result is shown in the upper rectangle of Figure 12a. The last bit of the PMCR_EL0

register and the value of the PMCNTENSET_EL0 register are 0, which means that all the

performance counters are disabled. Then we press a GPIO button to enable the Android

API tracing feature of Ninja and read the registers again. From the console output shown

in Figure 12b, we see that the access to the registers is successfully trapped into EL3.

And the output shows that the real values of the PMCR_EL0 and PMCNTENSET_EL0 registers

are 0x41013011 and 0x20, respectively, which indicates that the counter PMEVCNTR5_EL0 is

enabled. However, the lower rectangle in Figure 12a shows that the value of the registers

fetched by the application keep unchanged. This experiment shows that Ninja effectively

eliminates the footprint on the system instruction interface.
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(a) Reading ETM Memory Region. (b) EL3 Output in the Secure Console.

Figure 13: Memory Mapped Interface.

4.6.4 Accessing Memory Mapped Interface

In this section, we take ioremap function as an example to evaluate whether the inter-

ception to the memory-mapping functions works. As the ioremap function can be called

only in the kernel space, we write a kernel module that remaps the memory region of the

ETM by the ioremap function, and print the content of the first 32 bytes in the region.

Similar to the approach discussed above, we first load the kernel module with Ninja dis-

abled, and the output is shown in the upper rectangle in Figure 13a. Note that the 5th

to the 8th bytes are mapped as the TRCPRGCTLR register and the EN bit, which indicates

the status of the ETM, is the last bit of the register. In the upper rectangle, the EN bit 0

shows that the ETM is disabled. Next, we enable the instruction tracing feature of Ninja

and reload the kernel module. The lower rectangle in Figure 13a shows that the content

of the memory fetched by the module remains the same. However, in the Figure 13b, the

output from EL3 shows that the memory of the ETM has changed. This experiment shows

that we successfully hide the ETM status change to the normal domain, and Ninja remains

transparent.

Adjusting the Timers

To evaluate whether our mechanism that modifies the local timers works, we write a

simple application that launches a dummy loop for 1 billion times, and calculate the exe-
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Table 10: The TS Performance Evaluation Calculating 1 Million Digits of π.

Mean STD # Slowdown

Base: Tracing disabled 2.133 s 0.69 ms

Instruction tracing 2.135 s 2.79 ms ∼ 1x
System call tracing 2.134 s 5.13 ms ∼ 1x
Android API tracing 149.372 s 1287.88 ms ∼70x

cution time of the loop by the return values of the API call System.currentTimeMillis().

In the first experiment, we record the execution time with Ninja disabled, and the average

time for 30 runs is 53.16s with a standard deviation 2.97s. In the second experiment, we

enable the debugging mode of Ninja and pause the execution during the loop by pressing

the GPIO button. To simulate the manual analysis, we send a command rr to output all

the general purpose registers and then read them for 60s. Finally, a command c is sent to

resume the execution of the target. We repeat the second experiment with the timer ad-

justing feature of Ninja enabled and disabled for 30 times each, and record the execution

time of the loop. The result shows that the average execution time with timer adjusting

feature disabled is 116.33s with a standard deviation 2.24s, and that with timer adjusting

feature enabled is 54.33s with a standard deviation 3.77s. As the latter result exhibits sim-

ilar execution time with the original system, the malware cannot use the local timer to

detect the presence of the debugging system.

4.6.5 Performance Evaluation

In this section, we evaluate the performance overhead of the trace subsystem due to its

automation characteristic. Performance overhead of the debugging subsystem is not no-

ticed by an analyst in front of the command console, and the debugging system is designed

with human interaction.
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Table 11: The TS Performance Evaluation with CF-Bench [61].

Native Scores Java Scores Overall Scores

Mean STD Slowdown Mean STD Slowdown Mean STD Slowdown

Base: Tracing disabled 25380 1023 18758 1142 21407 1092

Instruction tracing 25364 908 ∼ 1x 18673 1095 ∼ 1x 21349 1011 ∼ 1x
System call tracing 25360 774 ∼ 1x 18664 1164 ∼ 1x 21342 911 ∼ 1x
Android API tracing 6452 24 ∼ 4x 122 4 ∼ 154x 2654 11 ∼ 8x

To learn the performance overhead on the Linux binaries, we build an executable that

using an open source π calculation algorithm provided by the GNU Multiple Precision

Arithmetic Library [251] to calculate 1 million digits of the π for 30 times with the tracing

functions disabled and enabled, and the time consumption is shown in Table 10. Since we

leverage ETM to achieve the instruction tracing and system call tracing, the experiment

result shows that the ETM-based solution has negligible overhead — less than 0.1%. In

the Android API tracing, the overhead is about 70x. This overhead is mainly due to the

frequent domain switch during the execution and bridging the semantic gap. To reduce

the overhead, we can combine ETM instruction trace with data trace, and leverage the

trace result to rebuild the semantic information and API usage offline.

To measure the performance overhead on the Android applications, we use CF-Bench [61]

downloaded from Google Play Store. The CF-Bench focuses on measuring both the Java

performance and native performance in Android system, and we use it to evaluate the

overhead for 30 times. The result in Table 11 shows that the overheads of instruction trac-

ing and system call tracing are sufficiently small to ignore. The Android API tracing brings

4x slowdown on the native score and 154x slowdown on the Java score, and the overall

slowdown is 8x. Note that we make these benchmarks to be executed only on Cortex-A57

core 0 by setting their CPU affinity mask to 0x1 since Ninja only stays in that core.
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Table 12: Instructions in the Skid Shadow with Representative PMU Events.

Event Number Event Description # of Instructions

Mean STD

0x81-0x8F Exception related events that firing after tak-
ing exceptions

0 0

0x11 CPU cycle event that firing after each CPU cy-
cle

2.73 2.30

0x08 Instruction retired event that firing after exe-
cuting each instruction

6.03 4.99

4.6.6 Skid Evaluation

In this subsection, we evaluate the influence of the skid problem to Ninja. Since the

instruction tracing, system call tracing, and memory read/write do not involve PMI, these

functionalities are not affected by the skid problem. In ART, each bytecode is interpreted as

an array of machine code. Our bytecode stepping mechanism recognizes the corresponding

bytecode once it is executing any machine code in the array, i.e., the skid problem affects

the bytecode stepping if and only if the instruction shadow covers all the machine code

for a bytecode. We evaluate the listed 218 bytecode opcode [95] on the Android official

website, and it shows that the shadow region cannot cover the machine code for any of

them. Thus, the bytecode stepping does not suffer from the skid problem. For a similar

reason, the skid problem has no influence on the Android API tracing.

However, the native code stepping and the breakpoint are still affected, and both of

them use instruction retired event to overflow the counter. Since the skid problem is due

to the delay between the interrupt request and the interrupt arrival, we first use PMU

counter to measure this delay by CPU cycles. Similar with the instruction stepping, we

make the PMU counter to count CPU_CYCLES event and initialize the value of the counter
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to its maximum value. Then, the counter value after switching into EL3 is the time delay

of the skid in CPU cycles. The results of 30 experiments show that the delay is about 106.3

CPU cycles with a standard deviation 2.26. As the frequency of our CPU is 1.15GHz, the

delay is about 0.09µs. We also evaluate the number of instructions in the skid shadow

with some representative PMU events. For each event, we trigger the PMI for 30 times and

calculate the mean and standard deviation of the number of instructions in the shadow. Ta-

ble 12 shows the result with different PMU events. Unlike the work described in [237], the

exception related events exhibits no instruction shadow in our platform, and we consider

it is caused by different ARM architectures. It is worth noting that the number of instruc-

tions in the skid shadow of the CPU cycle event is less than the instruction retired event.

However, using the CPU cycle event may lead to multiple PMIs for a single instruction

since the execution of a single instruction may need multiple CPU cycles, which introduces

more performance overhead but with more fine-grained instruction-stepping. In practice,

it is a trade off between the performance overhead and the debugging accuracy, and we

can use either one based on the requirement.
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CHAPTER 5 UNDERSTANDING THE SECURITY OF ARM DEBUGGING
FEATURES

5.1 Introduction

Although the debugging architecture and authentication signals have been presented

for years, the security of them is under-examined by the community since it normally re-

quires physical access to use these features in the traditional debugging model. However,

ARM introduces a new debugging model that requires no physical access since ARMv7 [18].

As shown in the left side of Figure 14, in the traditional debugging model, an off-chip de-

bugger connects to an on-chip Debug Access Port (DAP) via the JTAG interface, and the

DAP further helps the debugger to debug the on-chip processors. In this model, the off-

chip debugger is the debug host, and the on-chip processors are the debug target. The

right side of Figure 14 presents the new debugging model introduced since ARMv7. In this

model, a memory-mapped interface is used to map the debug registers into the memory

so that the on-chip processor can also access the DAP. Consequently, an on-chip proces-

sor can act as a debug host and debug another processor (the debug target) on the same

chip; we refer to this debugging model as the inter-processor debugging model. Never-

theless, ARM does not provide an upgrade on the privilege management mechanism for

the new debugging model, and still uses the legacy debug authentication signals in the

inter-processor debugging model, which exacerbates our concern on the security of the

debugging features.

We dig into the ARM debugging architecture to acquire a comprehensive understanding

of the debugging features, and summarize the security implications. We note that the

debug authentication signals only take the privilege mode of the debug target into account
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Figure 14: Debug Models in ARM Architecture.

and ignore the privilege mode of the debug host. It works well in the traditional debugging

model since the debug host is an off-chip debugger in this model, and the privilege mode

of the debug host is not relevant to the debug target. However, in the inter-processor

debugging model, the debug host and debug target locate at the same chip and share the

same resource (e.g., memory and registers), and reusing the same debug authentication

mechanism leads to the privilege escalation via misusing the debugging features. With

help of another processor, a low-privilege processor can obtain arbitrary access to the

high-privilege resource such as code, memory, and registers. Note that the low-privilege in

this paper mainly refers to the kernel-level privilege, while the high-privilege refers to the

secure privilege levels provided by TrustZone [31] and the hypervisor-level privilege.

This privilege escalation depends on the debug authentication signals. However, ARM

does not provide a standard mechanism to control these authentication signals, and the

management of these signals highly depends on the System-on-Chip (SoC) manufactur-

ers. Thus, we further conduct an extensive survey on the debug authentication signals

in different ARM-based platforms. Specifically, we investigate the default status and the
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management mechanism of these signals on the devices powered by various SoC manufac-

turers, and the target devices cover four product domains including development boards,

Internet of Things (IoT) devices, commercial cloud platforms, and mobile devices.

In our investigation, we find that the debug authentication signals are fully or partially

enabled on the investigated platforms. Meantime, the management mechanism of these

signals is either undocumented or not fully functional. Based on this result, we craft a

novel attack scenario, which we call Nailgun4. Nailgun works on a processor running

in a low-privilege mode and accesses the high-privilege content of the system without

restriction via the aforementioned new debugging model. Specifically, with Nailgun, the

low-privilege processor can trace the high-privilege execution and even execute arbitrary

payload at a high-privilege mode. To demonstrate our attack, we implement Nailgun on

commercial devices with different SoCs and architectures, and the experiment results show

that Nailgun is able to break the privilege isolation enforced by the ARM architecture. Our

experiment on Huawei Mate 7 also shows that Nailgun can leak the fingerprint image

stored in TrustZone from the commercial mobile phones. In addition, we present potential

countermeasures to our attack in different perspectives of the ARM ecosystem. Note that

the debug authentication signals cannot be simply disabled to avoid the attack, and we

will discuss this in Section 5.5.

The hardware debugging features have been deployed to the modern processors for

years, and not enough attention is paid to the security of these features since they require

physical access in most cases. However, it turns out to be vulnerable in our analysis when

the multiple-processor systems and inter-processor debugging model are involved. We

4Nailgun is a tool that drives nails through the wall—breaking the isolation
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consider this as a typical example in which the deployment of new and advanced systems

impacts the security of a legacy mechanism. The intention of this paper is to rethink

the security design of the debugging features and motivate the researchers/developers to

draw more attention to the "known-safe" or "assumed-safe" components in the existing

systems.

5.2 Security Implications of the Debugging Architecture

As mentioned in Section 2.3, non-invasive debugging and invasive debugging are avail-

able in ARM architecture. In this section, we carefully investigate the non-invasive and in-

vasive debugging mechanisms documented in the Technique Reference Manuals (TRM) [18,

20], and reveal the vulnerability and security implications indicated by the manual. Note

that we assume the required debug authentication signals are enabled in this section, and

this assumption is proved to be reasonable and practical in Section 5.3.

5.2.1 Non-invasive Debugging

The non-invasive debugging does not allow to halt a processor and introspect the state

of the processor. Instead, non-invasive features such as the Performance Monitor Unit

(PMU) and Embedded Trace Macrocell (ETM) are used to count the processor events and

trace the execution, respectively.

In the ARMv8 architecture, the PMU is controlled by a group of registers that are ac-

cessible in non-secure EL1. However, we find that ARM allows the PMU to monitor the

events fired in EL2 even when the NIDEN signal is disabled 5. Furthermore, the PMU can

monitor the events fired in the secure state including EL3 with the SPNIDEN signal enabled.

In other words, an application with non-secure EL1 privilege is able to monitor the events

5In ARMv7, NIDEN is required to make PMU monitor the events in non-secure state.
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fired in EL2 and the secure state with help of the debug authentication signals. The TPM bit

of the MDCR register is introduced in ARMv8 to restrict the access to the PMU registers in

low ELs. However, this restriction is only applied to the system register interface but not

the memory-mapped interface [20].

The ETM traces the instructions and data streams of a target processor with a group of

configuration registers. Similar to the PMU, the ETM is able to trace the execution of the

non-secure state (including EL2) and the secure state with the NIDEN and SPNIDEN signals,

respectively. However, it only requires non-secure EL1 to access the configuration registers

of the ETM. Similar to the aforementioned restriction on the access to the PMU registers,

the hardware-based protection enforced by the TTA bit of the CPTR register is also applied

to only the system register interface [20].

In conclusion, the non-invasive debugging feature allows the application with a low

privilege to learn information about the high-privilege execution.

Implication 1: An application in the low-privilege mode is able to learn information

about the high-privilege execution via PMU and ETM.

5.2.2 Invasive Debugging

The invasive debugging allows an external debugger to halt the target processor and

access the resources on the processor via the debugging architecture. Figure 15 shows a

typical invasive debugging model. In the scenario of invasive debugging, we have an ex-

ternal debugger (HOST) and the debug target processor (TARGET). To start the debugging,

the HOST sends a debug request to the TARGET via the ECT. Once the request is handled,

the communication between the HOST and TARGET is achieved via the instruction transfer-
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ring and data communication channel provided by the debugging architecture. Finally,

the restart request is used to end the debugging session. In this model, since the HOST

is always considered as an external debugging device or a tool connected via the JTAG

port, we normally consider it requires physical access to debug the TARGET. However, ARM

introduces an inter-processor debugging model that allows an on-chip processor to de-

bug another processor on the same chip without any physical access or JTAG connection

since ARMv7. Furthermore, the legacy debug authentication signals, which only consider

the privilege mode of the TARGET but ignore the privilege mode of the HOST, are used to

conduct the privilege control of the inter-processor debugging model. In this section, we

discuss the security implications of the inter-processor debugging under the legacy debug

authentication mechanism.

Entering and Existing Debug State

To achieve the invasive debugging in the TARGET, we need to make the TARGET run in

the debug state. The processor running in the debug state is controlled via the external

debug interface, and it stops executing instructions from the location indicated by the

program counter. There are two typical approaches to make a processor enter the debug
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state: executing an HLT instruction on the processor or sending an external debug request

via the ECT.

The HLT instruction is widely used as a software breakpoint, and executing an HLT

instruction directly causes the processor to halt and enter the debug state. A more general

approach to enter the debug state is to send an external debug request via the ECT. Each

processor in a multiple-processor system is embedded with a separated CTI (i.e., interface

to ECT), and the memory-mapped interface makes the CTI on a processor available to

other processors. Thus, the HOST can leverage the CTI of the TARGET to send the external

debug request and make the TARGET enter the debug state. Similarly, a restart request can

be used to exit the debug state.

However, the external debug request does not take the privilege of the HOST into con-

sideration; this design allows a low-privilege processor to make a high-privilege processor

enter the debug state. For example, a HOST running in non-secure state can make a TARGET

running in secure state enter the debug state with the SPIDEN enabled. Similarly, a HOST in

non-secure EL1 can halt a TARGET in EL2 with the DBGEN enabled.

Implication 2: A low-privilege processor can make an arbitrary processor (even a high-

privilege processor) enter the debug state via ECT..

Debug Instruction Transfer/Communication

Although the normal execution of a TARGET is suspended after entering the debug state,

the External Debug Instruction Transfer Register (EDITR) enables the TARGET to execute

instructions in the debug state. Each processor owns a separated EDITR register, and writ-

ing an instruction (except for special instructions like branch instructions) to this register
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when the processor is in the debug state makes the processor execute it.

Meantime, the Debug Communication Channel (DCC) enables data transferring be-

tween a HOST in the normal state and a TARGET in the debug state. In ARMv8 architecture,

three registers exist in the DCC. The 32-bit DBGDTRTX register is used to transfer data from

the TARGET to the HOST, while the 32-bit DBGDTRRX register is used to receive data from the

HOST. Moreover, the 64-bit DBGDTR register is available to transfer data in both directions

with a single register.

We note that the execution of the instruction in the EDITR register only depends on the

privilege of the TARGET and ignores the privilege of the HOST, which actually allows a low-

privilege processor to access the high-privilege resource via the inter-processor debugging.

Assume that the TARGET is running in the secure state and the HOST is running in the non-

secure state, the HOST is able to ask the TARGET to read the secure memory via the EDITR

register and further acquire the result via the DBGDTRTX register.

Implication 3: In the inter-processor debugging, the instruction execution and resource

access in the TARGET does not take the privilege of the HOST into account..

Privilege Escalation

The Implication 2 and Implication 3 indicate that a low-privilege HOST can access the

high-privilege resource via a high-privilege TARGET. However, if the TARGET remains in

a low-privilege mode, the access to the high-privilege resource is still restricted. ARM

offers an easy way to escalate privilege in the debug state. The dcps1, dcps2, and dcps3

instructions, which are only available in debug state, can directly promote the exception

level of a processor to EL1, EL2, and EL3, respectively.
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Figure 16: Violating the Isolation via Non-Invasive Debugging.

The execution of the dcps instructions has no privilege restriction, i.e., they can be

executed at any exception level regardless of the secure or non-secure state. This design

enables a processor running in the debug state to achieve an arbitrary privilege without

any restriction.

Implication 4: The privilege escalation instructions enable a processor running in the

debug state to gain a high privilege without any restriction..

5.2.3 Summary

Both the non-invasive and invasive debug involve the design that allows an external

debugger to access the high-privilege resource while certain debug authentication signals

are enabled, and the privilege mode of the debugger is ignored. In the traditional de-

bugging model that the HOST is off-chip, this is reasonable since the privilege mode of the

off-chip platform is not relevant to that of the on-chip platform where the TARGET locates.

However, since ARM allows an on-chip processor to act as an external debugger, simply

reusing the rules of the debug authentication signals in the traditional debugging model

makes the on-chip platform vulnerable.
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Figure 17: Privilege Escalation in A Multi-processor SoC System via Invasive Debugging.

Non-invasive Debugging: Figure 16 shows an idea of violating the privilege isolation via

the non-invasive debugging. The execution of a single processor is divided into different

privilege modes, and isolations are enforced to protect the sensitive computation in the

high-privilege modes from the low-privilege applications. However, a low-privilege appli-

cation is able to violate this isolation with some simple steps according to Implication 1.

Step À in Figure 16 enables the ETM trace from the low-privilege application to prepare

for the violation. Next, we trigger the sensitive computation to switch the processor to a

high-privilege mode in step Á. Since the ETM is enabled in step À, the information about

the sensitive computation in step Â is recorded. Once the computation is finished, the

processor returns to a low-privilege mode and the low-privilege application disables the

trace in step Ã. Finally, the information about the sensitive computation is revealed via

analyzing the trace output in step Ä.

Invasive Debugging: In regard to the invasive debugging, the Implications 2-4 are un-

neglectable in the inter-processor debugging model since the HOST and TARGET work in

the same platform and share the same resource (e.g., memory, disk, peripheral, and etc.).

As described in Figure 17(a), the system consists of the high-privilege resource, the low-
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privilege resource, and a dual-core cluster. By default, the two processors in the cluster

can only access the low-privilege resource. To achieve the access to the high-privilege re-

source, the processor A acts as an external debugger and sends a debug request to the

processor B. In Figure 17(b), the processor B enters the debug state due to the request as

described in Implication 2. However, neither of the processors is able to access the high-

privilege resource since both of them are still running in the low-privilege mode. Next,

as shown in Figure 17(c), the processor A makes the processor B execute a privilege esca-

lation instruction. The processor B then enters the high-privilege mode and gains access

to the high-privilege resource according to Implication 4. At this moment, accessing the

high-privilege resource from the processor A is still forbidden. Finally, since the processor

A is capable of acquiring data from the processor B and the processor B can directly access

the high-privilege resource, as indicated by Implication 3, the low-privilege processor A

actually gains an indirect access to the high-privilege resource as shown in Figure 17(d).

Unlike the traditional debugging model, the non-invasive debugging in Figure 16 and

invasive debugging in Figure 17 require no physical access or JTAG connection.

5.3 Debug Authentication Signals in Real-World Devices

The aforementioned isolation violation and privilege escalation occur only when certain

debug authentication signals are enabled. Thus, the status of these signals is critical to

the security of the real-world devices, which leads us to perform an investigation on the

default status of the debug authentication signals in real-world devices. Moreover, we

are also interested in the management mechanism of the debug authentication signals

deployed on the real-world devices since the mechanism may be used to change the status
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of the signals at runtime. Furthermore, as this status and management mechanism highly

depend on the SoC manufacturers and the OEMs, we select various devices powered by

different SoCs and OEMs as the investigation target. To be comprehensive, we also survey

the devices applied in different product domains including development boards, Internet

of Things (IoT) devices, commercial cloud platforms, and mobile devices. We discuss our

choices on the target devices in Section 5.3.1, and present the results of the investigation

in Section 5.3.2 and Section 5.3.3.

5.3.1 Target Devices

Development Boards

The ARM-based development boards are broadly used to build security-related analysis

systems [52, 103, 108, 241, 290]. However, the security of the development board itself is

not well-studied. Therefore, we select the widely used development board [52, 241, 290],

i.MX53 Quick Start Board (QSB) [182], as our analysis object. As a comparison, the official

Juno Board [28] released by ARM is also studied in this paper.

IoT Devices

The low power consumption makes the ARM architecture to be a natural choice for

the Internet of Things (IoT) devices. Many traditional hardware vendors start to provide

the ARM-based smart home solutions [16, 164, 212], and experienced developers even

build their own low-cost solutions based on cheap SoCs [104]. As a typical example, the

Raspberry PI 3 [203], over 9, 000, 000 units of which have been sold till March 2018 [202],

is selected as our target.

Commercial Cloud Platforms:



84

Table 13: Debug Authentication Signals on Real Devices.

Category Company Platform / Device
SoC Debug Authentication Signals

Company Name DBGEN NIDEN SPIDEN SPNIDEN

Development
Boards

ARM Juno r1 Board ARM Juno 4 4 4 4

NXP i.MX53 QSB NXP i.MX53 6 4 6 6

IoT Devices Raspberry PI Raspberry PI 3 B+ Broadcom BCM2837 4 4 4 4

Commercial Cloud
Platforms

miniNodes 64-bit ARM miniNode Huawei Kirin 620 4 4 4 4

Packet Type 2A Server Cavium ThunderX 4 4 4 4

Scaleway ARM C1 Server Marvell Armada 370/XP 4 4 4 4

Google Nexus 6 Qualcomm Snapdragon 805 6 4 6 6

Samsung Galaxy Note 2 Samsung Exynos 4412 4 4 6 6
Mobile
Devices Huawei Mate 7 Huawei Kirin 925 4 4 4 4

Motorola E4 Plus MediaTek MT 6737 4 4 4 4

Xiaomi Redmi 6 MediaTek MT 6762 4 4 4 4

The Cloud Computing area is dominated by the x86 architecture, however, the bene-

fit of the high-throughput computing in ARM architecture starts to gain the attention of

big cloud providers including Microsoft [267]. Although most of the ARM-based cloud

servers are still in test, we use the publicly available ones including miniNodes [165],

Packet [188], and Scaleway [216] to conduct our analysis.

Mobile Devices:

Currently, most mobile devices in the market are powered by ARM architecture, and

the mobile device vendors build their devices based on the SoCs provided by various SoC

manufacturers. For example, Huawei and Samsung design Kirin [106] and Exynos [213]

SoCs for their own mobile devices, respectively. Meantime, Qualcomm [200] and Medi-

aTek [163] provide SoCs for various mobile device vendors [167, 168, 274]. Considering

both the market share of the mobile vendors [239] and the variety of the SoCs, we select

Google Nexus 6, Samsung Galaxy Note 2, Huawei Mate 7, Motorola E4 Plus, and Xiaomi

Redmi 6 as our analysis targets.
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5.3.2 Status of the Authentication Signals

The Debug Authentication Status Register (DBGAUTHSTATUS) is a read-only register that

is accessible in EL1, and the bits[0:7] of this register reflect the status of the authentication

signals. For the target devices, we build a Loadable Kernel Module (LKM) to read the

status of the debug authentication signals via this register. However, some stock ROMs in

the mobile devices forbid the load of LKM. In that case, we obtain the kernel source code

of the stock ROM and recompile a kernel image with LKM enabled option. The recompiled

image is then flashed back to the device to conduct the investigation. Note that we make

no change to other functionalities in the kernel, and the kernel replacement does not affect

the status of the authentication signals.

Table 13 summarizes the default status of the debug authentication signals in the tested

devices. On the Juno board, which is designed only for development purpose, the debug

authentication signals are all enabled by default. However, we are surprised to find that

all the debug authentication signals are enabled by default on the commercial devices

like Raspberry PI 3 Model B+, Huawei Mate 7, Motorola E4 Plus, and Xiaomi Redmi.

Moreover, all the investigated cloud platforms also enable all these signals. The results on

other platforms show that the debug authentication signals are partially enabled by default

in the tested mobile devices.

For the mobile phones that enable SPNIDEN and SPIDEN, we also investigate the usage

of the TrustZone on these devices. According to [11, 102, 215], the Huawei Mate 7,

Motorola E4 Plus and Xiaomi Redmi 6 leverage TrustZone to enforce a hardware-level

protection on the collected fingerprint image. By manually introspect the binary image
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of the TEE in Huawei Mate 7, we also find that there exists an encryption engine inside

the TEE. The TEE image of Motorola E4 Plus and Xiaomi Redmi 6 indicate that both of

them use ARM Trusted Firmware (ATF) [30] as the TEE OS. The ATF provides support for

both trusted boot and trusted apps, and we also find a potential secure patching module in

these binaries. In the TEE image of Xiaomi Redmi 6, we identify a large array with pairs of

file names and 128-bit checksums, which may be used to verify the integrity of the system

files.

5.3.3 Management of the Authentication Signals

To understand the deployed signal management mechanism, we collect information

from the publicly available TRMs and the source code released by the hardware vendors.

The signal management mechanism on Juno board and i.MX53 QSB is partially docu-

mented in the TRMs, and we have also identified some potential-related code in the kernel

source code of Motorola Nexus 6 and Huawei Mate 7. In regard to the other platforms,

the signal management mechanism cannot be identified from the publicly available TRMs

and released source code.

What we learned from the TRMs:

NXP i.MX53 Quick Start Board (QSB). According to the publicly available TRM of

i.MX53 SoC [181], the DBGEN signal is controlled by the DBGEN bit of the ARM_GPC register

located at memory address 0x63FA0004, and no privilege requirement is specified for the

access to this register. The management of other debug authentication signals is not doc-

umented. In the further experiment, we find that the SPIDEN and SPNIDEN signals can be

controlled via the JTAG port. Once we use the JTAG to connect to the board via additional
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debugging software (ARM DS-5 [24] or OpenOCD [186]), the SPIDEN and SPNIDEN signals

are directly enabled. Note that this mechanism actually breaks ARM’s design purpose since

it allows a debugger to enable the debug authentication signals which are design to restrict

the usage of the debugger.

ARM Juno r1 Board. As an official development platform released by ARM, the man-

agement mechanism of the debug authentication signals is well-documented in the TRM

of Juno Board [28]. Developers can control the signal via the debug authentication reg-

ister in the System Configuration Controller (SCC) or the System Security Control (SSC)

registers. The SCC is actually managed by a text file in a configuration MircoSD card and

the configurations on the card are loaded by the motherboard micro-controller firmware

during the early board setup; modification to the text file becomes effective after a reboot.

This configuration MircoSD card is not available to the on-chip OS and can be mounted to

a remote PC via a dedicated USB cable. In contrast, the SSC registers can be modified at

runtime, and they can only be accessed when the processor is running in the secure state.

In our experiment, we find that the debug authentication register in the SCC can only be

used to manage the SPIDEN and SPNIDEN signals. Clearing the bit 0 of the register, which

is documented as "Global External Debug Enable" bit, does not disable any of the debug

authentication signals. Similarly, the SSC registers can control the status of the SPIDEN

and SPNIDEN signals, but the modification to the DBGEN and NIDEN signals does not work.

Unlike the aforementioned i.MX53 QSB, connecting to the external debugging software

via JTAG will not enable the SPIDEN and SPNIDEN signals.

What we learned from the source code:
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Motorola Nexus 6. We check the kernel source code for Motorola Nexus 6 provided by

Android Open Source Project (AOSP) and find that the debug authentication signals are

controlled by a CoreSight fuse [218] at address 0xFC4BE024. Since the fuse is considered

as a One-Time Programmable (OTP) device, directly writing to the corresponding memory

fails without providing any error messages.

Huawei Mate 7. The kernel source code for Huawei Mate 7 is released at Huawei

Open Source Release Center [110]. From the source code, we find that the DBGEN signal

is controlled by the register located at address 0xFFF0A82C. However, directly read/write

this register leads to a critical fault that makes the phone to reboot. We consider that

Huawei has adopted additional protection to prevent the access to this register for security

concerns.

5.3.4 Summary

Our investigation shows that the debug authentication signals are fully or partially en-

abled on all the tested devices by default, which makes them vulnerable to the aforemen-

tioned isolation violation and privilege escalation. Moreover, there is no publicly available

management mechanism for these signals on all tested devices except for development

boards, and the documented management mechanism of development boards is either

incomplete (i.MX53 QSB) or not fully functional (Juno Board). On the one hand, the

unavailable management mechanism may help to prevent malicious access to the debug

authentication signals. On the other hand, it also stops the user to disable the debug

authentication signals for defense purpose.
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5.4 Nailgun Attack

To verify the security implications concluded in Section 5.2 and the findings about the

debug authentication signals described in Section 5.3, we craft an attack named Nailgun

and implement it in several different platforms. Nailgun misuses the non-invasive and

invasive debugging features in the ARM architecture, and gains the access to the high-

privilege resource from a low-privilege mode. To further understand the attack, we design

two attacking scenarios for non-invasive and invasive debugging, respectively. With the

non-invasive debugging feature, Nailgun is able to infer the AES encryption key, which is

isolated in EL3, via executing an application in non-secure EL1. In regard to the invasive

debugging feature, Nailgun demonstrates that an application running in non-secure EL1

can execute arbitrarily payloads in EL3. To learn the impact of Nailgun on real-world

devices, we show that Nailgun can be used to extract the fingerprint image protected by

TEE in Huawei Mate 7. Similar attacks can be launched to attack EL2 from EL1. Since

there are three major ARM architectures (i.e., ARMv7, 32-bit ARMv8, and 64-bit ARMv8),

we also implement Nailgun on these different architectures and discuss the differences in

implementations.

5.4.1 Threat Model and Assumptions

In our attack, we make no assumption about the version or type of the operation sys-

tem, and do not rely on software vulnerabilities. In regard to the hardware, Nailgun is not

restricted to any particular processor or SoC, and is able to work on various ARM-based

platforms. Moreover, physical access to the platform is not required.

In the non-invasive debugging attack, we assume the SPNIDEN or NIDEN signal is en-
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abled to attack the secure state or the non-secure state, respectively. We also make similar

assumptions to the SPIDEN and DBGEN signals in the invasive debugging attack. We further

assume the target platform is a multi-processor platform in the invasive debugging attack.

Moreover, our attack requires access to the CoreSight components and debug registers,

which are typically mapped to some physical memory regions in the system. Note that it

normally requires non-secure EL1 privilege to map the CoreSight components and debug

registers to the virtual memory address space.

5.4.2 Attack Scenarios

Inferring Encryption Key with Non-Invasive Debugging

The AES algorithm has been proved to be vulnerable to various attacks [122, 123, 153,

154, 156, 246]. The key vulnerability is the table-lookup based implementation, which is

designed to improve the performance of AES, leaks the information about the encryption

key. With the addresses of the accessed table entries, the attacker can efficiently rebuild

the encryption key. In this attack, we assume there is a secure application running in

TrustZone that holds the AES encryption key, and the secure application also provides an

interface to the non-secure OS to encrypt a given plaintext. The non-secure OS cannot

directly read the encryption key since TrustZone enforces the isolation between the secure

and non-secure states. Our goal is to reveal the encryption key stored in the secure memory

by calling the encryption interface from the non-secure OS.

The violation of privilege isolation described in Figure 16 enables a non-secure applica-

tion to learn the information about the secure execution. Specifically, the ETM instruction

trace aids to rebuild the addresses of the executed instructions while the ETM data-address
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trace records the addresses of the data involved in data processing instructions (e.g., ldr,

str, mov, and etc.). According to the access pattern of the AES, it is trivial to learn the

instruction-address range that performs the table lookup and identify the memory ad-

dresses of the tables from the trace output, which further helps to retrieve the encryption

key with the recorded data addresses. Note that the only information we require is the

indices of the table entries accessed by the AES algorithm. Thus, to simplify the analysis

and reduce the noise, we can use the address range filter in the ETM to trace only the

address range that performs the table lookup.

To demonstrate the attack, we first build a bare-metal environment on an NXP i.MX53

Quick Start Board [182]. The board is integrated with a single Cortex-A8 processor that

enables the data-address trace, and we build our environment based on an open-source

project [283] that enables the switching and communication between the secure and

non-secure states. Next, we transplant the AES encryption algorithm of the OpenSSL

1.0.2n [187] to the environment and make it run in the secure state with a predefined

128-bit key stored in the secure memory. A non-secure application can request a secure

encryption with an smc instruction and a plaintext pointer in register r0.

Figure 18 demonstrates our attack process. We use a random 128-bit input as the plain-

text of the encryption in À and the corresponding ciphertext is recorded in Á. From the

ETM trace stream, we decode the addresses of the accessed table entries in each encryp-

tion round and convert them into the indices of the entries by the base addresses of the

tables, as shown in Â. With the indices and the ciphertext, it is trivial to reverse the AES

encryption algorithm and calculate the round keys in Ã. Finally, with the encryption key

and accessed table entries in round 1, Nailgun decodes the original encryption key in Ä.
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Figure 18: Retrieving the AES Encryption Key.

Note that previous side-channel attacks to the AES algorithm require hundreds of or

even thousands of runs with different plaintexts to exhaust different possibilities. Nailgun

is able to reveal the AES encryption key with a single run of an arbitrary plaintext.

Arbitrary Payload Execution with Invasive Debugging

The invasive debugging is more powerful than the non-invasive debugging since we can

halt the target processor and access the restricted resources via the debugging architecture.

Figure 17 shows a brief concept about the privilege escalation with invasive debugging,

and we further expand the idea to achieve arbitrary payload execution.

The EDITR register offers an attacker the ability to execute instructions on the TARGET

from the HOST. However, not all of the instructions can be executed via the EDITR regis-

ter. For example, the execution of branch instructions (e.g., b, bl, and blr instructions)

in EDITR leads to an unpredictable result. Meantime, a malicious payload in real world

normally contains branch instructions. To bypass the restriction, Nailgun crafts a robust
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approach to executing arbitrary payload in the high-privilege modes.

In general, we consider the execution of the malicious payload should satisfy three

basic requirements: 1) Completeness. The payload should be executed in the non-debug

state to overcome the instruction restriction of the EDITR register. 2) High Privilege. The

payload should be executed with a privilege higher than the attacker owns. 3) Robust.

The execution of the payload should not affect the execution of other programs.

To satisfy the first requirement, Nailgun has to manipulate the control flows of the

non-debug state in the TARGET. For a processor in the debug state, the DLR_EL0 register

holds the address of the first instruction to execute after exiting the debug state. Thus, an

overwrite to this register can efficiently hijack the instruction control flow of the TARGET in

the non-debug state.

The second requirement is tricky to satisfy. Note that the execution of the dcps instruc-

tions does not change the exception level of the non-debug state, which means that we

need another privilege escalation in the non-debug state although the HOST can promote

the privilege of the TARGET in the debug state. The smc instruction in the non-debug state

asserts a Secure Monitor Call (SMC) exception which takes the processor to EL3, and we

can leverage this instruction to enter EL3. However, we still need to redirect the execution

to the payload after entering EL3. In each exception level, the incoming exceptions are

handled by the handler specified in the corresponding exception vectors. In light of this,

we manipulate the exception vector and redirect the corresponding exception handlers to

the payload.

The third requirement is also critical since Nailgun actually modifies the instruction

pointed by DLR_EL0 and the exception vectors indicated by the VBAR_EL3 registers. To avoid
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Figure 19: Executing Arbitrary Payload in the Secure State.

the side-effect introduced by the manipulation, Nailgun needs to rollback these changes in

the TARGET after the execution of the payload. Moreover, Nailgun needs to store the value

of stack pointers and general purpose registers at the very beginning of the payload and

reverts them at the end of the payload.

We implement Nailgun on 64-bit ARMv8 Juno r1 board [28] to show that the Implica-

tions 2-4 lead to arbitrary payload execution in EL3. The board includes two Cortex-A57

processors and four Cortex-A53 processors, and we use ARM Trusted Firmware (ATF) [30]

and Linaro’s deliverables on OpenEmbedded Linux for Juno [152] to build the software

environment that enables both the secure and non-secure OSes. In the ATF implementa-

tion, the memory range 0xFF000000-0xFFDFFFFF is configured as the secure memory, and

we demonstrate that we can copy arbitrary payload to the secure memory and execute it

via an LKM in non-secure EL1.

Figure 19 describes the status and memory changes of the TARGET during the entire

attack. The highlighted red in the figure implies the changed status and memory. In Fig-
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ure 19(a), the TARGET is halted by the HOST before the execution of the mov instruction.

Meantime, the VBAR_EL3 points to the EL3 exception vector. Since the SMC exception

belongs to the synchronous exception and Juno board implements EL3 using 64-bit archi-

tecture, the corresponding exception handler is at offset 0x400 of the exception vector. Fig-

ure 19(b) shows the memory of the TARGET before exiting the debug state. Nailgun copies

the payload to the secure memory and changes the instruction pointed by the DLR_EL0

to an smc instruction. Moreover, the first instruction in the 64-bit EL3 synchronous ex-

ception handler (pointed by VBAR_EL3 + 0x400) is changed to a branch instruction (the

b instruction) targeting the copied payload. Then, the HOST resumes the TARGET, and the

pc points to the malicious smc instruction, as shown in Figure 19(c). The execution of

the smc instruction takes the TARGET to the status shown in Figure 19(d). Since the smc

instruction is already executed, the value of the ELR_EL3 register is the address of the next

instruction. Our manipulation of the exception handler leads to the execution of the pay-

load, which can both perform malicious activities and restore the changed memory. At

the end of the payload, an eret instruction is leveraged to switch back to the non-secure

state. Figure 19(e) indicates the memory and status before the switch, and the changes to

the non-secure memory and the EL3 exception vector is reverted. Moreover, the ELR_EL3

register is also manipulated to ensure the execution of the mov instruction. Finally, in Fig-

ure 19(f), the TARGET enters the non-secure state again, and the memory and status look

the same as that in Figure 19(a).

Figure 20 shows an example of executing payload in TrustZone via an LKM. Our pay-

load contains a minimized serial port driver so that Nailgun can send outputs to the serial

port. To certify the attack has succeeded, we also extract the current exception level from
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Figure 20: Executing Payload in TrustZone via an LKM.

the CurrentEL register. The last line of the outputs in Figure 20 indicates that Nailgun

is able to execute arbitrary code in EL3, which owns the highest privilege over the whole

system.

Fingerprint Extraction in a Real-world Mobile Phone

To learn the impact of Nailgun on the real-world devices, we also show that Nail-

gun is able to leak the sensitive information stored in the secure memory. Currently,

one of the most used security features in the mobile phones is the fingerprint authenti-

cation [109, 167, 274], and the OEMs store the fingerprint image in TrustZone to enhance

the security of the device [11, 102, 215]. In this experiment, we use Huawei Mate 7 [109]

to demonstrate that the fingerprint image can be extracted by an LKM running in the non-

secure EL1 with the help of Nailgun. The Huawei Mate 7 is powered by HiSilicon Kirin 925

SoC, which integrates a quad-core Cortex-A15 cluster and a quad-core Cortex-A7 cluster.

The FPC1020 [88] fingerprint sensor is used in Mate 7 to capture the fingerprint image.

This phone is selected since the product specification [89] and driver source code [272] of

FPC1020 are publicly available, which reduces the engineering effort of implementing the

attack.
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As shown in the previous experiment, Nailgun offers a non-secure EL1 LKM the ability

to read/write arbitrary secure/non-secure memory. To extract the fingerprint image, we

need to know 1) where the image is stored and 2) the format of the image data.

To learn the location of the image, we decompile the TEE OS binary image, which is

mapped to /dev/block/mmcblk0p10, and identify that a function named fpc1020_fetch_image

is used to read the image from the fingerprint sensor. This function takes a pointer to an

image buffer, an offset to the buffer, and the size of the image as parameters, and copies the

fingerprint image fetched from the sensor to the image buffer. With further introspection,

we find that Huawei uses a pre-allocated large buffer to store this image, and a pointer to

the head of the buffer is stored in a fixed memory address 0x2efad510. Similarly, the size

of the image is stored at a fixed memory address 0x2ef7f414. With the address and size,

we extract the image data with Nailgun. Since the ARM architectures in Huawei Mate 7

and ARM Juno board are different, the implementations of Nailgun are also different.

The format of the image data is well-documented in the FPC1020 product specifica-

tion [89]. According to the specification, each byte of the data indicates the gray scale

level of a single pixel. Thus, with the extracted image data, it is trivial to craft a gray scale

fingerprint image. Figure 21 shows the fingerprint image extracted from Huawei Mate 7

via Nailgun, and this result demonstrates that Nailgun is able to leak the sensitive data

from the TEE in commercial mobile phones with some engineering efforts.

Nailgun in 32-bit ARMv8 and ARMv7 Architecture

In Section 5.2, we discussed the security implications of 64-bit ARMv8 debugging archi-

tecture, and similar implications exist in 32-bit ARMv8 and ARMv7 architecture. However,
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Figure 21: Fingerprint Image Leaked by Nailgun from Huawei Mate 7. Note that the right
half of the image is blurred for privacy concerns.

there are also some major differences among the implementations of these architectures,

and we discuss the differences in the following.

32-bit ARMv8 Debugging Architecture. We implement prototypes of Nailgun with 32-bit

ARMv8 on Raspberry PI 3 Model B+ and Motorola E4 Plus. In this architecture, the steps

of halting processor are similar to the aforementioned steps in 64-bit ARMv8 architecture,

and the major difference between Nailgun on 32-bit and 64-bit ARMv8 architecture is the

usage of the EDITR. In the 64-bit ARMv8, we directly write the binary representation of

the instruction into the EDITR. However, the first half and last half of the instruction need

to be reversed in the 32-bit ARMv8. For example, the binary representation of the dcps3

instruction is 0xD4A00003 and 0xF78F8003 in 64-bit and 32-bit ARMv8, respectively. In

the 64-bit ARMv8 architecture, we make the processor in the debug state execute this

instruction via writing 0xD4A00003 to the EDITR. However, the instruction written to the

EDITR should be 0x8003F78F instead of 0xF78F8003 in the 32-bit ARMv8 architecture.
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ARMv7 Debugging Architecture. In regard to ARMv7, we already implement Nailgun on

Huawei Mate 7, and there are three major differences between Nailgun on ARMv7 and

ARMv8 architectures. Firstly, the ECT is not required to halt and restart a processor in

ARMv7. Writing 1 to the bit[0] and bit[1] of the Debug Run Control Register (DBGDRCR)

can directly halt and restart a processor, respectively. Secondly, the ITRen bit of the EDSCR

controls whether the EDITR is enabled in ARMv7 architecture. We need to enable the

ITRen bit after entering the debug state and disable it again before exiting the debug state.

Lastly, the dcps instructions are undefined in the ARMv7 architecture, and we need to

change the M bits of the Current Program Status Register (CPSR) to promote the processor

to the monitor mode to access the secure resource.

5.5 Countermeasure

5.5.1 Disabling the Signals?

Since Nailgun attack works only when the debug authentication signals are enabled,

disabling these signals, in intuition, crafts an effective defense. However, according to the

ARM Architecture Reference Manual [18, 20], the analysis results in Section 5.3, and the

responses from the hardware vendors, we consider these signals cannot be simply disabled

due to the following challenges:

Challenge 1: Existing tools rely on the debug authentication signals. The invasive and

non-invasive debugging features are heavily used to build analysis systems [43, 65, 66, 69,

91, 142, 146, 160, 173, 282]. Disabling the debug authentication signals would directly

make these systems fully or partially malfunction. In the ARMv7 architecture [18], the

situation is even worse since the functionality of the widely used Performance Monitor Unit
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(PMU) [3, 37, 74, 100, 173, 214, 285] also relies on the authentication signals. Since most

of the aforementioned analysis systems attempt to perform malware detection/analysis,

the risk of information leakage or privilege escalation by misusing the debugging features

is dramatically increased (i.e., the debugging architecture is a double-edged sword in this

case).

Challenge 2: The management mechanisms of the debug authentication signals are

not publicly available. According to Section 5.3.3, the management mechanism of the

debug authentication signals is unavailable to the public in most tested platforms. In

our investigation, many SoC manufacturers keep the TRMs of the SoC confidential; and

the publicly available TRMs of some other SoCs do not provide a complete management

mechanism of these signals or confuse them with the JTAG debugging. The unavailable

management mechanism makes it difficult to disable these signals by users. For example,

developers use devices like Raspberry PI to build their own low-cost IoT solutions, and

the default enabled authentication signals put their devices into the risk of being remotely

attacked via Nailgun. However, they cannot disable these authentication signals due to the

lack of available management mechanisms even they have noticed the risk.

Challenge 3: The one-time programmable feature prevents configuring the debug

authentication signals. We also note that many of the tested platforms use the fuse to

manage the authentication signals. On the one hand, the one-time programmable feature

of the fuse prevents the malicious override to the debug authentication signals. However,

on the other hand, users cannot disable these signals to avoid Nailgun due to the same

one-time programmable feature on existing devices. Moreover, the fuse itself is proved to

be vulnerable to hardware fault attacks by previous research [233].
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Challenge 4: Hardware vendors have concerns about the cost and maintenance. The

debug authentication signals are based on the hardware but not the software. Thus, with-

out additional hardware support, the signals cannot be simply disabled by changing soft-

ware configurations. According to the response from hardware vendors, deploying addi-

tional restrictions to the debug authentication signals increases the cost for the product

lines. Moreover, disabling the debug authentication signals prohibits the legitimate debug-

ging process such as repairing or bug fixing after a product recall, which introduces extra

cost for the maintenance process.

5.5.2 Comprehensive Countermeasure

We consider Nailgun attack is caused by two reasons: 1) the debug authentication sig-

nals defined by ARM does not fully consider the scenario of inter-processor debugging,

which leads to the security implications described in Section 5.2; 2) the configuration of

debug authentication signals described in Section 5.3.2, which is related to the OEMs and

cloud providers, and the management mechanism described in Section 5.3.3, which is re-

lated to the SoC manufacturers, make Nailgun attack feasible on real-world devices. Thus,

the countermeasures discussed in this section mainly focus on the design, configuration,

and management of the debug authentication signals. As a supplement, we also provide

the defense that restricting the access to the debug registers, which may prevent the imple-

mentation of Nailgun. In general, we leverage the defense in depth concept and suggest a

comprehensive defense across different roles in the ARM ecosystem.

Defense From ARM

Implementing additional restriction in the inter-processor debugging model. The key
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issue that drives the existence of Nailgun is that the design of the debug mechanism and

authentication signals does not fully consider the scenario of the newly involved inter-

processor debugging model. Thus, redesign them and make them consider the differences

between the traditional debugging mode and the inter-processor debugging model would

keep the security implications away completely. Specifically, we suggest the TARGET checks

the type of the HOST precisely. If the HOST is off-chip (the traditional debugging model), the

existing design is good to work since the execution platforms of the TARGET and the HOST

are separated (their privileges are not relevant). In regard to the on-chip HOST (the inter-

processor debugging model), a more strict restriction should be required. For example, in

the invasive debugging, the TARGET should check the privilege of the HOST and response

to the debug request only if the HOST owns a higher or the same privilege as the TARGET.

Similarly, the request of executing dcps instructions should also take the privilege of the

HOST into consideration. The HOST should never be able to issue a dcps instruction that

escalates the TARGET to an exception level higher than the current HOST’s exception level.

Refining the granularity of the debug authentication signals. Other than distinguishing

the on-chip and off-chip HOST, we also suggest the granularity of the authentication signals

should be improved. The DBGEN and NIDEN signals are designed to control the debugging

functionality of the whole non-secure state, which offers a chance for the kernel-level

(EL1) applications to exploit the hypervisor-level (EL2) execution. Thus, we suggest a

subdivision to these signals.

Defense From SoC Manufacturers

Defining a proper restriction to the signal management procedure. Restricting the
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management of these signals would be a reasonable defense from the perspective of the

SoC manufacturers. Specifically, the privilege required to access the management unit of

a debug authentication signal should follow the functionality of the signal to avoid the

malicious override. For example, the management unit of the SPNIDEN and SPIDEN signals

should be restricted to secure-access only. The restriction methods of current SoC designs

are either too strict or too loose. On the ARM Juno SoC [28], all the debug authentication

signals can only be managed in the secure state. Thus, if these signals are disabled, the

non-secure kernel can never use the debugging features to debug the non-secure processor,

even the kernel already owns a high privilege in the non-secure content. We consider

this restriction method is too strict since it somehow restricts the legitimate usage of the

debugging features. The design of the i.MX53 SoC [181], as opposed to ARM Juno SoC,

shows a loose restriction. The debug authentication signals are designed to restrict the

usage of the external debugger, however, the i.MX53 SoC allows an external debugger to

enable the authentication signals. We consider this restriction method is too loose since it

introduces a potential attack surface to these signals.

Applying hardware-assisted access control to the debug registers. Nailgun attack re-

lies on the access to the debug registers, and the access is typically achieved by memory-

mapped interfaces. Intuitively, the restriction to the access of these registers would help

to enhance the security of the platform. However, we consider this restriction should be

controlled in hardware-level instead of software-level. If the restriction is implemented by

software running in the non-secure mode (e.g., the OS), the malware with kernel privilege

may bypass it easily. If the restriction is implemented in the secure mode (e.g., TEE), it

might introduce a significant performance overhead due to the semantic gap between the
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two modes. In contrast, if the hardware-assisted access control applies, the access to the

debug registers may be protected by hardware traps or interrupts. During the responsible

disclosure to MediaTek, we learn that they have the hardware-based technology for Trust-

Zone boundary division, and they are planning to use it to restrict the access to the debug

registers to mitigate the reported attack.

Defense From OEMs and Cloud Providers

Keeping a balance between security and usability. With the signal management mech-

anism released by the SoC manufacturers, we suggest that OEMs and cloud providers

disable all the debug authentication signals by default. This default configuration not only

helps to protect the secure content from the non-secure state, but also avoids the privilege

escalation among the non-secure exception levels. Meantime, they should allow the appli-

cation with a corresponding privilege to enable these signals for legitimate debugging or

maintenance purpose, and the usage of the signals should strictly follow the management

mechanism designed by the SoC manufacturers. With this design, the legitimate usage

of the debugging features from the privileged application is allowed while the misuse

from the unprivileged application is forbidden. Moreover, since the debugging features

are exploited via the CoreSight components and the debug registers, applying a similar

restriction to the access of CoreSight components and debug registers can also form an

effective defense.

Disabling the LKM in the Linux-based OSes. In most platforms, the debug registers

work as an I/O device, and the attacker needs to manually map the physical address of the

debug registers to virtual memory address space, which requires kernel privilege, to gain
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access to these registers. In the Linux kernel, the regular approach to execute code with

kernel privilege is to load an LKM. The LKMs in the traditional PC environment normally

provide additional drivers or services. However, in the scenario of mobile devices and

IoT devices, where the LKMs are not highly needed, we may disable the loading of the

LKMs to prevent the arbitrary code execution in the kernel privilege. In this case, the

attacker would not be able to map the debug registers into the memory even she has

gained root privilege by tools like SuperSU [132]. Moreover, to prevent the attacker from

replacing the stock kernel with a customized kernel that enables the LKM, the OEM may

add some additional hash/checksums to verify the kernel image. Note that forbidding the

customized kernel does not necessarily affect flashing a customized ROM, and the third-

party ROM developers can still develop their ROMs based on the stock kernel.
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CHAPTER 6 RESEARCH ON TRUSTED EXECUTION ENVIRONMENT

Recently, Trusted Execution Environments (TEEs) have been widely adopted in com-

modity systems for enhancing the security of software execution. This approach runs the

security sensitive workloads in a trusted environment and all the running states of the

workloads are guaranteed to be isolated from the potentially infected environment (e.g.,

the OS or hypervisor). The examples of TEE include but not limited to: Intel Software

Guard eXtensions (SGX) [13, 107, 162], AMD Memory Encryption Technologies [136],

ARM TrustZone Technology [31], x86 System Management Mode [116], AMD Platform

Secure Processor [10], and Intel Management Engine (ME) [208].

We first introduce different TEEs in Section 6.1, and then analyze the security chal-

lenges of the TEEs in Section 6.2. A study of the deploying the TEEs on edge platform is

presented in Section 6.3.

6.1 Trusted Execution Environments

In this section, we explain different Trusted Execution Environments. We category them

into three types: 1) Ring 3 TEEs implemented via memory encryption; 2) ring -2 TEEs

implemented via memory restriction; and 3) ring -3 TEEs implemented via co-processors.

Next, we describe these three types of TEEs using the real world technologies.

6.1.1 Ring 3 TEEs via Memory Encryption

Intel Software Guard Extensions

Intel presented three introduction papers on Software Guard eXtensions (SGX) [13,

107, 162] in 2013. Intel SGX is a set of instructions and mechanisms for memory ac-

cesses added to Intel architecture processors. These extensions allow an application to
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instantiate a protected container, referred to as an enclave. An enclave could be used

as a TEE, which provides confidentiality and integrity even without trusting the BIOS,

firmware, hypervisors, and OSes. Some of the researchers consider SGX as a new gener-

ation of TXT [70, 209]. Intel SGX is the latest iteration for trustworthy computing, and

all future Intel processors will have this feature and use it as a TEE for addressing security

problems. However, researchers raised security concerns about it. Recently, Costan and

Devadas [70] published an extensive study on SGX. They analyzed the security features of

SGX and raised concerns such as cache timing attacks and software side-channel attacks.

Additionally, SGX tutorial slides from ISCA 2015 [117] mentioned that SGX does not pro-

tect against software side-channel attacks including using performance counters. Jain et

al. [127] developed OpenSGX, an open-source platform that emulates Intel SGX hardware

components at the instruction level by modifying QEMU.

AMD Memory Encryption Technologies

Recently, AMD introduced two new x86 features in ISCA 2016 and USENIX Security

2016 tutorials [135, 137]. One feature is called Secure Memory Encryption (SME), which

defines a new approach for main memory encryption. The other is called Secure Encrypted

Virtualization (SEV), which integrates with existing AMD-V virtualization architecture to

support encrypted virtual machines. These features provide the ability to selectively en-

crypt some or all of system memory as well as the ability to run encrypted virtual machines,

isolated from the hypervisor. AMD SME is a competitive technology with Intel SGX, and

they provide ring 3 TEEs via memory encryption. Besides ring 3 TEEs, AMD memory en-

cryption technologies can provide other system-level TEEs (e.g., hypervisor-level, ring -1).
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The SEV technology can encrypt a virtual machine, and the OS running in the VM can be a

TEE. AMD SME and SEV are upcoming coming technologies that will be supported in near

future AMD chipsets.

6.1.2 Ring -2 TEEs via Memory Restriction

x86 System Management Mode and ARM TrustZone Technology create TEEs via mem-

ory restriction. Specifically, they use hardware (e.g., memory management unit) to setup

access permissions of memory regions for the execution space, so the normal system soft-

ware cannot access the execution space. Note that TEEs via memory restriction share the

CPU with the normal system software in a time-slice fashion.

x86 System Management Mode

System Management Mode (SMM) [116] is a mode of execution similar to Real and

Protected modes available on x86 platforms (Intel started to use SMM in its Pentium pro-

cessors since the early 90s). It provides a hardware-assisted isolated execution environ-

ment for implementing platform-specific system control functions such as power manage-

ment. It is initialized by the Basic Input/Output System (BIOS). SMM is triggered by as-

serting the System Management Interrupt (SMI) pin on the CPU. This pin can be asserted

in a variety of ways, which include writing to a hardware port or generating Message Sig-

naled Interrupts with a PCI device. Next, the CPU saves its state to a special region of

memory called System Management RAM (SMRAM). Then, it atomically executes the SMI

handler stored in SMRAM. SMRAM cannot be addressed by the other modes of execution.

The requests for addresses in SMRAM are instead forwarded to video memory by default.

This caveat, therefore, allows SMRAM to be used as a secure storage. The SMI handler is
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Figure 22: Processor Modes with ARM TrustZone.

loaded into SMRAM by the BIOS at boot time. The SMI handler has unrestricted access

to the physical address space and can run privileged instructions (For this reason, SMM

is often referred to as ring -2.) The RSM instruction forces the CPU to exit from SMM and

resume execution in the previous mode.

ARM TrustZone Technology

ARM TrustZone technology [31] is a hardware feature that creates an isolated execu-

tion environment since ARMv6 around 2002 [19]. Similar to other hardware isolation

technologies, it provides two environments or worlds. The Trust Execution Environment

(TEE) is called the secure world, and the Rich Execution Environment (REE) is called the

normal world. To ensure the complete isolation between the secure world and the normal

world, TrustZone provides security extensions for hardware components including CPU,

memory, and peripherals.

The CPU on a TrustZone-enabled ARM platform has two security modes: Secure mode

and normal mode. Figure 22 shows the processor modes in a TrustZone-enabled ARM

platform. Each processor mode has its own memory access region and privilege. The code

running in the normal mode cannot access the memory in the secure mode, while the
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program executed in the secure world can access the memory in normal mode. The secure

and normal modes can be identified by reading the NS bit in the Secure Configuration

Register (SCR), which can only be modified in the secure mode. As shown in Figure 22,

ARM involves different Exception Levels (EL) to indicate different privileges in ARMv8

architecture, and lower EL owns lower privilege. The EL3, which is the highest EL, serves

as a gatekeeper managing the switches between the normal mode and the secure mode.

The normal mode can trigger an EL3 exception by calling a Secure Monitor Call (SMC)

instruction or triggering secure interrupts, to switch to the secure mode, and the secure

mode uses the Exception Return (ERET) instruction to switch back to the normal mode.

TrustZone uses Memory Management Unit mechanism to support virtual memory ad-

dress spaces in both the secure and normal worlds. The same virtual address space in

the two worlds is mapped to different physical regions. There are two types of hardware

interrupts: Interrupt Request (IRQ) and Fast Interrupt Request (FIQ). Both of them can be

configured as secure interrupt by configuring the IRQ bit and FIQ bit in SCR, respectively.

The secure interrupt is directly routed to the secure EL3 ignoring the configuration of the

normal world. ARM recommend that the IRQ is used as the interrupt source of the normal

world and the FIQ is used as secure interrupt.

6.1.3 Ring -3 TEEs via Co-Processors

Intel Management Engine

The Intel Management Engine (ME) is a micro-computer embedded inside of all recent

Intel processors, and it exists on Intel products including servers, workstations, desktops,

tablets, and smart phones [208]. Intel introduced ME as an embedded processor in 2007.
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At that time, its main function was to support Intel Active Management Technology (AMT),

and Intel AMT is the first application running in the ME. Recently, Intel started to use ME

as a Trusted Execution Environmental (TEE) for executing security-sensitive applications.

According to the latest ME book [208] written by an Intel Architect working on ME, a few

security applications have been or will be implemented in ME including enhanced privacy

identification, protected audio video path, identity protection technology, and boot guard.

Figure 23 shows the hardware architecture of ME. From the figure we can see that

ME is like a computer; it contains a processor, cryptography engine, Direct Memory Ac-

cess (DMA) engine, Host-Embedded Communication Interface (HECI) engine, Read-Only

Memory (ROM), internal Static Random-Access Memory (SRAM), a timer, and other I/O

devices. ME executes the instructions on the processor, and it has code and data caches to

reduce the number of accesses to the internal SRAM. The internal SRAM is used to store the

firmware code and runtime data. Besides the internal SRAM, ME also uses some Dynamic

Random-Access Memory (DRAM) from the main system’s memory (i.e., host memory).

This DRAM serves a role as the disk; the memory pages of code/data that are not currently

used by ME processor will be evicted from SRAM and swapped out to DRAM in the host

memory. The region of DRAM is reserved by the BIOS when the system boots. This DRAM
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is dedicated for ME use and the operating system cannot access it. However, the design of

ME does not trust the BIOS and it assumes the host can access the reserved DRAM region.

AMD Platform Secure Processor

Although ME is for Intel processors, we can find similar technologies on AMD plat-

forms. AMD Secure Processor [10] (also called Platform Security Processor or PSP) is a

dedicated processor embedded inside of the main AMD CPU. It works with ARM Trust-

Zone technology and ring -2 Trusted Execution Environments (TEE) to enable running

third-party trusted applications. AMD Secure Processor is a hardware-based technology

which enables secure boot up from BIOS level into the TEE. Trusted third-party applica-

tions are able to leverage industry-standard APIs to take advantage of the TEE’s secure

execution environment. Another example is System Management Unit (SMU) [159]. The

SMU is a subcomponent of the Northbridge that is responsible for a variety of system

and power management tasks during boot and runtime. The SMU contains a processor

to assist [7]. Since AMD integrated Northbridge into the CPU, the SMU processor is an

embedded processor inside of the CPU, which is same as Intel ME.

6.2 Challenges Towards Securing Hardware-assisted TEEs

6.2.1 Introduction

Although these well-designed and hardware-assisted TEEs provide secure execution

environments, the code running in them could be buggy, which leads that the "trusted"

execution environments (TEEs) are not trustworthy. While the argument is that the code

base of a workload in a TEE is small enough so that the risk of having vulnerable code is

low; however, due to the increasing complexity of the software and proliferation of using
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TEEs in commodity systems, the developers keep increasing the size of the code in TEEs

(e.g., OS running in TrustZone [30], hypervisor is deployed in SMM [40], Linux contain-

ers running in SGX [32]). The large code base of workloads in a TEE inevitably creates

vulnerabilities that can be exploited by attackers. Even the security design and imple-

mentation of TEEs is flawless (e.g., perfect isolation and secure architectural design), we

cannot prevent attacks that are due to the deployed buggy code. Even worse, the security

features of TEEs might help the attackers. Leveraging these security features, attackers

can implement higher level stealthy rootkits, which is extremely difficult to be detected by

the existing defense tools. For example, the anti-virus tools running in the OS are not able

to detect malicious code in an Enclave created by Intel SGX because the running memory

in the Enclave is encrypted. SMM-based rootkits [155] have been used by National Se-

curity Agency as stealthy cyber weapons. Additionally, ring -3 rootkits [249] have been

demonstrated by using Intel ME. Therefore, running the untrusted code in trusted execu-

tion environments raises a big security concern. Moreover, this can generate a series of

research challenges since existing defense mechanisms can not be applied directly. The

main objective of our research is to present this problem, discuss the research challenges,

and provide potential directions to address them.

6.2.2 TEE-based Systems

TEE-based solutions are introduced in a variety of modern systems including cloud plat-

forms (servers and clusters), endpoints (desktops and mobile devices), and edge nodes [225]

(routers and gateways). In this section, we survey the applications and systems that lever-

age TEEs in x86 and ARM architectures.
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SGX-based Systems and Attacks

Previous SGX-based systems such as Haven [46] ported system libraries and a library

OS into an SGX enclave, which forms a large TCB. Arnautov et al. [32] proposed SCONE,

a secure container mechanism for Docker that uses SGX to protect container processes

from external attacks. Hunt et al. [111] developed Ryoan, an SGX- based distributed sand-

box that enables users to keep their data secret in data-processing services. Schuster et

al. [219] developed VC3, an SGX-based trusted execution environment to execute MapRe-

duce computation in clouds. Karande et al. [138] secure the system logs with SGX. Shih

et al. [227] leverages SGX to isolate the states of Network Function Virtualization (NFV)

applications.

Schwarz et al. [220] attacks the SGX enclave via cache side channels, and demon-

strates that the private key in the RSA implementation of mbedTLS can be extracted within

five minutes. Other than RSA decryption, Ferdinand [53] also demonstrates a more ef-

ficient attack on the human genome indexing via SGX cache-based information leakage.

AsyncShock [266] shows that the thread scheduling can be controlled by the attack, and

the thread manipulation can be further used to exploit synchronization bugs inside SGX

enclaves. SGX-Shield [221] provides secure address space layout randomization support

for SGX programs. T-SGX [228] fight against the controlled-channel attack and ensures

that the page fault will not be leaked.

SMM-based Systems and Attacks

In recent years, SMM-based research has appeared in the security literature. For in-

stance, SMM can be used to check the integrity of higher level software (e.g., hypervisor
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and OS). HyperGuard [210], HyperCheck [289], and HyperSentry [39] are integrity mon-

itoring systems based on SMM. Moreover, National Science Foundation funded a project

about using SMM for runtime Integrity checking last year [180]. SICE [40] presents a

trusted execution environment for executing sensitive workloads via SMM on AMD plat-

forms. SPECTRE [286] uses SMM to introspect the live memory of a system for malware

detection. Another use of SMM is to reliably acquire system physical memory for forensic

analysis [205, 263]. IOCheck [284, 288] secures the configurations and firmware of I/O

devices at runtime. HRA [130] uses SMM for secure resource accounting in the cloud

environment even when the hypervisor is compromised. MalT [285] progresses towards

stealthy debugging by leveraging SMM to transparently debug software on bare metal.

TrustLogin [287] protects user credentials especially passwords from theft in an untrusted

environment. HOPS [145] uses SMM to create low-artifact process introspection tech-

niques. As we can see that an array of SMM-based systems have been presented, and there

is a need for us to develop novel techniques to secure the code of these systems.

Modern computers lock the SMRAM in the BIOS so that SMRAM is inaccessible from

any other CPU modes after booting. Wojtczuk and Rutkowska demonstrated bypassing the

SMRAM lock through memory reclaiming [210] or cache poisoning [269]. The memory re-

claiming attack can be addressed by locking the remapping registers and Top of Low Usable

DRAM (TOLUD) register. The cache poisoning attack forces the CPU to execute instruc-

tions from the cache instead of SMRAM by manipulating the Memory Type Range Register

(MTRR). Duflot also independently discovered this architectural vulnerability [79], but it

has been fixed by Intel adding SMRR [116]. Furthermore, Duflot et al. [78] listed some

design issues of SMM, but they can be fixed by correct configurations in BIOS and careful
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implementation of the SMI handler. Wojtczuk and Kallenberg [268] presented an SMM

attack by manipulating UEFI boot script that allows attackers to bypass the SMM lock and

modify the SMI handler with ring 0 privilege. The UEFI boot script is a data structure

interpreted by UEFI firmware during S3 resume. When the boot script executes, system

registers like BIOS_NTL (SPI flash write protection) or TSEG (SMM protection from DMA)

are not set so that attackers can force an S3 sleep to take control of SMM. Butterworth

et al. [56] demonstrated a buffer overflow vulnerability in the BIOS updating process in

SMM, but this is not an architectural vulnerability and is specific to that particular BIOS

version.

ME-based Systems and Attacks

Intel uses ME as a TEE to execute security sensitive operations [208]. In 2009, Tereshkin

and Wojtczuk [249] demonstrated that they can implement ring -3 rootkits in ME by in-

jecting the malicious code into the Intel Active Management Technology (AMT). DAG-

GER [240] bypasses the ME isolation using a similar technique in [249], but it hooks the

ME firmware function memset because it is invoked more often. Skochinsky [232] dis-

covers that the ME firmware on the SPI flash uses Huffman encoding to prevent reverse

engineering for implementing rootkits. Recently, Intel disclosed an AMT vulnerability in

ME (CVE-2017-5689 or INTEL-SA-00075 [120]). This bug allows attackers to remotely

gain administrative control over Intel machines without entering a password [192], and

this remote hacking flaw resides in Intel chips for seven years [92].

TrustZone-based Systems and Attacks

Mobile devices have been increased dramatically in past few years, security became
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one of the major concerns of the users. ARM introduced TrustZone Technology and re-

searchers used it to build an array of systems for enhancing the security of mobile devices.

TrustDump [242] provides reliable memory acquisition by leveraging TrustZone. It uses a

non-maskable secure interrupt to switch to the trust domain and introspects the memory of

normal domain from trust domain. TZ-RKP [38] runs in the secure world and protects the

normal OS kernel by event-driven monitoring. Sprobes [275] provides an instrumentation

mechanism to introspect the normal OS from the secure world and guarantees the kernel

code integrity. SeCReT [129] is a framework that enables a secure communication chan-

nel between the normal world and the secure world. TrustICE [243] provides a trusted

and isolated computing environment for executing sensitive workloads. TrustOPT [241]

presents a secure one-time password tokens by using ARM TrustZone technology on mo-

bile devices. AdAttester [149] proposes a verifiable mobile ad framework that secures

online mobile advertisement attestation using TrustZone. [52] suggest to use TrustZone

to regulate the peripherals of devices (e.g., cameras) in restricted spaces. fTPM [201] is

a firmware version of TPM 2.0 that implemented in ARM TrustZone. PrivateZone [128]

uses TrustZone to create a private execution environment that is isolated from both the

Rich Execution Environment and TEE. C-FLAT [4] fights against control-flow hijacking via

runtime control-flow verification in TrustZone.

Qualcomm’s use Secure Channel Manager (SCM) to interact with Qualcomm’s Secure

Execution Environment (QSEE) via SMC instruction, and [207] leverages this interface

and exploits an integer overflow vulnerability to write arbitrary secure memory. Next, they

rewrite the SMC handler table with this approach and gain arbitrary TrustZone code exe-

cution. [223] use ret2user to gain root privilege, and also a vulnerability of unchecked
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bound to write one byte to almost any physical address, which finally leads to arbitrary

payloads to be executed in TEE. ARMageddon [154] uses Prime+Probe cache attack to leak

the information from secure world to normal world, and makes monitoring TrustZone code

execution in normal world feasible.

6.2.3 Challenges and Directions

In this section, we detail the challenges for securing the hardware trusted execution

environments. Moreover, we provide directions that might be able to address these chal-

lenges.

Hunting Bugs in TEE’s code

The software running in a TEE might contain text-book vulnerabilities that can be easily

exploited by attackers. Kallenberg and Kovah [133] found that "millions of BIOSes" are

easy to be compromised because the known vulnerabilities of SMM code are never patched

in the BIOS. Butterworth et al. [56] demonstrated a buffer overflow vulnerability in the

BIOS updating process in SMM. Di [223] found vulnerabilities that are able to execute

arbitrarily code in TrustZone code. Additionally, an array of SGX-based systems have been

developed [32, 46, 111, 138, 219, 227], these SGX-based applications inevitably contain

vulnerabilities due to their large code bases. There is a need for us to develop effective

and efficient frameworks to find the vulnerabilities in the code/images running in the TEEs

and reduce the chance of having vulnerable codes before attackers exploit it.

However, existing solutions of bug hunting can not be applied directly because the

TEE’s code requires particular environments (e.g., SMM and TrustZone) for execution. If

we have the source code of the TEE software (e.g., SGX applications), we might be able
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to modify existing static analysis or bug checking tools to identify bugs and minimize the

number of vulnerabilities. However, if we do not have the source code but with a TEE’s

image, hunting bugs in binary images is very time-consuming and require heavy reverse-

engineering efforts. Furthermore, other TEE’s image such ME code might not be obtained

due to hardware vendor’s protection mechanism [232].

Therefore, there is a need to develop a framework to check the TEE’s code before it

runs in the high-privileged, isolated, and trusted environment. For instance, we can use

symbolic execution (e.g., S2E platform) to analyze the SMI handler code and TrustZone

firmware. Symbolic execution can help explore the execution paths of SMI handlers and

TrustZone images, and discover the paths that lead to known exploitation. Since S2E can

directly work on binaries on both x86 and ARM architectures, it can analyze commercial

SMI handlers and TrustZone code without knowing the source code. Note that Bazha-

niuk et al [183]. proposed using the similar way for analyzing SMI handler for the BIOS

security. However, they only target on detecting the out-call functions (i.e., calling func-

tions outside of the protected memory, SMRAM, that is controlled by attackers) in the SMI

handler [211]. Moreover, not only targeting on SMI handler code on x86, we can apply

the approach to the TrustZone firmware on ARM architecture. Furthermore, we can mod-

ify S2E plugins to work with other vulnerabilities such as buffer overflows and poisonous

pointers [184] to help us validate the inputs from the untrusted environment.

Protecting Mechanisms within TEEs

It is impractical to have perfect code running in the TEEs, and the attackers will eventu-

ally find a vulnerability and exploit it at some point. However, existing TEEs lack of defense
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mechanisms in the execution environments. For instance, the code running in SMM shares

a single address space and paging is disabled [116]. Applications running in the SGX en-

claves do not have basic protection mechanisms such as ASLR. In the normal computing

environment (e.g., OS), we have an array of system-level defense mechanisms such as non-

executable stack, data execution prevention, and address space randomization. However,

these defense mechanisms are missing in the TEEs. Since we consider these environments

are more secure than the normal OS, these basic system defense mechanisms are needed

for securing the environment.

One of the defenses is to diversify TEE’s environment. This increases the difficulty

and cost for attackers to successfully exploit the bugs. With this approach, we can create

dynamic TEEs. According to the Intel manual [116], system management mode has a

very simple addressing mechanism. It disables the paging and works directly on physical

addresses. When the system boots up, the BIOS initializes SMM and loads the SMI handler

code to a physical memory address at SMM_Base + 0x8000. SMM_Base represents the

beginning of the SMRAM. Typically, the BIOS vendors set the SMM_base as 0xa0000 and

this memory region overlaps with the VGA memory. We can randomize the base address

of SMRAM for every boot or reboot by modifying the BIOS code. Specifically, we can

randomly setup the SMRAM address in the BIOS for every reset signal. Note that the reset

signal can be caused by a variety of power state changes including cold boot, warm boot,

wake up from S3 (i.e., suspend to RAM), and so on. By randomizing the base address of

SMRAM, it increases the difficulty for attackers to dump the SMRAM for exploitation or

reverse engineering. Additionally, we can randomize the saved states in SMRAM, instead

of at the fix location, SMM_base + 0xFC00. Then, SMM attacks such as [184] would not
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work since it requires to overwrite the SMM_base register at the save states area.

The execution environment of TrustZone is more complex than that of SMM. Trust-

Zone has its own page tables and operates with memory management unit enabled. To

diversify the execution environment of TrustZone, we can first randomize the location of

the TrustZone firmware code. Within the TrustZone, it can support and run a Secure OS.

We can implement the Address Space Layout Randomize (ASLR) technique on the Secure

OS of the ARM trusted firmware. This addition can reduce the success rate of exploita-

tion on attacks that leverage buffer overflows or return-oriented programming [222]. We

may start this research direction with Coreboot [68] for the TEE like SMM, and Trusted

Firmware [30] for the TrustZone.

Additionally, the randomization is needed in ring 3 TEEs (e.g., Intel SGX) as well.

SGX-Shield [221] provides secure address space layout randomization support for SGX

programs. Moreover, we can periodically or randomly instantiate an SGX enclave, and

move the security sensitive workloads from one enclave to another. In this case, the as-

sociated states of the enclave are on the move so attacks depending on static information

(e.g., memory addresses) might not work anymore.

Detecting a Compromised TEE

In practice, a TEE might be compromised due to the vulnerabilities in the code. How-

ever, detecting a compromised TEE is a very challenging problem because TEEs run at a

high-privilege memory space that inaccessible from the system software (ring -2 TEEs) or

use encrypted memory that their contents are mysterious without the key (ring 3 TEEs).

For example, Intel SGX encrypts its code and data in enclaves; SMM and TrustZone code
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is not accessible by the system software (e.g., OS). Because of these "security protection"

features, a TEE can achieve a strong security guarantee. However, after compromising a

TEE, attackers can implement undetectable advanced rootkits in it.

Embleton et al. [84] use SMM to implement a chipset-level keylogger and a network

backdoor capable of directly interacting with the network card to send logged keystrokes

to a remote machine via network packets. Schiffman and Kaplana [217] further demon-

strated that with USB keyboards instead of PS/2 ones. Other SMM-based attacks focus on

achieving stealthy rootkits [54, 155]. For instance, the National Security Agency (NSA)

uses SMM to build an array of rootkits including DEITYBOUNCE for Dell and IRONCHEF

for HP Proliant servers [155]. Several attacks [240, 249] have been demonstrated using

ME to implement advanced stealthy rootkits. Tereshkin and Wojtczuk [249] injects mali-

cious code into the Intel Active Management Technology (AMT) to implement ME ring -3

rootkits. DAGGER [240] is a DMA-based keylogger implemented in ME, and it captures

keystrokes very early in the platform boot process, which enables DAGGER to capture

harddisk encryption passwords. While proving a TEE as a strong isolated computing envi-

ronment, having a method to detect a compromised TEE is a challenging task.

One potential approach to detect a compromised TEE is to use the performance impli-

cations, timing, or other side-channel information. For instance, we might be able to detect

compromised SMM or TrustZone via the timing side-channel information. The intuition

is that ring -2 TEEs share the main CPU with the system software in a time-slice fashion.

This approach would not work for ring -3 TEEs since they run on separated processors,

not the main CPU. Normally, SMM or TrustZone is invoked very few times or the execution

times of them have some specific patterns for normal system operations. If we see a sys-
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tem that dramatically changes its execution pattern (staying in SMM or TrustZone too long

for sending out the sensitive memory pages via network packets) or invokes ring -2 TEEs

very frequently (e.g., SMM-based keyloggers [84] generating SMIs for each keystroke),

the system is more likely compromised. To detect the SMI invocation and its execution

time, [262, 289] have implemented a tool called SMI Detector. The idea behind this tool

is that the SMI invocations suspend all cores in the CPU, the SMI Detector can measure the

missing time. A similar tool can work on TrustZone since it also shares the CPU in a time-

slice fashion. Note that using the side-channels based approach for detecting compromised

TEEs might not work for all the cases (e.g., timing side channel does not work for ring -3

TEEs). Other side channels including power consumption, cache access patterns, network

traffic patterns can be considered for other cases.

Patching and Rejuvenation of TEEs

This subsection talks about the challenges on how to mitigate attackers from a compro-

mised TEE and patch it to a good state. One simple approach is to use the system software

to update the compromised TEE. However, if the TEE is compromised, it is likely that the

system software is malicious, too. Thus the patching process running in the system soft-

ware cannot be trusted. To ensure the restoring process is not tampered, we have to rely

on a Trust Base. However, having such as a Trust Base is a challenging task.

For ring -2 TEEs, we might be able to use firmware as the Trust Base. This updating pro-

cess works for some real world attacks such as Incursions (CERT VU#631788) [133]. In

this attack, adversaries are able to bypass the isolation and get into SMM to run arbitrary

code, the BIOS firmware is still protected by the Write Enable bit in the BIOS Control
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register (BIOS_CNTL) [116]. As long as the attackers cannot flash the BIOS firmware, the

system can perform a quick restart to destruct the SMRAM and re-initialize the compro-

mised SMI handler. In this case, the update process of the compromised TEE from the

firmware works. However, it is possible that attackers can bypass the write protection

and reflash the firmware. For instance, Wojtczuk and Kallenberg [268] presented an SMM

attack by manipulating UEFI boot script that allows attackers to bypass the BIOS write

protection lock and modify the SMI handler with ring 0 privilege (CERT VU#976132).

Moreover, Speed Racer [134] described a race condition that allows an attacker to subvert

the firmware flash protection mechanism. In these attacking scenarios, how can we re-

store the SMI handler to a clean state if the firmware can not be trusted? If we assume the

BIOS, SMM, and system software are all compromised, we need to rely on a component

that does not have them in the Trusted Computing Base (TCB). One potential solution is

the ring -3 TEEs such as Intel ME and AMD PSP. However, how to update ring -3 TEEs is

another challenging task.

6.3 Preliminary Study of TEEs on Heterogeneous Edge Platforms

6.3.1 Introduction

The idea of Edge Computing [225, 226] suggests the deployment of additional edge

nodes between the cloud server and the end-users, on which the latency-sensitive or

privacy-sensitive computation is executed. Since the edge nodes are supposed to be as

close as possible to the end-users, the latency is greatly reduced and the data privacy is

improved to match the requirement of these computations. Meantime, those non sensi-

tive computations are still on the cloud to take the advantage of cloud computing. Re-
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cently, the usage scenarios [64, 99, 197, 271, 280, 291] and performance of Edge Com-

puting [67, 292] are well studied by the researchers. However, less attentions are paid to

the security and privacy of the Edge Computing, which puts the new-born Edge Computing

infrastructure at risk.

Our research evaluate the performance of the TEEs to help analyze the feasibility of

deploying them on heterogeneous edge platforms. Specifically, we first study the Intel

SGX on a fog node following the Intel Fog Reference Design [118]. Since the infrastruc-

ture of Fog Computing is similar to the Edge Computing, we consider the fog node as a

suitable candidate of the edge node. Meanwhile, the low-power consumption makes the

ARM architecture to be a serious competitor to the x86 architecture on the edge platform.

Thus, a study of ARM TrustZone technology on the ARM Juno development board [28]

is presented in this paper. Finally, AMD processors are well-known by their low price,

which is also a critical aspect in case of edge node due to its huge amount. Therefore, we

also analyze the recent AMD Secure Encrypted Virtualization (SEV) technology for further

comparison.

The results of our experiments show that the deployment of Intel SGX, ARM Trust-

Zone technology, and AMD SEV introduces about 0.26%, 0.02%, and 4.14% performance

overhead, respectively. Apparently, the overhead of the SGX and TrustZone technology

are ignorable, and the overhead of SEV is reasonable due to the slowdown of a virtual

machine.

6.3.2 Evaluation with Intel Fog Node

The Fog Node is introduced by Intel from the OpenFog Consortium [185], a consortium

of high tech industry companies (e.g., Intel and Cisco) and academic institutions across the
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world aimed at the standardization and promotion of fog computing in various capacities

and fields. The processor on this node is 8-core Intel Xeon E3-1275 processor, which is

a high-performance SGX-enabled processor. The 32GB DDR4 memory also meets the re-

quirement of usage scenario of fog computing. In regard to the software, we leverage the

open source Tianocore BIOS and 64-bit Ubuntu 16.04 to setup the node. Due to the simi-

larity of the Fog Computing and Edge Computing, we consider this machine also matches

the design of Edge Computing and can be directly used as an edge node. Therefore, we

use the fog node to simulate the edge node in the performance analysis of Intel SGX.

In this section, we create applications based on the SGX SDK 1.9 [119], and use them

to conduct the experiments to measure the performance overhead. Specifically, we eval-

uate the time consumption of the context switch in SGX, the performance slowdown of

transplanting the computation into enclave, and the slowdown of the overall system when

SGX is involved, respectively.

Context Switch

Regarding to the experiments in this section, we use an empty ECALL function to achieve

the context switch. Once the function is called, the CPU will switch to the enclave mode,

while the exit of the function implies the exit of the enclave mode. To measure the time

consumption, the RDTSC instruction is used to read the elapsed CPU cycles. Note that

the execution of this instruction is forbidden in enclave mode, so we cannot measure the

required time to entering or quitting the enclave mode separately. Instead, we calculate the

time consumption of a complete context switch cycle (i.e., enter and then quit the enclave

mode). Moreover, the parameter transferring between the enclave mode and normal mode
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Table 14: Context Switching Time of Intel SGX on the Fog Node (µs).

Buffer Size Mean STD 95% CI

0 KB 2.039 0.066 [2.035, 2.044]
1 KB 2.109 0.032 [2.107, 2.111]
4 KB 2.251 0.059 [2.247, 2.254]
8 KB 2.362 0.055 [2.359, 2.366]

16 KB 2.714 0.036 [2.712, 2.716]

depends on an additional buffer, and the size of the buffer affects the efficiency of the

context switch. Therefore, we use different buffer sizes to conduct the evaluation. To

reduce the nondeterminacy of the experiments, we configure the CPU frequency to be a

fixed value (4GHz) and repeat the experiment for 1, 000 times.

Table 14 shows the context switching time of Intel SGX on the Intel Fog Node. If

no parameter is required, the context switch requires 2.039 µs, this is the approximate

time consumption for the CPU mode switching. However, in most usage scenarios, the

parameter transferring is required. The time consumptions come to 2.109 µs, 2.251 µs,

2.362 µs, and 2.714 µs when the sizes of the parameters are 1KB, 4KB, 8KB, and 16 KB,

respectively.

Sensitive Computation

Since the TEEs are used to secure the sensitive computation, we are eager to know the

overhead of moving the sensitive computation into the TEEs. In this experiment, we use an

open-source MD5 implementation [206] following the RFC 1321 standard to simulate the

sensitive computation, and measure the time consumption of calculating the MD5 inside

and outside the enclave mode. Without loss of generality, we use a pre-generated random

string with 1, 024 characters as the target of the MD5.
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Table 15: Time Consumption of MD5 (µs).

CPU Mode Mean STD 95% CI

Normal 4.734 0.095 [4.728, 4.740]
Enclave 6.737 0.081 [6.732, 6.742]

As shown in Table 15, the MD5 calculation requires 4.734 µs in normal mode and 6.737

µs in enclave mode. We note that the calculation in the enclave mode requires about 2.003

more microseconds than the calculation in the normal mode, and this difference is close to

the context switching time. This result shows that the CPU performance in normal mode

and enclave mode are similar, and the overhead of moving the sensitive computation to

the TEEs depends on the overhead of the context switch.

Overall Performance

While keeping the sensitive computation running inside the TEE, we also want to make

sure that the performance of the non-sensitive computation on the edge node would not

be affected. To simulate the frequent sensitive computation on the edge node, we switch

to the enclave mode every one second and calculate the MD5 of a 1024-length string. A

dedicated CPU benchmark, GeekBench [195], is used to measure the performance of the

CPUs. To avoid the unpredicted affects from the other software in the system, we make the

sensitive computation and the benchmark to be executed in the same core. The single-core

performance score with and without the sensitive computation are compared to learn the

overall performance overhead. The experiment is repeated for 100 times to reduce the test

errors.

Table 16 shows the performance score given by GeekBench. The single-core perfor-

mance scores with and without secure computation are 4, 327.33 and 4, 306.46, respec-
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Table 16: Performance Score by GeekBench.

Sensitive Computation Mean STD 95% CI

No 4327.33 17.124 [4323.974, 4330.686]
Yes 4306.46 14.850 [4303.550, 4309.371]

tively, and the performance slowdown is 0.48%. Apparently, the performance overhead of

the computation inside the SGX enclave is ignorable even we switch to the enclave mode

every one second.

6.3.3 Evaluation with ARM Juno Board

The ARM Juno Board [28] is an official software development platform for ARMv8 ar-

chitecture [20], and it represents the most recent hardware design of ARM. We consider

the further ARM-based edge node will follow this design and thus perform our experiments

on the Juno board. The Juno r1 development board contains a dual-core Cortex-A57 clus-

ter and a quad-core Cortex-A53 cluster, and all the processors in the clusters are equipped

with ARM TrustZone technology. The main memory of the board is an 8GB DRAM. We also

use the ARM Trusted Firmware (ATF) [30] to enable the firmware support for TrustZone.

The Android deliverable image for Juno board provided by Linaro [152] is used to be the

operating system of the non-secure mode.

Similar to the experiments running with the Intel SGX, we evaluate the performance

overhead of the context switch, sensitive computation, and the overall system, respectively.

Context Switch

The SMC instruction is frequently used to achieve the switch between the secure mode

and non-secure mode in many TrustZone-related systems. Thus, we also use this instruc-

tion to trigger the switch. To accurately evaluate the time consumption, we leverage the
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Table 17: Context Switching Time of ARM TrustZone (µs).

Step Mean STD 95% CI

Non-secure to Secure 0.135 0.001 [0.135, 0.135]
Secure to Non-secure 0.082 0.003 [0.082, 0.083]

Overall 0.218 0.005 [0.218, 0.219]

Performance Monitor Unit (PMU) [20] to record the elapsed CPU cycles. Since the PMU

can be used in both the secure and non-secure mode, we can learn the time consumption

of the switching from non-secure mode to secure mode as well as that of the switching

from secure mode to non-secure mode. Unlike the SGX, the parameters transferring in

TrustZone is achieved by sharing the general purpose registers instead of using buffers.

Therefore, the parameters involve no additional overhead. In the experiments, we config-

ure the CPU to run at 1.15GHz and repeat the context switch for 1, 000 times.

Table 17 shows the context switching time of secure and non-secure mode. The switch

from non-secure mode to secure mode requires 0.135 µs while the switch from secure to

non-secure mode requires 0.082 µs, and the overall switching time is 0.218 µs. The small

standard deviations also show that the time consumption of the context switch is stable.

Sensitive Computation

In this section, we integrate the aforementioned MD5 implementation to both a kernel

module and the ATF. In the kernel module, we measure the time consumption of directly

using the MD5 implementation and using the SMC instruction to invoke the MD5 implemen-

tation inside the ATF. The other setups of the experiments are similar to the experiments

with the Intel SGX.

The result in Table 18 shows that it takes 8.229 µs to calculate the MD5 in the non-
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Table 18: Time Consumption of MD5 (µs).

CPU Mode Mean STD 95% CI

Non-secure 8.229 0.231 [8.215, 8.244]
Secure 9.670 0.171 [9.660, 9.681]

Table 19: Performance Score by GeekBench.

Sensitive Computation Mean STD 95% CI

No 984.70 1.878 [984.332, 985.068]
Yes 983.44 3.273 [982.799, 984.082]

secure kernel module while the computation in the secure mode takes 9.670 µs. The

increased computation time is 1.441 µs, which is much larger than the context switch

discussed above (0.218 µs). Thus, we consider that the CPU performance is decreased in

the secure mode.

Overall Performance

Similar to the experiments on SGX, we use an application to simulate the frequent

sensitive computation and leverage the GeekBench 4 application [196] from Google Play

Store to measure the CPU performance. The benchmark is executed for 100 times to reduce

test errors.

From the Table 19, we find that the single-core performance score decreases from

984.70 to 983.44 when the sensitive computation is involved. The decrease percentages

is 0.13%, which is ignorable. Therefore, we consider the slowdowns would not affect the

performance of the edge nodes.
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6.3.4 Evaluation with AMD EPYC CPU

To study the performance overhead of the AMD SEV, we use a machine with an AMD

EPYC-7251 CPU [9], which contains 8 physical cores and 16 logic threads. As to the soft-

ware, the operating system we use is Ubuntu 16.04.5 LTS with a customized SEV-enabled

Linux kernel 4.15.10. The hypervisor we use is KVM 2.5.0.

Context Switch

In the SEV-ES architecture, VMEXIT events are splitted into two types, Automatic Exits

(AE) and Non-Automatic Exits (NAE). In the system where SEV-ES is enabled, only AE can

successfully trigger the VMEXIT event, which will cause a full world switch and the control

will be transferred back to the hypervisor. During this process, the CPU hardware will save

and encrypt all guest register states before loading the hypervisor.

To create an AE, we chose VMMCALL instruction. Though other instruction exists,

the KVM we use currently does not support them. VMMCALL is meant as a way for a

guest to explicitly call the hypervisor, and no Current Privilege Level (CPL) checks will

be performed, thus the hypervisor can decide whether to make this instruction legal at

the user-level or not, which also means we can add function by hooking the VMMCALL

handler [8].

Since we can know the total switch time by sending an empty VMMCALL instruction,

which is also the real thing what we are interested in, we did not record the time con-

sumption of vmexit or vmentry event but record the total time consumption instead. From

our experiment, we find that the average switch overhead is 3.09 µs, and this is because

a vmexit event is triggered every time, and the CPU has to save and encrypt the guest
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Table 20: Time Consumption of MD5 (µs).

CPU Mode Mean STD 95% CI

Guest OS 3.66 0.126 [3.602, 3.720]
Host OS 0.70 0.005 [0.697, 0.702]

state before switching to the hypervisor mode to protect guest data. Meantime, when CPU

returns to Guest mode, it has to load and decrypt guest state.

Sensitive Computation

To evaluate the performance overhead of the sensitive computation, we study the time

consumption of running sensitive computation software in both host and guest OS respec-

tively. The each experiment is executed 1, 000 times. We restart the host operating system

to make sure there is no other factor to impact our result. In the Host OS, we simply

run MD5 and measure the time. To better simulate the real SEV executing environment,

we call VMMCALL instruction every time the MD5 finishes to trigger the guest-hypervisor

switch.

From Table 20 we can see that executing MD5 in Guest OS takes almost the same

amount of time with running MD5 in the Host OS. Since we do not send any command

with VMMCALL, the hypervisor does not have to do any extra calculation. Thus, we can see

that the computation running in an SEV-enable guest does not introduce extra overhead

compared to running in the Host OS.

Overall Performance

We use GeekBench 4 to evaluate the influence of frequent sensitive computation run-

ning in the SEV-ES enabled guest to the host. To simulate this, we run MD5 in Guest OS
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Table 21: Performance Score by GeekBench.

Sensitive Computation Mean STD 95% CI

No 3425.05 41.016 [3417.011, 3433.089]
Yes 3283.15 32.772 [3276.727, 3289.573]

every 1 second and VMMCALL instruction is sent every time after MD5 hash finishes. By

comparing the performances of with and without running sensitive computation in Guest

OS, we can learn the overall extra overhead. We execute benchmark for 100 times.

From the Table 21, we can see that the performance score drops from 3425.05 to 3283.15

in average, and the decrease percentage is about 4.14%. Comparing with the experiments

on Intel SGX and ARM TrustZone technology, we consider the AMD involves a higher

performance overhead due to the heavily context switch between the hypervisor and guest

OS.
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CHAPTER 7 RESEARCH ON TRAFFIC SIGNAL INFRASTRUCTURE

7.1 Introduction

Traffic signal systems maintain the safety and coordination of all vehicles and pedes-

trians traversing public roads. Historically, these systems have proven themselves worthy.

Governed by the Institute of Transportation Engineers (ITE) [124], the group has looked

to excel in safety, education, and standardization of vehicle traffic intersections. The work

of ITE has led to the general population trusting these systems and has delivered the ex-

pectation that a trip by vehicle or foot will be a safe journey.

Early implementations of traffic signal systems were based upon electro-mechanical

controls. In the electro-mechanical systems of yesterday, the devices used nothing more

than rotating gears and wheels that would spin and align contact leads to pass electricity to

light bulbs contained in a traffic signal system [253]. Simple enough, these devices worked

but lacked any technology to provide real-time reconfiguration to allow for changes to

accommodate ever-changing vehicle traffic flows.

Fast-forward some years, modern traffic signal systems have ushered in numerous tech-

nologies due to advancements in computing and the modern need for more efficient sys-

tems. With emerging smart cities [254], the new version of traffic signal systems have

ushered in numerous advancements compared to the systems of yesterday. Featuring im-

provements such as Linux based operating systems and network architectures spanning

hundreds of miles, intelligent transportation control systems have achieved a degree of

efficient control over vehicle traffic that has long been sought after.

With new advancements that have been developed and deployed, it is critical that
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traffic signal systems be proven for safety and security above all. Previous security research

of the traffic signal systems [60, 63, 62, 144, 150] mainly focus on the security of the traffic

controllers and the wireless network deployed in the traffic signal system, and show that

existing traffic systems are vulnerable. However, the security of the other parts (e.g., the

Malfunction Management Unit and Cabinet Monitor Unit) in the traffic signal system are

left out.

In this chapter, we share our pathway and execution for finding and exploiting flaws

found in traffic signal systems (e.g., specified by NEMA TS-2 [170] and ITS [115] Cabinet

standards). Our work does not focus on a specific component, but instead analyze the

security of the whole traffic signal system. Our analysis results show that an array of at-

tacks can be easily launched by adversaries against these systems such as bypassing access

controls, disabling monitoring alerts/units, manipulating traffic patterns, or causing denial

of services. Moreover, we show that attackers can perform an all-direction greens attack

against vehicle traffic signal systems. To the best of our knowledge, it is the first time

that such a severe attack has been demonstrated. By setting up a standard traffic signal

system locally in our laboratory and leveraging a traffic signal system laboratory in a mu-

nicipality, we test and verify the effectiveness of all the presented attacks on typical traffic

signal systems following the TS-2 and ITS standards. Furthermore, we provide our security

recommendations and suggestions for the vulnerabilities and attacks we confirmed.

7.2 Related Work

Previous work [62] investigated the security of vehicle traffic signal systems. In their

analysis, the researchers identified vulnerabilities about the deployed wireless network and
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operating system of the traffic controller. Exploiting these vulnerabilities, the researchers

were able to control intersections on-demand to give them the ability to completely ma-

nipulate vehicle traffic progression. Cerrudo [60] presented vulnerabilities on the wireless

sensors of the vehicle traffic signal systems. These vulnerabilities allow attackers to take

complete control of the devices and send fake data to vehicle traffic signal systems. By

leveraging these flaws, adversaries can cause traffic jams in a city. Laszka et al. [144] devel-

oped a method for evaluating the transportation network vulnerability, and their method

is tested on randomly generated and real networks. Their approach can further identify

critical signals that affect the congestion. Li et al. [150] presented risk-based frameworks

for evaluating the compromised traffic signals and provided recommendations for the de-

ployment of defensive measures in the vehicle traffic signal systems. [63] focuses on the

vulnerability of the I-SIG system and shows that traffic congestion could be introduced by

data spoofing attack from even a single attack vehicle. Unlike these work, we target the

ATCs featuring two standards (i.e., ITS and TS-2) and advance their work in the following

aspects: 1) We analyze the security of the entire traffic signal system in both ITS and TS-2

standards and summarize the security implications; 2) we show that stealthy manipula-

tion to the traffic signal system is feasible via a diversionary cabinet access tactic; 3) we

demonstrate the feasibility of the all-direction greens attack via bypassing the MMU/CMU.

7.3 Attack Surface Analysis

In this section, we analyze the security of existing vehicle traffic signal systems and

summarize potential security implications. Note that the summarized implications are

based on the study in the partnering municipality, and they may also apply to other mu-
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nicipalities using the same device.

7.3.1 Access to the Traffic Signal System

When breaching the perimeter to access traffic signal systems, an attacker will en-

counter both physical access and/or remote access restrictions. In the case of a network

intrusion, an attacker will likely gain access to more than one ATC due to the uniform

use of network restriction mechanisms. With a physical intrusion, an attacker would first

need to breach a traffic signal cabinet or operation center, then proceed to escalate privi-

leges through a regional transportation network. In this section, both access methods are

discussed to provide a through pathway to regional traffic signal access.

Physical Access

As mentioned in Section 2.4, the hardware devices in the traffic signal system are

normally placed in a roadside cabinet. To avoid unauthorized access or destruction, the

cabinet is protected by a Corbin #2 lock and key. This key is held by technicians who

maintain the technology inside the cabinet. To assist with physical monitoring, surveillance

cameras may be deployed to monitor potential access to the traffic cabinet.

Cabinet Keys. According to the cabinet specifications [115, 170], both the ITS and TS-2

cabinets shall be provided with a Corbin #2 Type key. Due to the large amount of deployed

cabinets under these standards, we looked to verify this within our testing municipality.

Through inquiry and testing, we verified that all of our testing municipalities traffic signal

cabinets can be opened with the default Corbin #2 key.

With further research, we found that the Corbin #2 master key is sold online. For the

price of $5 USD, the key is marked with the ability to open most traffic signal cabinets in
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the United States. Upon further examination, the purchased key was proven to be an exact

match to the cabinets that are used by our partnering municipality and standards that we

are investigating. This key would allow us to open all traffic signal cabinets deployed by

the municipality.

Implication 1: A large number of traffic signal cabinets can be opened with a Corbin

#2 key purchased online..

Surveillance Cameras. Prior research has commented on the difficulty of beating surveil-

lance cameras when gaining physical access to traffic cabinets [62]. However, our analysis

shows a different result. In the municipality we investigated, there are 750 vehicle inter-

sections. According to the municipality officials, only 275 vehicle intersections are covered

by traffic cameras, which leaves more than 60% intersections of the traffic network un-

surveilled. Without a surveillance camera, physical access to the traffic cabinets would be

undetectable.

Implication 2: Physical access to the traffic signal cabinets is out of watch of surveil-

lance cameras in more than 60% intersections of the investigated municipality..

Door Status Monitoring. In the ITS cabinets, the status of the door can be monitored by

the CMU [115]. Specifically, the ATC sends a Type 61 query command [115] to the CMU,

and then the current status of the cabinet door is returned in the 31st byte of the response.

In real-world deployments, we learn that the Model 2070 ATC [121], which is deployed

in the investigated municipality, writes the door alarm message to log file, then after some

time, the log file is forwarded to the parties who are monitoring the system. However,

we are informed by our test municipality that the forwarding of the log files is kept to a
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low frequency (typically every one-to-five minutes) to reduce network congestion. This

one-to-five minute gap offers a perpetrator a chance to clean up the log files before they

get forwarded through the Model 2070’s user interface. According to the test municipality,

none of the cabinet door alarms are currently being monitored across the 750 vehicle

intersections that they encompass.

Implication 3: The door status of traffic signal cabinets may not be monitored in real-

time or at all. Alarms may be cleared from the system by an attacker..

Remote Access

As shown in previous work [62], a number of transportation systems use the insecure

IEEE 802.11 wireless access points for network communications. The insecure wireless

network would allow a perpetrator to remotely connect to a traffic network and access

networked hardware inside.

While the network of some traffic signal systems is isolated from the Internet for secu-

rity concerns, we do find that the public IP addresses of traffic signal systems are publicly

accessible. The Shodan [229] website provides a search engine for internet-connected de-

vices where reports can be generated containing IP addresses and signatures of devices

meeting search criteria. With keywords such as NTCIP or Econolite, we are able to iden-

tify the IP address of a number of ATCs. Note that the keyword Econolite is traffic signal

system manufacture who makes ATCs for ITS cabinets.

Additionally, due to the engineering efforts required for system updates, the Linux

kernel in the ATCs is normally out-dated and is vulnerable to multiple existing attacks [71].

The ATCs used at our partnering municipality were confirmed to running the Linux 2.6.39
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kernel network wide. Moreover, since the SSH/FTP connection is required in the ATCs [2],

a perpetrator may also leverage known attacks [252] to gain access to the system. During

our analysis, we found that both the deployed Intelight Model 2070 ATCs and Siemens

Model 60 ATCs use default credentials for the SSH and Telnet connections. According to

our partnering municipality, they were not aware of the ability to login to the ATC over

SSH. This poses an interesting predicament as it appears that there may be additional

municipalities that may not have an understanding that they are vulnerable to network

attacks conducted via SSH.

Implication 4: SSH connections to ATCs are possible via the publicly exposed IP ad-

dresses and default credentials..

7.3.2 Traffic Signal Control

As described in Section 2.4, the ATC is used to configure traffic signal patterns and

timing. In the devices we investigated, the Intelight Model 2070 ATC uses D4 software [90]

for configuration while the SEPAC software [231] is used in the Siemens Model 60 ATC.

Since the ATCs follow the same standard [2], the basic functionalities of the different

software are the same.

With Physical Access

To reduce the complexity of using the software, the ATCs are equipped with a series

of control buttons on the front panel. With the buttons and configuration menus, one can

easily specify the configurations of the ATC including different traffic signal patterns, the

internal clock, and the status of MMU/CMU.

In our investigation, we found out that the configuration of the ATC does not require



142

authentication. In other words, it requires no credentials to access the front control panel

of the ATC, that can be used to configure the ATC freely. While access codes can be set to

control access to this front panel, our partnering municipality did not do so. Therefore,

once physical access is gained to the ATC, a perpetrator may modify the configuration of

the ATC without any restrictions.

With Remote Access

In the ATC system, the D4 and SEPAC work as traffic control software in the Linux sys-

tem. Naively, an attacker can gain remote access to the front panel controls by connecting

into the Linux subsystem of controller. With the D4 software, an attacker that launches a

connection will be displayed a remote terminal with the same controls that are offered on

the Model 2070 front panel. With the SEPAC software an attacker can gain access to the

front panel of by launching the front panel binary contained in the /opt/sepac/ directory.

With remote access to the ATC via SSH, one can also control the traffic signals follow-

ing the specification described in [2]. Specifically, the ATC is provided with seven serial

communication ports, which are mapped as devices in the Linux /dev directory. According

to the specification, Serial Port 3 (/dev/sp3s) and Serial Port 5 (/dev/sp5s) are used for

in-cabinet device communications. Thus, directly writing a Type 0 [170] command frame

to the Load Switch relays achieves control of the traffic signal. To avoid conflict with the

D4/SEPAC software, an attacker can stop the control software and their actions.

Similar to the aforementioned configuration with physical access, writing commands

to the serial ports does not require any authentication in the investigated devices.
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Implication 5: The configuration of ATCs and the communication between the ATC and

the traffic control signal do not require any authentication..

7.3.3 Conflict Status Control

Recall that the MMU/CMU is in charge of detecting the conflict between the ATC con-

figuration and predefined forbidden patterns. The forbidden patterns in the MMU and

CMU are specified by the Programming Card and Datakey, respectively. Thus, to control

the conflict status, a perpetrator needs to override the configuration in the Programming

Card or Datakey.

MMU Programming Card

The conflict status on the MMU is defined by the compatibility between channels on

the Programming Card [170]. Configuration is accomplished through the use of soldered

wire jumpers. Therefore, to override the configuration, the perpetrator needs to resolder

the wire jumpers to specify the required status.

CMU Datakeys

According to the cabinet specification [115], the CMUs in ITS cabinets use the LCK4000

Datakey [35]. We find that the LCK4000 is a 4 KB serial EEPROM memory chip molded into

a plastic form-factor resembling a house key. Designed and manufactured by ATEK Access

Technologies [36], the Datakey serves as an unencrypted configuration storage unit for

the CMU that includes the known safe-states for an intersection housed in a defined byte-

array [115]. Located on the ATEK Access Technologies website, we find that the company

offers memory flashing devices for the LCK4000, and also instructions for making your

own reader and writer based upon the Microwire serial communication protocol [34].
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Figure 24: Datakey LCK4000 Microwire Flasher built upon the Arduino Platform. The red
key is the LCK4000 Datakey.

To configure the Datakey, we would be able to buy an EEPROM memory flashing unit

directly from ATEK. However, to learn the bar of overriding the configuration, we built

a customized Datakey access tool by using an Arduino Uno starter-kit [17]. Following

the Microwire serial protocol specification [34] found on ATEK’s website, we are able to

construct our own flashing device as shown in Figure 24. Similar to the control of traffic

signals, the configuration of the Datakey requires no authentication, and our simple device

would allow us to read and write configurations on-demand without any restriction.

Implication 6: The configuration of the conflict status control does not require any

authentication..

7.3.4 Troubleshooting of the Traffic Signal System

Wireless 802.11 deployments in traffic networks are generally linear in communication

flows. That is, due to the geography that must be covered in these networks, the use of re-

dundant protocols such as spanning-tree is not seen due to the extra cost needed to design

and install additional equipment. If there are no redundant loops in the network architec-

ture, one can easily disable network communications across a linear communication chain

by disabling an upstream communication node (i.e., an intersection). Thus, each wireless

network connection can be seen as a dependency to its parent station as we work our way



145

Figure 25: Diversionary cabinet access tactic. The circle on the left most represents the
central headquarter. An attacker can disable the communication between intersections 1
and 2, and conduct the malicious exploitation at intersection 3 where is a few miles away.

further from the centrally headquartered location.

Consequently, a diversionary tactic would seriously affect the troubleshooting process

of the traffic signal system. For example, one would covertly or explicitly break upstream

network communications, thus leaving downstream traffic intersections with no network

access to the rest of the traffic network. This would disable any sort of central monitoring

including surveillance cameras and cabinet door alarms as there would be no network path

to these devices. Figure 25 shows the diversionary cabinet access tactic.

To achieve the needed disruption to the network, one of the methods is to use radio

frequency jamming techniques since the wireless 802.11 equipment is widely used to con-

nect vehicle traffic networks [62]. As shown in works by Grover et al. [190] and Pelechrins

et al. [101], 802.11 networks can be completely or selectively jammed to block communi-

cations between end devices. The use case for us would be to disrupt the communications

pathway between a selected vehicle intersection and the traffic control master server lo-

cated miles away. In reality, our partnering municipality informs us that network outages

are already a common occurrence due to the interference generated by the deployment of

wireless 802.11 access points in homes and business that are near traffic intersections. In
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short, they would likely disregard our radio frequency disruption and jamming attacks as

another common case of co-channel interference.

To traffic system monitoring staff, the statuses of intersections that lay on the other side

of the network disruption or breakage would fundamentally be unknown due to the lack

of network communications to the downed intersections. It is at this point that an attacker

would access one of the downstream traffic cabinets with an unknown status. Throughout

the period of unknown status, the attacker would have completely unmonitored access to

the cabinet.

At some point, the municipality will have to troubleshoot the outage. We learn through

our partnering municipality that the troubleshooting process could occur anywhere be-

tween instantaneously and 64 hours (if the attack is orchestrated outside of normal busi-

ness hours during the weekend). Upon inspection, the maintenance staff would focus on

the direct location of the network outage itself and not any of the unknown status intersec-

tions behind the disrupted connection. Once they managed to resolve the disruption at the

first disrupted intersection, it is unlikely that they would investigate any of the previously

unknown status intersections if all network communications return to normal.

Implication 7: The troubleshooting process of the real-world traffic signal systems

makes it possible for the attacker to achieve stealthy access/control to the system..

7.4 Attacks Implementation and Testing

To learn the impact of the implications discussed in Section 7.3, we have crafted several

attacking scenarios in which we test with our partnering municipality.
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Figure 26: Traffic signal system in the municipality test lab. The left side shows a group of
Model 2070 ATCs. The right top of the figure shows the traffic signal bulbs while the right
bottom of the figure shows the CMU-212.

7.4.1 Environment Setup

We first partner with a local municipality to gain access to their traffic signals test lab,

which is equipped with ITS cabinets, Intelight Model 2070 ATCs [121], and CMU-212 [81].

This lab is a mock-up of their operational traffic network and is used for their own testing

and burn-in of equipment before deploying the devices to the field. The devices that were

used in the lab are shown in Figure 26. The Intelight Model 2070 ATC is running the Linux

2.6.39 kernel as specified by ATC standard [2].

Moreover, we obtain a TS-2 cabinet and set up an environment that fulfills the NEMA

standard. In this cabinet, the widely used Siemens Model 60 ATC [230] and EDI MMU-

16LE [80] are deployed. The entire traffic signal system is shown in Figure 27 Like the

Intelight Model 2070 ATC, the Siemens Model 60 also runs upon a Linux 2.6.39 kernel as

specified by the ATC Standard.

7.4.2 Thread Model

We assume the target traffic signal system follows the ITS cabinet standard or the TS-

2 cabinet standard. In both standards, we assume the ATC deployed inside the cabinet
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Figure 27: Traffic Signal System of TS-2 Standard. The 1 is a vehicle detection and
surveillance system. The 2 shows the MMU-16LE while the 3 shows the Siemens Model
60 ATC. The 4 and 5 indicate the Load Switch relays and traffic signal bulbs, respectively.

follows the ATC standard released by AASHTO, ITE, and NEMA. In our attack, we assume

the access to the traffic signal system is gained via Implications 1-4. Specifically, in most

scenarios, we only require the remote access achieved by Implication 4. In the all-direction

green light attack, we provide two different attacking policies with physical access gained

by Implications 1-3 and remote access gained by Implication 4, respectively.

7.4.3 Attack Scenarios

Stealthy Manipulation and Control

As demonstrated in previous research [62, 144, 63], the monitoring and control of

the traffic signal system could be used in a series of attacks such as Denial of Service

(DoS) and causing traffic congestion. However, previous attack approaches control the

traffic signals by either changing the configuration of the ATC or by injecting messages to

the transportation system that are easy to be detected. For example, the transportation
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engineers may simply pull the configuration of the ATC remotely to identify the abnormal

configuration.

In our attack, we achieve a stealthy manipulation and control via intercepting the com-

munication between the ATC and Load Switch relays that control the traffic signal lights.

As discussed in Section 7.3.2 and Implication 5, the in-cabinet device communication be-

tween the ATC and traffic lights is performed via the serial port /dev/sp3s and /dev/sp5s,

and the communication requires no authentication mechanism. To monitor and manip-

ulate the communication, we replace the driver of these two devices in the system with

a customized driver, and the customized driver records/modifies the message sent to the

serial port before it is transmitted to the hardware.

With the customized driver, our attack is launched with a stealthy style since it mod-

ifies no configuration of the ATC and involves no additional messages. For example, we

can increase the duration of the red light to introduce a traffic congestion. More serious

congestion would be caused if we place all the traffic signals into a flashing red style. Even

worse, malicious signal patterns such as all-direction flashing yellow may spark a critical

accident. According to Implication 7, existing troubleshooting process of the traffic sig-

nal system can hardly detect the attack if the malicious traffic signal pattern is carefully

designed.

Ransomware Deployment

One of the most crippling scenarios for a traffic network is the deployment of ran-

somware across all traffic control devices contained in the network. Using methodologies

as described in Section 7.3, we design the most simplistic path towards a ransomware de-
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ployment across a traffic network. In this scenario, all ATCs on a traffic control network

would have their internal traffic control program processes disabled and all root login ac-

cess to the internal Linux operating system would be denied, thus, each ATC would be held

at ransom.

As specified by the ATC specification [2], the ATC stores all startup instructions in the

Linux /etc/inittab daemon file. While investigating this file, we found an instruction to

launch a shell script file that handles setting up the runtime environment and processes

for the traffic control software. If one is to remove this shell script file, it completely

disables the traffic control software from launching thus leaving its respective intersection

uncontrolled. Rebooting the ATC devices will not resolve the issue, and the only way

to resume the traffic control software is to replace the correct script that is responsible for

launching the traffic control software. To further consolidate the attack, we can change the

credentials of the SSH connection to prevent the transportation engineers from accessing

the ATC system.

To extend the attack, we launch a ransomware deployment Python script in the part-

nered lab, which includes a large number of Intelight 2070 ATCs on the test traffic network.

With the script, we are able to make a list containing IPs of all known ATCs on the traffic

network then deploy our ransomware engagement shell commands issued over SSH.

The Destruction. In the network of the road agency that we partnered with, this exploit

would allow us to take control of 400 ATCs running the known traffic control software. To

fix a ransomware affected traffic signal system at an intersection, a transportation engineer

would need to drive to the intersection and physically update the firmware of the ATC. If

we assume that it will take 1 hour to fix each ATC (it might take more time because of
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the traffic congestion and none of the ATC traffic signals operating), and assuming that 10

workers have the expertise to do this. The time for resuming the complete traffic signal

system would be: 400 controllers * 1 hour / 10 engineers = 40 hours/engineer = 1 week

(if an engineer works 8 hours/day). If we assume that an engineer is paid $40/hour, the

estimated cost for fixing this would be 400 controllers * 1 hour * $40/hour = $16, 000 USD.

A previous study [51] also shows that simply reconfiguring the timings of 60 intersections

in one district of Boston could save $1.2 million per year. Additionally, we also identify that

many states (e.g., California, Florida, Michigan, Missouri, Ohio, Oregon, South Carolina,

Texas, Virginia, Wisconsin, etc.) currently use the 2070 ATC [250, 47, 235], which means

that our attacks might be deployed in these states as well.

All-Direction Green Lights

When considering the most dangerous state for an intersection, we conceived the

idea of all-direction green lights. An intersection displaying green lights in all directions

would leave drivers defenseless to vehicle cross traffic traveling at speed as they passed

through. In order to make this happen, one would have to override the fail-protection

of the MMU/CMU, then program the all-direction green light pattern into the traffic con-

troller. We chose to investigate this possibility heavily as the MMU/CMU was not shown

to be tested in previous work.

The MMU/CMU plays the role of policing traffic patterns shown by the ATC. If a traffic

pattern is displayed that would be dangerous, such as all-direction greens, the MMU/CMU

steps in and places the intersection into conflict flash. Furthermore, if serial communica-

tion fails amongst any of the traffic cabinet’s devices, the intersection is placed into conflict
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Figure 28: CMU-212 display unit showing the Datakey configuration for USER ID and
MONITOR ID which was written using the home-made Arduino Datakey writer to allow
for full-permissive configuration.

flash. This made for a difficult process as any event that placed the cabinet ecosystem out-

of-balance would trigger a conflict flash state. Due to the differences in attack policies, we

discuss this attack with and without physical access, respectively.

With Physical Access. As discussed in Section 7.3.3, the configuration data such as unsafe

states is defined by the Programming Card and Datakey in MMU and CMU, respectively. To

overcome accidentally triggering conflict states, we can directly override the configuration

of the MMU/CMU with physical access according to Implication 6. Since the configuration

of the Programming Card is simply achieved by soldered wire jumpers, here we only show

how to override the configuration in the CMU Datakey.

While we find the CMU’s specification for the address layout and configuration param-

eters for the Datakey in the ITS Cabinet Specification [115], we believe that the parameter

selection would be difficult for someone without traffic device configuration experience.

In order to combat this, we look for configuration generation programs on the CMU manu-

facturers website. It does not take us long to find one as we quickly discovered a free pro-

gram [82] offered which would allow us to create the configuration files for the Datakey

using a wizard-style approach. This wizard would handle parameter setup, leaving us

to only to configure the nullification of conflict states for the intersection which was as

simple as selecting a group of checkboxes called permissives. A permissive is a setting
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that which specifies what individual traffic signal light bulb is permitted to be turned on

with each other light bulb of the intersection. This is done as a method to prevent two

cross-directions of travel from receiving concurrent green lights which would cause pass-

ing vehicles to enter a potentially dangerous situation. If two signal light bulbs try to

turn on that is not set to be permissive with each other, the CMU will engage and place

the intersection into conflict flash. After using the key generation program to generate

a configuration file allowing for all-direction green permissives, we use our Arduino Uno

LCK4000 flasher to write the configuration to the key as shown in Figure 24. Figure 28

shows the CMU Datakey configuration on a display screen. This Datakey is written via the

home-made Arduino writer using our generated key file.

The last step in configuring all-direction greens lights is to place the correct settings in

the ATC traffic control program. However, during our experiment, it is discovered that the

Intelight Model 2070 ATC must maintain nearly constant contact with the CMU over serial

communications, and this contact periodically shares the configuration of the LCK4000

Datakey and the ATC with each other. If the configurations do not match, the CMU will

trigger a conflict flash. To combat this issue, the traffic controller must be configured to

match the all-direction green permissive configuration on the CMU.

In order to set up the ATC with a matching configuration to the CMU, all that we

required is the front panel controls and display screen located directly on the unit. Nav-

igating through the front panel menu controls, we find that the traffic control software

features a similar parameter setup to what we saw on the CMU. In this menu, we are able

to explicitly state the permissives of the intersection then construct an all-directions green

traffic pattern. We are then able to schedule for an all-directions green pattern to run
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Figure 29: All-direction green lights being displayed on traffic signal test equipment. The
left 4 green LEDs represent the through directions of travel at an intersection while the
right 4 green LEDs represent the corresponding left-turn lanes.

Figure 30: Comparison of a typical all-directions green conflict flash state initiation versus
transient avoidance attack tactic.

in another menu. Shortly after scheduling the pattern to run and waiting for the transi-

tion to occur, we are greeted with the all-directions green configuration. A test displaying

all-direction greens is shown in Figure 29.

With Remote Access. Although the configuration of the ATC could be modified via remote

access, the aforementioned approach requires physical access to reconfigure the unsafe

states of MMU/CMU. Since the configuration in devices like the MMU programming card

is achieved by soldered wire jumpers, it would be difficult to override the configuration

without physical access.
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To bypass the fail-safe units, we implement an attack called the transient avoidance

attack tactic. The root feature of this attack is that the fail-safe unit does not trigger a con-

flict state until conflicting control signals exist for 200 milliseconds or greater. Following

this 200 millisecond wait period, the fail-safe requires up to an additional 300 milliseconds

to place the intersection into a conflict state (all-directions flashing red lights). Figure 30

shows the details of the transient attack. From the top, the first line and second lines rep-

resent the on/off signal of two green lights that conflict at an intersection. The third line

represents the presence on a conflict situation. The fourth line displays if an intersection

has entered a conflict flash failure state. The state designation, seen on the bottom of

the graphs, is described as the following: 1) An intersection is in a conflict free running

state; 2) A conflict has occurred. The conflicting signals must exist for 200 milliseconds

before triggering a conflict state; 3) Conflicting signals have been shown for more than

200 milliseconds. In the next 300 milliseconds timespan, the fail-safe unit must place the

intersection into a conflict flash state; 4) The intersection is currently in the conflict flash

state.

Another challenge that we will have overcome is the fail-safes’ use of Recurrent Pulse

Detection (RPD) [81, 80]. This mechanism is used to detect failures resulting in voltage

leaks from a traffic signal’s Load Switch relays. This mechanism looks for voltage leaks

lasting 1 to 200 milliseconds and triggers a conflict flash state if they meet a certain criteria

level in regards to power, duration, and frequency. In practice, our experiment shows that

the RPD mechanism will not trigger a fault if an off time of 24 milliseconds or greater

duration is used to separate conflicting signals such as in the procedure of triggering each

green light bulb during the all-directions green attack. Note that the transient attack places
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the traffic lights into a flicker status. Considering the high flicker frequency, the influence

of the real-world ambient light, and the long distance between the real-world traffic lights

and the drivers, the flickering green lights are likely to be recognized as constant green

lights.
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CHAPTER 8 CONCLUSION AND FUTURE WORK

8.1 Conclusion

In recent years, ARM platform becomes common in different areas including mobile

phones, tablets, Internet of Things (IoT) devices, and even cloud platforms. However, the

research on the security of ARM platform is far from enough comparing to that on the

security of the traditional x86 platform. In my dissertation, I designed and implemented

software-based and hardware-based approaches to secure the ARM platform.

First, I design and implement DexLego [174], a program transformation system that

reveals the hidden code in Android applications and transfers them to analyzable pat-

tern via instruction-level extracting and reassembling. DexLego collects bytecode and data

when they are executed and accessed, and reassembles the collected result into a valid

DEX file for static analysis tools. Since DexLego extracts all executed instructions, it is

able to uncover the malicious behaviors of the packed applications or malware with self-

modifying code. In DexLego, I design a novel reassembling approach to reconstruct the

entire executed control flows including self-modifying code and implement the first pro-

totype of force execution on Android to improve the code coverage. I evaluate DexLego

on real-world packed applications and DroidBench samples. The evaluation results show

that DexLego successfully unpacks and reconstructs the behavior of the applications. The

F-measures (i.e., analysis accuracy) of state-of-the-art static analysis tools have increased

for more than 20% with the help of DexLego. The code coverage experiments show that

the force execution module helps to increases the coverage of state-of-the-art fuzzing tools

from 32% to 82%.
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Second, I design Ninja [173, 175], a transparent malware analysis framework on ARM

platform based on hardware features including TrustZone technology, Performance Mon-

itoring Unit (PMU), and Embedded Trace Macrocell (ETM). I implement a prototype of

Ninja that embodies a trace subsystem with different tracing granularities and a debug

subsystem with a GDB-like debugging protocol on ARM Juno development board. Ad-

ditionally, hardware-based traps and memory protection are leveraged to keep the use

of system registers transparent to the target application. The experiment results show

that Ninja can transparently monitor and analyze the behavior of the malware samples.

Moreover, Ninja introduces reasonable overhead. I evaluate the performance of the trace

subsystem with several popular benchmarks, and the result shows that the overheads of

the instruction trace and system call trace are less than 1% and the Android API trace

introduces 4 to 154 times slowdown.

Third, based on the security analysis of the ARM debugging features, I design a novel

attack scenario, which I call Nailgun [176]. Nailgun works on a processor running in a

low-privilege mode and accesses the high-privilege content of the system without restric-

tion via the inter-processor debugging model. Specifically, with Nailgun, the low-privilege

processor can trace the high-privilege execution and even execute arbitrary payload at a

high-privilege mode. I implement Nailgun on commercial devices with different SoCs and

architectures, and the experiment results show that Nailgun is able to break the privilege

isolation enforced by the ARM architecture. The experiment also shows that Nailgun can

leak the fingerprint image stored in TrustZone from the commercial mobile phone.

To learn more about the security aspect of existing TEEs, I also summarize the technique

behind the widely deployed TEEs and propose the challenges that these TEEs would have
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to face [178]. Additionally, the potential adoption of existing TEEs to the emerging edge

computing is present [172]. Additionally I perform a study on the security of deployed

traffic signal infrastructure [177] and show that remotely controlling a traffic signal and

bypassing the fail-safe mechanism is possible.

8.2 Future Work

ARM platforms are complex systems, and the security of them is far from a solved

problem. The research I have done only represents a few aspects of this field and much

more research is still required. In my future research, I will pursue three areas.

First, I will continue working on transparent malware analysis. Although the prototype

of Ninja has improved the transparency of malware analysis systems, it is still not perfect.

For instance, it still shares the main CPU with the target program, which might leave

detectable traces that reveal the presence of the analysis system via cache side-channels.

Furthermore, the usage of hardware components relies on I/O registers, and these registers

may be accessed by the malware from the main CPU. In the x86 architecture, co-processors

are widely deployed to aid the management and firmware updating. For example, the

Integrated Dell Remote Access Controller (iDRAC) developed by Dell is based on the Intel

Management Engine (ME), which is a micro-computer embedded inside of all recent Intel

processors. In the ARM architecture, the co-processor also widely exists. Since it is a

separated processor that does not share cache or time slice with the main processor, the

instruction execution on this processor is transparent to the programs running in the main

processor. Thus, I plan to leverage the co-processors in the SoCs to achieve the malware

analysis and protect the I/O registers via system bus monitoring and manipulation.
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Second, I will investigate the security aspects of other hardware components in the

SoC systems. Hardware debugging features were trustworthy in the traditional debugging

model, but it turns to be vulnerable when the advanced multi-core systems and inter-

processor debugging are involved. It offers me an insight that the deployment of new and

advanced systems may impact the security of a legacy mechanism. In the modern computer

system, there exists a large number of hardware components/features, but the security of

these components/features is not completely clear. For example, recent Meltdown and

Spectre attacks are caused by the speculative execution feature of the processor, which has

been developed and trusted for a long time. Thus, I plan to perform security analysis to

more well-known hardware components (e.g., DMA and MMU) as well as newly announce

hardware features (e.g., Pointer Authentication Code in ARM v8.3 and Memory Tag in ARM

v8.5). Additionally, I will also work on an effective defense mechanism to Nailgun attack.

Third, the emerging of Machine Learning and Artificial Intelligence raises my interest

in the GPU. On one hand, several attacks on GPU have been proposed by researchers, and

how to guarantee the security of the GPU is still an open problem. Existing GPU computing

interface (e.g., Nvidia CUDA and ARM Compute Library) offers the developers task-based

SDKs, but the isolation between tasks still need to be carefully examined. On the other

hand, the GPU is naturally isolated from the main processor, and applications running in

the GPUs would not have to trust the main processor and any software running on it, which

is essential for a TEE. Additionally, similar to the co-processors, the separated memory and

cache makes GPU to be immune to a range of side-channel attacks. Thus, I believe there

is a potential to make GPU serve as a Trusted Execution Environment.
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With the rapid proliferation of the ARM architecture on smart mobile phones and Inter-

net of Things (IoT) devices, the security of ARM platform becomes an emerging problem.

In recent years, the number of malware identified on ARM platforms, especially on An-

droid, shows explosive growth. Evasion techniques are also used in these malware to

escape from being detected by existing analysis systems.

In our research, we first present a software-based mechanism to increase the accuracy

of existing static analysis tools by reassembleable bytecode extraction. Our solution col-

lects bytecode and data at runtime, and then reassemble them offline to help static analysis

tools to reveal the hidden behavior in an application.

Further, we implement a hardware-based transparent malware analysis framework for

general ARM platforms to defend against the traditional evasion techniques. Our frame-

work leverages hardware debugging features and Trusted Execution Environment (TEE)

to achieve transparent tracing and debugging with reasonable overhead.

To learn the security of the involved hardware debugging features, we perform a com-
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prehensive study on the ARM debugging features and summarize the security implications.

Based on the implications, we design a novel attack scenario that achieves privilege esca-

lation via misusing the debugging features in inter-processor debugging model.

The attack has raised our concern on the security of TEEs and Cyber-physical System

(CPS). For a better understanding of the security of TEEs, we investigate the security of

various TEEs on different architectures and platforms, and state the security challenges. A

study of the deploying the TEEs on edge platform is also presented. For the security of the

CPS, we conduct an analysis on the real-world traffic signal infrastructure and summarize

the security problems.
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