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Logistic Regression Under Sparse Data 
Conditions 

David A. Walker 
Northern Illinois University 

DeKalb, IL 

Thomas J. Smith 
Northern Illinois University 

DeKalb, IL 

 

 
The impact of sparse data conditions was examined among one or more predictor variables 

in logistic regression and assessed the effectiveness of the Firth (1993) procedure in 

reducing potential parameter estimation bias. Results indicated sparseness in binary 

predictors introduces bias that is substantial with small sample sizes, and the Firth 

procedure can effectively correct this bias. 
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Introduction 

Binary logistic regression, an analytic approach that uses one or more continuous 

or categorical variables to predict the log-odds of a binary event’s occurrence, is a 

commonly employed technique in education and the social sciences. Logistic 

regression identifies an optimally-weighted linear combination of the predictors, 

where each regression weight (βi) typically is estimated using maximum likelihood 

(ML) estimation, specifically maximizing the log-likelihood function, ln L(β | y). 

The ML estimate of each slope parameter, ˆ
i  indicates the predicted change in the 

log-odds of the event’s occurrence per unit of change in its associated predictor, 

adjusting for other predictors in the model. 

Although logistic regression is a relatively robust technique in the sense that 

it does not require characteristics such as normality of continuous predictors, 

linearity, or homoscedasticity, estimation difficulties can occur if sparseness is 

evident in the data, typically viewed as a condition in which one of the two outcome 

categories has a very small number of observed values. For example, if an analyst 

is interested in predicting the likelihood of an individual becoming a professional 

athlete using a set of three personal characteristics as predictors and, among the 
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1000 observed individuals, only 15 report themselves as professional athletes, a 

sparse data condition is evident. As another example, suppose the analyst wishes to 

predict, among a set of high school seniors, the probability of acceptance into a top 

tier (e.g., Ivy League) college/university, where only a small percentage of such 

seniors have achieved acceptance. Sparse occurrence of an outcome category often, 

although not always, is referenced in terms of the occurrence of this outcome 

relative to the number of predictor variables in the model. A general rule is that at 

least 10 events per variable (EPV) is necessary—sometimes referred to as the “Rule 

of Ten” (Hair et al., 2011). Considerable debate exists, however, concerning the 

reliability of this rule (e.g., van Smeden et al., 2016). Some authors (e.g., 

Vittinghoff & McColloch, 2007) suggested EPV may be relaxed and, in certain 

contexts, results from regression with EPV values of 5-9 should not summarily be 

discounted. 

Several undesirable phenomena can occur under sparse data conditions. One 

of these is the risk of complete separation, a condition in which a predictor variable 

predicts the outcome variable perfectly. For example, in the data condition 

represented in Table 1, the predictor variable x1 perfectly predicts the binary 

outcome, y. That is, all observed values of y = 0 have associated values of x1 that 

are less than 5. Conversely, all observed values of y = 1 have associated values of 

x1 that are greater than or equal to 5. In this situation, y is perfectly predicted by x1, 

and 
1̂  is thus not estimable and, in fact, is an infinite value. A similar condition, 

known as “quasi-complete separation,” can occur when a predictor variable predicts 

an outcome variable to a considerable extent (see UCLA Statistical Consulting 

Group, 2017). The variable x2 in Table 1, for example, predicts the outcome 

variable (y) very well, with less than perfect prediction evident only for values of 

x2 = 5. In this situation, too, 
1̂  is not uniquely estimable. 

Even when the risk of complete separation is not high (i.e., a sufficient EPV 

value is evident), bias in the predicted probabilities can occur when the incidence 

of the event is small relative to the observed sample size. For example, suppose 

once again that three predictors were used to estimate the likelihood of an individual 

becoming a professional athlete. If data from 10,000 individuals were collected, 

and among those 10,000 athletes, 150 became professional athletes, the EPV is 

sufficiently high (EPV = 150/3 = 50), but the relative likelihood of the event of 

interest is still small (150/10,000 = .015). In this case, the risk is not of complete 

separation but, rather, of bias in the predicted probability of becoming a 

professional athlete. 
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Table 1. Example of data set demonstrating complete separation on x1 and quasi-
complete separation on x2 

 

y x1 x2 

0 1 3 

0 3 2 

0 4 4 

0 2 5 

1 5 5 

1 6 8 

1 5 7 

1 7 8 

 
 

Manski and Lerman (1977) and Prentice and Pyke (1979) independently 

proposed a correction to the estimated intercept term in the logistic regression 

equation to correct for this bias in predicted probabilities, 
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where β0 is the estimated intercept parameter, τ is an estimate of the proportion of 

successes in the population based on prior information, and y̅ is the proportion of 

successes observed in the sample. 

Rather than maximizing the log-likelihood function to obtain regression 

parameter estimates, another approach involves maximizing a weighted log-

likelihood function, 
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This approach, like the intercept-correction approach discussed above, corrects the 

estimates for bias due to sparseness, but does so by adjusting the loss function. 

Generally, in the presence of rare events, the estimated probability of the rare 

event tends to be underestimated, while the probability of the alternative event 
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typically is overestimated. However, even in the presence of rare events, applied 

researchers seldom correct for the biases that can occur in these situations (King & 

Zeng, 2001). 

Firth (1993) proposed correcting the bias introduced by the presence of sparse 

outcomes through the use of a penalized log-likelihood function, 

 

 ( ) ( ) ( )F

1
ln L | ln L | ln

2
y y  = + I ,  

 

where I(β) is the Fisher information matrix (equivalently, minus the second 

derivative of the log-likelihood). The Firth procedure, which is an available option 

in SAS, Stata, and the R package logistf, can be used to address situations with 

sparse data conditions, either when the EPV value is small, or the observed 

proportion of an outcome is small. Thus, it can address issues of complete 

separation and/or bias in predicted probabilities. 

Although emphasis on sparse data conditions typically has focused on the 

distribution of the binary outcome variable in logistic regression, little research has 

investigated how sparse data conditions in the predictor variables may result in 

complete/quasi-complete separation or other estimation bias. The present study 

employs data simulation methods to explore this issue. 

The purpose of this study was to examine the impact of sparse data conditions 

among predictor variables on the estimated parameters obtained from logistic 

regression analyses. Sparse data conditions are defined in this study as situations in 

which the distribution of one or more binary (0/1) predictors reflects very low 

frequency for one of the two possible values, either p(xi = 1) = 0.05 or 

p(xi = 1) = 0.10. 

Methods 

To explore the role of sparse data conditions among predictor variables in binary 

logistic regression, we simulated a series of data sets, where each data set consisted 

of a single, binary (0/1) outcome variable, and one or more predictor variables. 

Depending upon the specific simulation condition, the predictor variables consisted 

of either: (1) one or more binary (0/1) variables, where one of the two data values 

occurred with low frequency (i.e., were sparse); or (2) a combination of one or more 

sparse binary variables in combination with a normally-distributed continuous 

predictor (see Table 2 for the complete set of data conditions). For each data 

condition, the distribution of the binary dependent variable was non-sparse and 
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uniform (proportion of “successes” ≈ proportion of “non-successes” ≈ .50). Data 

were generated using a data generation process with underlying intercept and slope 

population parameters of β0 = .20 and β1 = β2 = 0.50, respectively, and using 

sample sizes of N = 100, 200, or 500. Regression weights were estimated using both 

(1) maximum likelihood estimation (ML); and (2) the Firth (1993) penalized 

maximum likelihood estimation procedure (MLF). To eliminate variation due to 

sampling error, the same simulated data set was used within each simulation 

condition (i.e., in each condition, ML and MLF were fitted to the same data), while 

simulated data were allowed to vary randomly across conditions. The distributions 

of estimated slope estimates then were examined, confidence intervals for each 

computed, and coverage probabilities (i.e., the proportion of intervals that 

contained the true regression parameters, β0 = 0.20 and β1 = 0.50) determined. 

Additionally, for each estimated regression coefficient, two indices were computed 

to assess bias: (1) absolute bias, computed as ˆ
i iAB  = − ; and (2) mean squared 

error, computed as ( )
2

ˆ
i iMSE  = − . Although both statistics tend to produce 

similar patterns of results, MSE offers a better balance between bias and efficiency 

(Carsey & Harden, 2013). All analyses were carried out using R (version 3.5.1). 
 
 
Table 2. Data simulation conditions 
 

Data 
condition 

Sample 
size (N) 

Number of 
binary 

predictors 

Number of 
continuous 
predictors 

Distribution of binary 
(0/1) predictor(s) 

i.e., p(x)=1 

1 100 1 0 5% 

2 100 1 0 10% 

3 100 1 1 5% 

4 100 1 1 10% 

5 100 2 0 5% 

6 100 2 0 10% 

7 200 1 0 5% 

8 200 1 0 10% 

9 200 1 1 5% 

10 200 1 1 10% 

11 200 2 0 5% 

12 200 2 0 10% 

13 500 1 0 5% 

14 500 1 0 10% 

15 500 1 1 5% 

16 500 1 1 10% 

17 500 2 0 5% 

18 500 2 0 10% 
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Results 

Shown in Table 3 are descriptive statistics for the estimated regression parameters 

from the logistic regression model fitted to data of size N = 100, using one binary 

predictor with sparseness = 5% (i.e., the first simulation condition). When results 

for the model fitted using maximum likelihood (ML) are compared to the results 

using the Firth penalized maximum likelihood (MLF), ML estimation resulted in a 

number of instances in which the slope was severely overestimated (
1
ˆ 15  , see 

Figure 1). In contrast, MLF estimation resulted in much more consistent estimation 

of b1 than ML estimation, with less bias as indicated by both bias indices 

[E(AB) = 0.72 and E(MSE) = 0.86 for MLF estimation vs. E(AB) = 4.09 and 

E(MSE) = 89.87 for ML estimation]. The observed coverage probability of the 

computed 95% confidence intervals estimating β1 (based on 10,000 replicated 

samples) were .991 when using ML estimation and .996 when using MLF estimation. 

Because 95% confidence intervals were constructed, these probabilities would be 

expected to equal .95 in unbiased estimation. Thus, the standard error of β1 appears 

to have been underestimated with both ML and MLF, although to a slightly lesser 

extent with the ML than with MLF. 
 
 

Table 3. Descriptive Statistics for estimated regression parameters ( ˆ
0
β  and ˆ

1
β ) from 

binary logistic regression model fitted to simulated data (N = 100) with one binary 
predictor with sparseness = 5% 
 

Estimation method 

ˆ
0
β  

M Med SD 95% CI E(AB) E(MSE) 

ML 0.200 0.190 0.209 (0.196, 0.204) 0.167 0.044 

MLF 0.198 0.188 0.207 (0.195, 0.203) 0.165 0.043 

 

Estimation method 

ˆ
1
β  

M Med SD 95% CI AB MSE 

ML 2.403 0.469 5.579 (1.310, 3.497) 2.745 34.749 

MLF 0.482 0.399 0.928 (0.481, 0.484) 0.734 0.861 

 
 

Note: Simulations based on 10,000 replicated samples; ML = maximum likelihood estimation, MLF = Firth 
penalized maximum likelihood estimation; true population parameters from generative model are 

β0 = 0.20 and β1 = 0.50; E(AB) = mean absolute bias =  ˆE -
i i
β β ; E(MSE) = mean of the mean 

squared error = ( )ˆ  
2

E
i i
β β-  
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Figure 1. Distribution of estimated regression slope parameter ( )ˆ
1
β  from binary logistic 

regression model fitted to simulated data (N = 100) with one binary predictor with 
sparseness = 5%; simulation based on 10,000 replicated samples 
 

 

Shown in Figures 2-4 are the mean estimates of the regression slope 

parameters (β1 and β2) for each of the experimental conditions described previously, 

based on simulated samples and using 10,000 replications. As is seen in these 

figures, in each condition MLF estimation resulted in estimates of the parameters 

that were closer to the actual parameter values (β1 = β2 = 0.5) than were the ML 

estimates. That is, mean levels of bias as reflected by absolute bias [E(AB), Figures 

5-7] and MSE (Figures 8-10) were lower when using MLF estimation than when 

using ML estimation. For both estimation methods, as the sample size used in the 

regression increased, the observed level of bias decreased. Also, as the sample size 

increased, the difference in bias between the two estimation methods decreased. In 

the largest sample size condition (n = 500), both estimation methods showed little 

bias and also very little difference in bias. This suggests that the critical issue as it 

pertains to biased parameter estimates in the presence of sparse predictors is not the 

level of sparseness, but rather the absolute frequency of the sparse event. That is, 5 

occurrences of a particular value of a binary predictor in a sample of n = 100 leads 

to more severe bias in the regression slopes than does 25 occurrences of a particular 

value of a binary predictor in a sample of n = 500. 
 
 

Maximum likelihood estimate 

 

Firth maximum likelihood estimate 
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Figure 2. Estimated values of β1 for maximum likelihood and Firth maximum likelihood 
logistic regression models fitted using one binary predictor with either 5% sparseness or 
10% sparseness; actual population value of β1 is 0.50 
 

 
 

 
 
Figure 3. Estimated values of β1 and β2 for maximum likelihood and Firth maximum 
likelihood logistic regression models fitted using two binary predictors with either 5% 
sparseness or 10% sparseness; actual population values of β1 and β2 are 0.50 
 

 
 

𝛽 1 𝛽 1 

 
 

 

𝛽 2 𝛽 2 
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Figure 4. Estimated values of β1 and β2 for maximum likelihood and Firth maximum 
likelihood logistic regression models fitted using one binary predictor (β1) and one 
continuous predictor (β2) with either 5% sparseness or 10% sparseness; actual 
population values of β1 and β2 are 0.50 
 

 
 

 
 

Figure 5. Estimated values of absolute bias of ˆ
1
β  for maximum likelihood and Firth 

maximum likelihood logistic regression models fitted using one binary predictor with 
either 5% sparseness or 10% sparseness 
 

  

𝛽 1 𝛽 1 

 
 

 

𝛽 2 𝛽 2 
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Figure 6. Estimated values of absolute bias of ˆ
1
β  and ˆ

2
β  for maximum likelihood and 

Firth maximum likelihood logistic regression models fitted using two binary predictors with 
either 5% sparseness or 10% sparseness 
 

 
 

𝛽 1 𝛽 1 
  

 
 

 

𝛽 2 𝛽 2 
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Figure 7. Estimated values of absolute bias of ˆ
1
β  and ˆ

2
β  for maximum likelihood and 

Firth maximum likelihood logistic regression models fitted using one binary predictor ( )ˆ
1
β  

and one continuous predictor ( )ˆ
2
β  with either 5% sparseness or 10% sparseness 

 

 
 

 
 

Figure 8. Estimated values of mean square error (MSE) of ˆ
1
β  for maximum likelihood 

and Firth maximum likelihood logistic regression models fitted using one binary predictor 
with either 5% sparseness or 10% sparseness 
 

𝛽 1 𝛽 1 

 
 

 

𝛽 2 𝛽 2 
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Figure 9. Estimated values of mean square error (MSE) of ˆ
1
β  and ˆ

2
β  for maximum 

likelihood and Firth maximum likelihood logistic regression models fitted using two binary 
predictors with either 5% sparseness or 10% sparseness. 
 

 
 

In the experimental conditions involving one sparse binary predictor and one 

continuous, normally distributed predictor, estimates for the effect of the 

continuous predictor were more biased using MLF estimation than when using ML 

estimation under the small (n = 100) and medium (n = 200) sample size conditions, 

but the difference was slight (see Figures 4, 7, and 10) and much less than the MLF 

vs ML bias distinction in the estimate of the effect of the binary predictor. 

In all experimental conditions, the level of sparseness had some effect on the 

bias of estimates. With a binary predictor in the model that occurred less frequently 

(5% of cases), the effect of sample size on reducing bias of the ML estimator was 

more immediate than in a data condition where the binary predictor appeared more 

frequently (10% of cases), with the difference in bias between the two estimation 

methods decreasing more rapidly as the sample size increased. 
 
 

𝛽 1 𝛽 1 

  
𝛽 2 𝛽 2 
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Figure 10. Estimated values of mean square error (MSE) of ˆ
1
β  and ˆ

2
β  for maximum 

likelihood and Firth maximum likelihood logistic regression models fitted using one binary 

predictor ( )ˆ
1
β  and one continuous predictor ( )ˆ

2
β  with either 5% sparseness or 10% 

sparseness 
 

 

When coverage probabilities for the 95% confidence intervals of the 

regression slopes were examined, the results (Figures 11-13) showed that, for both 

ML and MLF estimation, smaller sample sizes resulted in coverage probabilities that 

were larger than the expected 95%. That is, in these situations, the standard errors 

of the regression coefficients appear to have been overestimated. Additionally, in 

each experimental condition, coverage probabilities using MLF estimation were 

slightly higher than the coverage probabilities that resulted using ML estimation. 
 
 

𝛽 1 𝛽 1 

  
𝛽 2 𝛽 2 
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Figure 11. Estimated values of mean coverage probability (CP) for 95% confidence 
intervals for β1 for maximum likelihood and Firth maximum likelihood logistic regression 
models fitted using one binary predictor with either 5% sparseness or 10% sparseness 
 

 
 

 
 
Figure 12. Estimated values of mean coverage probability (CP) for 95% confidence 
intervals for β1 and β2 for maximum likelihood and Firth maximum likelihood logistic 
regression models fitted using two binary predictors with either 5% sparseness or 10% 
sparseness 
 

 
 

𝛽 1 𝛽 1 

   
𝛽 2 𝛽 2 
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Figure 13. Estimated values of mean coverage probability (CP) for 95% confidence 
intervals for β1 and β2 for maximum likelihood and Firth maximum likelihood logistic 
regression models fitted using one binary predictor (β1) and one continuous predictor (β2) 
with either 5% sparseness or 10% sparseness 
 

Conclusion 

The use of binary logistic regression is ubiquitous in education and the social 

sciences. As it occurs, researchers carrying out cross-sectional, observational 

studies have little, if any control, over the distributional characteristics of the data 

they collect. As such, sparse data situations can arise in many instances. The present 

research seeks to provide insight into how such data sparseness among predictor 

variables might affect inferences made from logistic regression, as well as to 

evaluate an estimation technique that might address potential biases resulting from 

these data situations. The results from the simulations carried out in this study 

suggest that, when a sparse binary predictor is used with a relatively small sample 

size (n = 100), large bias occurs in the typically-employed ML estimates of slope 

parameters. However, in these situations the MLF estimator of these parameters 

markedly reduces bias. Reductions in bias, although on a smaller scale, are evident 

when using MLF estimation with somewhat larger sample sizes (n = 200). The 

𝛽 1 𝛽 1 

  
𝛽 2 𝛽 2 
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advantages of MLF estimation become minimal with large sample sizes (n = 500). 

Thus, it appears that bias in these conditions is affected by the absolute frequency 

of the sparse event(s), more so than by the relative frequency. A corresponding 

recommendation to researchers who encounter sparseness of binary predictors is to 

use MLF estimation rather than ML estimation with sample sizes less than or equal 

to 200. 

Interestingly, when a normally-distributed, continuous predictor was included 

in a model together with a sparse binary predictor, bias in the effect of the 

continuous predictor also was apparent when using ML estimation with small 

sample sizes, and this bias was reduced slightly when using the MLF estimator. Thus, 

it appears that the biasing effects of sparse binary predictors may extend to the 

effects of other non-binary predictors in the model. Future research might consider 

examining situations with polytomous categorical predictors with sparseness in one 

or more categories, how this affects the estimated parameters, and how potential 

bias might be addressed. Perhaps similar approaches also might be proposed for 

continuous predictors that are badly skewed (e.g., zero-inflated) and are producing 

problems in estimation. 

Although the effects of sparseness on parameter estimates are well-known 

when sparseness of the outcome variables is considered, very little research has 

considered the effects of sparseness among predictor variables. The present 

research begins this inquiry. Additional research might explore a wider variety of 

data conditions, including other sparseness levels, more varied sample sizes, and 

larger numbers of predictors. Another avenue of research could explore the effects 

of sparse predictors on other regression models such as ordinal regression. Lipsitz 

et al. (2013), for example, propose a bias-correction procedure that can be 

employed in proportional odds logistic regression for ordinal outcomes. Perhaps an 

estimation technique such as this might address potential biases introduced by 

sparse predictors. 

Future research also might examine how joint sparseness in both the 

predictors and the outcome may impact inferences, and how techniques such as the 

Firth procedure might be used to address these situations. Additionally, at a 

practical level, it is recommended that researchers employing logistic regression 

screen their data for sparseness—both in the outcome variable(s) as well as the 

predictors. If sparseness is evident, the Firth procedure may be effective in 

alleviating either source of bias. 
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