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CHAPTER 1:  INTRODUCTION AND MOTIVATION 

1.1  Motivation 

Advancements in mobile robot technology have enabled a surge in unmanned vehicle 

development and deployment in a variety of operational environments. Unmanned aerial 

vehicles (UAV) and unmanned ground vehicles (UGV) have enjoyed considerable technology and 

market growth, from aerial surveillance to robotic floor vacuums to improvised explosive device 

(IED) interrogation. Robots have long been viewed as ideal for dull, dirty, and dangerous work, 

but there are many other potential benefits. In addition to carrying human occupants, manned 

vehicles include human-machine interface (HMI) controls, heating and air conditioning systems, 

seats, restraints, transparent windows, structural reinforcements for safety and increased 

weight capacity, and additional fuel. Without the burden of these requirements, unmanned 

vehicles can be smaller, lighter, and more efficient. Unmanned systems can also operate free 

from the constraints of human physiological limits, like acceleration tolerance, physical 

endurance, and fatigue. 

Although great progress has been achieved, mobile robots still face technological 

impediments to autonomous navigation in cluttered and dynamic environments, and safe 

operation in proximity to humans. Despite these persistent challenges, the increasing 

prevalence of unmanned systems and ongoing research are opening new possibilities for 

multiple robots operating in concert to overcome some of the limitations of independent 

unmanned vehicles. 

A multirobot system is a team of robots operating with some level of coordination, ranging 

from naïve collective behavior to complex collaboration [1-5]. This coordination enables 

multirobot systems to perform a wide variety of distributed, hazardous, and complex tasks that 

are difficult or impossible for independent robots. For example, a team of robots might work 
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together to move an object too massive for one robot alone, or search a large space in far less 

time by simultaneously exploring multiple areas. Research toward multirobot systems includes 

learning and control algorithms [6-8], architectures [9], collaborative localization [10], area 

exploration [11], and heterogeneous robot cooperation [12]. For a review of taxonomy and 

research trends see [1], [3] and [4]. 

 

Figure 1-1:  A heterogeneous robot team can leverage the unique strengths of each platform. 

 

There is considerable interest in multirobot systems for a number of defense, security, and 

space applications [5]. Specific research has focused on space exploration due to the hostile 

conditions and spatial distribution involved, including work toward robotic construction and 

assembly of structures in orbital, lunar, and planetary environments [13-18]. Most of these use 

cases are also applicable to terrestrial settings. See [19] for a survey of literature related to 

space applications. Other common tasks for which multirobot research has focused include 

search and rescue [20-23] (or more generally foraging [24]), disaster response [25], [26], 

surveillance [27], and robotic assembly for manufacturing [28]. All of the above applications also 

have dual-use potential within the defense and security domains. 
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Multiple robots can perform spatially distributed tasks, provide redundancy in hazardous 

environments, or operate as a team of specialized machines to complete complex tasks 

together. Unmanned aerial, ground, surface, and submarine platforms now work beside and 

take the place of humans in extremely dangerous situations on the battlefield, like interrogation 

of suspected road-side bombs and aerial logistics resupply missions in austere environments. 

Robots also perform material handling in commercial warehouses. The advent of military and 

material handling robots has stimulated visions of manned-unmanned teams, with humans and 

intelligent machines completing complex tasks and missions by working together. Operational 

concepts include teams of aerial and ground robots performing autonomous resupply and 

reconnaissance missions in direct support of military personnel in the field [29], and lunar 

multirobot excavation [13]. 

In order to fully realize the benefits of coordinated ground and aerial robots in complex 

environments for various domains [5], [13], [30-35], techniques are needed to help manage the 

complexity of interacting with multiple mobile robots [31], [36], [37]. 

1.2  Research Aim 

The aim of this research is to develop techniques incorporating operator attention as input 

for teleoperation interfaces in order to enable effective and efficient control of multiple mobile 

robots. This aim is motivated by the need to overcome the limitations of human perception and 

cognition affecting the ability of operators to integrate information from multiple sources, 

switch between multiple spatial frames of reference, and divide attention among many sensory 

inputs and command outputs. Robot autonomy is necessary to help the operator manage 

increasing demands as the number of robots scales up; however, more automation does not 

necessarily equate to better performance. 
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1.3  Research Objectives 

This research was divided into three specific objectives. Figure 1-2 provides an overview of 

these objectives. The first objective was to equip a human-operated multirobot test platform 

with the ability to estimate operator attention in real time. Eye gaze tracking provides a means 

of measuring physiological properties related to human cognition. Incorporating this technology 

in the platform enabled the development and evaluation of novel techniques applicable to user 

interface designs for the remote operation of multiple unmanned vehicles. 

 

Figure 1-2:  Research aim and specific objectives. 

 

The second objective was to enable system feedback based on operator attention that can 

be used to mitigate challenges related to how operators use automation in the context of 

multiple unmanned vehicles. Specifically, this research developed and implemented a model of 

robot confidence that transformed attention-related inputs to adaptive robot behaviors. 

The third objective of this research was to evaluate task performance and efficiency in 
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relation to robot confidence and adaptive behaviors. A series of user studies was conducted to 

assess alternative approaches to confidence-based robot behavior. 

1.4  Dissertation Outline 

Chapter 1:  Introduction and Motivation outlines specific opportunities to advance 

multirobot teleoperation by incorporating real-time assessment of operator attention and 

adaptive robot behaviors in response to attention. Chapter 2:  Background provides relevant 

information about multirobot autonomy, augmented reality, measuring teleoperation 

performance, eye gaze tracking, and robot confidence. Chapter 3:  Analysis of Autonomy for 

Multirobot Search Tasks describes a user study conducted to measure multirobot teleoperation 

task performance at three levels of robot autonomy, and opportunities to mitigate overreliance 

on autonomy by assessing and responding to operator attention in real time. Chapter 4:  

Multirobot Platform with Eye Tracking covers the design and functionality of a multirobot test 

platform developed to implement techniques that employ operator attention as system 

feedback and facilitate user studies evaluating these techniques. Chapter 5:  Robot Confidence 

and Task Performance introduces a robot confidence model which was used to adapt robot 

behavior in response to operator attention, and details three user studies conducted to evaluate 

telerobotic task performance and efficiency in relation to a number of adaptive behaviors. 

Chapter 6:  Discussion and Future Work summarizes the specific contributions of this research 

and opportunities for future work incorporating and expanding upon the results. 
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CHAPTER 2:  BACKGROUND 

2.1  Overview 

This chapter provides general background relevant to this research. Section 2.2 highlights 

fundamental concepts related to multirobot autonomy which are relevant to the entirety of this 

work, most specifically Chapter 3. Augmented reality as applied to human-robot interaction 

(HRI), briefly reviewed in Section 2.3, is relevant to Chapter 3 and Chapter 4. The methods of 

measuring manned-unmanned system performance surveyed in Section 2.4 provide context for 

Chapter 4 and Chapter 5. Certain physiological measures also relate to Section 2.5, which 

contains information on eye gaze tracking relevant to Chapter 4 and Chapter 5. Finally, Section 

2.6 provides an overview of concepts related to confidence in the field of robotics, which is 

relevant to the work presented Chapter 5. 

2.2  Multirobot Autonomy 

Certain task requirements, technological limitations, and environmental conditions will 

necessitate human interaction with applied multirobot systems. Specific actions expected to 

require human intervention include approving targets and resolving navigational impasses. In 

addition, manned-unmanned teams will benefit from the unique advantages of human 

cognition, reasoning, ingenuity, and soft skills for the foreseeable future. Ethics and morality in 

particular may ultimately remain an exclusively human function. 

Teleoperation of multiple mobile robots involves information from many sources, multiple 

frames of reference, and competing tasks. Factors affecting single robot control via video-based 

interfaces include restricted field of view, difficulty ascertaining orientations of the environment 

and robot, unnatural and occluded viewpoints, limited depth information, and poor video 

quality [38]. Increasing the number of robots teleoperated multiplies these challenges, with 

each robot having potentially unique and dynamic orientations, camera perspectives, and 
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sensory frames of reference. The demands of multitasking can overload the operator and limit 

the scalability of HRI as the number of robots increases [39-43].  

Span of control, also called fan-out [41], is the maximum number of robots that can be 

simultaneously operated or supervised by a single human [40], [42-44]. Equation 2-1 shows fan-

out as defined by [39], where NT is neglect time and IT is interaction time. Neglect time is the 

expected time duration a robot can be ignored before performance drops below a defined 

threshold. Interaction time is the expected time duration necessary for the operator to interact 

with the robot in order to restore it to maximum performance. 

 Fanout =
NT

IT
+ 1 (2-1) 

 

General approaches to address operator overload due to multi-tasking include redesigning 

tasks and interfaces to reduce demands, training operators to develop automaticity and 

improve attention management, and automating tasks and task management [45]. Specific 

areas of research toward multirobot teleoperation and autonomy include task switching and the 

allocation of operator attention [21], such as methods of identify where an operator should 

focus and using this information to influence the operator’s behavior via visual cues in a 

graphical user interface [46]. Other research includes determining which aspects of a given task 

are most suitable for automation [24], measuring and influencing operator trust in team 

autonomy [27], using intelligent agents to help human operators manage a team of multiple 

robots [20], and augmented reality interfaces to integrate information from multiple sources 

and project it into a view of the real world using a common frame of reference [31], [47], [48]. 

2.3  Augmented Reality for Human-Robot Interfaces 

Augmented reality (AR) is the registration and visual integration of computer-generated 

graphics and real-world environments [49], [50]. Techniques can be categorized as optical 
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blending, such as head-mounted displays, and video blending with graphics overlaid on video 

frames displayed on a screen. Telerobotic systems very often rely on real-time video from the 

perspective of, or external to the robot. One challenge of teleoperation is limited visuospatial 

perspective. AR techniques such as color-coded orientation cues that visually map controller 

input axes to end effector axes can improve telemanipulator navigation, with significant 

reductions in trajectory distance, deviations from the ideal path, and navigation error [51]. 

AR can also reduce visual search and mental integration demands. During traditional 

neuronavigation, a surgeon must mentally transform two-dimensional medical imaging data into 

three-dimensional structures, and project this information on her or his view of the patient. 

Systems for augmented neuronavigation can perform transformations by computer and display 

composite video with models of structures of interest projected on the surgical site, resulting in 

significantly lower task time and fewer errors [52]. 

Human control of multiple mobile robots requires considerable divided attention, the 

integration of information from many sources, and switching between multiple frames of 

reference. Projecting sensed data onto the real-world scene, at the point of observation or at 

the point being observed, may help alleviate the cognitive burden of mentally integrating 

information from various sources. Demonstrated techniques include overlaying sensed data 

onto individual robots via wearable head-up display [47] and superimposing arrows on 20 

robots to create a gradient toward a target location [48]. 

2.4  Manned-Unmanned Systems Performance 

Many metrics have been proposed for evaluating the performance of human-robot teams. 

See [53] for a review emphasizing task-oriented mobile robots, and [54] focusing on multiple 

remotely operated robots. This section reviews a few areas of performance relevant to the 

research presented in subsequent chapters. 
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2.4.1  Task Performance 

Quantitative performance metrics include task completion time, percentage of tasks 

successfully completed, and count of errors. Total mission or task time can be decomposed into 

various types of activities (e.g., navigation, target identification, failure condition). The duration 

of specific activities or the allocation of time can be evaluated and compared [37]. Time 

allocations are expressed in units of time, percentage of task time, or a ratio (e.g., ratio of robot 

time to operator time) [53]. 

2.4.2  Situation Awareness 

Situation awareness (SA) is critical to decision making and human performance in complex 

and dynamic environments. SA is related to attention, but the two are distinct constructs. SA in 

dynamic decision making can be described as the perception of elements in the environment, 

comprehension of the current situation, and projection of future status [55]. Situation 

assessment is the process of achieving, acquiring, or maintaining SA. 

The Situation Awareness Global Assessment Technique (SAGAT) [56], [57] was developed to 

assess operator SA across a spectrum of requirements. The principal prerequisite is a detailed 

analysis of SA requirements for which a battery of corresponding queries is created. SAGAT is 

administered by interrupting simulation trials at randomly timed and unpredictable freeze 

points, and presenting queries randomly to the subject. 

Physiological measurement techniques such as electroencephalography (EEG) can be less 

intrusive than tools like SAGAT, but most cannot determine memory retention, level of 

comprehension, and other cognitive processes important to SA [57]. Eye tracking can provide 

indications that information has visual focus, but does not capture elements of SA related to 

peripheral vision and cognition. 

2.4.3  Operator Workload 

Workload can be thought of as the cost to achieve task requirements or a certain level of 
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performance. It is influenced by a variety of factors linked to task conditions, human perception, 

and cognition. These complexities make workload difficult to define and measure. Proposed 

measures include a number of subjective assessment tools that rely on user responses to 

workload related queries, such as the Air Traffic Workload Input Technique (ATWIT) [58]. See 

[59] for a comparison of three such instrument: NASA Task Load Index (TLX), Subjective 

Workload Assessment Technique (SWAT), and Workload Profile (WP) instruments. 

NASA TLX [60-62] is a commonly used multidimensional subjective workload assessment 

prevalent in human-machine systems research. As seen in Equation 2-2, TLX computes a global 

score of perceived workload 𝑤TLX as the weighted sum of user ratings for six factors, generically 

𝑠𝑓, and corresponding weights 𝑤𝑓. The factors—mental demand (MD), physical demand (PD), 

temporal demand (TD), performance (PF), effort (EF), and frustration (FR)—reflect the many 

aspects of workload. 

 𝑤TLX =
∑ (𝑤𝑓𝑠𝑓)𝑓

∑ (𝑤𝑓)𝑓

, where 𝑓 ∈ {MD, PD, TD, PF, EF, FL} (2-2) 

 

There are several objective physiological responses to workload [63], including heart period, 

heart rate, blood pressure, respiratory cycle time, blink interval, blink duration, and pupil 

dilation. Applied metrics include blood pressure, heart rate, electroencephalography (EEG) 

response, eye blink rate via electrooculography (EOG), and task-evoked pupillary response (see 

[64] for a review). Physiological methods are capable of providing dynamic, objective measures 

of workload, but are generally more intrusive and cumbersome than subjective assessment 

techniques. 

2.5  Eye Tracking for Human-Robot Interaction 

2.5.1  Introduction 

Eye tracking technology has its origin in nineteenth-century studies of basic eye movements. 
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Applied research beginning in the mid twentieth century investigated the role of eye 

movements and visual attention in reading, scene perception, visual search, and other 

information processing (see [65] for past and contemporary applications). Non-invasive 

techniques like video-based eye tracking (head-mounted or remote) [66], [67], and 

improvements in automatic fixation and saccade detection [68], have inspired applications for 

human-computer interaction (HCI) (see [69] for a review). 

A fixation is a relatively stable visual gaze at an area of interest. A saccade is a rapid ballistic 

movement to a new area of interest. The detection of fixations and saccades from raw eye 

movement data was a principal focus of early work toward eye tracking for HCI [70-75]. See [68] 

for a review of fixation identification techniques. Eye tracking devices are capable of accurately 

measuring the point in space at which a human is looking, but the resulting raw gaze points are 

inherently noisy. Algorithms to identify fixations and saccades must account for jitter and other 

non-saccadic eye movements. 

Several algorithms have been developed for identifying fixations and saccades, as compared 

by [68]. Of these, the velocity threshold (VT) method is the simplest to implement and requires 

the lowest computational overhead, but is least robust. This method exploits the relatively low 

velocity of fixational movements (<100°/second) and high velocity of saccadic movements 

(>300°/second) to filter gaze points. The algorithm first calculates point-to-point velocity. A 

point below a certain velocity threshold is labeled a fixation point. Otherwise, the point is 

labeled a saccade point. The VT algorithm then collapses consecutive fixation points into a 

fixation group and removes saccade points. The centroid of the fixation group is computed to 

represent the fixation as 〈𝑥, 𝑦, 𝑡, 𝑑〉, with coordinates 𝑥 and 𝑦, at time 𝑡 of the first point, and 

duration 𝑑 from the first point to last point in the group. 

The dispersion threshold (DT) method provides more accurate and robust fixation 
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identification as compared to VT, but with an increase in overhead. DT identifies a fixation as a 

group of consecutive points within a particular dispersion, or maximum separation. A minimum 

duration threshold of 100-200 milliseconds is typical, with a dispersion threshold set to include 

0.5° to 1° of visual angle based on distance from the eye to the screen. The algorithm uses a 

moving window that spans consecutive points, initialized to cover points within the duration 

threshold. The dispersion 𝐷 of the points in the window is determined by summing the range of 

𝑥 and 𝑦 values as in Equation 2-3: 

 𝐷 = [max(𝑥) − min (𝑥)] + [max(𝑦) − min (𝑦)] (2-3) 

 

For an initialized window, if 𝐷 is greater than the dispersion threshold the first point is 

removed and the window is advanced by one point. Otherwise, the DT algorithm adds points to 

the fixation group until 𝐷 exceeds the threshold. Upon exceeding the dispersion threshold, a 

fixation is noted and the points within the window are removed. Like VT, a fixation is defined at 

the centroid of the points. 

Considerable research has been conducted toward the application of eye tracking for HCI 

[65], [69], including analytical applications to derive indicators of cognitive processes and 

interactive applications to use eye tracking as an input device. Improvements in eye tracking 

technology and the recent availability of low-cost systems present new opportunities to improve 

measurements of interface performance and develop novel interface techniques. 

2.5.2  Analytical Eye Tracking 

The human eye is a unique window into the processes of perception and cognition. 

Researchers have used eye tracking to study reading [76], [77] and other information processing 

tasks [78]. There is ongoing interest in analyzing eye movement data to measure attention, 

situation awareness, workload, and fatigue. 
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2.5.2.1 Attention 

HCI research has long sought to exploit eye gaze as a proxy for attention [79-81]. [82] 

modeled dynamic operator overload based on the operator’s attention to a critical situation 

associated with impending failure. The response time before initial fixation represented delayed 

attention. The number of fixations on an object represented allocation of attention. 

Fixation has been applied as a measure of attention allocation for an online predictive 

model of operator overload during supervisory control of multiple UAVs within a simulation 

environment [83]. A logistic regression model, developed to predict vehicle damage when an 

operator failed to correct a collision course, was applied to generate real-time alerts. The model 

was a function of the delay prior to allocating visual attention to the vehicle, how much 

attention was diverted away from the vehicle once attended, and how much time remained 

before the collision will occur. 

2.5.2.2 Situation Awareness 

Eye gaze fixations have also been used to measure SA. [84] measured fixations to examine 

SA reacquisition after brief task-related breaks during supervisory control of multiple simulated 

UAVs. Fixations were categorized as either a re-fixation on an object that had been previously 

fixated, or a novel fixation on an object not previously fixated. Task conditions requiring SA 

reacquisition were associated with faster fixations on more objects and more re-fixations. SA 

preservation was associated with slower fixations on fewer objects and more novel fixations. 

[85] developed a hazard prediction model with three fixation-based predictors of SA. A 

logistic regression was calculated from data collected during simulations with five semi-

autonomous, homogeneous UAVs. The model predicted UAV damage from hazard events the 

operator failed to prevent, presumably the result of insufficient situation awareness. 
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2.5.2.3 Workload 

Pupil dilation is a reliable and sensitive indicator of mental processing load [64], [86]. A task-

evoked pupillary response to subtask workload during HCI has been observed, although average 

response might not accurately reflect peak periods of workload throughout a task [87]. Video-

based techniques for measuring task-evoked response have been demonstrated using a remote 

eye tracker [88], which is less invasive than head-mounted systems. Video pupillometry is non-

intrusive, but may be impractical for applications unless all light sources are well controlled. The 

pupillary light reflex is evoked by changes in ambient lighting conditions and the brightness of 

objects within view (e.g., graphics displayed on a screen). 

Blinks may also be an indicator of cognitive workload. [63] observed increased blink interval 

and decreased blink duration associated with higher visual load, and decreased blink interval 

associated with higher memory loads. Blink duration did not appear affected by memory load. 

Techniques using eye-gaze to assess workload are difficult to apply in real-world 

environments where ambient lighting and other factors affecting human vision are not highly 

controlled. [89] evaluated workload during simulated air traffic control. Workload was first 

assessed using ATWIT [58] and correlated with aircraft density in the simulation. Eye movement 

was recorded with between 2 to 9 aircraft, varied to manipulate workload. Shorter blink 

durations, decreased saccade distance, and increase pupil diameter were observed as the 

number of aircraft increased. These results provide evidence that eye gaze can be applied to 

assess workload and other measures of operator perception and cognition in real-world 

applications. 

2.5.2.4 Fatigue 

Eye gaze has been researched for measuring operator fatigue. [90] varied time-on-task 

(TOT) and task complexity (TC) to manipulate mental fatigue during controlled visual search. The 
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peak velocity-magnitude slopes of saccades and microsaccades decreased, and mean fixational 

drift velocity increased, with increased TOT. The results indicate saccade and microsaccade 

dynamics, and drift velocity are all affected by mental fatigue during prolonged visual search. 

However, fixational and saccadic eye movements were not significantly affected by TC. 

2.5.3  Interactive Eye Tracking 

Interactive eye tracking can be used for hands-free user input for the disabled [91], 

predicting a vehicle driver’s intent [92-94], gaze interaction for automobiles [95], and automatic 

camera viewpoint for robotic and laparoscopic surgery [96]. Eye gaze pointing and camera 

control are two areas of interest that have potential for a broad range of HCI. 

2.5.3.1 Pointing 

Gaze-directed pointing is the archetype of interactive eye tracking, and a core motivation for 

fundamental work like fixation and saccade detection [68]. Spatial input is a highly intuitive use 

of eye tracking for interactive systems, and considerable research has been conducted to pursue 

gaze-based pointing [70], [71], [79], [80], [91] (see [69] and [65] for reviews). Overt attention 

directed at a user interface element is a strong indicator of the user’s intent to interact with that 

element. A simple implementation of a gaze pointer might allow point-and-click operations to 

be performed by just looking at object. This approach facilitates very fast user input, but it does 

not distinguish passive viewing from active input. Thus, the challenge is determining a suitable 

method of selecting objects and actions. 

Research has assessed the application of eye tracking to windows, icons, menus, and pointer 

(WIMP) style interactions, and a variety of selection techniques to address specific use cases 

[71]. Specific interface object selection methods include dwell time, fixation of a separate large 

on-screen button, and a hardware button [79]. Eye gaze with 150 millisecond dwell time 

selection has been observed to be faster than a computer mouse [81]. Other demonstrated 
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techniques include a zoom method of character selection for hands-free gaze-based typing [97]. 

The suitability of techniques depends on the type of interaction, including the level of effort 

necessary to recover from unintentional commands: 

• Immediate [71] – for focus, highlight, and non-intrusive information display 

• Dwell time [71], [81] – for low to moderate speed actions, and commands that are 

relatively easy to undo 

• Zoom [97]  – for letters, numbers, words, or icons in a familiar layout 

• Hardware key or button [79] – for high speed or repetitive actions 

These techniques can be combined with a dialog box or other command confirmation 

method if an unintentional command risks user frustration or potentially unrecoverable action 

(e.g., deleting data). 

2.5.3.2 Camera Control 

Gaze-based remote camera directional and zoom control is another intuitive application of 

eye tracking. A user may wish to change camera perspective or zoom level in response to 

observed actions or objects in the scene. Overt attention, as detected by eye tracking, might 

indicate such intent. 

Techniques have been developed to teleoperate a robot using eye gaze, including an 

interface to both drive a robot and change the view of an on-board camera [98], [99]. The user 

interface featured graphical overlays for control elements. Gaze input commands were 

activated by either dwell-time or a foot clutch, enabling hands-free teleoperation. 

Techniques have been developed for gaze-based automatic camera pan and tilt control. 

These include a simple proportional control algorithm to generate pan and tilt velocity 

commands for continuously repositioning the camera viewpoint to bring the user’s point of gaze 

to the center of the screen [100]. Eye gaze has also been applied to controlling multiple pan-tilt-
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zoom (PTZ) cameras. [101] used eye gaze to control nine PTZ cameras. Video from the cameras 

was shown in separate preview windows, all on one screen. A fixated window gained focus and 

was enlarged after a dwell time 3 seconds. Camera pan and tilt were controlled via fixations 

near the edge of the selected window. The window could be deselected by looking outside it for 

2 seconds, after which the window decreased back to the preview size. 

Figure 2-1 depicts a systems developed to automatically center laparoscopic camera 

viewpoint at the user’s point of gaze [102]. Like [100], the system responded only to eye 

movement and did not adapt to the task being performed. Intent prediction [72] and more 

sophisticated interaction schemes [97] using similar eye movement data hint at the possibility of 

more robust gaze-based automated camera systems. 

 

Figure 2-1:  Diagram depicting a robotic camera arm used to center a viewpoint based on eye 
gaze tracking [102]. 

If the user fixated a point in (a) at the top of the image, the center of the viewpoint shifted to 
(b).  If a point is fixated at the bottom, the center of the viewpoint shifted to (c). 

 

[72] developed an offline method for predicting a user’s intended camera zoom level (i.e., 

magnification and reduction), and reported an accuracy of 65% predicting zooming in, zooming 

out, or no zoom change for simple shapes in a controlled interface environment. The algorithm 

relied on previously recorded eye movement data and was not capable of determining zoom 

intent in real time. Despite these limitations, advances in automatic identification of fixations 
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and saccades [68] might enable adaptions for dynamic interactive applications. 

[103] developed a zooming windowing technique designed specifically for eye-based 

control. The eye-based typing interface by [97] used zoom and planar transformation of 

characters. Although these examples were not targeted toward video camera viewpoint control, 

each demonstrates zoom techniques that may be applicable. 

The above examples of gaze-based camera directional and zoom control demonstrate how 

viewpoint can be automatically adjusted in response to where in the image the user is looking. 

The control algorithms are simple and do not account for how task conditions and scene 

dynamics may influence optimal viewpoint. Nevertheless, interactive eye tracking is a feasible 

and intuitive approach to camera control. 

2.6  Confidence Relevant to Robotics 

Concepts related to confidence are often linked to human trust in autonomy and allocation 

of control, or how a human operator uses available levels of autonomy. A distinction can be 

drawn between operator confidence and robot confidence. Operator confidence typically refers 

to the self-assurance of a human in their own ability to perform a task, or trust in a robot’s 

ability to perform autonomously. Research includes the impact of transparency and reliability on 

operator confidence [104]. Models estimating human self-confidence have been developed for 

purposes such as automatically choosing between manual and autonomous control [105]. 

Research related to robot confidence is typically aimed at altering human trust in autonomy 

or allocating control authority. A common objective is convincing the operator to shift the 

allocation of control toward autonomy or manual operation as appropriate to optimize 

performance. For example, a robot may provide visual feedback indicating its self-confidence in 

order to influence the operator’s trust [106]. Alternatively, a model of robot confidence might 

be used to directly distribute authority, such as setting shared-controller gains to amplify or 
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attenuate inputs from a teleoperator and ultrasonic sensors [107]. 

Other research includes a robot expressing its certainty in performing policy learned from a 

human teacher [108-110], and modeling a robot’s confidence in a human co-worker [111] or its 

ability to predict human actions in a shared environment [112]. A similar concept is algorithm 

self-confidence, applied for example to a visual classification algorithm [113]. 
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CHAPTER 3:  ANALYSIS OF AUTONOMY FOR MULTIROBOT SEARCH TASKS 

3.1  Introduction 

This chapter describes a user study (Study 1: Levels of Autonomy) conducted to measure 

multirobot teleoperation task performance at three levels of robot autonomy, and key findings 

of this study which raised new questions and led to the development of a multirobot test 

platform to examine these and other questions toward the overall research aim. The platform 

detailed in Chapter 4 addressed lessons learned from the study and incorporated robot 

confidence derived from operator attention to facilitate subsequent studies presented in 

Chapter 5. 

3.2  Motivation 

Automation is necessary for a human operator to effectively control multiple robots. 

Research has often focused on how many robots can be operated [42] and methods to do so 

efficiency [39], [43]. The user study discussed in this chapter was conducted to evaluate task 

performance at three levels of robot autonomy using an initial test platform with four small 

wheeled robots [31], [36]. The development and design details of this platform were published 

by [36]. The study measured the time it took participants to complete certain tasks at three 

levels of autonomy. With a fixed number of robots, successively higher levels of robot autonomy 

were expected to improve performance. However, the study yielded a surprising result which 

led to further research and additional user studies. 

3.3  Methods 

3.3.1  Test Platform Overview 

Figure 3-1 shows the test platform and the control interface window displayed by the test 

platform software. A camera was positioned above an approximately 7.43 m2 (80 ft2) test area, 

3.048 m (10 ft) wide by 2.438 m (8 ft) tall, with the optical axis orthogonal to the group plane. 
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The camera delivered 1280×1024 px video at 10 fps to the control interface. The control 

interface software application used the ARToolKit augment reality (AR) library [114-117] to 

detect a unique fiducial marker attached to each robot and compute homographies relating 

robot poses to pixel coordinates in the application window. Precise localization of each robot 

enabled the control interface to plan and valid navigation paths, and project AR graphics into 

the real scene at or near current robot locations. The operator inputted teleoperation 

commands using a computer mouse or joystick, and reported task completion using a computer 

keyboard. 

 

Figure 3-1:  The Levels of Autonomy test platform and augmented-reality (AR) interface. 
Left: An overhead camera supplied video of the test environment. The control interface 

processed and displayed video frames with overlay graphics. The operator used the resulting AR 
view to control and receive feedback from multiple robots. Right: The control interface window 

drew graphics for robot status, navigation paths, and sensor readings. The interface also 
overlaid graphics related to task completion, such as a red target perimeter line. 

 

3.3.2  Robots and Test Environment 

Figure 3-2 shows the robots in the test environment and a diagram of the platform as seen 

from above, matching the perspective shown by the control interface application. The robots 

https://www.youtube.com/watch?v=x-m6f4qk1fk
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were equiped with one drive wheel on each side and a free caster at the rear to enable 

differential steering. They communicated with the control interface via Bluetooth to receive 

motion commands and send sensor data. A forward facing sensor detected the strength and 

direction of infrared signals within a 240 degree arc parallel to the ground plane. The robots 

sent sensor data to the control interface, which rendered color-coded arrows near the 

respective robot to indicate the sensed infrared signal strength and direction. A dot graphic was 

displayed if no signal was detect. These graphics persisted in the scene at the point of 

measurement until the user inputed a new navigation command to the robot. 

 

Figure 3-2:  Robots and test environment used for the Levels of Autonomy study. 
Left: For each trial, an infrared beacon was randomly hidden in one of the numbered 

target boxes. 16 solid obstacles blocked the path and sensor line-of-sight of the robots. 
Right: This diagram illustrates the red perimeter drawn on the screen around located target. 

 

The test environment contained 16 solid obstacles and 8 numbered target boxes. The robots 

had to be navigated around the obstacles, which blocked their path and sensor line-of-sight. For 

each study trial, an infrared beacon was placed in one of the boxes to serve as a hidden target. 

Participants were instructed to locate which box contained the hidden target. Upon the 

participant reporting the target  location, the control interface drew a red rectangular perimeter 

line around box (see the illustration on the right in Figure 3-2). The participant then moved all 



23 

 

four robots to within the perimeter in order to complete the trial. 

3.3.3  Levels of Autonomy 

The robots operated at one of three autonomy levels listed in Table 3-1. The highest level, 

automatic path generation (path), used the A* algorithm [118] to plan a collision-free path 

around obstacles to the inputted goal point. The robot then automatically followed the planned 

path until reaching the goal. The intent of path autonomy, along with the AR graphics displayed 

on the screen, was to allow the operator to focus on higher-level tasks. 

The middle autonomy level, automatic vertex generation (vertex), planned a single-vertex 

path to the inputted goal, rejecting goals that resulted in obstacle collisions. Similar to path 

autonomy, the robot automatically followed the single-vertex path until reaching the goal. In 

essence, vertex autonomy relied on the operator to plan the overall path, and automatically 

executed only one path waypoint at time. 

The lowest level of autonomy provided no automation (none). Instead the operator 

manually controlled each robot one-at-a-time using a joystick. 

Table 3-1:  Levels of Autonomy 

Level Input device Operator input Automation 

path mouse goal node 
coordinates 

generate and execute multi-
vertex path around obstacles 

vertex mouse goal node 
coordinates 

generate and execute single-
vertex path to goal; reject 
goals resulting in collisions 

none joystick forward, reverse, 
pivot clockwise or 
counterclockwise 

none; robots manually 
controlled by operator 

Levels listed highest-to-lowest autonomy  

 

3.3.4  Procedure 

Study participants used the control interface to search for an infrared beacon hidden 

randomly inside one of eight numbered target boxes. Participants were instructed to determine 
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which target box contained the beacon, report the box number by pressing the corresponding 

key on the keyboard, and navigate all four robots to within the red perimeter line drawn on the 

screen around the target. Each participant completed three practice trials, one for each level of 

autonomy (path, vertex, and none; see Table 3-1), to familiarize with the controls and search 

task. The participant then completed nine study trials, three at each autonomy level. The order 

of the levels was randomized. 

3.4  Results 

Eighteen individuals from the student and faculty bodies of Wayne State University 

volunteered to participate in the study. This and all subsequent studies were conducted in 

accordance with the applicable Human Investigation Committee (HIC) approval found in 

Appendix B. Each participant completed three trials, one per level of autonomy, all within the 

same session. The dependent variables were the search time to locate the target and the 

mission time to converge on the target (i.e., bring all four robots within the target perimeter). 

Figure 3-3 shows the apparent relationship observed between level of autonomy and task 

performance. As expected, enabling some degree of autonomy appears to have resulted in 

better average performance than no autonomy. Without automatic path following participants 

were limited to teleoperating one robot at a time, whereas vertex and path autonomy enabled 

simultaneous search with multiple robots. The joystick input method required participants to 

mentally map between the input device and robot orientations, and reorient when switching 

robots. These orientation costs were not imposed by the vertex and path levels of autonomy, 

which automatically oriented robots toward each path node. 

It is no surprise that equipping some level of robot autonomy is likely to improve 

performance; however, the comparison between vertex and path levels of autonomy was more 

interesting. Figure 3-3 illustrates the incremental increase in autonomy from vertex to path 
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appears related to a decrease in performance (i.e., higher search and mission times). Video of 

the control interface window captured during each study trial was examined post hoc to identify 

factors which may have been contributed to this counterintuitive result. Fiducial marker tracking 

appeared reliable and sufficiently accurate to localize and track the robots. Most participants 

successfully employed multiple robots to simultaneously search different areas or interrogate an 

area from multiple approaching angles. On the other hand, the videos also provided evidence of 

potential influences by factors related to the test platform and participants’ possible 

overreliance on automation, the latter of which may help explain the unexpected decrease in 

performance. 

          

Figure 3-3:  Search time and mission time by levels of autonomy (lower time is better). 
Unexpectedly, the highest level of autonomy (path) did not appear associated 

with best average task performance (i.e., lowest search time and mission times). 

 

3.5  Discussion 

3.5.1  Overreliance on Automation 

The control interface videos revealed a pattern of participants generally seeking to exploit 

the full potential of the available automation. For the trials with full path autonomy, that often 

meant sending robots to the far corners or edges of the search space, a tactic not possible with 

vertex autonomy because the placement of obstacles prevented direct paths from the center of 
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the test environment to the outside edges. This observation is interesting because it suggests 

the level of autonomy influenced how participants conducted a search, and may indicate a 

tendency of overreliance on automation. 

There were two task elements: (1) locate the hidden target, and (2) converge on the target’s 

location with all four robots. The hidden target was positioned approximately two-thirds the 

distance from the center of the search space to the outside edge. A frequently observed search 

strategy was to send one robot to each of the four corners or outside edges of the arena. This 

maximum dispersion strategy could be implemented with a single command per robot when 

path autonomy was enabled. One or two of the robots often began sensing the target prior to 

reaching its goal. By this time, the other two to three robots traveled an approximately equal 

distance in the wrong direction. The best course of action was then to redirect each errant robot 

with a new goal near the target. However, participants often attended first to the robot(s) 

nearest the target or using the keyboard to report the target location. In these cases, the robots 

headed in the wrong direction continued moving farther away, sometimes reaching goals as far 

from the target as physically possible. 

Although participants could have employed a maximum dispersion strategy with any level of 

autonomy, increasing levels of autonomy enabled robots to travel farther before reaching their 

goal point and stopping until the operator inputted another goal. Vertex autonomy required 

more frequent operator interaction, which provided opportunities to correct the course of 

errant robots sooner. Thus, a maximum dispersion strategy may have negatively affected 

performance during path autonomy trials more than vertex autonomy trials, one possible 

explanation for the unexpected average performance decrease observed in Figure 3-3 above. 

3.5.2  Potential Test Platform Factors 

The control interface videos provide some evidence of factors that may have influenced the 
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unexpected performance decrease observed with path autonomy versus vertex autonomy. 

Table 3-2 contains a list of several possible factors related to the platform design and 

implementation that were observed during the study and in the trial videos. However, none of 

these factors fully explain the lower average performance observed for the path autonomy trials 

versus the vertex autonomy trials. 

Table 3-2:  Potential test platform influences on study results 

Category Factor 

Control Interface Multiple input devices 
Input and video output latency 
Communication latency 

Path Planning Computation time 
Reliability of generated paths 

Robot Platform Communication latency 
On-board processing latency 
Non-holonomic vehicle dynamics 

Test Environment Sensor accuracy and reliability 
Collisions with physical obstacles 

 

Operator input and communication latencies may have contributed to robot over-steer and 

long stopping distances, which sometimes triggered compensation by the path following 

algorithm or the participant. Path planning computation time in some instances exceeded the 

amount of time one might expect a human operator to plan a route of the same complexity. 

Although automatic path planning generally produced collision-free paths, some paths resulted 

in the robot colliding with an obstacle and getting stuck, which necessitated operator 

intervention and caused delays. These collisions may have been due to insufficient clearance 

afforded by the path planning algorithm when approaching an obstacle at certain angles, or 

marginal clearance combined with wheel slip and other navigation inaccuracies. Finally, non-

holonomic vehicle dynamics appeared to have disproportionately affected trials that used 

automatic path following. This was especially noticeable for robots following automatically 
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generated paths. Many navigation challenges seemed related to the 3-wheeled design, with 

differential steering and a trailing free turning wheel, which resulted in the geometric center 

being offset toward the rear with respect to the center of rotation. This afforded the rear 

portion of the robot less clearance when turning, especially during pivot turns (i.e., rotations 

about the yaw axis). 

3.5.3  Operator Attention and Eye Tracking 

Table 3-3 compares the initial test platform used for the Levels of Autonomy study with 

human-robot interface guidelines suggested by [37]. The platform possessed five of six desired 

qualities, only lacking the ability to assist the operator in deciding level of robot autonomy. The 

optimum level of automation for a complex system may vary depending on the attentional and 

workload states of the operator. Thus, it would be beneficial to incorporate the measurement of 

these states. 

Table 3-3:  Human-robot interface guidelines and Levels of Autonomy platform 

Human-Robot Interface Guidelines [37] Platform [31], [36] 

Provide a map of past robot locations Yes 

Provide fused sensor information Yes 

Support multiple robots in a single display Yes 

Minimize the number of windows Yes 

Spatial information about the robot in the environment Yes 

Assist user in deciding level of robot autonomy No 

 

Video of the control interface window captured during the study led to the observation that 

participants may have allocated attention inefficiently, perhaps due to overreliance on 

autonomy to help manage the complexity the operating four robots simultaneously. This 

observation and the desire to help the operator make better use of automation led to the 

following questions: 



29 

 

1) How can operator attention be estimated in real time? 

2) Can estimated real-time attention be used to improve performance? 

Attention is a cognitive function and thus is difficult to measure directly. Methods typically 

rely on behavior as a proxy for attention. This can take the form of a conscious action in 

response to an attended stimulus, such as clicking the “OK” button in a popup window, or an 

unconscious reaction like turning one’s head toward the source of a loud noise. 

As discussed in Chapter 2, eye tracking technology enables physiological measurements 

linked to various aspects of human cognition, including attention [79-83]. The multirobot 

platform described in Chapter 4 applied eye tracking to estimate operator attention in real time, 

and incorporated attention as feedback in an effort to improve search task performance. In 

addition to estimating real-time attention for the user studies in Chapter 5, the captured eye 

gaze data were also recorded at 20 Hz in log files. These data are a rich source for future work. 

3.6  Conclusion 

Automation is necessary for a human operator to effectively control multiple robots; thus, 

research often focuses on how many robots can be operated [42] and methods to do so 

efficiency [39], [43]. This chapter describes Study 1: Levels of Autonomy, a user study which 

measured search task performance with four robots operated at each of three levels of 

autonomy [31], [36]. The intent of the automation and AR graphics employed by the control 

interface was to allow the participant to focus on higher-level tasks. With a fixed number of 

robots, successively higher levels of robot autonomy were expected to improve performance. 

However, the results revealed performance may actually decrease as autonomy increases past 

some threshold. 

Recorded video of the user interface window provided indications that operator 

overreliance on automation and inattention may be related to the unexpected drop in 
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performance. This led to the hypothesis that measuring and incorporating attention as feedback 

can help improve performance. The initial test platform used to conduct the study was not 

designed to measure operator attention, which limited further examination of this hypothesis. 

Instead, the platform detailed in Chapter 4 incorporated eye tracking to advance this research, 

along with additional controls to address several other potential factors which may influence 

user study results. 
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CHAPTER 4:  MULTIROBOT PLATFORM WITH EYE TRACKING 

4.1  Introduction 

This chapter details a multirobot test platform with integrated eye gaze tracking which was 

developed to support (1) the implementation of techniques employing physiological feedback to 

assess and respond to operator attention in real time, and (2) the evaluation of these 

techniques in a controlled setting. The presented platform incorporated a number of 

experimental controls and introduced specific capabilities based on the results of the Levels of 

Autonomy study in Chapter 3. The resulting system integrated physical robots in a combined live 

and virtual environment, along with eye tracking and gaze data processing to assess operator 

attention in real time. 

4.2  Motivation 

Increasing robot autonomy does not necessarily lead to improved task performance, as 

illustrated by the user study results discussed in Chapter 5. These results raised three questions 

in relation to teleoperation of multiple mobile robots: 

1) Are the benefits of autonomy diminished by operator overreliance on automation? 

2) Can operator attention be estimated in real time and used to improve performance? 

3) What can be done to mitigate the potential platform influences identified by the Levels 

of Autonomy study? 

This chapter describes a multirobot platform developed to address these questions and 

support the evaluation of task performance and efficiency pursuant to the aim and objectives of 

this research. 

Figure 4-1 shows an overview of the platform. An overhead camera captured video of four 

tracked robots operated in the test environment. The control interface displayed this video, and 

projected virtual obstacles and targets from its simulation environment as graphical overlays on 
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the video frames. The interface used an eye tracker to determine where the operator looked on 

the display. All of this information was combined with operator input, and the control interface 

issued commands to the robots accordingly via a dedicated wireless network. 

 

Figure 4-1:  Multirobot test platform overview. 
An overhead camera supplied video of four tracked robots in the test environment. The control 
interface rendered virtual objects from the simulation environment on the video and displayed 
the composite view. An eye tracker monitored the operator’s gaze point and eye movements. 

The control interface communicated with the robots on a dedicated wireless network. 

 

Table 4-1 contains the platform features designed to overcome the limitations observed 

with other platforms, and to support the real-time estimation of operator attention and 

workload. The new platform continued to employ physical robots in a controlled laboratory 

environment, but used computer simulation and augment reality to mitigate challenges with 

obstacle collisions and imperfect sensing. Virtualization provided additional benefits such as 

software defined obstacle and target maps that can be determined at runtime and quickly 

edited during the user study design phase. The platform incorporated eye tracking and gaze 

data processing in order to measure physiological properties related to attention and workload. 
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Implications of the simulation environment and the role of physical robots are covered further 

in the Discussion (see section 4.8).  

Table 4-1:  Multirobot platform design features to mitigate observed limitations 

Category Limitations Platform design elements 

Control 
Interface 

Multiple input devices 
Input, video output latency 
Communication latency 

Single common input device 
Multiple threads, processing framerates 
Asynchronous TCP, dedicated network 

Path 
Planning 

Computation time 
Reliability of generated paths 

Replace path planning with operator 
    input of multiple path vertices 

Robot 
Platform 

Communication latency 
On-board processing latency 
Non-holonomic vehicle dynamics 

On-board Wi-Fi 
Single-board computer, Linux OS 
Robust tracked platform, Li-ion power, 
    yaw axis at geometric center 

Test 
Environment 

Sensor accuracy, reliability 
Collisions with physical objects 

Virtual targets and sensors 
Virtual obstacles, robot collision detection 

Perception 
& Cognition 

Unknown operator attention, 
    workload, and intent 

Eye tracking and gaze data processing 

Data 
Analysis 

Limited data to analyze 
    unexpected results 

Log robot state and path at 2 Hz 
Log eye tracking data at 20 Hz 
Automated session script 

 

4.3  Architecture 

Figure 4-2 presents the multirobot platform design architecture. A modular design approach 

was used to support future expansion, substitution, and other configuration changes as needed. 

The major components can be organized into four groups: (1) control interface hardware and 

software, (2) test environment, (3) network, and (4) tracked robot hardware and software. The 

control interface centralized much of the platform functionality, including the graphical user 

interface (GUI) and high-level robot control. The tracked robot design included software 

components for low-level control. 
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Figure 4-2:  Multirobot test platform architecture organized into four groups (dark blue) with 
hardware (green) and software (light blue) components. 

 

4.3.1  Hardware 

The control interface consisted of a general-purpose computer, two displays, keyboard, 

mouse, eye tracker, and chin rest assembly (see Figure 4-3). The operator display was an LCD 

monitor set to 1280×1024 px resolution which showed the control interface software 

application window. The administrator display was a second monitor used by the system 

administrator to launch software, review study instructions, calibrate the eye tracker, and 

monitor platform software execution and results. This display and the keyboard were used 

exclusively by the system administrator. The administrator display was turned away from the 

operator display so as not to distract the operator. The operator used the mouse to input 

commands. An eye tracker was positioned below the operator display. A chin rest assembly was 

constructed to ensure the operator’s face and eyes were within the view window of the eye 

tracker and minimized rotations of the head. See section 4.5.2 for details about the eye tracker 

and chin rest assembly. 
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Figure 4-3:  Multirobot test platform control interface. 
The interface included an administrator display (a), operator display (b), eye tracker (c), chin rest 

assembly (d), keyboard (e), and mouse (f). The administrator display and keyboard were used 
exclusively by the system administrator. The operator used the mouse in input commands. 

 

A Linksys WRT54GL Wireless-G router provided a dedicated closed network for the control 

interface and robots (see the left side of Figure 4-4). The control interface computer and robots 

connected to the network via the router’s IEEE 802.11b/g wireless radio, which was capable of 

data transfer rates up to 54 Mbps. Open source DD-WRT firmware was installed on the router 

and a static IP address was assigned to each connected device. The network was designed to 

accommodate future expansion and was more than adequate to handle the traffic between the 

control interface and the four robots. 

A Logitech C930e Pro video camera was mounted to the ceiling above the test environment 
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using spring tension rods inserted between two reinforced concrete beams (see the right side of 

Figure 4-4). The camera delivered video at 1080p (1920×1080 px) to the control interface 

computer via USB cable. The control interface software processed and displayed the video to 

provide a view of the test environment which was approximately 3.657 m (12 ft) wide by 3.048 

m (10 ft) tall. The specific camera model was selected for its 90-degree field of view, which 

produced video of the relatively large test environment (11 m2) with limited distortion. The 

AprilTag visual fiducial system [119], [120] was used to estimate the location and orientation of 

the robots in the test environment. A fiducial marker on each robot uniquely identified it and 

facilitated full 6-DOF localization. 

 

Figure 4-4:  Multirobot platform network router (left) and overhead camera (right). 
The wireless router provided a closed network. The overhead camera was 

mounted to the ceiling above the test environment using spring tension rods. 

 

4.3.2  Software 

Table 4-2 lists the major control interface software components with a summary of their 

respective purpose and where further details are presented. The primary interface software was 

the Overwatch application (overwatch.exe), with eye tracking functionality supported by the 

Eyelib library (eyelib). The Session Script was a batch script which facilitated user study 
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sessions and implemented experimental controls. These three components were developed as 

part of the presented work. The EyeTribe Server and EyeTribe UI applications provided access to 

the eye tracker device and calibration utilities respectively. Section 4.4.2 covers software 

components not listed in Table 4-2 which were on board the tracked robots. 

Table 4-2:  Multirobot test platform control interface software components 

Software File Purpose Details 

Eyelib eyelib Eye tracking library Section 4.5 

EyeTribe Server EyeTribe.exe Eye tracker device manager Section 4.5 

EyeTribe UI EyeTribeUIWin.exe Eye tracker calibration Section 4.5 

Overwatch overwatch.exe Primary interface application Section 4.6 

Session Script session.bat Facilitate user study sessions Section 5.4 

 

The block diagram in Figure 4-5 presents a high-level view of the control interface software, 

their constituent modules, supporting libraries, and application programming interfaces (APIs). 

The orange circles and lines in the diagram highlight how these components were used together 

as a workflow. Session Script launched EyeTribe UI to facilitate eye tracker alignment and 

calibration, then launched Overwatch to run the primary platform application for each trial. 

Overwatch contained six modules (darker blue within the gray Overwatch box in Figure 4-5). 

The core and robot modules used the Asio library to communicate with the robots. Eyelib 

contained four modules. The tracker module accessed the Eye Tribe API by exchanging TCP 

messages with the EyeTribe Server application. 
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Figure 4-5:  Control interface software and network interfaces. 
Session Script (1) launched the EyeTribe UI application (2) and Overwatch (3). 
Overwatch was launched multiple times during a single session, once per trial. 

 

4.4  Tracked Robots 

The four tracked robots shown in Figure 4-6 were built according to a common platform 

design developed to support this research. This section summarizes the robot hardware and 

software components. See Appendix A for additional design and implementation details. 

 

Figure 4-6:  Tracked robots. 
The chassis provided a stable platform for the onboard controller, motor driver, battery packs, 
and other electronics. A unique fiducial on each robot was used for localization and tracking. 
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4.4.1  Hardware 

A tracked vehicle configuration with differential steering was selected for the presented 

tracked robot due to its maneuverability within the relatively small test environment and 

consistent turning clearances afforded by aligning the yaw axis with the geometric center of the 

platform. In order to reduce hardware variability and simplify maintenance, commercially 

available components were integrated to the maximum extent feasible and drill hole pattern 

templates were used where fabrication was necessary. 

Figure 4-7 provides an overview of the major components. A Dagu Rover 5 tracked chassis 

was used to provide a relatively robust, stable platform with a track and wheelbase of 

approximately 230 mm (9 in). The chassis came equipped with left and right motor assemblies 

with integrated gearboxes, wheels, rubber tracks, and electrical wiring. A Raspberry Pi 2 Model 

B [121] served as the robot controller, with a DRV8835 dual motor driver shield installed on the 

general-purpose input/output (GPIO) header. An Edimax EW-7811Un USB Wi-Fi module 

connected the robot to the test platform network. 

Two mounting plates were fabricated from 2.36 mm (0.093 in) thick polycarbonate sheets to 

integrate the components. Four 3.8 cm (1.5 in) aluminum standoffs were used to attached the 

upper and lower mounting plates to the chassis. The control was mounted between the plates 

on four short nylon standoffs attached to the lower plate. Four 1.9 cm (3/4 in) wide binder clips 

were used to clamp a unique AprilTag fiducial to the top surface of the upper mounting plate. 

Two lithium-ion battery packs provided power to the robot. A 5.1 Ah pack powered the 

controller and other digital electronics. A 6.7 Ah pack supplied power for the motors via a USB 

Micro-B breakout board attached to the lower mounting plate. A single-throw toggle switch was 

installed in the lower plate between the USB breakout board and a 100 mA USB LED lamp 

mounted to the front of the robot. The lamp was inserted into the motor power circuit to 
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prevent the battery pack from shutting down due to low current conditions, and also provided a 

visual indicator of the robot’s orientation. A complete bill of materials with quantities and 

dimensions can be found in Appendix A. 

 

Figure 4-7:  Tracked robot major hardware components. 
The motor driver was installed on the general-purpose input/output (GPIO) header of the 

controller. Not shown: Electrical connectors, cables, toggle switch, polycarbonate mounting 
plates, fasteners, and other mounting hardware. See Appendix A for a complete bill of materials. 

 

Figure 4-8 contains a schematic diagram of the motor driver circuit. The motor driver board 

could optionally supply power to the controller via the GPIO header, but this feature was not 

used. The controller was instead powered by a separate battery pack, which also provided 

power to the H-bridge integrated circuit via the GPIO’s regulated 3.3 V pin. 
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Figure 4-8:  Schematic diagram of the tracked robot motor driver circuit. 

 

4.4.2  Software 

The Raspbian operating system was installed on the controller to support the software 

onboard the robots. Table 4-3 contains a summary of software component. 

Table 4-3:  Tracked robot software 

Software Purpose 

launch-robot-#.sh Shell script to launch robot-client at startup and 
shutdown OS upon exit 

robot-client-#.py Python script for TCP I/O and motor commands 

Pololu_drv8835_rpi Python library for DRV8835 dual motor driver 

WiringPi2-Python Functions for managing IO expanders 

Python Script language interpreter 

WiringPi GPIO access library for the BCM2835 SoC 

‘#’ in script names refers to the robot number (1, 2, 3, or 4) 
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Robot functionality was distributed between the onboard controller and the centralized 

control interface software. Onboard software was minimal because the control interface was 

responsible for motion planning and sent motor speed values to the robot via TCM messages. 

Figure 4-9 illustrates the onboard controller software and interfaces. 

 

 

Figure 4-9:  Tracked robot software components and interfaces. 

 

launch-robot was a shell script which managed software startup and shutdown. robot-

client was a Python script which processed TCP communication from the control interface and 

issued commands to the motor driver via the Pololu_drv8835_rpi library. These scripts 

contained a unique identification number for each robot and were named accordingly. For 

example, launch-robot-1 and robot-client-1 were installed on robot 1. 

A cron task was scheduled on each robot to execute launch-robot each time the controller 

booted (see Figure 4-10). launch-robot simply launched robot-client, waited for it to 

complete, then issued a shutdown command to the operating system (OS). In addition to 
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processing motor commands, robot-client listened for a shutdown command to be issued by 

the control interface. Upon receiving the shutdown command, robot-client stopped 

processing and returned execution back to launch-robot, which then issued a shutdown 

command to the controller OS. Thus, the onboard software ensured the main robot-client 

script always ran when the robot was powered on, and an orderly shutdown occurred before 

the robot was powered down. 

 

Figure 4-10:  Tracked robot software launch script (top) and cron task (bottom). 

 

4.5  Eye Tracking and Data Processing 

4.5.1  Initial Testing 

A webcam-based system was developed to assess the feasibility of integrating eye tracking 

technology in the multirobot test platform. A USB connected visible and near-infrared (VNIR) 

camera was designed and assembled utilizing the camera board from a Creative Live Cam 

Socialize HD webcam. The camera board was modified with a new lens mount to accept M12 

threaded lenses, and placed in a custom housing with a 1/4-20 UNC threaded receptacle for 

mounting. A 25 mm C mount adapter was fabricated in order to install a 720 nm IR passing filter. 

The camera and two 30-LED infrared lamps at 850 nm wavelength were mounted to a rigid 

frame with standard 1/4-20 UNC threaded studs. A ball head was used to enable alignment of 
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the camera for an optimal view of the operator’s eyes. The resulting hardware assembly was 

positioned on a desk below a computer monitor and facing the operator. 

Figure 4-11 shows the assembled hardware and screen captures from initial testing. The ITU 

Gaze Tracker [122], [123] library was used to process video frames from the eye tracker camera. 

The system tracked pupil and corneal reflections of light from the IR lamps, using an 

interpolation-based technique to map eye features to the point of visual gaze. The results 

demonstrated the feasibility of incorporating eye tracking technology in the multirobot 

platform. 

    
 

 

Figure 4-11:  Gaze Tracker software [122], [123] (top) and test eye tracking hardware (bottom). 
Visualization graphics could be optionally enabled in the software to illustrate the image 

processing steps (top left and right). For testing, a near-infrared camera was built and attached 
to a rigid frame with 850 nm wavelength near-infrared lamps to the left and right (bottom). 
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4.5.2  Hardware 

The multirobot test platform used an Eye Tribe Tracker ET1000 (The Eye Tribe Aps) eye 

tracker. The device hardware contained an integrated camera and infrared illumination in a 

compact package 20 × 1.9 × 1.9 cm (7.9 × 0.75 × 0.75 in). Table 4-4 contains technical 

specifications for the ET1000. Placement of the eye tracker near the display was important to 

obtain acceptable calibration results. Keeping the head still with minimal rotations was also 

important during calibration, although the device was less sensitive to head rotation once 

calibrated. A chin rest assembly was constructed to ensure the operator’s face and eyes were 

within the view window of the eye tracker and to minimized rotations of the head. 

Table 4-4:  ET1000 eye tracker technical specifications 

Specification Value 

Sampling rate 30 Hz or 60 Hz 

Accuracy 0.5° – 1° 

Spatial Resolution 0.1° (RMS) 

Latency < 20 ms at 60 Hz 

Calibration 9, 12, or 16 points 

Operating range 45 – 75 cm 

Tracking area 40 × 30 cm at 65 cm distance (30 Hz) 

Screen sizes Up to 24-inch diagonal 

API/SDK C++, C#, and Java included 

Data output Binocular gaze data 

Dimensions (W/H/D) 20 × 1.9 × 1.9 cm (7.9 × 0.75 × 0.75 in) 

Weight 70 g 

Connection USB 3.0 Micro-B SuperSpeed 

 

Figure 4-12 shows the eye tracker and chin rest assembly. The tracker was mounted on a 

ball head attached to a metal bracket below the operator display. The ball head enabled quick 

alignment of the device for an optimal view of the operator’s face and eyes. The eye tracker and 

control interface computer were connected by a USB 3.0 cable with Micro-B SuperSpeed and 

Standard-A plugs respectively. 
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The chin rest assembly featured a plastic chin rest cup designed and 3D-printed in the lab, 

and a forehead rest and support rod constructed from repurposed brass-finish light fixture 

hardware (see the right side of Figure 4-12). A short hollow threaded lamp pipe was inserted 

into a hole at the bottom of the chin rest cup to facilitate mounting. The hole was tapped by 

carefully turning the pipe in order to form threads. A long hollow threaded lamp pipe served as 

the vertically-aligned support rod. The rod was secured to the control interface desk with two 

aluminum brackets and a C-clamp. The chin rest cup was attached to the top of the rod using 

threaded couplings, hex nuts, and washers. 

The forehead rest was adapted by bending a lamp shade harp, painting it flat black for a 

non-reflective matte finish, and attaching a replaceable foam pad to the threaded finial stud. 

The harp was bent such that the foam pad came into contact with the forehead. The forehead 

rest was attached to the support rod with a lamp shade saddle. The saddle was bent to position 

the forehead rest closer to the display than the chin rest cup and support rod.  

 

Figure 4-12:  Eye tracker (left) and chin rest assembly (right). 
Left: The eye tracker (a) was positioned just below the operator display (b). The housing had a 

standard 1/4-20 UNC threaded receptacle (c) which was used to mount the device on a ball 
head (c). Right: The chin rest assembly had forehead (e) and chin (f) rests held up by a threaded 

lamp pipe (g), which was attached to the control interface desk with a C-clamp (h). 
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4.5.3  Software 

The EyeTribe Server console application (EyeTribe) initialized the eye tracker device and 

provided access to device settings, calibration procedure and results, and streaming eye gaze 

data via the Eye Tribe Tracker API. Client applications accessed the API via JavaScript Object 

Notation (JSON) formatted TCP messages exchanged asynchronously with the EyeTribe Server. 

Streaming data included raw and smoothed gaze point coordinates, pupil size, and normalized 

pupil coordinates. These data were available for the left and right eyes, and as composite values 

for both eyes. 

The EyeTribe UI client application (EyeTribeUIWin) facilitated configuration and calibration 

of the eye tracker. Figure 4-13 contains a screenshot of the EyeTribe UI main window. Figure 

4-14 shows how the application was used to align the eye tracker device and execute the 

automated calibration procedure. 

 

Figure 4-13:  EyeTribe UI main window. 
The left panel depicted the viewing window of the eye tracker device. This panel was used to 

physically align the device prior to calibration. The Calibrate button started the automated 
calibration procedure with the number of calibration points specified on the right. 
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Figure 4-14:  EyeTribe UI tracker alignment and calibration. 
The left panel graphic was red if the eye tracker did not detect eyes (top-left) and 

depicted the position of the eyes relative to the device viewing window (top-right). 
The device was physically aligned until the eyes were centered in the panel (bottom-left). 

During the automated calibration procedure, the operator watched as the calibration 
circle shifted and dwelled at each calibration point (bottom-right). 

 

The EyeTribe Server and EyeTribe UI applications were both included in the Eye Tribe 

software development kit (SDK) from the manufacturer of the ET1000 tracker. The Eye Tribe 

SDK also included a reference implementation of the publicly available open API. This reference 

code was not incorporated into the multirobot test platform. Instead, the API was implemented 

along with other features in the Eyelib (eyelib) eye tracking library. 

Eyelib was a C++ library developed as part of the presented work to define API-agnostic gaze 

data structures and related functions; fixation detection algorithms, including dispersion 

threshold and velocity threshold; consistent interfaces for blink, fixation, pupillometry, and 

saccade measurements; and access to screen (i.e., computer display) properties. Figure 4-15 

presents the modular design approach used to encapsulate and expose subsets of functionality 

to client applications. The interfaces were designed to support the integration of alternative eye 
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tracker APIs if needed in the future, without altering the client application. 

The Eyelib source code contained 3,967 lines of code spread across 45 files. The library 

leveraged the Asio library [124] for asynchronous TCP communication and JSON for Modern C++ 

(nlohmann/json) [125] to serialize and deserialize messages in JavaScript Object Notation (JSON) 

format. The tracker module used the Fast Light Toolkit (FLTK) GUI library to optionally display a 

window showing raw and smoothed gaze points on the screen, or perform an automated 

calibration procedure similar to the EyeTribe UI application. The screen module used FLTK to 

obtain information about available displays. 

 

Figure 4-15:  Eyelib eye tracking library software block diagram. 
Eyelib contained four modules, marked in the diagram with circle containing a letter. The 

tracker module provided core functionality, including all access to the Eye Tribe Tracker API. 
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4.6  Overwatch Software Application 

4.6.1  Architecture 

The Overwatch application (overwatch.exe) was the primary software component of the 

multirobot test platform and the graphical user interface (GUI) used to control the robots. It 

received and processed all streaming video from the overhead camera, user input from the 

keyboard and mouse, streaming eye gaze data from the eye tracker, and TCP connection 

requests from the robots. The application displayed processed video frames and computer-

generated graphics on the operator display, and outputted data to log files. Figure 4-16 

highlights some of the graphics rendered in the application window. 

 

Figure 4-16:  The Overwatch application window displayed video with graphical overlays. 
Rendered graphics included robot paths, virtual obstacles and targets, and a countdown timer 

showing how many seconds remained during a user study trial. 
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The application was a multi-threaded program written in C++. The source code contained 

8,906 lines of code spread across 98 files. It was divided into six modules, identified by the 

orange circles in Figure 4-17. These modules logically grouped common functionality and 

programming interfaces. For example, the robot module metaphorically represented the 

properties and behaviors associated with a physical robot operating in the real world. 

  

Figure 4-17:  Overwatch software modules and supporting libraries. 

 

The core module was central hub of the application. It initialized the application, registered 

event handlers, spawned a dedicated fiducial tag detection thread for robot tracking, 

implemented the main program loop, and released resources upon exit. The main loop captured 

and processed video frames, called functions to render graphics, showed the processed frames 

in the window, and processed user input. Common data structures and related functions 

defined by the core module supported eye tracking metrics and eye tracker status, log file 

output, aggregate time duration data, search tasks and target objects, and basic date and time 
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functions. 

The core module also centralized management of robot objects by distributing obstacle and 

target configurations, receiving asynchronous TCP connection requests from the physical robots, 

forwarding keyboard and mouse input, detecting and intervening to avoid robot collisions, and 

layering robot graphics drawn on the screen. Robot management also included the adaptive 

automation algorithm used to assign a confidence value to each robot. Rather than delegating 

this algorithm to the robots, it was implemented centrally in order to support future work 

involving mutual confidence shared by two or more robots, and as a practical matter to enable 

efficient data processing. 

The config module parsed JSON formatted configuration files to obtain a wide variety of 

application settings defined at runtime. Table 4-5 summarizes the types of configuration files 

Overwatch could process. These files enabled changes to obstacle and target maps, robot 

speeds, and other settings without recompiling the software. This greatly facilitated both the 

development of study parameters and within-session test platform reconfiguration to change 

study conditions between trials. 

The nav module provided a simulation environment with virtual obstacles and targets, paths 

and breadcrumbs to navigate and track movement, and collision detection. Each virtual object 

was defined by a location and dimensions in video image coordinates, and could be drawn over 

captured video frames to produce augmented reality graphics. 
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Table 4-5:  Types of Overwatch configuration files 

Group Purpose 

condition Study condition codes 

eyetrack Eye tracking options, maximum error values, and 
device communication settings 

log Data logging options 

obstacle Coordinates and dimensions of virtual obstacles, 
and obstacle exclusion zone margin 

robot Robot communication, confidence, fiducial tag, 
graphics, motion, and virtual sensor settings 

session Configurations for each study trial within session 

target Search target coordinates 

task Search task settings 

tutorial Tutorial steps with optional graphics and 
instructional text at specified coordinates 

video Camera device ID, resolution, crop size 

window Application window screen ID, position, size, and 
splash background color 

 

The robot module contained data structures and algorithms that defined the properties and 

behaviors of robots in the simulation environment including confidence level and value, pose 

(position and orientation), path vertices, collision state, and input and motion states (see Table 

4-6), and virtual sensors to detect targets. These relied heavily on functionality from the nav 

module. The robot module performed motion planning to translate virtual paths into motor 

commands, and sent these commands via TCP to the physical robots. It projected computer-

generated graphics on captured video frames to represent robot properties and behaviors in 

context of the real test environment. This module also recorded various event and state data, 

and output these to log files for analysis. 
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Table 4-6:  Robot input and motion states 

State Description 

autonomous Automatically moving to next path vertex 

deactivated Not accepting input or recording data 

input_path Accepting path vertex input from operator 

input_teleop Accepting teleoperation input from operator 

wait_collision Movement paused by automatic collision detection 

wait_idle Waiting idle for input from operator 

wait_pause Movement pause by operator (not used) 

wait_target Waiting near a detected target 

 

The ui module included the user interface window, common graphics, an obstacle map 

editor for developing and exporting obstacle configuration files, and keyboard and mouse input. 

Figure 4-18 displays the colors defined for the user interface. In order to provide contrast 

between different graphical elements while enhancing accessibility, a color palette was 

designed based on a 7-color palette adapted for color blindness [126]. 

 

Figure 4-18:  Overwatch user interface color palette and key. 
Left: The color palette was designed with accessibility in mind, and provide a base set of colors 

available in the software code. Right: Colors were modified or added to suite specific needs, 
including contrast with the test environment. 

 

The video module initialized video capture and provided fiducial tag detection enabled by 

the AprilTag [119], [120] library. The main program loop–contained in the core module–passed 
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every other video frame to the tag detection method for processing. This reduced framerate 

was implemented to allow sufficient time for the detection algorithm while still rendering 

graphics and displaying video in the window at the full framerate. 

4.6.2  Simulation Environment 

The simulation environment created by the Overwatch application supported an arbitrary 

number of virtual obstacles and targets. Figure 4-19 illustrates how the number, location, and 

size of these objects can dramatically change the appearance of the test environment as viewed 

in the application window. The obstacle and target maps used for training and user study trials 

were carefully designed to provide the appropriate level of difficulty and consistency. 

 

Figure 4-19:  Example obstacle and target configurations. 
Left: Fewer obstacles created more open spaces, which were used for operator training. 
Right: More obstacles provided more challenges spaces to navigate and locate targets. 

 

Obstacles and targets were defined by JSON configuration files which were specified at 

runtime as arguments when the application was launched. Figure 4-20 contains an example 

JSON object with a group named border for identification purposes which defines four 

obstacles. An arbitrary number of group objects like the example each contained an array 

named rectangles with an arbitrary number of obstacles specified as shown in the example. 

Each obstacle was defined by a center object with x and y values specifying the center point 
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coordinates, and a size object with w and h values specifying width and height. All values were 

in pixels. Targets were similarly defined by an arbitrary number of arrays named coordinates 

which contained an arbitrary number of objects with x and y values specifying target 

coordinates in pixels. 

Configuring virtual objects at runtime avoided recompiling the Overwatch application to 

change obstacles and targets during development, testing, and designing user studies. Runtime 

configuration enabled the use of counterbalanced sets of targets for the user studies presented 

in Chapter 5. 

 

Figure 4-20:  Example JSON configuration for four virtual obstacles. 
Virtual obstacles were defined by their center point (x, y) and dimensions (w, h). 

Targets were similarly defined by their center point, but did not have size dimensions. 

 

4.6.3  Robot Motion Planning and Collision Avoidance 

The motion planning algorithm determined forward motions, turns, and pivot turns 

(rotations about the yaw axis) necessary to navigate a robot to its path vertices sequentially 

within configurable tolerances. The robot automatically executed these maneuvers using 

configurable motor speed values for each type of maneuver. Similar to the virtual obstacles and 

targets described in the previous section (4.6.2), motor speed values were defined at runtime 

using JSON formatted configuration files. 

Figure 4-21 presents the robot collision detection algorithm, which monitored the location 

and motion of each robot and used this information to detect and respond to imminent 
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collisions between pairs of robots based on a number of rules. The algorithm automatically 

suspended the motion of robots to avoid collisions. The robots remained suspended until the 

collision was resolved by the operator (see 4.6.4.4 Resolving Collisions). 

 

Figure 4-21:  Robot collision detection algorithm. 
A robot which had a navigation path was presumed to be in 

motion unless suspended by the collision detection algorithm.  

 

4.6.4  Operator Input Commands 

Table 4-7 contains operator input commands used to control the robots and completed 

search tasks. For simplicity, short labels were used for reference. Although all of the input 

methods can be broadly described as teleoperation, the teleop label was used to distinguish this 

method from the more automated path and pivot methods. 

The operator inputted all commands using the computer mouse of the control interface to 

perform one or more of the following actions: move the mouse to position the on-screen cursor 
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(move), press and release the left mouse button (click), click twice in quick succession (double-

click), press and release the right mouse button (right-click), or press and hold the left mouse 

button then move the mouse (drag). 

Table 4-7:  Operator input commands used to control robots 

Input Instructions 

path 1. Click robot, move mouse to desired waypoint 
2. Click to add waypoint to path and continue input 
3. Double-click last waypoint to finish input 
4. Right-click to cancel input 

pivot 1. Double-click robot to rotate about the yaw axis 
2. Robot rotates clockwise up to 360° or until stopped 

stop Click moving robot to stop and cancel path 

teleop 1. Position cursor on robot 
2. Press and hold down left button 
3. Drag mouse 
4. Robot will pivot and drive until reaching pointer 
5. Release button to quit input 

target Click the intersection of target detection lines 

 

4.6.4.1  Path Input 

The path input method enabled the operator to input a navigation path for a robot. The 

operator planned and inputted a path as a series of one or more waypoints (i.e., path vertices). 

The operator positioned the mouse cursor over an idle robot (not in motion), then clicked to 

select it for path input. The operator then moved the cursor and clicked a desired waypoint to 

add a path vertex with the waypoint coordinates. The operator could input any number of 

vertices by clicking additional waypoints, or right-click at any time to cancel the path and exit 

path input mode. The operator double-clicked the last vertex to terminate the path at that point 

and complete input. The last vertex could also be clicked once to input it, then clicked a second 

time to complete input and terminate the path. 

After path input was completed, the robot automatically executed forward motions, turns, 
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and pivot turns (rotations about the yaw axis) to visit each path vertex and stopped at the last 

vertex. The robot automatically paused if the motion planning algorithm determined a collision 

with another robot was imminent. While paused, the robot stopped moving but could resume 

motion if the collision was resolved (see 4.6.4.4 Resolving Collisions). The operator could click 

the robot while in motion or paused to stop it and cancel the path. 

Figure 4-22 shows the graphics drawn with respect to the robot while in path input mode. 

Color-code circles and white lines represented path vertices (waypoints) and edges respectively. 

The center of the robot was considered the first path vertex. A circle was drawn at each 

subsequent vertex to highlight it. Each inputted vertex was white and continued to be drawn for 

the duration path input. A pending vertex (i.e., not yet inputted) was blue if valid or yellow if 

invalid. A vertex was invalid if it was too close to one or more obstacle (see 4.6.4.4 Resolving 

Collisions). A yellow line was also drawn around obstacles for which the vertex was invalid. After 

the operator completed path input by double-click the last vertex, a thinner line was drawn 

between vertices without the vertex circles. 

 

Figure 4-22:  Overwatch path input commands. 
Color-code circles and white lines represented vertices and edges respectively. Inputted vertices 
were white. A pending vertex was blue if valid (a) or yellow if invalid (b). A yellow line was also 
drawn around obstacles to which an invalid vertex was too close. A thinner line with no circles 

was drawn after path input was completed (c). 

 

The path input method served two purposes. First, it avoided potential latencies and path 

inaccuracies of automatic path planning by making the operator responsible for planning and 



60 

 

inputting valid path vertices. Second, the cognitive effort and focus required to plan and input 

paths were desirable as contributions to the user study designs. The idea was to provide a level 

of autonomy that still required the operator to divide attention among the robots, switch 

between frames of reference, and integrate information from multiple sources. In other words, 

the path input method presented here was designed to introduce a common level of multirobot 

teleoperation challenges experienced by study participants across all test conditions. 

4.6.4.2  Pivot Input 

The pivot input method allowed the operator to command a robot to rotate about its yaw 

axis up to 360 degrees in a clockwise direction as viewed from above the robot. The operator 

positioned the mouse cursor over an idle robot (not in motion), then double-clicked to issue the 

command. As with the autonomous execution of path input, the operator could click the robot 

while in motion to stop pivoting. 

This method was implemented to facilitate reorienting a robot to face a desired direction, 

and to search the immediate area for hidden targets by “sweeping” the sensor around the 

robot’s current location. Variations to enable pivoting counterclockwise were considered, such 

as using the right mouse button or holding the shift key. In the interest of minimizing input 

command complexity, only clockwise pivot was implemented. 

4.6.4.3  Teleop Input 

The teleop method used the mouse cursor as a dynamic goal point. The operator positioned 

the cursor over a robot, and pressed and held the left mouse button to start teleop input. The 

operator then moved the cursor to a desired goal point. The robot pivoted and moved forward 

as needed to reach the goal. The operator could drag the mouse to dynamically shift the goal 

point, even while the robot was in motion. The robot stopped upon reaching the goal (i.e., 

mouse cursor) or when the operator released the button. 
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Figure 4-23 shows the graphics drawn with respect to the robot while in teleop mode and 

their meaning. A white line was drawn from the center of the robot to the goal point. Robot 

motion corresponded with the intersection of this line with a color-coded ring that appeared 

upon the start of teleop input. The robot moved forward or reverse when the line intersected 

the white arc at the front or back of the robot respectively. The robot performed a pivot turn 

(rotation about the yaw axis) when the line intersected a blue or purple arc. The blue arcs 

pivoted the front of the robot toward the goal, while the purple arcs pivoted the back of the 

robot toward the goal. 

 

Figure 4-23:  Overwatch teleoperation input commands. 
The front of the robot in these pictures was facing the top-right corner of the picture. 

 

The intent of having two pivot directions was to make the controls more intuitive. For 

example, if the angle of the line increased or decreased as a robot moved forward or reverse 

toward a goal point, the line could eventually cross into a pivot arc. When this happened, one 

would expect the robot to pivot toward the goal and then resume moving forward or reverse. 

Pivoting toward the goal meant aligning the front of the robot toward the goal if it was originally 

moving forward, or the back of the robot if it was moving in reverse. Thus, the expected 
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direction of rotation depended on whether the goal was in front of or behind the robot. The 

blue arcs were slightly longer than the purple arcs to bias pivoting in the “forward” direction.  

The teleop input method provided a means of maneuvering within relatively tight spaces in 

the test environment, and enabled the operator to resolve two types of collisions without 

intervention by the system administrator. These collisions and how teleop is used to resolve 

them are discussed in the next section. 

4.6.4.4  Resolving Collisions 

Obstacle collisions were detected and avoided during operator input. Each obstacle was 

surrounded by an exclusion zone, the boundary of which was a configurable distance away from 

the obstacle’s edges. The path input algorithm rejected any point inside the boundary. Once a 

valid path was inputted however, the robot operated within motion constraints but was 

otherwise free to execute the path without any constraints on its location. Because a robot 

could and often did cross into an exclusion zone while operating autonomously, it would 

occasionally end its path within the boundary. When this happened, the operator was unable to 

input another path for the robot because the first path vertex (the robot’s location) was inside 

the exclusion zone and thus an invalid vertex. 

Teleop input was configured with a greater tolerance than path input when near obstacles. 

This allowed the operator to use teleop input to click and “drag” a robot out of the path input 

exclusion zone, thus resolving the obstacle collision. Although the operator was still prevented 

from moving the robot closer to an obstacle during teleop input, the algorithm did allow 

pivoting. This enabled the operator to use the full range of input angles around the robot, even 

when in close proximity to an obstacle. 

Teleop input also helped resolve robot collisions. The motion planning algorithm 

automatically suspended a robot’s motion to avoid collision with another robot. A suspended 
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robot stopped moving but retain its path. Once the collision was resolved, the robot then 

resumed execution of the path. As shown in Figure 4-24, the operator resolved a collision by 

moving one of the robots away from the other robot. The collision algorithm would not allow a 

suspended robot to receive path input, but did allow teleop input. An operator could click and 

“drag” one of the (nearly) collided robots away from the other. The latter robot would then 

resume its path or, if idle, be able to receive path input. 

 

Figure 4-24:  Teleop input was used to resolve robot collisions. 
An orange filled circle indicated the collision detection algorithm suspended a 

robot (a). The operator had to use teleop input to move one of the robots away 
to resolve the collision (b). Afterward the other robot would resume its path (c). 

 

4.6.4.5  Target Localization 

The operator was responsible for locating hidden virtual targets as a search task. A target 

had to be detected by two or more robots before it could be located. Fixed-length green lines 

from the robot through the target identified the direction of the target but not its precise 

location. The intersection of multiple detection lines provided the operator with the required 

information. Figure 4-25 shows a target detection and localization sequence. The operator 

positioned two robots near the detected target to reveal its location at the intersecting green 

lines. The operator clicked the intersection to report the target location. A green and gray circle 

was drawn to indicate the target was located. This circle persisted until the trial timer expired or 

the Overwatch application was closed. 
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Figure 4-25:  Target detection and localization. 
A target had to be detected by two or more robots before it could be location (a). 

The operator reported the location by click the intersection of the green line, 
after which a green and gray circle appear to indicate the target was located (b). 

The target marker persisted after the robots moved away (c). 

 

4.6.5  Administrator Commands 

In addition to the operator input commands, the control interface accepted a number of 

administrator commands used to manage the test platform during user studies and to access 

special features during development and system testing. These commands are found in Table 

4-8. Of these, only the robot shutdown and tutorial commands were necessary during normal 

operation of the platform. 

The robot shutdown command triggered a TCP message telling the target robot to halt 

motion, stop processing further input, and perform an orderly shutdown of the onboard 

operating system. The combination of key presses and mouse input greatly reduced the 

likelihood of accidentally shutting down a robot. The command started with pressing and 

holding the Ctrl and Alt keys, similar to the Ctrl + Alt + Del sequence familiar to users of the 

Windows operating system. Mouse input was used to enable selecting a specific robot to shut 

down. Finally, the command was completed by pressing and releasing the right mouse button, 

which was used in lieu of the left button as an added measure to prevent accidently issuing the 

command. 

The tutorial commands were used to advance one step or go back one step while the test 
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platform was in tutorial mode. This mode was only used at the beginning of a user study session 

to familiar participants with the operator input controls. Other administrator commands 

included inputs to view help and information panels. These were primarily used for system 

development and testing. The robot pause command was enabled to allow the administrator to 

stop a robot if an anomaly occurred or to prevent damage to a robot. This command was not 

used during any user study trial. Finally, the map editor commands were used during platform 

development to design obstacle maps. Details pertaining to map editor functionality are not 

presented here because there are not directly relevant to the research aim and objectives. 

Table 4-8:  Administrator commands used manage the test platform and access special features 

Command Method Instructions 

help keyboard Press Space to show/hide robot commands 
Press F1 to show/hide admin commands 

map editor key + mouse Hold Alt key to display mouse coordinates 
Hold Alt + left-click and drag to create and size object 
Hold Shift + Alt + left-click and drag to copy object 
Hold Ctrl + Alt + right-click to delete object 

robot pause keyboard Press number key to pause/resume respective robot 

robot shutdown key + mouse 1. Press and hold Ctrl + Alt 
2. Right-click robot 

tutorial keyboard Press right arrow key to advance to next step 
Press left arrow key to go back to previous step 

view panels keyboard Press C or K to show/hide color key 
Press P to show/hide color palette 
Press S to show/hide status panel 

 

4.6.6  Status Panel 

The window displayed a status panel before and after each user study trial. The purpose of 

this panel was to inform the system administrator about connection and calibration status of 

the eye tracker, and the connection and fiducial tag tracking status of each robot. Figure 4-26 

illustrates the color-coded status conditions. All icons were blue if no problem was detected. 

The eye tracker icon used gray to indicate connection issues and red to indicate the calibration 
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results were outside the configured limits. There were two icons next to each robot; a square 

icon for fiducial tag tracking and a wireless symbol icon for TCP connection, with gray used to 

indicate problems with robot localization or communication respectively. 

 

 
(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

 

 
(e) 

Figure 4-26:  Status panel with eye tracker, robot tracking, and robot connection icons. 
Blue icons indicated ideal eye tracker and robot conditions (a). The panel used gray to signal 

problems with the eye tracker connect (b) robot localization (d) and robot TCP connections (e). 
The eye tracker icon used red to indicate calibration results outside the configured limits (c). 

 

4.6.7  Data Logging 

During each user study trial, the Overwatch application collected, processed, and outputted 

a large volume of data to several log files in comma separated value (CSV) format. The name and 

relative directory path of these files was determined at runtime based on the options specified 

by session configuration file. The most important data were trial-level state and performance 

information appended to three session logs at the conclusion of each trial: 

1. The trial log recorded trial identification and task performance. 

2. The robot log recorded aggregate state, distance, and confidence. 

3. The search log recorded detailed search task results. 

These data along with detailed robot state information recorded at 2 Hz supported the 

analyses detailed in Chapter 5. In addition, Overwatch also produced event logs, recorded eye 

tracker calibration and runtime configuration, and captured eye gaze data at 20 Hz. 
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4.7  Host System and Build Environment 

The control interface computer was equipped with an Intel Core i7-4500U quad-core CPU at 

1.8 GHz (4MB cache, up to 3.0 GHz single core), 100 MHz front-side bus, 8 GB DDR3L SDRAM up 

to 1600 MHz, and Microsoft Windows 7 Professional 64-bit operating system. This machine also 

hosted the development environment used to author, integrate, build, test, and release the 

control interface software. 

The Overwatch application (overwatch.exe), Eyelib static library (eyelib), and other static 

library dependencies were written in C++ and built using MinGW-w64 version 5.3.0 and 

Code::Blocks Integrated Development Environment (IDE) version 13.12. The MinGW-w64 

toolchain included Windows ports of the GNU Compiler Collection (GCC) compiler and GNU 

Binutils, supported by Windows-specific header files and static import libraries. 

Table 4-9 lists software dependencies required in order to build the control interface 

software. The principal external dependencies were the AprilTag [119], [120] library used for 

robot localization and tracking, Asio [124] for asynchronous TCP communication, JSON for 

Modern C++ (nlohmann/json) [125] used to parse configuration files, and OpenCV (Open 

Source Computer Vision Library) [127]. OpenCV libraries were used by Overwatch to capture 

and process video frames, capture keyboard and mouse input, create the application window, 

render graphics, and display processed video frames on the screen. 
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Table 4-9:  Control interface software dependencies 

Dependency Library Description 

AprilTag apriltag2 Fiducial marker tracking and homography 

Asio asio Asynchronous TCP communication 
https://think-async.com/Asio/ 

Eigen Eigen C++ template library for linear algebra 
http://eigen.tuxfamily.org/ 
Used by AprilTag 

eyelib eyelib Eye tracking library 

FLTK fltk Fast Light Toolkit (FLTK); 
Required by eyelib library 

JSON for Modern C++ nlohmann/json JavaScript Object Notation (JSON) 
Niels Lohmann 
https://github.com/nlohmann/json 

OpenCV 3.0.0 core Core Functionality 

 calib3d Camera Calibration and 3D Reconstruction 

 hal Hardware Acceleration Layer 

 highgui High-level GUI and Media I/O 

 imgcodecs Image File Reading and Writing 

 imgproc Image Processing 

 videoio Media I/O 

OpenCV 3rd-party libjpeg Reading/writing JPEG images 

 libpng PNG reference library 

 libtiff Reading/writing TIFF files 

 zlib LZ77 data compression 

utility libraries utl Header-only utility libraries 

Windows API comctl32 Common Control Library 

 comdlg32 Common Dialog Box Library 

 gdi32 Graphics Device Interface (GDI) 

 ole32 Component Object Model 

 oleaut32 OLE Automation 

 uuid Universally Unique Identifier 

 vfw32 Windows Multimedia 

 ws2_32 Winsock 2 

 wsock32 Winsock 1 
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4.8 Discussion 

4.8.1  Results 

The presented multirobot test platform incorporated a number of experimental controls for 

the user studies in the next chapter. The tracked vehicle design resulted in four maneuverable 

robots with ample power and consistent turning clearances afforded by aligning the yaw axis 

with the geometric center of the platform. This mitigated potential user study variability due 

vehicle dynamics. A dedicated wireless network ensured low-latency communication between 

the robots and the control interface. A 90-degree field of view from the overhead camera 

produced video of the relatively large test environment (11 m2) with limited distortion. 

The control interface software made extensive use of configuration files and automation to 

control many aspects of user study administration and data collection. Automated study 

sessions ensured the delivery of study information and instructions, facilitated consistent 

calibration and training, and accurately executed study trials using predefined configuration 

options and counterbalanced conditions. Automatic data logging ensured study results were 

accurately recorded and formatted to support analyses. 

The principal control interface software component was the Overwatch application, the 

central hub around which the rest of the platform was built. This was supported by the Eyelib 

library, which managed and provided access to eye tracking functionality. Modern C++ language 

features and programming tools were leveraged to produce reliable software that operated 

consistently with minimal latency. Colors were carefully selected to design a palette that 

supported the research objectives and accessibility. 

Figure 4-27 shows summary source code statistics from the overwatch and eyelib projects. 

Special attention was given to documenting the code for both future work and reusability for 

other work. The source files contained extensive comments to document the code. Doxygen 
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[128] was used to generate documentation in HTML format using tags and markdown within the 

comments. 

       

Figure 4-27:  Overwatch and Eyelib software code statistics. 
The overwatch source contained 8,906 lines of code spread across 98 files (left). 

The eyelib source contained 3,967 lines of code spread across 45 files (right). 
Note: These figures did not include AprilTag, Eigen, JSON, and other third-party libraries, 

nor did they include custom general-purpose header-only utility library files 

 

4.8.2  Simulation Environment 

The test platform integrated physical robots in an open obstacle-free test environment with 

virtual objects and sensing in a computer simulation environment, and employed augmented-

reality to present a composite view of these physical and virtual objects in the real-world. The 

operator was given path planning responsibility, but the software used accurate estimates of 

robot location from fiducial tag localization and perfect knowledge of obstacle location and size 

to validate each path vertex inputted before accepting it. The motion planner and robots were 

responsible for executing planned paths within operating constrains, but did not have to 

consider and were not affected by the virtual obstacles. Search targets were also virtualized, and 
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a virtual sensor to detect these targets was assigned to each robot. 

This simulation approach yielded several advantages: 

1) Virtualization avoided accidentally disturbing physical objects during study trials. 

2) The obstacle-free test environment eliminated possible effects of obstacle interference. 

3) Path input validation reduced the likelihood of effects due to unreliable path planning. 

4) Precise obstacle maps enabled control of obstacle pattern symmetry. 

5) Target virtualization facilitated randomization of target placement. 

6) Virtual target sensing eliminated possible effects of sensor accuracy and reliability. 

7) Predefined obstacle and target maps enable repeatable user study conditions. 

8) Virtualization enabled rapid reconfiguration to change study conditions between trials. 

4.8.3  Physical Robots 

While virtualizing the entire test platform was considered, there are advantages to 

maintaining a physical test environment and robot platforms. Physical robots, even in a 

laboratory setting, provided realism that may be difficult to achieve in a full simulation. It may 

be more cost effective and time efficient to implement a physical solution. For example, 

mounting a video camera on the ceiling and placing tape lines on the floor were all that was 

required to establish the test environment for this research. A pragmatic engineering approach 

was used to leverage the strengths and mitigate the weaknesses of physical and virtual 

elements in order to design and implement the platform presented here. 

The presence of physical robots and other hardware also contributed to recruitment of 

study participants and retention of participants who returned for multiple sessions. The robots 

generally triggered curiosity and questions from participants and other visitors to the lab, 

including prospective undergraduate students. 
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4.8.4  Eye Tracking 

Eye tracking capability was integrated into the test platform in order to support the real-

time estimation of operator attention. Captured eye gaze data were processed online to meet 

this objective. Further details about this processing are found in Chapter 5. In addition, these 

data were also output to log files at 20 Hz to facilitate future work such as post-hoc analysis of 

pupil size measurements. 

4.9  Conclusion 

The presented work has provided several key components of teleoperation and control for 

multirobot systems. The control interface software enabled a single human operator to control 

a team of ground robots in real time in a collaborative manner, balancing automation and 

human interaction to perform search tasks in a challenging environment. This work provides an 

easily translatable augmented-reality interface capable of coordinating both ground and aerial 

robots in complex environments for applications in a variety of domains including space 

exploration, border security, homeland security, defense, search and rescue, and first responder 

events in hazardous conditions  [5], [30-35]. 

The resulting system integrated physical robots in a combined live and virtual environment. 

Integrated eye gaze tracking and data processing were employed to assess operator attention in 

real time. This enabled the development of techniques incorporating physiological feedback and 

the evaluation of these techniques presented in the next chapter. 
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CHAPTER 5:  ROBOT CONFIDENCE AND TASK PERFORMANCE 

5.1  Introduction 

This chapter details techniques applying physiological feedback to human operation of 

multiple mobile robots, and user studies to evaluate these techniques in a controlled setting 

with physical robots in a combined real and virtual environment enabled by the test platform 

described in Chapter 4. Specifically, a model of robot confidence is presented which estimated 

operator attention to derive a confidence value, which was then used to select robot behaviors 

according to specified threshold values. This model and a number of adaptive behaviors were 

implemented in the test platform software. Three user studies were conducted to examine the 

effects of these behaviors in relation to search task performance and efficiency. 

5.2  Motivation 

Human supervision and control of multiple mobile robots involves divided attention, 

multiple frames of reference, and the integration of information from many sources. The ability 

to assess the cognitive state of the operator in real time and use this information as feedback 

could lead to new methods of evaluating and interacting with multirobot systems. 

5.3  Robot Confidence and Behavior 

5.3.1  Conceptual Overview 

The overall aim of this research is to develop techniques incorporating operator attention as 

input for teleoperation interfaces in order to enable effective and efficient control of multiple 

mobile robots. Pursuant to this aim, a robot confidence model with indicators of operator 

attention as input was defined and implemented to vary robot behavior in the multirobot test 

platform. The term robot confidence was used as a metaphor to describe the mapping of 

attention-related inputs to robot behaviors. 
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Figure 5-1 contains a conceptual diagram of the generalized robot confidence model defined 

in the next section. This diagram illustrates how the model transforms indications of operator 

attention into adaptive robot behaviors. Human attention is a cognitive function, making it 

difficult to measure. The simple sense-think-act model on the left side of the figure depicts 

selective attention applied to perception, processing information, and responding to the 

processed information. Although the processes of cognition were not incorporated into the 

model, they are shown in Figure 5-1 to provide context. Also note the model operates on 

discrete time as described later. 

 

Figure 5-1:  Telerobot confidence and behavior model. 

 

A number of Operator actions (Act) may be outward indications of Attention, including eye 

gaze fixations near the robot and input commands issued to the robot. These are generalized in 

the diagram as the green Inputs block. A Weighted Maximum described in the next section of 

this chapter combines these inputs with confidence Parameters to produce a single confidence 

input. This is compared along with a Minimum Value and the Decrement block result, and the 

Maximum is taken as the confidence value for the current timestep. The resulting confidence 

value is used to determine the robot’s Adaptive Behavior, and is also decreased by Decrement to 

provide feedback for the next timestep. Finally, Observation of Robot Behavior by the Operator 

can potentially influence Attention and future actions. 
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5.3.2  Generalized Confidence Model 

For 𝑛 confidence model inputs in 𝒙 and corresponding parameters in 𝒑, Equation 5-3 

computes a maximum weighted input 𝑢, where 𝒑 ∘ 𝒙 is the Hadamard (element-wise) product 

of 𝒙 and 𝒑. Equation 5-4 defines robot confidence 𝑐𝑘 at timestep 𝑘, where 𝑐d is a confidence 

decrement subtracted from the previous confidence value 𝑐𝑘−1 and 𝑐min is a minimum 

confidence value (e.g., 0). 

 𝒙 = [𝑥1 … 𝑥𝑛] (5-1) 

 𝒑 = [𝑝
1

… 𝑝
𝑛
] (5-2) 

 𝑢 = max(𝒑 ∘ 𝒙) = max([𝑝
1
𝑥1 … 𝑝

𝑛
𝑥𝑛])  (5-3) 

 𝑐𝑘 = max(𝑢𝑘, 𝑐𝑘−1 − 𝑐d, 𝑐min)  (5-4) 

 

Figure 5-2 illustrates confidence during a notional sequence of inputs and parameter values. 

This example employs an input vector 𝒙 = [𝑥1  𝑥2] with two binary inputs 𝑥1, 𝑥2 ∈ [0,1], two 

associated confidence parameters 𝒑 = [𝑝1  𝑝2] = [25  10], confidence decrement 𝑐d = 10, and 

minimum value 𝑐min = 0. 

 

Figure 5-2:  Illustration of robot confidence given notional parameter values and inputs. 
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Starting with initial robot confidence 𝑐0 = 0, the example in Figure 5-2 depicts: 

1. At timestep 1, Equation 5-3 with model input 𝒙 = [0  0] results in a maximum 

confidence input of 𝑢 = max([𝑝1𝑥1  𝑝2𝑥2]) = max(25 ∙ 0, 10 ∙ 0) = 0. Equation 5-4 

then yields robot confidence 𝑐1 = max(𝑢, 𝑐0 − 𝑐d, 𝑐min) = max(0, 0 − 10, 0) = 0. 

Note that taking the maximum value prevents confidence values below 𝑐min. 

2. At timestep 2, 𝒙 = [1  0] results in 𝑢 = max(25 ∙ 1, 10 ∙ 0) = 25 and robot 

confidence 𝑐2 = max(25, 0 − 10, 0) = 25. 

3. At timestep 3, 𝒙 = [1  1] results in 𝑢 = max(25 ∙ 1, 10 ∙ 1) = 25 and robot 

confidence 𝑐3 = max(25, 25 − 10, 0) = 25. Note that multiple instances of the 

same input 𝑢 at consecutive timesteps sustain confidence rather than increase it. 

4. At timestep 4, 𝒙 = [0  1] results in 𝑢 = max(25 ∙ 0, 10 ∙ 1) = 10 and robot 

confidence 𝑐4 = max(10, 25 − 10, 0) = 15. Because (𝑐3 − 𝑐d) > 𝑢, the resulting 

confidence value is the decremented previous confidence value rather than the 

maximum weighted input. 

5. At timestep 5, 𝒙 = [0  0] results in 𝑢 = max(25 ∙ 0, 10 ∙ 0) = 0 and robot 

confidence 𝑐5 = max(0, 15 − 10, 0) = 5. 

6. At timestep 6, 𝒙 = [0  1] results in 𝑢 = max(25 ∙ 0, 10 ∙ 1) = 10 and robot 

confidence 𝑐6 = max(10, 5 − 10, 0) = 10. Note that confidence does not increase 

by the value of the maximum weighted input (10). Instead, it only increases by 5 to 

reach a value of 10. 

A maximum value was used for Equation 5-3, and again for Equation 5-4. These were 

incorporated in order to accommodate eye gaze fixations as input. The duration of a single 

fixation could be less than 100 milliseconds, and multiple fixations on or near an object of 

interest can occur within the time span of other forms of input, such as a mouse button press 
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and release. Other methods of aggregating inputs, such as a weighted sum, may result in 

fixations and other higher frequency inputs having a stronger influence on confidence than 

lower frequency inputs. 

Although confidence parameters in 𝒑 could be used offset this imbalance, a second bias is 

introduced by the inherent variability of fixation events. Focused attention is not necessarily 

accompanied by a single fixation. Instead, multiple fixations are likely. Attention for a given 

duration may result in a relatively small number of long fixations, or a higher number of short 

fixations. Individual operator differences and the design of fixation detection algorithms also 

contribute to variability in fixation counts and durations. A weighted sum or similar method 

would produce biased outputs favoring a high number of short fixations over fewer long 

fixations. Similar biases may also occur if other physiological properties were included as input, 

such as pupil diameter. 

The maximum-value approach makes selective use of the available information to 

determine the confidence value. More sophisticated methods might be used to address 

potential biases and take full advantage of the available information. This researched started 

with a simple model in order to avoid complexity and over-optimization before the potential 

utility of the presented techniques were evaluated. The results detailed later in this chapter 

justify future work to potentially build on the model, as discussed in the next chapter. 

The operator could attend to things other than a robot. For example, looking for navigation 

breadcrumbs to determine which areas of the test environment have been searched. The 

confidence model does not account for attention not directed at a robot. Instead, if the 

operator attends to something besides a robot, the confidence of all robots decreases 

accordingly. 
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5.3.3  Model Implementation 

For this research, attention directed at a robot was of interest. In reference to Figure 5-1, 

that occurs when operators observe (Sense), process information about (Think), or interact (Act) 

with a given robot. The multirobot test platform and specific operator tasks implemented were 

designed to fully occupy the operator’s vision and demand frequent input. In other words, the 

system left little to think about a robot without simultaneously looking at or issuing commands 

to it. Thus, fixations near a robot and input commands were considered proxies for attention. 

Algorithm 1 describes how the robot confidence model was implemented in the multirobot 

test platform using eye gaze fixation and user input as indicators of operator attention. The 

algorithm was a condensed version of Equation 5-3 and Equation 5-4 with confidence 

decrement 𝑐d = ∆𝑡 = (𝑡𝑘 − 𝑡𝑘−1), minimum confidence 𝑐min = 0, and confidence parameters 

𝒑 = [𝑝g  𝑝u], where 𝑝g and 𝑝u corresponded to fixations and user input respectively. 

 

Algorithm 1:  Robot confidence implementation 
Input:  Number of robots R ∈ ℕ, robot index r ∈ ℕ, confidence cr ∈ ℕ, 
 eye gaze fixation parameter pg ∈ ℕ, user input parameter pu ∈ ℕ 

1: for r = 1 to R 
2:  if user input received for r then 
3:   cr ← pu 
4:  else 
5:   Δt ← time duration since last update in seconds 

6:   cr ← max(cr – Δt, 0) 
7:   if operator fixated r then 
8:    cr ← max(cr, pg) 
9:   end if 

10:  end if 
11: end for 

 

The confidence value of each robot was updated at regular time intervals. If the robot 

received user input during the interval, its confidence was set to 𝑝u. Otherwise, confidence was 

decremented by the number of seconds since it was last updated (∆𝑡), or set to 0 if confidence 

< ∆𝑡. The algorithm then set confidence to 𝑝g if the robot was fixated and confidence < 𝑝g, 
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otherwise confidence remained at the decremented value. Thus, robot confidence increased 

due to operator attention (fixations and user input), and otherwise decreased over time until 

the robot was attended again. 

Equation 5-5 describes the model implemented by Algorithm 1. For a given robot at 

timestep 𝑘, confidence was potentially influenced by two binary indicators of attention: eye 

gaze fixation near the robot 𝑥g ∈ [0,1], and user input to the robot 𝑥u ∈ [0,1]. All other 

variables are defined above. 

 𝑐𝑘 = {

max(𝑐𝑘−1 − 𝑐d, 𝑝g),             𝑥g ∧ ¬𝑥u

𝑝u ,                                                          𝑥u

max(𝑐𝑘−1 − 𝑐d, 𝑐min),      ¬𝑥g ∧ ¬𝑥u

 (5-5) 

 

Although user input could indicate attention on its own, the operator was unlikely to 

command a robot without an accompanying fixation. However, because user input indicates 

focused attention while fixations may or may not, the model implementation accommodated 

assigning a higher confidence value for the former. This was accomplished by the first max 

function in Equation 5-5. 

Algorithm 1 was defined in and used by the core module of the Overwatch application. A 

number of related data structures were defined in the config module because the confidence 

value parameters for eye gaze fixation and user input, as well as the robot behaviors which 

could optionally be affected by confidence, were all configurable at runtime. These structures 

were used by the robot module. Figure 5-3 contains a simplified diagram of relevant structures, 

properties, and relationships. Each robot had its own Confidence object which not only 

maintained its current confidence level and value, but also keep a running sum total duration 

the robot was operated at each confidence level. Each robot also had a copy of the confidence 

model parameters, and parameters related to alert and motor speed behaviors. 
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Figure 5-3:  Structure diagram of robot confidence and behavior modification as implemented in 
the multirobot test platform. 

 

5.3.4  Robot Behavior 

On the far right of the diagram in Figure 5-1 is a single block labeled Adaptive Behavior. This 

block represents any number of behaviors that could be affected by confidence. The behaviors 

implemented for this work were a visual alert graphic and robot velocity (referred to as speed in 

Figure 5-3 above). The visual alert was a bright orange circle drawn at the robot’s location. The 

alert could be configured to flash for an optionally specified duration, or be shown continuously 

on the screen. This behavior was intended to drawn the operator’s attention toward a robot 

during a low-confidence state. The robot velocity behavior optionally changed motor speed and 

velocity-related motion planning parameters in response to robot confidence. 

Alert and velocity behaviors could be assigned to specified confidence levels. A confidence 

level was simply a threshold confidence value which could trigger some change in behavior. This 
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thresholding approach was selected to minimize complexity before the potential utility of 

confidence and behavior modeling was evaluation. Future work could include continuous 

behaviors that covary with confidence value. 

The Overwatch application was capable of supporting an arbitrary number of confidence 

levels at which a robot could operate. Like the confidence model parameters, behavior 

parameters were specified at runtime via JSON formatted configuration files. The specific 

configurations used for this research are covered in the next section. 

5.4  Methods 

5.4.1  Search Task Performance and Efficiency 

Two measures of search performance and one measure of search efficiency were defined: 

• Normalized search targets detected 𝑑 ∈ [0,1] 

• Normalized search targets located 𝑠 ∈ [0,1] 

• Search task efficiency 𝜂 ∈ [0,1] 

For a total number of discoverable search targets 𝑛 ∈ ℕ>0, the count of search targets 

detected was defined as 𝑛d ∈ [0. . 𝑛] and the count of search targets located was defined as 

𝑛s ∈ [0. . 𝑛d]. Both 𝑛d and 𝑛s provided measures of performance relative to 𝑛. To produce more 

generalized results, Equation 5-6 and Equation 5-7 were used to calculate normalized 

performance metrics. 

 𝑑 =
𝑛d

𝑛
∈ [0,1] (5-6) 

 𝑠 =
𝑛s

𝑛
∈ [0,1] (5-7) 

 

Equation 5-8 was used to calculate search task efficiency, where 𝑚max > 0 was the 

maximum motor speed of the robots. This equation rewarded the localization of more targets 

through the inclusion of 𝑠, but penalized the amount of energy expended to locate them by 
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using average motor speed 𝑚 ∈ [0, 𝑚max] as a proxy for total energy used. Since 𝑠 was already 

normalized, only the speed component had to be normalized such that 𝜂 ∈ [0,1], which was 

accomplished via the (𝑚max − 𝑚) 𝑚max⁄  term. 

 𝜂 = 𝑠 ∙
𝑚max − 𝑚

𝑚max

∈ [0,1] (5-8) 

 

5.4.2  User Study Design 

Three user studies were conducted to evaluate search task performance and efficiency with 

various robot behaviors determined by the confidence model: 

• Study 2:  Visual Alert 

• Study 3:  Robot Velocity 

• Study 4:  Time of Day 

Recall that Study 1: Levels of Autonomy was described in Chapter 3. All studies were 

conducted in accordance with the HIC approval found in Appendix B. 

Individual spatial orientation ability of ground robot operators has been correlated with 

improved target-mapping performance and decreased workload [129]. Spatial orientation 

describes the ability to visualize and mentally manipulate objects in two or three dimensions. A 

significant relationship has also been observed between sense-of-direction and target search 

task performance. Perhaps more importantly, there are indications that spatial ability has a non-

uniform association with performance under varying interface modalities [130], [131]. 

Like the Levels of Autonomy study discussed in Chapter 3, a within-subjects design was 

selected to mitigate participant variations such as spatial ability by collecting repeated measures 

with the same participant at all levels of the experimental condition. A number of protections 

against order effects were implemented: 

1. The conditions were tested in counterbalanced order. 
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2. Participants were presented with on-screen instructional material, received hands-

on training, and completed self-paced practice exercises to develop proficiency with 

the controls and search task. 

3. Participants were encouraged to take breaks between trials. 

4. Bottled water was offered to prevent dehydration and provide break opportunities. 

5. Participants were informed about the study session duration in advance, and 

sufficient time was allocated to avoid rushing. 

6. The study administrator monitored participants for signs of fatigue, frustration, or 

lack of engagement and offered breaks, training reminders, or encouragement as 

needed. 

5.4.3  Procedure 

The test platform described in Chapter 4 was used to collect data. For each study, 

participants reviewed all study related materials, receiving training, and conducted all practice 

and study trials during a single session which took about an hour and half depending on the 

number of trials completed, breaks between trials, and feedback after the trials. Each 

participant first reviewed the study information sheet and a short self-paced slide presentation 

providing an overview of the test platform. The study administrator aligned the eye tracker for 

an optimal view of the participant’s and eyes, then initiated the automated calibration 

procedure. During the calibration procedure, the participant watched as a circle moved to 12 

locations on the screen to calibrate the eye tracker. Next, an on-screen tutorial delivered 

interactive training on the robot input methods using the live system with the robots. The 

participant than completed a number of practice trials to familiarize with the test environment 

and search task. Finally, the study trials were conducted to collect data. 

The test platform Session batch script was used to automate various aspects of user study 
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sessions to ensure collection of relevant data and consistent application of experimental 

controls. The script displayed instructions for both the study administrator and participants. For 

each session, the script executed the following protocol: 

1. Display study information sheet and introduction for participant to review 

2. Launch the EyeTribe application to access the eye tracker device 

3. Launch the EyeTribe UI application to facilitate device alignment and calibration 

4. Copy eye tracker device configuration files to the session log directory 

5. Launch the Overwatch application with training configuration settings 

6. Launch Overwatch with practice trial configuration settings; Repeat for the 

configured number of practice trials 

7. Launch Overwatch with study trial configuration settings; Repeat for the configured 

number of study trials 

5.4.4  Search Task 

Participants were asked to locate as many hidden targets as possible during each 5-minute 

trial. The study trials employed 3 sets of 11 virtual targets. The number of targets was selected 

based on preliminary testing to determine how many could be located by an expert operator, 

with the assumption that novice operators would be unlikely to locate as many as the expert. 

The targets were randomly selected from a larger set of target locations such that the overall 

task difficulty of each set would be similar. A smaller number of targets that were easier to find 

were used for the training trials to ensure participants would quickly discover them and gain 

experience completing the target localization task. In all cases, the number of targets 

discoverable was not revealed to participants during the studies. 

Participants operated the robots in the test environment to search for the targets. When a 

robot came within the configured distance and angles of approach, a green line was drawn on 
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the screen from the center of the robot and through the target. This line was a fixed length so as 

to not reveal the exact location of the target. To localize the target, participants were instructed 

to use two (or more) robots to detect the target, then click the intersection of the green 

detection lines to identify its location. The software did not allow the participant to locate the 

target by guessing. Thus, the task required multiple robots to complete. Credit for locating a 

target did not occur until the participant clicked the intersection of the lines and a green and 

gray circle appeared to mark its location. 

5.5  Study 2:  Visual Alert 

5.5.1  Robot Behavior 

This study examined the potential use of a confidence-based visual alert or adaptive robot 

velocity to mitigate inefficient use of automation. Three behaviors in response to robot 

confidence were tested: 

1. A visual alert on the robot while at the low confidence level. 

2. Elevated velocity while operating autonomous at the high confidence level, and 

reduced robot velocity while operating autonomous at the low confidence level. 

3. Control – No alerts or change in robot velocity with respect to confidence. 

Ideally, the average velocity of the second behavior would be equal to that of the other 

behaviors in order to control for velocity-related effects. To do so, the robots would need to 

spend an equal amount of time at either high or low confidence. Preliminary testing was 

conducted to determine confidence model parameters with a reasonable likelihood of achieving 

equal time by confidence level. 

Each participant completed 9 study trials, 3 for each behavior. To mitigate learning effects, 3 

target sets were used. Each target set was used once per behavior. The orders of presentation 

for both behaviors and target sets were counterbalanced. 
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5.5.2  Participants 

This study was designed to collected data with 12 participants due to the counterbalancing 

scheme, which accounted for a factor of interest with 3 levels and one categorical control 

variable (target set) with levels 3. Data were collected with 3 healthy volunteers having normal 

or corrected-to-normal vision. The low data collection was due to feedback from the 

participants, followed by an initial examination of the data. 

5.6  Study 3:  Robot Velocity 

5.6.1  Robot Behavior 

This study further examined the use of adaptive robot velocity. Again, three behaviors were 

tested, but for this study the conditions focused on velocity: 

1. Elevated robot velocity while operating autonomously at the high confidence level. 

2. Reduced robot velocity while operating autonomously at the low confidence level. 

3. Control – No change in robot velocity with respect to confidence. 

Whereas the Visual Alert study sought the experimental control of equal average velocities, 

the Robot Velocity study sacrificed this in favor of comparing the “carrot” of elevated velocity at 

high confidence with the “stick” of reduced velocity at low confidence. 

Like the Visual Alert study, each participant completed 9 study trials, 3 per behavior, using a 

different target set each time a behavior was repeated. The orders of presentation for both 

behaviors and target sets were again counterbalanced. 

5.6.2  Participants 

Data were collected with 12 healthy volunteers who had normal or corrected-to-normal 

vision (3 females, 9 males; mean age = 28.9, SD = 4.4). Each volunteer participated during a 

single session up to approximately 2 hours in length. Sessions were scheduled to accommodate 

the participants. All study trials were conducted between 11:13 a.m. and 7:50 p.m. from start to 
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finish, a range of 8 hours and 37 minutes. During each session, study trials took an average of 55 

minutes total, or about 6 minutes per trial. Approximately 1 hour was spent inducting the 

participant and conducting practice trials before the study trials, and receiving feedback from 

the participant after all trials were completed. 

5.7  Study 4:  Time of Day 

5.7.1  Robot Behavior 

An initial review of the Robot Velocity data showed indications time of day may have been a 

factor influencing task performance. Study 4 was conducted to collect more data to evaluate 

potential time of day effects, and to further examine adaptive robot velocity. To control for time 

of day, all study trials were conducted between 2:20 p.m. and 4:12 p.m. from start to finish, a 

range of 1 hour and 52 minutes. Like Study 2: Visual Alert, the goal of equal average velocities 

was pursued as an experimental control. This time, however, only two behaviors were tested: 

1. Elevated velocity while operating autonomously at the high confidence level, and 

reduced robot velocity while operating autonomously at the low confidence level. 

2. Control – No change in robot velocity with respect to confidence. 

Each participant completed 6 study trials, 3 per behavior, using a different target set each 

time a behavior was repeated. The orders of presentation for both behaviors and target sets 

were counterbalanced. 

5.7.2  Participants 

In order to study potential time of day effects and to reduce the amount of training 

required, participants from Study 3: Robot Velocity were invited to return for this study. Six 

returning participants volunteered, again all healthy with normal or corrected-to-normal vision 

(1 female, 5 males; mean age = 32.2, SD = 5.4). 
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5.8  Data Analysis 

The hypothesis was the implemented adaptive robot behaviors improve search task 

performance and efficiency. To understand how robot behavior and other factors were related 

to performance and efficiency, mixed-effects regression models were constructed to explain the 

observed data by trial using the explanatory variables listed in Table 5-1. Linear mixed-effects 

models offer a robust statistic method capable of handling a variety of situations such as 

unbalanced data and missing values, and can be extended via generalized linear mixed-effects 

models to analyze data with non-normal error distributions [132-136]. 

Table 5-1:  Explanatory variables used to fit mixed-effects models 

Variable Type Description 

behavior categorical robot behavior (factor of interest) 

target set categorical three predefined sets of search targets 

confidence continuous average robot confidence value by trial 

time of day continuous start of a given study trial in fractional hours 

 

Initial data quality checks and exploratory analyses were performed using Microsoft Power 

BI Desktop (version 2.71.5523.941). Regression analyses were conducted using R (version 3.6.1) 

[137]. Linear mixed-effects models were fit by maximum likelihood using the lmer function of 

the R package lme4 (version 1.1.21) [138]. The general form of the R formulas used to specify 

the models was: 

 y ~ behavior + targetset + csconf + cstime + (1 | pid) (5-9) 

 

The explanatory variables were entered into the model as the fixed effects terms behavior, 

targetset, csconf, and cstime. The continuous variables confidence and time of day were 

centered and scaled for model fitting, hence the “cs” prefix of csconf and cstime respectively. 

The random effects term (1|pid) specified random intercepts by participant to account for 
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correlation due to repeated measures. 

The PBmodcomp function of the pbkrtest package (version 0.4.7) [139] was used to perform 

parametric bootstrap model comparisons to test whether each explanatory variable contributed 

significantly to the model fit. For each comparison, PBmodcomp compared the full model with a 

reduced model which omitted the variable being tested, and reported the fraction of simulated 

likelihood ratio test (LRT) values greater than or equal to the observed LRT value. 30,000 

simulations were performed per comparison. 

5.9  Results 

5.9.1  Visual Alert 

Data were collected at three levels of robot behavior: 

• Visual alert upon low confidence 

• Elevated velocity at high confidence and reduced velocity at low confidence 

• No alert or change in velocity 

The study was halted after collecting data with 3 participants due to unfavorable feedback 

about the visual alerts from the participants. The primary concern was that the alerts were 

viewed as either moderately helpful or distracting. Instead of invoking a shift in attention, one 

participant reported adapting to tune out the alerts. Based on the feedback, it was determined 

the alerts were not having the intended effect and invoked inconsistent participant behavior 

that was counterproductive relative to the research objective. A decision was made to focus 

subsequent studies on robot velocity behavior. 

The Visual Alert study also precipitated improvements to the test platform and data 

collection methods that were instrumental to the success of subsequent studies. It was 

conducted prior to implementation of the pivot input method in the test platform software. 

Although carefully planned paths or teleop input could be used to face a robot in the desired 
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direction, participants consistently reported difficulty orienting the robots. A suggestion was 

made to enable double-clicking a robot to make it automatically rotate about its yaw axis. In 

addition to implementing this pivot input method, teleop input was refined to always allow 

pivoting, even when forward and reverse motion were disabled by the obstacle collision 

avoidance algorithm. 

A total of 27 trials were completed. During a few trials the motor power circuit of one or 

more robot shut down. This was quickly resolved by the test administrator cycling the motor 

power toggle switch on the robot, but the participant was briefly unable to use the affected 

robot. The suspected root cause was excessive inrush current triggering the battery pack or H-

bridge overcurrent protection. After the study was halted, the test platform software was 

updated to more gradually increase and decrease motor speed, which resolved the issue. 

Inconsistent confidence parameters were discovered in the configuration files after the 

study. Greater care was taken to ensure consistent parameters for the subsequent studies. 

Although limited in quantity, the data collected were also useful to help refine configuration 

options and data collection methods. 

The above concerns were independent of the qualitative participant feedback and study 

observations regarding visual alerts. It is unlikely participants would have reacted differently to 

the alerts absent these concerns, and feedback from the participants did not link alerts to either 

robot orientation or the very small number of brief power interruptions they experienced. 

5.9.2  Robot Velocity 

The Robot Velocity (RV) study collected data at three behavior levels, which were labeled: 

• steady – no change in velocity with respect to confidence 

• boost – elevated velocity at high confidence 

• drop – reduced velocity at low confidence 
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Scatter plots of targets detected, targets located, and search efficiency against each of the 

explanatory variables were produced to visualize the data during exploratory analysis. Reference 

lines were plotted between the means at each level of the categorical variables, and by simple 

linear regression for the continuous variables. Figure 5-4 contains a scatter plot matrix with all 

of these plots together for comparison. The plots showed limited signs of behavior and target 

set effects, but patterns indicating possible confidence and time of day effects. 

 

Figure 5-4:  RV scatter plots of task performance and efficiency (higher y-axes values are better). 
Categorical variables: Lines were plotted between mean values, and random variation was 
used to jitter points horizontally in order to prevent overplotting (behavior and target set). 

Continuous variables: Simple regression lines were plotted (confidence and time). 
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Linear mixed-effects models were fitted to explain the observed performance and efficiency 

using all of the variables, while also accounting for correlation due to repeated measures with 

each participant. Table 5-2 summarizes the results of parametric bootstrap model comparisons 

used to test whether each explanatory variable contributed significantly to the model fit, along 

with reference likelihood ratio test (LRT) χ2 statistics used by the bootstrap procedure. BPtest is 

the ratio of simulated LRT-values that were greater than or equal to the observed LRT value. 

Robot behavior was expected to significantly contribute to fitted models of targets 

detected, targets located, and efficiency. In contradiction to this hypothesis but consistent with 

the plots in Figure 5-4, the model comparisons found no main effects of behavior (p > 0.32). On 

the other hand, time of day was not significant (p > 0.18) even though the plots showed signs of 

potential relationships. Target set was also not significant for the mixed-effects models of 

targets detected (p = 0.68), targets located (p = 0.18), and search efficiency (p = 0.074). 

Although behavior was not significant, a significant main effect of confidence was observed 

for targets detected and located (both p < 0.01), as well as search efficiency (p < 0.05). In other 

words, removing confidence from the models significantly decreased the goodness of fit. 

Table 5-2:  RV parametric bootstrap model comparison results with LRT for reference 

Term Test df  detected  located  efficiency 

behavior BPtest 
LRT χ2 

 
2 

0.25 
0.25 

p = 0.89 
p = 0.88 

2.26 
2.26 

p = 0.35 
p = 0.32 

2.38 
2.38 

p = 0.32 
p = 0.30 

target set BPtest 
LRT χ2 

 
2 

0.83 
0.83 

p = 0.68 
p = 0.66 

3.63 
3.63 

p = 0.18 
p = 0.16 

5.48 
5.48 

p = 0.074 
p = 0.065 

confidence BPtest 
LRT χ2 

 
1 

10.53 
10.53 

p = 0.0033** 
p = 0.0012** 

12.66 
12.66 

p = 0.0014** 
p = 0.00037*** 

7.32 
7.32 

p = 0.013* 
p = 0.0068** 

time BPtest 
LRT χ2 

 
1 

2.34 
2.34 

p = 0.18 
p = 0.13 

1.53 
1.53 

p = 0.27 
p = 0.22 

0.060 
0.060 

p = 0.83 
p = 0.81 

* p < 0.05    ** p < 0.01    *** p < 0.001 

The results were interesting for a few reasons. First, the original hypothesis that robot 

behavior would affect search performance and efficiency was contradicted. Second, although 
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time of day was not found significant, the relatively low p-value was cause for concern. Finally, 

robot confidence was not expected to exhibit a strong relationship with performance or 

efficiency, but was the only observed significant effect. 

5.9.3  Time of Day 

To further examine robot velocity behavior and confidence, the Time of Day (TD) study 

collected data at two levels of behavior: 

• steady – no change in velocity with respect to confidence 

• adaptive – elevated velocity at high confidence, reduced velocity at low confidence 

The TD study was conducted to collect additional data to compare with and extend the RV 

study data. Due to the limited number of observations, the TD data on its own did not support 

mixed-effects regression modeling. Instead, after visualizing the data from both studies to 

confirm sufficient similarity, the combined RVTD data were used to fit models and compare the 

results with those from the RV data alone. Analyses of the combined data took advantage of the 

robustness offered by linear mixed-effects models [132-136]. 

Figure 5-5 contains scatter plots of the RVTD data. The RV and TD studies included the same 

steady behavior, which served as a control with which to compare the other behaviors. Initial 

inspection of the data collected at the steady condition did not support combining observations 

from RV and TD, so these were differentiated as steady1 and steady2 respectively. Overall, the 

RVTD scatter plots (Figure 5-5) were very similar to RV alone (Figure 5-4). Aside from more levels 

of behavior, one notable difference is average performance and efficiency by target set 

appeared to differ by a larger amount for RVTD, although the third target set was consistently 

associated with the lowest average values. 
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Figure 5-5:  RVTD scatter plots of task performance and efficiency (higher values are better). 
Categorical variables: Lines were plotted between mean values, and random variation was 
used to jitter points horizontally in order to prevent overplotting (behavior and target set). 

Continuous variables: Simple regression lines were plotted (confidence and time). 

 

Linear mixed-effects models were again fitted to explain targets detected, targets located, 

and search efficiency. The results of parametric bootstrap model comparisons are summarized 

in Table 5-3 with LRT statistics for reference. In general, the RVTD results reinforce the RV 

findings. As before, behavior was not significant for all three models (p < 0.44), nor was time of 

day (p < 0.27). Consistent with RV, the RVTD models found confidence was significant for targets 

detected and located (p < 0.001) and efficiency (p < 0.05). Target set was again not significant 

for targets detected (p = 0.18). Unlike RV, however, an effect of target set was observed for 

targets located (p < 0.05) and efficiency (p < 0.01). 
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Table 5-3:  RVTD parametric bootstrap model comparisons with LRT for reference 

Term Test df  detected  located  efficiency 

behavior BPtest 
LRT χ2 

 
4 

1.10 
1.10 

p = 0.91 
p = 0.89 

3.98 
3.98 

p = 0.44 
p = 0.41 

2.83 
2.83 

p = 0.62 
p = 0.59 

target set BPtest 
LRT χ2 

 
2 

3.64 
3.64 

p = 0.18 
p = 0.16 

8.55 
8.55 

p = 0.017* 
p = 0.014* 

10.23 
10.23 

p = 0.0092** 
p = 0.0060** 

confidence BPtest 
LRT χ2 

 
1 

16.07 
16.07 

p = 0.00023*** 
p = 6.1e-05*** 

15.88 
15.88 

p = 0.0003*** 
p = 6.74e-05*** 

7.95 
7.95 

p = 0.010* 
p = 0.0048** 

time BPtest 
LRT χ2 

 
1 

1.43 
1.43 

p = 0.27 
p = 0.23 

0.96 
0.96 

p = 0.37 
p = 0.33 

0.12 
0.12 

p = 0.75 
p = 0.73 

* p < 0.05    ** p < 0.01    *** p < 0.001 

5.9.4  Summary 

All three studies presented in this chapter applied the same fundamental design, 

counterbalancing scheme, search task, and general procedure. The key differences were robot 

behaviors and the added Time of Day control. The qualitative results of the Visual Alert study 

are reviewed in the Discussion. 

Table 5-4 summarizes the quantitative results from the RV and RVTD data analyses. These 

studies used the same target sets, confidence model parameters, and other configuration 

settings. This makes comparisons between target set and confidence results relatively 

straightforward. 

Table 5-4:  Summary of performance and efficiency mixed-effects model comparisons 

Term Data  detected  located  efficiency 

behavior RV 
RVTD 

0.25 
1.10 

p = 0.89 
p = 0.91 

2.26 
3.98 

p = 0.35 
p = 0.44 

2.38 
2.83 

p = 0.32 
p = 0.62 

target set RV 
RVTD 

0.83 
3.64 

p = 0.68 
p = 0.18 

3.63 
8.55 

p = 0.18 
p = 0.017* 

5.48 
10.23 

p = 0.074 
p = 0.0092** 

confidence RV 
RVTD 

10.53 
16.07 

p = 0.0033** 
p = 0.00023*** 

12.66 
15.88 

p = 0.0014** 
p = 0.0003*** 

7.32 
7.95 

p = 0.013* 
p = 0.010* 

time RV 
RVTD 

2.34 
1.43 

p = 0.18 
p = 0.27 

1.53 
0.96 

p = 0.27 
p = 0.37 

0.06 
0.12 

p = 0.83 
p = 0.75 

* p < 0.05    ** p < 0.01    *** p < 0.001 
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Although the target maps were carefully designed equitable conditions, differences by 

target set were not unexpected. The significance of confidence, however, was not anticipated. 

Results with both the RV and extended RVTD data reinforce the significance of confidence to 

models of observed performance and efficiency. See Section 5.10.3 for further discussion. 

Conditional scatter plots were created of targets detected, targets located, and search 

efficiency versus confidence (see Figure 5-6, Figure 5-7, and Figure 5-8). These showed limited 

evidence of interaction between confidence and the other explanatory variables given the 

inherent variability of data collected with human participants performing a challenging search 

task using physical robots in a real test environment. Simple linear regression was used to fit 

lines at each level of the categorical variables study, behavior, and target set. For the continuous 

variable, time of day was divided into quintile intervals. 

 

Figure 5-6:  Targets detected versus confidence was relatively consistent by study, behavior, 
target set, and time of day (RVTD plots shown; RV plots were similar). 
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Figure 5-7:  Targets located versus confidence was relatively consistent by study, behavior, 
target set, and time of day (RVTD plots shown; RV plots were similar). 

 

 

Figure 5-8:  Search efficiency versus confidence was relatively consistent by study, behavior, 
target set, and time of day (RVTD plots shown; RV plots were similar). 
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The RV and TD studies shared the same baseline steady behavior, which did not change 

robot velocity conditionally in response to confidence, but evaluated different adaptive velocity 

behaviors. The RV boost and drop behaviors implemented relatively moderate velocity increases 

and decreases respectively, while the TD adaptive behavior used the highest and lowest 

velocities practical to maximize effects. The non-significant results for all models using either RV 

or RVTD data provided strong evidence these behaviors did not contribute to observed 

performance and efficiency. 

Exploratory analysis of the RV data led to concerns about time-of-day effects such as 

fatigue. The TD study controlled for time of day by limiting trials to within the same 2-hour 

window. The TD data fell between the minimum and maximum times of the RV trials, and added 

data points in what had been a more sparsely populated interval of time in the RV data. As with 

behavior, the result of no significant time-of-day effects for the combined data reinforced that 

time did not contribute to observed performance and efficiency despite what initially appeared 

to be relationships shown by the scatter plots. 

5.10  Discussion 

5.10.1  General Feedback 

Participants were highly enthusiastic, with many reporting they enjoyed participating in the 

study and felt the session went by fast. Positive feedback was received about the search task, 

which participants found challenging but rewarding. The physical robots enhanced engagement 

by arousing participant’s curiosity and sparking discussion about the test platform and the 

presented research. Interest continued even after the study sessions, and six out of twelve 

participants from the RV study eagerly volunteered to participate again for the TD study. These 

results provided validation for the platform approach using physical robots and evidence of 

interest in this research within the broader community. 
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Although the literature contains examples of difficulty getting eye tracking equipment to 

work with certain individual human subjects, no participants were excluded due to unsuccessful 

calibration or as a result of excessive tracking errors during the studies conducted for this work. 

5.10.2  Visual Alert Discussion 

The Visual Alert study was stopped early but still yielded results germane to the research 

objective. Participants provided valuable qualitative feedback concerning the use of visual alerts 

triggered by changes in robot confidence. This information helped set the conditions for the RV 

and TD studies. Participants generally held an unfavorable view of the implemented alert 

behavior, and reported their perception that it was modestly helpful at best or distracting. 

Although the alerts were intended to shift the operator’s attention to where it is needed, one 

participant adapted during the study to tune out the alerts in direct opposition to this goal. 

Based on the feedback and study observations, it was determined the alerts were not having the 

intended effect and invoked inconsistent participant behavior that was counterproductive 

relative to the research objective. A decision was made to focus on robot velocity in the 

subsequent studies. 

5.10.3  Robot Confidence and Behavior Discussion 

The confidence model described in section 5.3 was implemented as a means of adapting 

robot behavior in response to operator attention. The user studies described in this chapter 

were conducted to compare several adaptive behaviors using a within-subjects design. Data for 

targets detected, targets located, and search efficiency were collected via repeated measures of 

each participant performing a common search task with all of the robot behaviors evaluated by 

a specific study. 

The expected outcome of the adaptive behaviors was an improvement in search task 

performance and efficiency, but behavior was found to be not significant. Instead, parametric 
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bootstrap comparisons of mixed-effects models found the by-trial average confidence value 

itself contributed significantly to models, evidence of positive relationships with both search 

task performance measures and search efficiency. 

5.11  Conclusion 

The robot confidence model described in this chapter was developed in order to improve 

telerobotic performance and efficiency for multirobot systems by adapting robot behavior 

based on operator attention. The user studies presented in this chapter were conducted to 

evaluate various robot behaviors to this end. These studies contributed to an understanding of 

which behaviors are likely to support this goal. Specifically, subjective feedback from Visual Alert 

participants suggested visual alerts may invoke a variety of potentially counterproductive 

operator responses, including maladaptive behaviors such as learning to tune out the alerts in 

order to ignore them. Subsequent studies focused on adapting robot velocity according to 

confidence. Instead of finding the expected outcome that robot behavior improved 

performance and efficiency, the results provided evidence that the confidence model itself has 

utility as a predictor of telerobotic performance and efficiency. 
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CHAPTER 6:  DISCUSSION AND FUTURE WORK 

6.1  Summary 

In Chapter 3, Study 1: Levels of Autonomy examined multirobot teleoperation at three levels 

of robot autonomy and identified the problem of overreliance on autonomy. This led to the 

hypothesis that operator attention can be assessed in real time and used to mitigate inefficient 

use of automation by the operator and result in improved telerobotic task performance and 

efficiency. 

The multirobot test platform described in Chapter 4 was designed and implemented to 

evaluate techniques of assessing operator attention in real time and adapting robot behavior 

accordingly. The resulting system integrated eye tracking to measure physiological properties 

associated with selective attention. 

In Chapter 5, a generalized robot confidence model was introduced which transforms 

multiple indicators of operator attention to a single confidence value which can be used to 

adapt robot behaviors. The model produces a confidence value for each robot using a weighted-

maximum to aggregate any number of inputs which may exhibit a high degree of variability, 

such as eye gaze fixations near a point of interest, along with a decremented previous value as 

feedback and a minimum confidence limit. The model was implemented using eye gaze fixation 

and user input as indicators of attention, along with adaptive behaviors which were 

automatically selected by configurable confidence threshold values. The resulting 

implementation assessed operator attention in real time to determine the confidence value of 

each robot and altered robot behavior accordingly. 

Also detailed in Chapter 5, a series of three controlled user studies were conducted to 

examine potential effects of the implemented adaptive behaviors with respect to search task 

performance and efficiency. The Visual Alert study found the implemented flashing alerts 
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triggered by low confidence to be counterproductive. The Robot Velocity and Time of Day 

studies evaluated behaviors that varied robot velocity based on confidence. Regression analyses 

were performed by fitting linear mixed-effects models of observed performance and efficiency, 

then using parametric bootstrap comparison to assess the significance of each explanatory 

variable to the model fit. Although the adaptive behaviors were not significant, average by-trial 

robot confidence was found to have contributed significantly to the models. 

6.2  Specific Contributions 

This research developed novel techniques applicable to user interface designs for the 

remote operation of multiple unmanned vehicles. First, a generalized robot confidence model 

was introduced which transforms an arbitrary number of operator attention indicators to a 

confidence value for each robot in order to enable adaptive robot behaviors. Second, the model 

was implemented and successfully evaluated to reveal evidence linking average robot 

confidence to multirobot search task performance and efficiency. These contributions provide 

important steps toward effective human teleoperation of multiple mobile robots. 

Other research related to robot confidence has been aimed at influencing human trust in 

autonomy and, ultimately, optimizing the allocation of control between autonomy and manual 

operation. Instead of directly affecting trust or improving allocation of control, the presented 

work addressed challenges related to human cognition that limit teleoperation of multiple 

mobile robots. Specifically, this work employed robot confidence as a metaphor relating 

indicators of operator attention and robot behaviors which response to these indicators, and 

observed correlations between average confidence and three measures of multirobot search 

performance and efficiency. 
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6.3  Future Work 

6.3.1  Expanding the Scope 

The scope of this research focused on a single human using a fixed control station to 

teleoperate a small number of mobile robots in order to complete specific search tasks designed 

to evaluate user interface techniques in a controlled environment. However, the techniques 

developed in this research could apply more broadly. 

Real-world applications may involve a team of multiple robots and multiple humans. The 

presented techniques were implemented for one operator but could be extended to multiple 

operators. For example, attention could be estimated based on eye gaze fixations and input 

from multiple users, or the confidence model might be expanded to include attention from 

multiple sources in addition to aggregate attention from all users. The model might also be a 

useful mechanism for deconflicting and prioritizing input from multiple sources. 

The presented work integrated a remote eye tracker to measure physiological properties 

associated with selective attention, and used these data as input to derive robot confidence. 

Real-world applications with multiple mobile robots in the field may involve first responders, 

dismounted soldiers, or other telerobot operators who require freedom of movement in 

environments not conducive to display-mounted eye tracking equipment. There is significant 

interest in head-mounted eye tracking, especially in the defense sector where many potential 

end users (e.g., dismounted soldiers) already wear helmets and helmet-mounted equipment. 

This work could be extended to head- or helmet-mounted eye tracking to address specific 

related integration challenges and identify new research opportunities. 

The presented system separated the operator from the robot environment for a variety of 

reasons, both practical and experimental. Placing the operator and robots in a shared 

environment would afford opportunities to extend this work. For example, direct observation of 
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the operator by the robots would add new information for estimating operator attention such 

as body language. 

This work produced four small mobile robots which were used to develop and evaluate the 

presented techniques. These were deliberately equipped with limited autonomy in order to 

place higher demand on the operator. Future work could enable higher levels of autonomy and 

scale the number of robots up. A swarm of robots, for example, may implement individual or 

collective behaviors influenced by individual or collective confidence, or perhaps a confidence 

gradient over the volume in which the robots are operating. 

On the other end of the spectrum, future work could continue to focus on a small number of 

robots, but having more advanced capabilities or platform specialization. For example, any 

number of UGVs and UAVs with different capabilities could work together as a heterogeneous 

multirobot team. The presented techniques might be extended to account for the unique role or 

capabilities of a particular robot. 

This research used specific search tasks designed to evaluate the presented techniques in a 

controlled environment. Instead of searching for hidden targets, future work could examine 

other tasks involving multiple robots such as coordinated material handling and construction. 

6.3.2  Extending the Techniques 

There are a number of potential opportunities to improve and build upon the techniques 

developed in this research. The presented robot confidence model focused on eye gaze fixation 

to estimate operator attention, but can be extended to assess other physiological properties 

and aspects of human cognition. In addition to eye gaze coordinates, the eye tracker integrated 

for this work measured and outputted streaming pupillometry data. These data might be used 

to assess real-time workload using task-evoked pupillary response. 

The confidence model could also be extended to incorporate other potentially relevant 
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information such as recent collisions, target detections, and distance traveled. The model could 

differentiate between types of user input and consider the frequency of input. Study 

participants were observed on multiple occasions inputting a pivot maneuver to orient a robot, 

then failing to pay attention as the robot rotated past the desired angle. Confidence might be 

decreased if a pattern of inputs suggests the operator is not sufficient engaged. A model of 

robot confidence might also estimate the confidence of the operator and adapt robot behavior 

accordingly. 

Specific visual alert and robot velocity behaviors were developed and evaluated for this 

work. Other robot behaviors could be implemented such as stopping upon target detection 

during low confidence, or increasing autonomy during low confidence to shift allocation of 

control toward the robots while the operator is busy attending other tasks. This work used 

threshold confidence values to trigger behaviors. Future work could implement continuous 

responses to confidence. Robot behavior could also be expanded to include collective team 

behaviors such as directional icons on or near each robot to direct operator attention toward a 

specific robot or area in the environment. 

This work implemented confidence and behavior independently for each robot. Confidence 

could be extended to include information about other robots such as relative location, velocity, 

target detections, collisions, fixations by the operator, and user input. This information can be 

managed centrally, as with the presented test platform, or exchanged among robots using high 

speed communication. In addition to accounting for the input, conditions, and actions of other 

robots, confidence could be jointly negotiated among robots to avoid under- or overconfidence 

due to a robot having incomplete knowledge. 

Finally, this work introduced and implemented a relatively simple model of robot confidence 

to avoid unnecessary complexity. Additional parameters could be incorporated and discrete 
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inputs, states, and outputs could be made continuous, such as enabling gradual increases and 

decrease in confidence over time rather than single discrete changes in response to inputs. The 

presented techniques were applied consistently for every robot and operator, but might be 

further developed to achieve the desired aim. For example, machine learning could be 

employed to train a specific robot based on operational conditions, or to tailor the model for 

individual operators. The presented techniques have the potential to enable more effective and 

efficient teleoperation of multiple mobile robots to perform spatially distributed and hazardous 

tasks in complex environments, and equip human-multirobot interfaces that adapt to the 

unique needs of individual operators. 
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APPENDIX A:  TRACKED ROBOT DESIGN DETAILS 

Table A-1:  Tracked robot hardware bill of materials 

Component Description Qty 

battery pack, digital power Anker Astro E1 5200 mAh, A1211012 1 

battery pack, motor power Anker Astro E1 6700 mAh, A1211015 1 

cable, power USB A plug, USB Micro-B plug 2 

chassis Dagu Rover 5 1 

connector, driver power, contact 18-22AWG, TE 1123721-2 2 

connector, driver power, header 2 circuit, TE 1744048-2 1 

connector, driver power, housing 2 circuit, TE 1744036-2 1 

connector, motor, header 4 circuit, TE 1744048-4 1 

connector, motor, housing housing, 4 circuit, TE 1744036-4 1 

controller board Raspberry Pi 2 Model B 1 

controller memory 16GB microSDHC 1 

controller module, motor driver DRV8835 Dual Motor Driver 1 

controller module, wireless Edimax EW-7811Un USB Wi-Fi 1 

fiducial marker clamp steel binder clip, 19 mm (3/4 in), silver finish 4 

fiducial marker tag AprilTag, black on white paper 1 

hex hut, controller mount N2.5-0.45, 2.1 mm thick, nylon 4 

hex nut, controller mount M2.5-0.45, steel 4 

LED lamp board 100 mA, motor power circuit 1 

LED lamp receptacle USB A, motor power circuit 1 

motor power receptacle USB Micro-B breakout board 1 

motor power switch, rocker, SPST AC 250V 3A 2 pin on/off I/O SPST snap-in 1 

motor power wire 2-conductor, 20 AWG, black-red AR 

mounting plate, controller polycarbonate sheet, 0.093 × 8 × 5 in 1 

mounting plate, fiducial polycarbonate sheet, 0.093 × 10 × 8 in 1 

screw, controller mount M2.5-0.45 × 5 mm, pan head, nylon 6/6 4 

screw, mounting plate #6-32 × 3/8-in, flat head, zinc plated 4 

standoff, controller mount M2.5-0.45 × 6 mm Female × 6 mm Male, Nylon 4 

standoff, mounting plate #6-32 × 1.5-in, male/female, aluminum 4 

 



108 

 

 
Figure A-1:  Tracked robot electrical power circuit. 

 

 
Figure A-2:  Tracked robot power component integration. 
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Figure A-3:  Tracked robot fiducial mounting plate. 

 

 
Figure A-4:  Tracked robot motor driver interface. 

 



110 

 

APPENDIX B:  HUMAN INVESTIGATION COMMITTEE APPROVAL 
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There is considerable interest in multirobot systems capable of performing spatially 

distributed, hazardous, and complex tasks as a team. There is also growing interest in manned-

unmanned teams leveraging the unique abilities of humans and automated machines working 

alongside each other. The limitations of human perception and cognition affect the ability of 

operators to integrate information from multiple mobile robots, switch between their spatial 

frames of reference, and divide attention among many sensory inputs and command outputs. 

Automation is necessary to help the operator manage increasing demands as the number of 

robots scales up. However, more automation does not necessarily equate to better 

performance. 

This research developed novel techniques applicable to user interface designs for the 

remote operation of multiple unmanned vehicles. A generalized robot confidence model was 

introduced which transforms an arbitrary number of indicators of operator attention to a 

confidence value for each robot in order to enable adaptive behaviors for an arbitrary number 

of robots. The model was implemented and successfully evaluated to reveal evidence linking 

average robot confidence to multirobot search task performance and efficiency. The 

contributions of this work provide important steps toward effective human teleoperation of 
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multiple mobile robots to perform spatially distributed and hazardous tasks in complex 

environments for space exploration, defense, homeland security, search and rescue, and other 

real-world applications. 
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