
Wayne State University Wayne State University

Wayne State University Dissertations

January 2020

Tiling Optimization For Nested Loops On Gpus Tiling Optimization For Nested Loops On Gpus

Yuanzhe Li
Wayne State University

Follow this and additional works at: https://digitalcommons.wayne.edu/oa_dissertations

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Li, Yuanzhe, "Tiling Optimization For Nested Loops On Gpus" (2020). Wayne State University
Dissertations. 2362.
https://digitalcommons.wayne.edu/oa_dissertations/2362

This Open Access Dissertation is brought to you for free and open access by DigitalCommons@WayneState. It has
been accepted for inclusion in Wayne State University Dissertations by an authorized administrator of
DigitalCommons@WayneState.

http://digitalcommons.wayne.edu/
http://digitalcommons.wayne.edu/
https://digitalcommons.wayne.edu/oa_dissertations
https://digitalcommons.wayne.edu/oa_dissertations?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F2362&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F2362&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wayne.edu/oa_dissertations/2362?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F2362&utm_medium=PDF&utm_campaign=PDFCoverPages

TILING OPTIMIZATION FOR NESTED LOOPS ON GPUS

by

YUANZHE LI

DISSERTATION

Submitted to the Graduate School,

of Wayne State University,

Detroit, Michigan

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

2020

MAJOR: Computer Science

Approved By:

———————————————————–
Advisor Date

———————————————————–

———————————————————–

———————————————————–

DEDICATION

For my wife Jingwen, child Avery, and parents Zhiyong and Tong, and all the things that

bring us joy in life.

ii

ACKNOWLEDGEMENTS

This template is a combination of work done by Mike Catanzaro and Gabe Angelini-Knoll,

both formerly of the WSU math department, with some additions and synthesizations by

Clayton Hayes (clayton.hayes@wayne.edu) for broader use.

This template was last update updated on 2019-03-10 by Aaron Willcock

(ez9213@wayne.edu) for the updated WSU dissertation and thesis formatting guidelines.

The unedited, accepted latex upon which this thesis template was most recently adapted

can be found at (https://github.com/aarontwillcock/wsu-ms-cs-tufc).

iii

TABLE OF CONTENTS

Dedication . ii

Acknowledgements . iii

List of Tables . viii

List of Figures . ix

Chapter 1 Introduction . 1

1.1 Contributions . 3

1.2 Dissertation Outline . 5

Chapter 2 Overview of NVIDIA GPUs and CUDA 7

2.1 GPU Architecture . 8

2.2 CUDA Terminology . 10

2.3 GPU Properties . 11

Chapter 3 OVERVIEW OF LOOP TILING . 14

3.1 Loop Tiling on GPUs . 14

3.2 Wavefront Parallelism . 15

3.2.1 Square VS Non-Square . 17

Chapter 4 Related Work . 19

4.1 Higher-Dimensional Dynamic Programming 19

4.2 Wavefront Parallelism Optimization . 20

4.3 Time-Space Tiling for Stencil Computation 23

Chapter 5 Optimizing Higher-dimensional DOACROSS Parallelism 28

5.1 Introduction . 28

5.2 Tiling-Like Data-Partitioning Scheme . 30

iv

5.3 Dynamic Programming in the Parallel PTAS 33

5.4 GPU Implementation and Analysis . 37

5.4.1 Design and Challenges . 39

5.4.2 Two-level Fine-grained Parallelism 43

5.4.3 Analysis of the Dynamic Programming 45

5.5 Evaluation . 47

5.5.1 Experimental Setup . 47

5.5.2 Analysis of Results . 48

5.6 Summary . 54

Chapter 6 Optimizing Wavefront Parallelism with Non-Square Tiling 55

6.1 Introduction . 56

6.2 Problem Statement . 59

6.2.1 Low Cache Hit Rates . 59

6.2.2 Advantages of Shared Memory . 60

6.2.3 Barriers to Shared Memory Use . 60

6.3 Design and Challenges . 61

6.3.1 Design Overview . 62

6.3.2 Tile Concurrency and Synchronization 63

6.3.3 Concurrency VS Data Locality . 66

6.3.4 Shared Memory Efficiency . 67

6.3.5 Synchronization Counter . 70

6.4 Implementation . 71

6.5 Evaluation . 73

v

6.5.1 Wavefront Applications . 74

6.5.2 Test Cases and GPU Environment . 75

6.5.3 Memory Subsystem Efficiency . 76

6.5.4 Performance: Multiple Tile Sizes . 79

6.5.5 Performance: Cache vs Shared Memory 80

6.6 Summary . 82

Chapter 7 Time-Skewed Tiling Optimization for High Order 2D Stencil Computa-
tions on GPUs . 84

7.1 Introduction . 84

7.2 Background and Motivation . 88

7.2.1 Disadvantages of Different Temporal Tiling 88

7.2.2 Difficulties of Using Existing Solutions 89

7.2.3 Concurrency Modeling on GPUs for Time-Skewed Tiling 90

7.2.4 Our Motivation . 91

7.3 Design and Challenges . 92

7.3.1 Two-level Parallelism . 92

7.3.2 Stream Processing Scheme . 95

7.3.3 Two-level Lock System . 98

7.3.4 Data Access Pattern . 101

7.4 Implementation . 102

7.4.1 Dependency Array Structure and Transfer 103

7.4.2 Stream Indexing . 104

7.4.3 Code for Lock Functions . 106

vi

7.4.4 Flow of Tile Processing . 106

7.5 Experimental Evaluation . 108

7.5.1 Experimental Background and Setup 108

7.5.2 Experimental Results and Analysis 109

7.6 Summary . 115

Chapter 8 Conclusion . 116

Chapter 9 List of Publications . 119

References . 120

Abstract . 133

Autobiographical Statement . 137

vii

LIST OF TABLES

Table 1 DP-table Size = 3456 . 51

Table 2 DP-table Size = 8640 . 51

Table 3 DP-table Size = 12960 . 51

Table 4 DP-table Size = 20736 . 51

Table 5 DP-table Size = 362880 . 51

Table 6 DP-table Size = 403200 . 51

Table 7 Profiling data for cache-based and shared memory-based mechanisms
on GTX 1080 Ti. 77

Table 8 Execution time (ms): averaged for 100 repetitions. 79

Table 9 Performance data for the GTX 1080 Ti GPU. 82

Table 10 Performance data for the Tesla K40 GPU. 82

Table 11 Number of time steps can be processed for each pair of tile size and
distance. 110

Table 12 Performance in GFLOPS for Moore Neighborhood Pattern. 111

Table 13 Performance in GFLOPS for Cross-Shaped Neighborhood Pattern. . . . 112

Table 14 Performance Comparison in GFLOPS for Cross-Shaped Neighborhood
Pattern. 113

Table 15 Performance Comparison in GFLOPs per second for Moore Neighbor-
hood Pattern. 114

viii

LIST OF FIGURES

Figure 1 The GPU denotes more processing cores and small cache and less
sophisticated flow control. 9

Figure 2 The wavefront parallelism. 16

Figure 3 Hyperplane Tiling vs Square Tiling. 17

Figure 4 Partitioning a 3-D DP-table by a divisor (3, 3, 3). 32

Figure 5 Dependency graph for OPT (2, 3) . 34

Figure 6 The number of non-zero dimensions influence the performance. . . . 50

Figure 7 Average running time vs. the size of DP-table. 53

Figure 8 Design of Host and GPU Device: solid arrows depict the flow of events
and dashed arrows show the data communication. 61

Figure 9 The comparison of inter-tile concurrency for two different tile sizes. . 64

Figure 10 Data layout in global memory and shared memory. 69

Figure 11 Shared memory-based mechanism achieves much higher efficiency
rate on multiple metrics except L2 cache hit rate. 77

Figure 12 Average difference for four applications. 83

Figure 13 Different tiling strategies [1] illustrate the tradeoff between concur-
rency, computation overhead, and memory latency. 86

Figure 14 Design of Host and GPU Device: solid arrows depict the flow of events
and dashed arrows show the data communication. 93

Figure 15 Intra-tile parallelism and inter-tile parallelism. 94

Figure 16 Tiles that are in same color are processed simultaneously. 95

Figure 17 Shared memory organization for dependent elements and tile elements.101

Figure 18 Two patterns lead to different memory efficiency. 109

ix

1

CHAPTER 1 INTRODUCTION

A nested loop is a loop that contains another loop or another nested loop. Generally,

executing a nested loop requires memory access to one or multiple data entries, which are

addressed by the indexes of one or multiple loops. Thus, the memory layout of a nested

loop can be depicted in a multi-dimensional block where the dimensions of the block match

the depth of the nested loop. In many problems, a nested loop can lead to a tremendous

number of operations even if the length of each loop is not unacceptable long. A typical

solution for accelerating this process is to split the total workload into small pieces and

executing these pieces concurrently. In parallel programming, a nested loop can be split

into multiple blocks along either one or more loops. Thus, each block contains a smaller

nested loop, which is processed by one OS thread.

The idea of accelerating nested loops on GPUs is similar, but a much greater concur-

rency can be achieved because of the massive threads capacity. In GPU programming, it is

recommended to split a nested loop completely into iterations, instead of a small block of

a nested loops and each thread processes one iteration only. The ability of achieving huge

concurrency also makes GPUs efficient in solving nested loop problems.

Nested loops are used in a variety of problems and this dissertation discusses the work

for optimizing nested loops, in Dynamic Programming (DP) problems [2, 3] and stencil

problems [4, 5] on GPUs. In dynamic programming problems, each data entry is updated

in place, so data dependence exists between the data entries, which prevents the loop from

being fully parallelized and leads to loop-level parallelism, often called DOACROSS par-

allelism [6]. Thus, maximizing concurrency according to the synchronization primitives,

2

in the statement, is important to optimizing dynamic programming problems. In stencil

problems, data entries are updated out of place at each time stamp, so there is no data

dependence to restrict the concurrency and the statements within a loop can be executed

independently. Thus, nested loops in stencil problems can be fully parallelized as DOALL

parallelism [7]. In both cases, poor data locality and irregular workload can hurt the per-

formance even though the code has obtained concurrency that can fully utilize compute

capability.

Parallel implementation of some dynamic programming problems follows a specific

data access pattern, which leads to wavefront parallelism [8]. All previously mentioned

performance issues exist in the wavefront parallelism execution process. In most cases,

obtaining large concurrency and balanced workload can notably increase the performance.

This strategy is applied [9] and achieves a significant speedup on GPUs, which is 25 times

faster than the multicore parallel implementation. The details of the work is presented in

chapter 5.

Moreover, having good data locality can further improve the performance when the

data entries, required by the computation, cannot completely fit into the L1 cache. GPU

offers a user-managed cache, called shared memory, to help with this optimization. Under

certain circumstances, manually organizing the data entries in shared memory can signifi-

cantly increase data reuse and reduce the number of memory transactions. In chapter 6, a

data locality optimization work is presented, which obtains a sixfold speedup.

Similarly, no-dependence nested loops can be optimized if the data locality is improved

without introducing extra high latency. In stencil problems, good data locality is obtained

by reusing the cached data entries to calculate as many time stamps as possible. A popular

3

method, which is called overlapped tiling and studied in many existing works, like [10,

11, 12, 13], obtains both significant concurrency and good data locality. However, it also

leads to issues like an imbalanced workload and repeated calculations.

In this dissertation, the tiling methods for optimizing the loop-level parallelism for

nested loops on GPUs are presented and discussed. DOACROSS and DOALL parallelism

are explored in Dynamic Programming problems and stencil problems, respectively. The

proposed tiling approaches resolve data locality and workload balancing issues when deal-

ing with DOALL parallelism and also consider the concurrency for DOACROSS parallelism.

1.1 Contributions

In this dissertation, we develop non-overlapped tiling optimization strategies for both

DOALL and DOACROSS parallelisms for nested loops on GPUs. We propose three ap-

proaches and make the following contributions to the nested loop optimization on GPUs.

• The first contribution is the development of a parallel approximation algorithm for

P || Cmax based on the Polynomial Time Approximation Scheme PTAS, which is

specially designed for GPUs. The parallel algorithm [14] requires solving a higher-

dimensional dynamic programming problem and is based on parallelizing the PTAS [15].

The major challenge of making approximation algorithms, such as the one for P ||

Cmax, efficient on GPUs is to improve the execution time of the higher-dimensional

dynamic programming procedure. We take into account the huge computing power

offered by modern GPUs and exploit the potential DOACROSS parallelism. The pro-

posed solution resolves the memory issues and improves the thread-level workload

balance. To the best of our knowledge this is the first GPU approximation algorithm

4

for solving the problem on shared-memory systems, proposed in the literature. Our

evaluation on the GPU considers as many as nine dimensions in order to assess the

optimal decomposition of the various problem instances. We compare the perfor-

mance of our GPU implementation with that obtained by the OpenMP implemen-

tation on a multicore CPU. The results show that our techniques yield an efficient

GPU approximation algorithm for P || Cmax, with improved performance on large

problem instances.

• In the second research component, we exploit the wavefront parallelism for 2D dy-

namic programming problems and 2D stencil problems, which are updated in place.

We design a shared memory-based tiling mechanism to achieve balanced and opti-

mized workloads with minimal overhead compared to existing state-of-the-art ap-

proaches. In addition, we provide a methodology for deriving the optimized thread

blocks and tiles from the GPU architecture. We design the kernel configuration to

significantly reduce the minimum number of synchronizations required and also in-

troduce an inter-block lock to minimize the overhead of each synchronization. More-

over, GPU shared memory is used to replace the L1 cache for improving both spatial

and temporal locality, showing that a shared memory-based approach achieves better

data locality and coalesced global memory access than a cache memory approach [8]

does. To the best of our knowledge, there is no existing work that addresses both the

concurrency issue and the memory efficiency issue.

• Our third contribution is the development of a non-overlapped tiling approach for

optimizing 2D stencil problems by tiling the time dimension. Unlike the overlapped

5

tiling approach, non-overlapped tiling does not have the required data entries to per-

form repeat calculations to reproduce the data lost along the temporal dimension,

which makes non-overlapped tiling not feasible for optimizing the time dimension.

In our development, we make time dimension tiling possible in the non-overlapped

tiling optimization by using GPU shared memory and developing a data pattern for

accessing the tiles in shared memory. In addition, we explore the tile-level parallelism

in a stream-processing pattern and design a two-level lock system to coordinate the

processing sequence. The streaming system tiles the time dimension and does not

generate extra calculation and imbalanced workload. Moreover, the proposed non-

overlapped tiling approach is developed as a general purpose implementation for

solving the most frequently used 2D stencil computations, which have different num-

ber of stencil points.

The optimization methods presented in this dissertation use CUDA terminology and use

NVIDIA GPUs as experimental hardware. Because the research is using shared memory for

improving memory efficiency, our contributions can be obtained when the users can access

and manipulate GPU shared memory directly.

1.2 Dissertation Outline

The dissertation is organized as follows. Chapter 2 gives a brief overview of NVIDIA

GPUs and the related CUDA API. Chapter 3 describes the tiling strategy to optimize DOALL

and DOACROSS parallelisms by comparing square tiling to non-square tiling and over-

lapped tiling to non-overlapped tiling. Related works of my three dissertation projects

are presented in chapter 4. Chapter 5 describes the tiling style data-partitioning method

6

that adjusts the over-sized data matrix into GPU memory and fully utilizes the compute

resources for DOACROSS parallelism on high-dimensional dynamic programming. Chap-

ter 6 describes a highly optimized hyperplane tiling approach, which achieves a balanced

workload and maximum resource utilization with an extremely low synchronization over-

head, for improving wavefront parallelism on GPUs. Chapter 7 extends some of the ideas

from Chapter 4 to develop a non-overlapped tiling approach that optimizes the 2D stencil

problems by tiling the time dimension on GPUs. The non-overlapped tiling approach can

be adapted for different stencil types. At the end, we make a conclusion for our dissertation

work and discuss some of the future research directions in Chapter 7.

7

CHAPTER 2 OVERVIEW OF NVIDIA GPUS AND CUDA

GPU computing is a popular approach to simulating complex models and performing

massive calculations. Compared to the typical multicore CPUs, the developers can obtain

much higher throughput from the latest Nvidia GPUs without consuming extra energy. The

high throughput implies a greater potential for accelerating the intensive arithmetic calcu-

lations on the GPUs. Thus, the extensive research on developing optimal GPU applicable

parallel algorithm is required in many fields. Efficient GPGPU, known as General-Purpose

computing on Graphics Processing Units, requires good parallelism, memory coalescing,

regular memory access, small overhead on data exchange between the CPU and the GPU,

and few explicit global synchronizations, which are usually gained from optimizing the

algorithms. Besides these advantages, the proper use of some novel properties provided

on NVIDIA GPUs can offer further improvement.

On GPU devices, software developers are able to develop general purpose processing

applications using the CUDA platform. CUDA (Compute Unified Device Architecture) is a

parallel computing platform and application programming interface (API) model created

by NVIDIA [16]. The CUDA platform provides direct access to the GPU’s virtual instruction

set and parallel computational elements, for the execution of compute kernels.

In this chapter, we briefly introduce two different NVIDIA GPU architectures that we

use for performance evaluations as well as the major GPU features and relevant CUDA

concepts.

8

2.1 GPU Architecture

A NVIDIA GPU is designed with multiple streaming multiprocessors and a global mem-

ory system that includes a high bandwidth unified memory [17, 18, 19] and an L2 cache

shared by all the multiprocessors. In each multiprocessor, there are hundreds of processing

cores, which must execute the same operation concurrently like a vector processing unit. In

addition, a multiprocessor is also equipped with an L1 cache and a human-managed cache,

called shared memory. In this dissertation, we evaluate the experimental performance and

architecture of Kepler [17] and Pascal [18] GPU architectures.

Streaming Multiprocessors (SMs) are the part of the GPU that runs CUDA kernels. Each

multiprocessor has its own processing cores, cache blocks, registers, and control units.

A Kepler GK110 GPU includes 15 streaming multiprocessors and each multiprocessor is

equipped with 192 cores and a 64 KB cache block, which can be partitioned between L1

cache and shared memory. A Pascal GP104 GPU includes around 20 streaming multipro-

cessors and each multiprocessor is equipped with 128 cores. Unlike the Kepler GK110

architecture, a Pascal GPU has a 96 KB shared memory block, which is separate from the

individual 48 KB L1 cache, in each multiprocessor.

The 1080 Ti has a total of 3584 CUDA cores, 12 GB global memory, and each CUDA core

has a clock rate of 1.63 GHz for a peak performance of around 11.6 TFLOPS. Whereas, the

K40 is equipped with 12 GB memory and has 2880 cores at a clock rate of 745 MHz, which

sum to a peak performance of 4.29 TFLOPS. In addition, the memory bandwidth of the GTX

1080 Ti and Tesla K40 are 484 GB/s and 288 GB/s, respectively. We divide the throughput by

the memory bandwidth to calculate the arithmetic intensity as 24 FLOPs/byte for 1080 Ti

9

Figure 1: The GPU denotes more processing cores and small cache and less sophisticated
flow control.

and 15 FLOPs/byte for K40.

GPU Cores The GPU is designed into a highly parallel architecture that has tremendous

computational horsepower and very high memory bandwidth [16]. As it is shown in Fig. 1,

unlike the traditional multicore CPUs, the GPUs are equipped with more than a thousand

cores where each core has a lower clock rate and a much smaller and simpler cache.

Therefore, GPUs are designed for intensive data processing rather than data caching and

flow control.

Shared Memory can be used as a managed cache, which is especially useful when oper-

ations are performed on a certain block of data entries that are not stored consecutively.

Significant benefit is obtained when using shared memory instead of cache in the study of

matrix multiplication [20, 21]. Especially when the cache behavior is unpredictable, stor-

ing these data entries in shared memory guarantees data reuse. Also, it is more beneficial

to use shared memory on Pascal GPUs because using shared memory frees L1 cache from

storing non-contiguous data, which may lead to more efficient L1 cache usage.

10

2.2 CUDA Terminology

CUDA provides programmers with APIs for accessing a GPU’s virtual instruction set and

computing resources.

Kernel: A CUDA kernel consists of the operations, which are executed N times in parallel

by N different CUDA threads on one or multiple multiprocessors.

Thread: In CUDA programming, threads are the basic processing unit that process the

kernel’s operations. CUDA threads do not have individual task schedulers, so a group of

threads that share the same scheduler perform the same operations. To manage that many

threads launched in a kernel, each thread is indexed with a unique ID.

Thread Block: In CUDA programming, a kernel function is launched with one or multi-

ple thread blocks where a thread block is a programming abstraction which manages the

thread and memory resources. First, a thread block is a cluster of threads, which contains

up to 2048 or 1024 threads for different architectures. Second, the thread block manages

memory access. Threads within the same block can access the same shared memory and

L1 cache; however, data access between multiple blocks can only be completed in global

memory. Third, a thread block resides only on one multiprocessor and the threads within

a block share the in-processor memory and registers.

Warp: The multiprocessor creates, manages, schedules, and executes threads in groups of

32 parallel threads called warps [16]. Thread blocks are partitioned into warps and each

warp contains threads of consecutive, increasing thread IDs. A warp is like a SIMD (Single

Instruction Multiple Data) machine, which can only execute one instruction with multiple

data at one time. On Kepler and Pascal GPUs, full efficiency is realized when all 32 threads

11

of a warp agree on their execution path. If threads of a warp diverge via a data-dependent

conditional branch, the warp executes each branch path taken, disabling threads that are

not on that path. Branch divergence occurs only within a warp; different warps execute

independently regardless of whether they are executing common or disjoint code paths.

Stream: A stream is a sequence of operations that execute in issue-order on the GPU.

Thus, kernels scheduled to the same stream are executed in serial. To perform multiple

CUDA kernels simultaneously, each kernel has to be launched in a unique stream. In

some circumstances, launching kernels in multiple streams helps with obtaining maximum

performance by leveraging concurrency and hiding data communication costs.

2.3 GPU Properties

The GPU is designed for massive parallelism, which requires many cores to fulfill the

concurrency requirement. Thus, the delicate cache design is sacrificed on GPUs to tradeoff

the performance and power cost. In order to fully utilize the GPU computing power, the

programmers have to pay attention to a couple of GPU properties.

Memory Hierarchy: GPUs have a multi-layered memory hierarchy designed for different

execution scope. In each thread block, registers are evenly assigned to each thread as its

private memory. Then, each thread block has shared memory, which is on-chip and visible

to all threads of the block. Shared memory can be used as managed cache with much

higher bandwidth and much lower latency than global memory. Thus, data communication

between the threads of a block can be performed in shared memory. In addition, each

processor is also equipped with an on-chip L1 cache, used for fetching and storing data

from off-chip memory. Also, a L2 cache is off-chip and accessible by all the processors.

12

The largest memory unit on a GPU is global memory, which is off-chip and all threads

have access to. On a GPU, memory transactions are initiated by warps, where each warp

consists of 32 threads and a warp can process only one instruction at a time. Global

memory is accessed via 32, 64, or 128-byte memory transactions with the first address of

each write or read memory transaction memory aligned to a multiple of the transaction

size. When a warp performs a global memory access, it coalesces the memory accesses of

the threads within the warp into one or more of these memory transactions depending on

the size of the word accessed by each thread and the distribution of the memory addresses

across the threads. Therefore, highest throughput can be achieved if 32 threads in a warp

request contiguous data entries that are aligned (memory coalescing). If 32 threads read

data entries located at non-contiguous addresses, it is possible that this warp performs up

to 32 memory transactions to complete the memory request.

Bank Conflict: Shared memory is organized into banks, which are equally-sized memory

modules and should be accessed simultaneously to obtain high bandwidth. However, if

multiple addresses of a memory request fall in the same memory bank, there is a bank con-

flict and the access must be serialized. On the other hand, n addresses of a memory read

or write request that fall in n distinct memory banks can be satisfied simultaneously [16].

Stream Processing: On GPUs, each stream has its own operating context so that it may

execute its commands out of order with respect to the other streams. Each stream can

include multiple thread blocks and may utilize one or more GPU processors. The proces-

sor assignment of these thread blocks is not guaranteed and different streams could be

distributed to the same processor during execution. Stream processing on GPUs is the

technique to process multiple kernel functions concurrently, where each kernel launched

13

in a different stream. Thus, multiple kernel functions can be processed concurrently when

each kernel is associated with an individual stream. However, multiple kernel functions

that are assigned to the same stream are processed in sequence. Therefore, the number of

concurrently processed kernel functions is limited by the number of streams as long as it is

within the GPU capability. When we assign only one thread block to each kernel function,

a mapping between the blocks and the streams is created. If the number of streams is

the same as the number of processors, we will have one thread block processed in each

processor because a GPU distributes the thread blocks evenly to all available processors.

14

CHAPTER 3 OVERVIEW OF LOOP TILING

The loop tiling technique is used to improve data locality in a large-scale computation

to ensure that the data entries in a tile fit perfectly into cache memory so that data can be

reused. In addition, loop tiling also helps with obtaining better workload balance when

data dependence exists within the nested loop.

3.1 Loop Tiling on GPUs

Tiling loops on a GPU can be completed in two steps. First, the loops are partitioned

into small chunks in the host code. Thus, the parallelism is split into two level parallelism:

inter-tile parallelism and intra-tile parallelism. Second, launching the tiles in one or multi-

ple kernels is used to obtain the inter-tiles parallelism, and intra-tile parallelism is achieved

by processing the inner iterations of each tile on the threads.

There are two approaches for obtaining inter-tile parallelism. One is that all the tiles

are launched within the same kernel and processed by different thread blocks, so it gener-

ates a tile-block mapping. Streaming processing provides the alternative, which launches

multiple kernels simultaneously. In this approach, one or multiple tiles are assigned to the

thread blocks of a kernel, and multiple kernels are assigned to the streams. Therefore, the

tiles that reside in the different stream context can be processed simultaneously.

Because the multiprocessor is equipped with many cores and limited memory capa-

bility, the tiling performance on GPUs is determined by the size of each tile. A large tile

brings in enough concurrency but its memory requirement may exceed the GPU’s memory

capacity. On the other hand, a small tile can fit into the in-processor memory block but the

concurrent workload may be insufficient for maximizing the use of the compute power.

15

3.2 Wavefront Parallelism

In a two-dimensional data matrix, wavefront parallelism can be visualized as the com-

putation proceeding along diagonal waves, because each data entry is updated based on

the already updated neighboring entries occurring in the same row, column, and diago-

nal if the dependence is uniform. A problem has uniform dependences if each data entry

depends on a constant number of dependent subproblems as well as having a constant

distance between itself and any one of its dependent subproblems, such as the local se-

quence alignment problem [2, 22]. Problems like matrix parenthesization [22] and the

P || Cmax [9] have non-uniform dependence. Fig. 2 illustrates the wavefront parallelism

on a data matrix where each data entry has uniform dependence on its top and left cells.

Data entries that reside in the same anti-diagonal, illustrated as dotted lines, could be

executed concurrently since they depend on two adjacent entries at one preceding anti-

diagonal level, where the dependencies are depicted as arrows. To obtain good concur-

rency, wavefront parallelism is often applied to applications that have nested loops and

uniform dependences across iterations [23, 24, 25, 26]. Wavefront parallelism exploits

the potential parallelism but it does not guarantee the efficiency of the parallel compu-

tation. The bi/tri-directional dependencies restrict the parallelism in the diagonal order,

which can result in an imbalanced workload and poor data locality. To solve large prob-

lems, efficient approaches are required to eliminate these performance issues.

Tiling Technique

The tiling technique is used to improve data locality in a large-scale computation to

ensure that the data entries in a tile fit perfectly into cache memory so that data can be

16

Figure 2: The wavefront parallelism.

reused. Fig. 3 shows two data matrices for the same DOACROSS parallelism, separated by

the middle vertical line. The small squares in this picture represent the data entries and

each data entry depends on the neighbors to its left and top. Thus, each data entry has a

dependence in both outer loop and inner loop, which results in the fact that concurrency

can be achieved along the diagonal direction. The dotted lines represent the concurrency

that the data entries on the same dotted line can be executed simultaneously. In Fig. 3,

the square tiling method generates two-level parallelism, which is shown on the righthand

side of the vertical line. Inter-tile parallelism, represented by the tile indices, executes the

concurrent tiles on multiple streaming multiprocessors and intra-tile parallelism, repre-

sented by the dotted lines, proceeds along diagonals, allowing concurrent data entries to

be calculated by CUDA cores.

17

1

3

5

2

4

6

3

5

7

4

6

8
SM2

SM1

SM0
1 2 3

2 3 4

3 4 5

Figure 3: Hyperplane Tiling vs Square Tiling.

3.2.1 Square VS Non-Square

Naturally, loop tiling partitions the loops evenly into multiple square-shaped tiles, as

shown on the righthand side of Fig. 3. Square tiling improves the performance of DOALL

parallelism because it contributes to efficient cache utilization. However, square tiling may

not contribute optimal performance to DOACROSS parallelisms because an imbalanced

workload still exists in both inter-tile parallelism and intra-tile parallelism and the average

concurrency is relatively low.

Hyperplane tiling splits the data entries along the diagonals, which changes the data

layout accessed by the memory operations and eliminates the intra-tile imbalanced work-

load. As shown in Fig. 3, hyperplane tiling, on the lefthand side of the vertical line, obtains

balanced intra-tile workload in the parallelogram tiles. An imbalanced intra-tile workload

appears only at the first and last tiles of each row; this overhead is negligible when the ma-

trix size is large. The hyperplane tiling technique achieves a balanced intra-tile workload;

18

however, it is not necessarily efficient due to the imbalanced inter-tile workload caused

by synchronization latency – the hyperplane tiles have to be synchronized with a global

barrier to ensure the correctness of inter-tile data communication. Also, the global barrier

forces all concurrent tiles to wait for the completion of the longest running task and idles

some streaming multiprocessors. In this case, hyperplane tiling is a better option, which

changes the data layout accessed by the memory operations and eliminates the intra-tile

imbalanced workload.

19

CHAPTER 4 RELATED WORK

4.1 Higher-Dimensional Dynamic Programming

To address “the curse of dimensionality", some researchers proposed approximations

for higher-dimensional dynamic programming [27, 28, 29]. Despite huge advances in

parallel computing, the parallel implementation of exact higher-dimensional dynamic pro-

gramming problems, especially on the GPU, is not as well-studied as two-dimensional dy-

namic programming. Berger and Galea [30] implemented a multi-dimensional knapsack

algorithm on the GPU by introducing the idea of combining coarse-grained parallelism

and fine-grained parallelism, and improving the memory coalescing by fixing the number

of dimensions. However, their technique works only for small problem sizes, as the size of

a higher-dimensional table can grow quickly with the number of dimensions and is likely

to exceed the GPU global memory.

Previous work investigated parallel dynamic programming, considering both coarse-

grained (multiprocessor clusters) and fine-grained architectures (multicore CPUs, and

many-core GPUs). A coarse-grained architecture, such as a multiprocessor cluster, usually

achieves efficient local computations because of its powerful computational capabilities

and large memory on each processor. But the inefficient inter-cluster communication and

unbalanced workload are detrimental to the parallel performance. Some prior research

has focused on reducing the inter-cluster communication, such as, partitioning the dy-

namic programming table into multiple rectangular segments [31, 32, 33]. In addition,

work distribution schemes, like block-cyclic [32], have also been employed to balance

the workload across processors. Implementing parallel dynamic programming on multi-

20

core CPUs and many-core GPUs requires a more sophisticated method of work distribu-

tion among threads, as a fine-grained architecture has many more computing resources to

run the same anti-diagonal levels of sub-problems concurrently, especially for the GPU.

A strategy for computing successive anti-diagonals of the dynamic programming table

was applied to the multicore CPU to maximize parallel execution [14, 34]. Several re-

searchers [35, 36, 37, 38] extended this strategy to achieve more fine-grained parallelism

on the GPU, mostly for two-dimensional dynamic programming problems. Very few re-

searchers investigated accelerating higher-dimensional dynamic programming problems

on the GPU.

To address “the curse of dimensionality", some researchers proposed approximations

for higher-dimensional dynamic programming [27, 28, 29]. Despite substantial advances

in parallel computing, the parallel implementation of exact higher-dimensional dynamic

programming problems, especially on the GPU, is not as well-studied as two-dimensional

dynamic programming. Berger and Galea [30] implemented a higher-dimensional knap-

sack algorithm on the GPU by introducing the idea of combining coarse-grained parallelism

and fine-grained parallelism, and improving the memory coalescing by fixing the number

of dimensions.

4.2 Wavefront Parallelism Optimization

Cache-Oblivious Wavefront

A cache-oblivious technique has been applied to wavefront parallelism recently [39].

As for other matrix-based applications, the data matrix is recursively split into smaller

chunks until it can fit into cache so that data locality is improved. However, implementing

21

this cache-oblivious approach on GPUs is challenging because of the SIMT architecture.

The recursive functions would consume limited GPU on-chip memory and it is difficult to

distribute recursions to massive threads.

Compensation-based Parallelism

The compensation-based method is another approach introduced in [40, 41, 42], which

breaks the multi-directional dependencies by ignoring the row-order data dependency. The

data entries in the same row are executed concurrently and a correction is then applied

to the intermediate results. Without the row-order data dependency, the execution is

completed with a balanced workload. However, this method is not generic, because it

changes the original data dependency as well as the sequence of computation operators

on data entries [42]. Moreover, domain knowledge is required for correcting the final

results, which makes this method difficult for users who have no related background.

Tiling Technique

On the other hand, the tiling technique is a general solution that can be applied to all

problems of this kind. The idea of using the wavefront technique and tiling technique to

maximize the innermost loop parallelism was first presented by Wolf and Lam [43]. The

wavefront technique transforms the nested loop and makes the innermost loop a DOALL, so

that maximized parallelism is obtained in the innermost loop. Then, the tiling technique

reduces the synchronization cost and improves data locality. The square tiles used in

the proposed algorithm cause an imbalanced workload issue on GPUs because the in-tile

workload cannot be evenly distributed to the many threads. Also, this algorithm cannot

be applied to the GPU directly because it does not map each data entry to the threads.

Di et al. [44, 26] adapt this tiling algorithm to GPUs to accelerate the successive over-

22

relaxation (SOR)-based applications. In these works, the square tiles are distributed to

thread blocks so that each tile is processed by a GPU streaming multiprocessor and each

thread processes one or more data entries within the tiles. However, only the tiles on

the same diagonal can be processed concurrently because the outermost parallelism is

achieved along the anti-diagonal. This leads to a processor-level concurrency issue at the

beginning and the end of the execution, since the number of concurrent tiles is fewer than

the number of processors. Moreover, due to the limited cache size on GPUs, the use of

square tiles cannot improve the data locality in the L1 cache.

Malas et al. [45] accelerate stencil operations with hyperplane tiles on multicore CPUs

and achieves about 2 to 3 times speedup comparing to the square tiling implementations.

Bednárek et al. [3] apply the hyperplane tiling technique to their GPU implementation,

which solves edit distance problem efficiently. The enhanced implementation not only

minimizes the imbalanced workload but also optimizes the thread concurrency. Bednárek

ignores the memory issue because the intermediate data entries are not needed in this

work; therefore, most of the calculations can be performed using L1 cache. Di et al. [46]

present a compiler framework that automatically parallelize nested loops on GPUs. In

this work, the data matrix is split into hyperplane tiles and data entries of each tile are

moved to shared memory before the execution, which enables coalesced memory access.

However, this framework can only parallelize nested loops that have no dependence.

A GPU stream processing approach that reduces the synchronization cost and improves

the processor-level concurrency is proposed by Belviranli [8]. In this implementation, a

row of tiles are processed at the same processor, so local synchronization between each

pair of these tiles is sufficient. Thus, the original global barriers can be eliminated and

23

unnecessary idle waiting is greatly reduced at each processor. But memory efficiency is not

optimized. Because concurrent data entries are neither aligned nor consecutively stored in

global memory, uncoalesced global memory accesses are inevitable and result in relatively

inefficient memory access. Also, due to the limited cache size, it is difficult to reuse the

cached data because each warp has to release its cache lines when accessing new data

entries.

Shared Memory

On GPUs, shared memory can be used as a managed cache, which is especially use-

ful when operations are performed on a certain block of data entries that are not stored

consecutively. Significant benefit is obtained when using shared memory instead of cache

in the study of matrix multiplication [20, 21]. The tiling technique is applied in matrix

multiplication to reduce the number of data entries to be calculated concurrently, so these

data entries can fit into shared memory. Due to the unpredictable cache behavior, storing

these data entries in shared memory guarantees data reuse. Also, on the GPUs that have

separate L1 cache and shared memory, using shared memory frees L1 cache from storing

other non-contiguous data, which may lead to more efficient L1 cache usage.

4.3 Time-Space Tiling for Stencil Computation

The optimization of stencil computations has been studied for decades and they are

still challenging for state-of-the-art multi-core and many-core architectures because of

high memory bandwidth requirements. Since the array size is usually much larger than

cache capacity, the computation forces subsequent sweeps through the array to reload

data, which results in poor temporal locality.

24

The major solution is time-space tiling, which minimizes the space dimension’s cache

misses and reuses the cached data along time dimension. This strategy is widely used in

most recent work [10, 47, 1, 12, 11, 48, 49, 50, 51, 52]. Various implementations are

proposed to achieve the same objective but lead to different effectiveness according to the

device architectures and the tradeoff between computation overhead and memory latency.

Overlapped Tiling

Overlapped tiling optimization performs redundant operations to address the depen-

dence data when executing more than one time step. Krishnamoorthy [11] characterizes

the situations in which tiling inhibits concurrent start and defines overlapped tiling ap-

proaches that enable concurrent start in the tiled space and resolve the load imbalance

caused by tiling. Rawat et al. present a method for obtaining the optimal tile size and

improve the overlapped tiling efficiency by managing GPU memory resources [12, 13].

Then, Rawat further improves the overlapped tiling with a fusion heuristic, which con-

sumes more register resources to enable better temporal locality and reduce memory traf-

fic [1]. Yount [49] specifically designed an overlapped tiling approach for the Intel Xeon

Phi processor that utilizes the Phi processor’s high-bandwidth memory, and optimizes the

computation with SIMD instructions and vector-folding. Meng [52] points out the relation-

ship between the performance and ghost zone of overlapped tiles and provides a method

for finding the optimal ghost zone size automatically. Nguyen et al. [10] present a 3.5D-

blocking algorithm to address 3D stencil problems with overlapped tiling. The 3.5D tiling

performs 2.5D-spatial tiling and temporal tiling, which makes the 3D stencil computation

no longer memory bandwidth bounded. A flexible load-balancing scheme is also provided

for distributing the array elements equally to the threads on both CPUs and GPUs. In ad-

25

dition, some code auto-generating compilers [53] have been built on top of overlapped

tiling, like Halide [54], PATUS [55].

Split Tiling

Split tiling enables concurrent start without introducing computation overhead. How-

ever, it has trouble with intra-tile parallelism due to the tile shape. Krishnamoorthy [11]

develop a split tiling approach by dividing a tile into sub-regions and scheduling the com-

putation and communication to achieve concurrent start and load-balanced execution.

Bondhugula [56] proposes a formalized diamond tiling, which is generalized to arbitrary

stencil computations. This approach formalizes the conditions for the concurrent start

for tiling hyperplanes and provides an approach to find such tiling hyperplane. Grosser

et al. [48] split the tiles into a sequence of trapezoidal computation steps and develop

an approach for generating split tiling code for GPUs in the PPCG [57] code generator.

The proposed algorithm performs split tiling for stencil computations that have an arbi-

trary number of dimensions without the need for skewing or redundant computations.

Malas et al. [45] combine the ideas of multicore wavefront temporal tiling with diamond

spatial tiling to reduce memory bandwidth intensity in a 3D space grid, which shows per-

formance advantages in bandwidth-starved computations and is optimized for multicore

CPUs. Shrestha et al. [58] develop a jagged polygon tiling technique, which is a variant of

diamond tiling. The jagged polygon tiling obtains the advantages of concurrent start and

exploits inter-tile locality without compromising intra-tile parallelism.

Cache Oblivious

Cache Oblivious [59, 5] solutions are an alternative for resolving frequent memory

access issues, which shares the same property of blocking time-space dimensions. In a

26

cache oblivious implementation, the blocking size is automatically determined to fit into

the cache memory, which is achieved by continuously tiling the longer dimension in the

recursive kernels. Bilardi [60] develops a cache oblivious algorithm for the problem of

simulating large parallel machines on smaller machines in a time-space optimization man-

ner. The algorithm applies to 1D and 2D spaces but does not generalizes to higher di-

mensions. Frigo [61] presents a more generalized cache oblivious algorithm for stencil

computations, which solves arbitrary stencils computations in n-dimensional spaces. Tang

et al. [62] develop a compiler and runtime system, called Pochoir, for implementing stencil

computations on multicore CPUs. The Pochoir compiler is employed with a parallel cache-

oblivious algorithm and it translates a domain-specific stencil language embedded in C++

into high-performing Cilk code for general n-dimensional stencil computations.

Time Skewed Tiling

Time skewed tiling tiles the temporal dimension according to the inter-tile dependence,

which usually results in rectangular shapes in 1D computations, parallelogram tiles in 2D,

and parallel-piped in 3D. Wonnacott [63] proposed the idea of a time skewing transfor-

mation to produce scalable locality for optimizing the computations, where data locality is

the dominant issue. Later, this tiling optimization is used to eliminate the redundant com-

putations [64, 65]. Andonov et al. [66, 67] discuss the method for selecting the optimal

tile size for time skewing in a 2D grid.

Hybrid Tiling

Some attempts for optimizing stencil computations with hybrid tiling approaches are

performed to obtain the advantages of concurrent start, load balancing, optimal data local-

ity and good concurrency. Grosser et al. [68] develop a hybrid hexagonal/diamond tiling

27

approach, which can be used efficiently on GPUs. The hybrid tiling approach tiles the time

dimension and outer spatial dimension into hexagonal tile shapes with diamond tiling

along the other spatial dimensions. It involves no redundant computations and enables

reuse along the time dimension while ensuring adequate parallelism.

Other Optimizations

In addition to the tiling approaches, some work also focus on processor-level optimiza-

tion. Dursun et al. [69] emphasize processor-level optimization techniques in their work.

They propose a hierarchical scalable parallelization scheme, which efficiently uses the hi-

erarchical memory levels in Intel multicore CPUs. Similarly, optimization works like tuning

memory resources and overlapping memory transaction latency with operations are also

performed on GPUs [70, 71, 44]

28

CHAPTER 5 OPTIMIZING HIGHER-DIMENSIONAL DOACROSS
PARALLELISM

Optimizing DOACROSS parallelism on GPUs is challenging because of the inherently

sequential relationship and irregular workload across sub-problems. This is especially the

case for higher-dimensional problems, those with three or more dimensions, where di-

mensionality refers to the number of loops for the nested loop. In this chapter, we present

techniques to optimize performance for higher-dimensional DOACROSS parallelism on

GPUs. We obtain the DOACROSS parallelism from a higher-dimensional dynamic pro-

gramming procedure, which has a structured data access pattern. The dynamic program-

ming procedure is obtained from the best existing polynomial-time approximation scheme

for the problem of scheduling jobs on identical parallel machines. We demonstrate that the

proposed technique highly optimizes the higher-dimensional dynamic programming pro-

cedure on GPUs and experimental results show that the optimized GPU implementation

outperforms an optimized OpenMP implementation.

5.1 Introduction

We study the optimization for the higher-dimensional DOACROSS parallelism for the

problem of scheduling jobs on parallel identical machines to minimize makespan. The

algorithm used to solve the problem is a Polynomial Time Approximation Scheme (PTAS)

based on a higher-dimensional dynamic programming approach, where dimensionality

refers to the number of variables in the dynamic programming equation characterizing the

problem. Because the dynamic programming procedure accesses structured dependent

data across multiple dimensions in each iteration, parallelizing the dynamic programming

procedure leads to a regular DOACROSS parallelism and optimizing this procedure pro-

29

vides us with insight for optimizing higher-dimensional DOACROSS parallelism.

Although algorithms for several dynamic programming problems have already been

ported to the GPU, challenges still remain, specially for higher-dimensional cases. In this

study, the dimensionality refers to the number of variables in the dynamic programming

equation characterizing the problems. Dynamic programming solutions are built from

the solutions to sub-problems limiting the degree of parallelism that can be exploited.

Furthermore, the workload imbalance among sub-problems increases with the number of

dimensions. In addition, solving higher-dimensional dynamic programming problems can

quickly exceed the GPU memory.

We consider higher-dimensional dynamic programming algorithms, those of three or

more dimensions, and develop techniques to achieve an efficient implementation on the

GPU. The proposed techniques resolve the memory issue and improve the thread-level

workload balance. To illustrate the challenges and evaluate our techniques, we port to the

GPU an approximation algorithm for scheduling jobs on identical parallel machines. This

algorithm is a Polynomial Time Approximation Scheme (PTAS) based on an exact higher-

dimensional dynamic programming approach. Our evaluation on the GPU considers as

many as nine dimensions in order to assess the optimal decomposition of the various

problem instances. We compare the performance of our GPU implementation with that

obtained by an OpenMP implementation on a multicore CPU. The results show that our

proposed tiling-like technique yields an efficient GPU algorithm with better performance

on large problem instances, while also addressing the GPU memory limitations.

30

5.2 Tiling-Like Data-Partitioning Scheme

Even if the availability of the many cores on the GPU makes it possible to complete

the massive calculations of a higher-dimensional dynamic programming (DP) problem in

a relatively short time, the large storage requirement is still a challenge to GPU implemen-

tations. In the higher-dimensional DP problem, it is possible that each subproblem in the

DP-table requires a big chunk of memory for temporarily holding the data of its dependent

subproblems, so that even the execution of a relatively small size DP problem can also run

out of memory. In this study, we resolve this issue by dividing the huge DP-table into many

small blocks and performing executions on a number of blocks concurrently. Thus, we can

save the memory usage by allocating memory only to the subproblems of these blocks.

Here, we call the scheme of dividing the DP table, data-partitioning.

We now describe the idea of our proposed data-partitioning scheme for higher-dimensional

DP. From a geometrical point of view, the partitioning evenly divides a multi-dimensional

DP-table into multiple small blocks of the same size. The number of small blocks and the

size of each block is determined by a vector, which we call divisor. A divisor has the same

number of dimensions as the multi-dimensional DP-table, and the value on each dimension

represents the number of segments that this dimension is divided into. Since the subprob-

lems of the higher-dimensional DP-table are stored in row-major order, the subproblems of

each small block are stored dispersedly in the array of the DP-table. Thus, from the data

storage point of view, the partitioning scheme reorganizes the storage order of the array

to have the subproblems stored within the small blocks.

In the parallel DP problems considered in this chapter, the flow of computation moves

31

along the main diagonal, and the subproblems on each anti-diagonal are independent.

Thus, the subproblems on the same anti-diagonal can be processed in parallel (as shown

in Fig. 5). In a partitioned DP-table, we develop the same computation flow and paral-

lelization on the blocks and the subproblems in each block separately. In other words, our

implementation first processes the blocks on the same level in parallel and then parallelize

the subproblems on the same in-block anti-diagonal level.

As an example, let us consider a 3-dimensional DP-table (M,N,L) which is evenly di-

vided by a divisor, (a, b, c), and each small block can be represented by a vector (i, j, k),

where i ≤ a, j ≤ b, and k ≤ c. Thus, these blocks can be classified into different block-

levels, and the vector indicates the block-level l = i+j+k that a block belongs to. Here, the

term “block-level" refers to the blocks that can be executed concurrently, which is similar

to the term “anti-diagonal level" for concurrent subproblems. We can also index each small

block with a unique value, which is calculated from i× b× c+ j× c+ k, so that these small

blocks can be stored in a sequence with the index. In addition, a subproblem, represented

by (x, y, z), belongs to the small block (i, j, k) if x ∈
[
M×i
a
, M×(i+1)

a

]
, y ∈

[
N×j
b
, N×(j+1)

b

]
,

and z ∈
[
L×k
c
, L×(k+1)

c

]
. Moreover, we can indicate the subproblem’s in-block anti-diagonal

level (l = x + y + z) and calculate the vector (i, j, k) of the block it belongs to, where

i = bx/M
a
c, j = by/N

b
c, and k = bz/L

c
c. All the subproblems (x, y, z) that belong to a small

block (i, j, k) are stored consecutively in row-major order.

Fig. 4 shows an example of the data-partitioning scheme for a 3-dimensional DP-table.

The table consists of 6× 6× 6 subproblems which are represented by the small cubes. Like

the anti-diagonal parallelism in the 2-dimensional DP-table, shown in Fig. 5, the addition

of the vector values indicates the anti-diagonal level the subproblems belongs to. Thus, the

32

Figure 4: Partitioning a 3-D DP-table by a divisor (3, 3, 3).

smallest subproblem (0, 0, 0) is in the first anti-diagonal level, and the largest subproblem

(5, 5, 5) is in the 15th level. After partitioning the DP-table with the divior, all the sub-

problems are classified into multiple 3-dimensional blocks with a block size of 2 × 2 × 2.

Then, these blocks are also grouped into 7 different block-levels which are represented

by 7 different colors, and the blocks with the same color are independent and can be ex-

ecuted concurrently. In addition, 8 subproblems, in each block, are also classified into 4

anti-diagonal levels, so that the in-block execution concurrency can also be obtained.

More details of the data-partitioning scheme are given in Section 5.4 where we employ

the proposed techniques to a case study consisting of the PTAS algorithm for scheduling

parallel identical machines. We will present the implementation of the dynamic program-

ming procedure of the parallel version of PTAS on the GPU and analyze the advantages

of using the data-partitioning scheme for resolving the problem efficiently. The block-

level is indicated by l = i + j + k. Also, the index of the block can be calculated from

i×N × L + j × L + k. In addition, a configuration (x, y, z) belongs to the block (i, j, k) if

33

Algorithm 1 PTAS for P ||Cmax by Hochbaum and Shmoys [15]

1: Input: n,m, T = {t1, ..., tn}, ε
2: LB ← max

{⌈
1
m

∑n
j=1 tj

⌉
, maxj=1,...,n tj}

3: UB ←
⌈

1
m

∑n
j=1 tj

⌉
+maxj=1,...,n tj

4: k = d1/εe
5: while LB < UB do
6: T = b(UB + LB)/2c
7: Partition jobs into short and long jobs
8: Round down long jobs to their nearest multiples of bT/k2c
9: OPT = DP (N, T)

10: Obtain the schedule for rounded down long job sizes
11: if OPT ≤ m then
12: UB = T
13: else
14: LB = T + 1

15: Return the schedule

x ∈
[
M×i
3
, M×(i+1)

3

]
, y ∈

[
N×j
3
, N×(j+1)

3

]
, and z ∈

[
L×k
3
, L×(k+1)

3

]
.

5.3 Dynamic Programming in the Parallel PTAS

We illustrate our proposed techniques on a case study consisting of a parallel approx-

imation algorithm for the problem of scheduling jobs on parallel identical machines to

minimize makespan (denoted by P || Cmax) proposed by Ghalami and Grosu [14]. Their

parallel algorithm requires solving a higher-dimensional dynamic programming problem

and is based on parallelizing the PTAS by Hochbaum and Shmoys [15]. In what follows,

we call the algorithm presented in [14], the parallel PTAS. The basic idea of the PTAS is to

partition the set of jobs into two sets, long and short jobs, round down the processing times

of the long jobs, and find an optimal schedule for the rounded long jobs using the dynamic

programming procedure. The parallelization of the dynamic programming procedure is

the core of the parallel PTAS.

We now briefly describe the PTAS, presented in Algorithm 1. The algorithm requires as

34

Figure 5: Dependency graph for OPT (2, 3)

input, the number of machines, m; the number of jobs, n; the processing times of the jobs

ti, i = 1, . . . , n; and the relative error ε > 0. We denote by T the multiset of jobs’ processing

times, i.e., T = {t1, ..., tn}, and assume that all jobs’ processing times are positive integers.

The algorithm starts by computing the lower and upper bounds (denoted by LB and UB)

on the optimal makespan of the set of n jobs on m identical machines (Lines 2-3).

The algorithm performs a bisection search procedure for a target makespan value T on

the interval [LB,UB] and determines a schedule for the long jobs that fits within T . Next,

it rounds down the processing times of the long jobs to their nearest multiples of bT/k2c,

so that long jobs are classified into k2 dimensions, where k = d1/εe. Then, the algorithm

determines the number of jobs of each of the rounded sizes and creates a k2-dimensional

vector N = (n1, . . . , nk2), where ni is the number of rounded long jobs. After creating

the vector N , the algorithm finds a schedule for the long rounded jobs with a makespan

within time T . This is done by employing the DP algorithm which determines the suitable

35

number of machines to achieve a makespan within T . The DP algorithm generates the

set C of all possible machine configurations. A machine configuration is a k2-dimensional

vector (s1, . . . , sk2) specifying an assignment of tasks to one machine and satisfying that

the total rounded time is within T . The recurrence equation of the DP is given by

OPT (n1, . . . , nk2) =

1 + min(s1,...,sk2)∈C OPT (n1 − s1, . . . , nk2 − sk2).
(5.1)

where OPT (n1, . . . , nk2) is the minimum number of machines sufficient to schedule the set

of jobs given by the vector N and leading to a makespan within T . The idea behind this

recurrence is that a schedule assigns some jobs to one machine and then assigns the rest of

the jobs to as few machines as possible. It is important to observe that each entry requires

at most b1/εck2 time to compute, and that the total number of entries is nk2 Hence, the

values of OPT (n1, . . . , nk2) are the components of a dynamic programming table. Since

k2 is greater than 3, the DP procedure falls within the higher-dimensional dynamic pro-

gramming. The dynamic programming formulation (Equation 5.1) also implies that the

subproblems at each level depend on subproblems at more than one previous level. These

subproblems correspond to the components of a table which we call the DP-table. Figure 5

shows the assignment of the subproblems for the example of a two-dimensional DP-table

to a parallel system composed of four cores.

The dynamic programming formulation (Equation 5.1) of the PTAS is non-serial monadic,

which means that there is a single recursive term in the dynamic programming formulation

and the subproblems at each level depend on subproblems at more than one previous level.

These subproblems correspond to the components of a table which we call the DP-table.

36

Algorithm 2 Parallel DP (N,T) by Ghalami and Grosu [14]

1: Input: N = (n1, . . . , nk2), T
2: σ ← (n1 + 1)(n2 + 1) . . . (nk2 + 1)
3: Let vi = (vi1, . . . , v

i
k2) and OPT (vi1, . . . , v

i
k2) be the i-th entry of DP -table in row-major order,

where i = 0, . . . , σ − 1
4: parallel for i = 0, . . . , σ − 1 do
5: di = 0
6: for j = 0, . . . , k2 − 1 do
7: di = di + vij

8: end parallel for
9: n′ = n1 + . . .+ nk2

10: for l = 0, . . . , n′ do
11: parallel for i = 0, . . . , σ − 1 do
12: if di = l then
13: if i = 0 then
14: OPT (0, . . . , 0)← 0
15: break
16: Ovi ← ∅
17: Cvi ← all machine configurations of vector vi

18: for all (s1, . . . , sk2) ∈ Cvi do
19: Ovi ← Ovi ∪ {OPT (vi1 − s1, . . . , vik2 − sk2)}
20: min←∞
21: for all o ∈ Ovi do
22: if min > o then
23: min = o

24: OPT (vi1, . . . , v
i
k2)← min+ 1

25: end parallel for
26: return OPT (n1, . . . , nk2)

The major contribution of the parallel PTAS algorithm [14] is related to the DP, which

is based on two important characteristics of the computation of subproblems. First, the

flow of computation moves along the main diagonal, and second, the subproblems on each

anti-diagonal (denoted by Level x, in Figure 5) are independent. Thus, the subproblems

on an anti-diagonal can be processed in parallel. Figure 5 shows the assignment of the

subproblems for the example of a two-dimensional DP-table to a parallel system composed

of four cores.

The parallelization of the higher-dimensional DP is presented in Algorithm 2. The

37

goal of the algorithm is to fill out the entire higher-dimensional DP-table. and find the

optimal value of OPT (N). First, the algorithm determines the size of the DP -table, σ =∏k2

i=1 (ni + 1) (Line 2). Next, the P processors compute the sums of the distances of the

vectors vi, i = 1, . . . , σ in parallel (Lines 4-8). Because of the dependencies between the

anti-diagonals, the parallel DP algorithm consists of n′ + 1 sequential iterations, where

n′ is the number of long jobs. The subproblems on each level l (corresponding to anti-

diagonal l) can be identified by the same di value (Line 12) and executed by P processors in

parallel (Lines 11-25). For computing the optimal value of a subproblem, we need to know

its dependencies on the preceding subproblems and use them in Equation (5.1). Therefore,

the algorithm generates the set Cvi of all possible machine configurations, (s1, . . . , sk2), for

vector vi (Line 17). Next, the algorithm finds the location of all subproblems by searching

the entire DP-table and reads their optimal values OPT (vi1 − s1, . . . , v
i
k2 − sk2). Then, it

places the values into multiset Ovi (Lines 18-19) and determines the minimum among all

values of the subproblems currently in Ovi, adds 1 to the minimum and assigns the value

to subproblem OPT (vi1, . . . , v
i
k2) (Lines 20-25). The ordering of iterations guarantees that

at each level the algorithm already computed all the needed preceding subproblems.

5.4 GPU Implementation and Analysis

Since the DP procedure is the most expensive component of the PTAS in terms of

running time, the parallelization of the DP algorithm becomes the major component of

our GPU implementation. A straightforward port of the OpenMP implementation of the

PTAS [14] to the GPU is inefficient, being about a hundred times slower than the OpenMP

implementation. Thus, sophisticated designs using customized techniques are necessary

38

Algorithm 3 GPU implementation of the PTAS

1: Input: n,m, T = {t1, ..., tn}, ε, proc = 4, dim ∈ {3, ..., 9}
2: LBp ← p

proc max
{⌈

1
m

∑n
j=1 tj

⌉
, maxj=1,...,n tj}, p = 0, ..., 3

3: UBp ← LBp+1, p = 0, ..., 2
4: UBproc−1 ←

⌈
1
m

∑n
j=1 tj

⌉
+ maxj=1,...,n tj

5: k = d1/εe, LB = LB0, UB = UBproc−1, count = 0
6: while LB < UB do
7: for p = 0, ..., proc− 1 do
8: Tp = b(UBp + LBp)/2c
9: Partition jobs into short and long jobs

10: Round down long jobs to nearest multiples of bT/k2c
11: Create a k2-dimensional vector N = (n1, ..., nk2)
12: OPTp = Partition(N,Tp, dim, p)

13: for i = 0, ..., proc− 1 do
14: if OPT0 ≤ m then
15: UB = T0
16: LB = LB
17: OPT = OPT0
18: else if OPTproc−1 > m then
19: UB = UB
20: LB = Tproc−1
21: OPT = OPTproc−1
22: else if OPTi > m and OPTi+1 ≤ m then
23: UB = Ti+1

24: LB = Ti
25: OPT = OPTi+1

26: OPT_Array[count] = OPT
27: count← count+ 1

for achieving good performance on the GPU. Our GPU implementation of the PTAS and

the higher-dimensional DP procedure are illustrated in Algorithms 3, 5, and 4.

The GPU PTAS is designed similarly as in Algorithm 1 and differentiated by the dis-

tinct execution scopes. In the GPU implementation of PTAS, presented in Algorithm 3, the

[LB,UB] interval is equally divided into four independent segments. The bisection search

and the DP procedure is executed concurrently on each of these segments. Algorithm 5

presents the procedure for partitioning the higher-dimensional DP-table and the memory

restructuring. Algorithm 4 shows the implementation of the higher-dimensional DP pro-

39

cedure and the work distribution which is designed for achieving the maximum execution

concurrency.

In the rest of the chapter, we will use the term ‘configuration’ to refer to a subproblem

of the higher-dimensional dynamic programming.

5.4.1 Design and Challenges

The high-dimensionality of dynamic programming poses significant challenges to GPU

implementations and restricts the GPU performance due to two major issues. First, the

dependencies among configurations are more complicated than those in the case of two-

dimensional dynamic programming algorithms. In a two-dimensional dynamic program-

ming table, a configuration only depends on the sub-configurations corresponding to three

directions, horizontal, vertical, and diagonal. When this is applied to n-dimensional tables,

a configuration can be updated from the sub-configurations that correspond to n(n+ 1)/2

directions. Thus, a configuration has many more potential sub-configurations, which are

stored dispersedly in the higher-dimensional memory structure. The scattered memory

access, called strided access, leads to low effective bandwidth (bus) utilization. The worst

case happens when only one thread in the warp gets the requested data at each cache line.

Thus, the warp reads data from the memory in a sequential manner, which can lead to

significant overhead when the warp fetches data from the global memory, which is more

likely to happen with large size instances. Second, the configurations in the same anti-

diagonal level may have different numbers of sub-configurations because of the various

dimensional structures among them. Consider the following example. The 3-dimensional

configurations (1, 2, 1) and (0, 0, 4) are in the same anti-diagonal level because the sums of

their dimensional sizes are the same, but configuration (1, 2, 1) has 11 sub-configurations,

40

and (0, 0, 4) has only 4. Since we use as many threads as possible to achieve the maximum

concurrency when scheduling the configurations, in the same anti-diagonal level, to sep-

arate threads, the unequal workloads among the threads result in thread-level workload

balancing issues. Furthermore, if the index of a sub-configuration, which represents its

position in the memory of the dynamic programming table, is unknown during run time,

it is necessary to iterate through the DP-table and search for the sub-configurations, shown

in Algorithm 2 (Line 18). Since the maximum size of the iteration is the same as the size of

the DP-table, the search function can be time-consuming and becomes an additional major

bottleneck.

41

Algorithm 4 GPU_DP ((b1, ..., bk2), block_offset)

1: Input: bi = {b1, ..., bk2}, block_offset
2: Let vi = (vi1, . . . , v

i
k2) and OPT (vi) be the i-th entry of DP-table

3: bi_offset ← block_offset
4: #(AntiDiag_lvl)← (block_size[1] + ...+ block_size[k2] + 1)
5: for lvl = 1, ...,#(AntiDiag_lvl) do
6: sizeof(lvl)← number of configurations at each lvl
7: FindOPT 〈〈〈gridSize, sizeof(lvl)gridSize 〉〉〉(b

i_offset)

8: bi_offset ← bi_offset + sizeof(lvl)
9: Kernel synchronization and memory updates

10:
11: FindOPT (bi_offset) :
12: tid = blockDim.x× blockIdx.x + threadIdx.x
13: #(v tid_subconfig) = 1
14: for j = 0, ..., k2 − 1 do
15: vtidj ← the value at address bj_offset + tid× k2 + j
16: #(v tid_subconfig)← #(v tid_subconfig)× (vtidj + 1)

17: Cvtid ← all sub-configurations of vtid = (vtid1, ..., v
tid

k2)
18: //Get valid multisets Ovtid from kernel FindValidSub
19: FindValidSub〈〈〈1,#(v tid_subconfig)〉〉〉(vtid, Cvtid)
20: //update OPT of the configuration vtid from its subsets’ OPT
21: SetOPT〈〈〈1, sizeof(Ovtid)〉〉〉(Ovtid , (v

tid
1, ..., v

tid
k2))

22:
23: SetOPT(Ov, (v1, ..., vk2)) :
24: tid = blockDim.x× blockIdx.x + threadIdx.x
25: Locate the block bi of vector Ov[tid]
26: for all (c1, ..., ck2) in bi do
27: if (Ov[tid]1, ...,Ov[tid]k2) == (c1, ..., ck2) then
28: OPT [Ov[tid]1, ...,Ov[tid]k2] = OPT [(c1, ..., ck2)]

29: min←∞
30: for all (ns1, ..., nsk2) ∈ Ov do
31: if min > OPT (ns1, ..., nsk2) then
32: min← OPT (ns1, ..., nsk2)

33: OPT (v1, ..., vk2) = min

To obtain efficient performance on the GPU, we address all the issues discussed above

by developing a data-partitioning scheme and applying the scheme to the dynamic pro-

gramming component of PTAS. The experimental results show that our proposed tech-

nique achieves significant performance improvements for the large table size instances.

The implementation of the proposed data-partitioning scheme is illustrated in Algo-

42

rithm 5. The high level description idea of the data-partitioning was already presented in

Section 5.2. The algorithm divides the DP-table into multiple higher-dimensional blocks

along a number of specific dimensions, and the number of dimensions is defined by the

parameter dim, which is in the range of (3, ..., 9) in our experiments. In Algorithm 5, the

DP-table is divided along the largest dim dimensions (Line 10), and the number of seg-

ments that each dimension is divided into are determined by divisor. The entries of the

divisor array are computed in lines 4-9, based on the largest configuration, N , of the DP-

table. Lines 6-8 present the calculation of the size of each divisor’s dimension. The largest

dim dimensions of the divisor are set to the largest divisors of N that are smaller than the

square roots of the dimensional sizes of N . Having the divisor, we are able to create an

array of blocks that have different scope on each dimension. Then, the algorithm maps

all the configurations into these blocks by matching the configurations’ dimensional sizes

to the scopes of these blocks. To obtain a group of fully functional blocks, the algorithm

reorganizes the memory layout of the DP-table (Lines 20-27) because the data-partitioning

scheme requires the configurations of each block to be stored consecutively. With the

newly organized memory layout, the algorithm is able to access the configurations of a

block efficiently, which makes the block-level parallelism efficient. The code for classifying

the blocks into different block-levels is given in lines 13 and 15. Then, the size of the blocks

and the number of configurations of each block are calculated for the purpose of memory

access (Lines 18-19). At the end, every four blocks of the same block-level are scheduled

into four streams separately and executed concurrently.

43

5.4.2 Two-level Fine-grained Parallelism

Due to the limited execution concurrency, the straightforward port of the OpenMP

implementation cannot utilize the many-core computing resources efficiently on GPUs. In

Algorithm 2, only the subproblems on the anti-diagonal can be processed in parallel. All

other iterations for finding the dependent subproblems of a designated subproblem are

executed sequentially. A subproblem, in the dynamic programming table of PTAS, consists

of a higher-dimensional vector representing a machine configuration.

In the dynamic programming procedure of PTAS, each configuration has a group of

sub-configurations from which the job scheduling can be obtained. Thus, all the config-

urations of the same anti-diagonal level, and all the sub-configurations of the same con-

figuration can be organized into a parent-child structure. Both “parents" and “children"

can be distributed across multiple GPU blocks, which leads to more concurrent execution

and results in more fine-grained parallelism. With the benefits of using the GPU feature,

dynamic parallelism [72], the parent-child structure can be realized as a nested two-level

fine-grained parallelism. The two-level nested parallelism is presented in Algorithm 4.

Line 5 is the iteration that loops through all anti-diagonal levels of the higher-dimensional

block. The kernel function FindOPT in line 7 is the “parent" at the first fine-grained level,

which is called at every anti-diagonal level and maps all the configurations in the same

anti-diagonal level to the GPU threads separately. In the kernel function FindOPT, each

thread launches two other kernel functions, FindValidSub and SetOPT (Lines 19, 21).

44

Algorithm 5 Partition(N,T, dim, p)

1: Input: N = (n1, ..., nk2), T, dim, p
2: optimal←∞
3: f1 = 1, f2 = 1, block_offset = 0, offset = 0
4: divisor ← ∅
5: for i = 1, ..., k2 do
6: div = b

√
ni + 1c

7: while (ni + 1) mod div 6= 0 do
8: div ← div − 1

9: divisor ← divisor ∪ div
10: Keep the largest dim dimensions of divisor, and set others to 1
11: Generate the set of configurations C (DP-table) for N
12: Generate the set B of all blocks for the set C
13: for all (b1, ..., bk2) ∈ B do
14: lvl = b1 + · · ·+ bk2
15: Blvl ← Blvl ∪ {b1, ..., bk2}
16: #block_level ← the number of total block-levels
17: for i = 1, ..., k2 do
18: block_size[i] = ni+1

divisor[i]

19: jobsPerBlock ← jobsPerBlock × (block_size[i] + 1)

20: for all (c1, ..., ck2) ∈ C do
21: for i = k2, ..., 1 do
22: block[i] = b ci

block_size[i]c
23: block_offset ← block_offset + block[i]× f1
24: f1 ← f1 × divisor[i]
25: offset ← offset + (ci − block_size[i])× f2
26: f2 ← f2 × block_size[i]
27: M_offset(c1,...,ck2) ← block_offset × jobsPerBlock + offset

28: Reorganize C’s memory layout with M_offset(c1,...,ck2)
29: for all lvl < #block_level do
30: for all (b1, ..., bk2) ∈ Blvl do
31: GPU_DP 〈〈〈1, 1, 0, streams〉〉〉((b1, ..., bk2), block_size)
32: cudaMemcpy(h_opt, d_opt, size,DeviceToHost)
33: if optimal > h_opt then
34: optimal = h_opt
35: return optimal + 1

These two kernel functions are the “children" at the second fine-grained level. Find-

ValidSub helps finding the valid sub-configurations of the configuration, distributed to the

“parent" thread, from all possible options (Line 19). Then the OPT of every valid sub-

configuration is discovered from the dynamic programming table in function SetOPT (Lines

45

26-28), and the sub-configuration with the minimum OPT is used to update the OPT of the

configuration (Lines 30-32).

The fine-grained two-level nested parallelism further increases the execution concur-

rency to near maximum and achieves some speedup; however, it is still inefficient com-

pared to the existing OpenMP implementation, especially for large instances. Thus, addi-

tional changes are needed to underlying dynamic programming components of PTAS, the

most time-consuming part of the application, to make it efficient on the GPU.

5.4.3 Analysis of the Dynamic Programming

In a fine-grained parallel dynamic programming implementation, especially when run-

ning on the GPU, many cores may stay idle for a considerable amount of time, as many

anti-diagonal levels do not have enough work to fully occupy all computing resources.

This is inevitable in fine-grained parallelism, but our data-partitioning scheme can allevi-

ate the concurrency loss by improving the bus utilization for each warp when there are free

computing resources available. For example, when no data-partitioning scheme is used,

an anti-diagonal level of 32 configurations is scheduled to a warp, and thus, each thread

in a warp executes on one configuration. With our data-partitioning implementation, the

anti-diagonal level is divided into b blocks, and each block needs a warp to work on the

partial configurations. Thus, each warp has 32/b active threads on average. If q cache lines

are required when no data-partitioning scheme is employed, the cache line requirements

of each warp of the data-partitioning implementation can be reduced to q/b.

Our data-partitioning scheme also addresses the thread-level workload imbalance is-

sue. In the same example, instead of synchronizing all 32 threads of the same warp at

the end of the anti-diagonal level, a synchronization, shown in line 9 in Algorithm 4, of

46

only 32/b threads is required by each block. Because the blocks of the same block-level

are independent when they are executed concurrently, the in-block synchronization has

no effect on other blocks, which implies the warps that have less work finish earlier than

running them together in one warp. In addition, a block can continue its execution to the

next in-block anti-diagonal level, without creating a race condition with the other blocks.

This may improve the block-level workload balance because the overhead of one dense

anti-diagonal level can be amortized by its following light levels, and vice versa. There-

fore, the overhead of the warp-level synchronizations can be reduced. If all anti-diagonal

levels that have heavy workload are in the same block, other blocks have to wait the

completion of this block. In this case, the overhead of synchronizing these blocks is the

same as the overhead of synchronizing the corresponding anti-diagonal levels when no

data-partitioning scheme is used. However, using more warps also reduces the maximum

computation capability because many threads are forcibly scheduled but have no work.

Thus, the improvement on the effective bus utilization and the workload balance can only

be obtained when there are idle cores available.

However, the use of a data-partitioning scheme also causes side-effects. First, it reduces

the maximum parallelism which makes it not very efficient on small problem instances.

Second, to access the correct memory address of a block, the data-partitioning scheme

requires some calculations for the memory offset before the block execution is launched.

Therefore, the blocks of the same block-level cannot be scheduled concurrently in one

kernel call. Instead, these blocks are launched separately in different kernels (Lines 29-31

in Algorithm 5), and these kernels are scheduled sequentially in the default stream. To

obtain block-level concurrency, we distribute the blocks of the same block-level, displayed

47

in Fig. 4 as blocks of the same color, into 4 streams in a cyclic distribution manner (Line

31). Because a CUDA stream has its own computing context, these blocks, in the different

streams, can be executed concurrently. In our experiments, applying four streams to each

data set provides the best performance for the majority of problem instances.

5.5 Evaluation

We investigate the performance of the proposed techniques by performing extensive

experiments with the PTAS algorithm and running it on both the multicore CPU and the

many-core GPU. We compare the performance of our proposed GPU algorithm, in terms of

execution time, against the performance of the OpenMP algorithm. The comparisons are

performed on the instances, classified into multiple groups based on their DP-table sizes.

5.5.1 Experimental Setup

The experiments with the OpenMP implementations are performed on a dual processor

system equipped with two Intel Xeon E5− 2697v3. The GPU implementation is evaluated

on an Nvidia K40. The performance of the OpenMP implementation is presented for two

configurations, 16 cores and 28 cores. The performance data of the GPU implementation

is organized by the number of dimensions that the data-partitioning scheme is applied to.

We run the experiments, partitioning between 3 and 9 dimensions separately, on the same

instances. We use GPU-DIM3 to GPU-DIM9, to denote the cases corresponding to these

different partitions. The problem instances are generated using the uniform distribution

and considering different numbers of jobs and machines.

According to the approximation algorithm, the maximum number of the DP-table’s di-

mensions is determined by the error rate. In our experiments, we set ε to 0.3 resulting in

48

a table with at most 16 dimensions; however, the number of non-zero dimensions is un-

known before the execution because it is determined not only by the jobs’ processing times,

but also by the target makespan value T . Since each interval [LB,UB] has its unique T

in one instance, we can get multiple DP-tables of different sizes from each instance during

the execution, and the running time of the instance is the addition of the running time of

each DP execution. As the sizes of many DP-tables are close, we present the typical sizes to

shrink the data set for the purpose of making readable figures and tables.

5.5.2 Analysis of Results

We first analyze the running time and the speedup of the GPU implementation, accel-

erated by the proposed techniques, by comparing it to the OpenMP implementation. The

average running time for each considered size of the DP-table is shown in Fig. 7. We select

36 dynamic programming tables of differing sizes from our much larger data set. These

dynamic programming tables are specifically selected for displaying the efficiency of the

GPU implementation across the range of sizes in the plots of Fig. 7. The 36 table sizes

are divided into three groups, and the ranges are (100, ..., 10000), (20000, ..., 100000), and

(110000, ..., 500000). To improve accuracy, we run the same experiment five times and col-

lect all the performance of the selected table sizes, showing the averages of these five runs

in the plots.

In the Fig. 7(a), the OpenMP code (denoted by OMP16 and OMP28) performs much

better than the GPU code, because the small instances have much less concurrency and

get few benefits from the reduction of the search function. Besides, the execution time of

the GPU code is dependent on the number of non-zero dimensions in the DP-table. When

one instance has a small number of non-zero dimensions, dividing along a large number of

49

dimensions cannot obtain further speedup. Consider the instance of table size of 3840 as

an example. This instance has 6 non-zero dimensions, which leads to similar performance

to the GPU executions that divide along 6 to 9 dimensions. Conversely, in most cases,

partitioning along a small number of dimensions cannot obtain good efficiency on the

instances that have a large number of non-zero dimensions. Thus, it is not a surprise that

the worst performance is obtained in the case of GPU-DIM3 because of the less execution

concurrency achieved by this implementation. A similar phenomenon occurs in all the

instances, and we can conclude that the trade-off between the block complexity and the

in-block workload determines the performance of the GPU implementation.

The GPU implementations are more efficient than the OpenMP implementations when

the size of the instance’s DP-table is larger than 30000. As illustrated in Fig. 7(b) and 7(c),

the best GPU performance is obtained by the implementations GPU-DIM6 and GPU-DIM9.

Compared to the plots in Fig. 7(a) and (b), the lines of the plot in Fig. 7(c) are more

regular and stable because the size of the instances in the third group are large enough to

occupy all the GPU computing resources through the entire execution.

It is also possible that multiple instances share the same DP-table size but have a dif-

ferent number of non-zero dimensions. In this case, the same partitioning settings may

perform differently on the instances with the same table size. Since the size of the DP-

table as well as the number of non-zero dimensions of an instance are unknown before

the execution, selecting the appropriate instances that can result in an expected table size

and different number of non-zero dimensions is impossible. Therefore, due to space limi-

tations, we filter the instances carefully from our data set and select two table sizes from

each groups, used in Fig. 7.

50

Figure 6: The number of non-zero dimensions influence the performance.

Fig. 6 illustrates the effects of different numbers of non-zero dimensions on the GPU

performance. We separate the DP-tables of the same size according to the number of

dimensions DP-table has, represented by the values given in the legend. The values along

the horizontal axis are the number of dimensions that the DP-table is partitioned into. The

performance data show that the best GPU performance of these 6 selected table sizes is

obtained separately when partitioning the table along 5, 6, and 7 dimensions, which is

similar to the results presented in Fig. 7. The execution of the table size of 403200 is too

slow when it is partitioned into 3 or 4 dimensions, and the running times exceed the wall

clock time, which is set to 10, 800, 000 milliseconds. Moreover, the DP-tables that have

fewer dimensions are usually less efficient than the other DP-tables of the same table size

51

having more dimensions. However, exceptions still exist. Thus, we proceed with an in-

depth analysis of the size of the in-block dimensions, which appears to be the major factor

that can significantly affect the performance.

Table 1: DP-table Size = 3456

#dim dimension size GPU-DIM3 GPU-DIM5
5 (6, 4, 6, 6, 4) (3, 4, 3, 3, 4) (3, 2, 3, 3, 2)
6 (2, 6, 3, 4, 6, 4) (2, 3, 3, 2, 3, 4) (2, 3, 1, 2, 3, 2)
8 (2, 2, 4, 3, 2, 6, 3, 2) (2, 2, 2, 1, 2, 3, 3, 2) (1, 2, 2, 1, 1, 3, 1, 1)
9 (3, 2, 3, 2, 2, 2, 2, 3, 4) (1, 2, 1, 2, 2, 2, 2, 3, 2) (1, 1, 1, 2, 2, 2, 2, 1, 2)
10 (2, 3, 2, 2, 3, 3, 2, 2, 2, 2) (2, 1, 2, 2, 1, 1, 2, 2, 2, 2) (2, 1, 1, 1, 1, 1, 2, 2, 2, 2)

Table 2: DP-table Size = 8640

#dim dimension size GPU-DIM3 GPU-DIM5
7 (5, 3, 6, 3, 4, 4, 2) (1, 3, 3, 3, 2, 4, 2) (1, 1, 3, 3, 2, 2, 2)
8 (5, 6, 2, 3, 2, 2, 4, 3) (1, 3, 2, 3, 2, 2, 2, 3) (1, 3, 2, 1, 2, 2, 2, 1)
9 (3, 3, 4, 3, 2, 2, 5, 2, 2) (1, 3, 2, 3, 2, 2, 1, 2, 2) (1, 1, 2, 1, 2, 2, 1, 2, 2)

Table 3: DP-table Size = 12960

#dim dimension size GPU-DIM3 GPU-DIM5
4 (3, 16, 15, 18) (3, 4, 5, 6) (1, 4, 5, 6)
7 (4, 5, 3, 6, 4, 3, 3) (2, 1, 3, 3, 4, 3, 3) (2, 1, 1, 3, 2, 3, 3)
8 (3, 4, 3, 4, 3, 5, 3, 2) (3, 2, 3, 2, 3, 1, 3, 2) (1, 2, 1, 2, 3, 1, 3, 2)
9 (3, 3, 3, 2, 3, 4, 2, 5, 2) (1, 3, 3, 2, 3, 2, 2, 1, 2) (1, 1, 1, 2, 3, 2, 2, 1, 2)

Table 4: DP-table Size = 20736

#dim dimension size GPU-DIM3 GPU-DIM6
8 (4, 4, 6, 6, 2, 3, 3, 2) (2, 4, 3, 3, 2, 3, 3, 1) (2, 1, 2, 2, 1, 1, 1, 1)
11 (2, 4, 2, 3, 3, 3, 3, 2, 2, 2, 2) (2, 2, 2, 1, 1, 3, 3, 2, 2, 2, 2) (1, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2)

Table 5: DP-table Size = 362880

#dim dimension size GPU-DIM3 GPU-DIM7
8 (5, 6, 3, 7, 6, 4, 8, 3) (5, 3, 3, 1, 5, 4, 4, 3) (1, 3, 1, 1, 3, 2, 4, 3)
10 (3, 3, 3, 4, 5, 7, 2, 3, 4, 4) (3, 3, 3, 2, 1, 1, 2, 3, 4, 4) (3, 3, 1, 2, 1, 1, 2, 1, 2, 2)

Table 6: DP-table Size = 403200

#dim dimension size GPU-DIM3 GPU-DIM7
7 (3, 10, 7, 6, 4, 8, 10) (3, 5, 7, 6, 4, 4, 5) (1, 5, 1, 3, 2, 4, 5)
9 (4, 5, 4, 2, 3, 5, 7, 3, 8) (4, 1, 4, 2, 3, 5, 1, 3, 4) (2, 1, 2, 2, 1, 1, 1, 3, 4)

To better understand the performance results, we need to investigate the effect of the

dimensional sizes of the blocks. Again, we use the 6 selected table sizes from the exam-

ple data set and compare the block dimensional sizes of different partition settings for

each DP-table. In Table 1, we compare the block’s dimensional sizes of GPU-DIM3 to the

52

block’s dimensional sizes of GPU-DIM5 for each of the DP-tables with different non-zero

dimensions. Relating the differences to the performance, we can discover how a block’s

dimensional sizes influence the performance. The size of each block dimension is calcu-

lated according to the division, presented in Algorithm 5 (Lines 4-9). The related data is

presented in the Tables 1-6. The four columns in each table represent the number of non-

zero dimensions, the dimensional sizes of the DP-table, the dimensional sizes of the block

after partitioning the DP-table along three dimensions, and the dimension sizes of the block

after partitioning the DP-table along a specific number of dimensions, from which the best

performance is obtained.

We can conclude from Tables 1-6 and Fig. 6 that the best performance is usually ob-

tained by the execution that has the most regular shaped blocks and the smallest in-block

workload. Generally, a large number of non-zero dimensions is helpful to the block’s reg-

ularity because the high-density dimensions can be scattered by the extra dimensions. In

Table 1, even if the DP-tables of 5 or 6 non-zero dimensions have the same table size, and

the executions of these two DP-tables have the same number of launched GPU blocks, we

can still observe from Fig. 6 that the execution of 6 non-zero dimensions is more efficient

because the one additional non-zero dimension further improves the block regularity, as

it is shown in column GPU-DIM3. In addition, the block’s dimensional sizes of GPU-DIM5

has more regular shapes and less workload than GPU-DIM3 for all the DP-tables, and we

can see from the Fig. 6 that the performance of GPU-DIM5 is better on all the DP-tables of

different non-zero dimensions. This conclusion also applies to other DP-table sizes. The

exceptions appear when there is a big difference between the number of the non-zero di-

mensions. In Table 3, we can see from column GPU-DIM3 and column GPU-DIM5 that

53

the irregular blocks, (3, 4, 5, 6) and (1, 4, 5, 6), perform much better than the other regular

blocks. This is because the irregular blocks have much fewer non-zero dimensions which

leads to much smaller in-block workload

(a) Instances with DP-table size 100 to 10000.

(b) Instances with DP-table size 20000 to 100000.

(c) Instances with DP-table size 100000 to 500000.

Figure 7: Average running time vs. the size of DP-table.

54

5.6 Summary

The proposed data-partitioning approach is an extension of tiling technique, which im-

proves the GPU performance significantly and makes the GPU implementation perform

better than the OpenMP implementation on large-scale higher-dimensional dynamic pro-

gramming problems. To our knowledge, this is the first data-partitioning scheme specifi-

cally designed for addressing the performance and memory issue of higher-dimensional dy-

namic programming on the GPU. With the techniques, directly applied to the dynamic pro-

gramming procedure, our study explores the potential of optimizing higher-dimensional

DOACROSS parallelism on GPUs.

55

CHAPTER 6 OPTIMIZING WAVEFRONT PARALLELISM WITH
NON-SQUARE TILING

Wavefront parallelism is a well-known technique for exploiting the concurrency of ap-

plications that execute nested loops with uniform data dependencies. Recent research of

such applications, which range from sequence alignment tools to partial differential equa-

tion solvers, has used GPUs to benefit from the massively parallel computing resources. To

achieve optimal performance, tiling has been introduced as a popular solution to achieve a

balanced workload. Because matrix-based dynamic programming algorithms usually have

serial or non-serial dependences across the table, the massively parallel implementations

are less efficient due to the imbalanced workload and cache contention caused by the

heavy irregular memory access, which is also true for square tiling optimization. Thus,

the non-square tiling technique is widely deployed for solving various scientific problems,

like matrix-based dynamic programming problems and specific formulation of some stencil

problems. Recent research, conducted on GPUs, achieves massive parallelism by expand-

ing the wavefront loops and overcomes the imbalanced workload issue by splitting the

data matrix into multiple hyperplane tiles. However, the use of hyperplane tiles increases

the cost of synchronization and leads to poor data locality.

In this chapter, we present a highly optimized implementation of the wavefront paral-

lelism technique that harnesses the GPU architecture. A balanced workload and maximum

resource utilization are achieved with an extremely low synchronization overhead. We

design the kernel configuration to significantly reduce the minimum number of synchro-

nizations required and also introduce an inter-block lock to minimize the overhead of

each synchronization. In addition, shared memory is used in place of the L1 cache. The

56

well-tailored mapping of the operations to the shared memory improves both spatial and

temporal locality. We evaluate the performance of our proposed technique for four differ-

ent applications: Sequence Alignment, Edit Distance, Summed-Area Table, and 2D-SOR.

The performance results demonstrate that our method achieves speedups of up to six times

compared to the previous best-known hyperplane tiling-based GPU implementation.

6.1 Introduction

Because of the equipped massive cores, achieving high memory efficiency is especially

important to achieving full processor occupancy on GPUs, which can be improved by co-

alesced memory access patterns and data reuse of on-chip memory. However, optimizing

memory accesses for applications that have unaligned or nonconsecutive data access pat-

terns, as wavefront parallelism does, are challenging.

Wavefront parallelism is a technique for exploiting parallelism in nested loops. In a

two-dimensional matrix, the computations proceed along diagonal waves, because each

data entry is updated based on the already updated neighboring entries.

A problem has uniform dependences if each data entry depends has a constant number

of dependent subproblems as well as a constant distance between itself and any one of

its dependent subproblems, such as the local sequence alignment problem [2, 22]. Con-

versely, a problem has non-uniform dependences, such as the DP implementations of the

matrix parenthesization problem [22] and the P || Cmax problem [9]. During the computa-

tion, the execution of wave iterations are serialized to ensure the correctness for updating

the data entries; the data entries of each wave iteration can be executed concurrently.

Therefore, data dependencies prevent consecutively stored data from being processed in

57

parallel. Parallel processing the data entries in each diagonal wave requires access to non-

contiguous memory addresses, so efficiency is degraded because of the multiple memory

accesses required for updating each data entry.

The tiling technique is a general solution that changes the memory access pattern but

not the operations, so that the original data dependency is never changed. In some stud-

ies [73, 44, 74, 26], the tiling technique is combined with wavefront parallelism to improve

the memory efficiency. This approach splits the data matrix into multiple square tiles and

assigns the data entries of each tile to a GPU streaming multiprocessor for exploiting data

locality. Square tiling improves data locality but causes a serious imbalanced workload

issue. The hyperplane tiling approach [75, 76, 77, 3, 45, 46, 26], as a non-square tiling

technique, obtains a balanced workload by adjusting the memory access pattern. Hyper-

plane tiling splits data entries along the diagonals perpendicular to the data dependency,

so each diagonal has an equal number of data entries which results in balanced workload

and maximizes the core utilization. In addition, a stream processing-based implementa-

tion [8], further improves the efficiency of hyperplane tiling by reducing the synchroniza-

tion overhead; however, intra-tile data locality and coalesced global memory accesses are

not achieved.

In some cases, it is recommended to use on-chip shared memory [16] when it is dif-

ficult to improve data locality at the hardware-managed cache. Highly efficient solutions

have been proposed in [13, 20, 21], which use shared memory instead of regular cache.

Intuitively, it may be beneficial to construct the hyperplane tiles in shared memory. How-

ever, there is no obvious method to adapt the applications which require the wavefront

parallelism technique and the hyperplane tiling technique to shared memory efficiently.

58

To the best of our knowledge, there is no existing work that addresses both the con-

currency issue and the memory efficiency issue. In this chapter, we present a memory-

optimized wavefront parallelism technique, which splits the data matrix into hyperplane

tiles to achieve high concurrency. To address the memory efficiency issues, we adapt the

tile processing to the GPU shared memory and directly manage the data accesses to obtain

a coalesced memory access pattern and improve data locality. Because hyperplane tiling

leads to an irregular data layout, we propose a general data transformation function that

can be applied to wavefront applications to map the hyperplane shaped data block to the

shared memory efficiently. Besides, in order to find the best tradeoff between core utiliza-

tion and the limited shared memory capacity, we propose a general scheme for setting up

the kernels on different NVIDIA GPU architectures. In addition, we improve the coarse par-

allelism workload balancing and minimize the synchronization overhead by processing the

tiles using stream processing. The proposed work has the following major contributions:

• We show that a shared memory-based approach achieves better data locality and

coalesced global memory access than a cache memory approach does.

• We design a shared memory-based tiling mechanism to achieve balanced and opti-

mized workloads with minimal overhead compared to existing state-of-the-art ap-

proaches.

• We provide a methodology for deriving the optimized thread blocks and tiles from

the GPU architecture.

• We develop a low-cost barrier lock to minimize the cross-kernel synchronization over-

head.

59

• We evaluate the shared memory approach using four applications, running on NVIDIA

GTX 1080 Ti and Tesla K40 GPUs and achieve up to six times speedup compared to

the best existing approach that uses cache only.

6.2 Problem Statement

It is mentioned above that implementing the hyperplane tiling technique on hardware-

managed cache cannot achieve good data locality. Here we explain the reasons that L1

cache reuse is low and global memory accesses are not coalesced. We also point out that

replacing the global memory access with the shared memory access is not simple and an

innovative implementation is needed for obtaining good shared memory efficiency.

6.2.1 Low Cache Hit Rates

GPU global memory is accessed via at most 128 byte memory transactions, which is also

the size of a cache line. Because the concurrently executed data entries reside at different

rows, as illustrated in Fig. 2, each cache line can hold only one desired data entry when the

matrix row size is larger than a cache line. Therefore, the cache size required for storing all

the concurrent data entries is 128 times of the size of data entries. As presented in [8], the

best performance is achieved when 1024 data entries are executed concurrently. In other

words, at least 128 KB cache memory is required to store all these data entries. Besides,

extra space is also needed when the dependent data of the first data entry is not included

in the same cache line. Considering that Kepler GPUs and Pascal GPUs are equipped with

upto 48 KB L1 cache on each processor, which is increased to 64 KB on Turing GPUs and 96

KB on Volta GPUs, it is obvious that none of today’s GPUs can keep 128 KB data in L1 cache

so that even an optimized cache-based implementation cannot efficiently reuse L1 cache.

60

On the other hand, because the first data of each row in a hyperplane tile are not aligned

to the address of multiple of 32, loading these data leads to repeated uncoalesced memory

accesses.

6.2.2 Advantages of Shared Memory

Programmers retain control over when and which data entries should remain in shared

memory during execution. With the data entries of the tile stored in shared memory, we

can target the locations where these calculated results should be updated, so that memory

operations no longer access global memory repeatedly and data locality is improved. Be-

sides, more coalesced memory accesses are made. Because unaligned data entries appear

only once per memory access request at each row, moving multiple consecutive tiles in one

memory request reduces the uncoalesced memory access frequency. In addition, the access

to the shared memory is almost perfectly coalesced because the data entries are aligned

in the shared memory. Therefore, replacing the use of L1 cache with shared memory is a

potential solution for improving the data locality.

Due to the limited shared memory capacity, transferring data between global memory

and shared memory requires careful design to obtain high bandwidth utilization.

6.2.3 Barriers to Shared Memory Use

Unlike using square tiling in matrix multiplication, applying hyperplane tiling paral-

lelism to shared memory is not that straightforward. Because the size of an optimal tile,

which achieves the maximum concurrency, exceeds shared memory capacity, the tile ap-

plied to shared memory has to be truncated. However, reducing the tile size is not as simple

as cutting the large cache tile evenly and different tile sizes lead to different concurrency

and synchronization overhead. To obtain the best performance, it is important to have

61

Figure 8: Design of Host and GPU Device: solid arrows depict the flow of events and
dashed arrows show the data communication.

a method, which can derive the optimal tile size for the shared memory implementation

from the problem size and the processor configuration.

Besides, transferring the hyperplane-aligned data entries between shared memory and

global memory in the square pattern is not efficient, even if this transfer pattern is used

as the major solution in many other works. We can see on the right hand side of Fig. 3

that including a hyperplane tile of data entries in a square data block leads to a waste of

shared memory capacity which increases the data communication overhead. Therefore, a

new data transfer pattern is also required to adapt to hyperplane tiling.

6.3 Design and Challenges

We present the design overview, which includes the shared memory-based stream pro-

cessing, an innovative shared memory processing pattern, and an improved lock design,

as well as the challenges of using shared memory for wavefront parallelism in this section.

62

6.3.1 Design Overview

Fig. 8 depicts the workflow of the approach. The complete GPU implementation con-

sists of the host, which refers to the CPU and its memory and the device, which refers

to the GPU and its memory. On the host, we first create a group of streams and allocate

the data matrix to GPU global memory. Each GPU is equipped with multiple processors

and we limit the maximum number of streams to the number of processors on the tested

GPU. Then, these streams are mapped to all the kernels in a round robin manner, so a

processor can process the next row of tiles as soon as it completes the current one. As

illustrated in Fig. 9, a row of tiles are scheduled to one kernel, which has been mapped to

a corresponding stream. In each kernel function, a row of tiles are fetched and processed

in sequence.

On the device, all the processors receive the same instructions and apply these instruc-

tions to a different row of tiles concurrently. In each kernel function, thread 0 first reads

the stream index and uses that index to access the corresponding synchronization counter,

meanwhile other threads are inactive. The counter value indicates whether the dependent

data entries of the current tile are already updated. A tile can only be processed when

the counter value is larger than a threshold which is calculated according to the tile index.

Thus, thread 0 reads the counter value repeatedly until it passes the threshold. Then, all

threads are activated and use the thread indices as well as some offset values to access

the corresponding data entries in global memory. In order to obtain coalesced memory

access at shared memory, the data entries, which are misaligned in global memory, are

re-positioned in shared memory so that they are stored as a square block instead of a hy-

63

perplane block. Before processing the data entries, padding has to be added to the data

block in shared memory to avoid the bank conflict issue. After these data entries are ex-

ecuted, the results are copied back to global memory. At the end, thread 0 updates the

counter value of the next stream to notify the kernel in that stream that its dependent data

entries are updated.

6.3.2 Tile Concurrency and Synchronization

Here we present the effect that tile concurrency and tile synchronization can have on

performance. Also, we explain how the shared memory-based approach maximizes the tile

concurrency and minimizes the synchronization costs. The different types of concurrency

and synchronization are distinguished with prefix intra-tile and inter-tile. Intra-tile refers

to the inside of a tile and inter-tile targets multiple tiles.

Intra-Tile Concurrency

Intra-tile concurrency refers to the number of data entries executed concurrently within

the thread block. It is determined by the tile height in a hyperplane tile and contributes

to the core utilization for the streaming multiprocessor. The latest NVIDIA GPUs have 128

CUDA cores in each streaming multiprocessor. In cache-based approaches, the tile height

is set to 1024 to use all 1024 threads in a thread block because the memory latency can

be partially hidden by massive thread operations. However, it is different when the data

entries are stored in shared memory. Because the memory access latency is already low in

shared memory, we can obtain acceptable core utilization by assigning only 128 threads or

256 threads to each thread block.

Intra-Tile Synchronization

For wavefront parallelism, shown in Fig. 2, synchronization is required between the

64

2 3 4

4 5 6

6 7 8

8 9 10

1

3

5

7

5

7

9

11

SM3

SM2

SM1

SM0 2 3 4 5 6 7

4 5 6 7 8 9

6 7 8 9 10 11

8 9 10 11 12 13

1

3

5

7

5

7

9

11

1

2

3

1 2 10 11 1 2 3 15 16 17

3 3 4 4 6 6 8 8 9 9 4 4 5 5 6 6 9 9 12 12 13 13 14 14

5 5 5 7 7 7 7 7 7 8 8 8 10 10 10 11 11 11

Figure 9: The comparison of inter-tile concurrency for two different tile sizes.

executions of data entries that are located on different adjacent anti-diagonals. Because

the tiles of each stream are processed individually on their own processor, we perform

local synchronization at each processor separately. Compared to synchronizing all the

processors uniformly for each local update, separate local synchronization generates much

lower synchronization cost.

Inter-Tile Concurrency

Inter-tile concurrency refers to the number of tiles executed concurrently across all the

streaming multiprocessors. Since a tile can be executed only after the completion of its

dependent tiles, some streaming multiprocessors are idle at the beginning and the end.

Therefore, different tile widths effect the SM’s concurrency. Fig. 9 illustrates the compari-

son between two different tile widths. The “wide" tiling, shown on the left, has a tile width

65

twice that of the “narrow" tiling, shown on the right. We extract all possible concurrency

for the two different tiling methods and concatenate concurrent tiles for maximum con-

currency as shown in the figure. The narrow tiling obtains higher peak concurrency but

less second-level concurrency. Both the narrow tiling and the wide tiling have the same

amount of work executed with the minimum concurrency. We consider the narrow tile

as the unit workload and its width represents the unit time for executing the workload.

Similarly, the triangular tile and the wide tile have twice the workload as well as twice the

execution time. For a batch of tiles, we can calculate the approximate execution cost by

following Equation 6.1, where p represents all possible concurrency in the execution and

Wp is the total work that is executed with p concurrency. In Fig. 9, the cost of the narrow

tiling is 21.33, which is slightly better than the wide tiling’s efficiency of 22.

E =
∑
p

(Wp/p), p ∈ [possible concurrency] (6.1)

Inter-Tile Synchronization

There is no overhead for synchronizing the tiles of the same row because these tiles

are all executed by the same thread block and the execution of each tile is launched in

sequential order. In this case, the inter-tile synchronization is already performed implicitly

within each tile and the completion of the previous tile is guaranteed before the execution

of the next tile starts. On the other hand, the tiles of different rows are executed in

different streams, so the intra-tile synchronization performed within each thread block has

no effect on the other thread blocks. Explicit barriers are required for synchronizing the

tiles across multiple rows. In Fig. 9, the wide tiling has 5 tiles in each row and 3 of them

66

have a dependence on the previous row. Thus, the kernels of wide tiling have to wait till

the valid counter values are updated on three tiles, which introduces less synchronization

overhead because waiting for the valid counter value are required on five tiles for narrow

tiling.

Processing the narrow tiles introduces much more overhead, due to more synchroniza-

tion calls and less utilization of shared memory, even though it achieves slightly better

inter-tile concurrency. We reach the conclusion that tiling the matrix with a wider tile size

of 128 × 96 is more efficient than a narrower tile size of 256 × 48, where the tile size is

represented by height × width.

6.3.3 Concurrency VS Data Locality

We already explained the effect that tile size could make on tile concurrency and syn-

chronization. The tile size matters because tile size determines the number of threads

allocated to each thread block. Here we provide further evidence to prove that the tile

size also determines the tradeoff between concurrency and data locality. In addition, we

propose a general method for determining the optimized tile size that achieves the best

performance.

The height and width are limited due to the fixed shared memory size, which is usually

at most 48 KB for each thread block. Because each CUDA warp contains 32 threads and

each thread executes on one data entry at a time, it is optimal that the sizes of tile height

and width be multiples of 32. Thus, the tile sizes, shown as height × width, are limited to

64× 192, 128× 96, and 256× 48 if each data entry is 4 bytes long.

In this chapter, we assume that the height and width of each data matrix are powers

of 2. To ensure that the tile evenly subdivides the data matrix, we set the tile height (Th)

67

and the tile width (Tw) to a power of 2 as well, so the largest eligible tile requires 32 KB

shared memory, which is represented as Ts. We calculate Tw by dividing the maximum

effective shared memory by Th, which is shown in Equation 6.2. Th is dominated by the

number of cores in each streaming multiprocessor, which is represented by c. On modern

GPUs, c is either 192 for the Kepler architecture or 128 for the architectures released after

Kepler. Thus, the optimized Th is constant at 128 according to the equation. Even if setting

Th to 128 cannot fully utilize all 192 cores on Kepler GPUs, the overall performance is still

better because a small amount of computing capability is sacrificed to retain a higher cache

(shared memory) per core rate.

Th = 2blog2 cc,

Tw = 2blog2 Tsc/Th.

(6.2)

Therefore, the optimized tile size is 128 × 64 for most modern NVIDIA GPUs, which

is also compatible to the optimized tile size that we concluded from the previous section.

Thus, the optimal thread block size is set to 128 threads. The actual tile size is also effected

by the longest distance between a data element and its dependence, so the tile width might

be adjusted to ensure that the tile height is no smaller than 128.

6.3.4 Shared Memory Efficiency

Simply replacing L1 cache with shared memory is not efficient due to the uncoalesced

memory access pattern and bank conflict. Moreover, it is difficult to obtain high bandwidth

if data entries are moved to shared memory improperly.

Memory Coalescing

68

In order to have aligned data layout in shared memory, the unnecessary data entries

that are in front of the first valid data entry at each row are ignored during the data

transfer. We calculate the aligned new addresses with the thread index and row index and

store the data entries at the re-positioned addresses to ensure that the intervals between

each pair of concurrently executed data entries are constant.

Fig. 10 shows an example of the hyperplane data layout in global memory and square

data layout in shared memory. In this example, we assume that each warp can fetch

five data entries, which is also the size of a memory transaction. In global memory, two

memory transactions are needed to acquire the required data entries, which are circled

with dotted lines and full lines, at each row except the last one. After the required data

entries are re-positioned in shared memory, only one memory transaction is needed per

row.

The lefthand side depicts the data layout in global memory which leads to uncoalesced

memory access. On the right side, all the concurrent data entries are aligned in the same

column, so coalesced memory access can be obtained as long as the number of data entries

at each row is multiple of 32. The aligned shared memory enables coalesced memory

access and with this mapping, all available threads access a column of elements, which is

more efficient because of less index computation. After the calculation, the results have

to be updated in global memory before proceeding to the next tile. The sequence of data

transfer and execution for each tile is shown in Algorithm 6.

Padding and Bank Conflict

The actual number of data entries that are required for the execution is larger than the

optimized tile size. The dependent data entries, which are enclosed in the dotted lines

69

Figure 10: Data layout in global memory and shared memory.

should also be added to the size-optimal tile as padding entries and added to the front

of each tile dimension, as shown in Fig. 10. Loading some extra elements as padding

entries to each row of data can also avoid bank conflicts. Thus, the actual padding entries,

which are added to each row, consists of the required dependent data entries and the

possible extra elements used to avoid bank conflicts. This additional padding size should

be relatively prime to the number of shared memory banks, which is 32 on modern GPUs.

Therefore, the actual tile size, moved to the shared memory, should be increased to 129×

67.

Data Transfer and Overhead

Data transfer between global memory and shared memory is time consuming even if

the tile size is small. In some applications, like sequence alignment, only the padding

data needs to be moved to the shared memory before execution because each data entry

depends only on its top and left neighbors. However, all the data entries in the data

matrix have to be transferred to shared memory for the applications that process stencil-

like computations. The data movement is completed in the function, shown in Algorithm 6

[line: 5, 8]. In the function, when we transfer the data between the shared memory and

the global memory, we achieve the best bandwidth by moving a chunk of 64 × 16 data

entries at a time with 1024 threads. We cannot allocate more than 1024 threads because

we assign only one thread block to each streaming multiprocessor. As shown in Fig. 3,

70

the triangular tiles are inevitable at the beginning and end of each row and these have

an imbalanced workload. We process the triangular tiles in the same way as processing

the square tiles, because the intra-tile parallelism is the same as the original wavefront

parallelism. Instead of moving the triangular tiles, we copy the minimum square tile that

contains a triangular tile between the two memories. If the square tile is too large to fit

into the shared memory, we split it into two rectangles and perform the operations on each

of them sequentially.

6.3.5 Synchronization Counter

Synchronizing the blocks with a global barrier is not efficient because the dependence

only exists between each pair of consecutive rows. The completion of one tile implicitly

confirms completion of the execution of all preceding tiles in the same row. Therefore, to

safely proceed with executing a tile, it is not necessary to synchronize all the tiles in the

same anti-diagonal level. Instead, we just need to confirm completion of the dependent

tile that resides in the prior row. However, keeping track of the status, which indicates the

completion of processing the dependent tiles, for all the tiles is hard to implement and still

not efficient. In fact, we just need to record the status of each row with a counter value,

which indicates the number of already updated tiles. Therefore, in each row, the kernel

increments the row counter as soon as it finishes the executions of a tile. In addition, the

kernel reads the counter value of the previous row and checks if the dependent tiles are

updated before processing each tile.

To avoid the false sharing issue, the lock array is declared with the “volatile" keyword,

which ensures that cache copies stored in other L1 Caches will be informed when one of

them is changed. We declared the lock array with the “volatile" keyword to avoid the false

71

sharing issue. The “volatile" keyword prevents the array from being cached, which means

that all memory accesses revert to global memory, ensuring that we see the change when

another streaming multiprocessor updates the value. No operations will be performed to

these copies until the change is completely updated. Compared to PeerWave, the proposed

lock design is simpler and more efficient. The lock for each row is not an array, but instead

a counter of the proposed lock array, which is much smaller and requires fewer operations.

6.4 Implementation

Data Transfer

The data movement is completed in the function, shown in Algorithm 6 [line: 5, 8].

When we transfer the data between the shared memory and the global memory, we achieve

the best bandwidth by moving a chunk of 64× 16 data entries at a time with 1024 threads.

We cannot allocate more than 1024 threads because we assign only one thread block to

each streaming multiprocessor.

We process the triangular tiles in the same way as processing the square tiles, because

the intra-tile parallelism is the same as the original wavefront parallelism. Instead of

moving the triangular tiles, we copy the minimum square tile that contains a triangular

tile between the two memories. If the square tile is too large to fit into the shared memory,

we split it into two rectangles and perform the operations on each of them sequentially.

Even if the overhead for moving the square tile is higher than the overhead for moving

the triangular tiles, our implementation is more generic and requires less programming

effort. Besides, the overhead for moving the triangular tiles becomes negligible when we

are dealing with larger matrices.

72

Algorithm 6 The operations executed at each tile.

1: Input: dev_table[], dev_lock[], row_add, row_id, tile_id, len
2: Initial: volatile __shared__ int M[]
3: tile_add← row_add+ tile_id× len
4: LockRead(dev_lock, row_id, tile_id)
5: moveToShare(M,dev_table, row_add)
6: __syncthreads()
7: M [i, j]← Op{M [i− 1, j],M [i, j − 1],M [i− 1, j − 1]}
8: moveToGlobal(M,dev_table, row_add)
9: LockWrite(dev_lock, row_id)

10: tile_id← tile_id+ 1

Spinlock Functions

We use a spinlock to implement inter-tile synchronization. The spinlock consists of two

function calls, LockRead() and LockWrite(), as shown in Algorithm 6 [line: 4, 9], and a

synchronization counter array, as mentioned in Fig. 8. The counter array, dev_lock[], has

the same size as the number of rows in the matrix. A counter value indicates the number

of tiles that have been executed in the corresponding row. In an intra-tile execution,

the counter is incremented after the execution of the tile is completed. This operation

is performed in the function LockWrite() where a __syncthreads() call is placed before

the increment of the counter to ensure the completion by all threads in the block of the

execution and the data transfer.

In function LockRead(), thread 0 spins in an empty loop until it detects that the counter

value is no smaller than T , while other threads are idle and wait for thread 0. The counter

value of each row can be accessed at dev_lock[row_id], where row_id is the index of the

corresponding row. T can be calculated according to equation 6.3 where IDtile refers to the

index of a tile, tileY and tileX are the height and width of each tile, and Xtiles represents

the number of tiles that the data matrix splits X dimension into.

73

Algorithm 7 Function design for LockRead() and LockWrite().
1: Input thread, row_id, dev_lock[], T
2: LockRead():
3: if thread == 0 then
4: while dev_lock[row_id] < T do
5: {empty loop}
6: __syncthreads()
7:
8: LockWrite():
9: if thread == 0 then

10: dev_lock[row_id+ 1]← dev_lock[row_id+ 1] + 1

11: __syncthreads()

T = min(IDtile + tileY/tileX,Xtiles) (6.3)

In function LockWrite(), thread 0 updates the completion status of tiles by increment-

ing the counter, which is then accessed by the LockRead() function for the next row. A

__syncthreads() is used to force the other threads to wait for thread 0 and also to ensure

completion of the data transfer from shared memory to global memory.

6.5 Evaluation

Four wavefront applications, which have been used to evaluate the performance in

many existing research works, are also used to evaluate the proposed shared memory-

based mechanism. The performance data and memory efficiency metrics are used as the

metrics to compare the overall efficiency of the shared memory-based mechanism and the

cache-based mechanism. We implement the cache-based mechanism using PeerWave [8],

which is the most optimized solution among the existing cache-based implementations,

except use our proposed spinlock in place of their lock design.

74

6.5.1 Wavefront Applications

Smith-Waterman (SW)

This algorithm is used primarily to perform alignment of the input sequences in order

to determine the matching patterns between the two sequences [2]. In the formula, w(i, j)

is the gap penalty function, which returns 3 when ai equals bi and −3 otherwise.

M [i, j] = max



M [i− 1, j]− 2,

M [i, j − 1]− 2,

M [i− 1, j − 1] + w(i, j),

0

Wagner-Fischer (WF)

This algorithm computes the edit distance between two sequences, which determines

the difference by counting the minimum number of operations required to transform one

sequence into the other [3].

M [i, j] =



M [i− 1, j − 1], if ai = bi

min



M [i− 1, j] + 1,

M [i, j − 1] + 1,

M [i− 1, j − 1] + 1

otherwise

Successive Over-Relaxation (SOR)

A specific formulation of 2D-SOR has been studied in [26, 44, 42], which performs

75

stencil computations on one data matrix in an iterative fashion for solving a linear system

of equations. In this equation, the data entry M [i, j] is calculated from its neighbors where

M [i − 1, j] and M [i, j − 1] are newly updated and the other three entries are from the

previous time step.

M [i, j] = (M [i− 1, j] +M [i, j − 1] +M [i, j] +M [i+ 1, j] +M [i, j + 1]) / 5

Summed-Area Table (SAT)

Summed-area table (SAT) [78] is used in the image processing domain for generating

the sum of values in a rectangular subset of a grid. The sum of all the data entries above

and to the left of (i, j) is efficiently computed in a single pass over the data matrix with the

following equation.

M [i, j] =M [i, j] +M [i− 1, j] +M [i, j − 1]−M [i− 1, j − 1]

Since the arithmetic intensity for an equation can be approximately calculated using the

number of operations divides the size of a data entry, we estimate the arithmetic intensity

of SW, WF, SOR, and SAT, which are 1.5 FLOPs/byte, 1.5 FLOPs/byte, 1.25 FLOPs/byte, and

1 FLOPs/byte, respectively, according to the equations. Considering the high arithmetic

intensity that a GPU can achieve, the performance of these four applications are bounded

by the memory bandwidth.

6.5.2 Test Cases and GPU Environment

In the experiments, we test each application with 10 different input matrix sizes, which

are 212×212, 213×213, 214×214, 215×215, 212×215, 213×215, 214×215, 215×212, 215×213, 215×214.

76

The largest matrix size, 215 × 215, is limited by the largest consecutive data block that we

can allocate in GPU memory. In the implementation of the cache-based mechanism, 1024

threads are allocated to each thread block for fetching data and performing calculations.

The proposed shared memory approach also uses 1024 threads for data transfers, but only

128 threads are active during the computation, which is restricted by the tile height.

The applications are evaluated on two NVIDIA GPUs: GTX 1080 Ti and Tesla K40. Both

GPUs support up to 48 KB shared memory in each thread block. On each processor, the GTX

1080 Ti has an L1 cache of 48 KB and a shared memory of 96 KB, but the Tesla K40 has only

a merged first level memory of 64 KB, which can provide either 48 KB shared memory or

48 KB L1 cache in one simulation. In the experiments using the Tesla K40, most of the first

level memory is set to L1 cache and shared memory, respectively, for the two mechanisms.

The 1080 Ti is equipped with 28 streaming multiprocessors with 128 CUDA cores for each

streaming multiprocessor and the K40 has 15 streaming multiprocessors with 192 CUDA

cores for each processor. In order to conduct the stream processing, the number of CUDA

streams should be no more than the available streaming multiprocessors. Therefore, 28

and 15 CUDA streams are, respectively, used for the same applications, which are tested

on both GPUs, to fully utilize the GPU computing capabilities.

6.5.3 Memory Subsystem Efficiency

We evaluate the memory efficiency on the GTX 1080 Ti GPU because it has larger L1

cache and shared memory. Profiling data for these applications are not exactly the same

due to the different data dependence and memory access, but the shared memory approach

requires much fewer DRAM transactions and achieves better shared memory (L1 cache)

usage for all the applications compared to the cache approach. We evaluate the memory

77

Figure 11: Shared memory-based mechanism achieves much higher efficiency rate on
multiple metrics except L2 cache hit rate.

efficiency on the largest matrix, which is 215×215. We use the NVIDIA profiling tool, nvprof,

to collect the relevant information for cache, shared memory, and operations. The profiling

data is collected as the average of all the kernels, so we evaluate the memory efficiency

for the kernel function that performs the operations on a row of tiles. The optimized tile

sizes are used for both the cache-based and the shared memory-based mechanisms, which

are 1024 × 256 and 128 × 64, respectively. Because the optimized tile height of the cache-

based mechanism is 8 times larger than that of the shared memory-based mechanism,

we perform data normalization by dividing the cache-based mechanism data metrics of

“dram_read trans" and “dram_write trans" by 8.

Table 7: Profiling data for cache-based and shared memory-based mechanisms on GTX
1080 Ti.

Smith-Waterman Wagner-Fischer
Metrics CACHE SHARE CACHE SHARE

dram_read_trans 848, 531 566, 242 914, 682 570, 701
dram_write_trans 539, 182 489, 500 591, 505 489, 107

2-D SOR Summed-Area Table
Metrics CACHE SHARE CACHE SHARE

dram_read_trans 995, 162 722, 532 921, 199 706, 513
dram_write_trans 597, 278 488, 230 904, 226 512, 058

78

To calculate a row of tiles, the number of device memory transactions required by the

cache-based mechanism is more than the shared memory-based mechanism’s, as shown in

the first two rows of each table in Table 7. More device memory transactions leads to much

larger overhead for accessing the required data entries. Fig. 11 depicts the percentage rate

for multiple memory efficiency metrics. The shared memory-based mechanism achieves

nearly a 50% L1 cache hit rate on all four applications because only a small amount of

data are directly read from or written to global memory during the execution, and most

of these data access are consecutive and can be stored in L1 cache. However, the cache-

based mechanism has limited L1 cache hits due to the imperfect data locality. Even though

most of the required data is fetched by L2 cache in the cache-based mechanism, it is still

less efficient considering the latency for accessing L2 cache. We do not use L1 cache hit

rate as the metric for the shared memory-based mechanism because most calculations are

performed in shared memory. However, we can control when data should be stored in

or removed from the shared memory as well as the validity. So, we have a 100% shared

memory hit rate for accessing these data entries. The global load (gld) and global store

(gst) efficiency indicate the ratio of requested global memory load/store throughput to

required global memory load/store throughput. The higher ratio indicates that the shared

memory-based mechanism uses fewer transactions, which is closer to optimal, to obtain the

required data. This is because the shared memory-based mechanism achieves much better

global memory coalescing. Moreover, near-optimal shared memory coalescing is obtained,

shown as shared_efficiency. It is also true that the use of the shared memory demands

many more integer instructions for locating the tiles and indexing the subproblems, which

is necessary for copying the data between the shared memory and the global memory.

79

However, the optimized memory access contributes to a larger performance improvement.

Overall, the proposed mechanism achieves better memory efficiency because it requires

fewer global memory transactions, has lower memory copy latency due to the coalesced

memory access, and avoids the L1 cache misses by substituting shared memory for the

cache.

6.5.4 Performance: Multiple Tile Sizes

In this subsection, we evaluate the shared memory-based mechanism and run exper-

iments on the four applications, which are represented by the labels "SW", "WF", "SOR",

and "SAT". Because of the relation, which is presented in Equation 6.2 and the size of

shared memory, which is 48 KB, three tile sizes can be used in the shared memory-based

mechanism, which are: 128× 32, 128× 64, and 256× 32. The execution time of these three

tile sizes are shown in Table 8 for the GTX 1080 Ti and K40 separately. The matrix size is

set to 215 × 215 for each application and the execution time is measured in milliseconds.

To minimize the error, we repeat the same execution 100 times and use the average as the

execution time of each experiment.

Table 8: Execution time (ms): averaged for 100 repetitions.

GTX 1080 Ti
Tile Size SW WF 2D-SOR SAT(Height ×Width)
128× 64 139 131 682 691
128× 32 159 152 724 722
256× 32 170 169 731 733

Tesla K40
Tile Size SW WF 2D-SOR SAT(Height ×Width)
128× 64 807 790 6, 289 6, 270
128× 32 941 913 6, 390 6, 390
256× 32 807 790 6, 323 6, 304

80

As shown in Table 8, the optimal tile size of 128 × 64 achieves the best performance

in all cases. On the GTX 1080 Ti GPU, because 128 cores are available in each stream-

ing multiprocessor, the shortest height that can still achieve an acceptable core utilization

should be 128. Tile 256×32 has the worst performance because the core utilization cannot

be doubled but doubling the tile height halves the maximum inter-tile concurrency. Tile

128×32 has the best inter-tile concurrency and intra-tile concurrency; however, it requires

more global memory accesses to complete the data transfer. On the Tesla K40 GPU, uti-

lization of all cores can be achieved only by tile 256× 32 because each multiprocessor has

192 cores. However, tile 256 × 32 does not deliver much better performance compared to

128× 64. Therefore, we should use tile size 128× 64 for the similar applications and there

is no necessity to adjust the tile size for these two NVIDIA GPU architectures.

6.5.5 Performance: Cache vs Shared Memory

We compare the execution time of our approach (SHARE) to the most optimized exist-

ing cache implementation (CACHE).

Performance Data

The execution time, in milliseconds, for the four applications, using the two GPUs, is

depicted in Table 9 and Table 10. In general, the performance of each shared memory-

based experiment is better than the corresponding cache-based experiment. In addition,

the execution time on the GTX 1080 Ti outperforms what is obtained on the K40 because of

the faster clock rate, more streaming multiprocessors, and higher memory bandwidth. The

shared memory-based approach achieves a 1.9 to 6.7 times speedup over the cache-based

approach across all the applications on the 1080 Ti, and a 1.4 to 3.3 speedup is obtained

on the K40. To trade off the problem that each CUDA core of the K40 has less shared

81

memory on average, only 128 threads are created to utilize the 192 CUDA cores on each

multiprocessor, which leads to a relatively lower efficiency.

Performance Consistency

We evaluate the performance consistency by comparing the performance data of two

different matrices that have the same problem size. In our experiment, the comparable

sets are {215 × 212, 212 × 215}, {215 × 213, 213 × 215} and {215 × 214, 214 × 215}.

As shown in Table 9 and Table 10, the cache-based performance of the matrix 215 × 214

is 10% − 32% slower than the performance of matrix 214 × 215 on the GTX 1080 Ti and

3%−20% slower on the K40. On the other hand, the shared memory-based implementation

achieves extremely close performance for the two matrices of this comparable set on both

GPUs. Similarly, we can observe that the performance difference between the two matrices

is larger for the cache-based implementation, which is up to 27% comparing to 22% for

the shared memory-based implementation for the comparable set of {215 × 213, 213 × 215}.

For the comparable set {215 × 212, 212 × 215}, the shared memory-based mechanism still

obtains quite consistent execution times on two different GPU architectures. However, the

cache-based mechanism performs not as well on this comparable set where about 25%

performance difference exists in all four applications on GTX 1080 Ti and 25% to 35%

performance difference on K40.

Figure 12 depicts the data consistency of the shared memory-based mechanism and

the cache-based mechanism separately executed on the two GPUs. The GTX 1080 Ti is

represented as index 1 and the Tesla K40 is indexed with 2. On K40, better data consistency

is obtained from both mechanisms and the shared memory-based mechanism outperforms

the cache-based mechanism significantly. While the performance difference ratio of the

82

Table 9: Performance data for the GTX 1080 Ti GPU.

Time (ms) SW WF 2D-SOR SAT
Matrix CACHE SHARE CACHE SHARE CACHE SHARE CACHE SHARE

212 × 212 31 14 38 10 48 17 45 17
213 × 213 68 21 81 21 123 49 112 49
215 × 212 125 34 147 33 230 94 208 92
214 × 214 146 44 171 43 329 174 309 188
215 × 213 158 50 181 49 345 174 316 177
212 × 215 169 53 208 53 299 108 273 108
213 × 215 189 61 231 61 399 185 372 186
214 × 215 243 73 282 72 605 343 569 353
215 × 214 322 76 352 74 668 342 634 347
215 × 215 862 139 877 131 1,651 682 1,510 691

Table 10: Performance data for the Tesla K40 GPU.

Time (ms) SW WF 2D-SOR SAT
Matrix CACHE SHARE CACHE SHARE CACHE SHARE CACHE SHARE

212 × 212 121 26 138 25 284 108 248 107
213 × 213 268 65 300 62 771 405 668 402
215 × 212 491 134 538 127 1,411 800 1,290 798
214 × 214 658 229 718 220 2,354 1,599 2,164 1,587
215 × 213 669 238 750 229 2,348 1,607 2,184 1,593
212 × 215 729 158 834 153 1,914 829 1,680 824
213 × 215 835 230 944 220 2,732 1,598 2,460 1,587
214 × 215 1,148 447 1,274 430 4,478 3,190 4,143 3,166
215 × 214 1,377 447 1,495 429 4,627 3,190 4,278 3,165
215 × 215 2,597 807 2,820 790 8,962 6,289 8,285 6,270

two mechanisms are very close on the GTX 1080 Ti. Considering that the execution time

of comparable set {215 × 214, 214 × 215} is much longer than set {215 × 212, 212 × 215}, the

shared memory-based mechanism gets more benefits from data consistency. Overall, the

proposed approach achieves better performance consistency compared to the cache-based

mechanisms.

6.6 Summary

In this chapter we introduce a highly efficient hyperplane-tiling approach for exploit-

ing wavefront parallelism on GPUs. Instead of relying on L1 cache, the mechanism used

83

Figure 12: Average difference for four applications.

in prior research, we transfer the tile data to shared memory, which reduces the memory

access latency and achieves better data locality. Our proposed shared memory implementa-

tion is a generalized solution, which can be applied to problems that execute nested loops

with uniform data dependencies. We provide a formula to calculate the optimal tile size

from the problem size and the GPU configuration, which determines the tradeoff between

data locality and concurrency. Besides, we utilize the stream processing to minimize inter-

tile synchronization overhead and provide a spin lock design which is easy to implement

and has low overhead. We compare our approach to the best-existing solution and obtain

up to six times speedup. The paper includes a detailed comparison and explanation of the

performance difference between the two approaches.

84

CHAPTER 7 TIME-SKEWED TILING OPTIMIZATION FOR HIGH
ORDER 2D STENCIL COMPUTATIONS ON GPUS

Performance optimization of stencil computations has been widely studied in the liter-

ature, since they occur in many computationally intensive applications. In recent years,

optimizing stencil computations on GPUs is especially popular due to the GPU’s many-

core architecture. Most of these optimization utilizes overlapped tiling together with GPU

shared memory to address the inter-tile dependence. However, time-skewed tiling, which

is also named hyperplane tiling, is rarely used due to the limited cache capacity on GPUs.

In this chapter, we present a time-skewed tiling approach for optimizing stencil process-

ing on GPUs. The proposed approach utilizes GPU shared memory to reduce the global

memory transactions and applies to arbitrary stencils in 2-dimensional spaces. To address

the inter-tile dependences without introducing redundant computations, we develop a

data access pattern for passing the dependent data to successor tiles efficiently in shared

memory and obtaining cache reuse along the time dimension.

7.1 Introduction

Stencil computation is widely used in partial differential equations [79] and image-

processing applications [54] that require smoothing and filtering the array elements, as

well as other applications, like music recognition [5]. The iterative computation involves

a nested iteration, which updates array elements according to some fixed pattern, called

a stencil. The nested iteration includes one or multiple loops for the spatial dimensions

and the outer loop for the time dimension. A 2D stencil problem is resolved in a three-

dimensional nested loop, which includes one time dimension and two spatial dimensions.

A stencil computation traverses the space-time nested loop in an order that ensures the

85

computation of all array elements at time t complete before computing any array elements

at time t+1. In addition, the computation results are updated out-of-place in the memory

at each time step. Therefore, in a stencil computation, parallelism can be obtained within

each time step because it has no dependence but is not independent across different time

steps due to the dependence in time dimension.

Even if the data entries can be processed simultaneously at each time step, the stencil

computation is still bounded by memory bandwidth. The dependence in the time dimen-

sion forces the cache system to evict all data entries at the beginning of each time step.

Moreover, if the size of the memory block required for computing the data entries of one

time step exceeds the cache size, cache misses lead to more severe memory latency and

further restrict the performance. This is even worse on GPUs due to the GPU’s limited

cache capacity.

One idea for optimizing stencil computation is reducing cache misses during the spa-

tial dimension computation and tiling along the time dimension to reuse the cached data.

The tiling technique is one popular solution for achieving the desired optimization and

overlapped tiling is mostly studied in the high-performance community, especially for re-

search conducted on GPUs, to address the inter-tile dependence by performing redundant

computations. As shown in Fig. 13(a), overlapped tiling work around the inter-tile depen-

dence by performing redundant operations. According to [10], 0.95X extra operations are

required if the ghost zone size is 10% of the total grid elements and this number goes up

to 3.62X when ghost zone size increases to 20%. Besides, it also brings in intra-tile load

imbalance.

Unlike overlapped tiling, split tiling is developed to avoid redundant operations by

86

(a) Overlapped tiling has redundant operations and unbalanced workload.

(b) Split tiling has severe load imbalance issue and less inter-tile concurrency.

(c) Time-skewed tiling has lowest inter-tile concurrency among these three tiling strategy.

Figure 13: Different tiling strategies [1] illustrate the tradeoff between concurrency, com-
putation overhead, and memory latency.

dividing the computation into multiple groups of tiles that can be processed simultaneously

and each group produces the dependent data for the other groups. In Fig. 13(b), the

tiles in green are processed simultaneously and the computation on orange tiles can only

start when the green tile kernels are completed. In split tiling optimization, even if the

redundant operations are avoided, the performance is still reduced due to less concurrency

and severe load imbalance.

Time-skewed tiling, which is also called parallelogram tiling or hyperplane tiling, ob-

tains the best spatial locality and avoids redundant computation without generating an

unbalanced workload. In time-skewed tiling optimization, as shown in Fig. 13(c), de-

pendent data are passed to successor tiles along each spatial dimension. Therefore, the

87

computation is serialized along one spatial dimension because of the preserved inter-tile

dependence, which enforces a pipelined startup and provides limited concurrency. Be-

cause of the serialized computation and limited concurrency, this time-skewed tiling is

rarely studied, especially on GPUs.

In our proposed time-skewed tiling approach, redundant operations are eliminated

and intra-tile load balance is ensured. To minimize memory latency, an automatic time

step variable determination method is developed to obtain optimal temporal locality. In

addition, we develop a data access pattern to manage the memory address of tile data

and dependent data, which helps with efficient utilization of GPU shared memory for

storing tile data and passing dependent elements. Moreover, a circular pipeline scheduling

mechanism is developed to increase the processor-level parallelism and ensure that there

is no idle processor in the process. Our proposed optimization provides the following

contributions:

• We present a time-skewed tiling approach for optimizing stencil problems on GPUs,

which has not been developed before to the best of our knowledge.

• We develop a data access pattern to support the time-skewed tiling optimization,

which manages shared memory efficiently and applies to arbitrary stencil problems

in 2D space.

• We provide a different view towards the serialized dependence and prove that a

limited concurrent solution may obtain good performance on GPUs when it has low

computation overhead and memory latency.

• In the proposed time-skewed tiling approach, a circular pipeline technique is devel-

88

oped to minimize the unbalanced workload, caused by pipelined startup.

• We implement the pipelined computation with a stream processing scheme and de-

sign a two-level lock system for synchronizing the streams on GPUs.

7.2 Background and Motivation

In this section, we present the disadvantages of each tiling approach with respect to

GPUs. Then, we discuss the difficulties for using some existing highly efficient solutions to

optimize 2D stencil computations on GPUs. In addition, we propose an empirical analysis

to the effect of scheduling limited inter-tile parallelism on GPUs when the tile processing

is serialized. In the end, we explain our motivation of optimizing 2D stencil computations

with time-skewed tiling on GPUs.

7.2.1 Disadvantages of Different Temporal Tiling

There is no perfect tiling strategy that can optimize data locality without bringing in

penalty in other aspects. Load imbalance, occurs in overlapped tiling and split tiling,

leads to a more serious performance overhead on GPUs because of CUDA massive-threads

property. In addition, overlapped tiling and split tiling cannot obtain the optimal cache

utilization due to the temporal blocking shapes. This is not desirable on GPUs because

GPU has limited cache capacity and sacrificing cache resources may result in insufficient

intra-tile parallelism. Time-skewed tiling has no above performance issue but it leads to

pipelined start. More importantly, it enforces the serialized tile processing in each pipe and

restricts the number of thread blocks that can be launched simultaneously in each kernel.

89

7.2.2 Difficulties of Using Existing Solutions

3.5D tiling is a highly efficient tiling mechanism for optimizing 3D stencil computations.

The algorithm performs a 2.5D spatial tiling and an additional temporal tiling into on-chip

memory. Because the 2.5D spatial tiling only blocks in two dimensions and streams through

the third dimension, the amount of data entries, to be cached at each iteration, is signif-

icantly reduced so the bandwidth requirement is also reduced. This strategy changes the

3D stencil computation from memory bound to compute bound. However, this algorithm

does not apply to 2D stencil computation because it cannot save bandwidth by pre-fetching

a 2D layer when streaming along the third dimension. Therefore, 2D stencil computation

is still memory bounded. Moreover, the temporal tiling, proposed in 3.5D algorithm, is

not practical applying to GPUs. Because of GPU limited on-chip memory recourse, it is

impossible to increase the inter-tile parallelism by caching more time steps in one tile.

Split tiling mechanisms like diamond tiling and trapezoidal tiling cannot retain the

same efficiency on GPUs. Even if these mechanisms are naturally applicable to 2D grid,

the load imbalance property is inevitable and leads to poor intra-tile parallelism on GPUs.

This performance issue is more severe on diamond tiling that only a few steps, at the

middle of the tile, may have enough operations for full core utilization.

As for code auto-generating compiler, it greatly save programmer’s time from develop-

ing the tiling mechanisms; however, it usually fails to fully utilize hardware resources and

has limitations in programming. For example, PPCG [57] has restrictions for using static

allocated arrays, which limits the maximum problem size. Also, many compilers share a

common problem that requiring the fixed tile size at compile time.

90

7.2.3 Concurrency Modeling on GPUs for Time-Skewed Tiling

Time-space tiling creates two-level parallelisms: inter-tile parallelism and intra-tile par-

allelism. Intra-tile parallelism is determined by the in-tile load balance and on-chip cache

capacity, but inter-tile parallelism is restricted by the inter-tile dependence. Therefore,

time-skewed tiling obtains the best intra-tile parallelism because the tile shape ensures

the load balance. On the other hand, time-skewed tiling has limited inter-tile parallelism

because the inter-tile dependence are not overlapped and have to be passed between ad-

jacent tiles in a sequence.

The CUDA programming model for the time-skewed tiling on a 2D grid has the follow-

ing properties. To have a better explanation, we use XY to represent a two-dimensional

space where X and Y are the two dimensions and T represents the temporal dimension.

• Thread Mapping: Each tile is scheduled to one thread block to utilize on-chip cache

and minimize the communication overhead.

• Block Mapping: The spatial tiles that reside on a XY plane and connected in a row

along one spatial dimension, which is X dimension in this work, are processed in

sequence in one or multiple kernels.

• Kernel Mapping: Adjacent rows of spatial tiles are started in a pipeline manner and

processed in multiple kernels, which are launched simultaneously.

Above all, we can make the following conclusion. First, the processor utilization can

be maximized by simultaneously processing multiple rows of tiles, so at least one kernel

is launched on each processor. Second, the core utilization within each processor is deter-

91

mined by the spatial tile size and the ratio of operations per byte. Third, since 2D stencil

computation is still memory bounded, creating multiple thread blocks and increasing the

total amount of threads at each kernel may not bring in better core utilization due to the

memory bandwidth congestion.

7.2.4 Our Motivation

It has been proven that both overlapped tiling and split tiling face the issue of large

computation overhead. Because the stencil computation is still memory bounded, larger

computation overhead would downgrade the overall performance. Therefore, we want to

avoid this performance issue by developing a time-skewed tiling approach. Even if time-

skewed tiling is not favored in the previous studies because of its limited concurrency issue,

we believe that it is still possible to achieve an acceptable in-processor core utilization and

obtain a good overall performance if cache resources are used efficiently.

The NVIDIA GPU architectures, Kepler and Pascal, share a common property that the

maximum capacity of shared memory is no less than L1 cache. Thus, addressing the tiles

in shared memory is more efficient at full utilization of GPU cache resources across all

popular NVIDIA platforms. In addition, the non-coalesced memory access is inevitable

in all existing tiling approaches because of the tile shape at temporal dimension. In this

situation, the edge elements would be fetched into cache lines together with invalid data

elements when they are first time read into L1 cache. The invalid data elements also

reside in L1 cache through the entire computation, which wastes the limited cache space.

In order to address the cache overhead and use shared memory efficiently, we develop a

data access pattern for storing and accessing the valid data elements in shared memory

efficiently. Moreover, most of the existing research projects focus on low-order stencil

92

computations that the distance is usually no larger than 2. Studying the efficiency of high-

order stencil computation is another topic that we want to include in the development and

analysis of our proposed tiling approach.

7.3 Design and Challenges

Fig. 14 illustrates the design overview of our tiling approach. This approach exploits

the processor utilization in a streaming processing pattern, which is developed to address

the processor-level load imbalance caused by pipelined start. A two-level lock system is

designed to coordinate with stream processing, which ensures the kernel launch sequence

and cache coherence for the updated dependence among adjacent tiles. In addition, the

data access pattern is also presented.

7.3.1 Two-level Parallelism

We have explained that the full parallelism is obtained both inside the tile (intra-tile)

and across multiple tiles (inter-tile). Therefore, we exploit both intra-tile and inter-tile par-

allelism in our proposed tiling optimization. In Fig. 15, the circle dots represent the data

elements and the large squares represent tiles. On a XY plane, the tiles can be organized

in 4 rows and the tiles that are in the same row are processed in sequence.

Intra-Tile Parallelism

As shown in Fig. 15, tile elements are processed by CUDA threads. Because each tile is

processed in one thread block, the maximum parallelism is obtained when tile elements are

processed by all in-block threads simultaneously. Each thread may process one or multiple

data elements according to the tile size. To ensure efficient core utilization, we consider

the latency hiding from two aspects: memory latency hiding and arithmetic latency hiding.

93

Figure 14: Design of Host and GPU Device: solid arrows depict the flow of events and
dashed arrows show the data communication.

Since all required data elements are transferred to shared memory before the computation,

no memory latency occurs during the computation. On the other hand, arithmetic latency

can be completely overlapped if at least 24 warps are created on each multiprocessor [80].

In our tiling approach, we create 1024 threads for each block, which is sufficient to hide

the latency and keep all cores busy during the computation.

94

Figure 15: Intra-tile parallelism and inter-tile parallelism.

Inter-Tile Parallelism

In our tiling approach, inter-tile parallelism is obtained differently from the other tiling

approaches. Because computation over a row of tiles along either X or Y dimension is se-

rialized due to the dependences, inter-tile parallelism can only be obtained in a pipelined

manner, which are presented by same color tiles in Fig. 15. We retain serial computation

in the X dimension so the tiles, in a row along X dimension, are executed in sequence.

In this chapter, “row" specifically represent a row of tiles along the X dimension. This

serialized computation is implemented by creating only one block in each kernel and pro-

cessing a row of tiles within this block in sequence. Then, we obtain inter-tile parallelism

95

Figure 16: Tiles that are in same color are processed simultaneously.

by launching different rows of tiles, along the Y dimension, in different CUDA streams be-

cause kernels in different streams are launched simultaneously if the multiprocessors are

available.

7.3.2 Stream Processing Scheme

Fig. 16 depicts the kernel-stream distribution as well as the stream parallelism. Because

of the pipelined processing, the dependences in the Y dimension are staggered, so inter-tile

parallelism is achieved at each anti-diagonal. Pipelined processing is realized by managing

96

the timing for processing the tiles in each kernel. Ideally, a kernel starts performing the

computation of tile n of row k as soon as the dependent kernel completes its computation

of tile n of row k − 1. This processing order is managed by a two-level lock system, which

will be discussed in the next subsection.

Intra-Kernel Dependent Data

Processing each row of tiles in sequence in a single thread block provides an advantage

for reducing memory latency. Passing dependent data between adjacent tiles not only leads

to serialized computation but also enforces the communication between these tiles. If each

tile is processed in a self-contained thread block, the communication has to be performed

in global memory, which increases the memory traffic. In our time-skewed tiling approach,

each row of tiles, along the X dimension, are streamed and processed in one thread block.

Therefore, the dependent data, passing between every two tiles in each row, are stored

in shared memory. Caching the inter-tile dependent data in shared memory significantly

reduce the global memory transactions, which makes the data locality better than other

tiling schemes.

Inter-Kernel Dependent Data

Except for intra-kernel dependences, dependent data are also passed among the tiles

that reside in two adjacent rows and we call them inter-kernel dependent data. Because

different rows of tiles are processed in different thread blocks, passing inter-kernel depen-

dent data between every two adjacent rows must be done using global memory. This raises

another memory issue because storing inter-kernel dependent data for all the rows at each

time step requires a huge amount of memory space, which is not practical and generates

97

high overhead for allocating memory space.

Our stream processing scheme works around this issue by limiting the number of CUDA

streams, created for processing the rows, and creating an inter-kernel dependent data ar-

ray for these streams instead of rows. Thus, instead of the one-to-one row stream mapping,

we create a limited number of streams, equal to the number of streaming multiprocessors,

and allocate the kernels that process these rows into these streams. This strategy makes

the total array size proportional to the length of the matrix in X dimension and signifi-

cantly reduces the required memory space from O(N2 × T) to O(N) where N represents

the length of one spatial dimension of the input matrix and T represents the total time

steps.

Intra-Stream Process

Kernels that process the rows of all the time steps are distributed to a number of CUDA

streams so multiple kernels are launched in each stream. Because the kernels that reside

in the same stream are invoked sequentially, the memory safety for passing the dependent

data is ensured implicitly. In addition, the serialized kernel launching property makes the

reuse of the inter-kernel dependent data array possible because the kernels update the

same dependency array in sequence as well.

Inter-Stream Process and Task Scheduling

We develop a task scheduling method to distribute the kernels that process the rows

of all the time steps to the limited number of CUDA streams in a cyclic manner. Fig. 16

depicts the task scheduling for distributing kernels to 3 streams in two adjacent time steps.

In the same time step, each stream can start launching a new kernel right after the

98

completion of the previous one as long as there is no dependence interval, which may put

the kernel in idle waiting. The dependence interval occurs when the kernel, which is in

anther stream and processing the predecessor row, has not completed the computation of

certain tiles that have the dependent data required by the current kernel. This interval is

relatively short because processing one row does not need to wait till the completion of

processing the predecessor row. Instead, this inter-stream collaboration is synchronized on

the tile basis so a new kernel, launched in a stream, can start processing its row as soon as

the first few tiles of the predecessor row have been processed in the kernel distributed to

another stream.

It is different when the inter-stream process reaches the end of one time step and

is ready to proceed to the next time step. Theoretically speaking, the first row of each

time step can be processed as soon as the tile elements are available because it requires

no dependent data from the predecessor row. Thus, the inter-stream collaboration for

the kernels that process the last row of one time step and the first row of the new time

step, respectively, in separate streams has no dependency and allows simultaneous start.

However, this is only guaranteed when mapping each row to an individual stream and the

reuse of the dependency array brings in a new risk of overwritten data so a lock function

is required to manage the starting of the next time step in our stream processing scheme.

7.3.3 Two-level Lock System

To manage the row processing either in the same time step or across multiple adjacent

time steps, the stream processing scheme requires two lock functions to ensure the correct-

ness and completeness of the data access between every two adjacent rows and between

every two time steps. As shown in Fig. 16, we index the rows with increment ID for each

99

time step and the tiles for each row.

In-Step Lock Function

For every two adjacent rows, which are in the same time step, the kernel that processes

the larger indexed row is always one tile behind the other kernel that processes the smaller

indexed row because of the pipeline processing. The kernel that processes row k needs to

know the progress that the other kernel is making in row k − 1. In other words, each

kernel needs to update its status of tile completion and this status is accessed by another

tile, which processes the next row of the same time step.

Thus, we create a counter variable for each row, used to record the number of tiles that

have been processed at each point. The kernel increments this counter when it completes

the computation and updates the data elements for one tile and each kernel reads the

status counter of the kernel that processes the previous row before it starts processing a

tile. If another kernel that processes the prior row has completed the computation to the

tile that passes dependent data required by computing the current tile, it is safe for the

target kernel to start the computation; otherwise, the kernel puts itself in a waiting status

and keeps checking the status counter of the other kernel until the counter value is valid.

An exception occurs in the first row because the kernel that processes the first row does not

require dependent data, passed from the other kernel, so this kernel can start processing

the tiles as soon as the tile elements are available.

Across-Step Lock Function

In our stream processing scheme, each CUDA stream is equipped with an inter-tile

dependency array. To pass the dependent data to the kernel that processes the next row,

each kernel updates its dependent data into the dependency array of the next stream. If

100

a kernel is launched at the last stream, it updates the dependent data to the dependency

array of stream 0.

The collaboration of the cyclic scheduling method and the fact that first kernel of each

time step can start computation immediately generates a risk that the data elements, up-

dated by the last kernel of each time step, would be overwritten by the next kernel, which

is in the same stream and processes a row in the next time step. Fig. 16 depicts an exam-

ple. In the first time step, four kernels that are in the last row are processed in sequence

in stream 0. At the same time, the kernels that are in the first row of second time step

can be processed simultaneously because there is no dependence between these two rows.

Therefore, the computation flow of time step 2 is individual from processing the last row

of time step 1 and it is possible that the kernels of the second row in time step 2 update

dependent data to the inter-kernel dependency array of stream 0. Because this dependence

update could occur when one of the four kernels, which are 3, 7, 11 and 15, is still being

processed, the dependence update, happened in time step 2, would overwrite the data of

stream 0, which makes the calculation of these kernels incorrect.

We develop the second-level lock function and a lock array to hold the kernels waiting

for a complete memory update. Similar to the status counter, each stream owns an array

element, which is initialized to the total number of tiles in each row. Here we use row_size

to represent the number of tiles in each row. Before starting the computation, each kernel

reads the array element of the stream in which the next row is processed. An element value

of row_size indicates that the data update is already completed in the next stream and it

is now safe to pass the dependent data into that stream. If it is safe to start computation, a

kernel clears the array element to 0 and then sets it back to row_size when it completes the

101

Figure 17: Shared memory organization for dependent elements and tile elements.

computation for all the tiles of the row. Conversely, if the kernel reads value 0, it will be put

into a empty loop to wait until the value is set back to row_size. Detailed implementation

code is provided in Sec. 7.4.

7.3.4 Data Access Pattern

Unlike using L1 cache where the compiler manages the address implicitly, using shared

memory requires direct human management. To accommodate the tile elements, intra-

kernel dependent elements, and inter-kernel dependent elements in shared memory for

each time step of a tile, we design a data access pattern that consists of three parts and is

organized as shown in Fig. 17.

The small blocks in the given picture represent data elements and this table shows

the organization of the array for storing all necessary data elements for processing a tile.

The green region, which has 8 × 8 data elements, is an example of the tile in one time

stamp. The grey region that has 10 × 2 data elements is reserved for storing inter-kernel

dependent data. Then, the intra-kernel dependent data are stored in the blue region. The

proposed two-level lock system ensures that the computation is performed only after all

three regions are filled with correct data.

102

At the beginning of each step of a tile processing, tile elements of that step are copied

to the green region while intra-kernel and inter-kernel dependent elements are stored into

blue and grey regions, respectively. When the required elements are ready, the kernel is

able to process the computation and get the updated tile elements for the next time step,

which are located inside the red square. Then, the kernel moves the updated tile elements

from the new address back to the green region and also copies the new intra-kernel and

inter-kernel dependent elements to the corresponding addresses in the two dependency

arrays. When a tile includes multiple time steps, the elements in all three regions are

updated at each step and the tile elements, updated in the last time step, are written

back to global memory. Therefore, the global memory transactions, performed in each

tile processing, is significantly reduced because the tile elements are read/written from/to

global memory only at the beginning and end of the tile processing and reused in shared

memory during the computation. In addition, the global memory access latency, generated

for updating inter-kernel dependent data, is also minimized in this data pattern for two

reasons. First, the number of transactions required for fetching the inter-kernel dependent

elements is low because these elements are stored consecutively and aligned in global

memory. Second, the memory access latency can be overlapped with other operations

because all the tile elements are executed simultaneously. Overall, we apply the data

access pattern in tile processing and achieve near-optimal memory efficiency.

7.4 Implementation

In this section, we provide the details of our implementation in major functions, mem-

ory layout, and process flow.

103

7.4.1 Dependency Array Structure and Transfer

To better explain the structure of the dependency array structure, we define the fol-

lowing variables. dep_stride is the variable for quantifying the width of ghost zone [52];

tile_lenX is the length of the tile in the X dimension and tile_lenY is the length in the Y di-

mension; relatively, matrix_lenX and matrix_lenY are the length of the matrix in the X and

Y dimensions; time_step is the number of time stamps, tiled in the temporal dimension;

num_streams is the total number of available streams.

Intra-Kernel Dependency Array. In a kernel, the computation is performed across the

tiles that concatenate in a row along the X dimension and the dependent data, passed

between every two adjacent tiles, are located in the previous tile and near a joint edge.

In Fig. 17, the blocks in blue are the intra-kernel dependent elements, required by the tile

processing; the blocks, indexed with 1 and 1/2, are the dependent data, passed to the next

tile. Thus, the structure of the intra-kernel dependency array is determined by dep_stride,

tile_lenY, and time_step.

In tile processing, computation is performed in every time step of each tile so the access

to the dependent data are required at each step. Thus, an array is created in shared mem-

ory to temporally store these dependent data for each tile. At the beginning of processing

each time step, dependent data of that time step are moved from the dependency array to

the computation array. After the computation, the new dependent data, used for process-

ing the next time step of the next tile, are moved to the dependency array and overwrites

the old values.

Because dep_stride usually does not equal to the warp size and these dependent data

104

are not stored consecutively, transferring these data requires more shared memory access.

However, the overhead for the extra shared memory access is negligible due to the high

memory bandwidth and low latency to access shared memory.

Inter-Kernel Dependency Array. In Fig. 17, the blocks in grey are the inter-kernel de-

pendent elements and the blocks, indexed with 2 and 1/2, are the dependent data required

by the next row. Thus, the structure of the inter-kernel dependency array is determined

by matrix_lenX instead of tile_lenY. In tile processing, the kernel uses the tile index and

the stream index to locate the address of the dependent elements in the large dependency

array. The size of the inter-dependency array for all the streams is given in equation 7.1.

array_size = num_streams× time_steps× dep_stride×matrix_lenX (7.1)

Similar to the intra-kernel dependency operations, inter-dependent data are moved to

the computation array at the beginning of each time step, then new dependent data, passed

to the same indexed tile but in the next row, are moved back to the global dependency

array. The number of elements to be passed is determined by tile_Xlen, which is a multiple

of the warp size. Thus, transferring inter-dependent data is efficient because of full cache

line utilization.

7.4.2 Stream Indexing

To distribute the kernels to the limited number of CUDA streams in a cyclic manner,

it is important for each kernel to know the index of the stream where it is launched. Be-

sides, stream indexes are also required for accessing the inter-kernel dependency array

and counter arrays of the lock system. The method for obtaining the stream index directly

105

Algorithm 8 Lock functions for coordinating the streams at each time stamp.

1: read_tile_lock_for_batch(volatile lock[], row_idx, tile_idx, YoverX, row_size, col_size,
time_tile)

2: if threadIdx.x == 0 then
3: limit = min(tile_idx + YoverX, row_size)
4: while lock[time_tile× col_size + row_idx] < limit do
5: { no operations }
6: __threadfence()
7: __syncthreads()

8: write_tile_lock_for_batch(volatile lock[], row_idx, col_idx, time_tile)
9: if threadIdx.x == 0 then

10: lock[time_tile× col_size + row_idx + 1] += 1

11: __threadfence()
12: __syncthreads()

from the row index is shown in equation 7.2, which uses logic_stream as the variable of the

stream index. However, this method is not applicable in most cases because the number

of rows in each time step cannot be divided evenly, which makes the kernel-stream map-

ping between two adjacent time steps discontiguous. The discontiguous stream indexing

between two adjacent time steps enforces a new pipelined start at each time step, which

could significantly worsen the overall load imbalance. Thus, we provide our solution for

deriving the stream index for each kernel and name the variable cur_stream. stream_offset

is the remainder of number of rows in each time steps divided by num_streams; time_tile

is the index of the tile in time dimension.

logic_stream = row_idx mod num_streams

cur_stream = (logic_stream + stream_offset× time_tile) mod num_streams

(7.2)

106

Algorithm 9 Lock functions for collaborating the streams across two adjacent time stamps.

1: read_time_lock_for_stream(volatile lock[], cur_stream, next_stream, row_size,
row_idx)

2: if threadIdx.x == 0 then
3: while lock[next_stream] < row_size do
4: { no operations }
5: __threadfence()
6: __syncthreads()

7: write_time_lock_for_stream(volatile lock[], cur_stream, row_size)
8: if threadIdx.x == 0 then
9: lock[cur_stream] = row_size

10: __threadfence()
11: __syncthreads()

12: clear_time_lock_for_stream(volatile lock[], cur_stream, row_size)
13: if threadIdx.x == 0 then
14: lock[cur_stream] = 0

15: __threadfence()
16: __syncthreads()

7.4.3 Code for Lock Functions

The lock process that coordinates streams in each time step performs a comparison

as the wait operation and an counter increment operation for signaling. In algorithm 8,

variable YoverX is the quotient of tile_lenY divided by tile_lenX and tile_idx indexes the tile

in each row. Algorithm 9 shows the design of the second lock that coordinates the streams

across two adjacent time steps. In this lock, an extra function is performed to clear the

counter variable to 0 at the beginning of processing each row. next_stream is the index of

the stream that launches the kernel, which processes the next row.

7.4.4 Flow of Tile Processing

Here we describe the flow of host process and device process separately in algorithm 10

and algorithm 11.

107

Algorithm 10 Flow of host kernel for array initialization, indexing streams, and launching kernels.

1: Initialize arrays
2: Create streams
3: while t < T_len do
4: for row_idx = 0, . . . , col_size do
5: Calculate stream index
6: GPU_Tile〈〈〈1, 1024〉〉〉()

The host kernel allocates array blocks in device global memory for tile elements, de-

pendent elements, and lock counters. In addition, the host kernel creates a group of CUDA

streams according to the number of multiprocessors. Then, the time dimension is tiled in

a nested loop and the device kernels are launched in the inner iteration.

Flow of the CUDA kernel is shown in algorithm 11. Line 1 performs a wait operation

of the first-level lock to check if it is safe to start processing the new time step. When

processing the new time step is permitted, a clear operation, shown in line 2 is performed

to set the counter variable to 0 for the specific stream. Then, a loop is used to manage

the processing sequence for a row of tiles, as shown in line 3. In this first loop, the wait

operation of the second-level lock is called to coordinate the streams and the required

elements are moved into the computation array (line 4-5). Next, the second iteration is

applied to traverse all time steps of each tile, where tile_Tlen represents the number of time

steps in each tile (line 6). Between line 7 and 16, required elements are moved to shared

memory and then the stencil computation is performed in function “Stencil()" (Line 10).

After the computation, dependent elements of the next time step are moved back to the

dependency arrays and the updated tile elements are re-positioned for processing the next

tile in function “Swap_Tile" (Line 14). At the end, signal operations for the two locks are

called accordingly to update the status of rows and streams (line 18 and 19).

108

Algorithm 11 Flow of device kernel for processing tiles.

1: read_time_lock_for_stream(volatile lock[], cur_stream, next_stream, row_size,
row_idx)

2: clear_time_lock_for_stream(volatile lock[], cur_stream, row_size)
3: for tile_idx = 0, . . . , row_size do
4: read_tile_lock_for_batch(volatile lock[], row_idx, tile_idx, YoverX, row_size,

col_size, time_tile)
5: Move tile elements: global memory→ shared memory
6: for t = 0, . . . , tile_Tlen do
7: Move dependent elements to shared memory
8: __threadfence()
9: __syncthreads()

10: Stencil()
11: __threadfence()
12: __syncthreads()
13: Move dependent elements to intra-kernel and inter-kernel dependency arrays
14: Swap_Tile()
15: __threadfence()
16: __syncthreads()
17: Move tile elements: shared memory→ global memory
18: write_tile_lock_for_batch(volatile lock[], row_idx, col_idx, time_tile)
19: write_time_lock_for_stream(volatile lock[], cur_stream, row_size)

7.5 Experimental Evaluation

The experiments are performed on a NVIDIA GTX 1080 Ti GPU. The GTX 1080 Ti is built

with Pascal architecture, which has 96KB dedicated shared memory and 48KB L1 cache on

each multiprocessor and a total of 3584 cores. However, a single block can use at most

48KB shared memory so at least two blocks are required for each kernel to obtain full

shared memory utilization. To fully occupy the 28 multiprocessors, we create 28 CUDA

streams so each multiprocessor always has one block to process during the computation.

7.5.1 Experimental Background and Setup

We build the experiments for the proposed time-skewed tiling approach on the 2D

grids. The performance is evaluated from multiple aspects: distance, iterative method,

109

(a) Moore Neighborhood (b) Cross-Shaped Neighborhood

Figure 18: Two patterns lead to different memory efficiency.

and stencil pattern. Our experiments involves two stencil patterns including Moore neigh-

borhood [81, 82], and cross-shaped neighborhood [83, 84]. Fig. 18a illustrates a Moore

neighborhood pattern, which has a distance of 1. The Moore neighborhood pattern pro-

vides the most efficient cache line utilization because data elements are stored consecu-

tively in each row. A cross-shaped pattern that has 2 units distance is shown in Fig. 18b.

This stencil pattern has lower cache line efficiency.

Our evaluation is performed on Jacobi iteration methods, which are used in many

computing applications, such as HEAT [85], Poisson solver [86], Gradient [87], and etc.

We perform the Jacobi method on the Moore Neighborhood pattern and cross-shaped

neighborhood pattern. The experiments are completed in six different spatial 2D matrix

sizes, which are 28×28, 29×29, 210×210, 211×211, 212×212, and 213×213. Each computation

has 512 time steps and is involved in eight different distances, for each pattern.

7.5.2 Experimental Results and Analysis

In this section, we evaluate the performance of the proposed tiling approach and ana-

lyze the GPU resource management for obtaining optimal efficiency. Also, we compare the

110

Table 11: Number of time steps can be processed for each pair of tile size and distance.

Tile_Size dist= 1 dist= 2 dist= 3 dist= 4 dist= 5 dist= 6 dist= 7 dist= 8
64× 64 8 8 4 N/A N/A N/A N/A N/A
64× 32 16 16 8 8 8 4 4 4
32× 32 16 16 16 8 8 8 4 4

performance to a simple GPU implementation, a PPCG translated implementation [57],

and an OpenACC implementation, in GFLOPs, where the simple GPU implementation is

not optimized by any tiling.

Time Steps

There are three arrays that reside in shared memory, two computation arrays and one

intra-kernel dependency array. According to the proposed data access pattern, each com-

putation array consists of a tile elements region, intra-kernel dependent elements region,

and inter-kernel dependent elements region. Because the intra-kernel dependency array

would expand its size when the distance is increased, the number of time steps that can

be processed in each tile has to be reduced to ensure the overall memory requirement is

not exceeding the shared memory capacity. However, if the distance is so large that the

memory requirement still exceeds the capacity, even if the number of time steps is already

minimized, the number of tile elements to be calculated must be reduced.

Three different tile sizes are shown in Table 11. Only three distances are supported

on the largest tile size, 64 × 64, because less memory can be allocated to intra-kernel

dependency array. Having a smaller spatial tile leaves a larger memory block for the intra-

kernel dependency array, which allows more time steps in a tile.

Performance Analysis

In all the experiments, each tile is processed by one kernel, which has only one thread

111

Table 12: Performance in GFLOPS for Moore Neighborhood Pattern.

Problem_Size Tile_Size dist= 1 dist= 2 dist= 3 dist= 4 dist= 5 dist= 6 dist= 7 dist= 8

28 × 28
64× 64 15 21 31 N/A N/A N/A N/A N/A
64× 32 10 18 30 48 53 70 71 88
32× 32 14 28 40 60 70 94 96 119

29 × 29
64× 64 28 59 84 N/A N/A N/A N/A N/A
64× 32 25 53 73 112 124 162 162 198
32× 32 31 62 114 172 199 260 258 322

210 × 210
64× 64 79 143 184 N/A N/A N/A N/A N/A
64× 32 63 116 159 244 270 354 348 426
32× 32 75 149 213 253 327 382 490 613

211 × 211
64× 64 147 259 336 N/A N/A N/A N/A N/A
64× 32 113 204 277 412 458 594 594 726
32× 32 62 143 207 281 352 458 444 564

212 × 212
64× 64 148 265 338 N/A N/A N/A N/A N/A
64× 32 116 208 284 422 467 608 608 741
32× 32 81 149 212 312 361 464 476 571

213 × 213
64× 64 148 271 342 N/A N/A N/A N/A N/A
64× 32 118 210 287 427 474 616 615 748
32× 32 79 148 212 313 361 462 480 577

block of 1024 threads. Besides, each thread requires at least 40 registers so each thread

block needs 40K registers, which is more than half of the total capacity and makes the

block-level parallelism of each multiprocessor restricted by register resources. Therefore,

only one thread block is processed on each multiprocessor at a time.

The experiments are performed on six different problem sets and the evaluation for

each problem set also consists of three separate computations for different tile sizes. Each

tile includes a certain number of time steps, which are shown in table 11. Table 12 provides

the performance results of processing the Jacobi method on Moore neighborhood patterns.

Good performance is obtained on large problem sets because more data updates are com-

pleted in the intra-kernel dependency array on shared memory. In addition, patterns that

have long distance (high order) provide more operations, which are performed on the

same cached tile block, so spatial locality is greatly improved and better performance can

be achieved.

112

Table 13: Performance in GFLOPS for Cross-Shaped Neighborhood Pattern.

Problem_Size Tile_Size dist= 1 dist= 2 dist= 3 dist= 4 dist= 5 dist= 6 dist= 7 dist= 8

28 × 28
64× 64 14 29 48 N/A N/A N/A N/A N/A
64× 32 11 23 39 58 78 114 142 184
32× 32 14 31 54 80 106 136 159 197

29 × 29
64× 64 33 71 123 N/A N/A N/A N/A N/A
64× 32 29 61 118 165 220 289 317 411
32× 32 33 71 155 213 285 369 411 511

210 × 210
64× 64 95 193 316 N/A N/A N/A N/A N/A
64× 32 72 145 253 349 471 620 670 855
32× 32 80 171 291 413 546 681 779 951

211 × 211
64× 64 174 364 603 N/A N/A N/A N/A N/A
64× 32 130 267 445 647 842 1, 080 1, 207 1, 541
32× 32 67 166 286 412 536 684 774 959

212 × 212
64× 64 180 375 605 N/A N/A N/A N/A N/A
64× 32 134 274 452 660 852 1, 094 1, 231 1, 577
32× 32 79 177 292 422 547 698 788 978

213 × 213
64× 64 184 381 613 N/A N/A N/A N/A N/A
64× 32 135 275 455 660 864 1, 111 1, 250 1, 601
32× 32 85 177 292 425 544 701 796 992

As shown in table 12, better performance is obtained on a tile size of 32× 32 for small

problem sets. Because the quotient of dividing a small problem set with large tile is smaller

than the number of available CUDA streams, the inter-tile parallelism is not as good as it

is obtained on a small tile. However, tiling with large tiles contributes better performance

on large problem sets. Full inter-tile parallelism can be obtained by all tile sizes on large

problem sets, so tiling with small tiles does not increase processor utilization. Oppositely,

tiling with small tile sizes leads to higher memory access overhead because it requires

more global memory transactions for updating the inter-kernel dependency array.

The same behavior also applies to the computation, which is performed on the cross-

shaped neighborhood and shown in table 13. Because performing computation on the

cross-shaped neighborhood requires much fewer operations than performed on Moore

neighborhood, much better performance is achieved. However, executing fewer opera-

tions on the same amount of cached data elements also implies a worse spatial locality.

113

Table 14: Performance Comparison in GFLOPS for Cross-Shaped Neighborhood Pattern.

Problem_Size dist= 1 dist= 2 dist= 3 dist= 4 dist= 5 dist= 6 dist= 7 dist= 8

28 × 28
PPCG 2 6 11 20 N/A N/A N/A N/A

OpenAcc 46 107 191 292 406 537 654 805
plain_GPU 51 126 221 348 451 584 722 900

Skew_Tiling 14 31 54 80 106 136 159 197

29 × 29
PPCG 9 25 46 76 N/A N/A N/A N/A

OpenAcc 92 209 357 545 741 917 1, 082 1, 343
plain_GPU 129 286 456 674 810 986 1, 177 1, 482

Skew_Tiling 33 71 155 213 285 369 411 511

210 × 210
PPCG 36 84 150 244 N/A N/A N/A N/A

OpenAcc 117 254 453 740 1, 062 1, 298 1, 520 1, 933
plain_GPU 205 430 712 1, 043 1, 185 1, 412 1, 721 2, 156

Skew_Tiling 95 193 316 413 546 681 779 951

211 × 211
PPCG 111 214 370 640 N/A N/A N/A N/A

OpenAcc 143 324 505 812 1, 133 1, 374 1, 603 2, 023
plain_GPU 266 533 830 1, 198 1, 290 1, 500 1, 735 2, 201

Skew_Tiling 174 364 603 647 842 1, 080 1, 207 1, 541

212 × 212
PPCG 211 326 535 961 N/A N/A N/A N/A

OpenAcc 152 334 555 911 1, 336 1, 577 1, 845 2, 028
plain_GPU 276 533 805 1, 167 1, 249 1, 446 1, 681 2, 105

Skew_Tiling 180 375 605 660 852 1, 094 1, 231 1, 577

213 × 213
PPCG 282 358 588 1, 126 N/A N/A N/A N/A

OpenAcc 154 329 535 867 1, 094 1, 327 1, 536 1, 960
plain_GPU 274 549 852 1, 224 1, 339 1, 557 1, 803 2, 226

Skew_Tiling 183 380 613 660 864 1, 111 1, 250 1, 601

Therefore, better memory efficiency is obtained on Moore neighborhood than the cross-

shaped neighborhood.

Performance Comparison

In the proposed time-skewed tiling approach, we added many extra operations for in-

dexing the required data elements and moving data elements between shared memory and

global memory. Thus, performing more operations on each tile can offset the overhead for

executing these extra operations, so our proposed tiling method is more efficient if more

data elements are involved in the computation. We compare our approach to three dif-

ferent implementations and illustrate the overall efficiency and performance improvement

of our method in tables 15 and 14. Because PPCG requires a great amount of time for

translating the code of higher-order computations, we can obtain PPCG performance data

114

Table 15: Performance Comparison in GFLOPs per second for Moore Neighborhood Pat-
tern.

Problem_Size dist= 1 dist= 2 dist= 3 dist= 4 dist= 5 dist= 6 dist= 7 dist= 8

28 × 28
PPCG 2 6 9 16 N/A N/A N/A N/A

OpenAcc 39 76 101 121 133 135 144 167
plain_GPU 46 87 110 127 135 142 150 149

Skew_Tiling 15 27 40 60 70 94 96 119

29 × 29
PPCG 9 22 35 54 N/A N/A N/A N/A

OpenAcc 77 132 157 188 219 224 228 230
plain_GPU 105 148 167 174 196 220 232 231

Skew_Tiling 31 62 114 172 199 260 258 322

210 × 210
PPCG 31 69 79 125 N/A N/A N/A N/A

OpenAcc 94 187 213 225 228 232 234 233
plain_GPU 134 175 205 199 205 234 208 235

Skew_Tiling 79 149 213 253 327 382 490 613

211 × 211
PPCG 80 141 120 179 N/A N/A N/A N/A

OpenAcc 117 197 221 228 228 231 228 227
plain_GPU 154 212 231 225 217 215 209 213

Skew_Tiling 146 259 336 412 458 594 594 726

212 × 212
PPCG 121 177 139 188 N/A N/A N/A N/A

OpenAcc 121 191 208 217 222 230 232 296
plain_GPU 199 212 213 210 201 202 200 204

Skew_Tiling 148 265 338 422 467 608 607 741

213 × 213
PPCG 132 203 143 204 N/A N/A N/A N/A

OpenAcc 120 189 207 224 221 229 227 233
plain_GPU 203 229 222 223 219 222 221 230

Skew_Tiling 148 271 341 426 473 616 615 748

only for a distance of at most 4.

The computation of a cross-shaped neighborhood computation requires much fewer

memory transactions to fetch the required data elements, so both plain GPU, PPCG and

OpenAcc implementations achieve much higher GFLOPs on cross-shaped neighborhood

patterns. However, our proposed method cannot utilize this benefit because a constant

memory access pattern is used for transferring data between shared memory and global

memory. The time spent on performing extra memory transactions degrades the over-

all performance, which is shown in table. 14. But table 15 illustrates a different story.

To collect all required data elements when performing computation on moore neighbor-

hood pattern, both plain GPU, PPCG, and OpenAcc implementations require more memory

transactions, which makes the total transaction amount close to our method’s. Thus, our

115

method achieves much better performance because of the better temporal locality.

7.6 Summary

We propose a time-skewed tiling method for optimizing stencil computations for 2D

grids on GPUs. To implement the tiling method on GPUs, we design a data access pat-

tern for storing the required data elements in shared memory. In addition, we propose

a stream processing system to achieve inter-tile parallelism and develop a two-level lock

system to manage the pipelined start of kernel processes. Also, we design the structures

for dependency arrays, which enables efficient memory access for transferring the data el-

ements. The proposed method achieves up to 3.5× performance improvements when the

stencil computation is performed on a Moore neighborhood pattern; however, it does not

perform well on cross-shaped pattern. We conclude that time-skewed tiling optimization

can provide considerable performance improvement on dense patterns and serialized in-

row computation as well as pipelined start do not degrade the performance, as has been

claimed in much earlier research. We plan to extend this method to 3D grids in our future

work.

116

CHAPTER 8 CONCLUSION

In my dissertation research, we focus on optimizing the different iterative problems

that all have the computations performed in nested loops on GPUs. To address the different

kinds of latency generated by various computation properties, respectively, we design the

tiling optimization methods, which target the computation overhead and memory latency

accordingly. Each tiling method can be used as a general solver to optimize the different

problems of the same kind. Using the higher-dimensional data-partition approach, we

improve a parallel algorithm that minimizes the total execution time for scheduling tasks

to multiple identical machines. The multiple dimensions are automatically tiled with a

priority setting that the largest dimension is always divided first. In order to reduce the

memory latency and load imbalance of the applications that use wavefront parallelism, we

propose a hyperplane-tiling approach based on a stream processing scheme. The wavefront

parallelism is widely used in dynamic programming procedures and specialized stencil

computations. The idea of hyperplane tiling is extended to optimize high order 2D stencil

computations. We prove that the time-skewed tiling (hyperplane tiling) contributes good

performance improvement on high-order Jacobi methods, which is different from what is

claimed in many other research papers and still not comprehensively studied.

The proposed data-partitioning approach is an extension of the tiling technique, which

automatically partitions some large dimensions to fit the tiled block into global memory

and deliver optimal performance. Exhaustive experiments for different partition settings

have shown that our improved algorithm improves the GPU performance significantly and

makes the GPU implementation perform better than the OpenMP implementation on large-

117

scale higher-dimensional dynamic programming problems. To our knowledge, this is the

first data-partitioning scheme specifically designed for addressing the performance and

memory issue of higher-dimensional dynamic programming on the GPU. With these tech-

niques, directly applied to the dynamic programming procedure, our study explores the

potential of optimizing higher-dimensional DOACROSS parallelism on GPUs.

In a 2-dimensional grid, we focus on wavefront parallelism and introduce a highly ef-

ficient hyperplane-tiling optimization for exploiting parallelism and good data locality on

GPUs. In GPU programming, optimizing wavefront parallelism usually faces performance

issues of insufficient parallelism, load imbalance, and poor data locality. We improve the

hyperplane tiling with a stream processing scheme and our scheme outperforms the most

efficient existing hyperplane tiling optimization. Utilizing stream processing, which is co-

ordinated with a spin lock design, minimizes the inter-tile synchronization overhead. In-

stead of relying on L1 cache, the mechanism used in prior research, we transfer the tile

data to shared memory, which reduces the memory access latency and achieves better

data locality. Our proposed shared memory implementation is a general solution, which

can be applied to problems that execute nested loops with uniform data dependencies. We

provide a formula to calculate the optimal tile size from the problem size and the GPU

configuration, which determines the tradeoff between data locality and concurrency.

In 2D stencil computations, tiling is also an important strategy used to optimize the

data locality and relief the performance latency, caused by the memory bandwidth bound

property. Instead of studying overlapped tiling and split tiling, which are already widely

discussed, we propose a time-skewed tiling method, which is designed for the GPU archi-

tecture. In order to improve data locality, we design a data access pattern for storing the

118

required data elements in shared memory. In addition, we propose a stream processing

system to achieve inter-tile parallelism and develop a two-level lock system to manage the

pipelined kernel processes. Also, we design the structures for dependency arrays, which

enables efficient memory access for transferring the data elements. The proposed method

achieves up to 3.5× performance improvements when the stencil computation is performed

on a Moore neighborhood pattern; however, it does not perform well on the cross-shaped

pattern. We reach the conclusion that time-skewed tiling optimization can provide con-

siderable performance improvement on dense patterns and serialized in-row computation.

And pipelined start do not necessarily degrade performance as it is claimed in much prior

research.

Our overall contribution of this thesis is to give efficient and general tiling optimization

solutions for applications that perform computations in nested loops. We believe that

our proposed solutions can be applied to many popular applications, like PTAS-based task

scheduling, local sequence alignment, 2D-HEAT, etc. To the best of our knowledge, we

are the first to use the proposed tiling methods to accelerate the execution of the three

kinds of problems, mentioned above. Because we design the proposed tiling methods

with the formulas that determine the optimal GPU resource utilization, these methods are

extendable for different GPU platforms and have the potential for further improvement.

Our high-dimensional partition method indicates that GPU parallel programming has a

great potential for accelerating approximation algorithms. Since our time-skewed tiling

method utilizes 50% of the shared memory resources on each multiprocessor, it is possible

that the method can be further improved if the register utilization can be reduced without

degrading the parallelism.

119

CHAPTER 9 LIST OF PUBLICATIONS

• Li, Yuanzhe, Laleh Ghalami, Loren Schwiebert, and Daniel Grosu. "A GPU Paral-

lel Approximation Algorithm for Scheduling Parallel Identical Machines to Minimize

Makespan." In 2018 IEEE International Parallel and Distributed Processing Sympo-

sium Workshops (IPDPSW), pp. 619-628. IEEE, 2018.

• Li, Yuanzhe, Loren Schwiebert, Eyad Hailat, Jason Mick, and Jeffrey Potoff. "Im-

proving performance of GPU code using novel features of the NVIDIA kepler archi-

tecture." Concurrency and Computation: Practice and Experience 28, no. 13 (2016):

3586-3605.

• Li, Yuanzhe, and Loren Schwiebert. "Boosting Python performance on Intel Proces-

sors: A case study of optimizing music recognition." In 2016 6th Workshop on Python

for High-Performance and Scientific Computing (PyHPC), pp. 52-58. IEEE, 2016.

• Nejahi, Younes, Mohammad Soroush Barhaghi, Jason Mick, Brock Jackman, Kamel

Rushaidat, Yuanzhe Li, Loren Schwiebert, and Jeffrey Potoff. "GOMC: GPU Opti-

mized Monte Carlo for the simulation of phase equilibria and physical properties of

complex fluids." SoftwareX 9 (2019): 20-27.

120

REFERENCES

[1] P. S. Rawat, M. Vaidya, A. Sukumaran-Rajam, M. Ravishankar, V. Grover, A. Roun-

tev, L.-N. Pouchet, and P. Sadayappan, “Domain-specific optimization and genera-

tion of high-performance gpu code for stencil computations,” Proceedings of the IEEE,

vol. 106, no. 11, pp. 1902–1920, 2018.

[2] T. F. Smith and M. S. Waterman, “Comparison of biosequences,” Advances in applied

mathematics, vol. 2, no. 4, pp. 482–489, 1981.

[3] D. Bednárek, M. Brabec, and M. Kruliš, “Improving matrix-based dynamic program-

ming on massively parallel accelerators,” Information Systems, vol. 64, pp. 175–193,

2017.

[4] K.-H. Yang, Basic finite element method as applied to injury biomechanics. Academic

Press, 2017.

[5] Y. Li and L. Schwiebert, “Boosting python performance on intel processors: A case

study of optimizing music recognition,” in Python for High-Performance and Scientific

Computing (PyHPC), Workshop on, pp. 52–58, IEEE, 2016.

[6] P. Unnikrishnan, J. Shirako, K. Barton, S. Chatterjee, R. Silvera, and V. Sarkar, “A

practical approach to doacross parallelization,” in European Conference on Parallel

Processing, pp. 219–231, Springer, 2012.

[7] A. R. Hurson, J. T. Lim, K. M. Kavi, and B. Lee, “Parallelization of doall and doacross

loops—a survey,” in Advances in computers, vol. 45, pp. 53–103, Elsevier, 1997.

121

[8] M. E. Belviranli, P. Deng, L. N. Bhuyan, R. Gupta, and Q. Zhu, “Peerwave: Exploiting

wavefront parallelism on gpus with peer-sm synchronization,” in Proceedings of the

29th ACM on International Conference on Supercomputing, pp. 25–35, ACM, 2015.

[9] Y. Li, L. Ghalami, L. Schwiebert, and D. Grosu, “A gpu parallel approximation

algorithm for scheduling parallel identical machines to minimize makespan,” in

2018 IEEE International Parallel and Distributed Processing Symposium Workshops

(IPDPSW), pp. 619–628, IEEE, 2018.

[10] A. Nguyen, N. Satish, J. Chhugani, C. Kim, and P. Dubey, “3.5-d blocking opti-

mization for stencil computations on modern cpus and gpus,” in Proceedings of the

2010 ACM/IEEE International Conference for High Performance Computing, Network-

ing, Storage and Analysis, pp. 1–13, IEEE Computer Society, 2010.

[11] S. Krishnamoorthy, M. Baskaran, U. Bondhugula, J. Ramanujam, A. Rountev, and

P. Sadayappan, “Effective automatic parallelization of stencil computations,” in ACM

sigplan notices, vol. 42, pp. 235–244, ACM, 2007.

[12] P. S. Rawat, C. Hong, M. Ravishankar, V. Grover, L.-N. Pouchet, and P. Sadayappan,

“Effective resource management for enhancing performance of 2d and 3d stencils on

gpus,” in Proceedings of the 9th Annual Workshop on General Purpose Processing using

Graphics Processing Unit, pp. 92–102, ACM, 2016.

[13] P. S. Rawat, C. Hong, M. Ravishankar, V. Grover, L.-N. Pouchet, A. Rountev, and

P. Sadayappan, “Resource conscious reuse-driven tiling for gpus,” in Proceedings of

122

the 2016 International Conference on Parallel Architectures and Compilation, pp. 99–

111, ACM, 2016.

[14] L. Ghalami and D. Grosu, “A parallel approximation algorithm for scheduling paral-

lel identical machines,” in Parallel and Distributed Processing Symposium Workshops

(IPDPSW), 2017 IEEE International, pp. 442–451, IEEE, 2017.

[15] D. S. Hochbaum and D. B. Shmoys, “Using dual approximation algorithms for

scheduling problems theoretical and practical results,” Journal of the ACM, vol. 34,

no. 1, pp. 144–162, 1987.

[16] Nvidia Corporation, “CUDA Programming Guide,” 2018.

[17] NVIDIA’s Next Generation Compute Architecture: Kepler GK110.

[18] NVIDIA GeForce GTX 1080.

[19] NVIDIA TURING GPU ARCHITECTURE.

[20] X. Li, Y. Liang, S. Yan, L. Jia, and Y. Li, “A coordinated tiling and batching framework

for efficient gemm on gpus,” in Proceedings of the 24th Symposium on Principles and

Practice of Parallel Programming, pp. 229–241, ACM, 2019.

[21] T. Remmelg, T. Lutz, M. Steuwer, and C. Dubach, “Performance portable gpu code

generation for matrix multiplication,” in Proceedings of the 9th Annual Workshop on

General Purpose Processing using Graphics Processing Unit, pp. 22–31, ACM, 2016.

[22] A. Grama, V. Kumar, A. Gupta, and G. Karypis, Introduction to parallel computing.

Pearson Education, 2003.

123

[23] G. M. Striemer and A. Akoglu, “Sequence alignment with gpu: Performance and

design challenges,” 2009.

[24] Z. Li, A. Goyal, and H. Kimm, “Parallel longest common sequence algorithm on mul-

ticore systems using openacc, openmp and openmpi,” in Embedded Multicore/Many-

core Systems-on-Chip (MCSoC), 2017 IEEE 11th International Symposium on, pp. 158–

165, IEEE, 2017.

[25] K. Balhaf, M. A. Alsmirat, M. Al-Ayyoub, Y. Jararweh, and M. A. Shehab, “Accelerating

levenshtein and damerau edit distance algorithms using gpu with unified memory,” in

Information and Communication Systems (ICICS), 2017 8th International Conference

on, pp. 7–11, IEEE, 2017.

[26] P. Di and J. Xue, “Model-driven tile size selection for doacross loops on gpus,” in

European Conference on Parallel Processing, pp. 401–412, Springer, 2011.

[27] D. A. Castanon, “Approximate dynamic programming for sensor management,” in

Proc. 36th IEEE Conf. on Decision and Control, vol. 2, pp. 1202–1207, 1997.

[28] D. Bertsimas and R. Demir, “An approximate dynamic programming approach to mul-

tidimensional knapsack problems,” Management Science, vol. 48, no. 4, pp. 550–565,

2002.

[29] V. Boyer, D. El Baz, and M. Elkihel, “Solution of multidimensional knapsack problems

via cooperation of dynamic programming and branch and bound,” European Journal

of Industrial Engineering, vol. 4, no. 4, pp. 434–449, 2010.

124

[30] K.-E. Berger and F. Galea, “An efficient parallelization strategy for dynamic program-

ming on gpu,” in Parallel and Distributed Processing Symposium Workshops & PhD

Forum (IPDPSW), 2013 IEEE 27th International, pp. 1797–1806, IEEE, 2013.

[31] C. E. Alves, E. N. Cáceres, F. Dehne, and S. W. Song, “A parallel wavefront algo-

rithm for efficient biological sequence comparison,” in International Conference on

Computational Science and Its Applications, pp. 249–258, Springer, 2003.

[32] M. Low, W. Liu, and B. Schmidt, “A parallel bsp algorithm for irregular dynamic

programming,” Advanced Parallel Processing Technologies, pp. 151–160, 2007.

[33] C. E. Alves, E. N. Cáceres, and F. Dehne, “Parallel dynamic programming for solving

the string editing problem on a cgm/bsp,” in Proceedings of the fourteenth annual

ACM symposium on Parallel algorithms and architectures, pp. 275–281, ACM, 2002.

[34] B. Schmidt, H. Schröder, and M. Schimmler, “Massively parallel solutions for molec-

ular sequence analysis,” in ipdps, 2002.

[35] K. Nishida, Y. Ito, and K. Nakano, “Accelerating the dynamic programming for the

matrix chain product on the gpu,” in Networking and Computing (ICNC), 2011 Second

International Conference on, pp. 320–326, IEEE, 2011.

[36] C.-C. Wu, J.-Y. Ke, H. Lin, and W.-c. Feng, “Optimizing dynamic programming on

graphics processing units via adaptive thread-level parallelism,” in Parallel and Dis-

tributed Systems (ICPADS), 2011 IEEE 17th International Conference on, pp. 96–103,

IEEE, 2011.

125

[37] K. Nishida, K. Nakano, and Y. Ito, “Accelerating the dynamic programming for the

optimal polygon triangulation on the gpu,” in International Conference on Algorithms

and Architectures for Parallel Processing, pp. 1–15, Springer, 2012.

[38] V. Boyer, D. El Baz, and M. Elkihel, “Solving knapsack problems on gpu,” Computers

& Operations Research, vol. 39, no. 1, pp. 42–47, 2012.

[39] Y. Tang, R. You, H. Kan, J. J. Tithi, P. Ganapathi, and R. A. Chowdhury, “Cache-

oblivious wavefront: improving parallelism of recursive dynamic programming algo-

rithms without losing cache-efficiency,” in ACM SIGPLAN Notices, vol. 50, pp. 205–

214, ACM, 2015.

[40] A. Khajeh-Saeed, S. Poole, and J. B. Perot, “Acceleration of the smith–waterman al-

gorithm using single and multiple graphics processors,” Journal of Computational

Physics, vol. 229, no. 11, pp. 4247–4258, 2010.

[41] Y. Liu, A. Wirawan, and B. Schmidt, “Cudasw++ 3.0: accelerating smith-waterman

protein database search by coupling cpu and gpu simd instructions,” BMC bioinfor-

matics, vol. 14, no. 1, p. 117, 2013.

[42] K. Hou, H. Wang, W.-c. Feng, J. S. Vetter, and S. Lee, “Highly efficient compensation-

based parallelism for wavefront loops on gpus,” in 2018 IEEE International Parallel

and Distributed Processing Symposium (IPDPS), pp. 276–285, IEEE, 2018.

[43] M. E. Wolf and M. S. Lam, “A loop transformation theory and an algorithm to maxi-

mize parallelism,” IEEE transactions on parallel and distributed systems, vol. 2, no. 4,

pp. 452–471, 1991.

126

[44] P. Di, H. Wu, J. Xue, F. Wang, and C. Yang, “Parallelizing sor for gpgpus using alter-

nate loop tiling,” Parallel Computing, vol. 38, no. 6-7, pp. 310–328, 2012.

[45] T. Malas, G. Hager, H. Ltaief, H. Stengel, G. Wellein, and D. Keyes, “Multicore-

optimized wavefront diamond blocking for optimizing stencil updates,” SIAM Journal

on Scientific Computing, vol. 37, no. 4, pp. C439–C464, 2015.

[46] P. Di, D. Ye, Y. Su, Y. Sui, and J. Xue, “Automatic parallelization of tiled loop nests with

enhanced fine-grained parallelism on gpus,” in 2012 41st International Conference on

Parallel Processing, pp. 350–359, IEEE, 2012.

[47] T. Fukaya and T. Iwashita, “Time-space tiling with tile-level parallelism for the 3d

fdtd method,” in Proceedings of the International Conference on High Performance

Computing in Asia-Pacific Region, pp. 116–126, ACM, 2018.

[48] T. Grosser, A. Cohen, P. H. Kelly, J. Ramanujam, P. Sadayappan, and S. Verdoolaege,

“Split tiling for gpus: automatic parallelization using trapezoidal tiles,” in Proceedings

of the 6th Workshop on General Purpose Processor Using Graphics Processing Units,

pp. 24–31, ACM, 2013.

[49] C. Yount and A. Duran, “Effective use of large high-bandwidth memory caches in hpc

stencil computation via temporal wave-front tiling,” in 2016 7th International Work-

shop on Performance Modeling, Benchmarking and Simulation of High Performance

Computer Systems (PMBS), pp. 65–75, IEEE, 2016.

[50] H. Dursun, K.-I. Nomura, L. Peng, R. Seymour, W. Wang, R. K. Kalia, A. Nakano, and

127

P. Vashishta, “A multilevel parallelization framework for high-order stencil computa-

tions,” in European Conference on Parallel Processing, pp. 642–653, Springer, 2009.

[51] S. Kamil, P. Husbands, L. Oliker, J. Shalf, and K. Yelick, “Impact of modern memory

subsystems on cache optimizations for stencil computations,” in Proceedings of the

2005 workshop on Memory system performance, pp. 36–43, ACM, 2005.

[52] J. Meng and K. Skadron, “Performance modeling and automatic ghost zone opti-

mization for iterative stencil loops on gpus,” in Proceedings of the 23rd international

conference on Supercomputing, pp. 256–265, ACM, 2009.

[53] Y. Zhang and F. Mueller, “Auto-generation and auto-tuning of 3d stencil codes on gpu

clusters,” in Proceedings of the Tenth International Symposium on Code Generation and

Optimization, pp. 155–164, ACM, 2012.

[54] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand, and S. Amarasinghe,

“Halide: a language and compiler for optimizing parallelism, locality, and recompu-

tation in image processing pipelines,” in Acm Sigplan Notices, vol. 48, pp. 519–530,

ACM, 2013.

[55] M. Christen, O. Schenk, and H. Burkhart, “Patus: A code generation and autotuning

framework for parallel iterative stencil computations on modern microarchitectures,”

in 2011 IEEE International Parallel & Distributed Processing Symposium, pp. 676–687,

IEEE, 2011.

[56] U. Bondhugula, V. Bandishti, and I. Pananilath, “Diamond tiling: Tiling techniques

128

to maximize parallelism for stencil computations,” IEEE Transactions on Parallel and

Distributed Systems, vol. 28, no. 5, pp. 1285–1298, 2016.

[57] S. Verdoolaege, J. Carlos Juega, A. Cohen, J. Ignacio Gomez, C. Tenllado, and

F. Catthoor, “Polyhedral parallel code generation for cuda,” ACM Transactions on

Architecture and Code Optimization (TACO), vol. 9, no. 4, p. 54, 2013.

[58] S. Shrestha, G. R. Gao, J. Manzano, A. Marquez, and J. Feo, “Locality aware con-

current start for stencil applications,” in 2015 IEEE/ACM International Symposium on

Code Generation and Optimization (CGO), pp. 157–166, IEEE, 2015.

[59] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran, “Cache-oblivious algo-

rithms,” in 40th Annual Symposium on Foundations of Computer Science (Cat. No.

99CB37039), pp. 285–297, IEEE, 1999.

[60] G. Bilardi and F. P. Preparata, “Lower bounds to processor-time tradeoffs under

bounded-speed message propagation,” in Workshop on Algorithms and Data Struc-

tures, pp. 1–12, Springer, 1995.

[61] M. Frigo and V. Strumpen, “Cache oblivious stencil computations,” in ICS, vol. 5,

pp. 361–366, Citeseer, 2005.

[62] Y. Tang, R. A. Chowdhury, B. C. Kuszmaul, C.-K. Luk, and C. E. Leiserson, “The

pochoir stencil compiler,” in Proceedings of the twenty-third annual ACM symposium

on Parallelism in algorithms and architectures, pp. 117–128, ACM, 2011.

[63] D. Wonnacott, “Achieving scalable locality with time skewing,” International Journal

of Parallel Programming, vol. 30, no. 3, pp. 181–221, 2002.

129

[64] Y. Song and Z. Li, “New tiling techniques to improve cache temporal locality,” ACM

SIGPLAN Notices, vol. 34, no. 5, pp. 215–228, 1999.

[65] G. Jin, J. Mellor-Crummey, and R. Fowler, “Increasing temporal locality with skewing

and recursive blocking,” in SC’01: Proceedings of the 2001 ACM/IEEE Conference on

Supercomputing, pp. 57–57, IEEE, 2001.

[66] R. Andonov, S. Balev, S. Rajopadhye, and N. Yanev, “Optimal semi-oblique tiling,”

in Proceedings of the thirteenth annual ACM symposium on Parallel algorithms and

architectures, pp. 153–162, ACM, 2001.

[67] R. Andonov, S. Balev, S. Rajopadhye, and N. Yanev, “Optimal semi-oblique tiling,”

IEEE Transactions on Parallel and Distributed Systems, vol. 14, no. 9, pp. 944–960,

2003.

[68] T. Grosser, A. Cohen, J. Holewinski, P. Sadayappan, and S. Verdoolaege, “Hybrid

hexagonal/classical tiling for gpus,” in Proceedings of Annual IEEE/ACM International

Symposium on Code Generation and Optimization, p. 66, ACM, 2014.

[69] H. Dursun, M. Kunaseth, K.-i. Nomura, J. Chame, R. F. Lucas, C. Chen, M. Hall, R. K.

Kalia, A. Nakano, and P. Vashishta, “Hierarchical parallelization and optimization of

high-order stencil computations on multicore clusters,” The Journal of Supercomput-

ing, vol. 62, no. 2, pp. 946–966, 2012.

[70] A. Schäfer and D. Fey, “High performance stencil code algorithms for gpgpus,” Proce-

dia Computer Science, vol. 4, pp. 2027–2036, 2011.

130

[71] H. Su, N. Wu, M. Wen, C. Zhang, and X. Cai, “On the gpu performance of 3d stencil

computations implemented in opencl,” in International Supercomputing Conference,

pp. 125–135, Springer, 2013.

[72] Y. Li, L. Schwiebert, E. Hailat, J. Mick, and J. Potoff, “Improving performance of

gpu code using novel features of the nvidia kepler architecture,” Concurrency and

Computation: Practice and Experience, vol. 28, no. 13, pp. 3586–3605, 2016.

[73] F. Zheng, X. Xu, Y. Yang, S. He, and Y. Zhang, “Accelerating biological sequence

alignment algorithm on gpu with cuda,” in Computational and Information Sciences

(ICCIS), 2011 International Conference on, pp. 18–21, IEEE, 2011.

[74] J. Kloetzli, B. Strege, J. Decker, and M. Olano, “Parallel longest common subsequence

using graphics hardware.,” in EGPGV, pp. 57–64, 2008.

[75] M. A. Zidan, T. Bonny, and K. N. Salama, “High performance technique for database

applications using a hybrid gpu/cpu platform,” in Proceedings of the 21st edition of

the great lakes symposium on Great lakes symposium on VLSI, pp. 85–90, ACM, 2011.

[76] A. Tomiyama and R. Suda, “Automatic parameter optimization for edit distance algo-

rithm on gpu,” in International Conference on High Performance Computing for Com-

putational Science, pp. 420–434, Springer, 2012.

[77] S. Deorowicz, “Solving longest common subsequence and related problems on graph-

ical processing units,” Software: Practice and Experience, vol. 40, no. 8, pp. 673–700,

2010.

131

[78] F. C. Crow, “Summed-area tables for texture mapping,” in ACM SIGGRAPH computer

graphics, vol. 18, pp. 207–212, ACM, 1984.

[79] P. Sobolevsky, S. Bakhanovich, and A. Gorbach, “Tiling optimization in numerically

solving a multidimensional heat equation on a ring of processors,” Cybernetics and

Systems Analysis, vol. 46, no. 1, pp. 145–152, 2010.

[80] V. Volkov, Understanding latency hiding on gpus. PhD thesis, UC Berkeley, 2016.

[81] L. Maignan and J.-B. Yunes, “Moore and von neumann neighborhood n-dimensional

generalized firing squad solutions using fields,” in 2013 First International Sympo-

sium on Computing and Networking, pp. 552–558, IEEE, 2013.

[82] D. A. Zaitsev, “A generalized neighborhood for cellular automata,” Theoretical Com-

puter Science, vol. 666, pp. 21–35, 2017.

[83] P. Micikevicius, “3d finite difference computation on gpus using cuda,” in Proceedings

of 2nd workshop on general purpose processing on graphics processing units, pp. 79–84,

ACM, 2009.

[84] Y. Yang, H.-M. Cui, X.-B. Feng, and J.-L. Xue, “A hybrid circular queue method for

iterative stencil computations on gpus,” Journal of Computer Science and Technology,

vol. 27, no. 1, pp. 57–74, 2012.

[85] V. Bandishti, I. Pananilath, and U. Bondhugula, “Tiling stencil computations to max-

imize parallelism,” in SC’12: Proceedings of the International Conference on High Per-

formance Computing, Networking, Storage and Analysis, pp. 1–11, IEEE, 2012.

132

[86] A. McAdams, E. Sifakis, and J. Teran, “A parallel multigrid poisson solver for fluids

simulation on large grids,” in Proceedings of the 2010 ACM SIGGRAPH/Eurographics

Symposium on Computer Animation, pp. 65–74, Eurographics Association, 2010.

[87] E. Sozer, C. Brehm, and C. C. Kiris, “Gradient calculation methods on arbitrary poly-

hedral unstructured meshes for cell-centered cfd solvers,” in 52nd Aerospace Sciences

Meeting, p. 1440, 2014.

133

ABSTRACT

TILING OPTIMIZATION FOR NESTED LOOPS ON GPUS

by

YUANZHE LI

May 2020

Advisor: Dr. Loren Schwiebert

Major: Computer Science

Degree: Doctor of Philosophy

Optimizing nested loops has been considered as an important topic and widely studied

in parallel programming. With the development of GPU architectures, the performance

of these computations can be significantly boosted with the massively parallel hardware.

General matrix-matrix multiplication is a typical example where executing such an algo-

rithm on GPUs outperforms the performance obtained on other multicore CPUs. However,

achieving ideal performance on GPUs usually requires a lot of human effort to manage

the massively parallel computation resources. Therefore, the efficient implementation for

optimizing nested loops on GPUs became a popular topic in recent years. We present our

work based on the tiling strategy in this dissertation to address three kinds of popular

problems. Different kinds of computations bring in different latency issues where depen-

dencies in the computation may result in insufficient parallelism and the performance of

computations without dependencies may be degraded due to intensive memory accesses.

In this thesis, we tackle the challenges for each kind of problems and believe that other

computations performed in nested loops can also benefit from the presented techniques.

134

We improve a parallel approximation algorithm for the problem of scheduling jobs on

parallel identical machines to minimize makespan with a high-dimensional tiling method.

The algorithm is designed and optimized for solving this kind of problem efficiently on

GPUs. Because the algorithm is based on a higher-dimensional dynamic programming

approach, where dimensionality refers to the number of variables in the dynamic pro-

gramming equation characterizing the problem, the existing implementation suffers from

the pain of dimensionality and cannot fully utilize GPU resources. We design a novel

data-partitioning technique to accelerate the higher-dimensional dynamic programming

component of the algorithm. Both the load imbalance and exceeding memory capacity

issue are addressed in our GPU solution. We present performance results to demonstrate

how our proposed design improves the GPU utilization and makes it possible to solve

large higher-dimensional dynamic programming problems within the limited GPU mem-

ory. Experimental results show that the GPU implementation achieves up to 25× speed up

compared to the best existing OpenMP implementation.

In addition, we focus on optimizing wavefront parallelism on GPUs. Wavefront paral-

lelism is a well-known technique for exploiting the concurrency of applications that exe-

cute nested loops with uniform data dependencies. Recent research on such applications,

which range from sequence alignment tools to partial differential equation solvers, has

used GPUs to benefit from the massively parallel computing resources. Wavefront paral-

lelism faces the load imbalance issue because the parallelism is passing along the diagonal.

The tiling method has been introduced as a popular solution to address this issue. How-

ever, the use of hyperplane tiles increases the cost of synchronization and leads to poor

data locality. In this paper, we present a highly optimized implementation of the wave-

135

front parallelism technique that harnesses the GPU architecture. A balanced workload and

maximum resource utilization are achieved with an extremely low synchronization over-

head. We design the kernel configuration to significantly reduce the minimum number of

synchronizations required and also introduce an inter-block lock to minimize the overhead

of each synchronization. We evaluate the performance of our proposed technique for four

different applications: Sequence Alignment, Edit Distance, Summed-Area Table, and 2D-

SOR. The performance results demonstrate that our method achieves speedups of up to six

times compared to the previous best-known hyperplane tiling-based GPU implementation.

Finally, we extend the hyperplane tiling to high order 2D stencil computations. Un-

like wavefront parallelism that has dependence in spatial dimension, dependence remains

only across two adjacent time steps along the temporal dimension in stencil computa-

tions. Even if the no-dependence property significantly increases the parallelism obtained

in the spatial dimensions, full parallelism may not be efficient on GPUs. Due to the limited

cache capacity owned by each streaming multiprocessor, full parallelism can be obtained

on global memory only, which has high latency to access. Therefore, the tiling technique

can be applied to improve the memory efficiency by caching the small tiled blocks. Because

the widely studied tiling methods, like overlapped tiling and split tiling, have considerable

computation overhead caused by load imbalance or extra operations, we propose a time-

skewed tiling method, which is designed upon the GPU architecture. We work around the

serialized computation issue and coordinate the intra-tile parallelism and inter-tile par-

allelism to minimize the load imbalance caused by pipelined processing. Moreover, we

address the high-order stencil computations in our development, which has not been com-

prehensively studied. The proposed method achieves up to 3.5× performance improve-

136

ment when the stencil computation is performed on a Moore neighborhood pattern.

137

AUTOBIOGRAPHICAL STATEMENT

Yuanzhe Li received his Bachelor’s degree in Computer Science in 2012 from Xidian

University, Xi’an, Shaanxi, China. He received a Master’s degree in Computer Science in

2014 from Wayne State University, Detroit, Michigan, USA. His research interests include

parallel computing, GPU computing, performance optimization, GPU-CPU heterogeneous

system, etc.

	Tiling Optimization For Nested Loops On Gpus
	Recommended Citation

	Dedication
	Acknowledgements
	List of Tables
	List of Figures
	Introduction
	Contributions
	Dissertation Outline

	Overview of NVIDIA GPUs and CUDA
	GPU Architecture
	CUDA Terminology
	GPU Properties

	OVERVIEW OF LOOP TILING
	Loop Tiling on GPUs
	Wavefront Parallelism
	Square VS Non-Square

	Related Work
	Higher-Dimensional Dynamic Programming
	Wavefront Parallelism Optimization
	Time-Space Tiling for Stencil Computation

	Optimizing Higher-dimensional DOACROSS Parallelism
	Introduction
	Tiling-Like Data-Partitioning Scheme
	Dynamic Programming in the Parallel PTAS
	GPU Implementation and Analysis
	Design and Challenges
	Two-level Fine-grained Parallelism
	Analysis of the Dynamic Programming

	Evaluation
	Experimental Setup
	Analysis of Results

	Summary

	Optimizing Wavefront Parallelism with Non-Square Tiling
	Introduction
	Problem Statement
	Low Cache Hit Rates
	Advantages of Shared Memory
	Barriers to Shared Memory Use

	Design and Challenges
	Design Overview
	Tile Concurrency and Synchronization
	Concurrency VS Data Locality
	Shared Memory Efficiency
	Synchronization Counter

	Implementation
	Evaluation
	Wavefront Applications
	Test Cases and GPU Environment
	Memory Subsystem Efficiency
	Performance: Multiple Tile Sizes
	Performance: Cache vs Shared Memory

	Summary

	Time-Skewed Tiling Optimization for High Order 2D Stencil Computations on GPUs
	Introduction
	Background and Motivation
	Disadvantages of Different Temporal Tiling
	Difficulties of Using Existing Solutions
	Concurrency Modeling on GPUs for Time-Skewed Tiling
	Our Motivation

	Design and Challenges
	Two-level Parallelism
	Stream Processing Scheme
	Two-level Lock System
	Data Access Pattern

	Implementation
	Dependency Array Structure and Transfer
	Stream Indexing
	Code for Lock Functions
	Flow of Tile Processing

	Experimental Evaluation
	Experimental Background and Setup
	Experimental Results and Analysis

	Summary

	Conclusion
	List of Publications
	References
	Abstract
	Autobiographical Statement

