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CHAPTER 1: INTRODUCTION 

Chronic Kidney Disease (CKD) 

Chronic Kidney Disease (CKD) is defined as an irreversible and gradual loss of kidney 

function over time. Characterized by damage to the kidneys, with structural or functional 

abnormalities of the organs, with or without decreases in glomerular filtration rate (GFR) 

manifested by either pathological irregularities such as the composition of the blood or urine or in 

imaging testing [1]. Moreover, the GFR could be < 60 ml/min/1.73 m2 for ≥ 3 months or > 60 

ml/min/1.73 m2 with kidney impairment (marked by high levels of albumin in the urine) indicates 

CKD [1]. Numerous studies have linked CKD as an independent risk factor for cardiovascular 

disease (CVD) related event [2-4]. Moreover, CKD patients are at an increased risk at all stages of 

the disease for a CVD event, which is the primary contributor to morbidity and mortality in this 

population [5]. Adults with CKD are at a higher risk of early death compared to individuals without 

CKD of the same age. It is estimated that 5-10 times, CKD patients are more likely to die before 

even reaching ESRD [6, 7]. Also, the decline in the quality of life within this population further 

exacerbates the disease [8]. The added decline in GFR is also associated with increased risk for a 

CVD event, irrespective of gender or age [8].  

According to the Kidney Disease Outcomes Quality Initiative (K/DOQI) guidelines, CKD, 

and the progressive decline of kidney function can be classified into five stages. Stage-1 of CKD 

is characterized by a GFR of (> 90 ml/min/1.73 m2), which is estimated to have a 10% decrease 

of the filtration rate, leaving the kidneys at a 90% functional capacity, but presented with some 

urinary abnormality reflective of proteinuria or hematuria. However, as the disease progresses, and 

the GFR declines furthermore from stage-2 to stage-5, kidney functions reduce below 15% or less, 

and is unable to filter and remove toxins (Figure 1-1) [9]. Moreover, according to the National 
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Institute for Health and Care Excellence (NICE), there is a rise in mortality at stage-3, therefore, 

this phase is monitored and is segmented into two additional groupings. Stage-3a – where the 

kidney’s filtration rate declines from 59% to 45 % and then as the disease progresses there is a 

further decline in kidney function from 44% to 30 % defining stage-3b, which is reflective and is 

associated with an increase in CVD risk. Moreover, stage-3 seems to signify a standpoint of no 

return in kidney function, which is further validated by the sheer number of CKD patients which 

happen to be affected (Figure 1-2). In the US alone, 14.8% of the general adult population has 

CKD of which 6.4% are at stage-3 [10-12]. 

Numerous issues can lead to kidney disease; however, the leading causes of CKD in almost 

all income groups globally and responsible for two-thirds of the cases are diabetes mellitus (DM), 

followed by hypertension (HTN) [7]. CKD is further exacerbated by the continuing increase in 

DM, wherein 1 in 3 adults have been diagnosed. HTN is also an influencing factor, which currently 

affects 1 in 5 adults and is also on the rise [13]. Further complications include obstructions to the 

kidneys (caused by kidney stones), tumors, repeated urinary infections, as well as drugs that are 

toxic to the kidney [14]. 

Patients with CKD are additionally affected by systemic syndromes such as dyslipidemia 

(D), oxidative stress (OS), and inflammation [4]. Proteinuria in the urine is an indicator of kidney 

damage and further increases the risk of CKD progression into end-stage renal disease (ESRD) [7, 

8]. In the US, approximately 37 million Americans have CKD [13]. Disease prevalence 

distribution based on the ethnicities in the US has African Americans (AA) at (18%) and Mexican 

Americans-Hispanics (15%), which are the highest prevalence rate when compared to Caucasian 

Americans at (13%) (Figure 1-3). Moreover, the disease amongst genders affects women (16%) 

more often than men (13%) (Figure 1-3) [6]. Around the world, CKD has increased significantly 
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in South Asian countries such as Malaysia where multiple-ethnicities are affected by CKD, the 

percent composition is highest on the local Malays (MM) (53.7%), followed by Chinese (MC) 

(21.1%), Indians (MI) (20.2%) and other ethnicities at (5%) (Figure 1-4). Gender wise, Malaysia 

is similar to the US, were more women (52.1%) than men (47.9%) are affected (Figure 1-4) [15].  

End-stage renal disease (ESRD) and Maintenance hemodialysis (MHD) 

As CKD progresses, estimated GFR (eGFR) declines from stage 1 all the way to stage 5, 

leading to kidney failure or ESRD. ESRD observed a steady rise in the US from 1980 to 2001, 

which then flattened in the early 2000s. While the US has seen a steady and gradual average of a 

2% rise in the incidents of ESRD, countries, such as Taiwan. Thailand, Malaysia, the Republic of 

Korea, Jalisco of Mexico, Singapore, and the Philippines have experienced a 6% to 9% rise in the 

incidence rate of treated ESRD (Figure 1-5) [16]. Due to obesity and other comorbidities, the 

latest CDC simulation models have projected a rise between 11% % - 18% in crude incidence rate 

from 2015 – 2030. Moreover, the number of ESRD patients could jump 29% – 68% during the 

same period (971,000 – 1,259,000 patients) by 2030 (Figure 1-6) [17] . 

According to K/DOQI guidelines, once CKD patients gradually lose kidney functions, 

filtration declines and reach its final stage-5, where GFR falls to or below (<15ml/min/1.73 m2) 

the least optimal working condition for the kidneys. At this stage, patients are classified to be in 

kidney failure, wherein the patients need to undergo renal replacement therapy (RRT) [18, 19]. 

However, not all undertake dialysis treatment; since subjects may or may not have a residual renal 

function with urine outputs and some clearance. Thus, patients are monitored by health 

professionals for further loss of renal functions before being placed under dialysis treatment. The 

most common RRT in the United States (US) is hemodialysis (HD), also termed as maintenance 

hemodialysis (MHD). MHD treatment accounts for 98% of the total ESRD patients on dialysis 
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today [20]. Hemodialysis is carried out at regular intervals (generally 3-days per week), serving as 

a lifesaving procedure that removes toxin build-up and excess fluids in the patients’ bodies. This 

is achieved via the utilization of the principles of hydrostatic pressure and diffusion across the 

concentration gradient, which is the equivalent of what kidneys are responsible for (Figure 1-7 

A).  

Other treatments are available such as peritoneal dialysis (PD), a similar principle to HD 

treatment at the dialysis centers, although PD could be conducted at home. In PD treatments, 

patients’ peritoneum membrane linings of the abdominal cavity serves as the filter, which helps 

facilitate the removal of waste solution and fluid. However, in this case, a sterile dialysate solution 

composed of ions, bicarbonates, and glucose is introduced in the abdominal cavity via a catheter. 

For several hours (4 – 6 hours), the dialysate solution helps and allows to facilitate waste exchange 

across the concentration gradient before being drained and replaced by the new dialysate (Figure 

1-7 B) [21]. Renal transplant is the treatment of choice for ESRD, which involves the donation of 

the healthy kidney and surgically placement of the donor's kidney in the iliac fossa (Figure 1-7 

C).  

For years, hemodialysis has been a lifesaving procedure. However, the prevalence of 

coronary heart disease (CHD) has seen an increase in these patients, and so has the mortality from 

CVD events at rates 10-30 times higher when compared to the general population [5]. CVDs 

account for more than 50% of the deaths in ESRD patients, due to acute myocardial infarction 

(MYI), atherosclerotic vascular disease, which could be characterized by chronic coronary artery 

disease, strokes, ischemic attacks, and or peripheral arterial diseases [22]. Irrespective of CVD, 

other factors that lead to the development of ESRD, can be explained by the rise in DM, which is 

ranked first, followed secondly by HTN and then glomerular disease (Figure 1-8). However, the 
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increased mortality in this population cannot only be explained by traditional cardiovascular risk 

causes alone, such as DM, HTN, advanced aging, but a combination of abnormal disorders of the 

non-traditional nature such as, malnutrition, inflammation, oxidative stress (OS), dyslipidemia 

(D), endothelial dysfunction, and vascular calcification have also been implicated [23, 24].  

Lipid and Lipoproteins  

Lipids 

Lipids are defined as non-polar molecules that can dissolve other hydrocarbons; however, 

are unable to dissolve in aqueous solution (water). Lipid complexes can be in fatty acids (FA) 

form, waxes, phospholipids, or sterols (steroids and or cholesterol). When three FAs link 

covalently to a glycerol backbone molecule via an ester bond, it leads to the formation of 

triglycerides (TAG) [25]. Fats such as TAGs play numerous roles in the human body biochemistry, 

since they can be stored, when in excess, in the adipose fatty tissues and can be used for energy 

production (adenosine triphosphate – ATP) when required. Another function of lipids, in 

mammals, is to provide protection and insulation, by preventing heat loss, as well as being good 

at shock-absorbing, which serves as cushions to significant organs (kidneys, gonads, heart, liver, 

and others.). Accumulated lipids such as phospholipids, glycolipids, and sterols (cholesterol) play 

a significant role in cellular membrane biogenesis (making new biological membranes). 

Cholesterol helps the cell membrane to maintain its fluidity. A feature and the interaction with 

phospholipids of the lipid-bilayer, allows cholesterol to increases membrane packing, thus altering 

the membrane fluidity and integrity of the cell membrane [26]. Moreover, cholesterol facilitates 

the synthesis of steroid hormones, which assists in the absorption of the fat-soluble vitamins (A, 

D, E, and K).  
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Lipoprotein functions 

Lipids are insoluble in an aqueous environment; therefore, they need to be packaged in a 

form that will allow for transportation throughout the bloodstream. Hence for such transport to 

ensue, lipids are organized into lipid-protein complexes known as lipoproteins [27]. The most 

prominent lipoproteins are the chylomicrons (CM), very-low-density lipoproteins (VLDL), 

intermediate-low density lipoproteins (IDL), low-density lipoproteins (LDL) and high-density 

lipoprotein (HDL). While the lipoproteins differ in their functionality, they also share similarities, 

specifically in the inner structure, the amphipathic phospholipid particles, which are composed of 

hydrophilic polar heads and the hydrophobic nonpolar FA tails. In addition to lipids such as TAG 

and cholesterol esters (CE) residing in the core of the formed sphere. 

The differences in their functionality are due to the surface proteins, known as 

apolipoproteins or apoproteins. These apoproteins can be peripheral or integral proteins, and many 

times serve as enzymes or as ligands for cell receptors. Hence lipoproteins have a different 

proportion of triglycerides, phospholipids, cholesterol, and proteins, which further differentiates 

their functional roles in metabolism. CMs are primarily involved in exogenous lipid transport. 

Dietary lipids are packaged into chylomicrons within the enterocyte of the small intestine and 

distributed to peripheral tissues, mainly the muscle and or adipose tissues [27].  

However, before CMs reach the bloodstream, they must follow the path from gut to the 

blood circulation, passing through the lymphatic system by entering specialized lymphatic vessels, 

knowns as lacteals, in the villi of the intestine. Once in the lymphatic system, CMs travel through 

these lymph vessels and will exit at formed ducts (left or right thoracic ducts), which ultimately 

empty into veins, allowing for CM to reach the circulatory system [28]. Uniquely, CMs are known 

to have the largest particle size (75-1200 nm) of the lipoproteins, with the lowest density at (< 
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0.930 g/mL) and are a major transporter of (90%) of exogenous TAG. Additionally, CM particles 

are composed of roughly (2%) proteins, (3%) phospholipids, and (5%) cholesterol, which is 

embedded in particle phospholipid and or inside its core. Moreover, due to its versatility, CMs 

have many apoproteins on the periphery or integrated into the monolayer of the lipoproteins, 

typified by ApoB-48 which the hallmark of CM particles, in addition to other Apolipoprotein A-

I, ApoA-II, Apo-IV, ApoC-I, C-II, C-III, and ApoE (Table 1-2). 

While CMs play a specific role, mainly being involved in the exogenous lipid 

transportation, other lipoproteins such as VLDL, IDL, and LDL function as the endogenous 

transporters in delivering lipids to tissues. An additional key difference between these lipoproteins 

are noted in the type of ApoB which they carry. Although both ApoB’s come from the same gene, 

due genetic differentiation, ApoB-48 is made explicitly in the intestine and resides in the CMs, 

while ApoB-100s are made in the liver and found in VLDL, IDL and LDL particles. When 

comparing the VLDL in relation to CM particles, the VLDLs lipoprotein transports less TAG 

content (60% vs. 90%), more phospholipid (14%), proteins (6%) and (20%) CE. Furthermore, the 

VLDL lipoproteins have a greater particle density (0.930 – 1.006 g/mL) with a smaller diameter 

(30 – 80 nm). Other important apoproteins associated with VLDL are ApoC-I, C-II, C-III, and 

ApoE (Table 1-2). As VLDL goes through changes, depicted by the losses of TAGs due to 

hydrolysis by lipoprotein lipase (LPL), it gains more CE, the particle converts into IDL. These 

lipoproteins carry less TAG (20%) compared to CMs, and they attain an increase in phospholipids 

(22%), CE (40%), and proteins (18%). Moreover, the IDL particles have a higher density of (1.006 

– 1.019 g/mL), smaller particle diameter (25 – 35 nm), and are associated having ApoC and ApoE 

(Table 1-2) [27, 29].  
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Similar to VLDL, there are changes to IDL which are altered into LDL lipoprotein. In the 

endogenous lipid metabolism pathway, LDL lipoproteins carry significantly less TAG (7%), more 

phospholipid (22%), proteins (21%), and significantly more CE (50%) content, which is delivered 

to tissues. The LDL has an increased particle density (1.019 – 1.063 g/mL), and smaller particle 

diameter (18 – 25 nm) with ApoB-100 as the only apoprotein for the lipoprotein (Table 1-2). An 

increase in plasma LDL is considered to be the “bad cholesterol;” due to having the ability to 

transports cholesterol to the peripheral tissues and or macrophages where the potential for 

oxidation is high, in which case can lead to the development of atherosclerosis. Although VLDL, 

IDL, and LDL are commonly known to transfer lipids such as cholesterol to tissues, these 

lipoproteins can also ensure the opposite; where cholesterol is transported back to the liver for 

excretion. However, it is mainly the HDL lipoproteins which are commonly known as the “good 

cholesterol” since it has the ability to retrieve free cholesterol and brings it back to the liver for 

multiple fates for excretion, making bile acid and/or hormones. The HDL lipoproteins also are 

characterized to have the highest particle density when compared to the other lipoproteins at (1.063 

– 1.210 g/mL), and the smallest diameter of (5 – 12 nm). Embedded in the bilayer of HDL are 

numerous apoproteins, with most prominent apolipoprotein being ApoA-I, followed by ApoA-II, 

and others such as A-IV, ApoC-I, C-II, C-III, and ApoE (detail remarks on apoproteins: Table 1-

3). Overall, HDL lipoproteins are composed of less TAG content at (5%), in comparison to other 

lipoproteins, CE (25%), phospholipids at (26%), and the highest content are proteins (44%).  

While the main function of the different class of lipoproteins is transportation of lipids in 

the blood, they also specialize in the type of lipid transportation which are involved in, thus, lipid 

metabolism can be summarized by the three key pathways: exogenous, endogenous, and reverse 

cholesterol transport (RCT) [30, 31]. The exogenous transport system revolves around the use of 
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CM as the lipoprotein, which helps facilitates the transport of dietary fats such as TAG, from the 

intestine to peripheral tissues for either storage or energy utilization. The system is mainly active 

during the time when fat-containing meals are consumed. The endogenous system involves VLDL, 

IDL, and LDL lipoprotein particles, in which case the transportation of triacylglycerol molecules 

from the liver during normal metabolic conditions to the peripheral tissues occurs again for storage 

or energy use. Different from these two systems is the RCT pathway, which uses HDL lipoproteins 

to pick up the excess cholesterol from the peripheral tissues in order to transport and deliver it back 

to the liver [27]. 

Exogenous Lipid Metabolism Pathway 

 The exogenous pathway begins when food, which contains dietary fat, is consumed and 

digested. Post digestion, the absorption process follows, where fat in the form TAGs are broken 

down by brush borders lipases and pancreatic lipases located in the intestinal lumen [32]. The 

breakdown of lipids is further assisted by the release of bile salts, which is created by the liver and 

stored in the gallbladder. Bile salts are cholesterol derivatives which act both as a detergent and an 

emulsification agent due to its amphipathic capabilities. This allows for easier access by the 

lipases. TAGs molecules are hydrolyzed by lipases when they break the ester linkages with the 

addition of a water molecule, and still within the micelles environment, leads to the production of 

smaller products which are mono-, di-acylglycerols, free fatty acids (FFA), monoacylglycerol 

(glycerol) and free cholesterol.  

Lipid micelles particles are taken by the enterocytes, lead through various transporters, in 

order to be further processed by endoplasmic reticulum (ER). In the ER, the broken lipids are then 

used to resynthesize TAG, phospholipids, and CE. Following the re-synthesis of lipids in the ER, 

the compounds require to be packaged before they are transported, and the process occurs by a 
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carrier molecule known as lipoproteins. Specifically, the CMs are the main lipoprotein in the 

exogenous system. CMs also recruit the aid of ApoB-48 proteins, which are made by the intestine. 

Therefore, lipids are packaged into large, spherical TAG-rich lipoproteins along with any 

other hydrophobic such as cholesterol are sequestered into the core of a protein molecule, which 

has polar heads, allowing for interaction with the aqueous environment and the hydrophobic 

molecules which reside in the core. The packaging occurs in the ER, with further help from ApoB-

48, a scaffolding protein, and by microsomal triglyceride transfer protein (MTS) another necessary 

lipoprotein assembler [33, 34]. In addition to ApoB-48, several exchangeable apolipoproteins can 

be found on the surface of the CM. Once CMs enter the blood via the lymphatic system, they 

acquire additional apoproteins (mainly ApoE and ApoC-2), which are mostly transferred from 

HDL lipoproteins through interactions in the circulation.  

 The entrance of the CMs in the blood circulation is a slow process, which could take up to 

14 hours after consumption depending on the TAG-rich dietary food consumed. On the other hand, 

plasma TAG concentration, unlike chylomicrons, usually, peak 30 minutes to 3 hours after meal 

consumption and return to nearly normal within 5-6 hours [27]. The final act for the CM is the 

deliverance of TAG to tissues other than the liver, but mainly muscles and adipose tissues. Once 

at the surface of the targeted cell, CMs are engaged by LPL enzymes. The enzyme facilitates the 

hydrolyzes of the TAG, from CM particles into FFA and 2-monoacylglycerols, which then are 

taken by the cells [35, 36]. Tissues such as adipose and muscle are unable to phosphorylate glycerol 

which, leads for these molecules being transferred to the serum and picked up by the liver or 

kidney. As the CMs are depleted from TAG-rich lipoproteins, the molecule becomes a 

chylomicron remnant, which before it is processed by the liver, it transfers the apoproteins such as 

(ApoAs and ApoCs) back to the HDL particles. The CM remnants travel to the liver were a specific 
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receptor; LDL receptor-related protein 1 (LRP1) is able to recognize ApoE component, which 

allows for the particle to be taken entirely into hepatocytes, where hepatic lipase further hydrolyzes 

the remnants CM for any leftover TAG or phospholipids. 

Endogenous Lipid Metabolism Pathway 

The liver is one of the essential organs, which plays a fundamental role in the management 

of various metabolic mechanisms, and the endogenous lipid pathway is one of these critical 

processes. When TAGs, come together with CEs, and ApoB-100, they are assembled and packaged 

by the Golgi apparatus in the hepatocytes, resulting in the formation of nascent VLDL particles. 

[29]. In its infant stage, the VLDL particles are composed of three important apoproteins, ApoB-

100, ApoC-I, and few ApoE. Once the lipoproteins are released in the circulation, the nascent 

VLDLs interact with HDL particles, where apoproteins such as ApoC-II and additional ApoE are 

picked up, resulting in the maturation of particle. The mature VLDL particles during circulation 

are exposed to inactive LPL enzymes, which are expressed on endothelial tissues; however, it is 

the ApoC-II on the lipoprotein surfaces which leads into activating the enzyme. Ultimately the 

activated LPL initiates the hydrolyzes of TAG by breaking the ester bonds, which leads to the 

release of generated glycerol and FA byproducts. The molecules of glycerol and FA are absorbed 

in the blood by peripheral tissues depictive of adipose and muscle tissues. The compounds are 

resynthesized back to TAG molecules, inside the cells, in order to be used for energy production 

or storage. As VLDLs are metabolized, they are depleted of TAG, making the particle denser, in 

addition to exchanging ApoC-II for more ApoE, which eventually changes VLDL into a transient 

IDL particle.  

The IDL lipoprotein is hydrolyzed by LPL, which leads to the loss of more TAG. It is 

estimated that 50% of the IDL particles can either be taken up into the liver or the other 50%, also 
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lose the ApoE [37]. This is followed by an increase in cholesterol concentration, leaving the ApoB-

100 as the primary apolipoprotein, thus producing the LDL lipoprotein [38]. It is worth noting that 

in a transient environment, an added path can be taken by both VLDL, IDL, or any other ApoE 

containing lipoproteins, which is to utilize the LDL receptor (LDLR) at the hepatocyte surface, 

where via the process of endocytosis they are removed from circulation. Once inside the liver, the 

VLDL and IDL are degraded by hepatic lipases were TAG and cholesterol are recycled for other 

metabolic processes.  

The VLDL is characterized as a TAG-rich lipoprotein, whereas the LDL lipoprotein is the 

composite of the remaining lipids that were secreted by the liver, mainly phospholipids, free 

cholesterol, and CE making, the LDL particle primarily a transporter for cholesterol [27, 39]. 

While LDL particles shrink in size as they are depleted of TAG, it only retains apolipoprotein 

ApoB-100, which constitutes one per molecule. The particle size is additionally affected by the 

interactions with LPL, as well as other lipoproteins where lipid exchange can occur. Therefore, 

because of these multitudes of interactions, it leads to various sizes of the LDL particle, which can 

range from small, intermediate or large. Many clinical studies have associated the small dense 

LDL (S-LDL) as more atherogenic than larger LDL, emphasizing the importance of LDL 

cholesterol removal from the blood in order to prevent the accumulation in arterial wall or tissues 

[40]. Thus, clearance of the LDL from the blood is accomplished via cell surface receptors. 

Specifically, the LDLR found in the liver and non-hepatic tissues which recognizes the ApoB-100. 

Upon binding to the LDL lipoproteins, the particles and LDLR are internalized by endocytosis.  

In the cell, the LDL particle is carried to the lysosomes, while LDLR is released for either 

returning on the cell surface or recycled. At the lysosome, the LDL lipoprotein is hydrolyzed via 

lysosomal enzymes into amino acids, FFA, and free cholesterol. The new influx of cholesterol has 
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various metabolic fates such as bile acids, and/or hormone production. The entry into the cell also 

exerts a more profound function on the cellular internal cholesterol products; it acts as a feedback 

inhibitor. Largely the high amount of cholesterol acts on the rate-limiting enzyme for cholesterol 

biosynthesis: HMG-CoA reductase as it suppresses the enzyme by decreasing the transcription of 

the reductase gene and concurrently increases the degradation of the enzyme [41]. Moreover, part 

of the cholesterol which is not used for metabolic processes is stored away in the form of CE, 

where is modified by cholesterol esterification by acyl CoA: cholesterol acyltransferase (ACAT).  

Lipids that have successfully been targeted by the medical and pharmaceutical community 

in the past decade, have been the TC and LDL-C. The mechanism by which reduction in TC and 

LDL-C has been accomplished is through targeting HMG-CoA reductase pathway and the LDLR. 

Medications such as lovastatin, pravastatin, rosuvastatin, or atorvastatin are HMG-CoA reductase 

inhibitors drugs which block the rate-limiting enzyme HMG-CoA reductase in the cell which is 

involved in the synthesis of cholesterol via the mevalonate pathway. The low yield of internal 

cholesterol forces an upregulating and synthesis of new LDLR, resulting in an increased clearance 

of LDL particles from the circulation, thus lowering blood cholesterol from the body [42]. The 

efficacy of statins as lipid-lowering drugs has been considered to be one of the most significant 

discoveries of the decade. Notably, since it lowers LDL-C, and its use as primary prevention in 

people with high risk for CVD as well as secondary prevention treatment for those who may 

develop CVD [43, 44]. 

There are other medications such as Ezetimibe, which target cholesterol-lowering by 

reducing the intestinal absorption of cholesterol; however, it is frequently combined with statins 

[45]. Niacin (B3), a water-soluble vitamin is another product that lowers LDL by selectively 

inhibiting hepatic diacylglycerol acyltransferase, thus reducing TAG synthesis and VLDL 
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secretion [46, 47]. The use of Tocotrienols (TT), a fat-soluble compound derived from the vitamin 

E family, part of the isomer, especially a delta- and gamma-TT in an in vitro setting have shown 

the ability to treat high cholesterol. The gamma-TT has also shown to work as another HMG-CoA 

reductase inhibitor, which reduces cholesterol production. Though there have been various 

investigations in TT in examining their effects, only to conclude with mixed results [23, 48]. 

Reverse cholesterol transport pathway  

 Reverse cholesterol transport (RCT) (Figure 1-9) is the process where excess cholesterol 

from peripheral tissues is picked up by the HDL particles and delivered to the liver for excretion 

from the body as either bile acids or free cholesterol [27]. The RCT is a multiple-step mechanism 

involving many cell surface receptors, intravascular enzymes, and transfer of lipids among 

circulating lipoproteins; moreover, the cholesterol from the peripheral tissues comes back to the 

liver for removal from circulation [49]. The HDL particle is raised entirely within the intravascular 

space, starting with ApoA-I. The lipid-free ApoA-I is created and secreted by both liver and the 

small intestine; where ApoA-I protein can also be picked up from CM and VLDL during their 

TAG hydrolysis which can allow onto giving rise to new HDL particle.  

ApoA-I is the major protein of HDL lipoprotein particles and plays a vital role in its 

development. It serves as an acceptor for phospholipids and facilitates the cholesterol transfers 

from the liver via ATP-binding cassette transports (ABCA1) which results in the formation of the 

nascent HDL particle [50]. Like ApoA-I, the ABCA1 protein, not only aids in the formation of 

HDL, but it is also known as the cholesterol efflux regulatory protein (CERP) which is a protein 

coded by ABCA1 gene [51]. Moreover, it is known as a major regulator of cellular cholesterol and 

phospholipid homeostasis. Additionally, ABCA1 mediates the cholesterol efflux between the 

lipids and apoproteins such as ApoA-I and ApoE [52]. Nascent HDL acquires additional 
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phospholipids and cholesterol when it interacts with other ABCA1 protein receptors in the 

peripheral tissues. An undeveloped HDL particle has a discoidal shape, which retains the 

amphipathic property to form a bilayer, thus more cholesterol is picked from peripheral tissues 

through another receptor aside from ABCA1, which happens to be the scavenger receptor class B 

type 1 (SR-B1); a receptor that is located in the peripheral tissues of muscles, adipose, and 

macrophages within coronary arteries [27, 53].  

The abilities for nascent HDL lipoproteins to accept cholesterol from macrophages not only 

aids in the HDL particle maturation but also the removal of cholesterol from the circulation is 

beneficial to the cardiovascular system. The removal of excess cholesterol leads to decreased 

deposition of CE in the vascular endothelium, thus decreasing CVD or atherosclerotic events [54]. 

Moreover, the nascent HDL throughout this process acquires an intravascular enzyme known as 

lecithin-cholesterol acyltransferase (LCAT). This is a key enzyme that helps form CE by 

catalyzing the transfer of fatty acids from the sn-2 position of phosphatidylcholine to free 

cholesterol within the HDL particle. Furthermore, since the CE particles are nonpolar, they migrate 

to the core of the lipoprotein, thus forming a mature HDL particle. 

Small spherical HDL can further interact with peripheral tissues as the ApoA-I binds to 

SR-B1 and another receptor ATP-binding cassette sub-family G member 1 (ABCG1) in the 

peripheral tissues where more cholesterol is acquired during the efflux transportation mechanism. 

The ABCG1 belongs and is encoded by a gene which is part of a superfamily of ATP-binding 

cassette (ABC) transporters; which serves as transporters that are involved in the macrophage, 

cholesterol and phospholipids transportation, which further enables the regulation of cellular lipid 

homeostasis [55]. On the other hand, mature HDL lipoproteins can bind to the receptor ABCG1 
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(on the macrophage), but not ABCA1. Whereas both nascent and mature HDL can bind to SR-B1, 

at the liver or peripheral tissue (macrophase, muscles, or adipose) for the cholesterol exchanged.  

The binding to the cell receptors and continuous action of LCAT facilitates esterification 

of cholesterol into CE, which allows for the new formed CE to be sequestered in the HDL 

lipoprotein, thus, assisting the particle in growing in size, into a large HDL. However, due to 

metabolism being very transient, there can be transfers of CE from HDL into other lipoproteins 

(such as VLDL, IDL, LDL). Enabling such action between HDL and lipoproteins such as VLDL 

as well as LDL, is the cholesterol ester transfer protein (CETP) enzyme [56]. CETP is in the 

plasma, is a lipid transfer protein that facilitates the transport of CE and TAG between the 

lipoproteins in a heteroexchange trade mechanism. It exchanges TAG from VLDL and LDL in 

return for the CE from the HDL particle, in which case retains the TAG from the two lipoproteins 

during the exchange, thus depleting an HDL particle of CE, which was on its way back to the liver 

for excretion. Furthermore, the exchange of CE through CETP in the plasma has been associated 

in reducing the size of HDL particles, which benefits the lipoprotein into making it more conducive 

to the interactions with cell surface receptors, thus increasing the HDL’s ability to accept more 

cholesterol for removal.  

While but not always, the exchange can lead to health complications in various individuals 

who are presented with metabolic syndromes featured by low HDL, and high TAG, TC, and LDL. 

Such individuals are at a higher risk for developing atherosclerosis since the cholesterol, which 

was meant for excretion was diverted into other pathways. When CE are relocated from HDL into 

VLDL and or LDL lipoproteins, these molecules take a new path away from being unloaded to the 

liver, thus, this new fate usually consists with CE being deposited into tissues, especially arteries, 

where it accumulates, becoming prone to oxidation or leading to an artery blockage which further 
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exacerbates the risk for cardiovascular disease [57]. Various pharmacological clinical trials have 

been and are being conducted in improving HDL, by using drugs to inhibit CETP (CETP inhibiting 

such as a Torcetrapib agent) [58]. However, studies with mortality and decline in cardiovascular 

events have primarily been inconclusive with disappointing results [59]. 

One more critical regulatory protein in RCT metabolism is protein phospholipid transfer 

protein (PLTP), found in the human plasma, which helps to facilitate the transfer of phospholipids 

or excess of surface lipids from TAG-rich lipoprotein to HDL. PLTP, including CETP, belongs to 

a family of lipid transferring lipopolysaccharide-binding proteins (LBP) and a bactericidal 

permeability-increasing protein (BPI). It is worth noting that besides cholesterol and 

phospholipids, PLTP also has the ability to transfer diacylglycerols and alpha-tocopherol, 

cerebroside, and lipopolysaccharides thus, the reason why is portrayed as a nonspecific lipid 

transfer protein. In the plasma, there are two forms of PLTP, that play important roles in lipid 

metabolism; the active form which has been associated with ApoA-I, whereas the inactive form 

has been linked to the ApoE [60]. Hence, the activity of PLTP has lead to the formation of smaller 

lipoprotein remnants, which form into LDL. On similar roles, like CETP, PLTP helps to facilitate 

the maturation of HDL particles, as well as regulate the size and composition of the HDL 

lipoprotein which is crucial to the plasma HDL-C levels in the blood [61]. Further actions by PLTP 

in lipid metabolism are to assist into the uptake of cholesterol for periphery tissues in the which 

are transported for degradation and excretion by the liver. Other linked interactions with ApoA-I 

and ApoA-II have shown that PLTP seems to exert effects onto the apoprotein lipidation as well 

as nascent HDL biogenesis in the hepatocytes, by stimulating the ABCA1 efflux and remodeling 

of nascent HDL particles [62-64].  
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The final step in RCT is the binding of HDL to SR-B1 receptor on the surface of the 

hepatocytes. Upon binding and removal of CE from the particle core, the HDL lipoprotein enters 

a two fate pathway. One possible fate, for the HDL lipoproteins, once the cholesterol is removed, 

is on being released in the circulation for reuse in the collection of more free cholesterol, or the 

entire HDL lipoprotein is internalized and degraded in the lysosomes similar to the degradation of 

LDLR. Once internalized for degradation, CE molecules are hydrolyzed by cholesterol ester 

hydrolase enzymes, thus freeing the cholesterol and directed by the liver for bile acid production 

or the formation of steroidal hormones. 

RCT mechanism and disease complications 

In general, HDL is perceived to function as atheroprotective particles, which promotes 

RCT, induces cholesterol efflux from peripheral tissues such as macrophages foam cells that are 

taken into the hepatocytes in a known process that is considered to be beneficial to cardiac health. 

However, this process appears to be compromised in MHD patients. Various studies in MHD 

subjects have linked HDL particles being defective and compromised, a link which is further 

exacerbated by dysregulation of lipid metabolism, which has been associated with the 

dysfunctionality activity in RCT [65]. Other key modulators in the RCT pathway believed to be 

affected are the LCAT enzymes. Under normal conditions LCAT is involved in HDL maturation 

to a spherical-shaped particle; however, in ESRD patients, the enzyme has shown low activity. A 

decreased LCAT activity is problematic since it has been associated with the formation of non-

mature or smaller HDL particles. The non-mature HDL lipoproteins have been linked in being 

ineffective in performing regular RCT functions. Therefore, this would impede the HDL-mediated 

RCT pathway of disposing of excessive cholesterol from extrahepatic tissues and walls of the 

blood vessel [66]. 
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While not conclusively, but it is hypothesized that MHD patients have HDL particle 

impairment, which could lead to lack of particle maturation, thus lipoprotein dysfunction, and this 

could be due to the downregulation of LCAT as well as increased CETP activity [67]. Additional 

plasma CETP has shown to play a vital role in RCT, evidenced by the upregulated levels of this 

enzyme that increases the transportation and exchange of TAG in VLDL or LDL in return for CE 

from HDL. Other compromised key modulators in RCT metabolism are the efflux genes such as 

ABCA1, ABCG1, LXR-α, SR-B1 (Table 1-4), and the influx of downstream related genes CD36, 

LOX01 and or SRA1 (Table 1-5) [68-70]. Multiple pathways are affected; thus, additional studies 

are needed to determine what else may increase the risk for CVD events. Therefore, it is imperative 

to understanding HDL metabolism, specifically how RCT may be impacted by D in ESRD patients 

undergoing hemodialysis. As is currently understood, dysfunctional RCT in MHD patients is 

characterized by increased levels of TAG, elevated VLDL, IDL, as well as CETP activity and 

ApoB-100 protein; whereas TC and LDL-C lipids can be either normal to marginally decreased. 

Moreover, the HDL-C levels are noted to be decreased, so are the ApoA-I levels, and similar 

LCAT activities are downregulated as well (Figure 1-10). 

Furthermore, TAG enrichment of HDL particle could be multifactorial; the transfer of CE 

occurs between other lipoproteins, apart for CETP being a culprit which facilitates this exchange. 

It is believed that another influencer has been linked and identified and that being the hepatic lipase 

(HL), which serves as a catalyst in the hydrolysis of TAG. However, mutations in the HL gene 

leads to an enzyme deficiency, an event that ultimately results in an increase in TAG level and 

increased risks for CVD. Moreover, HL facilitates the clearance of TAG from VLDL. 

Additionally, HL function is further regulated and controlled by the quality and composition of 

HDL lipoprotein, which in MHD patients is presented by declined HDL levels. Additionally, HDL 
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regulates the release of HL enzyme from the liver, and the enzyme activation occurs in the 

circulation for which case is transported by the HDL particles [71].  

Patients affected by CKD and ESRD present with hypertriglyceridemia, impaired 

clearance of TAG-rich lipoproteins and their remnants, abnormal composition are all chiefly due 

to the downregulation of LPL, HL, VLDL-receptor, LDL-receptor in conjugation with a 

concurrent upregulated hepatic ACAT [67, 72]. Conversely, an impaired HDL metabolism 

contributes to the disturbances of TAG-rich lipoprotein metabolism. Intensifying the dysfunction 

in HDL metabolism for the MHD patients is the downregulation of the apolipoproteins (most 

abounded protein in HDL particles) ApoA-I, ApoA-II, and ApoC-II [67]. When evaluated together 

with these abnormalities of the malnutrition-inflammation complex syndrome (MICS), coupled 

with OS, inflammation, and D, it makes it highly conducive to exacerbate atherosclerosis in HD 

population.  

Dyslipidemia in Lipid Metabolism  

MHD patients on dialysis are also affected by the systemic syndromes known as D [4]. It 

is an intrusive factor, similar to malnutrition and inflammation with a high association with CVD 

and increased mortality [73]. The term D is defined as dysregulation of lipid metabolism, which is 

marked by abnormalities in plasma lipids, lipoproteins as well as other lipid-related parameters, 

including associated enzymes. While the subject of D is not fully understood, more work is 

required in order to comprehend the overall extent of this dysfunction. Exacerbating the issue is 

the fact that there is limited knowledge, which is due to the low volume of clinical studies. 

However, a general hypothesis, by understanding lipid metabolism have been advanced on how D 

may affect lipids, lipoproteins, and enzyme at different stages of the disease Table 1-1 [72, 74].  
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In CKD, the primary complication due to D is associated with the metabolism of HDL and 

TAG-rich lipoproteins resulting in low HDL-C and elevated TAG [75, 76]. Moreover, the plasma 

concentration of apolipoproteins A-I and II are reduced, whereas ApoA-IV is increased. The 

HDL/TAG ratio and pre-β1 HDL (a discoid-shaped HDL particle), which contains ApoA-I, 

phospholipids, unesterified cholesterol, are elevated, and this due to the impaired maturation of 

the HDL particle. The failure for the improperly developed HDL particle leads to the impairment 

of RCT, which is analogous to the decline in HDL-C levels [75, 77]. Furthermore, linked to the 

decline in HDL-C concentration are two RCT enzymes: CETP, which its activity is seen to be 

elevated, while LCAT enzyme activity is decreased [72, 74]. Additional lipid parameters affect 

are shown in (Table 1-1). 

As CKD advances to ESRD, the lipid parameters also change. In ESRD patients 

undergoing hemodialysis, lipid parameters for LDL-C and TC are normal or decreased, whereas, 

in CKD, they are elevated. In both CKD and ESRD, IDL, VLDL, Lp(a), small-dense LDL, and 

TAG levels are increased. Irrespective of the disease state, HDL-C levels are decreased in the 

MHD patients analogous with CKD patients. Non-HDL-C and ApoB are either normal or 

decreased in ESRD when compared to CKD, which are elevated. As for the reverse cholesterol 

transport enzymes, CETP is increased, and LCAT is decreased in ESRD, as well as in CKD 

patients (Table 1-1). ESRD patients have an accumulation of oxidized lipids, lipoproteins 

followed by low plasma HDL-C along with impaired HDL maturation and function [78]. Impaired 

synthesis and activity of HDL and the delayed catabolism of TAG-rich Apo-B containing 

lipoprotein subsequently leads to elevated TAG and low HDL-C levels [67]. The rise in TAG 

levels can be additionally explained by the impaired clearance of VLDL, IDL, and the 

accumulating CM remnant which, too, are accompanied by a significant increase in plasma ApoC-
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III (a potent inhibitor of LPL) and reduced ApoC-II the activator of LPL [67, 79]. The Framingham 

Study recommended desired lipid parameter ranges reflective of moderate (too low) TAG levels; 

high HDL-C followed by lower LDL-C because it was shown to be protective against CVD. 

However, the recommendations were indicative of the general population [80]. 

ESRD patients are challenged by a phenomenon known as “reverse epidemiology,” in 

which parameters such as high HDL-C and low LDL-C plasma concentration may not be as 

protective when compared to their healthy counterpart [81]. Various studies have examined how 

to control DL by raising the HDL and stabilizing the remainder of the lipid profiles. Kilpatrick et 

al. (2007) found that serum HDL-C showed no clear association to improve or worsen survival 

however, patients presented with elevated TAG showed improvements in survival between 

concentrations levels of 200-250 mg/dL and above 250 mg/dL mortality rates increased, likewise 

LDL-C levels of < 70 mg/dL was associated with low survival. This phenomenon of high TAG 

and low LDL-C affects AA patients as well; however, elevated serum LDL-C (>100 mg/dL) 

showed a two-fold risk for CVD, unlike others [82]. On the other hand, Moradi et al. (2014) found 

that increases in HDL-C concentration up to 50 mg/dL was favorably associated with a reduction 

of CVD and mortality. 

Nonetheless, incremental increases in HDL-C of greater than 50 mg/dL were paradoxically 

associated with increased deaths [83]. These findings were further validated by Chang et al. (2018) 

in a large MHD cohort, which found that incremental increases in serum HDL-C over 5-years did 

not associate with the improved outcome on cardiac incidents [84]. There has been evidence that 

serum parameters such as non-HDL-C are more accurate predictors for CVD outcomes compared 

to LDL-C. Chang et al. (2018) looked into the inverse association between serum non-HDL-C 

levels and mortality in patients undergoing dialysis, and reported the decline in non-HDL levels 
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(< 100 mg/dL) in addition to the reduced non-HDL/HDL-C ratio (< 2.5) showed paradoxical 

association with increased all-cause of mortality [85]. High TAG/HDL ratio in the general 

population has been associated with risk, however, in HD patients, Chang et al. (2017), found that 

elevated TAG/HDL (ratio ≥ 3.64) when compared with a (ratio < 3.64), the latter had a higher all-

cause and CV mortality rates. The findings heighten the importance of qualitative in addition to 

quantitative evaluation of lipids and lipoproteins in the ESRD population [86]. The 4D study (Die 

Deutsche Diabetes Dialysis) revealed that the quality of HDL and LDL composition and function 

might be more critical than their serum levels. Studies suggest that lipoproteins may serve as a 

biomarker to assess disease; thus, these metabolic proteins can be used in order to discover new 

therapeutic and diagnostic tools [87].  

HDL controversy 

HDL-C is recognized as “good cholesterol,” which is protective against CHD. In the 

Framingham study between 1969 and 1971, it was established that HDL in both genders had an 

inverse association with the incidence of CHD, thus, considered to be protective [80]. 

Epidemiological studies have further associated the low HDL-C levels as an independent risk 

factor, and irrespective of LDL-C levels, this is considered to be adverse in attaining CVD 

outcomes [88]. Moreover, lower concentrations of HDL-C has been recognized to be problematic 

in both genders and a potent predictor of CHD death, in men with HDL-C less than 40 mg/dL and 

women less than 50 mg/dL [88, 89]. Such findings were further reinforced by various 

observational studies throughout the world which have demonstrated that an increase in serum 

HDL-C levels can be beneficial, by reducing the risk for CHD, even so, many investigations have 

cautioned this belief by stating that further studies were required for verification [90, 91].  
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Furthermore, data generated through various meta-analysis studies, in association with 

understanding HDL metabolism, and its role in RCT pathway, combined with various computer 

models, have confirmed a positive correlation in raising HDL being correlated in the removal of 

cholesterol thus, decreasing CVD rates [92]. With no clinical trial intervention to verify the result 

of HDL protective effects, the pharmaceutical companies entered into the picture, where studies 

were initiated with the sole purpose of increasing HDL via pharmacological treatments. While the 

general thought has been that HDL is inversely related with CVD, several failed clinical trials have 

created doubts on whether HDL has the capacity in being protective and whether if it still attains 

the capacity to conduct RCT in patients with hypercholesterolemia in order to facilitate the 

removal of cholesterol and decreasing CHD for those at risk [91]. Clinical trials that used fibrates, 

niacin, or CETP inhibiting drugs, have shown non-conclusive or at best-scattered results in some 

patients [93].  

Interventions that looked at genetic outcomes of raising HDL observed no association in 

reducing the risk of an MYI [94]. Various clinical studies have investigated statin drug use as a 

way to raise HDL-C levels. In rare cases an increase in HDL-C levels was recorded; however, 

these effects have been inconclusive in a clinical setting, although beneficiary in decreasing LDL-

C [95]. In the ENHANCE clinical trial, ezetimibe was combined with simvastatin, resulting in 

lower LDL-C and raising HDL-C levels; however, the safety and efficacy of the drugs were not 

determined, thus raising concerns in endorsing prolonged use [96]. Most noted failure in raising 

HDL-C came through a pharmaceutical intervention when Pfizer, shut down its phase III clinical 

trial of torcetrapid, a CETP inhibitor since the drug reported to have compromised patients' safety 

negatively [97].  
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While the focus for many years has been to raise the HDL-C, doubts due to non-conclusive 

results raise scrutiny in whether high HDL-C is good and/or protective. This is a further issue in a 

population of ESRD patients where D has been linked to being a factor that contributes to the 

formation of dysfunctional HDL particles. Moreover, impaired HDL particles have been 

associated with lower antioxidant activity, as well as a decrease in anti-inflammatory protective 

effect; therefore, serum HDL-C has been relegated in being not a dependable indicator for a CVD 

[66]. In CKD subjects, a U-shaped association between serum HDL-C levels and mortality has 

been observed; similarly, in ESRD subjects, a J-shape association between HDL-C and mortality, 

has been noted. Nonetheless, in both populations, CKD and ESRD increased serum HDL-C 

overtime is linked paradoxically with outcomes worsening in the patients' mortality [84]. This, 

suggests a window where lower than<30 mg/dL and higher than ≥60 mg/dL of HDL-C levels may 

be detrimental, and additionally, associated with changes in the lipoprotein functionality [98].  

The failed clinical trials in rising HDL-C safely, combined with data results which 

demonstrated that higher serum HDL-C (≥60 mg/dL) could negatively impact patients' health. 

Therefore the focus has shifted to where HDL lipoprotein functionality could be more important 

than the circulating concentration levels itself. It has been postulated that HDL functionality plays 

a critical role in protection against atherosclerosis than the general HDL-C concentration levels. 

Furthermore, what makes such particle atheroprotective, are the antioxidant properties, anti-

inflammatory, antithrombotic, and cytoprotective function [99].  

HDL particles are noted in being protective against CHD; additionally, this protection 

extends to the LDL particles from inhibiting the generation of proinflammatory oxidized lipid, 

thus helping in preventing its oxidation. Serving as a protective mechanism to the HDL particle 

from becoming oxidized or dysfunctional from exposure to a disease state and or inflammation, is 
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paraoxonase 1 (PON1) hydrolytic enzyme. PON1 is known as an esterase, homocysteine 

thiolactonase enzyme which is encoded by the PON1 gene [100].  

Itself the enzyme is considered to be an antiatherogenic component of HDL, which is 

highly associated with the lipoprotein and their functional outcome, and its antioxidant properties 

are protective agents against CHD [101, 102]. It is activated by peroxisome proliferator-activated 

receptor gamma (PPAR-γ), a nuclear receptor, which has been implicated various metabolic 

pathways, in and has been associated with numerous disease; from obesity to DM; nonetheless, it 

has also been used in the treatment of hyperlipidemia and hyperglycemia [103]. An added property 

of PPAR-γ is its ability to decrease inflammatory response in many cardiovascular cells, such as 

endothelial cells; as well as to increase the synthesis of paraoxonase-1 from the liver, and like 

PON1, the PPAR-γ has been linked to reducing atherosclerosis [104]. PON1 has been investigated 

in various clinical settings, and its relevance was depicted by Azarsiz et al. [105] and Sharma et 

al. [106], which demonstrated that serum PON1 activity was significantly low in CHD patients, 

thus congruently affecting the HDL and its functional behavior.  

For LDL particle fractions, based on several investigations, there is strong body of evidence 

that suggests that small dense LDL (S-LDL) particles are more atherogenic than larger buoyant 

LDL particles (L-LDL). This is because S-LDL fractions have an enhanced ability to penetrate the 

arterial wall, which leads to the development of atherosclerotic plaques [107]. On the other side, 

there are the HDL particles. Wherein could be classified into two subfractions, large buoyant HDL 

(L-HDL) and small dense HDL (S-HDL).  

While the LDL subfractions have a strong body of evidence in the relevance to a clinical 

setting pertaining to CVD; evidence on the large, and small-HDL is unclear and controversial. 

Results from two studies the IDEAL (Incremental Decrease in End Points through Aggressive 
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Lipid Lowering) trial, and the EPIC (European Prospective Investigation) a case-control study, 

which showed that elevated plasma HDL-C levels (≥70 mg/dL) and the L-HDL particles were 

associated with a higher risk for CVD. In contrast, the S-HDL particle has shown that it may be 

more functional thus, more efficient in promoting cholesterol efflux from macrophage to remove 

excess cholesterol [108].  

The S-HDL also exhibiting more antioxidant capacity, anti-inflammatory properties, 

antithrombotic, and anti-infectious activity when compared to the L-HDL particles. Moreover, 

irrespective of the two lipoproteins, higher levels of ApoA-I in the plasma uniformly show a lower 

risk for a CVD event [109]. Studies that used CETP inhibitors and niacin have displayed evidence 

to increase the levels of L-HDL [108, 110]. In this case, data from experimental studies also 

showed a cholesterol overload HDL, which happens to be abnormal, thus have an impaired 

antiatherogenic potential and presents with a negative effect on the efflux potential [111].  

A retrospective meta-analysis study by Pirillo et al. (2013) agreed upon the fact that the 

functionality of HDL may be more significant than HDL-C levels. However, these findings 

revealed that due to dyslipidemia, L-HDL levels are decreased whereas S-HDL particles were 

increased in CHD patients [112]. A study by Pascot et al., (2001) looked into reducing HDL 

particle in relation to D due to abdominal obesity; to discover that men presented with more L-

HDL, had a more favorable plasma lipoprotein-lipid profile when compared with the S-HDL 

lipoprotein particles. Additionally, these men with higher levels of L-HDL were also observed to 

have reduced adiposity, lower visceral fat, and reduced insulin-glycemic response [113]. In 

patients who have CKD and ESRD, data is scarce and so are the clinical trial, in attempting to 

understand the functional role of HDL particle size in preventing CVD.   
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Non-traditional disorders 

Malnutrition 

Malnutrition is characterized as irregularities in forms of fatigue, loss of body weight 

accompanied by losses of lean muscle mass that are replaced by fatty tissues, a decline in body 

mass index (BMI), and a decrease in serum proteins [114, 115]. Approximately 18-75% of CKD 

patients undergoing MHD are presented with evidence of wasting syndrome, often referred to as 

uremic cachexia, or MICS or protein-energy wasting (PEW), all of which are a strong predictor 

for adverse outcomes [116-119]. Kidney disease is also accompanied by metabolic acidosis, which 

irreversibly destroys the essential branched-chain amino acids (BCAA), proteins, and muscle 

protein, which leads to low levels of serum albumin (hypoalbuminemia) [115]. Serum albumin 

serves many functions that help maintain intravascular colloidal osmotic pressure and 

hypoalbuminemia, where is a key nutritional marker used to identify malnutrition [120].  

Inflammation 

The elevated inflammation levels are additional critical issues that confront both 

individuals who are affected by CKD as well as MHD patients. Inflammation is a biological 

response instigated by stimuli such as injury, pathogen invasion, cell damage, or irritants, and in 

kidney disease, this is caused due to many factors, associated explicitly with nephron damage 

[121]. Within physiological limits, an inflammatory response facilitates the removal of the inciting 

agent and initiates the healing process [122]. Many studies have been conducted to understand the 

role of inflammation in the CKD population Armdur et al. 2016 [123] found that elevated plasma 

levels of fibrinogen, interleukins (IL-1, IL-6) and cytokines (TNF-alpha) are involved in the 

systemic inflammatory mechanism, and these markers have been linked to a faster decline in eGFR 

which corresponds to the progression CKD into ESRD [123].  
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Moreover, systemic inflammation is highly prevalent among CKD and HD patients and 

has been associated with a high mortality rate due to the development and progression of CVD in 

subjects undergoing hemodialysis [124-126]. In the ESRD population, inflammation is 

characterized as a multifactorial and an underlying reason for the development of CVD. An acute-

phase protein (reaction) has been associated with causing vascular injury by several pathogenetic 

mechanisms directly. Available data suggests that proinflammatory cytokines also play a central 

role in the genesis of both malnutrition and CVD in ESRD [127].  

Furthermore, the inflammation response in ESRD patients is a multifactorial stimuli event. 

Some of the influencers are typified by: hypoalbuminemia, malnutrition, advanced oxidation of 

protein products, atherosclerosis, uremia, anemia, dialysis vascular access infection, obesity, and 

the elevated activity of the thiobarbituric acid reactive system (TBARS) which leads to the 

upregulation of multiple pathways, giving rise to inflammation [128]. Elevated inflammation 

contributes to the progression of CKD by inducing the release of cytokines, which in turn leads to 

increased production and activity of adhesion molecules. This leads to T-cell adhesion, which 

migrates into the interstitium, and subsequently attracts pro-fibrotic factors [128]. The prolonged 

exposure to pro-inflammatory mediators with the concurrent build-up of pro-fibrotic factors, in 

turn, secretes high levels of matrix metalloproteinases, and other extracellular matrices proteins, 

followed by degrading enzyme, that converts fibroblast into fibrosis tissue. These fibrotic and 

connective tissues matrixes accumulate over time and breach the smooth muscles of the heart 

[129]. Over time a constant pressure of the ventricular contraction causes the weakening of the 

structural integrity of the heart muscle, followed by the loss of strength in the fibrotic matrix, that 

leads to compromised ventricles chamber matrix. This ultimately caves and results in MYI or 

rupture [129].  
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A systemic review by Agrawal et al. (2015) looked at the importance of both 

pharmacological and non-pharmacological strategies in the management of coronary artery disease 

in CKD and in dialysis subjects for what could improve the outcomes in the populations' mortality 

[130]. However, evidence showed that therapeutic options presented may be helpful only in a set 

of patients with CHD in the general population, but not beneficial in subjects with advanced CKD. 

Other studies have examined the effects of antioxidant therapy on markers of inflammation and 

OS with mixed results. A study by Ikizler et al. (2013), in a placebo-controlled, double-blinded 

(PATH) clinical trial intervened for 6-month using a combination of mixed tocopherols (666 IU/d) 

plus a-lipoic acid (ALA; 600 mg/d) looking at the inflammatory markers and OS in MHD subjects. 

Results showed a non-significant decline in high-sensitivity C-reactive protein (hsCRP), IL-6 

concentration, F2- isoprostanes, and isofurans, biomarkers for OS [131]. 

Since inflammation plays an essential role in the etiology and outcome of atherosclerosis, 

one prominent maker is C-reactive protein (CRP). Made in the liver, the ringed-shaped pentameric 

acute-phase protein circulates the blood. Furthermore, the protein is activated due to response to 

inflammation, which is followed by the increases of interleukin-6 (IL-6), who is further secreted 

by the macrophages and T-cell. Also, the CRP as a marker is well recognized not only as a 

predictor of inflammation, but CRP categories were significantly associated with all-cause 

mortality [132, 133]. Various studies correlate that elevated CRP concentrations ( > 3 mg/L) with 

cardiovascular deaths in the general population and dialysis patients. 

Moreover, HD patients are 5- to 10- fold higher at risk of such events than their healthy 

counterparts [134, 135]. A study by Panichi et al. (2008) followed 757 HD patients for 30 months 

to understand the relationship between hsCRP, IL-6, IL-8, and serum albumin in relation to 

mortality and morbidity. It was concluded that CRP was the most powerful predictive factor for a 
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cardiac event even after adjustments for age, DM comorbidity and BMI, that individuals who 

present with CRP plasma levels > 5 mg/L were at higher risk for all-cause [136]. 

Oxidative stress 

Another issue that both CKD and ESRD patients face is OS, which has been linked to the 

development of atherosclerosis within the population [137]. OS is defined as an imbalance 

between pro- and anti-oxidant systems and is elevated in these patients compared to the general 

healthy population [138]. In HD patients, OS is attributed to increased reactive oxygen species 

(ROS) production, reduced clearance, a poor antioxidant defense system, which is associated with 

CVD by propagating the oxidation and modification of lipids and lipoproteins such as LDL and 

proteins [139, 140]. Oxidized LDL (oxLDL) can promote and initiate a cascade of reactions, 

including adhesion of circulating monocytes on the endothelial cell. This leads to migration of the 

monocytes into the arterial intima, followed by platelet activation, and concomitantly the 

expression of tissue factor and(plasminogen activator inhibitor 1) PAI-1 by endothelial cells [139, 

141]. Foam cell formation in the macrophages at the arterial walls has also been linked to the 

pathogenesis of atherosclerosis. This is due to increased uptake of oxidized lipids such as oxLDL, 

which have also been associated to decrease SR-B1 expression and lipid flux while at the same 

time facilitate the increase of class B scavenger receptor CD36 [142, 143]. Boaz et al. (2000) in 

the SPACE clinical trial were able to show that 800 IU/day of vitamin E (an antioxidant), in a 

cohort of MHD patients, could reduce composite CVD endpoints and MYI [144]. 

OS additionally is implicated in the etiology of other confounders, such as advanced 

glycation end-products (AGEs) [145], which are pro-oxidative and pro-inflammatory compounds. 

[145]. In general, AGEs are formed by the Maillard-reaction after initial binding of aldehydes with 

amines or amides in heated food or in living organisms [146]. Furthermore, AGEs can be derived 
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from glucose-protein or glucose-lipid interactions, implicated in diabetes, and aging [147]. They 

are created through a nonenzymatic reaction between reducing sugars and free amino groups of 

proteins, lipids, or nucleic acids. AGEs are not only produced endogenously, but they can also be 

obtained through exogenous sources such as diet (dAGEs). The dAGE are produced due to high 

temperature, boiling, broiling, frying, and roasting of the foods.  

Moreover, AGEs in the plasma have been associated with increased risks for higher OS 

and inflammation that are further linked with DM and higher risk for CVD events [148]. The 

pathologic effects of AGEs are mainly related to their ability to promote OS and inflammation by 

binding with cell surface receptors or cross-linking with proteins, which leads to the alteration of 

structures and functions [149]. Nε-carboxymethyl-lysine (CML) are among the better-studied 

AGEs due to its compound stability, which can be measured in the plasma and analyzed via dietary 

records [150]. Moreover, it has also been suggested that in hemodialysis subjects, AGEs could 

accumulate due to uremic status as a consequence of diminished clearance. This has drastic 

consequences for the patients because it may accelerate vascular disease, renal failure progression, 

and dialysis-related amyloidosis [151, 152]. Lopez-Moreno et al. (2016) found that the 

Mediterranean diet, supplemented with coenzyme-Q10 in elderly men and women showed a 

decline for CML protein adducts in the plasma [153]. Nevertheless, further investigations specific 

in the ESRD-MHD population is needed to validate such findings. 

Antioxidant studies 

Tocotrienol rich-fraction (TRF) is part of the vitamin E family, comprising of eight 

isomers. Tocopherols (TP) and tocotrienols (TT) have four isomers α-, β-, γ-, and δ- characterized 

by different numbers and positions of the methyl group attached on the chromanol ring [23]. Unlike 

TP’s which have a saturated aliphatic tail, TT’s have an unsaturated chain tail [154]. Additionally, 
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TT’s have a superior antioxidant activity than TP due to their trans-double bound (at 3’, 7’, and 

11’ positions ) [155]. TTs have gained significant attention due to their diverse capabilities in being 

cardioprotective, anti-atherosclerotic, anti-hypercholesterolemic, anti-cancer, anti-diabetic, 

neuroprotective, linked in the regulation of 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase 

(HMG-CoA reductase), as well as being lipid-lowering, and having anti-oxidative properties [154, 

156]. Currently, in the United States, TT’s have a GRAS chemical recognized status [157, 158].  

TRF supplementation on ESRD patients for 16 weeks, showed that TT help to normalize 

triglyceride (TAG) levels, increase HDL-C concentration, and ApoA-I levels, and decreased in 

CETP in the TRF group. As for nutritional, inflammatory, and oxidative status, the answer to these 

parameters is unresolved [23]. Other reviews have emphasized the effects of TT in being able to 

reduce CRP and AGEs levels [155]. In a six month intervention by Heng et al. (2013) 

supplementing with TT in healthy young (32±2 yrs.) and older (52±2 yrs.) adult volunteers, 

resulted in lower CRP levels, a prognostic indicator for CVD [156]. A six-month study by Chin et 

al. (2011) in healthy elderly adults supplemented with palm oil derived TRF found improvement 

in plasma cholesterol, increased HDL-C, and reduction of AGEs as well as reduced protein damage 

[159]. It has been postulated that TRF has the ability to suppress and stimulate ubiquitination and 

degradation of HMG-CoA reductase, in addition to blocking the processing of sterol regulatory 

element-binding proteins (SREBPs) which has been demonstrated in vitro studies' [160, 161]. 

SREBPs are membrane-bound transcriptional factors which bind to sterol regulating elements in 

the DNA sequence, which plays a critical role in the synthesis of enzymes involved in the sterol 

syntheses, therefore a key regulator in cholesterol metabolism [162, 163]. Noted regulation by 

SREBPs via the feedback system is the transcription of HMG-CoA reductase, as well as other 

enzymes in the cholesterol biosynthetic pathway [163]. 



34 
 

 

Many interventions have tackle ESRD abnormalities by targeting inflammatory and 

oxidative status parameters, and some studies have been successful (SPACE) and others (PATH) 

with mix results. In a previews pilot study by our group, we used tocotrienols rich fractions (TRF) 

supplementation in a small cohort, which showed positive results on D, OS, and inflammation 

[23]. 

The rationale for the study 

Both CKD and ESRD patients experience accelerated atherosclerosis driven by 

multifactorial abnormalities such as malnutrition-inflammation complex syndrome, oxidative 

stress, protein energy-wasting, impaired antioxidant system, and D. Several other factors including 

the presence of proteinuria, dietary restrictions, pharmacological therapy, genetics, disorders of 

lipid metabolism and abnormal lipids further exacerbates the progression of CKD into ESRD 

which has been associated with mortality 10-times higher than in the general population. In the 

last decade, much research has been conducted to understand the pathophysiology of these 

disorders; however, the various strategies to correct these problems have been inconclusive. In 

MHD patients, D is primarily the result of decreased HDL and increased TAG with normal and/or 

increased LDL. However, the contribution of each of these parameters to D is poorly understood; 

moreover, the contribution of the following parameters to D in different ethnicities is unknown. 

Hence, the objective of this study is to characterize D in a multi-ethnic cohort of ESRD patients 

undergoing MHD.  

The current investigation is a snapshot in time, (baseline data analysis only), in a subset of 

MHD patients, partaking in PATCH USA and Malaysia clinical trial. The primary study is a 1-

year trial, double-blinded, placebo-control intervention using Vitamin E Tocotrienol Rich Fraction 

(TRF) an antioxidant supplement for which subjects receive for consumption 2 capsules, each 150 
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mg of daily (tocotrienols or placebo) for a total 300 mg. Tocotrienols (TT), are isomers of vitamin 

E, having anti-inflammatory and antioxidant properties which in some cases are superior to those 

of tocopherols. Previously, TT was shown to improve D over 16-wks in a pilot study, but the 

effects on lipoprotein subfractions, inflammation, and OS were unresolved [23].  

The central hypothesis of this study is that D amongst MHD patients of different ethnicities 

will reflect underlying alterations in lipoproteins and enzymes of lipid metabolism. The rationale 

for the proposed study was that once a dyslipidemic MHD profile is determined, targeted 

interventions could be used to manage D.  

Specific Aims  

Specific Aim 1): To document the degree of dyslipidemia in a cohort of MHD patients and 

characterize lipids, and lipoprotein particle compositions and associated enzymes of lipid 

metabolism. 

 The analysis is depictive of baseline plasma samples (n = 123) from African American 

(AA) MHD patients participating in the PATCH USA clinical trial (NCT02358967). 

 In this study, we measured lipids, characterized lipoprotein subfractions, and examined 

lipid metabolism enzymes: CETP and LCAT.  

 D was assessed based on criteria from the Adult Treatment Panel (ATP III) guidelines, 

using the category TAG/HDL-C ratios (≥ or < 3.8). 

Specific Aim 2): To characterize dyslipidemia across a multi-ethnic cohort of MHD patients. 

 Examined baseline plasma samples of (n = 225) from the PATCH Malaysia study 

(NCT02913690). A cohort composed of three ethnicities: Malaysian-Malays (MM), 

Malaysian-Chinese (MC), and Malaysian-Indians (MI).  
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 D was assessed based on criteria from the Adult Treatment Panel (ATP III) guidelines: 

TAG/HDL-C ratio (≥ or <) 3.8. Ratios are based on ATP cut-offs of < or ≥ 150 mg/dL for 

TAG and < or ≥ 40 mg/dL for HDL-C.    

 Data from the Malaysian cohort (comprising MC, MI, and MM) will be compared with the 

US cohort of AA patients.  

Specific Aim 3): To document the extent to which HDL enzymes contribute to dyslipidemia in 

MHD patients. 

 Plasma samples from the US cohort and Malaysian cohort were analyzed to determine 

enzymatic activity in: 

 Cholesteryl ester transfer protein (CETP)  

 Lecithin-cholesterol acyltransferase (LCAT) 

 The key enzymes which play a role in the HDL RCT pathway were analyzed to understand 

the role played in association with lipids and lipoprotein subfractions.  

 C-reactive protein marker was analyzed in all ethnicities to determine the degree of 

inflammation between the cohorts and the multi-ethnicities.  

 Exclusively for PATCH USA, a subset of the samples were measured for Nε-

carboxymethyl-lysine (CML), to discern levels of advanced glycation end-products 

(AGEs) in the plasma since is recognized as an oxidative stress marker. 
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Tables Chapter 1 

Table 1-1: Dyslipidemic characteristics in lipid parameters for different CRF conditions. 

 

Parameters 

CKD  

(1 – 5) 

ESRD-MHD 

Hemodialysis 

Nephrotic  

Syndrome 

 

PD 

 

RT 

TC ↗ ↔ or ↓ ↑↑ ↑ ↑ 

LDL-C ↗ ↔ or ↓ ↑↑ ↑ ↑ 

HDL-C ↓ ↓ ↓ ↓ ↓ 

Non-HDL-C ↗ ↔ or ↓ ↑↑ ↑ ↑ 

TAG ↗ ↑ ↑↑ ↑ ↑ 

Lp(a) ↗ ↑ ↑↑ ↑↑ - 

IDL ↗ ↑ ↑ ↑ - 

VLDL ↗ ↑ ↑ ↑ ↑ 

Sd-LDL ↗ ↑ ↑ ↑ - 

ApoA-I ↘ ↓ ↗ ↓ - 

ApoA-IV ↗ ↑ ↑ or ↘ ↑ - 

ApoB ↗ ↔ or ↓ ↑↑ ↑ - 

CETP ↑ ↑ ↑ - - 

LCAT ↓ ↓ ↑ - - 

Symbols: Increase (↗) and decrease (↘) in plasma levels with decreasing GFR; Increase (↑), markedly increased (↑↑) 

and decrease (↓) plasma levels compared with non-uremic individuals, (↔) normal, (-) data inconclusive.   

TAG: Triacylglyceride; HDL-C: high-density lipoprotein cholesterol; TC: total cholesterol; LDL-C: low-density 

lipoprotein cholesterol; NonHDL: Non-high-density lipoprotein cholesterol: ApoA-1: apolipoprotein A-1; ApoA-IV: 

apolipoprotein A-IV; ApoB: apolipoprotein B; S-LDL: small dense LDL CETP: cholesterol ester transfer protein; 

LCAT: lecithin-cholesterol acyltransferase.  

Adopted source: Society of Nephrology. Kwan BCH. [5, 164] 
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Table 1-2: Lipoprotein classes and their characteristics.  

 

Lipoproteins 

 

Density 

(g/mL) 

 

Size 

(nm) 

 

Relative 

Content % 

 

Apoproteins 

   TAG Ch Pl Pr  

 

Chylomicrons 

 

< 0.930 

 

75-1200 

 

90 

 

5 

 

3 

 

2 

 

ApoB-48;  

ApoC-I, ApoC-II, ApoC-III; 

ApoA-I, ApoA-II, ApoA-IV; 

ApoE 

 

VLDL 

 

0.930 – 1.006 

 

30 – 80 

 

60 

 

20 

 

14 

 

6 

 

ApoB-100, ApoC-II,  

ApoC-III; ApoE 

 

IDL 

 

1.006 – 1.019 

 

25 – 35 

 

20 

 

40 

 

22 

 

18 

 

Apo B-100, Apo C, Apo E 

 

LDL 

 

1.019 – 1.063 

 

18 – 25 

 

7 

 

50 

 

22 

 

21 

 

ApoB-100 

 

HDL 

 

1.063 – 1.210 

 

12 – 5  

 

5 

 

25 

 

26 

 

44 

 

ApoA-I, ApoA-II, ApoA-IV 

 ApoC, ApoE 

Abbreviations: TAG, Triaglycerides; Ch, Cholesterol; Pl, Phospholipids; Pr, Protein 

Adopted source: Feingold. K et al. and Kwan. B CH et. al [29, 164] 
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Table 1-3: Apolipoproteins of human plasma lipoproteins. 

 

Apoprotein 

 

Lipoprotein 

 

Additional remarks 

ApoA-I HDL, CM  A major component comprises about 70% of the HDL 

protein mass [165]. 

 The HDL helps to sequesters phospholipids and 

cholesterol and interact with plasma enzyme and 

cellular receptors [166]. 

 Activates LCAT which helps in the formation of 

cholesterol ester which leads to the HDL maturation. 

 Ligand for HDL receptor [167]. 

 Enables efflux by accepting fats from within cells 

(interacts with ABCA1, GPLD1, and PLTP) [63, 168]. 

 Often used as a biomarker for predicting CVD [169]. 

 

ApoA-II HLD, CM  Second most abundant protein in HDL [165]. 

 The structure is identical monomers joined by a 

disulfide bridge [29]. 

 Gene defects may result in ApoA-II deficiency or 

hypercholesterolemia [170]. 

 Has shown to interact with PLTP [63]. 

 

ApoA-IV Secreted with CM but 

transferred to HDL 
 No primary function in humans has been established; 

however, it has been linked in many pathways. 

 Synthesis in humans limited to the intestine. 

 It is associated with the formation of triacylglycerol-

rich lipoprotein [171]. 

 Invitro aids in the activation of LCAT and CETP [172]. 

 

ApoB-48 CM only and CM 

remnant 
 Synthesized exclusively in by the small intestine. 

 Primary protein component of the CM particles. 

 It contains the same amino acid sequence and similar 

N-terminal sequence as ApoB-100, however, it lacks 

C-terminal LDLR-binding region [173]. 

 After lipids have been absorbed, it returns to the liver 

with CM remnant to be endocytosed and degraded. 

 

ApoB-100 VLDL, IDL, LDL  Synthesized in the liver [174]. 

 Serves as a ligand for the LDLR [173]. 

 Has been associated as a marker for coronary heart 

disease [175]. 
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ApoC-I VLDL, HDL, CM  Activator for LCAT in order to help with cholesterol 

esterification [176]. 

 The main function to inhibit CETP [177]. 

 

ApoC-II VLDL, HDL, CM  Protein acts as an activator for (LPL), which 

hydrolyzes TAG, thus freeing FA from cells [178]. 

 Mutation in the gene causes hyperlipoproteinemia that 

is characterized by xanthomas, pancreatitis, and 

hepatosplenomegaly, but not the increased for 

atherosclerosis [179]. 

 

ApoC-III VLDL, HDL, CM  Secreted by the liver and small intestine and found on 

TAG-rich lipoproteins [180]. 

 Inhibited LPL and hepatic lipase and believed to inhibit 

hepatic uptake of TAG particles [181]. 

 It also delays the catabolism of TAG-rich particles [182]. 

 Overexpression can contribute to atherosclerosis  [180]. 

 It may explain the presence of hypertriglyceridemia 

associated with ABCA1 deficiency in patients with 

Tangier’s disease [183]. 

ApoE VLD, HDL, CM, and 

CM remnant 
 Produced in liver and macrophages.  

 Ligand for chylomicron remnant receptor [184]. 

 Transport fat-soluble vitamins and cholesterol into the 

lymph system and then blood. 

 Interacts with LDLR [185]. 

 Mediates cholesterol metabolism; 

 Principal cholesterol carrier in the brain; 

 Risk factors for Alzheimer’s disease, atherosclerosis, 

and cardiovascular disease [184]. 
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Table 1-4: Efflux genes linked to RCT metabolism. 

Efflux genes Additional remarks 

ABCA1  

 The protein ATP-binding cassette transporter ABCA1: is encoded by a 

member of the superfamily of ATP-binding cassette (ABC) transporter gene. 

Moreover, ABC is divided into seven distinct subfamilies (ABCA, 

MDR/TAP, MRP, ALD, OABP, GCN20, White) [186, 187]. 

 Specific (ABCA1) is a protein encoded by the member-1 of the human 

transporter sub-family of ABCA gene, found exclusively in eukaryotes, 

which functions as a cholesterol efflux regulatory protein (CERP) [51].  

 ABCA1 is an important regulator in cellular cholesterol and phospholipid 

homeostasis [188].  

 Cholesterol is the substrate to ABCA1, whose primary function is as a 

cholesterol efflux pump in the cellular lipid removal pathway, moreover, it is 

known as a gatekeeper for eliminating excess tissue cholesterol [189].  

 ABCA1 protein is also believed to play a protective role against CVD by 

mediating efflux of cholesterol to lipid poor ApoA-I and ApoE which leads 

to the formation of nascent HDL, which ultimately grows into a mature HDL. 

[189].  

 Downregulation of ABCA1 in aging or compromised macrophages disrupts 

cholesterol from being removed from the cytoplasm. This leads to the 

promotion of pathologic atherogenesis which can develop into diseases such 

as atherosclerosis, CVD, cancer, macular degeneration, and dyslipidemia [190, 

191]. 

 In case of a mutation of the ABCA1 gene, it can lead to Tangiers disease, 

presented with HDL-C deficiency and the increased risk for developing CVD 

[192].  

 

ABCG1  The protein ATP-binding cassette sub-family G member 1: is encoded by the 

ABCG1 gene, a member of the superfamily of ABC transporters. 

 Similar to ABCA1 protein, ABCG1 may be involved in the macrophage, 

cholesterol, and phospholipid transport and the regulation of cellular lipid 

homeostasis [193]. 

 Various studies have suggested that ABCG1 protein is primarily an 

intracellular sterol transporter, localizes endocytic vesicles, which may 

facilitate the efflux of cellular sterols to exogenous HDLs lipoprotein [194]. 

 Aside from performing cholesterol efflux to the HDL lipoprotein, ABCG1 

also effluxes cholesterol to the LDL lipoproteins, liposomes and cyclodextrin. 

Additional it can export sphingomyelin, phosphatidylcholine, and oxysterols 

to HDL and albumin [195]. 

 Downregulation of ABCG1 has been associated with a 30% decrease in 

intracellular cholesterol efflux, followed by increases 3-4 times higher levels 

of IL-6, and TNFα, as well decreased eNOs protein by 50% [196]. 
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 LXR-α  

 Liver X receptor alpha, is a nuclear receptor protein in humans encoded by 

NR1H3 family gene [197].  

 The LXR-α is highly expressed in organs such as the liver, adrenal gland, 

intestine, kidneys, and lungs. It is expressed in tissues such as adipose and 

macrophages [198]. 

 Both LXR-α and LXR-β proteins are critical regulators of macrophage 

functions [198, 199]. 

 Moreover, both proteins are involved in transcriptional programming which 

deals with lipid homeostasis and inflammation [199].  

 LXR is hypothesized to act as a cholesterol sensor, which inhibits intestinal 

cholesterol absorption in order to protect from overload. It does so by 

stimulating cholesterol efflux from cells to HDL lipoproteins, which in the 

end is transported to the liver to be processed for various fates; either 

converted into bile acid, biliary excretion or hormone syntheses [200]. 

 In macrophages, LXR signal leads to the initiation of homeostatic responses 

to cellular lipid loading, which facilitates cholesterol efflux as ABCA1, 

PLTP, and ApoE finally transfer the free excess cholesterol to ApoA-I and 

ApoE-binding lipoproteins. Moreover, synthetic LXRs have shown to reduce 

the rate of atherosclerosis via the removal of excess cholesterol in animal 

models [201].  

 LXR also works as an agonist which leads to activation of FA synthesis by 

initiating a cascade that expresses the initiation of lipogenic transcription 

factor SREBP-1c, which results in TAG elevation in the plasma and liver 

steatosis [200]. 

 

SR-B1 

(dual roles) 
 Scavenger receptor class B type 1 is a protein encoded by the SCARB1 gene. 

SR-B1 functions as a receptor for HDL lipoprotein [202]. 

 This integral membrane protein is found in various types of tissues, including 

liver, macrophages and adrenal, where the job is to facilitate the uptake of CE 

from HDL in the liver known as RCT [53]. 

 Additionally, the function of SR-B1 is crucial in lipid-soluble vitamin update 

and to viral entry into host cells [203]. 

 Dual function, primary role to mediate the selective influx of HDL derived 

CE into cells and tissues; or to facilitate the cholesterol efflux from peripheral 

tissues, including macrophages back to the liver [203].  
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Table 1-5: Influx genes linked to RCT metabolism. 

Influx genes Additional remarks 

CD36  Clusters of differentiation 36; are glycoproteins in human coded by the 

CD36 gene; moreover, they also are known as fatty acid translocases 

(FAT), platelet glycoprotein 4, scavenger receptor class B member 4 

(SCARB3) and glycoprotein 88 (GP88). 

 Additionally, CD36 is an integral membrane protein found on the surface 

of several cells (muscle and adipose), which play an essential role in lipid 

homeostasis, specifically in long-chain fatty acids transportation [204]. 

 It is part of class B scavenger receptor family; however, CD36 contributes 

to the atherosclerosis progression due to modification of LDL 

phagocytosis, disturbed macrophage migration, which leads to foam cell 

formation [204].  

 

LOX-1  Lectin-type oxidizes LDL receptor-1, also known as oxidized low-density 

lipoprotein receptor (Ox-LDL receptor 1) is a protein in humans encoded 

by the OLR1 gene [205]. 

 It is known as the main receptor for oxidized LDL on endothelial cells, 

muscles, and macrophages, but it is worth noting that the TLR4 and CD36 

receptor also recognizes oxidize LDL [206, 207]. 

 Upon binding to Oxi-LDL, the LOX-1 initiates a cascade in which leads 

to the activation of NF-KB, which leads to monocyte adhesion to 

endothelial cells, which ultimately leads to the formation of foam cells 

and atherosclerosis [208].  

SRA1  Steroid receptor RNA activator protein, a human protein coded by the 

SRA1 gene [209]. 

 Similar to CD36, SRA1 is a scavenger receptor that has been associated 

with the modification of LDL upon macrophage loading. In particular, 

OxLDL which leads to the development of atherosclerosis [210].  

 Binding of oxidized LOX-1 and SRA-1 with oxidized phospholipid 

receptors on monocytes and macrophages initiates a cascade in which 

pro-inflammatory cytokines and chemokines are released [211]. 
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Figures Chapter 1 

Figure 1-1: Stages of chronic kidney disease (CKD). 

Source by: National Kidney Foundation [1]  

(> 90 ml/min/1.73 m2) 

(60 - 89 ml/min/1.73 m2) 

(45 - 59 ml/min/1.73 m2) 

(30 - 44 ml/min/1.73 m2) 

(15 - 29 ml/min/1.73 m2) 

(< 15 ml/min/1.73 m2) 
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Figure 1-2: Prevalence of CKD in the US by stages of NHANES participants. 

(NHANES), 2001-2004, 2005-2008, 2009-2012 & 2013–2016 participants aged 20 & older. Whisker lines indicate 

95% confidence intervals. Abbreviation: CKD, chronic kidney disease, [12]. 
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Figure 1-3: Prevalence of CKD among US adults’ gender and ethnic distribution. 

 

Source: CDC. Kidney Disease Fact Sheet, 2019 [6] 
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Figure 1-4: CKD among Malaysian adults’ gender and ethnic composition. 

 

Source: International Society of Nephrology, Hooi LS, et al., (2013) [15] 
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Figure 1-5: Incidence of ESRD internationally. 

 

Source: USRDS, 2016 [16] 

The incidence rate of treated ESRD (pre-million population) by country, 2016.  
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Figure 1-6: Projected ESRD incidence and prevalence in the US through 2030. 

 

 

Source: American Society of Nephrology, McCullough, et al., 2019 [17] 
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Figure 1-7: Treatment options for patients with end-stage kidney disease. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Legend: A- Hemodialysis (Source: RenalMed UK); B- Peritoneal dialysis (Source: Mayo Clinic); C- Renal transplant 

(Source: NIDDK-NIH)  

A B 

C 

http://www.renalmed.co.uk/database/haemodialysis
https://www.mayoclinic.org/tests-procedures/peritoneal-dialysis/about/pac-20384725
https://www.niddk.nih.gov/health-information/kidney-disease/kidney-failure/kidney-transplant
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Figure 1-8: Causes of ESRD in the United States. 

 

 

Source: US Renal Data System, 2019, CDC.gov 

N = 726,331 (all ages, 2016); includes polycystic kidney disease (PKD), among other causes. [6].  
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Figure 1-9: Reverse cholesterol transport. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Source: Circulation, Duff D., et al., [212] 

 

HDL lipoprotein promotes and facilitates the process of RCT, whereby excess cholesterol from the macrophages are 

effluxed into HDL. During the transfer, cholesterol is esterified by LCAT into CE. Through this time, the nascent 

HDL undergoes through changes as it fills up with CE where it becomes a mature HDL particle. After this point, the 

mature HDL returns to the liver for excretion of CE via the liver SR-BI receptor. However, this RCT process has a 

second pathway, wherein CETP working in cohort with ApoB-100 facilitates exchange of CE for TAG between HDL 

and VLDL/LDL lipoproteins.  

(A-1) ApoA-1; (FC) indicates free cholesterol; (BA) bile acids; (LDLR) LDL receptor; (TG) triglycerides; (CE) 

Cholesterol ester; (PLTP) Phospholipid transfer protein; (CETP) Cholesteryl ester transfer protein. 

  

ApoB-100 
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Figure 1-10: Dysfunctionality of RCT metabolism in MHD patients. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Source: European heart journal Supplements, Barter 2005, [213] 

The figure shows an overview of believed lipoprotein metabolism in dyslipidemic MHD patients.  

In MHD patients, DL is highly prevalent and is characterized by delayed TAG-rich lipoproteins catabolism which in 

turn leads to elevated TAG levels, VLDL, IDL, and low HDLC due to suppressed/decreased ApoA-1 production. 

Moreover, the HDL level may decline because CETP activity may be elevated, and LCAT activity is reduced. Other 

lipids such as TC, LDL-C may be presented as decreased or normal.  

Symbols: Increased (↑) and decrease (↓) plasma levels, (↔) normal.  

or 

ApoB-100 

TC   or 

IDL 
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CHAPTER 2: METHODOLOGY 

General study design 

The general purpose of this study is to characterize DL in lipids, and lipoprotein 

subfractions in a multi-ethnic cohort of ESRD patients undergoing MHD. This dissertation 

integrates MHD subjects from both PATCH USA clinical trial (NCT02358967) comprised of 

African Americans, and PATCH MALAYSIA clinical trial (NCT02913690) a cohort composed 

of three ethnicities; Malays, Malaysian-Chinese and Malaysian-Indians. Moreover, this 

investigation focusses on key HDL enzymes, which partake in the RCT mechanism linked in DL 

in MHD subjects. 

Specific Aim 1 is representative of baseline data, in a cohort of African American (AA) 

patients undergoing hemodialysis treatment thrice weekly, for which we documented individuals’ 

degree of dyslipidemia by characterizing lipids and lipoprotein particle compositions 

Specific Aim 2 characterizes dyslipidemia across a multi-ethnic cohort of MHD patients 

Malays (MM), Malaysian-Chinese (MC), Malaysian-Indians (MI), and the US- AA patients). 

Moreover, examine differences in lipid parameters amongst the two cohorts of US and Malaysian 

patients.  

Lastly, specific Aim 3 investigates the extent to which HDL enzyme, in the RCT pathway, 

contributes to dyslipidemia in MHD patients.  

This chapter will describe the specific methodology and procedures of all the experiments and 

assays that were conducted for the studies as described in the specific chapters (Chapters III, IV, 

and V).  
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Ethics and Human Subjects’ 

 The Palm Tocotrienols in Chronic Hemodialysis (PATCH) is an ongoing, multi-center, 

longitudinal, randomized, double-blinded, placebo-controlled study for 15-months involving 

MHD patients in Michigan, Malaysia, Bangladesh, and India. All study participants were dialyzed 

thrice weekly. 

Subjects were assigned randomly to receive 300 mg of TRF or placebo daily for 12-months, 

followed by a 3-month washout period. Patients in the US cohort for Great Lakes Dialysis, DaVita: 

Kresge, Highland Park, and Redford dialysis units were given TRF or placebo capsules during 

their dialysis sessions under the supervision of a staff member, then the remainder of capsules 

were consumed at home by the patients. MHD subjects from Henry Ford Medical Centers of 

Fairlane and West Pavilion dialysis, in addition to all Malaysia, enrolled patients, consumed all 

capsules at home. 

Ethical approvals for the US and Malaysian cohort were obtained from the Human Ethics 

Committee at Wayne State University (WSU-IRB 123314MP4F), and the Malaysian Ministry of 

Health. Additional approvals were obtained from participating dialysis units. Written informed 

consents were also obtained from all the patients. Demographics data and routine biochemical 

parameters were obtained from patients’ medical records provided by the respective units.  

Inclusion and Exclusion Criteria’s 

The two studies for both PATCH USA and Malaysia share mostly but not all requirements, 

with minor differences. These criteria are shown in Table 2-1 (for inclusion) and Table 2-2 

(exclusion).  
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General blood collection, handling, and processing of samples 

The US cohort followed a group of African American MHD patients for a duration of          

15 months, where blood was obtained every 3 months. Approximately 10 mL of whole blood 

samples were collected from study subjects using commercially available pre-coated EDTA-K2 

or LH vacutainers (Becton Dickinson, Franklin Lakes, NJ, USA), in which case subjects were not 

required to fast. While past guidelines have suggested measuring fasting blood lipids, new 

guidelines from the European Federation of Clinical Chemistry and Laboratory Medicine 

recommend that the use of both fasting and non-fasting measurements are similar for evaluation 

and thus appropriate to use [214]. 

The samples were transported to the WSU laboratory within 2-3 hours post blood draw. 

Plasma was isolated from whole blood via centrifugation (Beckman Coulter Centrifuge, Lakeview 

Parkway, IN, USA) at 2,500 rpm for 15 minutes at 4°C. Plasma was then dispersed in Eppendorf 

microcentrifuge tubes and immediately transferred into -80°C freezer until further analysis 

The Malaysian blood samples were collected and processed following a similar protocol 

but with minor differences. Roughly, 10 mL of blood was collected into EDTA-K2 or LH 

vacutainers (Becton Dickinson, Franklin Lakes, NJ, USA). Samples were immediately centrifuged 

at 3000g for 10 minutes to separate plasma [215]. Afterward, plasma was dispersed into Eppendorf 

tubes and snap-frozen with liquid nitrogen. The frozen aliquots were then placed in dry ice 

containers and transported to the laboratory for storage at -80°C (IsotempTM, FisherbrandTM, 

Hampton, NH, USA). A subset of the baseline plasma samples of both LH and EDTA-K2 collected 

samples from the Malaysian cohort were shipped to Wayne State University, for additional 

analysis. 
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Anthropometry and other measurements 

 The anthropometric measurements for height, weight, estimated dry weight were 

conducted by PATCH lab investigators. Height was measured to the nearest centimeter (0.1 cm), 

and body weight was measured to the nearest kilogram (0.1). Body mass index (BMI), was 

calculated using Quetelet’s Index : [ BMI (kg/m2) = weight (kg) / height (m2)] [216]. Patient 

medical history, such as medications, were self-reported: blood pressure, diabetic, statin use, were 

collected.  

Biochemical Analysis 

Lipid Profile 

Lipids in the Malaysian study were measured by an external laboratory in Kuala Lumpur, 

Malaysia. The lipid parameters for PATCH USA study along with a subset of (n = 57) samples 

from the Malaysian cohort were measured using EDTA-K2 collected plasma. The TAG, HDL-C, 

and TC were analyzed using enzymatic kit (Pointe Scientific Inc., Canton, MI, USA), performed 

according to manufactures protocol, whereas LDL-C was calculated using the Friedewald formula 

[217]. From the 57 samples measured in both the US and Malaysia; TAG showed a correlation 

with an r = 0.934 (p < 0.001), and HDL-C measurements had an r = 0.854 (p < 0.001). TC had an 

r = 0.974 (p < 0.001), whereas LDL-C had an r = 0.961 (p < 0.001).  

HDL and LDL lipoprotein subfractions analysis (Lipoprint) 

The assessment of lipoproteins was carried out using Quantimetrix LipoprintTM System 

(Quantimetrix Corp., Redondo Beach, CA, USA). EDTA-K2 plasma samples were used in the 

measurements for both HDL and LDL lipoprotein subfraction in accordance with the 

manufacturers' protocol. Plasma was added to a precasted linear polyacrylamide gel tube and 

loaded with a lipophilic (blue) dye. The dye binds proportionally to the cholesterol in each 

https://quantimetrix.com/lipoprint/
https://quantimetrix.com/lipoprint/
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lipoprotein, when the prestained lipoproteins undergo electrophoresis. During this phase, particles 

migrate through the separated gel matrix into appropriate lipoproteins bands according to the 

particle, charge, and size from largest to smallest due to the sieving action of the gel.  

HDL lipoprotein analysis has many subfraction bands. Subfraction bands [HDL1-3] makes 

up the large buoyant HDL (L-HDL) lipoprotein, bands [HDL 4-7] make up the intermediate-

HDL (I-HDL), and [HDL 8-10] bands constitute the small HDL (S-HDL) subfraction. Albumin 

is the last band in the gel tube with LDL/VLD remaining at the stacking and separating gels 

interface (Figure 2-1).  

LDL lipoprotein analysis can also generate multiple bands. There are a total of 12 bands, 

with the top band being VLDL and the last migrating lipoprotein being HDL. The MID-bands are 

composed of three sub-bands (IDL-C, IDL-B, and IDL-A). LDL lipoprotein subfractions, are 

further separated into three categories: [LDL 1] makes up large buoyant LDL (L-LDL) 

subfraction; band [LDL 2] composes the intermediate LDL (I-LDL) subfraction, and combined 

bands [LDL 3-7] includes the small dense LDL (S-LDL) subfractions (Figure 2-2). LDL-

lipoprotein testing can detect and differentiate the mean particle-size in angstroms (Å) units, for 

which a set range of particle sizes is depictive of a phenotype profile. Phenotype: Type-A is 

associated with more large buoyant LDL particles. The atherogenic lipoprotein profile is Type-B 

(denser LDL subspecies) and Type-intermediate or [AB] phenotype, which is the lesser 

atherogenic and prone to change [218]. LDL lipoprint program algorithm utilizes the guidelines of 

the National Cholesterol Education Program and Adult Treatment Panel III (ATP III) as normal 

reference range.  
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HDL metabolism enzymes analysis 

Cholesteryl ester transfer protein (CETP) activity analysis 

CETP was measured in LH plasma samples, using CETP activity assay kit (RB-CETP, 

Roar Biomedical, Broadway, NY, USA). The assay uses a proprietary substrate donor molecule 

that enables the detection of CETP mediated transfer of neutral lipid from the substrate to a 

physiological acceptor. The assay is a fluorometric method, at wavelengths of (465Ex nm / 535Em 

nm). The analysis was conducted as described in the manufacturer protocol with the results, of 

CETP activity being expressed in nmol/mL/hrs.  

Lecithin-cholesterol acyltransferase (LCAT) activity analysis  

LCAT was measured using in LH plasma samples, using the LCAT activity assay kit (RB-

LCAT, Roar Biomedical, Broadway, NY, USA). The assay is a fluorometric assay which measures 

the phospholipase activity of the LCAT. The samples were read using a fluorimeter plate reader at 

two different wavelengths (340Ex nm/470Em nm) and at (340Ex nm/390Em nm). The two distinct 

intensity peaks depend upon the concentration of the hydrolized and the intact substrate present in 

the assay. In the case of the substrate being intact, the fluorophores that are nearby are excited and 

result in the dissipation of radiationless transitions. The emission is predominately at the less 

energetic state of 470 nm peak, representative of hydrolysis of the substrate by LCAT, where the 

fluorophores are not able to energetically interact, leads to a shift that causes intensity in the form 

of emission at 390 nm. The final results of the LCAT activity were expressed as a ratio between 

the two readings (470/390 nm), which is the rate of change per min/uL/plasma in accordance with 

the protocol. 
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Inflammatory marker: C-reactive protein (CRP) 

C-reactive protein (CRP) levels were measured using commercial enzyme-linked 

immunosorbent assay (ELISA) kit (Cayman Chemical, Ann Arbor, MI, USA). A total of 10 µL of 

LH or EDTA-K2 plasma was diluted in the assay buffer into 1:18,200. After sample preparations, 

the CRP standards were made following a sequence of serial dilutions per manufacturer's protocol. 

Subsequently, a total of 100 µL of each prepared solution was dispersed in duplicates into pre-

coated 96-well plates with a monoclonal antibody for human CRP. Following appropriate 

incubations and washes, the plate was measured at 450 nm wavelength (MultiskanTM FC, Thermo 

ScientifcTM, MA USA), where the results were analyzed using Prism (GraphPad, Software v7.0, 

San Diego, CA, USA), with final concentrations expressed in mg/L.  

The Malaysian study measured this inflammatory marker using a high-sensitive CRP          

(hs-CRP) method through an external laboratory in Kuala Lumpur, Malaysia. During the analyses 

of the PATCH, USA study, a subset of Malaysian samples (n = 36) were measured using the 

Cayman Chemicals ELISA kit. Results showed a high correlation between the two techniques with 

an r = 0.965 (p < 0.001), which was used to adjust the hs-CRP results (Appendix Figure 1).  

Oxidative stress marker: Nε-(carboxymethyl) lysine (CML) 

CML is a form of advanced glycation end-product (AGE) adduct in human plasma. 

OxiSelect™ CML competitive ELISA kit (STA-816, Cell Biolabs Inc., San Diego, CA, USA) was 

used to measure Nε-(carboxymethyl) lysine adducts in LH or EDTA-K2 plasma. Quantity of CML 

adducts in the protein plasma samples were determined by comparing its absorbances with a CML-

BSA standard curve, as specified by the manufacturer’s protocol, at a wavelength of 450 nm using 

a microplate reader (MultiskanTM FC, Thermo ScientificTM, MA USA). Data analysis required a 

4PL standard curve, which allowed for extrapolation of the sample’s concentrations by using the 
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graphical analyzer Prism (GraphPad, Software v7.0, San Diego, CA, USA). Concentrations were 

expressed in ng/mL.  

Statistical Analysis 

Results were expressed as mean and standard deviation (mean±SD) for continues variables 

with a normal distribution. Categorical variables of ordinal or nominal nature were expressed as 

percentages (%) when appropriate. To verify the normal distribution of variables, we used the 

Shapiro-Wilk test, as for analysis for homogeneity of variances, we used Levene’s test. Categorical 

data and data that were not normally distributed were tested using Chi-square test and 

nonparametric test, respectively. Differences in the mean between groups were tested using One-

Way ANOVA and General linear model (GLM) (Univariate) necessary. One-Way ANOVA 

analysis (between and or within groups), utilized Post-hoc Bonferroni test was employed for 

multiple detailed comparisons (two more groups), whereas the Dunnett’s T3 test was used in the 

analysis when equal variance was not assumed when appropriate. Data were corrected for any 

confounding variables. Covariate factors were adjusted (Age, BMI, Albumin, Systolic BP, 

Diastolic BP,  Risk factor, Kt/V)  using ANCOVA, Post-hoc Bonferroni test, in regards to fixed 

factors (Ethnicities, gender, smoking, DM, HTN, Statin). 

An independent sample t-test was applied when was appropriate for non-normally distributed 

parameters. Additionally, Chi-square χ2 was used to test for independence of continues categorical 

or nominal variables when relevant.  

Percent risk factor (PRF) was used to evaluate the percent increased risk, using an online 

published calculator for atherosclerotic cardiovascular disease (ASCVD). It covers a 10-years risks 

of heart disease and stroke factor, with algorithms by ACC/AHA Guidelines based on Framingham 

risk score (FRS) parameters [219]. The calculator incorporates numerous parameters such as age, 

http://www.cvriskcalculator.com/
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gender, race, blood pressure, lipids, history of DM, smoking, statin use, HTN, and aspirin therapy. 

The atherogenic risk is an estimated value of the Atherogenic Index of Plasma. It is calculated 

using the triglycerides and HDL-C in AIP, reflecting the balance between the atherogenic and 

protective lipoproteins. (AIP = =LOG10 ((TAG*0.0113)/ (HDL-C*0.0259)) [220]. 

The (α)-value was set to be at (p<0.05) for the two-sided tail test, representing statistical 

significance. GraphPad Prism 7.0 (GraphPad, Software v7.0, San Diego, CA, USA) was used for 

graphing, and curve fitting in ELISA assays whereas analysis and calculations were completed 

with the use of (SPSS) v25.0 software by (IBM, Chicago, IL, USA) 

.  

https://www.ibm.com/products/spss-statistics


63 
 

 

Tables Chapter 2 

Table 2-1: Study inclusion criteria. 

PATCH USA and Malaysia 

Patients had to be of age 18 years or older. 

They had to be undergoing chronic hemodialysis treatment for more than three months. 

To be able and willing to comply with all trial requirements. 

Willing to notify his or her Physician/Nephrologist/General Practitioner for participating in the 

trial. 

PATCH Malaysia Only 

They must adequately be dialyzed (Kt/V > 1.2 or have a urea reduction ratio (URR) of 65%.  

Patients also must have hs-CRP levels of less than 20 mg/dL. 
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Table 2-2: Study exclusion criteria. 

PATCH USA and Malaysia 

Subjects who had been involved with another investigatory trial within the past 12 weeks. 

Patients with a history of functional kidney transplant 6 months before the study and or waiting 

for donor kidney transplant over the study duration. 

Any participants who had taken vitamin E- containing supplement > 60 IU/day during the past 

30 before study enrollment. 

Any patients with a history of poor adherence to HD or medical regimen. 

Any patients that are currently on active treatment for cancer, excluding basal cell carcinoma 

of the skins. 

Participating subjects diagnosed with HIV/AIDS and/or are on any anti-HIV therapy. 

Any patients taking anti-inflammatory medication, except aspirin < 325 mg/d, over the past 

30 days before study enrollment. 

Any pregnant female patients and or lactating or planning pregnancy during the course of the 

trial. 

Hospitalizations within the last 90 days and more than two times, or one hospitalization within 

the 30 days preceding enrollment, were excluded. 

Subjects receiving nutritional support via enteral and intra-venous routine.  

Using a temporary catheter or receiving a graft/fistula within the 6-month study period.  

PATCH Malaysia Only 

Patients with Hepatitis B or C. 

Additional diseases or disorders where the opinion of nephrologists may affect the end result 

of the study.  

Patients with known allergies towards fish-based products.  
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Figures Chapter 2 

Figure 2-1: HDL lipoprint subfraction band separation on polyacrylamide gel tube.  

 

 

Source: Quantimetrix, Laboratory Lipoprint, 2019 
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Figure 2-2: LDL lipoprint subfraction band separation on polyacrylamide gel tube. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Source: Quantimetrix, Laboratory Lipoprint, 2019 
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CHAPTER 3: RESULTS – SPECIFIC AIM 1: TO DOCUMENT THE DEGREE OF 

DYSLIPIDEMIA IN A COHORT OF MHD PATIENTS AND CHARACTERIZE LIPIDS, 

AND LIPOPROTEIN PARTICLE COMPOSITIONS. 

The study flow is shown in Figure 3-1. From 135 patients, 12 subjects were excluded from 

the analyses (not African–American or incomplete data). Thus, 123 subjects (all AA) were used. 

The plasma analyzed from these subjects represented the baseline samples collected (i.e., prior to 

study randomization) in the PATCH study (NCT02358967). Patient demographics are shown in 

Table 3-1. The mean age of the cohort was 59±13 years, with 63%% males and 37% females. The 

majority of the participants (71%) were non-smokers. Almost 55% of the cohort had DM, while 

88% were hypertensive. Additionally, 55% were prescribed statin drugs. It should be noted that as 

part of the patients’ routine care, medications would have been prescribed to manage blood 

pressure and LDL-C to target desirable levels. The overall cohort was classified as obese (BMI 

30.0 ± 7.5 kg/m2 ). Both systolic and diastolic B/P were within the normal range, creatinine levels 

were elevated, while albumin was marginally below the recommended values. The Dialysis 

vintage of the cohort was 66 ± 65 months, and Kt/V was within optimal range  

 Table 3-2 shows the plasma lipids in this cohort. Collectively, the cohort had lipids in the 

normal range. To examine the level of dyslipidemia, lipids were separated into two groups; ≥ 3.8 

TAG/HDL-C ratio or < 3.8 TAG/HDL-C ratio. (This is based on the recommended target values 

of TAG <150 mg/dL and HDL-C > 40 mg/dL). This analyses showed that 17 subjects (14% of the 

cohort) had a TAG/HDL-C ration ratio ≥ 3.8 resulting in significantly higher TAG (179±38 vs. 

79±31 mg/dL) and LDL-C (110±36 vs 75±38 mg/dL), while HDL-C was significantly lower (34±6 

vs 53±189 mg/dL). As a consequence, ratios of TAG/HDL-C, TC/HDL-C and LDL-C/HDL-C 

were all significantly higher in subjects with TAG/HDL-C ratios ≥ 3.8   
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Figure 3-1: Specific Aim 1 study flow.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AA, African Americans; TC, total cholesterol; TAG, triacylglycerol; HDL-C, high-density lipoprotein cholesterol; 

LDL-C, low-density lipoprotein cholesterol; CRP, C-reactive protein; AGEs-CML, Advanced glycation end-products 

- Nε-carboxymethyl-lysine.  

Aim 1 Study: PATCH (USA)
 

(N = 135) – Consented  

Baseline Samples Analyzed 

(n) = 123 

Specific aim 1 parameters measured: 

 Lipid profiles analyses 

-TAG, HDL-C, & TC 

 

-Calculated:  

(LDL-C, Non-HDL, 

TAG/HDL-C, TC/HDL-C, 

 LDL/HDL-C ratios) 

 

 Lipoprotein Subfraction Particles 

-HDL,& LDL Analysis 

 

 Inflammatory markers 

-CRP 

-AGEs-CML (pilot inquiry USA only) 
 

Baseline Total Enrollment:       n, (%) 

 

 African American:          128, (95) 

 Other ethnicities:           7, (5) 

Not part of the current study: 12 Patients 

 

 (n = 5, early, drop outs) 

 (n = 7, other ethnicities) 
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Table 3-1: Characteristics of the African American (AA) cohort. 

Demographics  

Age (yrs.)  59 ± 13 

Gender (n, %)  

Males  77 (62.6) 

Females 46 (37.4) 

Ethnicity (n, %)  

African American  123 (100) 

Tobacco Smokers (n, %)  

Smokers 36 (29.3) 

Non-Smokers  87 (70.7) 

Diabetes Mellitus (DM) (n, %)  

DM 68 (55.3) 

Non-DM 55 (44.7) 

Hypertension (HTN) (n, %)  

HTN 108 (87.8) 

Non-HTN 15 (12.2) 

Statin (n, %)  

User 55 (44.7) 

Non-User 68 (55.3) 

BMI (kg/m2) 30.0 ± 7.5 

Creatinine (mg/dL) 9.5 ± 2.8 

Albumin (g/dL) 3.83 ± 0.32 

Systolic B/P (mmHg) 140 ± 21 

Diastolic B/P (mmHg) 79 ± 15 

Time on Dialysis/Vintage (months) 66 ± 65 

Kt/V 1.52 ± 0.22 

Values are mean ± SD, n=123 
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Table 3-2: Plasma lipids in the AA cohort.  

Lipid Parameters Total _________TAG/HDL-C_______ 

  

(n = 123)1 
ratio ≥ 3.8 

(n = 17) 
ratio < 3.8 

(n = 106) 

TAG (mg/dL) 93 ± 47 179 ± 38 a 79 ± 31 b 

HDL-C (mg/dL) 50 ± 19 34 ± 6 a 53 ± 19 b 

TC (mg/dL) 148 ± 42 179 ± 36 a 143 ± 41 b 

LDL-C (mg/dL) 80 ± 39 110 ± 36 a 75 ± 38 b 

NonHDL (mg/dL) 98 ± 45 145 ± 36 a 91 ± 41 b 

TAG/HDL-C Ratio 2.24 ± 1.59 5.40 ± 1.18 a 1.74 ± 0.93 b 

TC/HDL-C Ratio 3.33 ± 1.51 5.47 ± 1.54 a 2.99 ± 1.19 b 

LDL/HDL-C Ratio 1.89 ± 1.26 3.39 ± 1.46 a 1.65 ± 1.05 b 

Values are mean ± SD for the numbers indicated in parentheses1. Values in a given row with different superscriptsab 

were significantly different from each other (p < 0.05), using one-way ANOVA. 
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Table 3-3 shows the lipoprotein subfraction composition in the AA cohort. Collectively, 

the L-HDL ( 22.0 ± 15.9 mg/dL) and I-HDL ( 22.1 ± 5.74 mg/dL) are the most prominent HDL 

particles, whereas the S-HDL (5.94 ± 3.19 mg/dL) is the least. LDL subfraction analysis is made 

up of multiple subfractions (VLDL, IDL, L-LDL, I-LDL, and S-LDL), which were IDL (46.8 ± 

15.4 mg/dL) and VLDL (25.4 ± 10.2 mg/dL) are the most predominant subfractions. This is 

followed by L-LDL particle (22.3 ± 9.53 mg/dL), as the most prominent subfraction with respect 

to I-LDL (12.5 ± 8.00 mg/dL) and S-LDL (3.85 ± 6.11 mg/dL). Phenotype analyses resulted in 

type “A” as the dominant profile 65%, followed by type “B” 19.5%, and “AB,” known as the 

intermediate phenotype, present 15.4% in the AA cohort. D was assessed by separating subjects 

into two groups, ≥ or < 3.8 TAG/HDL-C ratio. The 17 patients in the ≥ 3.8 TAG/HDL-C ratio 

group, had significantly lower L-HDL (8.59±4.21 vs. 24.2±16.0 mg/dL), I-HDL (17.5±5.34 vs. 

22.9±5.47 mg/dL), and higher S-HDL (7.65±2.96 vs. 5.67±3.15 mg/dL). Furthermore, the subsets 

had significantly higher IDL (61.4±14.5 vs. 44.4±14.3 mg/dL), and S-LDL (9.47±10.7 vs. 

2.94±4.49 mg/dL), with LDL phenotype “B” becoming the predominant profile in 47% of AA 

subjects.   

Table 3-4 shows CETP and LCAT enzymatic activities in the AA cohort. Average CETP 

activity was noted to be (41.6 ± 18.7 nmol/mL/hr.), whereas LCAT (0.89 ± 0.17 ratio 470 / 390 nm). 

To discern the effects of D on the two enzyme activity, samples were allocated into two groups. ≥ 

or < 3.8 TAG/HDL-C ratios. The 17 AA subjects within ≥ 3.8 TAG/HDL-C ratio group displayed 

a significantly lower CETP activity (32.1±14.0 vs. 43.1 ± 19 nmol/mL/hr.), whereas the LCAT 

differences were marginal (0.87±0.17 vs 0.89±0.16 ratio 470 / 390 nm). 
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Table 3-3: Lipoprotein subfraction composition in the AA cohort. 

Lipoproteins Total _________TAG/HDL-C_______ 

Subfractions  

(n = 123)1 
ratio ≥ 3.8 

(n = 17) 
ratio < 3.8 

(n = 106) 

L-HDL (mg/dL) 22.0 ± 15.9 8.59 ± 4.21 a 24.2 ± 16.0 b 

I-HDL (mg/dL) 22.1 ± 5.74 17.5 ± 5.34 a 22.9 ± 5.47 b 

S-HDL (mg/dL) 5.94 ± 3.19 7.65 ± 2.96 a 5.67 ± 3.15 b 

VLDL (mg/dL) 25.4 ± 10.2 37.6 ± 9.86 a 23.5 ± 8.82 b 

IDL (mg/dL) 46.8 ± 15.4 61.4 ± 14.5 a 44.4 ± 14.3 b 

L-LDL (mg/dL) 22.3 ± 9.53 22.2 ± 9.89  22.3 ± 9.52  

I-LDL (mg/dL) 12.5 ± 8.00 17.2 ± 8.0 a 11.7 ± 7.78 b 

S-LDL (mg/dL) 3.85 ± 6.11 9.47 ± 10.7 a 2.94 ± 4.49 b 

Mean LDL size (Å) 269.5 ± 4.64 265.1 ± 5.60 a 270.2 ± 4.07 b 

Phenotype “A” (n, %) 80 (65%) 6 (35%) 74 (70%) 

Phenotype “B” (n, %) 24 (19.5%) 8 (47%) 11 (10%) 

Phenotype “AB” (n, %) 19 (15.4) 3 (18%) 21 (20%) 

Values are mean ± SD for the numbers in parentheses1. Values in a given row with different superscriptsab were 

significantly different from each other (p < 0.05) using one-way ANOVA.  

Abbreviations: L-HDL, large-high density lipoprotein; I-HDL, intermediate high-density lipoprotein; S-HDL, small 

high-density lipoprotein; VLDL, very-low-density lipoprotein; IDL, intermediate low-density lipoprotein; L-LDL, 

large low-density lipoprotein; I-LDL, intermediate low-density lipoprotein; S-LDL, small low-density lipoprotein, 

Phenotype “AB,” is a phenotype intermediate between A and B.  
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Table 3-4: Cholesterol ester transfer protein (CETP) and Lecithin cholesterol acyl 

transferase (LCAT) activity in the AA cohort.  

 

Enzymes Total _________TAG/HDL-C_______ 

  

(n = 123)1 
ratio ≥ 3.8 

(n = 17) 
ratio < 3.8 

(n = 106) 

 

CETP nmol/mL/hr. 

 

41.6 ± 18.7 

 

32.1 ± 14.0 a 

 

43.1 ± 19 b 

 

LCAT ratio of 470/390 nm 

 

0.89 ± 0.17 

 

0.87 ± 0.21 

 

0.89 ± 0.16 

 

Values are mean ± SD for the numbers in parentheses1. Values in a given row with different superscriptsab were 

significantly different from each other (p < 0.05) using one-way ANOVA.  
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CHAPTER 4: RESULTS – SPECIFIC AIM 2: TO CHARACTERIZE DYSLIPIDEMIA 

ACROSS A MULTI-ETHNIC COHORT OF MHD PATIENTS. 

The study flow is shown in Figure 4-1. From 227 enrolled patients, two were excluded 

from the analyses due to unavailable data (patients had drop prior blood collection). Thus, of the 

225 patients, the Malaysian cohort was divided into three different ethnicities of which; 69 patients 

are Malaysian-Malays (MM), 110 are of Malaysian-Chinese (MC), and 46 are of Malaysian-

Indians (MI) ethnicity. Similar, to the AA cohort, patients' blood collected was representative of 

baseline samples gathered before randomization in the PATCH clinical trial (NCT02913690). 

Patients demographics are shown in Table 4-1. The mean age of the cohort is 54 ± 13 years of 

which 60% are males, and 40% are females. Analyses with respect to age showed that MM (48 ± 

14 years) were significantly younger when compared to MC (57 ± 11 years) and MI (55 ± 12 

years).  

The majority of the participants, 90% were non-smokers. Almost 44% of the cohort had 

DM, while 84% were hypertensive. Furthermore, about 60% of patients were prescribed statin 

drugs. Overall, cohort patients were classified as overweight with a BMI of (25 ± 4.1 kg/m2), 

specifically MM and MI who had significantly higher BMI than MC. Albumin levels were 

significantly lower in MM patients (3.8 ± 0.4 g/dL) when compared with MC, and MI. Systolic 

B/P was marginally elevated, whereas diastolic B/P was within normal range. Cohort vintage was 

77 ± 59 months, with MM dialyzed the longest 84 ± 66 months, wherein Kt/V was within an 

optimal range.   
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Figure 4-1: Specific Aim 2 study flow. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abbreviations: MM, Malaysian-Malay’s; MC, Malaysian-Chinese; MI, Malaysian-Indians  

  

Aim 2 Study: PATCH (MALAYSIA) 

 

(N = 227) – Consented  

Specific aim 2 parameters: 

 Lipid profiles analyses 

(TAG, HDL-C, TC); Total of (n) = 57 

lipids (TC, TAG, HDL-C) were re-

analyzed in US. 

 

 Lipoprotein Subfraction Particles 

-HDL, & LDL Analysis 

 

 Inflammatory markers 

-CRP; Total of (n) = 37 CRP samples 

were analyzed.  

Eligible for Analyses: At Baseline 

(n) = 225 
 

MM 

 

(n) = 69 (30.7%)
 

MC 

 

(n) = 110 (48.9%)
 

MI 

 

(n) = 46 (20.4%)
 

 In this analyses (2) patients 

were excluded due to 

unavailable data, subjects drop 

outs before blood collection.  
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Table 4-1: Characteristics of the Malaysian cohort.  

Demographics  Total 

(n = 225)1 
MM 

(n = 69) 
MC 

(n = 110) 
MI 

(n = 46) 

 
P-value 

Age (yrs.)  54 ± 13 48 ± 14a 57 ± 11b 55 ± 12 b <0.001 

Gender (n, %)      

Males  134 (59.6) 37 (53.6) 65 (59.1) 32 (69.6) NS 

Females 91 (40.4) 32 (46.4) 45 (40.9) 14 (30.4)  

Tobacco Smokers (n, %)      

Smokers 21 (9.3) 9 (13) 10 (9.1) 2 (4.3) NS 

Non-Smokers  202 (89.8) 59 (85.5) 99 (90) 44 (95.7)  

Other-unknown 2 (0.9) 1 (1.4) 1 (0.90) - - 

Diabetes (DM) (n, %)      

DM 99 (44) 27 (39.1) 48 (43.6) 24 (52.2) NS 

Non-DM 126 (56) 42 (60.9) 62 (56.4) 22 (47.8)  

Hypertension (n, %)      

HTN 188 (83.6) 57 (82.6) 96 (87.3) 35 (76.1) NS 

Non-HTN 37 (16.4) 12 (17.4) 14 (12.7) 11 (23.9)  

Statin (n, %)      

User 135 (60) 37 (53.6) 73 (66.4) 25 (54.3) NS 

Non-User 90 (40) 32 (46.4) 37 (33.6) 21 (45.7)  

BMI (kg/m2) 25 ± 4.1 26 ± 4.6a 25 ± 4.2b 26 ± 3.2ab 0.025 

Albumin (g/dL) 4.0 ± 0.5 3.8 ± 0.4a 4.1 ± 0.4 b 4.0 ± 0.4b <0.001 

Systolic B/P (mmHg) 156 ± 22 151 ± 21 158 ± 21 159 ± 24 NS 

Diastolic B/P (mmHg) 78 ± 15 78 ± 16 79 ± 14 77 ± 16 NS 

Dialysis/Vintage (months) 77 ± 59 84 ± 66 76 ± 55 71 ± 56 NS 

Kt/V 1.6 ± 0.3 1.6 ± 0.3 1.6 ± 0.3 1.6 ± 0.3 NS 

Values are mean ± SD for the numbers in paremtheses1. Values in a given row with different superscriptsab were 

significantly different from each other (p < 0.05) using one-way ANOVA. Data were adjusted using ANCOVA, in 

relation to covariate factors (age, gender, tobacco use, statin usage, BMI, Albumin, blood pressure, as well as Kt/V. 

Abbreviations: MM, Malaysian-Malay; MC, Malaysian-Chinese; MI, Malaysian-Indians; NS, Not significant.   
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Table 4-2 shows plasma lipids for the Malaysian cohort. Collectively, lipids were 

marginally higher than the AA cohort; however, largely, the Malaysian lipids profile were within 

normal range. HDL-C results showed to be significantly lower in MM patients (43 ± 10 mg/dL) 

when compared with MC (48 ± 14 mg/dL). The TAG levels were higher in MM subjects (142 ± 

74 mg/dL) when compared with MC (127 ± 62 mg/dL) and MI (124 ± 77 mg/dL) which did not 

meet statistical significance. Moreover, lipid LDL/HDL-C ratios were significantly higher in MI 

(2.39 ± 0.91) patients in relation to MC (2.01 ± 0.78).  

Table 4-2: Plasma lipids in the Malaysian cohort 

Lipid Parameters Total MM MC MI 

 (n = 225) 1 (n = 69) (n = 110) (n = 46) 

TAG (mg/dL) 131 ± 69 142 ± 74 127 ± 62 124 ± 77 

HDL-C (mg/dL) 46 ± 13 43 ± 10 a 48 ± 14 b 43 ±11 ab 

TC (mg/dL) 163 ± 33 164 ± 34 164 ± 35 163 ± 31 

LDL-C (mg/dL) 92 ± 28 93 ± 30 90 ± 28 96 ± 25 

NonHDL (mg/dL) 118 ± 34 121 ± 36 115 ± 33 120 ± 33 

TAG/HDL-C Ratio 3.29 ± 2.42 3.73 ± 2.58 3.00 ± 2.04 3.32 ± 2.93 

TC/HDL-C Ratio 3.81 ± 1.21 4.01 ± 1.29 3.60 ± 1.05 4.03 ± 1.38 

LDL/HDL-C Ratio 2.17 ± 0.87 2.29 ± 0.94 ab 2.01 ± 0.78 a 2.39 ± 0.91 b 

Values are mean ± SD for the numbers indicated in parentheses1. Values in a given row with different superscriptsab 

were significantly different from each other (p < 0.05), using one-way ANOVA. 
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Table 4-3 examines plasma lipid, D within the Malaysian cohort. Lipids were separated 

into two groups; ≥ 3.8 TAG/HDL-C ratio or < 3.8 TAG/HDL-C ratio. Analyses showed 65 subjects 

(29% of the cohort) had a TAG/HDL-C ratio ≥ 3.8 resulted with significantly higher TAG (216±67 

vs. 97±28 mg/dL), and LDL-C (99±32 vs. 90±26 mg/dL) while HDL-C was significantly lower 

(35±5 vs. 50±12 mg/dL). In the < 3.8 ratio group, MC patients had lower values in TC/HDL-C 

and LDL/HDL-C ratios, compared to MI subjects.  

Table 4-3: Plasma lipid analyses based on TAG/HDL ration in the Malaysian cohort. 

Lipids Total MM MC MI 

*TAG/HDL ratio ≥ 3.8 (n =65) 1 (n=25) (n = 28) (n = 12) 

TAG (mg/dL) 216 ± 67 219 ± 64 214 ± 52 215 ± 102 

HDL-C (mg/dL) 35 ± 5 35 ± 5 36 ± 5 33 ± 5 

TC (mg/dL) 176 ± 36 177 ± 38 175 ± 35 176 ± 36 

LDL-C (mg/dL) 99 ± 32 100 ± 36 97 ± 32 100 ± 22 

NonHDL (mg/dL) 141 ± 35 143 ± 37 139 ± 33 143 ± 37 

TAG/HDL-C Ratio 6.34 ± 2.43 6.51 ± 2.28  6.00 ±1.64 6.77 ± 3.98 

TC/HDL-C Ratio 5.11 ± 1.18 5.19 ± 1.20 4.88 ± 0.94 5.44 ± 1.60 

LDL/HDL-C Ratio 2.85 ± 0.97 2.92 ± 1.08 2.69 ± 0.88 3.10 ± 0.94 

*TAG/HDL ratio < 3.8 (n =160) 1 (n= 44) (n = 82) (n = 34) 

TAG (mg/dL) 97 ± 28 98 ± 29 97 ± 29 92 ± 23 

HDL-C (mg/dL) 50 ± 12 48 ± 9 52 ±  14 47 ± 11 

TC (mg/dL) 158 ± 31 156 ± 29  159 ± 33 159 ± 29  

LDL-C (mg/dL) 90 ±26 89 ± 25 88 ± 27 94 ± 26  

NonHDL (mg/dL) 108 ± 29 108 ± 29 107 ± 29 112 ± 28 

TAG/HDL-C Ratio 2.05 ± 0.75 2.15 ± 0.78 1.98 ± 0.73 2.10 ± 0.75  

TC/HDL-C Ratio 3.29 ± 0.74 3.35 ± 0.74 ab 3.15 ± 0.65 a 3.53 ± 0.87 b 

LDL/HDL-C Ratio 1.90 ± 0.66 1.94 ± 0.63 ab 1.77 ± 0.59 a 2.14 ± 0.77 b 

Values are mean ± SD for the numbers indicated in parentheses1. Values in a given row with different superscriptsab 

were significantly different from each other (p < 0.05), using one-way ANOVA. 

*All lipid values, in the TAG/HDL-C ratio ≥ 3.8 group were significantly different from the corresponding 

values in < 3.8 TAG/HDL ratio group.   
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Table 4-4 shows the collective composition of the lipoprotein in the Malaysian cohort, and 

particle distribution amongst the three ethnicities (MM, MC, and MI). The prominent HDL 

subfraction in the Malaysian cohort is shown to be I-HDL (22.9 ± 5.0 mg/dL), followed by L-HDL 

(15.8 ± 10.5 mg/dL), and S-HDL (6.88 ± 3.47 mg/dL). While the I-HDL, predominant subfraction, 

there are no changes in its content amongst the ethnicities; nevertheless, fluctuations between 

subfractions are observed in L-HDL and S-HDL subfractions. The 49% of MC patients had 

significantly higher L-HDL (17.5 ± 11.8 mg/dL) in contrast to the 31% of MM (13.6 ± 8.50 mg/dL) 

patients. Additionally, MC had a higher content in S-HDL (7.31 ± 3.54 mg/dL) subfraction in 

relation to MI (5.50 ± 2.63 mg/dL) subjects. The VLDL was also higher in MC patients, (34.8 ± 

10.1 mg/dL) and lower MI (30.2 ± 8.60 mg/dL). Congruently a marginal decrease in IDL 

subfraction in MC (46.0 ± 13.4 mg/dL) is seen while MI patients content rises IDL (50.3 ± 14.7 

mg/dL). Overall there no significant changes in LDL content were seen amongst ethnicities. A 

pattern is perceived for which, a rise in VLDL is concurrently meet with decreases in IDL, L-LDL, 

and S-LDL are seen. Cohort mean LDL particle size had an average (269.0 ± 5.78 Å) and other 

changes of significance were recorded amongst the ethnicities. Phenotype analyses showed type 

“A” LDL pattern as the most prominent, 64% collectively in Malaysian subjects, type “B” is 23%, 

and type “AB” is 13%. The distribution of the phenotype amongst ethnicities also showed type 

“A” as the dominant pattern in 61% of MM subjects, 64% of MC, and 70% for MI patients. 
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Table 4-4: Lipoprotein subfraction composition in the Malaysian cohort.  

Lipoprotein 

Subfractions 

Total  

(n = 225) 1 

MM 

(n = 69) 
MC 

(n = 110) 
MI 

(n = 46) 

L-HDL (mg/dL) 15.8 ± 10.5 13.6 ± 8.50 a 17.5 ± 11.8 b 14.9 ± 9.5 ab 

I-HDL (mg/dL) 22.9 ± 5.0 22.6 ± 4.27 23.3 ±5.55 22.7 ± 4.67 

S-HDL (mg/dL) 6.88 ± 3.47 7.12 ± 3.65 ab 7.31 ± 3.54 a 5.50 ± 2.63 b 

VLDL (mg/dL) 33.5 ± 9.81 33.8 ± 9.71 ab 34.8 ± 10.1 a 30.2 ± 8.60 b 

IDL (mg/dL) 47.2 ± 13.6 47.1 ± 12.8 46.0 ± 13.4 50.3 ± 14.7 

L-LDL (mg/dL) 23.7 ± 8.61 23.0 ± 8.11 23.3 ± 9.01 25.6 ± 8.24 

I-LDL (mg/dL) 13.2 ± 7.69 14.1 ± 8.93 12.5 ± 6.92 13.8 ± 7.38 

S-LDL (mg/dL) 4.78 ± 7.58 5.41 ± 7.47 4.42 ± 6.87 4.70 ± 9.30 

Mean LDL size (Å) 269.0 ± 5.78 268.5 ± 5.97 269.1 ± 5.58 269.4 ± 6.04 

Phenotype “A” (n, %) 144 (64) 42 (61) 70 (64) 32 (70) 

Phenotype “B” (n, %) 52 (23) 22 (32) 22 (20) 8 (17) 

Phenotype “AB” (n, %) 29 (13) 5 (7) 18 (16) 6 (13) 

Values are mean ± SD for the numbers in parentheses1. Values in a given row with different superscriptsab were 

significantly different from each other (p < 0.05) using one-way ANOVA. Abbreviations: L-HDL, large-high density 

lipoprotein; I-HDL, intermediate high-density lipoprotein; S-HDL, small high-density lipoprotein; VLDL, very-low-

density lipoprotein; IDL, intermediate low-density lipoprotein; L-LDL, large low-density lipoprotein; I-LDL, 

intermediate low-density lipoprotein; S-LDL, small low-density lipoprotein, Phenotype “AB,” is a phenotype 

intermediate between A and B.  
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Table 4-5 shows the lipoprotein composition when subfractions are separated into two 

groups; ≥ 3.8 TAG/HDL-C ratio or < 3.8 TAG/HDL-C ratio in order to assess dyslipidemia. 

Analyses showed that 65 patients (29% of the cohort) allocated in the ≥ 3.8 ration group had 

significantly lower L-HDL (7.71 ± 3.76 mg/dL vs. 19.0 ± 10.6 mg/dL) lower I-HDL (19.0 ± 3.46 

vs. 24.5 ± 4.65 mg/dL) while S-HDL had increased (8.54 ± 3.60 vs. 6.21 ± 3.19 mg/dL). Other 

noted difference; the VLDL lipoprotein, which was significantly higher in the ≥ 3.8 ratio group 

(40.8  ± 9.81 vs. 30.6 ± 8.13), also S-LDL was greater (11.6 ± 10.1 vs. 1.99 ± 3.55) whereas the 

mean LDL size had decreased (263.6 ± 5.88 vs. 271 ± 2 ± 4.09) when compared to the < 3.8 ratio 

group. 

In summary: ≥ 3.8 TAG/HLD-C ratio in HDL subfraction analyses, was distinguished by 

a decreased in L-HDL, and I-HDL followed by the rise in S-HDL; wherein <3.8 ratio represents 

the opposite, depictive of increases in large and I-HDL while S-HDL decreases. For LDL 

lipoprotein analyses ≥ 3.8 TAG/HLD-C ratio showed no changes in L-LDL, but changes were 

revealed in the form of greater VLDL, I-LDL, S-LDL while mean LDL particle size had 

significantly decreased in size. A < 3.8 ratio showed decreases in I-LDL, S-LDL (the dense 

atherogenic particle), decreases for both IDL and VLDL, wherein mean LDL size is depicted by 

an increase in diameter.   
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Table 4-5: Lipoprotein composition according to, TAG/HDL-C ration (≥ or < 3.8) in the 

Malaysian cohort 

 

Lipoprotein Subfractions  

Total 

 

MM 

 

MC 

 

MI 

*TAG/HDL-C ratio ≥ 3.8 (n =65) 1 (n=25) (n = 28) (n = 12) 

L-HDL (mg/dL) 7.71 ± 3.76 7.24 ± 3.50 7.93 ± 3.90 8.17 ± 4.15 

I-HDL (mg/dL) 19.0 ± 3.46 19.8 ± 3.49 18.6 ± 3.27 18.3 ± 3.82 

S-HDL (mg/dL) 8.54 ± 3.60 8.16 ± 3.54ab 9.68 ± 3.52a 6.67 ± 3.17b 

VLDL (mg/dL) 40.8 ± 9.81 39.8 ± 10.6 43.4 ± 9.02 37.0 ± 9.40 

IDL (mg/dL) 48.3 ± 13.2 48.4 ± 14.3  47.7 ± 12.8  49.4 ± 12.5  

L-LDL (mg/dL) 20.7 ± 7.70 21.0 ± 8.41 19.9 ± 7.92 22.1 ± 5.71 

I-LDL (mg/dL) 18.3 ± 7.33 19.5 ± 9.06 16.9 ± 5.81 19.2 ± 6.45 

S-LDL (mg/dL) 11.6 ± 10.1 11.8 ± 8.53 11.2 ± 9.23 12.3 ± 15.2 

Mean LDL size (Å) 263.6 ± 5.88 263.5 ± 5.64 263.7 ± 5.24 263.9 ±8.04 

*TAG/HDL-C ratio < 3.8 (n =160) 1 (n= 44) (n = 82) (n = 34) 

L-HDL (mg/dL) 19.0 ± 10.6 17.2 ± 8.41 20.8 ± 11.8  17.3 ± 9.75  

I-HDL (mg/dL) 24.5 ± 4.65 24.1 ± 3.89  24.8 ± 5.27  24.2 ± 3.95  

S-HDL (mg/dL) 6.21 ± 3.19 6.52 ± 3.61 6.50 ± 3.18 5.09 ± 2.33 

VLDL (mg/dL) 30.6 ± 8.13 30.3 ± 7.32ab  31.9 ± 8.74 a 27.8 ± 6.70 b 

IDL (mg/dL) 46.7 ± 13.7 46.3 ± 11.9 45.3 ± 13.7 50.6 ± 15.6 

L-LDL (mg/dL) 24.9 ± 8.68 24.2 ± 7.78 24.5 ± 9.10 26.8 ± 8.69 

I-LDL (mg/dL) 11.2 ± 6.85 11.1 ± 7.37 10.9 ± 6.64 11.9 ± 6.80 

S-LDL (mg/dL) 1.99 ± 3.55 1.77 ± 3.23 2.11 ± 3.75 2.00 ± 3.54 

Mean LDL size (Å) 271 ± 2 ± 4.09 271.4 ± 3.96 271.0 ± 4.36 270.8 ± 4.10 

Values are mean ± SD for the numbers indicated in parentheses1. Values in a given row with different superscriptsab 

were significantly different from each other (p < 0.05), using one-way ANOVA. 

*All lipoprotein values, in the TAG/HDL-C ratio ≥ 3.8 group were significantly different from the 

corresponding values in < 3.8 TAG/HDL-C ratio group, except for IDL and L-LDL subfraction.  
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Table 4-6 it examines D in plasma lipids amongst all ethnicities in the study cohort. 

Dyslipidemia is defined on the basis of three categories dyslipidemic [D] (8% of the overall study 

cohort), mixed dyslipidemic [MD] (52%) and normo-lipidemic [NL] (40%). All lipid values, in 

the [D] group, were significantly different from the corresponding values in [MD and NL] groups. 

There are also significant differences when comparing [MD] and [NL] lipid groups. The [D] AA 

patients had significantly lower TAG (189 ± 42 mg/dL) levels, when compared with MI (314 ± 

123 mg/dL) patients; congruently, TAG/HDL-C ratios in AA was lower compared to MI (5.73 ± 

1.29 vs. 10.5 ± 6.11) subjects. Within the [MD] group, TAG levels (109 ± 35 mg/dL) and 

TAG/HDL-C ratio (2.87 ± 1.16) of AA patients, which was lower when compared with the MM 

patients, but not MC or MI. The [NL] group showed many differences between the AA patients 

and the Malaysian.  

In summary, the [D] group is typified by very TAG levels followed by low HDL-C levels. 

As the degree of dyslipidemic changes and it shifts into mixed dyslipidemia, the very high level 

of TAG declines, followed by an increase in HDL-C. A further shift from [MD] to [NL] is shown 

to change the TAG level into low to normal TAG levels, whereas HDL-C increases.   
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Table 4-6: Dyslipidemia in plasma lipids amongst ethnicities. 

*Dyslipidemia [D] AA  MM MC MI 

  Total (n = 127) (n = 9) (n =8) (n = 7) (n= 3) 

TAG (mg/dL) 189 ± 42 a 231 ± 47 ab 212 ± 36 ab 314 ± 123 b 

HDL-C (mg/dL) 33 ± 5 33 ± 4 35 ± 4 32 ± 6 

TC (mg/dL) 202 ± 12 215 ± 28 209 ± 18 224 ± 26 

LDL-C (mg/dL) 131 ± 17 136 ± 32 132 ± 20 128 ± 7 

NonHDL (mg/dL) 169 ± 47 181 ± 27 173 ± 15 192 ± 29 

TAG/HDL-C Ratio 5.73 ± 1.29 a 7.09 ± 2.05 ab 6.16 ± 1.78 ab 10.5 ± 6.11 b 

TC/HDL-C Ratio 6.21 ± 1.33 6.51 ± 0.98 5.95 ± 0.43 7.20 ± 2.11 

LDL/HDL-C Ratio 4.06 ± 1.24 4.10 ± 0.90 3.74 ± 0.33 4.07 ± 0.84 

*Mixed Dyslipidemia [MD] 

  Total (n = 181) 
(n = 55) (n = 39) ( n= 56) (n = 31) 

TAG (mg/dL) 109 ± 35 a 154 ± 74 b 145 ± 68 b 124 ± 57 ab 

HDL-C (mg/dL) 40 ± 12 40 ± 8 43 ± 10 40 ± 8 

TC (mg/dL) 161 ± 44 164 ± 31 168 ± 37 164 ± 28 

LDL-C (mg/dL) 99 ± 36 94 ± 25 97 ± 30 101 ± 22 

NonHDL (mg/dL) 121 ± 38 124 ± 27 125 ± 31 125 ± 24 

TAG/HDL-C Ratio 2.87 ± 1.16 a 4.13 ± 2.49 b 3.63 ± 2.12 ab 3.35 ± 1.96 ab 

TC/HDL-C Ratio 4.11 ± 1.04 4.15 ± 0.72 3.95 ± 0.77 4.26 ± 0.81 

LDL/HDL-C Ratio 2.55 ± 0.96 2.36 ± 0.52 2.25 ± 0.58 2.62 ± 0.62 

*Normo-lipidemic [NL] 

  Total (n = 140) 

(n = 59) (n = 22) (n = 47) (n = 12) 

TAG (mg/dL) 64 ± 26 a 89 ± 26 b 93 ± 30 b 79 ± 21 ab 

HDL-C (mg/dL) 62 ± 18 52 ± 9 56 ± 16 55 ±9 

TC (mg/dL) 128  ± 29 a 145 ± 18 ab 151 ± 24 b 144 ± 19 ab 

LDL-C (mg/dL) 54 ± 22 a 76 ± 18 b 76 ± 17 b 74 ± 16 b 

NonHDL (mg/dL) 66 ± 24 a 93 ± 20 b 95 ± 19 b 89 ± 18 b 

TAG/HDL-C Ratio 1.13 ± 0.56 a 1.81 ± 0.75 b 1.78 ± 0.74 b 1.45 ± 0.37 ab 

TC/HDL-C Ratio 2.16 ± 0.53 a 2.87 ± 0.57 b 2.82 ± 0.53 b 2.66 ± 0.48 b 

LDL/HDL-C Ratio 0.94 ± 0.46 a 1.52 ± 0.48 b 1.46 ± 0.46 b 1.38 ± 0.46 b 

Values are mean ± SD for the numbers indicated in parentheses1. Values in a given row with different superscriptsab 

were significantly different from each other (p < 0.05), using one-way ANOVA. *All lipid values, in the D group 

were significantly different from the corresponding values in MD and NL groups; similarly, there were differences 

between MD and NL groups. Lipid classification were NL: TAG < 150 mg/dL, HDL-C > 40 mg/dL and LDL-C < 

100 m/dL; D: TAG > 150 gm/dL, HDL-C < 40 mg/dL and LDL-C >100 mg/dL; MD:  at least one of the D and/or NL 

group.  
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Figure 4-2 shows the distribution of HDL lipoproteins measured in both US and Malaysian 

cohorts. AA patients had significantly higher L-HDL (22 ± 15.9 mg/dL) when compared to MC 

(17.5 ± 11.8 mg/dL), MI (14.9 ± 9.51 mg/dL), and MM (13.6 ± 8.50 mg/dL). No changes were 

seen in I-HDL subfraction, in all four ethnicities values were equally distributed. The S-HDL 

lipoprotein was significantly higher in MC patients (7.31 ± 3.54 mg/dL) when compared with AA 

(5.94 ± 3.19 mg/dL) and MI (5.5 ± 2.63 mg/dL) subjects. The analyses showed that most of shifting 

and remodeling of the HDL subfractions seems to reside between the large and small-HDL. 

Figure 4-3 shows VLDL and IDL subfraction composition for both PATCH trials (total 

patients 348). Analyses showed that VLDL lipoproteins were significantly lower (25.4 ± 10.2 

mg/dL) with respect to MI, (30.2 ± 8.60 mg/dL), as well as MM (33.8  ± 9.71 mg/dL) and MC 

(34.8 ± 10.1 mg/dL). IDL lipoproteins did not show any notable changes in the subfraction 

distribution and amongst the four ethnicities. It is worth noting marginal differences between IDL 

composition, which was higher in MI patients when comparing differences with MC subjects (50.3 

± 14.7 vs. 46.0 ± 13.4 mg/dL).  

Figure 4-4 shows the overall LDL lipoprotein subfractions measurements amongst the 

ethnicities. The L-LDL subfraction is the predominant lipoprotein in the LDL lipoprotein analyses. 

The large buoyant LDL is considered protective with respect to the smaller dense LDL. Current 

data between the four ethnicities show no changes, and the L-LDL is equally represented. Ethnic 

MI had significant higher L-LDL content (25.6 ± 8.24 mg/dL), whereas the lowest resides with in 

AA patients (22.0 ± 15.9 mg/dL). No changes were recorded for the I-LDL, nor in the S-LDL. 

However, is worth noting, that MM had the highest content of S-LDL (5.41 ± 6.9 mg/dL) and 

lowest in AA, thus shows minor changes within the subfraction.  
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Figure 4-2: HDL subfractions composition amongst ethnicities.  

 

 

Values are mean ± SD. Values with different superscriptsab were significantly different from each other (p < 0.05), 

using one-way ANOVA. 

  

22 ± 15.9 a

22.1 ± 5.74

5.94 ± 3.19 a

17.5 ± 11.8 b

23.3 ± 5.55

7.31 ± 3.54 b

14.9 ± 9.51 b

22.7 ± 4.67

5.5 ± 2.63 a

13.6 ± 8.50 b

22.6 ± 4.27

7.12 ± 3.65 ab

0 5 10 15 20 25 30 35 40

L-HDL

I-HDL

S-HDL

Concentration in mg/dL

MM (n=69)

MI (n=46)

MC (n=110)

AA (n=123)



87 
 

 

Figure 4-3: VLDL and IDL subfraction composition between ethnicities.  

 

 

Values are mean ± SD. Values with different superscriptsab were significantly different from each other (p < 0.05), 

using one-way ANOVA. 
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Figure 4-4: LDL lipoprotein subfraction composition between ethnicities.  

 

Values are mean ± SD. Values with different superscriptsab were significantly different from each other (p < 0.05), 

using one-way ANOVA. N.S., differences were observed between the LDL lipoproteins in the ethnic patients. 

  

22.3 ± 9.53

12.5 ± 8.0

3.85 ± 6.12

23 ± 9.0

14.1 ± 6.9

5.41 ± 6.9

25.6 ± 8.24

13.8 ± 7.38

4.7 ± 9.30

23.3 ± 8.11 

12.5 ± 8.93

4.42 ± 7.47

0 5 10 15 20 25 30 35 40

L-LDL

I-LDL

S-LDL

Concentration in mg/dL

MC (n=110)

MI (n=46)

MM (n=69)

AA (n=123)



89 
 

 

 Figure 4-5 shows dyslipidemia of lipoprotein subfractions, for the collective cohort of 348 

patients analyzed. The investigation found 8% which are [D] patients had significantly lower L-

HDL (7.56 ± 3.6 mg/dL) and I-HDL (12.7 ± 7.44 mg/dL) while the S-HDL (8.11 ± 3.18 mg/dL) 

was higher content.. Additionally, [D] subjects had higher VLDL values (46.6 ± 10.1 mg/dL), as 

well as IDL (62.9 ± 11.7 mg/dL). The L-LDL, (25.6 ± 8.80 mg/dL) I-LDL (23.8 ± 7.85 mg/dL), 

and S-LDL (16.4 ± 11.3 mg/dL) were also higher in relation to [MD] and [NL] patients.  

Table 4-7 shows the analyses of the dyslipidemic lipoproteins amongst ethnicity. Samples 

were separated into three groups [D-8%], [MD-52%], and [NL-40%], which allowed us to 

compare the subfractions for differences between the four ethnicities. All lipoprotein values, in the 

[D] group, were significantly different from the corresponding values in [MD and NL] groups; 

similarly, there were differences between [MD] and [NL] groups.  

The key feature with the [D] group; as shown in all patients, irrespective of ethnicity, for 

which cause subject present a cohort where lower L-HDL, lower I-HDL, followed by the rise in 

the S-HDL is common. At the same time, [D] subjects are presented by higher VLDL and IDL, 

marginal difference in L-LDL (concerning MD and NL groups), higher I-LDL, and significantly 

higher S-LDL followed by a reduced LDL particle size.  

Patients in the [D] group, had a greater IDL content, which was found to be higher in AA 

(71.0 ± 6.04 mg/dL) patients when compared to MM (56.4 ± 16.9 mg/dL), but not significant with 

MC and MI patients. In the [MD] group, I-HDL was higher in MI patients (22.5 ± 4.6 mg/dL) 

when compared to AA (19.7 ± 5.09 mg/dL); also, within [MD] group, MC patients (8.04 ± 3.62 

mg/dL) had higher values of S-HDL when compared to MI patients (5.81 ± 2.06 mg/dL). VLDL 

was lower in the AA (28.8 ± 9.40 mg/dL) patients compared to MC (37.1 ± 9.03) as well MI (31.8 

± 6.35 mg/dL). Within the [NL] group, there are differences between AA (31.7 ± 16.3 mg/dL) who 
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present with a higher content of L-HDL concerning MM (20.0 ± 9.42 mg/dL) and MC (24.1 ± 13.3 

mg/dL). VLDL values for [NL] group was also lower in AA (20.0 ± 6.55 mg/dL) patients in 

relation to MM and MC. MI patients had significantly higher L-LDL (26.1 ± 5.43 mg/dL) with 

respect to AA in the [NL] group. 

Figure 4-5: Dyslipidemic in lipoprotein subfractions in the overall study cohort. 

 

Values are mean ± SD. Values with different superscriptsab were significantly different from each other (p < 0.05), 

using one-way ANOVA.   
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Table 4-7: Dyslipidemia in lipoprotein subfractions amongst ethnicities. 

Lipoprotein 

Subfractions 

 

AA  

 

MM 

 

MC 

 

MI 

[D] (n=27) 1 (n = 9) (n = 8) (n = 7) (n = 3) 

L-HDL (mg/dL) 8.56 ± 3.84 6.75 ± 2.82 7.00 ± 3.96 8.00 ± 5.29 

I-HDL (mg/dL) 17.4 ± 1.81 19.6 ± 2.87 18.0 ± 2.00 16.3 ± 6.66 

S-HDL (mg/dL) 7.56 ± 1.88 7.13 ± 2.53 10.1 ± 3.29 7.67 ± 6.51 

VLDL (mg/dL) 40.3 ± 11.2 48.6 ± 9.58 53.0 ± 4.08 45.3 ± 11.1 

IDL (mg/dL) 71.0 ± 6.04a 56.4 ± 16.9 b 59.1 ± 5.93ab 65.0 ± 4.00 ab 

L-LDL (mg/dL) 26.9 ± 8.57 26.4 ± 10.2 23.4 ± 9.95 24.3 ± 4.62 

I-LDL (mg/dL) 20.8 ± 7.12 29.0 ± 8.82 20.6 ± 4.08 26.3 ± 9.02 

S-LDL (mg/dL) 11.4 ± 13.5 17.4 ± 7.11 18.4 ± 9.85 23.7 ± 16.3 

Mean LDL size (Å) 265.0 ± 6.18 262.1 ± 3.76 261.0 ± 5.23 259.0 ± 8.54 

[MD] (n= 181) 1 (n = 55) (n = 39) ( n = 56) (n = 31) 

L-HDL (mg/dL) 13.8 ± 8.93 11.3 ± 6.29 13.2 ± 7.49 11.1 ± 5.31 

I-HDL (mg/dL) 19.7 ± 5.09 a 21.5 ± 3.82 ab 21.9 ± 5.08 ab 22.5 ± 4.6 b 

S-HDL (mg/dL) 6.64 ± 3.18 ab 7.54 ± 3.83 ab 8.04 ± 3.62 a 5.81 ± 2.06 b 

VLDL (mg/dL) 28.8 ± 9.40 a 33.8 ± 8.14 bc 37.1 ± 9.03 b 31.8 ± 6.35 c 

IDL (mg/dL) 51.4 ± 15.1 48.3 ± 13.0 47.8 ± 15.4 51.5 ± 15.4 

L-LDL (mg/dL) 24.6 ± 10.6 22.6 ± 8.19 23.8 ± 11.2 25.5 ± 9.45 

I-LDL (mg/dL) 15.8 ± 8.47 14.3 ± 6.53 13.7 ± 6.58 14.2 ± 6.89 

S-LDL (mg/dL) 5.22 ± 5.83 5.46 ± 6.84 5.27 ± 6.59 4.42 ± 8.31 

Mean LDL size (Å) 268.1 ± 4.45 267.6 ± 6.2 267.9 ± 5.74 269.3 ± 5.78 

[NL] (n=140) 1 (n = 59) (n = 22) (n = 47) (n = 12) 

L-HDL (mg/dL) 31.7 ± 16.3 a 20.0 ± 9.42 b 24.1 ± 13.3 b 26.5 ± 9.39 ab 

I-HDL (mg/dL) 25.1 ± 5.16 25.5 ± 3.92 25.7 ± 5.39 24.6 ± 2.78 

S-HDL (mg/dL) 5.05 ± 3.14 6.36 ± 3.67 6.02 ± 3.00 4.17 ± 2.37 

VLDL (mg/dL) 20.0 ± 6.55 a 28.2 ± 6.19 b 29.3 ± 7.36 b 22.4 ± 5.62 ab 

IDL (mg/dL) 38.7 ± 10.4 41.4 ± 7.61 41.8 ± 9.49 43.4 ± 11.3 

L-LDL (mg/dL) 19.4 ± 7.74 a 22.5 ± 7.20 ab 22.6 ± 5.31 ab 26.1 ± 5.43 b 

I-LDL (mg/dL) 8.17 ± 4.57 8.46 ± 6.12 9.72 ± 6.33 9.67 ± 4.07 

S-LDL (mg/dL) 1.41 ± 2.26 0.96 ± 1.99 1.32 ± 2.62 0.67 ± 1.23 

Mean LDL size (Å) 271.4 ± 3.60 272.4 ± 3.50 271.7 ± 3.46 272.3 ± 2.39 

Values are mean ± SD for the numbers indicated in parentheses1. Values in a given row with different superscriptsab 

were significantly different from each other (p < 0.05), using one-way ANOVA.*All lipoprotein values, in the [D] 

group were significantly different from the corresponding values in [MD and NL] groups; similarly, there were 

differences between [MD] and [NL] groups.   
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Figure 4-6 shows the effect of D on particle size and LDL phenotype. Analyses show that 

dyslipidemic [D] subjects are typified by a 63% chance in having a pattern “B” phenotype LDL 

particle. Type “B” has been associated with the smaller and dense LDL lipoproteins which have 

been linked as a high risk for mortality. Additionally, a type “B” has aa smaller particle size (258.9 

± 3.4Å). It is worth noting, that in whether [D] group, [MD], or [NL] the difference between the 

particle size is significant, mainly due to the association with the phenotype of the LDL particle. 

No major differences were observed within ethnicities. Analysis shows that, as the cohort shifts 

from [D] subjects (63% and a type “B”) into [MD] the phenotype shifts into a type “A” 56% also 

which is associated with higher particle size (272.0 ± 2.4 Å). A further shift in the cohort [NL] 

(type A becomes more prominent and has a higher chance of 84% with an increase in particle size 

(272.9 ± 2.2 Å). 
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Figure 4-6: Dyslipidemia in mean LDL particle size within ethnicities.  

 

Phenotype Particle (Å) AA MM MC MI 

[D]  Total (n = 27) 1 (n = 9) (n =8) (n = 7) (n= 3) 

A (n, %) 5 (18.5) 3 (33) 1 (13) 1 (14) 0 (-) 

Particle Size 270.6 ± 0.9 a 270.7 ± 1.2 270.0 ± 0.0 271 ± 0.0 - 

B 17 (63) 3 (33) 7 (88) 5 (71) 2 (67) 

Particle Size 258.9 ± 3.4 b 257.7 ± 4.2 261.0 ± 2.2 258.2 ± 1.5 255.0 ± 7.1 

AB  5 (18.5) 3 (33) 0 (-) 1 (14) 1 (33) 

Particle Size 266.4 ± 1.1 c 266.7 ± 1.2 - 265.0 ± 0 267.0 ± 0.0 

[MD] Total (n = 181) 1 (n = 55) (n = 39) ( n= 56) (n = 31) 

A (n, %) 101 (56) 29 (53) 22 (56) 30 (54) 21 (68) 

Particle Size 272.0 ± 2.4 a 271.6 ± 2.2 271.7 ± 2.7 272.4 ± 2.2 272.1 ± 2.6 

B 47 (26) 13 (24) 13 (33) 15 (27) 6 (19) 

Particle Size 260.9 ± 3.8 b 262.0 ± 2.2 260.8 ± 4.5 260.1 ± 2.8 260.7 ± 6.8 

AB 33 (18) 13 (24) 4 (10) 11 (20) 4 (13) 

Particle Size 266.7 ± 0.8 c 266.5 ± 1.1 267.3 ± 0.5 266.5 ± 0.5 267.0 ± 0.8 

[NL] Total (n = 140) 1 (n = 59) (n = 22) (n = 47) (n = 12) 

A (n, %) 117 (84) 48 (81) 19 (86) 39 (83) 11 (92) 

Particle Size 272.9 ± 2.2 a 272.7 ± 2.2 273.5 ± 2.3 272.9 ± 2.4 272.8 ± 1.8 

B 7 (5) 3 (5) 2 (9) 2 (4) 0 

Particle Size 263.1 ± 1.9 b 262.0 ± 2.0 265.0 ± 0.0 263.0 ± 1.4 - 

AB  16 (11) 8 (14) 1 (5) 6 (13) 1 (8) 

Particle Size 267.1 ± 0.93 c 267.0 ± 0.9 267.0 ± 0.0 267.2 ± 1.2 267.0 ± 0.0 

Values are mean ± SD for the numbers indicated in parentheses1. Values in a given column with different 

superscriptsabc were significantly different from each other (p < 0.05), using one-way ANOVA. 
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CHAPTER 5: RESULTS – SPECIFIC AIM 3: TO DOCUMENT THE EXTENT TO 

WHICH HDL ENZYMES CONTRIBUTE TO DYSLIPIDEMIA IN MHD PATIENTS.  

 The study flow is shown in Figure 5-1. The study was the collective analysis of RCT 

enzymes CETP and LCAT. Samples from the PATCH (USA) (n = 123), additionally to the 

PATCH Malaysia (n = 225), were used. From n =348 samples, three were excluded during LCAT 

measurements (samples were beyond the detection range). Since this investigation was an 

extension of subset inquiry from the joint PATCH studies, no additional approvals were required. 

Figure 5-2 shows the CETP activity measured in 348 participating patients. Analyses 

showed that the mean collective cohort for CETP activity was (41.0 ± 18.6 nmol/mL/hr). Results 

showed that MC subjects (35.8 ± 17.0 nmol/mL/hrs.) had a significantly lower CETP activity than 

MM (45.8 ± 19 nmol/mL/hrs.) and MI (44.7 ± 18.9 nmol/mL/hrs.) patients. No difference was 

recorded amongst AA (41.6 ± 18.7 nmol/mL/hrs.) patients and the other ethnicities. CETP is 

known to facilitate the exchange between CE and TAG amongst HDL and VLDL/LDL particles, 

and within this study, we recorded a strong inverse correlation (r = -0.201) (p<0.001) between 

CETP activity and TAG levels (Appendix Figure 2). 

Figure 5-3. CETP activity was analyzed amongst ethnic patients. To examine the effect of 

D on CETP activity, we separated data into two groups  ≥ or < 3.8 TAG/HDL ratio. Analyses 

showed that AA patients had significantly lower CETP activity in subjects allocated into the ≥ 3.8 

TAG/HDL-C ratio (32.1 ± 14.0 vs. 43.1 ± 19.0 nmol/mL/hrs.) in relation to AA patients with < 

3.8 TAG/HDL-C ratio. No other differences were recorded amongst MM, MC and MI patients. 

Additional analyses found a correlation between CETP and TAG/HDL-C ratio, which was noted 

to be a strong inverse association (r = -0.153) (p<0.004) (Appendix Figure 3).  
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Figure 5-1: Aim 3 study flow. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

USA Patients 

(n) = 123 

Malaysian Patients 

(n) = 225 

Plasma Samples Analyzed  

Total: (n) = 348 

 

US ethnicity distribution: 

 All 100% are AA 
Malaysian ethnicities distribution: 

 MM, (n) = 69     (30.7%) 

 MC, (n) = 110   (48.9%) 

 MI,  (n) = 46     (20.4%) 

CETP 

(n) = 348  

LCAT  

(n) = 345 

Excluded LCAT samples (n =3) (Beyond the detection range) 

 

 (1) A.A., patient –   US cohort (n = 122) 

 (1) Mal., patient –   Malaysian cohort (n = 68) 

 (1) Chin., patient –  Malaysian cohort (n = 109 

 (0) Ind., patients –   Malaysian cohort (n = 46) 

 

Excluded CETP samples (n = 0) 

 

 



96 
 

 

Figure 5-2: CETP activity amongst the ethnicities in the study cohort.   

 

 
 
Values are mean ± SD. Values with different superscriptsab were significantly different from each other (p < 0.05) 

using one-way ANOVA.  

Average CETP activity for all (n=348) patients: 41.0 ± 18.6 nmol/mL/hr. 
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Figure 5-3: CETP activity based on categorical TAG/HDL-C ratio (≥ or < 3.8). 

 

 

 
Values are mean ± SD. Values with different superscriptsab were significantly different from each other (p < 0.05) 

using one-way ANOVA.  
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Figure 5-4 shows CETP activity analyzed based on the dyslipidemic criteria. Results 

showed that [D] (36.0 ± 14.5 nmol/mL/hrs.), [MD] (41.6 ± 20.1 nmol/mL/hrs.) and [NL] (41.2 ± 

17.2 nmol/mL/hrs.) patients showed no differences in the activity.  

Figure 5-4: CETP activity between dyslipidemic groups.  

 

 
 
Values are mean ± SD. Values with different superscriptsab were significantly different from each other (p < 0.05) 

using one-way ANOVA. Classification: [NL]: TAG < 150 mg/dL, HDL-C > 40 mg/dL and LDL-C < 100 m/dL;       

[D]: TAG > 150 gm/dL, HDL-C < 40 mg/dL and LDL-C >100 mg/dL; [MD]: at least one of D and /orNL group. 
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Figure 5-5 shows LCAT activity amongst the four ethnicities. In a collective cohort of 345 

patients, the mean average LCAT activity was (0.86 ± 0.13 ratio of 470/390 nm ). Analyses 

showed, that AA patients had significantly higher LCAT activity (0.89 ± 0.17 ratio of 470/390 

nm) when compared to MC (0.84 ± 0.10 ratio of 470/390 nm) subjects and MI patients (0.81 ± 

0.06 ratio of 470/390 nm.) 

Figure 5-5: LCAT activity between the ethnicities.  

 
 

 

Values are mean ± SD. Values with different superscriptsab were significantly different from each other (p < 0.05) 

using one-way ANOVA. Total of (n = 345) MHD plasma samples were analyzed, for a cohort average of (0.86 ± 0.13 

ratio of 470/390 nm) 
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 Figure 5-6: shows LCAT activity measured between the four ethnic patients. Analyzed 

samples were separated into two groups ≥ or < 3.8 TAG/HDL ratios. Results showed that there 

were no differences between the ethnicities. Additionally, a correlation between LCAT activity 

and TAG levels was conducted, (r = -0141) (p<0.009) (Appendix Figure 4).  

Figure 5-6: LCAT activity based on the categorical TAG/HDL-C ratio (≥ or < 3.8). 

 

 

 
Values are mean ± SD. Values with different superscriptsab were significantly different from each other (p < 0.05) 

using one-way ANOVA.  
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 Figure 5-7 shows the analyses of LCAT activity between D on the bases of [D, MD, NL]. 

We noted that LCAT activity was significantly lower in [D] patient (0.81 ± 0.12 ratio of 470/390 

nm) when compared against [MD] (0.86 ± 0.12 ratio of 470/390 nm) and [NL] (0.87 ± 0.12 470/390 

nm). 

Figure 5-7: LCAT activity between dyslipidemic groups.  

 
 
Values are mean ± SD. Values with different superscriptsab were significantly different from each other (p < 0.05) 

using one-way ANOVA.  
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 Figure 5-8 shows the overall summary of samples analyzed in the investigation including 

CRP (n = 324) and AGE-CML, a subset from the AA cohort (n = 59). In the CRP analyses, while 

the complete set was measured, n = 24 samples were excluded (plasma samples were beyond the 

detection range). Similarly, n = 1 in the AGE-CML analyses was excluded due to the sample being 

beyond the detection range.  

Figure 5-8: Overall summary of the samples measured in the overall investigation.  
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 Figure 5-9 shows, analyses of the baseline CRP for the collective PATCH trial. The study 

measured (n = 324) plasma samples. The analysis showed elevated CRP levels in both cohorts for 

an average mean 9.61 ± 9.72 mg/L. CRP concentration amongst ethnicities was noted to be 

statistically higher in AA patients (13.0  ± 12.6 mg/L) when compared to MM (7.6 ± 6.9 mg/L), 

and MC (7.3 ± 6.9 mg/L), however not the MI (10.1 ± 9.1 mg/L) patients.  

Figure 5-9: C-reactive protein levels between the ethnicities. 

 

Values are mean ± SD. Values with different superscriptsab were significantly different from each other (p < 0.05) 

using one-way ANOVA. Overall study CRP plasma levels for (n) = 324 subjects at baseline: 9.61 ± 9.72 mg/L. Data 

were adjusted using ANCOVA, for the covariate factor such as BMI.  
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 Table 3-13 shows the analyses of advanced glycation products. AGEs-CML were 

measured in the plasma from a subset of AA patients (n = 59). The overall analyses measured an 

average AGE-CML concentration of 4.2 ± 2.4 ng/ml. There were no differences in AGE-CML 

amongst gender groups; no difference were observed in the DM versus non-DM group. The lipid 

ratios of TAG/HDL-C ratios and [D, MD, NL], also recorded no significant change amongst the 

groups in AGE-CML levels.  

Table 5-1: AGEs-CML analyses in the US cohort. 

Parameter AGEs – CML (ng/mL) 

(n = 59)1 
P-values 

Total concentration levels 4.2 ± 2.4 - 

Men (n = 37) 4.5 ± 2.4  

Female (n =22) 3.6 ± 2.2 0.134 

DM (n = 40) 4.3 ± 2.6  

Non-DM (n =19) 3.9 ± 1.9 0.584 

TAG/HDL-C ratio ≥ 3.8 (n=12) 4.2 ± 2.2  

TAG/HDL-C ratio < 3.8 (12 = 47) 4.2 ± 2.5 0.972 

[D] (n = 6) 4.7 ± 2.7  

[MD] (n = 31) 3.6 ± 2.1  

[NL] (n = 22) 4.7 ± 2.6 0.217 

Values are mean ± SD for the numbers indicated in parentheses1. Values in a given group with different superscriptsab 

were significantly different from each other (p < 0.05), using one-way ANOVA. Type-II DM patients had higher CML 

in the plasma (4.3 ± 2.6 ng/mL) vs. Non-DM (3.9 ± 1.9 ng/mL) and higher CRP (14.2 ± 13.7 mg/L vs 11.9 ± 10.9 

mg/L), but, the patterns did not show a correlation based on Person R which recorded a p=-0.107. Abbreviation: 

AGEs-CML, Advanced glycation end-products- Nε-carboxymethyl-lysine  
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Additional analyses and results 

Appendix B Figure 1 shows AGE-CML plasma analyses in relation to BMI. It was 

observed that lower BMI had higher CML levels (6.37 ± 0.61 ng/mL). As BMI increased, CML 

levels declined gradually, with a higher BMI of ≥45 having the lowest CML levels (0.92 ± 0.5 

ng/ML) in plasma. These findings were not significant, and the sample size was not large.  

 Appendix B Figure 2 shows the percent risk fact and the atherogenic index were evaluated 

for the collective cohort. Data showed that AA patients were at a higher risk (23%) when compared 

to MM, MC, and MI. The findings were compared with the atherogenic index of plasma, in which 

case, MM, MC, and MI patients of the Malaysian cohort were at higher risk and not AA. These 

two contradictory findings are in dispute and need to be further evaluated on a future study when 

mortality rate data is available.  

 Appendix B Figure 3 shows the analyses of CRP in relation to dyslipidemia. Data shows 

a decreasing trend from [D] to [MD] and [NL]; however, these changes did not achieve 

significance.  

 Appendix B Figure 4 shows the analyses of CRP amongst the four ethnicities, when 

analyzed by TAG/HDL-C ratio ≥ or < 3.8. No significant differences were observed between the 

two groups within the respective ethnicities. However, a trend is seen, in which case, MHD patients 

allocated in the ≥ 3.8 ratio group had higher CRP levels when compared to their counterparts of 

the < 3.8 ratio group.  

 Appendix B Table 1 shows the demographics of the collective cohort in the US and 

Malaysian cohort. Noted differences are MM patients have are significantly younger than AA, 

MC, and MI. Roughly 83% of the collective cohort are non-smokers, 48% of the combined studies 

have DM, and 85% are hypertensive. While in the US, many physicians have begun to scale back 
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on prescribing statin since various studies have found that LDL is not a primary issue in ESRD 

patients; in Malaysia statin use is still considered. BMI was significantly different due to AA 

patients being obsessed with a BMI of 30, whereas the Malaysians had a lower BMI of 25. Other 

differences were observed in albumin concentration, systolic B/P and Kt/V.  

 Appendix B Table 2 shows the lipoprotein composition between gender and differences 

between ethnicities. Analyses show that females overall have higher L-HDL, I-HDL, and S-HDL, 

in addition to VLDL and IDL subfractions. Males have a higher composition of the S-LDL.  

 Appendix B Table 3 shows lipid analyses in statin versus the non-statin group. The statin 

group overall has higher levels of TAG (129 ± 72 vs. 105 ± 52 mg/dL) and higher nonHDL 

cholesterol. Analyses show differences between the ethnicities within the statin or non-statin 

groups; of which the differences are observed between AA patients and the Malaysian cohort.  

 Appendix B Table 4 shows lipoprotein subfraction analyses composition with respect to 

statin and non-stain use. No significant difference due to statin use was observed in lipoprotein 

analyses. Only differences shown are between ethnicities in either the statin and/or nonstatin 

group; thus, the use of statin is not a factor in subfraction composition.  
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CHAPTER 6: DISCUSSION 

The US is the most industrialize and developed nation in the world, although, despite the 

advancements in science and medicine in the past 20 years has yet to provide answers on how to 

slow the development and progression of diseases such as CKD and ESRD. More disappointing is 

the fact that both diseases CKD and ESRD, cost of care are on the rise and expected to reach $100 

billion ($34 billion just for ESRD) [126], which is an unsustainable development. Moreover, this 

burden is shared with similar parallels across the world. Malaysia, one of the fastest developing 

countries, composed of multiple ethnicities (Malays, Chinese, Indian), has had an upsurge in the 

incidence of ESRD due to DM nephropathy, which has nearly reached a seven-fold increase and 

continue to rise [221, 222]. Moreover, progression into ESRD has been increasing at an estimated 

rate of 6-9%, which as of late has catapulted the country in the 8th place as industrialized nations, 

which will face the peril of the disease, and economic burden [16]. 

Moreover, the significant increases in CVD and the associated mortality within the 

population, cannot be explained by the traditional risk factors such as elevated LDL-C serum and 

low levels of HDL-C [78]. Usually, ESRD patients present with declined HDL-C and increases 

in TAG levels [223]. However, these patients are affected by a phenomenon known as “reverse 

epidemiology,” in which parameters such as high HDL-C and low LDL-C plasma concentration 

may not be as protected when compared with their healthy counterpart [81]. Moreover, both HDL 

and LDL lipoproteins consist of multiple subfractions, composed of different sizes, different 

densities, that appear to exhibit different metabolic behaviors. Numerous studies have indicated 

that the quality of these subfractions was maybe more important than quantity, which leads us to 

believe in the possibility of lipoprotein subfraction dysfunction as a major issue [224, 225]. HDL 

in specific has been an area of interest due to the anti-inflammatory and antioxidant properties it 
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exhibits. Thus, many studies and clinical interventions have focused on raising the HDL with 

inconclusive results. It has been suggested that dysfunctional HDL is caused by exposure to 

prolonged inflammation and oxidative stress; moreover, this may mitigate cholesterol efflux in 

ESRD patients. [65]. Numerous investigations have also looked at the RCT pathway, and the 

associated enzyme CETP, LCAT, or LPL, but studies have had inconclusive results.  

ApoA-I has been another area of investigation, since it is the most abundant protein on 

the HDL particles, wherein various reports have shown a decrease in ApoA-I concentration, 

which has been linked with the downregulation of the ApoA-I gene [66, 226]. ESRD is a 

multifaceted process, which involves various confounding factors over time. The patients 

experience a series of abnormal disorders such as inflammation, OS, D, malnutrition, and 

endothelial dysfunction. D is primarily the result of decreased HDL and increased TAG levels, 

followed by normal and/or increased LDL. However, the contribution of each of these parameters 

to D is poorly understood; moreover, the contribution of the following parameters to D in 

different ethnicities is unknown. Additionally, ESRD patients present with the accumulation of 

oxidized lipids, lipoproteins followed with low plasma HDL-C along with impaired HDL 

maturation and function [78].  

This investigation was developed in order to shed light and understand the complexity of 

inflammation and D in a group of multi-ethnic cohorts of MHD patients. Subjects in this study are 

part of the “PATCH” USA, and Malaysia, where patients were provided with a TRF supplement 

or placebo for the duration of 12-months. Specifically, this dissertation focuses on the baseline 

analyses of the multi-ethnic MHD patients, with the primary objective of characterizing and 

describing dyslipidemia through lipids, lipoproteins, reverse cholesterol transport key enzymes, 

and other markers of inflammation and or OS.  
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The central hypothesis of this study is that dyslipidemia amongst MHD patients of different 

ethnicities will reflect underlying alterations in lipoproteins and enzymes of lipid metabolism. The 

rationale for the proposed study is that once a dyslipidemic MHD profile is determined, 

interventions could be used to manage dyslipidemia.  

The study dissertation is composed of four ethnicities, AA, MM, MC, and MI, with an 

average age of 56 ± 13 years old. Age was noted to be significantly higher (older) in AA patients 

compared to their counterparts. The majority of the MHD cohort is composed of 61%, males, 

whereas 39% are females. Collectively US and Malaysian cohort was more hypertensive 85% and 

48% DM. This was a surprising finding in this study since the leading cause, and the most 

prominent contributor to disease development is primarily DM followed by HTN. Another 

confounding factor was BMI. Analyses showed a difference between the ethnicities, with AA 

having the highest BMI. At 30.0 ± 7.5 kg/m2, it is classified as obese, whereas the Malaysian 

cohort had a BMI of 25 ± 4.1 kg/m2 which is overweight. To the generally healthy population, a 

higher BMI has been linked to being unhealthy and prone to disease. However, this is not the case 

for MHD population; a high BMI considered is protective due to the obesity paradox in the context 

of reverse epidemiology [227, 228]. An investigation by Kalantar-Zadeh et al (2014) postulated 

the U-shaped BMI, in CKD patients between  <25 kg/m2 and/or  ≥35 kg/m2 were associated with 

worse outcomes in all patients; this happens to be independent of severity of CKD [229], thus 

based on the study cohort, AA subjects may be more protected than their Malaysian counterparts.  

Lipids in the AA and the Malaysian cohort were recorded to be within the normal range: 

TAG <150 mg/dL, HDL-C was greater 40-60, TC < 200 and, LDL-C <100mg/dL. Nonetheless, a 

difference between the two cohorts was recorded. Results showed AA patients having different 

values in lipids when compared with MM, MC, and MI.  
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The lipid profile for AA subjects was characterized by significantly lower TAG, TC, LDL-

C, NonHDL, TAG/HDL ratio, TC/HDL ratio, LDL/HDL ratio, and higher HDL-C when compared 

with the Malaysian patients. Furthermore, the study did not observe any differences within the 

Malaysian ethnicities. Other lipid analyses based on the genders, showed that irrespective of the 

ethnicity, females overall had higher TAG levels compared to men. Women also had higher HDL-

C, higher TC, LDL-C, NonHDL, in addition to the lipid ratios. Dyslipidemia was also assessed 

amongst the complete cohort (n=348) and ethnicities based on the TAG/HDL-C ratio (≥ or < 3.8). 

The ≥ 3.8 TAG/HDL-C ratio group, was significantly higher in TAG, TC, LDL-C, NonHDL, and 

lower HDL-C lipid values. Similar results were attained when dyslipidemic grouping (≥ 3.8 ) were 

analyzed for the four ethnicities AA, MM, MC and MI. Moreover, another investigator Moradi et 

al. (2014) [83], applied the lipid ratios, obtaining similar results in lipid profiles.  

Characterizing HDL and LDL lipoprotein subfractions distribution was one of the primary 

goals of this investigation. However, unlike lipid analyses, data on lipoproteins and their 

distribution, especially in a multiethnic cohort of MHD patients, lacks results to compare findings, 

in addition to uncertainties on how to interpret results in such a dynamic population. 

Advancements in molecular techniques have made it possible to assess the concentration of 

individual HDL and LDL lipoprotein subfractions. Using the Lipoprint by Quantimetrix gel 

electrophoresis as the basis to separate the lipoproteins into different subfractions. HDL Lipoprint 

analysis can generate ten fractionated lipoproteins (HDL1-10); additionally, it combines the 

particles into three classes creating the L-HDL (HDL1-3), I-HDL (HDL4-7) and S-HDL (8-10). 

Few studies in the field of cardiovascular disease have attempted to understand HDL functionality, 

as well as the three subfractions, large, intermediate and small, on what they may represent in 

CVD. Even less is known concerning the field of MHD on what the subfractions represent. Using 
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the Lipoprint method, the understanding used to be that the L-HDL was similar to HDL2 which 

meant was protective. However it is not the case, because HDL2 is different species of the 

lipoprotein; moreover, it was attained via ultracentrifugation, a different technique thus, not 

possible to compare at this time [176]. I-HDL was also shown to be on the protective part of the 

HDL spectrum; and, the S-HDL was interpreted and identified to be the atherogenic part of the 

HDL family depictive of HDL3, again not the same lipoprotein species [230, 231]. However, the 

above premise that L-HDL is protective, and S-HDL was not has been a heated debate and a new 

shift in different thinking. The IDEAL and EPIC case-control studies have shown contrary 

evidence to the old belief, that the L-HDL was protective. Analyses showed that elevated plasma 

HDL-C levels (≥70 mg/dL) and the L-HDL particles were associated with a higher risk for CVD. 

In contrast, the S-HDL particle has shown that it may be more functional thus, more efficient in 

promoting cholesterol efflux from macrophage to remove excess cholesterol [108].  

The LDL-subfraction analysis has been a robust understanding; using the same method, it 

can generate seven LDL subfractions [LDL1-7], as well as measuring concentrations of VLDL 

subfraction, followed by IDL. The seven LDL-subfraction are further combined into three groups: 

L-LDL (LDL1), I-LDL (LDL2), and S-LDL (LDL3-7). This analysis can also provide the patients 

mean LDL particle size (diameter) of the lipoprotein for which three-phenotype profiles are 

generated A, B, and Intermediate [AB]. Suggested evidence points to the importance of this feature 

since it can predict the development and progression of coronary heart disease (CHD) [232]. More 

studies have looked at the importance of these phenotypes, that were established based on 

cholesterol LDL subfractions, for which a “pattern-A” corresponds to the larger and more buoyant 

(LDL1) lipoprotein, speculated to be protective. The other profile is “pattern-B” corresponds to 

the smaller, denser, and more atherogenic LDL-[3-7] lipoproteins, which bears a higher risk for 
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oxidation. It has been recognized through various investigations that the small denser LDL 

lipoprotein has the potency of being uptake more freely by arterial tissues where they can oxidize 

during disease physiology. 

Additionally, they decrease the receptor-mediated uptake and increase the proteoglycan 

binding, thus decreased anti-oxidant concentration [78].  The least described profile, which is in 

the middle between “A & B” is “pattern-Intermediate” corresponds to (LDL2), also known as [AB] 

profile. It is a very fluid and influx profile for which dependent on the different stages of the disease 

the subject could be under; it can shift to either side “A” or “B” if there are improvements or 

unfavorable regression [233, 234]. This [AB] phenotype is highly prevalent in patients who are 

presented with lipid disorders and additionally have been associated with significantly elevated 

intermediate-density lipoprotein (IDL), an increased risk that has been linked to atherosclerosis 

and heart disease in hemodialysis (HD) patients [235].  

Lipoprotein subfraction analyses showed in the Malaysian cohort that I-HDL was the 

prominent HDL lipoprotein, followed by L-HDL and least represent S-HDL. Analyses also 

revealed that there were differences in the L-HDL between the three ethnicities, MC had the 

highest values in L-HDL, followed by MI and MM. Changes were also observed in S-HDL, while 

not very pronounced MC subjects had the highest content of the S-HDL, followed by MM and MI. 

In all three ethnicities, IDL showed to have a significantly higher content than VLDL. No major 

differences were recorded in LDL analyses. When the lipoprotein subfraction was compared with 

the AA cohort, there were significant differences in the L-HDL and S-HDL. AA patients had 

significantly higher L-HDL, and lowest VLDL, whereas MM had the highest content of the S-

HDL, and MC had a higher value in VLDL. No changes were recorded in LDL analyses.  
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Subfraction data was analyzed for the two groups; TAG/HDL-C ratio (≥ or < 3.8). Patients 

with ≥ a 3.8 TAG/HDL-C ratio observed a significant decrease in L-HDL and an increased in the 

S-HDL and S-LDL, whereas <3.8 ratios observed a rise in the L-HDL, and I-HDL whereas S-LDL 

decreased. A study by Gluba-Brzozka et al. (2017) looked and analyzed the lipoprotein 

subfraction, in CKD and a healthy control group. Their analyses found that CKD patients all had 

more abundant L-HDL (similar what our data shows), whereas the healthy subjects had abundant 

of the S-HDL, and it was hypothesized that the S-HDL might be a better HDL lipoprotein to 

facilitate cholesterol efflux. [236]. In another investigation, a retrospective analysis in a Caucasians 

group of Polish ESRD patients Gluba-Brzozka et al. (2017), found a notable difference in both 

HDL and LDL subfractions. Polished ESRD patients were characterized by significantly higher 

L-[HDL and L-LDL] countered by the lower composition of small-[HDL and LDL] which was 

concluded that the L-HDL maybe a contributor to impairment of RCT [78]. In an earlier 

publication by our group Tashkandi. B et al., (2019) [237] we investigated a cohort of Saudi Arabic 

patients, finding different results in their HDL distribution, unlike the US and Malaysian cohorts 

who had higher components of large and small. Their L-HDL (30%) and S-HDL (14%) 

distribution were relatively equal throughout the 3-time point measured, with 55% of the particles 

account for I-HDL.  

 CETP was measured and showed a significant decrease in MC and increases in MM and 

MI patients. Moreover, the dyslipidemic patients had lower activity of CETP activity versus its 

counterpart. LCAT activity was higher in AA concerning MC and MI. Additionally, we measured 

CRP in ESRD subjects regardless of sex, age, and ethnicity experience above the normal 

inflammation (extremely high CRP). Although plasma CRP is elevated for all four patients, 

African Americans expressed a 2X-fold increase in levels of inflammation than their counterparts, 
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which could place AA at a much higher risk for a cardiac event. Other analyses, for oxidation was 

analyses of AGEs-CML in plasma. Results were inconclusive. Even on DM patients whom 

theoretically and based on various publication should have expressed a higher level; thus it will be 

an area which needs further future analyses [238, 239] 
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CHAPTER 7: CONCLUSION AND RECOMMENDATIONS 

Summary conclusion 

The first part of this study was to document the degree of dyslipidemia (D) in a cohort of 

African American (AA) MHD patients, and characterize lipid, lipoprotein composition, and 

associated enzymes. Additionally, we wanted to document the status of the cohort inflammation 

by measuring the C-reactive protein (CRP) in the plasma; moreover, on a subset of this cohort, we 

measured the advanced glycation end-products- Nε-carboxymethyl-lysine (AGEs-CML) in the 

plasma an oxidation marker.  

Lipid and lipid ratios for the 123 AA MHD patients showed to be within the normal range. 

TAG concentrations were lower than 150 mg/dL, HDL was within the desirable range 40 – 60 

mg/dL, TC was <200 mg/dL and LDL-C was < 100 mg/dL. To assess for dyslipidemia in the AA 

cohort, the Adult Treatment Panel (ATP III) guidelines were utilized. Results showed that 14% of 

the population with ≥ a 3.8 TAG/HDL-C ratio was dyslipidemic, which was characterized by 

elevated TAG, TC, LDL-C, and lipid ratios, whereas HDL-C had significantly declined. 

Lipoprotein analyses revealed that AA subjects had borderline equal L-HDL and I-HDL, which 

were the prominent HDL lipoproteins, and significantly higher when compared to the distribution 

of the S-HDL. AA patients also had significantly more IDL than VLDL; furthermore, the L-LDL 

was the prominent lipoprotein with regards to I-LDL and S-LDL which was least represented. 

Overall, AA patients had 65% of phenotype “A” in LDL particle type. Other analyses within 

dyslipidemia showed a decrease in the L-HDL and I-HDL; consequently S-HDL increased two-

fold. LDL analyses revealed a significant rise in the atherogenic S-LDL and a rise in I-LDL. 

Adding to the case was LDL particle phenotype “B” was present in 47% of dyslipidemic patients, 

in line with the rise of the atherogenic particles.  
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Dyslipidemic AA patients had a significant decline in CETP active; however, no changes 

in the LCAT activity. Collective the cohort had significantly elevated CRP levels, irrespective of 

whether the patients were D or not. AGEs-CML analyses, in the AA subgroup was inconclusive 

in the finding, any difference, amongst genders, diabetics as well as dyslipidemic MHD subjects.   

The second aim of the study was to document dyslipidemia in a multi-ethnic cohort of 

MHD patients, composed of Malaysian-Malay (MM), Malaysian-Chinese (MC) and Malaysian-

Indian (MI). Lipid analyses showed that parameters were all within normal range. The only noted 

difference was MM, and MI had significantly lower levels of HDL-C when compared to MC. 

Overall the Malaysian cohort was 29% D, for subjects in a ≥ 3.8 TAG/HDL-C ratio group, 

characterized by the significant increase in TAG and the decreases of the HDL-C level. HDL 

lipoprotein analyses, collectively revealed that I-HDL was the most pronounced subfraction, 

followed by L-HDL, and least shown was the S-HDL. Changes in both L-HDL and S-HDL were 

documented amongst ethnicities, leading us to deduce that most changes in HDL lipoproteins 

seemed to be driven by the fluctuations among the two subfractions. No significant changes were 

observed in the LDL subfraction composition.  

An overall analysis and comparison between the four ethnicities revealed that AA patients 

had lower TAG, TC, LDL-C, and higher HDL-C when compared with Malaysian patients. 

Combined, the two cohorts showed to have 24% of patients being D, with results depictive of 

elevated TAG and significantly decreased HDL-C. In HDL lipoprotein analyses, data showed that 

AA patients had a significantly higher content of the L-HDL subfraction, whereas MC, MM had a 

higher composition of the S-HDL. VLDL analyses were observed to be significantly higher in 

Malaysian patients with respect to AA subjects, and no changes were observed in LDL 

lipoproteins. Moreover, a thorough analysis of dyslipidemia concerning subfractions, revealed a 
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pattern in which L-HDL and I-HDL had significantly decreased, whereas the S-HDL and S-LDL 

had increased.  

CETP activity in Malaysian patients showed a decrease in its activity; however, it did not 

reach significance. Analyses also uncovered differences between the four ethnicities, mainly, 

depictive of AA patients having the lower activity within this study cohort. LCAT activity was 

significantly higher in AA patients, while no other changes were recorded with respect to 

dyslipidemia. Inflammation in the Malaysian cohort revealed to be substantial. Analyses between 

the four ethnicities showed a remarkable difference between AA, who had significantly higher 

CRP levels when compared to MM and MC.  

In this dissertation, we were able to fulfill our primary objective in characterizing 

dyslipidemia and lipoprotein subfraction composition in a cohort multi-ethnic MHD set, which to 

our knowledge is the first study of its kind to tackle such task. Furthermore, the data in this study 

were also supportive of the proposed hypothesis, in associating dyslipidemia in MHD to abnormal 

lipoprotein particles, and higher inflammation was recorded in all four ethnic patients.  

Recommendation and future directions 

For future directions: One key area to investigate is to explore and measure ApoA-1 

protein. This inquiry should be conducted in order to help facilitate a better understanding of the 

reverse cholesterol transport (RCT) mechanism and look into the effect of dyslipidemia that may 

have on this protein.  

Secondarily, PON1 should be investigated, since it is considered to be the antiatherogenic 

component of the HDL lipoprotein.  
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Thirdly, a future investigation should examine the functionality of the HDL lipoprotein; 

with the purpose of understanding which of  (L-HDL vs.S-HDL and/or L-LDL vs. S-LDL) maybe 

protect and ones that could contribute to disease in MHD subjects.  

Furthermore, a follow up into the PATCH clinical trial should be, to measuring after 12-

month of intervention all of the lipoproteins, CETP, LCAT, LPL (part of RCT), and CRP, and 

attempt to answer the questions on how did TRF supplementation affect these parameters in MHD 

patients, and whether the intervention affect dyslipidemia.  
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APPENDIX A 

Appendix Tables 1: Dyslipidemic profile criteria assessed based Adult treatment panel III 

(ATP III) guidelines. 

 

Dyslipidemia Categories  TAG HDL-C LDL-C 

Lipid Concentrations (mg/dL) (mg/dL) (mg/dL)  

Dyslipidemic group [D] Higher >150 Lower HDL < 40 Higher > 100 

    

Mixed Dyslipidemic group [MD] At least one criteria of for dyslipidemia 

    

Normo-lipidemic group [NL] Lower < 150 Higher > 40 Lower < 100 

    
[D], the dyslipidemic group; [NL] normo-lipidemic group; [MD], mixed dyslipidemic group. Criteria based on the 

Adult Treatment Panel (ATP III) guidelines [240-242] 
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Appendix Tables 2: Recommended lipid ranges. 

 

Lipid Parameters 

 

Low 

 

Normal/ 

Desirable 

 

Borderline 

High 

 

Very  

High 

 

Extremely  

High 

TAG (mg/dL) --- < 150 150 – 199 200 – 499 ≥ 500 
Hypertriglycerimia 

domain 
HDL-C (mg/dL) < 40 40 – 60 ≥ 60 --- --- 

TC (mg/dL) --- < 200 200 – 239 ≥ 240 Hypercholesterolemic 

domain 

LDL-C (mg/dL) --- < 100 130 – 159 160 – 189 ≥ 190 

NonHDL-C (mg/dL) --- < 130 130 – 159 ≥ 159 --- 

TAG/HDL-C ratio --- < 2 2 – 3.8 ≥ 3.8 --- 

TC/HDL-C ratio 

(Men) 

--- < 3.5 3.5 – 5.0 ≥ 5.0 --- 

TC/HDL-C ratio 

(Women) 

--- < 3.0 3.0 – 4.4 ≥ 4.4 --- 

LDL/HDL ratio --- < 2.5 2.5 – 3.3 ≥ 3.3 --- 

Lipid parameters are recommendations based on ATP-III guidelines; [243], ACC/AHA [242] and KDIGO [9, 244]. 
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Appendix Figures 1: CRP versus hs-CRP in the Malaysian plasma samples. 

 

 
 
Samples analized for CRP and hsCRP in order to standarized the two experiments was (n) = 36. The adjustment 

formula was: [ y = 1.31 + 0.99x ] with a R2 = linerar = 0.930 

Additional analyses of the Pearson Correlation showed an r = 0.965 (p < 0.001) a significant association between the 

two assays.  
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Appendix Figures 2: CETP activity and TAG concentration correlation for all samples.  

 

 

 
 
CETP activity (nmol/mL hr.) has an inverse correlation with TAG concentration (mg/dL) in (n = 348) plasma sample 

from MHD patients. R2 = 0.040 with a y = 47.45 - 0.05x equation. 

Pearson Correlation showed a strong association between parameters with an r = -0.201 which is inversely 

significantly associated (p<0.001).   
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Appendix Figures 3: CETP activity and TAG/HDL-C ratio correlation for all samples.  

 

 

 
 
CETP activity (nmol/mL hr.) has an inverse correlation with TAG/HDL-C ratio in (n = 348) plasma sample from 

MHD patients. R2 = 0.023 with a y = 44.19 – 0.98x equation. 

Pearson Correlation showed a strong association between parameters with an r = -0.153 which is inversely 

significantly associated (p<0.004).   
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Appendix Figures 4: LCAT activity and TAG concentration correlation for all samples.  

 

 

 
 
LCAT activity a ration between (470/390 FI) has an inverse correlation with TAG concentration levels in (n = 345) 

plasma sample from MHD patients. R2 = 0.020 with a y = 0.89 – 2.65E-4x equation. 

Furthermore, Pearson Correlation showed a strong association between parameters with an r = -0.141 which is 

inversely significantly associated (p<0.009).   
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APPENDIX B: Other Analyses  

Appendix B Figures 1: AGEs-CML based on BMI analyses in the US cohort. 

 

Values are reported as mean ± SD. The values with different superscriptabc represent significant differences from each 

other (p < 0.05) when using One-Way ANOVA. Statistics showed, N.S., between the seven subgroups p-value = 

0.141.  
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Appendix B Figures 2: Percent risk factor and atherogenic index of plasma in MHD ethnic 

patients.  

 

 

Values are reported as mean ± SD. The values with different superscriptab represent significant differences from each 

other (p < 0.05) when using One-Way ANOVA. Data were adjusted using ANCOVA, for fixed variables: gender, 

DM, HTN, and Tabaco in relation to covariate factors.  

PRF%: < 5% low risk; 5-7.4% borderline risk; 7.5-19.9% intermediate risk; ≥ 20% high risk. 

AIP: 0.11 - low risk; 0.11 - 0.21 intermediate risk; ≥ 0.21 increased risk.  

 

Abbreviations: AA, African American (n = 123); MC, Malaysian-Chinese (n = 110); MM, Malays (n = 69); MI., 

Malaysian-Indian (n = 46); PRF%, percent risk factor; AIP, Atherogenic Index of Plasma. 
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Appendix B Figures 3: CRP analyses based on dyslipidemia.  

 

 

 

Values are reported as mean ± SD. No difference but a decreasing trend.  

Abbreviation: D, dyslipidemic; MD, mixed dyslipidemic; NL, normo-lipidemic. 
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Appendix B Figures 4: CRP among ethnicities according to TAG/HDL-C ratios ≥ or < 3.8. 

 

 

Values are reported as mean ± SD.  
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Appendix B Table 1: Demographics of the collective in the US and Malaysian cohort. 

Values are reported as mean ± SD. The values in a given row with different superscriptabc represent significant 

differences from each other (p < 0.05) when using One-Way ANOVA. 

Data were adjusted using ANCOVA, in relation to covariate factors such as age, gender, tobacco, statin, BMI, 

Albumin, systolic, and diastolic as well as Kt/V.  

   

Demographics Total 

(n = 348) 
AA 

(n = 123) 
MM 

(n = 69) 
MC 

(n = 110) 
MI 

(n = 46) 

 

P-value 

Age (yrs.)  56 ± 13 59 ± 13a 48 ± 14b 57 ± 11a 55 ± 12 a <0.001* 

Gender (n, %)       

Males  211 (60.6) 77 (62.6) 37 (53.6) 65 (59.1) 32 (69.6) NS 

Females 137 (39.4) 46 (37.4) 32 (46.4) 45 (40.9) 14 (30.4)  

Tobacco Smokers (n, %)       

Smokers 57 (16.4) 36 (29.3) 9 (13) 10 (9.1) 2 (4.3) <0.001* 

Non-Smokers  289 (83) 87 (70.7) 59 (85.5) 99 (90) 44 (95.7)  

Other-unknown 2 (0.60) - 1 (1.4) 1 (0.90) -  

Diabetes (DM) (n, %)       

DM 167 (48) 68 (55.3) 27 (39.1) 48 (43.6) 24 (52.2) NS 

Non-DM 181 (52) 55 (44.7) 42 (60.9) 62 (56.4) 22 (47.8)  

Hypertension (n, %)       

HTN 296 (85.1) 108 (87.8) 57 (82.6) 96 (87.3) 35 (76.1) NS 

Non-HTN 52 (14.9) 15 (12.2) 12 (17.4) 14 (12.7) 11 (23.9)  

Statin (n, %)       

User 190 (54.6) 55 (44.7) 37 (53.6) 73 (66.4) 25 (54.3) 0.011* 

Non-User 158 (45.4) 68 (55.3) 32 (46.4) 37 (33.6) 21 (45.7)  

BMI (kg/m2) 27.0 ± 6.0 30 ± 7.5 a 26 ± 4.6b 25 ± 4.2b 26 ± 3.2b <0.001* 

Albumin (g/dL) 3.9 ± 0.43 3.8 ± 0.3a 3.8 ± 0.4a 4.1 ± 0.4 b 4.0 ± 0.4b <0.001* 

Systolic B/P (mmHg) 150 ± 23 140 ± 21a 151 ± 21b 158 ± 21b 159 ± 24b <0.001* 

Diastolic B/P (mmHg) 79 ± 15 79 ± 15 78 ± 16 79 ± 14 77 ± 16 0.807 

Dialysis/Vintage (months) 73 ± 61 66 ± 65 84 ± 66 76 ± 55 71 ± 56 0.285 

Kt/V 1.6 ± 0.3 1.5 ± 0.2 a 1.6 ± 0.3ab 1.6 ± 0.3b 1.6 ± 0.3ab 0.030* 
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Appendix B Table 2: Lipoprotein composition between genders and ethnicities. 

Lipoproteins in Men AA  MM MC MI 

(n, %) (n=211) 77 (36) 37 (18) 65 (31) 32 (15) 

L-HDL (mg/dL) 18.9 ± 12.5 a 10.8 ± 5.90 b 16.0 ± 9.90 ab 12.7 ± 7.0 b 

I-HDL (mg/dL) 21.0 ± 5.36 22.0 ± 3.72 22.0 ± 5.25 22.1 ± 4.04 

S-HDL (mg/dL) 5.86 ± 3.00 a 7.43 ± 3.47 b 6.74 ± 2.94 ab 5.31 ± 2.13 a 

VLDL (mg/dL) 24.7 ± 10.7 a 33.9 ± 10.6 b 32.7 ± 9.21 b 30.8 ± 7.32 b 

IDL (mg/dL) 44.9 ± 14.6 46.5 ± 12.8 43.1 ± 10.8 49.4 ± 12.7 

L-LDL (mg/dL) 20.4 ± 8.89 a 23.4 ± 8.37 ab 23.5 ± 8.77 ab 26.0 ± 8.36 b 

I-LDL (mg/dL) 11.8 ± 7.00  14.8 ± 8.17 12.8 ± 6.36 15.1 ± 7.64 

S-LDL (mg/dL) 4.26 ± 6.29 6.19 ± 8.10 4.31 ± 6.67 4.87 ± 9.08 

Lipoprotein in Women AA  MM MC MI 

(n, %) (n=137) 46 (34) 32 (23) 45 (33) 14 (10) 

L-HDL (mg/dL) 27.3 ± 19.2 a 16.8 ± 9.90 b 19.6 ± 13.9 ab 20.0 ± 12.5 ab 

I-HDL (mg/dL) 24.0 ± 5.92  23.2 ± 4.80 25.1 ± 5.51 24.1 ± 5.80 

S-HDL (mg/dL) 6.09 ± 3.52 6.75 ± 3.87 8.13 ± 4.16 5.92 ± 3.58 

VLDL (mg/dL) 26.6 ± 9.17 a 33.6 ± 8.72 b 37.7 ± 10.7 b 28.8 ± 11.2 ab 

IDL (mg/dL) 49.9 ± 16.4 47.7 ± 12.9 50.2 ± 15.6 52.2 ± 19.0 

L-LDL (mg/dL) 25.4 ± 9.84 22.7 ± 7.92 22.9 ± 9.43 24.7 ± 8.19 

I-LDL (mg/dL) 13.7 ± 9.41 13.4 ± 9.82 11.9 ± 7.71 10.9 ± 6.03 

S-LDL (mg/dL) 3.15 ± 5.82 4.50 ± 6.70 4.58 ± 7.23 4.29 ± 10.1 

Values are reported as mean ± SD. The values in a given row with different superscriptabc represent significant 

differences from each other (p < 0.05) when using One-Way ANOVA. 
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Appendix B Table 3: Lipid analyses in statin analyses. 

Lipid Total AA  MM MC MI 

Statin group (n = 190)1 (n = 55) (n = 37) (n = 73) (n = 25) 

TAG (mg/dL) 129 ± 72 a 94 ± 50 a 146 ± 73 b 139 ± 68 b 145 ± 96 b 

HDL (mg/dL) 47 ± 15 51 ± 19 45 ± 11 47 ± 13 43 ± 12 

TC (mg/dL) 160 ± 39 148 ± 46 165 ± 33 165 ± 35 162 ± 38 

LDL (mg/dL) 88 ± 33 79 ± 42 92 ± 30 91 ± 28 90 ± 26 

NonHDL (mg/dL) 113 ± 41 98 ± 48 a 120 ± 35 b 119 ± 34 b 118 ± 39 ab 

TAG/HDL- Ratio 3.19 ± 2.45 a 2.21 ± 1.66 a 3.71 ± 2.46 b 3.38 ± 2.24 b 3.97 ± 3.72 b 

TC/HDL-C Ratio 3.68 ± 1.37 3.28 ± 1.59 3.90 ± 1.17 3.75 ± 1.12 4.02 ± 1.63 

LDL/HDL-C Ratio 2.05 ± 1.02 1.84 ± 1.34 2.17 ± 0.87 2.08 ± 0.81 2.25 ± 0.95 

Lipid Total AA  MM MC MI 

Non-Statin group (n = 158) 1 (n = 68) (n = 32) (n = 37) (n = 21) 

TAG (mg/dL) 105 ± 52 b 93 ± 44 a 138 ± 75 b 104 ± 41 a 100 ± 33 a 

HDL-C (mg/dL) 47 ± 16 50 ± 19 ab 41 ± 9 a 51 ± 17 b 43 ± 11 ab 

TC (mg/dL) 156 ± 35 148 ± 38 162 ± 36 160 ± 34 165 ± 22 

LDL-C (mg/dL) 88 ± 32 80 ± 36 a 95 ± 29 ab 88 ± 28 ab 103 ± 23 b 

NonHDL (mg/dL) 109 ± 38 99 ± 42 a 121 ± 37 b 109 ± 30 ab 122 ± 25 ab 

TAG/HDL-C Ratio 2.60 ± 1.87 b 2.27 ± 1.55 a 3.76 ± 2.76 b 2.26 ± 1.32ac 2.54 ± 1.26 abc 

TC/HDL-C Ratio 3.60 ± 1.31 3.38 ± 1.45 a 4.15 ± 1.42 b 3.30 ± 0.84ac 4.04 ± 1.04 abc 

LDL/HDL-C Ratio 2.10 ± 1.05 1.92 ± 1.20  2.44 ± 1.01 1.87 ± 0.72 2.56 ± 0.86 

Values are mean ± SD for the numbers indicated in parentheses1. Values in a given row with different superscripts ab 

were significantly different from each other (p < 0.05), using one-way ANOVA. 

Overall: Statin patients (n = 190) vs. Non-statin (n = 158) patients showed a significant difference (P<0.001) in TAG 

composition Statin  (128 ± 72 mg/dL)  vs. Non-Statin (105 ± 52 mg/dL) and in TAG/HDL-C ratio (P=0.015) (3.19 ± 

2.45 vs. 2.60 ± 1.87).  
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Appendix B Table 4: Subfraction composition in the statin analyses. 

 

Lipoproteins  AA  MM MC MI 

Statin group (n=190) 55 (29) 37 (19) 73 (38) 25 (13) 

L-HDL (mg/dL) 22.0 ± 16.2 a 14.9 ± 9.43 b 15.5 ± 10.2 b  15.2 ± 9.56 ab 

I-HDL (mg/dL) 22.5 ± 5.46 23.5 ± 4.05 23.1 ± 5.35 22.1 ± 5.51 

S-HDL (mg/dL) 6.20 ± 3.52 a 7.00 ± 3.73 ab 8.01 ± 3.69 b 5.96 ± 2.92 ab 

VLDL (mg/dL) 25.5 ± 11.3ac 33.0 ± 8.27 bc 36.6 ± 10.3 b 30.1 ± 9.98 c 

IDL (mg/dL) 46.8 ± 16.1 46.9 ± 13.4 46.6 ± 12.5 48.4 ± 13.5 

L-LDL (mg/dL) 22.2 ± 10.3 23.0 ± 8.04 22.5 ± 8.63 24.1 ± 7.42 

I-LDL (mg/dL) 12.8 ± 8.75 14.8 ± 8.56 12.9 ± 6.70 14.4 ± 7.54 

S-LDL (mg/dL) 4.02 ± 6.97 5.22 ± 7.28 5.16 ± 7.14 6.44 ± 11.8 

Lipoproteins AA  MM MC MI 

Non-Statin group (n=158) 68 (43) 32 (20) 37 (24) 21 (13) 

L-HDL (mg/dL) 22.0 ± 15.7 a 12.0 ± 7.11 b 21.3 ± 13.8 ab 14.7 ± 9.68 a 

I-HDL (mg/dL) 21.8 ± 5.98 21.4 ± 4.31 23.5 ± 5.98 23.3 ± 3.44 

S-HDL (mg/dL) 5.74 ± 2.90ab 7.25 ± 3.60 a 5.92 ± 2.76 ab 4.95 ± 2.18 b 

VLDL (mg/dL) 25.3 ± 9.29 a 34.6 ± 11.2 b 31.3 ± 8.89 b 30.3 ± 6.84 ab 

IDL (mg/dL) 46.7 ± 15.0 47.3 ± 12.3 44.8 ± 15.2 52.5 ± 16.2 

L-LDL (mg/dL) 22.4 ± 8.96 23.1 ± 8.32 24.9 ± 9.62 27.4 ± 8.96 

I-LDL (mg/dL) 12.3 ± 7.40 13.4 ± 9.44 11.5 ± 7.34 13.1 ± 7.30 

S-LDL (mg/dL) 3.71 ± 5.37 5.62 ± 7.80 2.95 ± 6.14 2.62 ± 4.35 

Values are reported as mean ± SD. The values with different superscriptabc represent significant differences from 

each other (p < 0.05) when using One-Way ANOVA. 
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Maintenance hemodialysis (MHD) patients experience various abnormalities such as 

systemic inflammation (SI), oxidative stress (OS), and dyslipidemia (D). Defined as an imbalance 

of plasma lipids, lipoproteins, and lipid metabolism enzymes, D has been associated with a rise in 

morbidity and mortality within ESRD patients due to cardiovascular disease (CVD). However, the 

contribution of each of these parameters to D is poorly understood; moreover, the impact of the 

following parameters on dyslipidemia in different ethnicities is unknown. Hence, the objective of 

this study was to characterize D in a multi-ethnic cohort of ESRD patients. We hypothesized that 

dyslipidemia amongst MHD patients of different ethnicities will reflect underlying alterations in 

lipoproteins and enzymes of lipid metabolism. The rationale for the proposed study is that once a 

dyslipidemic MHD profile is determined, targeted interventions could be used to manage it. The 

degree of D was investigated in a cohort comprised of African American (AA), Malaysian-Malays 

(MM), Malaysian-Chinese (MC), and Malaysian-Indians (MI), of whom were enrolled in the 

PATCH clinical trial USA and/or Malaysia.  

Lipids, lipoprotein particles, associated enzymes cholesteryl ester transfer protein (CETP), 

Lecithin-cholesterol acyltransferase (LCAT), as well as an inflammatory marker C-reactive 
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protein (CRP), were measured. Assessment of dyslipidemia was based on the criteria from the 

Adult Treatment Panel (ATP III) guidelines. TAG/HDL ratios (≥ or < 3.8) were utilized to 

ascertain LDL phenotypes.  

All lipid parameters in both groups were within the normal range; however, AA subjects 

had lower triglycerides (TAG) levels and higher high-density lipoprotein – cholesterol (HDL-C) 

when compared to Malaysian patients. Additionally, a biphasic response was recognized with 

regards to the relationship between TAG and HDL; as one rises, the other falls. Dyslipidemic 

analyses showed that all lipid values, in the TAG/HDL-C ratio ≥ 3.8 group were significantly 

different from the corresponding values in the < 3.8 TAG/HDL ratio group. The effect of 

dyslipidemia in the subfractions showed a decline in L-HDL and I-HDL consequently, S-HDL 

increased. Also, D increased VLDL and IDL subfractions, as well as I-LDL and S-LDL. Due to 

dyslipidemia, the mean LDL particle size decreased significantly in diameter, wherein 63% of 

patients were more likely to have a phenotype “B” LDL particle; which has been linked to the 

atherogenic small dense LDL. CETP activity was different amongst ethnicities and declined in the 

≥ 3.8 TAG/HDL ratio group. LCAT activity was higher in AA with respect to Malaysians patients 

and was not affected by dyslipidemia. All patients had significantly elevated CRP levels, of which 

AA was the highest. 

In conclusion, we analyzed lipids, lipoproteins, CETP, and LCAT activities, for a multi-

ethnic cohort study, in addition to measuring CRP. For future directions, it would be ideal to 

investigate the effect of D on Apolipoprotein-A1, PON1, and, most important, test for HDL 

functionality.  
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