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CHAPTER 1 

INTRODUCTION 

 

1.1 Problem Statement 

1.1.1 Need of Creating a New Second-by-Second Trip Dataset 

Improving vehicle fuel economy is a crucial part of international and regional 

efforts to reduce the risks of climate changes and global warming. Transportation sector is 

responsible for 29% of total US greenhouse gas (GHG) emissions and accounted for 28% 

of total US energy use. Light-duty vehicles are responsible for 59% of transportation sector 

GHG emissions and accounted for 54% of total US transportation energy use [1], [2]. The 

quantity of automobiles in the U.S. increases each year [3], and thus, petroleum utilization 

increases and vehicle GHG emissions increases as well. Vehicle GHG emissions cause 

major environmental problems. In this way, environmental issues require vehicles with 

high fuel efficiency and low gas emanations. Additionally, the reliance on oil and the 

fluctuating fuel prices motivate automakers to develop vehicles with low fuel consumption. 

Considering vehicle consumer’s point of view, consumers put significant weight 

on fuel/battery efficiency and cost [4]. In the US, consumers rely on a vehicle window 

sticker that shows vehicle’s estimated fuel economy in miles per gallon (mpg) from the 

Environmental Protection Agency (EPA) [4]. This figure is produced by automaker’s 

laboratory tests and is regulated by federal laws. The fuel economy tests are performed in 

a laboratory using a dynamometer. They are based on controlled conditions using up to 
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five standard EPA drive cycles to simulate standard vehicle trips in different environments. 

Table 1 shows some of EPA and European standard drive cycles and cycle procedures that 

are used in fuel economy and vehicle emissions tests [5], [6]. The EPA standard excludes 

Table 1.1. EPA and some of European standard drive cycles and procedures used for 

dynamometer fuel economy and emissions tests. 

Name Description Distance 

(miles) 
Average Speed 

(mph) 

UDDS Urban Dynamometer Driving Schedule - 

EPA city cycle 
7.45 19.59 

FTP-75 Federal Test Procedure - EPA city cycle 

(EPA75) 
11.04 21.20 

US06 EPA high acceleration aggressive driving 

schedule 
8.01 48.37 

SC03 EPA Air Conditioning driving schedule 3.58 21.55 

HWFET EPA Highway Fuel Economy Driving 

(HWFET) Schedule. It represents highway 

driving conditions under 60 mph 

10.26 48.30 

Artemis 

Urban 

European Artemis (Assessment and 

Reliability of Transport Emission Models 

and Inventory Systems) urban driving 

schedule 

3.03 11 

Artemis 

Rural 
European Artemis rural driving schedule 10.74 35.74 

Artemis 

Highway 
European Artemis highway driving 

schedule 
17.86 60.22 

some known on-road factors that affect fuel economy for the purpose of improved test 

repeatability. These factors include road and weather conditions, traffic, driving style, and 

geographical locations [7], which are difficult to model accurately. After auto 

manufacturers report their results to EPA, the agency reviews the results and checks about 

15%–20% of them through its own independent testing [8]. It has been reported that the 

on-road fuel economy can be markedly lower than the window sticker number, which has 
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happened to conventional vehicles as well as to hybrid electric vehicles (HEVs) [9]. To 

improve the accuracy of the lab tests and to better evaluate new technologies’ potential 

impact on the fuel/battery usage, automakers desire to incorporate a broader range of the 

real-world factors into their testing, analysis, and estimates. In order to achieve improved 

fuel economy estimates of on-road driving, a large set of on-road vehicle and trip-related 

data must be used. A project solely dedicated to generating such a dataset can be 

prohibitively expensive and time-consuming to execute. 

Few options remain. One of them is to utilize vehicle travel survey data. Various 

vehicle fuel consumption models have been developed based on historical data collected 

from self-reporting travel surveys. The historical data is affined to the vehicle itself. Some 

types of this data, for example, are vehicle type and model, engine type, number of 

cylinders, transmission system type, horsepower, vehicle weight, displacement, and 

acceleration [10]. Despite the fact that the proposed techniques using historical data have 

been found to have good capabilities and reliability in predicting fuel consumption, they 

cannot represent the effects of driving patterns because they lack GPS data besides the lack 

of accuracy in the self-reporting trip-related data such trip distance and duration. It is 

difficult to extend the predictions to cover new technologies because the characteristics of 

the new vehicles, such as start/stop, hybridization, and heat recovery, can cause 

significantly different powertrain behavior. Therefore, more accurate and effective trip-

related data with high-resolution must be included in fuel economy studies to achieve better 

estimation results. These requirements can be achieved by using the GPS techniques in 

travel surveys. An important step was taken towards improving travel survey methods by 
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introducing GPS-enhanced travel survey techniques [11]. Hence, a significant direction in 

fuel economy studies is to use the data collected by these GPS techniques to achieve 

accurate results. The use of GPS data collection has been found to have many advantages, 

such as data accuracy, over traditional survey methods. The data collected can include trip 

distance, duration, average speed, and maximum speed besides time-speed points [11]. 

Numerous travel survey datasets are available to the public by various providers and 

organizations. Several studies have used this type of datasets to enhance vehicle fuel 

economy. However, the collection period for the GPS data in most of the studies in the 

literature, to the best of found knowledge, is short (compared to the period of the year) for 

a comprehensive fuel economy or battery life study. To efficiently study vehicle fuel 

economy/battery life, the used travel survey dataset should include year-long driving and 

none driving activities of a large group of vehicles and drivers along with their second-by-

second GPS data. Using this type of datasets ensures that all real-world factors and 

conditions in all different circumstances and seasons that influence vehicle fuel 

economy/battery life throughout the entire year are taken into the account. Road and 

weather conditions, driving style, and geographical locations are examples of these factors. 

Furthermore, the on-road drive cycles collected in travel surveys include more aggressive 

acceleration and deceleration activities than the drive cycles used in laboratory tests and 

this affects vehicle performance. 

Such a long-period and high-resolution travel survey dataset is not only necessary 

for efficient fuel economy/battery life studies, but also required in some other 

transportation studies such as vehicle greenhouse gas emissions and travel behavior and 
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demand studies. Both GPS and household data collected in travel surveys have been found 

useful to study vehicle gas emissions and travel behavior and demand [12] – [15]. GPS 

data collected in vehicle trips are powerful for exploring and estimating vehicle 

instantaneous emission rates and study travelers’ behavior and pattern. However, the two 

transportation studies strongly depend on several seasonal factors such as weather, 

especially the ambient temperature, that significantly change during the year and affect the 

driving pattern [16], [17]. Hence, to efficiently study and analyze vehicle gas emissions 

and travel behavior and demand using the on-road data collected in travel surveys, the used 

travel survey dataset should include vehicle trips made in a minimum period of one-year 

along with their GPS second-by-second speed profiles so that all circumstances and 

impacts that influence vehicle gas emissions and travel behavior and demand throughout 

the year are taken into the account. Nevertheless, there is no study in the literature has used 

such a dataset to analyze and explore vehicle gas emissions and travel behavior and demand 

for a one year period. 

From the above, it can be summarized that to achieve batter and more reliable and 

realistic results in transportation studies, such as fuel economy/battery life, vehicle 

emissions, and travel behavior and demand, a large long-period dataset that includes real-

world vehicle trips along with their second-by-second driving cycles GPS data and parking 

activities is obviously required. To the best of author’s knowledge, this type of vehicle trip 

dataset is not available in publicly accessible databases and a project specifically dedicated 

for generating such a type of dataset can be excessively expensive and time-consuming to 

be executed. 
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Hence, the aforementioned reasons and others, gave me high motivations and 

challenges to perform my research and develop a method that utilizes two public travel 

survey datasets to generate such a dataset that may contribute to the fields of ongoing 

transportation research studies. The US National Renewable Energy Laboratory (NREL) 

makes some travel survey datasets of passenger vehicles accessible to the public [18]. 

Among them are the Puget Sound Regional Commission (PSRC) and Atlanta Regional 

Commission (ARC) travel survey datasets. The two datasets included different types of 

passenger vehicles, such as sedans, mini-vans, pick-up trucks, and sport utility vehicles. 

The PSRC is the only dataset provided by NREL that covers customer full driving 

operations for a period over one year with full detailed trips including the accurate start/end 

of trip, soak time between trips (the time length between the end of a trip and the start of 

the next trip), and actual trip distance and these are among the reasons to choose the PSRC 

dataset for my study. The higher resolution and the longer period of the GPS data collection 

(compared to the datasets provided by NREL), less data errors, and the larger number of 

vehicles are among the reasons that we chose to use the ARC dataset as the source for the 

second-by-second trip drive cycles. 

1.1.2 Need of Studying Battery Electric Vehicle (BEV) Performance and 

Utilization Using the Proposed Second-by-Second Trip Dataset 

Tremendous efforts have been made by governments, automakers, and public 

organizations to reduce the GHG emissions caused by light-duty vehicles and their use of 

petroleum energy. Among these efforts are the improvements and enhancements of the 

Battery Electric Vehicles (BEVs). BEVs are zero emission vehicles and they may 

significantly contribute to solving air pollution problems. BEVs have become of more 
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interest to automobile drivers and their sales obviously increased in the last few years 

worldwide and in the US [19], [20]. BEVs sales worldwide increased from 1,224,000 

vehicles in the 2017 to 2,018,247 vehicles in the 2018 and 361,307 of them were sold in 

the US [20]. However, BEVs contribute with only about 1% of the US total transportation 

[3]. Several issues with BEVs are still causing concerns for drivers to adopt a BEV and 

may be the most important issue is their limited range – the distance traveled by a BEV per 

one full battery charge. People fear of not getting to their destinations and being stranded 

on the side of the road because the battery has become empty. Also, drivers wonder about 

adapting their driving behavior and activities if they decide to displace their conventional 

vehicles with BEVs. Other issues include the battery recharging time and electrical energy 

consumed. These issues encourage researchers and engineers to study and analyze the 

BEVs. 

Several research studies analyzed and examined the range limitations and 

requirements of BEV. Most of these studies used trip’s data collected from conventional 

passenger vehicles in travel surveys. A group of these studies are only based on testing the 

daily traveled distance against some fixed distance threshold, which is the range of an 

average BEV at the time of study. The studies do not include second-by-second drive 

cycles and some other main factors that influence the performance of BEV such as the 

ambient temperature and climate control system [21]. Studies such as in [22] and [23] show 

that the performance and range of BEV significantly depend on driving and environmental 

factors such as the driving pattern/behavior, ambient temperature, and climate control 

auxiliary energy consumption associated with the ambient temperature. Consequently, to 
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better study and analyze the range and performance of BEV, some studies considered the 

impact of ambient temperature and used temperature data besides the data collected from 

travel surveys and some other studies additionally included the second-by-second drive 

cycle profiles of trips to consider the effect of driving pattern and aggression. Nevertheless, 

none of the studies in the literature that included temperature data and drive cycle second-

by-second data has performed a simulation using a year-long dataset that includes trips 

made by the same group of vehicles and drivers along with their second-by-second speed 

profiles throughout an entire year.  

Additionally, most of the studies in the literature assume that vehicles are fully 

charged once daily overnight at home and this may not be true if we consider the daily life 

of customers throughout the year. Drivers may travel in vacations and may not be able to 

charge at their temporary place of residence at night. Also, it is not always true that 

customers stay home at night for enough time to have the battery fully charged. On the 

other hand, besides the night charging, drivers may tend to charge their battery at home 

during the day time if they intend to stay home for relatively a long period. Consequently, 

customers’ daily life and activities should also be included in the analysis of BEV 

utilization and performance to achieve realistic results. 

Hence, to efficiently simulate a BEV model and more accurately analyze and 

estimate its real-world performance and range limitations through the entire year, the 

simulation study must take into the account all of the factors that influence the performance 

and utility of BEV during the year and this can be accomplished by using a trip dataset that 

includes one-year worth of trips of conventional passenger vehicles and their second-by-
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second velocity profiles besides the annual data for ambient temperature. Additionally, the 

used dataset should include information and details about the destinations of trips and tours 

that drivers took throughout the year where such information should be considered in 

battery charging scenarios to simulate the actual drivers’ life activities. 

As a result, because the dataset I generated in the first part of this dissertation 

includes all of the above mentioned requirements for such a dataset for more efficient study 

of BEV utilization and performance during the entire year, I was motivated to study and 

analyze BEV performance and utility using the generated dataset as the source for vehicle 

trips and their second-by-second driving cycles, the Advanced Vehicle Simulator 

(ADVISORTM) software as a simulation tool, and the 2018 Nissan Leaf as a representative 

of recent BEVs. 

1.2 Literature Review 

The main objective of this section is to review the studies in the literature that are 

related to my work and highlight their shortcomings. The first part of this section covers 

the literature review of vehicle fuel economy, vehicle emissions, and travel behavior and 

demand studies. Also, the first part reviews the studies in the literature that used the two 

travel survey datasets that used in my study (i.e. PSRC and ARC datasets) for different 

applications. In the second part of this section, the studies in the literature that used vehicle 

travel surveys data to study the performance and utility of BEVs are reviewed. 

1.2.1 Research Using Travel Surveys in Fuel Economy and Other Transportation 

Studies 

In addition to the test procedures for vehicle fuel economy that are designed and 

certified by EPA and some other related organizations, several researchers and automakers 



10 

 

 

proposed different techniques and methodologies to estimate and predict vehicle fuel 

consumption based on different types of data collected from real-world travel surveys. 

Using the real-world data in fuel economy studies accounts for and reflects the real terms 

and factors that may influence the fuel consumption. These factors might include, for 

instance, road and weather conditions, driving style, traffic, and geographical locations. 

Additionally, compared to the standard driving cycles used in the certifying lab procedures, 

the real-world travel survey drive cycles include more aggressive acceleration and 

deceleration activities and this significantly influences vehicle performance and its 

efficiency in fuel consumption. 

Various vehicle fuel consumption models have been developed based on historical 

data collected from self-reporting vehicle travel surveys. For example, studies in [24] – 

[26] develop fuel prediction models that are totally based on vehicle historical data using 

the regression modeling approach and the neural network approach. The proposed models 

showed reasonable fuel economy predictions. The study in [27] also proposes a fuel 

economy estimation model based on the historical data using fuzzy c-regression models. 

Although the proposed techniques using historical data have been found to have good 

capabilities and reliability in predicting fuel consumption, they cannot represent the effects 

of driving patterns and aggressions because they lack GPS data. It is difficult to extend 

vehicle fuel prediction models based on historical data to cover vehicle new technologies 

because the characteristics of the new vehicles, such as start/stop, hybridization, and heat 

recovery, may cause different powertrain behavior. 
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Because of the improvements made in vehicle travel surveys by introducing the use 

of GPS technologies, fuel economy studies tended to use the data collected by these GPS 

techniques besides other travel surveys data. Numerous travel survey datasets are available 

to the public by various organizations and providers. Several studies in the literature have 

used this type of datasets to study and improve vehicle fuel economy. For instance, in [28] 

GPS data collected over a 24-hour period is used to study the influence of real-world drive 

cycles on plug-in hybrid electric vehicles (PHEV) fuel efficiency and cost for different 

powertrain and battery characteristics. In [29], data collected in California from 422 

vehicles within seven days using in-vehicle GPS devices is used to predict fuel economy 

by customizing on-road drive cycles of the dataset. In [30], one-day long GPS driving 

cycles for 783 vehicles operating in Texas are used to simulate and study the performance 

of different vehicle powertrains. Using the same dataset, chances of increasing fuel savings 

by adapting the on-road drive cycles based on some standard levels of acceleration rates 

and cruising speeds are studied in [31]. In [32], the data collected in a GPS-based travel 

survey is used to obtain a large set of real-world drive cycles from 227 vehicles in 24 hours 

with second-by-second time resolution in St. Louis metropolitan region. The study use the 

GPS data to investigate the performance of different vehicle technologies. The study in 

[33] investigates the impact of on-road driving cycles on PHEVs using the GPS data from 

Southeastern Michigan collected from 11 vehicles in 26 days. However, we highlight that 

the maximum collection period for the GPS data in the above studies is only 26 days, which 

would be too short for a comprehensive fuel economy or battery life study that needs to 

cover conditions in different circumstances and seasons throughout an entire year. 
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From the above review, we can summarize that all mentioned methods used one of 

two techniques to study vehicle fuel economy using travel surveys. One technique is based 

on using the real-world variables that are directly related to the driver and/or the vehicle in 

the real life and it lacks the data and information of second-by-second drive cycles. The 

other technique is based on the use of the publicly available travel survey datasets that 

include GPS data. Nevertheless, none of the researches have used the GPS data for a long-

term study. The short time-period of the data samples leads to the lack of account for the 

use of year-long real-world data and the various seasonal and environmental conditions 

that impact vehicle fuel economy. Accurate prediction of the widespread, real-world use 

of vehicles demands large data sample size that covers the entire year and therefore the 

various seasonal conditions and factors are involved. 

Another important application of GPS-enhanced travel surveys is to study 

greenhouse gas emissions. For instance, the study in [34] use the GPS data collected from 

over 15,000 taxi vehicles during two weeks to predict air pollution and emissions from 

vehicles in Singapore. A model was implemented to predict the microscopic emissions of 

carbon dioxide (CO2), nitrogen oxide (NOx), volatile organic compounds (VOCs) and total 

suspended particles. The model was based on the velocity and acceleration parameters 

determined from the GPS data. In [35], the GPS data collected in one week were used 

besides the traffic density and CO2 concentration data to construct an estimation model that 

could infer and predict instantaneous emission rates. However, the collection period of the 

GPS data used in most of the studies in the literature is short, for example two weeks as in 

[35]. 
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The GPS-enhanced travel surveys are also used in travel behavior and demand 

studies. For example, the study in [36] combined GPS data with Geographic Information 

System (GIS) to observe and explore travel activity patterns and activity scheduling 

behavior. Another study in [37] used data collected from 78 vehicles in four weeks with 

the trip GPS second-by-second driving data to explore and study drivers’ travel behavior 

and characteristics. However, the shortcoming with the used datasets is again the short 

period of GPS data collection. 

Nemours of travel survey datasets of passenger vehicles were made publicly 

accessible by the NREL. The PSRC and ARC datasets are among these datasets. The two 

datasets were used by some other researchers for different applications. In [38], the 

researchers used both datasets to understand the effect of travel time on auto travel choices 

by developing a method to calculate observed trip-level and household-level reliability 

measures. In [39] the PSRC survey data was used to explore the relationship between the 

population and employment densities and CO2 equivalent (CO2e) emissions taking 

residential self-selection into the account while in [40] the ARC dataset was used to 

measure driving inconstancy. 

1.2.2 BEV Performance and Range Simulation Using Travel Survey Datasets 

Several research studies analyzed and examined the performance and range 

limitations and requirements of BEV. The majority of these studies used trip’s data 

collected from conventional passenger vehicles in travel surveys. The first group of these 

studies were only based on testing the daily traveled distance against a fixed distance 

threshold, which is the range of an average BEV at the study time. For example, in [41], 
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data collected from 484 gasoline vehicles are used to study the range requirements for 

BEVs to cover the needs of these gasoline vehicles’ drivers and they show that BEVs can 

cover a considerable fraction of range besides using some other transportations. The study 

in [42] used trips’ data collected from 255 households in one year to analyze the percentage 

of household driving needs that can be covered by plug-in electric vehicles and show that 

50% of one-vehicle households and 80% of multiple-vehicle households can meet their 

driving needs by using a BEV with 100 mile range. Similarly, the study in [43] used two 

different travel survey datasets to investigate BEV range requirements for one-vehicle and 

multiple-vehicle households. However, because the range of BEV significantly depends on 

driving and environmental factors such as the driving pattern/behavior, ambient 

temperature, and climate control auxiliary energy consumption associated with the ambient 

temperature, several studies analyzed the performance of BEV considering the impact of 

these factors. The experiment in [44] carried out on-road tests on a 2015 Nissan Leaf and 

the results show that the range of the tested BEV decreased about 45% due to cold weather 

conditions. In [45], the study analyzes the impact of driving aggression besides the climate 

and battery temperature on the performance of BEV. Using predetermined aggression-

dependent models, the study estimates the energy consumptions for every trip at three 

aggression levels (high aggression, normal aggression, and low aggression) based on its 

average speed. The study shows that aggression strongly affects the performance of BEV. 

The study in [46] investigates the effect of regional temperature differences on BEV 

performance. The study used a temperature dependent model that was developed using 

data collected from real-world trips made by a 2013 Nissan Leaf. The study shows that the 
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range of BEV decreased about 36% in the Upper Midwest of the US (cold climate). 

However, the studies in [45] and [46] do not include second-by-second drive cycles for the 

trips. The trip aggression cannot be accurately calculated without referring to trip GPS 

velocity profile. 

To more efficiently study and analyze the range and performance of BEV, the 

second-by-second velocity profiles should be included in the study besides the ambient 

temperature data. The study in [47] sets an example in that direction. It simulates the trips 

of the 2009 NHTS with the use of second-by-second drive cycles from other travel survey 

datasets to investigate the capability of BEV to meet the range needs at 12 cities around 

the US. The study shows that 87% of vehicles driven on a given survey-day can be replaced 

by the representative BEV. However, the study does not estimate the energy consumption 

on second-by-second bases as the ADVISORTM simulator does, rather it uses the GPS data 

to estimate energy per distance coefficient so it can be used with trip distance to estimate 

trip energy distribution. Also, some of shortcomings of the 2009 NHTS dataset are that the 

time of trips is not specifically provided as in PSRC dataset and the trip distance was 

provided based on the self-reporting method which may encountered high errors. The study 

needed to apply a de-rounding procedure to estimate the actual trip distance. Also, in this 

study every vehicle was only surveyed on one day of the survey period and as a result, the 

annual results were only estimated based on the surveyed day. It is more efficient for the 

analysis of BEV performance and range to use trips that were made by the same vehicles 

and drivers throughout an entire year of life. Furthermore, most of the aforementioned 
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studies assume that vehicles are fully charged once daily overnight at home and this may 

not be true if we consider the daily life of customers throughout the year. 

1.3 Research Objectives 

The first objective of this study is to use the PSRC and ARC public travel survey 

datasets to produce a new and more efficient year-long dataset of vehicle trips and high-

resolution driving profiles from the two datasets. NREL performed some data cleansing 

and error correction procedures to the raw data of both travel surveys. However, I found 

data errors in some sections and missing data in others, especially in the PSRC dataset. 

Therefore, I first aim to analyze and eliminate GPS-related data problems as exemplified 

by location drift and signal drop-outs that can cause errors, missing values, and 

inconsistency. I aim to develop error-correcting algorithms for both datasets. After the 

analysis and error-correcting steps, the goal of this study is to develop procedures to match 

the trips of PSRC vehicles to the trips of ARC vehicles using some key data variables such 

as trip distance and average speed. The resulting dataset contains trips with second-by-

second drive data representing each trip made by the PSRC vehicles during one year period. 

The objective of the second part of this work is to utilize the dataset generated in 

the first part of this work for studying and analyzing the performance and utility of BEV 

in a period of one year. I aim to use the developed dataset that includes one-year worth of 

trips of 382 passenger vehicles and second-by-second velocity profiles of the trips as well 

to simulate a model of a recent BEV and more accurately analyze and estimate its real-

world performance and range limitations through the entire year. In addition to the long 

period of time and full detailed trips, the generated dataset includes information on the 
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destination of every trip and the tours that drivers took throughout the year and my goal is 

to use such information for the simulation of a realistic strategy for battery charging and 

warming during parking events. This study aims to use the ADVISOR™ software to model 

a representative BEV and simulate the driving activities of every vehicle in the trip dataset 

throughout a period of one year in six different US cities to generate diverse ambient 

temperature profiles in different climates. Los Angeles, Atlanta, Phoenix, Seattle, New 

York, and Minneapolis are chosen as the representatives of different climates around the 

US. I aim to use the 2018 Nissan Leaf as the representative BEV. My goal is to develop an 

algorithm that draws trips’ velocity profiles in the sequence provided by the travel dataset 

and ambient temperature data from the Typical Meteorological Year [48] database based 

on the simulated cities and calculates the energy consumption required by the Nissan Leaf 

on trip, daily, and annual bases. The algorithm also simulates the charging and non-

charging time periods when the vehicles are parked. It calculates and monitors the battery 

temperature during these times based on the automaker’s recommendations and 

suggestions. It also applies realistic assumptions and rules for the charging events based on 

the trip destination provided by the dataset. The charging strategy considers the 

manufacturer recommendations to charge more frequently in small amounts and keep the 

battery charge level as high as possible [49], [50]. The study aims to explore and analyze 

the performance of the modeled BEV during the activities of the simulated conventional 

passenger vehicles and the possibility of covering these activities by the simulated BEV 

throughout an entire year. 
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1.4 Innovative Technical Contributions 

My proposed approach uses the PSRC and ARC datasets in a different and innovative 

way to introduce a method to generate a more powerful new dataset. The longer period of 

the PSRC survey captures driver variation encountered throughout the year. The ARC 

survey was run in a shorter period but had a second-by-second GPS resolution. The two 

datasets are complementary to each other and the new dataset generated by combining 

them can have both year-round trip representation and second-by-second drive cycle traces. 

The new dataset is more comprehensive than the other second-by-second datasets used in 

the literature for fuel economy and other transportation-related studies because it covers a 

full year. It represents not only the driving style of the driver, with respect to speed and 

acceleration of the vehicle, but also the trip patterns, including accurate times when the 

trips occurred and times when the vehicle is parked. It also includes detailed information 

about trips’ destinations and tours. Such a dataset can be very useful and powerful in 

vehicle on-road researches such as fuel economy or battery life studies (as will be shown 

in the second part of this work), tailpipe emissions, and driving pattern and behavior 

analysis. My approach is innovative as no work in the literature has produced such a 

dataset. The dataset is ready to be used by vehicle drive cycle analysis tools, such as 

ADVISORTM. My approach can be generalized and employed to produce other realistic 

databases from other publicly available vehicle travel surveys. 

In the second part of this work I introduce an innovative method to study and 

explore the utilization, performance, and range limitations of BEV during the entire year 

by simulating one-year of driving and non-driving activities of 376 vehicles of the 
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innovative dataset I generated in the first part and taking into the account the real-world 

factors that impact the performance of BEV such as ambient temperature and climate 

control power. The proposed method is innovative where it simulates all of the vehicle one-

year activities, including the driving cycles for every trip, in one second time resolution 

and to the best of my knowledge, none of the studies in the literature has performed such a 

simulation study. The study analyzes the performance of the modeled BEV during the 

activities of the simulated conventional passenger vehicles and explores the possibility of 

covering these activities by the simulated BEV throughout an entire year. Based on the 

simulation of the actual year-long vehicle activities, the study analyzes the required 

adaptions that customers need to consider when they decide to possess BEV. The study 

gives a helpful overview to automobile drivers about the performance of BEV and the 

challenges and obstacles that they may face throughout the year. My proposed approach 

can be extended to any type of BEVs and can use trips and vehicle activates from other 

vehicle travel datasets. 

1.5 Dissertation Outline 

The outline of the remainder of this prospectus proceeds as follows: Chapter 2 

provides the methodology of the proposed technique to analyze and preprocess the two 

datasets and then match them to generate the new dataset. In Chapter 3, I present the results 

and findings of the procedures presented in Chapter 2. Chapter 4 presents my approach to 

simulate and study the performance of BEV and its utilization and range limitations using 

the dataset generated in Chapter 2. In Chapter 5, I reveal and discuss the results and findings 
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of the simulation study presented in Chapter 4. Finally, Chapter 6 shows the conclusion 

and future work suggestions.  
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CHAPTER 2 

METHOD FOR GENERATING A NEW Second-by-Second 

TRIP DATASET FROM THE PUGET SOUND REGIONAL 

COMMISSION (PSRC) AND ATLANTA REGIONAL 

COMMISSION (ARC) TRIP DATASETS 

 

The first goal of this dissertation is to generate an enhanced high-resolution year-

long travel survey dataset from the PSRC and ARC public travel survey datasets by 

applying several intensive analyzing and data-cleaning and validation procedures and then 

trips-matching algorithms. In this chapter all of the proposed procedures and algorithms 

applied to generate the new vehicle trip dataset are presented in details. The initial findings 

of the work demonstrated in this chapter was presented in a research paper [51] and the 

final study including all error-correcting and trip validation algorithms and matching 

procedures was presented in a second research paper [52]. 

2.1 Travel Survey Datasets Overview  

2.1.1 Overview of PSRC Dataset  

The Puget Sound Regional Council ran a travel survey between November 2004 

and April 2006 to collect data with GPS devices from 484 passenger vehicles [53]. The 

data collection was a part of a pricing project sponsored by the Federal Highway 

Association [53]. The main objective of the project was to investigate the travel behavior 

diversities (numbers, modes, routes, and times of vehicle trips) in response to variable 

charges for road use (variable or congestion-based tolling) [53]. NREL makes a portion of 
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the GPS survey data accessible to the public after handling the privacy issues [18]. The 

data provided by NREL is in raw format and may contain errors [18], [53]. The data is 

provided at the household and trip levels. About, 750,000 trips are available from 484 

passenger vehicles reported over a period of 18 months (November 2004 – April 2006), 

and recorded more than 4.5 million vehicle travelled miles. The data contains 38 variables 

and among these variables are the actual trip distance, duration, average speed, and 

maximum speed [53]. The long time-period and the large number of trips make the PSRC 

dataset useful and powerful representing driver’s vehicle usage patterns over a complete 

year or more. Another advantage of the PSRC dataset is the detailed information about 

tours and trips destinations. The trips of each PSRC vehicle are categorized by the original 

survey into four different tours: home-to-home, home-to-work, work-to-work, and work-

to-home tours. The original PSRC travel survey also indicates if the a driver is in vacation 

[53]. This type of information about drivers’ trip destinations and tours is useful and can 

be used in different transportation studies for several purposes such as studying travel 

characteristics and the strategy of charging the battery of the BEV, As discussed in Chapter 

4. 

2.1.2 Overview of ARC Dataset    

The Atlanta Regional Commission conducted its travel survey to extensively study 

the residents’ travel behavior and demographic characteristics within a study area that 

covers 20 counties in the state of Georgia [54]. The objective of this survey was to improve 

ARC travel demand forecasts. The survey was run during a two-month period (March-May 

and July-September 2011) to collect demographic and trip data from at least 10,000 
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households. Among this household sample is a subsample that includes more than 1,000 

households that also included GPS data with a maximum of seven days of GPS data 

logging. 10,278 households completed the travel diary survey and 1,651 of these 

households completed the GPS part of the survey with about 40,000 trips [54]. The NREL 

concealed personal identification information and made the resulting datasets available to 

the public along with the raw GPS speed traces used to validate survey responses [18]. In 

addition to the survey results, NREL has applied a processing procedure to all vehicle GPS 

data to filter vehicle speed traces, and match vehicles to the streets of travel [18]. The 

NREL applied processing routines to process the travel survey data resulting in more than 

350 data variables indicating the type of roads, drive cycle characteristics that incorporated 

the filtered speed and elevation, and trip type categorizations (home, work, school) when 

available [18], [54]. The vehicle sub-sample that submitted GPS data includes 1,653 

passenger vehicles, 1,651 of which completed the processing and are included in the 

NREL-processed results. The quality and high time resolution of the data makes the ARC 

appropriate for second-by-second analysis using vehicle simulation models or other 

techniques. 

2.2 Processing PSRC Dataset  

2.2.1 Analysis of PSRC Data 

Each of the datasets are analyzed to investigate their characteristics and determine 

their suitability for the intended study. In the analysis process, all the trips for every PSRC 

vehicle are investigated. The variables used are distance, average speed, maximum speed, 

and duration of a trip. These are the key variables in vehicle driving pattern and fuel 
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economy studies that use travel survey data collected by GPS devices. They are also among 

data variables used by other transportation studies, such as vehicle gas emissions and travel 

demand and behavior. The distance-average speed relation is analyzed. Also, the 

distributions of average speed and maximum speed of all PSRC trips are analyzed.  The 

PSRC vehicles that had trips in a period of one year or more are the focus of this study.  A 

filtering and cleaning process is applied only to those PSRC vehicles that have such a one-

year window. The filtering process comprises removal of trips with either zero distance or 

zero or negative duration, average speed recalculation, and maximum speed correction. 

Figures. 2.1 to 2.4 indicate that a pre-processing work is necessary. Figure 2.1 shows the 

distribution of the distance-average speed relation of the PSRC trips for the 382 targeted 

vehicles (the targeted PSRC vehicles are the vehicles that have a one-year window of trips 

 

 

Figure 2.1.  Distance-average speed distribution of 653,312 PSRC trips 

of the 382 vehicles before applying the data correction process. 
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or more) before the filtration process is applied, while Figures. 2.2 and 2.3 show the 

distribution of the maximum speeds of the same trips and in Figure 2.4, the distribution of 

average speeds of the same trips is presented. 

In Figure 2.1, the distance of some trips is reasonable, but the average speed is 

unreasonable. In some cases, the average speeds are greater than 100 mph for short 

distances while in other cases the average speeds are less than 25 mph for long distances, 

which indicate erroneous recordings. Similarly, in Figure 2.3, it can be seen that, in some 

trips, the maximum speed is unreasonable. In all the cases, the maximum speed is greater 

than 100 mph. Some of these trips are short trips considering their distances. Compared to 

the average speed of any short trip, its provided maximum speed is apparently incorrect, 

which indicates that the recordings of these specific cases encountered errors. 

 

 

Figure 2.2.  Maximum speed distribution of 648,376 uncorrected PSRC trips of 

the 382 vehicles whose maximum speed was less than or equal to 100 mph. 
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Figure 2.3.  Maximum speed distribution of 730 PSRC trips of the 382 

vehicles whose maximum speed is between 100 mph and 300 mph. Note that 

the maximum speed of about 4,206 PSRC trips is greater than 300 mph. 

 

Figure 2.4.  Average speed distribution of 653,172 PSRC trips of the 

382 vehicles whose average speed is less than 100 mph. Note that the 

average speed of about 3,217 PSRC trips is greater than 100 mph. 
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2.2.2 Correction of PSRC Data  

Because of the sensitivity of downstream applications to both the quality and 

integrity of GPS source data, the operating behavior and errors inherently associated with 

GPS devices has fostered the need for a correction process. The data collected by GPS 

instruments are prone to errors, such as location drifts and signal drop-outs. Thus, the 

correction process is required to make the PSRC dataset suitable for the study. 

In the correction process, all the trips for each PSRC vehicle are analyzed for any 

errors or invalid data range. Some of the data errors could be corrected by recalculating 

some variables or using GPS speed-time data points that are provided by the travel survey 

source. In some trips, the errors could not be corrected or the trip’s data could not be 

validated due to lack of information. When this is the case, the trip is excluded from further 

processing. The following four steps are applied to every PSRC vehicle to filter the data 

and correct errors. 

Step 1: Removing Trips with Zero Distance, Zero Duration or Negative Duration: 

After analyzing PSRC trips, it is noticed that some trips had zero distance and some other 

trips had zero or negative duration (trip start time and date are the same as trip end time 

and date or trip end time is before trip start time). These types of trips were specifically 

marked in the original dataset as “true trips” but they were actually false trips based on my 

analysis. These trips are removed and are not included in this study. 

Step 2: Average Speed Recalculation: The average speed in the original data is calculated 

using the calculated distance and duration. According to the information provided by the 

data source [54], the calculated distance is computed from the GPS speed-time data points 
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and might have (large) errors. Therefore, using actual trip distance leads to more accurate 

average speed calculations. Hence, the average speed of all the PSRC trips is recalculated 

using the actual distance and duration of the trip: 

average speed (mph) =
actual trip distance (miles)

trip duration (hours)
                                       (1.1) 

Step 3: Maximum Speed Correction: The maximum speeds for several PSRC trips are 

corrected. As shown in Figures 2.2 and 2.3, in some trips unrealistic maximum speeds were 

provided. It is clear that the maximum speed calculations encountered errors and these 

errors can be corrected by referring to the GPS speed-time data points of the vehicle.  Based 

on my investigations, the maximum speed of the trip is the maximum speed value in the 

GPS speed-time data points (neglecting all unreasonable speed points). The procedure for 

correcting the maximum speed errors is shown in Figure 2.5. 

An upper threshold of 100 mph for the maximum speed is assumed and used to 

validate every trip including the trips with maximum speed that is less than or equal to 100 

mph. The maximum speed for all the PSRC trips are checked and, whenever feasible, 

correct any trips and, whenever feasible, correct any unmatched (i.e. when reported 

maximum speed does not equal to the actual maximum speed from GPS speed-time data 

points) or unrealistic maximum speeds (i.e. when maximum speed is over 100 mph). For 

every PSRC trip, if the GPS speed-time points are provided and not all of the speed values 

are greater than 100 mph, the trip maximum speed is calculated as the maximum speed 

value of the speed points after neglecting all speed points that are more than 100 mph. 

Then, the trip provided maximum speed is replaced with the new calculated maximum 

speed if the two maximum speeds do not match. The maximum speed of the PSRC trip is 
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not corrected if the GPS speed-time points are not provided for the PSRC trip or the GPS 

speed-time points are provided but all of the speed values are greater than 100 mph. 

In some PSRC trips, the maximum speed is not provided by the data source. These 

trips are excluded from the maximum speed correction step because it is noticed that the 

GPS speed-time data points are also missing in the data source. However, these trips are 

still used in this study since the trip’s maximum speed is not a focus of this study. 

 

Step 4: Validation of Distance-Speed Relation of Trips: From Figure 2.1 it can be seen 

that, for some trips, the relationship between the distance and the average speed may not 

be correct (e.g., small distance with high average speed). To check for this error and 

 

Figure 2.5. The procedure for correcting the maximum speed of the PSRC 

trip using the GPS speed-time points provided for the PSRC trips. 
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validate the PSRC trips, I subject all the PSRC trips to a simple trip model that I devised 

for the purpose of validation. To the best of our knowledge, this type of validation is not 

applied in any of the existing studies in the literature. PSRC trips with actual distance less 

than or equal to 0.05 miles are excluded from this model test.  These trips are considered 

as “zero distance trips” and are also excluded from the matching process. In the trip-testing 

model shown in Figure 2.6 that acts as a screener, the acceleration is set to 0.35g and the 

deceleration to 1g, representing a vehicle achieving 60 mph from 0 mph in 7.82 seconds 

and a stopping distance of 120 feet when decelerating from 60 mph to a complete stop. 

According to the real-world testing results provided in an Auto Issue of the Consumer 

Reports magazine [55], the average time required to accelerate from 0 to 60 mph for 255 

of 2018  passenger cars was 7.96 seconds and the average dry-braking distance was 133 

feet. Given that the vehicles in the PSRC and ARC surveys were made before 2007 and 

2012, respectively, it is reasonable to assume that, as a group, these vehicles’ acceleration 

and breaking performances are worse than those of the 2018 vehicles. Therefore, using 

0.35g for the acceleration and 1g for the deceleration in the testing model is expected to be 

able to perform effective screening -- excluding those trips that are likely false and keep 

the trips that are genuine. 

By using the provided maximum speed (after recalculation with errors detected and 

corrected) and the duration of the trip, the trip model as shown in Figure 2.6 is constructed, 

where 𝑑 is the trip duration in seconds, 𝑚𝑎𝑥 is the trip maximum speed in mph, 𝑏 =

𝑚𝑎𝑥

0.35𝑔
 (𝑠𝑒𝑐𝑜𝑛𝑑𝑠), and 𝑐 = 𝑑 −

𝑚𝑎𝑥

𝑔
 (𝑠𝑒𝑐𝑜𝑛𝑑𝑠). Then the distance and the average speed 
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for the assumed trip model can be calculated from the constructed pattern using the 

following equations: 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =
(𝑐−𝑏+𝑑) 

7200
 ×  𝑚𝑎𝑥 (𝑚𝑖𝑙𝑒𝑠)                                                       (1.2) 

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑠𝑝𝑒𝑒𝑑 =  
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑑
×  3600 (𝑚𝑝ℎ)                                              (1.3) 

 

The distance and average speed calculated from the trip model represent a 

reasonable upper bound on the distance and average speed of an actual trip, given only the 

duration. If the distance and/or the average speed that is calculated from the constructed 

pattern is less than the trip provided distance or average speed, then the trip is not counted 

and is dropped from this study. Also, the trip is dropped from this study if it is not long 

enough to reach the maximum speed (i.e. c < b in Figure 2.6). Note that in the case of the 

maximum speed not being provided for a PSRC trip, the trip is excluded from the trip 

model test, but it is still used in the study because the most important information is the 

 

Figure 2.6. Proposed trip model for validating the PSRC trips. 
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trip distance and average speed. A trip with missing maximum speed but having all the 

other information can still be useful in many vehicle research studies. 

2.2.3 Selection of the Best One-Year Window for Trips    

Research such as fuel economy studies should consider all driving circumstances, 

which implies using the driving data from the trips that took place through the entire year. 

Thus, I analyze every PSRC vehicle and choose only vehicles that made trips throughout a 

period of one year or more. For every chosen PSRC vehicle, a one-year sliding window is 

applied to all the trips made by the vehicle, starting with the first trip and moving on until 

reaching the last possible one-year, or more, window of trips. This generates multiple 

consecutive one-year windows of trips. Then, among these one-year windows, the window 

that has the number of trips closest to the average number of trips of one-year windows of 

the vehicle is selected as the best one-year window, or the representative window, for the 

vehicle: 

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑖𝑝𝑠 𝑓𝑜𝑟 𝑜𝑛𝑒 𝑦𝑒𝑎𝑟 𝑤𝑖𝑛𝑑𝑜𝑤𝑠 =

𝑠𝑢𝑚 𝑜𝑓 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑖𝑝𝑠 𝑖𝑛 𝑜𝑛𝑒 𝑦𝑒𝑎𝑟 𝑤𝑖𝑛𝑑𝑜𝑤𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑛𝑒 𝑦𝑒𝑎𝑟 𝑤𝑖𝑛𝑑𝑜𝑤𝑠 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑣𝑒ℎ𝑖𝑐𝑙𝑒
  (1.4) 

2.2.4 Analysis and Processing of Zero Distance Trips 

As mentioned above, the PSRC trips with distance less than or equal to 0.05 miles 

are considered as “zero distance trips” and they are excluded from the trip model validation 

step in the data correction process and will also be excluded in the matching procedures. 

However, these trips are still included in the final generated dataset as short distance trips 

without velocity profiles. To analyze and explore these trips, I apply the trip model 

validation test separately against these trips and investigate the percent of these trips that 
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could pass the validation test. Also, these trips are analyzed and investigated based on their 

destinations and tour categories to explore and study their travel behavior characteristics. 

2.3 Processing ARC Dataset  

2.3.1 Analysis of ARC Data 

The data in the ARC dataset was collected using GPS devices and its quality was 

deemed reasonable (see Figure 2.7). Specifically, for driving data, the speed data had 

reasonable ranges, with highest speed being around 100 mph and average speed of around 

26 mph. Because the survey was run for a different purpose than our study, the raw data 

was processed according to the requirements of the survey’s objectives.  In order to save 

storage space, the ARC trips have consecutive points at zero speed, also called “idle time”, 

removed from the drive cycle file. Examining the time stamps in the drive cycle is 

necessary to determine the length of the idle period. The trip average speed data provided 

by NREL had been calculated based on the GPS speed-time data points for the trip after 

exclusion of the zero speed points (i.e., idling time) [22, 53]. The actual trip duration was 

ignored. Driver’s trip driving patterns ought to include idle time in addition to actual 

driving time. Also, in order to simplify processing of the drive cycles by vehicle models, I 

desire to add the zero speed periods back in the cycle files. 

Therefore, I put the idle time explicitly back in all ARC trips. The start and end 

times and dates are provided for every ARC trip. By using all this information and 

investigating the GPS speed-time data points for the trip, I add the removed time points at 

zero speed. To make the ARC trips consistent with the PSRC trips whose average speed 
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was calculated using trip’s actual distance and duration, I recalculate the average speed for 

all the ARC trips based on the actual trip duration (including the idle time) and distance. 

Figure 2.7 shows the distance-average speed distribution of the original ARC trips 

that we obtained after adding the removed time points at zero speed and recalculating the 

average speed. Compared to the distribution of the PSRC trips shown in Figure 2.1, the 

distribution of the ARC trips looks more normal where none of the ARC trips had low 

distance and high average speed, or high distance and low average speed. Figure 2.8 shows 

the distribution of their maximum speeds which also looks more normal comparing to the 

distribution of the PSRC trips shown in Figure 2.2. 

 

 

Figure 2.7.  Distance-average speed distribution of 39,433 original 

ARC trips of the 1,651 vehicles after data processing. 
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2.3.2 Generating New ARC Trips from the Original ARC Trips 

The main goal of the work in this chapter is to use the PSRC and ARC trips to 

develop a driver-based second-by-second driving cycle database for vehicle usage patterns 

covering an entire year. Such a driving cycle database may be produced by using the 

second-by-second data of the ARC trips and the validated PSRC trip data after applying 

certain procedures to these trips. This can be accomplished by matching the PSRC trips to 

the ARC trips based on trip information such as the distance, average speed and duration. 

For good matching, I require that the two trip datasets involved have very similar distance-

average speed distributions. As shown in Figures 2.7 and 2.2, the distributions of the PSRC 

and ARC trips have some similarity, but some regions of the PSRC distributions are not 

included in the ARC distributions. To address this problem, and more specifically, to 

include the PSRC trips that had short duration and high average speed in ARC trips’ 

 

Figure 2.8.  Maximum speed distribution of 39,433 original ARC trips 

of the 1,651 vehicles after data processing. 
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distributions, new ARC trips are generated from the original ARC trips by considering 

every driving cycle between each two idle time portions that each of them is greater than 

or equal to three seconds as a trip (i.e., a micro trip). As a result, we can have trips that 

have small distances and high average speeds. 

2.4 Matching the PSRC Trips by the ARC Original and Micro Trips  

After pre-processing the two datasets as described above, the PSRC trips are matched 

to the trips of the ARC dataset as follows. The trips of every PSRC vehicle are matched to 

the trips of ARC vehicles based on the key variables of the trip, which are distance, average 

speed, and a specific duration condition. Generally, the distance of the PSRC trip is first 

matched by the distances of all the ARC trips with an error band of ± 3%. Then, an average 

speed error band of ± 3% is applied to the average speeds of the resulting ARC trips. 

Finally, all ARC trips that passed the previous two matching steps are subject to a duration 

test shown in Eq. 1.7 - the duration of the ARC trip should not be greater than the duration 

of the PSRC trip plus the soak time. Vehicle soak time is the time duration a vehicle’s 

engine is off. The soak time for a PSRC trip is the time length between the end of a trip 

and the start of the next trip. If more than one ARC trip meets these criteria, then one of 

them is randomly chosen as the final ARC trip that matched the PSRC trip and the others 

are saved as diverse representatives of the same PSRV trip. Figure 2.9 shows the main 

procedure for matching the PSRC trips by single original ARC trips using the above-

mentioned strategy. 

If the matching procedure shown in Figure 2.9 could not result in any original ARC 

trip, different matching strategies are then applied. First, the PSRC trip is matched by 
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combining up to four original ARC trips using the procedure shown in Figure 2.10. In this 

procedure, the average speed of the PSRC trip is first matched by the average speeds of all 

the original ARC trips with an error band of ± 3%. Then, among the resultant original ARC 

trips whose distances are less than the distance of the PSRC trip, the trip with the closest 

distance to the PSRC trip’s distance is selected. Finally, the selected  

 

 

Figure 2.9.  The procedure for matching the PSRC trip by single 

original ARC trips. 



38 

 

 

original ARC trip is combined with up to 4 trips of the resultant original ARC trips to 

achieve the satisfaction of error band of ± 3% for the distance and average speed and the 

satisfaction of the duration condition for the combined trip. If the combination procedure 

failed to generate a matching trip for the PSRC trip, the PSRC trip is matched by single 

ARC micro-trips as shown in Figure 2.11 following the same strategy as in Figure 2.9 by 

replacing the original ARC trips with the ARC micro-trips. 

distance error (%) =
distance of current PSRC trip− distances of all ARC trips

distance of current PSRC trip
×  100           (1.5) 

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑠𝑝𝑒𝑒𝑑 𝑒𝑟𝑟𝑜𝑟 (%) =

 
𝑃𝑆𝑅𝐶 𝑡𝑟𝑖𝑝′𝑠 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑠𝑝𝑒𝑒𝑑 − 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑠𝑝𝑒𝑒𝑑 𝑜𝑓 𝑚𝑎𝑡𝑐ℎ𝑒𝑑 𝐴𝑅𝐶 𝑡𝑟𝑖𝑝𝑠

𝑃𝑆𝑅𝐶 𝑡𝑟𝑖𝑝′𝑠 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑠𝑝𝑒𝑒𝑑
× 100    (1.6) 

𝐴𝑅𝐶 𝑡𝑟𝑖𝑝′𝑠 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛   ≤ 𝑃𝑆𝑅𝐶 𝑡𝑟𝑖𝑝′𝑠 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 +  𝑃𝑆𝑅𝐶 𝑡𝑟𝑖𝑝′𝑠 𝑠𝑜𝑎𝑘 𝑡𝑖𝑚𝑒         (1.7) 

If the PSRC trip still could not be matched by an ARC trip(s), the ARC combination 

procedure shown in Figure 2.10 is repeated, but using both original and/or ARC micro-

trips with as many combinations as needed preferring the original ARC trips. By combining 

ARC trips (original and/or micro trips) as shown in Figure 2.10, the distance of the 

generated ARC trip can be increased while maintaining the average speed. Finally, in the 

case when all the previous procedures failed to find a matching ARC trip for the PSRC 

trip, a procedure that modifies an original ARC trip to match the PSRC trip is applied as 

shown in Figure 12. In this procedure, the distance of the PSRC trip is first matched by that 

of all the original ARC trips with an error band of ± 3%. Then, among the resultant ARC 

trips, the trip whose average speed is greater than the average speed of the PSRC trip by 

the least amount is selected. Then, the idle time that is required to reduce the average speed 
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of the selected ARC trip to make it within an error band of ± 3% of the average speed of 

the PSRC trip is added to this ARC trip provided that the added idle time is less than one-

third of the PSRC trip’s duration. Finally, if the resultant ARC trip satisfies the duration 

condition presented in (7), a new vehicle ID and trip ID are generated for the resultant ARC 

trip and this trip is assigned as the matching trip for the PSRC trip. By using this procedure, 

the length of the idle periods of the trip can be increased to reduce the average speed of the 

trip without changing its distance. In the case when all the four procedures failed to find a 

matching ARC trip for a PSRC trip, that specific PSRC trip is excluded from this study. 

The matching procedures produced a dataset that inherits the usage patterns of the PSRC 

dataset (the long time-period covering the entire year) and the advantages of the ARC 

dataset (the high time resolution of the clean GPS speed-time data points). 
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Figure 2.10.  The procedure for matching the PSRC trip by a combination of 

ARC trips. If the procedure is called from Figure 2.10, both original and ARC 

micro-trips may be used with as many original trips to be utilized as possible. 
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Figure 2.11.  The procedure for matching the PSRC trip by single ARC 

micro-trips. 
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Figure 2.12.  The procedure for matching the PSRC trip by a single modified 

original ARC trip. 
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CHAPTER 3 

NEW SECOND-BY-SECOND TRIP DATASET 

GENERATED FROM THE PSRC AND ARC DATASETS 

3.1 Results of Processing PSRC Dataset 

The results of filtering and processing the PSRC trips are shown in Table 3.1. It can 

be observed that after the correction process, the trips have a reasonable distribution. From 

Table 3.1, 3.43% of the PSRC trips had either a maximum speed over 100 mph or an 

erroneous maximum speed. Most of these trips were correctable and were fixed. Only 

0.15% of the trips could not be corrected because of the limitations of the GPS speed-time 

data points. 

Table 3.1. Results of the filtration process of PSRC trips. 

 Mean (%) STD (%) 

Trips with zero actual duration 5.86 5.62 

Trips with zero actual distance 5.76 5.64 

Trips failing the trip model test 5.30 2.75 

Trips with incorrect maximum speeds 3.43 1.06 

Trips with corrected maximum speeds 3.37 0.99 

Trips removed due to erroneous maximum 

speeds 
0.06 0.15 

Trips with negative duration 0.0001 0.0001 

Figure 3.1 shows the distance-average speed distribution of the corrected PSRC 

trips of the 382 vehicles that passed the one-year window process (we call them the targeted 

vehicles) excluding “zero distance trips”. Compared with Figure 2.1, the distribution was 

improved and the new distribution was similar to the distribution of the ARC trips. The 
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trips with a long distance and an unreasonably low average speed were corrected, so were 

the trips with a short distance and an unreasonably high average speed. Figure 3.2 provides 

a closeup examination of the distance-average speed distribution of the PSRC trips shown 

in Figure 2.1. The theoretical upper limit boundary imposed by the trip model (Figure 2.6) 

was also exhibited. All the corrected PSRC trips passed the model because they were all 

within the boundary. Figure 3.3 shows that the maximum speeds of the PSRC trips of the 

targeted vehicles tend to follow a bi-modal distribution, with a large number of trips with 

low maximum speed. Figure 3.4 shows the improvement in the average speed of the PSRC 

trips. 

 

The results of applying the best one-year window process are shown in Figures 3.5 

and 3.6. Figure 3.5 illustrates the distribution of the number of one-year windows of the 

382 targeted PSRC vehicles after the filtering process. The mean of the number of the one-

 

Figure 3.1.  Distance-average speed distribution of 508,559 PSRC 

trips (excluding zero_distance_trips) made by the 382 vehicles that 

fitted the one-year window after the data correction process. 
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year windows was 58 windows. Figure 3.6 shows the distribution of the number of the trips 

in the best one-year windows of the targeted vehicles after the filtering. The average 

number of the trips in the best one-year window was 1,396 trips while the minimum number 

of the trips in a best one-year window was 294 trips. 

 

Figure 3.7 presents the distribution of the number of driving days in the best one-

year window for the targeted PSRC vehicles. We noticed that most of the targeted vehicles 

had more than 200 driving days in their best one-year windows. The average of the driving 

days in the best one-year windows was 283 days, which means the average driver in the 

PSRC data set used their vehicles for 77.5% of the days in the year. 

Some drivers in the PSRC dataset used their vehicles nearly every day, but the most 

typical usage pattern is around 300 days per year as Figure 3.7 shows. There was also a 

large variation in the number of trips taken per year, from as little as 250 trips to nearly 

 

Figure 3.2.  A closeup view of the distance-average speed distribution 

of the PSRC trips shown in Figure 3.1. 
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3000 trips per year as described in Figure 3.6. From Figure 3.8, it can be seen that there is 

a strong correlation between the number of yearly trips and the number of days per year 

that a vehicle is used. 

 

 

 

Figure 3.3.  Maximum speed distribution of 508,559 corrected PSRC 

trips (excluding zero_distance_trips) made by the 382 vehicles that 

fitted the best one-year window after the data correction process. 

 

Figure 3.4.  Average speed distribution of 508,559 corrected PSRC 

trips (excluding zero_distance_trips) made by the 382 vehicles that 

fitted the best one-year window after the data correction process. 
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Figure 3.5.  Distribution of the number of one-year windows for the 

382 PSRC vehicles after the data correction process. 

 

Figure 3.6.  Distribution of the number of trips in the best one-year 

windows for the 382 PSRC vehicles after the data correction process. 
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Figure 3.7.  Distribution of the number of driving days in the best one-

year windows for the 382 PSRC vehicles after the data correction and 

pre-processing steps. 

 

Figure 3.8.  Correlation between the number of driving days and the 

number of trips in the best one-year windows for the 382 PSRC 

vehicles after the data correction process. 
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Figures 3.9 – 3.11 show the results of analyzing and processing the PSRC zero 

distance trips (trips with distance less than or equal to 0.05 miles). Out of the total number 

of trips for the entire dataset, there were 15,657 trips (3%) that were considered as zero 

distance trips and (in contrast, the percent of zero distance trips in the ARC dataset is only 

0.4%). After processing these trips, it was found that the majority of these trips (75% as 

shown in Figure 3.9) were trips among home-to-home tours. Figure 3.9 shows the 

distribution of percent of zero distance trips made by the 382 PSRC vehicles based on the 

four tour categories provided by the original PSRC travel survey. 

 

As mentioned in Chapter 2, for the analysis purpose, all zero distance trips were 

tested separately against the trip model validation test discussed in Chapter 2 and it was 

found that only 2,968 trips passed this test, which is about 19% of the total number of zero 

distance trips, despite the fact that 99% of these trips were marked as good trips by the 

 

Figure 3.9.  Distribution of percent of the four tour categories in the total 

zero distance trips (15,657 trips)  made by the 382 PSRC vehicles. 
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original PSRC travel survey. Compared to the ARC dataset, all zero distance trips in the 

ARC dataset passed the trip validation model. The distribution of the percent of each 

category of the four tour categories in the zero distance trips that passed the trip model test 

is shown in Figure 3.10 and it is very similar to the distribution in all zero distance trips 

shown in Figure 3.9. From Figure 3.11 it can be noticed that 48% of these zero distance 

trips were either from-home or to-home trips while the percent of from-work and to-work 

trips was 14%. The percent of trips with other destinations was 38%. Based on the original 

PSRC travel survey [52], a recorded trip is the vehicle activities (driving and idling 

activities) that take place from the event of turning the key on to the event of turning the 

 

key off. Hence, 48% of the zero distance trips that passed the trip model test, were real 

short trips either from-home where the driver leaves home and stops at a close location, 

with turning the key off, for a certain purpose, for example visiting a neighbor, or to-home 

 

Figure 3.10.  Distribution of percent of the four tour categories in the 2,968 zero 

distance trips made by the 382 PSRC vehicles and passed trip validation model. 
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where the driver stops before reaching home, but close to home for a certain purpose with 

turning the key off and then start the zero distance trip towards home. 38.6% of these to-

home or from-home trips were actually trips made from home and to home at the same 

time. This means that these trips are actually short-distance home-home tours with just one 

trip made in such a way that a driver heads from home to a close location with distance less 

than or equal to 0.05 miles for a specific purpose such as checking the mail box without 

turning the key off and then coming back home. 38% of the total zero distance trips that 

passed the trip validation model were short trips between any two locations that are 0.05 

miles far from each other or less. An example of these trips is moving a vehicle from one 

slot to another in a parking lot.  

 

Figure 3.12 demonstrates the distance-average speed distribution of the 2,968 zero 

distance trips made by the 382 PSRC vehicles and passed the trip validation model and the 

 

Figure 3.11.  Distribution of percent of trip destinations in the zero distance 

trips made by the 382 vehicles and passed trip validation model. 
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zero distance trips of the ARC trips. Figure 3.12(a) shows the distance-average speed 

distribution of the 2,968 zero distance trips made by the 382 PSRC vehicles and passed 

 

the trip validation model compared to the distance-average speed distribution of the 153 

zero distance trips of the original ARC trips and Figure 3.12(b) shows the distance-average 

 
(a) 

 
(b) 

Figure 3.12.  a) Distance-average speed distribution of the 2,968 zero distance 

trips made by the 382 PSRC vehicles and passed the trip validation model and the 

153 zero distance trips of the original ARC trips. b) Distance-average speed 

distribution of the same 2,968 PSRC zero distance trips and the 17,705 zero 

distance trips of the original ARC and sub-trips. 
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speed distribution of the same PSRC trips compared to the distance-average speed 

distribution of the 17,507 zero distance trips of the original and ARC sub-trips. From 

Figure 3.12, it can be noticed that most of the PSRC zero distance trips that passed the trip 

validation model has low average speed and compared to the ARC zero distance trips we 

may infer that some of these trips encountered more idling time (i.e. they are trips with 

short distance and long duration) and some of them may be just very short local trips where 

the driver turns the key on and the vehicle moves in low speed to a close location then the 

key is turned off. Also, the results shown in Figure 3.12 indicates that only few of the 

mentioned PSRC zero distance trips can be matched by the original ARC zero distance 

trips and several of several of them may not be matched either by the zero distance trips of 

the original or the ARC sub trips. 

3.2 Results of Processing ARC Dataset 

         From Figures 3.13 and 3.14, it can be seen that the ARC micro-trips increased the 

regions of the distance-average speed distribution of the ARC trips and improved the ability 

of the ARC trips to match the PSRC trips. 143,905 trips were created from the 39,433 

original ARC trips. 

 As shown in Figure 3.15, the overlap region of the distance-average speed 

distributions of the PSRC trips and the ARC trips increased because of the inclusion of the 

ARC micro-trips, especially in the low distance region. As will be seen in the next section, 

the ARC micro-trips contributed to about 1% of the matching results. In other words, 1% 

of the PSRC trips failing to be matched by the original ARC trips and were matched by the 
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ARC micro-trips. The generation of ARC micro-trips increases the number of ARC trips 

that have short distances.  

 

 

 

Figure 3.13.  Distance-average speed distribution of 143,905 ARC 

micro-trips. 

 

Figure 3.14.  Distance-average speed distribution of 183,338 ARC 

trips composed of both the original and ARC micro-trips. 
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 As shown in Figure 3.15, the overlap region of the distance-average speed 

distributions of the PSRC trips and the ARC trips increased because of the inclusion of the 

ARC micro-trips. As will be seen in the next section, the ARC micro-trips contributed to 

about 1% of the matching results. In other words, 1% of the PSRC trips failing to be 

matched by the original ARC trips and were matched by the ARC micro-trips. 

 

3.3 Results of Matching the PSRC Trips by the ARC Trips 

The fraction of PSRC trips matched by the ARC trips was very high.  Figure 3.16 

shows that 99.978% of the targeted PSRC trips were successfully matched by the ARC 

trips. Only 0.278% of the PSRC trips could not be matched by the ARC trips because of 

average speed mismatch and only 0.0311% of the PSRC trips failed to meet the duration 

condition. None of the targeted PSRC trips failed to be matched by the ARC trips due to 

distance mismatch. 

 

Figure 3.15.  Distance-average speed distribution of 183,338 ARC trips composed 

of both the original and ARC micro-trips and 524,197 PSRC trips made by the 382 

vehicles fitting the one-year window after the data correction process. 
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 Table 3.2 shows the details of the successful matching results. Note that 97.47% of 

the matched trips were achieved by using only one original ARC trip (i.e., no combination 

of ARC trips was needed) while 1% of the matched trips were obtained by using only one 

ARC micro-trip.  

 

Table 3.2. Results of the matching all PSRC trips by ARC trips. 

 (%) 

One of the original ARC trips 97.470 

One of the ARC micro-trips 1.000 

Combination of two original ARC trips 1.160 

Combination of three original ARC trips 0.100 

Combination of four original ARC trips 0.041 

Combination of more than four original ARC trips 0.220 

Modified ARC trips 0.009 

 

Figure 3.16.  Results of matching the 508,559 PSRC trips by the ARC trips subject 

to a distance error band of ±3% and an average speed error band of ±3%. 
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 There were 1.301% and 0.22% of the matched trips that were respectively produced 

by combining four or less and more than four of the original and ARC micro-trips. Only 

0.009% of the PSRC matched trips were attained by modifying the original ARC trips by 

adding or removing their idle times. Overall, 99.978% of the dataset total number of trips 

were successfully matched and the resultant dataset has a total 508,447 of trips. 

 Figure 3.17 shows the distribution of the matching percentage of the targeted PSRC 

vehicles, which was satisfactory. Each and every trip of around 30% of the 382 targeted 

vehicles (114 vehicles, to be exact) was completely matched. The mean of the matching 

percentage for the 382 PSRC targeted vehicles was 99.72% and the minimum matching 

percentage was 95.25%.  

 

 In Figure 3.18, the distribution of the distance differences and the distance errors 

of the targeted PSRC trips are presented. An ideal matching process should not result in a 

 

Figure 3.17.  Matching percentage distribution of the 382 PSRC vehicles subject 

to a distance error band of ±3% and an average speed error band of ±3%. 
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matched ARC trip whose distance is substantially different from the distance of the PSRC 

trip being matched. Hence, we restricted the matching distance error to be ±3%. We 

calculated the percent of the total yearly distance error between the targeted PSRC trips 

and the matched ARC trips. We found that that percent was a mere 0.0557%. The yearly 

percent distance errors were randomly distributed around a mean of 0.03%, which is near 

zero. This indicates that overall the change in the total yearly distance was very small for 

the matching trips. 

 

 From Figures 3.19 and 3.20, the overall results indicate that the matching distance 

error and the average speed error were approximately normally distributed. The mean of 

the distance errors was 1.48% whereas for the average speed errors the mean was 1.49%. 

Notice that the standard deviations of these two errors were quite low - 1.72% for the 

 

Figure 3.18.  a) Distribution of distance differences of the PSRC trips 

after matched by the ARC trips. b) Distribution of distance errors for 

the same PSRC trips after they were matched by the ARC trips. 
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matching distance error and 1.73% for the matching average speed error, confirming the 

distributions to be close to uniform. 

Also, by looking at the data histograms, it can be seen that neither of these 

distributions is normal. Rather than attempting to fit statistical distributions to these 

datasets, my method uses the actual data itself to empirically describe driver usage patterns. 

Figure 3.21 shows some examples of the driving cycles of some PSRC trips after 

being matched by different ARC trips using the different matching procedures. Figure 3. 

21(a), shows the driving cycle of a PSRC trip with 2.01 miles distance, 22.27 mph average 

speed, and 325 seconds duration that is matched by an original ARC trip. Figure 3.21(b) 

shows the driving cycle of a PSRC trip with 0.98 miles distance, 2.08 mph average speed, 

and 1,698 seconds duration matched by combining four original ARC trips. Figure 3.21(c) 

shows the driving cycle of a PSRC trip with 0.28 miles distance, 19.33 mph average speed, 

and 53 seconds duration, which is matched by an ARC micro-trip. Finally, Figure 3.21(d) 

shows the driving cycle of a PSRC trip with 0.25 miles distance, 2.27 mph average speed, 

and 1,310 seconds duration that is matched by combining more than four original ARC 

trips. 
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Figure 3.19.  Distributions of the means of the absolute matching errors 

for the PSRC trips after being matched by the ARC trips. a) Distribution 

of the means of the absolute distance errors. b) Distribution of the 

means of the absolute average speed errors. 

 

Figure 3.20.  Distributions of the standard deviations of matching errors 

for the PSRC trips after being matched by the ARC trips. a) Distribution 

of the standard deviations of the distance errors. b) Distribution of the 

standard deviations of the average speed errors. 
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 Figure 3.22 shows three different examples of the cycle of the average trip of the 

generated dataset. The distance of the average trip was 6.8 miles and the average speed was 

26.8 mph. The average trip of the generated dataset was determined by averaging the 

distance of the dataset and choosing trips with an error band of ± 3%. Then, an average 

speed error band of ± 3% is applied to the average speeds of the chosen trips to choose a 

pool of trips that match the average trip of the dataset. 667 trips of the dataset matched the 

average trip and in Figure 3.21 the cycles of only three trips were plotted as examples. 

 

Figure 3.21.  Results of matching driving cycles of four different PSRC trips by ARC 

trips. a) a PSRC trip matched by one original ARC trip. b) a PSRC trip matched by a 

combination of four original ARC trips. c) a PSRC trip matched by one ARC micro-

trip. d) a PSRC trip matched by a mixture of 4 original and 4 ARC micro-trips. 



62 

 

 

 

 As an illustration, Figure 3.23 shows the distance-average speed distribution of the 

508,447 PSRC trips that were successfully matched by the ARC trips, including the 

average trip of the dataset, and the distance-average speed distribution of EPA standard 

drive cycles and European Artemis drive cycles that are listed in Table 1.1. It can be seen 

that the distance-average speed distribution range of the new dataset covers all of EPA and 

European Artemis different drive cycles. This indicates that in addition to representing 

different real-world driving cycles and patterns, the generated dataset still takes into the 

account and covers the standard driving cycles that are used for fuel economy and gas 

emissions tests. 

 To sum up, after matching the PSRC trips with the ARC trips, the final generated 

dataset has a total of 508,447 trips made on 106,203 driving days of 382 vehicles in one 

year with a second-by-second velocity profile for each trip. Figure 3.24 shows the 

 

Figure 3.22.  Three examples of the cycle of the average trip of the 

generated dataset. 
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distribution of the annual traveled distance for the 382 vehicles of the final generated 

dataset. The average vehicle of the 382 vehicles traveled 8,790 miles in the one-year 

selected window. Figure 3.25 shows the monthly distributions of the traveled distance, 

number of driving days, and number of trips for the total 382 vehicles of the generated 

dataset. It can be clearly seen from Figure 3.25 that the generated dataset has less number 

of driving days, total number of trips, and traveled distance in February and March than in 

the other months. On the other hand, it has more number of driving days, number of trips, 

and traveled distance in July and August (i.e. in the summer) than in the other months. This 

can also be noticed from Figure 3.26 which presents the distributions of the total number 

of daily trips in each month of the year for the 382 PSRC vehicles. 

 

 

Figure 3.23.  Distance-average speed distribution of the 508,447 PSRC 

trips that were successfully matched by the ARC trips, the generated 

dataset average trip, and the EPA standard drive cycles and the 

European Artemis drive cycles that are listed in Table 1.1. 
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Figure 3.24.  Distribution of the annual traveled distance in the best one-

year windows for the 382 PSRC vehicles of the final generated dataset. 

 

Figure 3.25.  Distributions of monthly total traveled distance, number of driving 

days, and number of trips for the 382 vehicles of the final generated dataset. 
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Figure 3.26.  Distributions of total number of daily trips in each month of 

the year for the 382 vehicles of the final generated dataset. 
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CHAPTER 4 

UTILIZATION AND PERFORMANCE OF BATTERY 

ELECTRIC VEHICLE USING THE GENERATED TRIP 

DATASET: Method 

 

 The objective of the simulation study presented in this chapter is to explore and 

analyze the performance, utilization, and range limitations of BEV using the trip dataset 

that I generated in Chapter 2. In this chapter, I first give an overview about the temperature 

datasets I investigated to be used for this simulation study as the source for the ambient 

temperature outside the vehicle. Then, I present the overview of the specifications of the 

simulated BEV (2018 Nissan Leaf), its EPA fuel and range ratings, and the reasons to be 

chosen for this study. Finally, I present all the steps of my methodology for simulating the 

one-year driving and non-driving activities of every vehicle of the generated dataset to 

study the performance and range limitations of the representative BEV throughout one 

year. The work presented in this and next chapter are reported in my research paper [56]. 

4.1 Temperature Data 

Ambient temperature data play important role in the BEV performance and utility 

studies. In BEV simulation studies, the ambient temperature at the beginning of every 

vehicle trip is required to estimate the desired thermal and electrical energy for the climate 

control system during the trip. It is also required for calculating and monitoring the battery 

temperature during charging and non-charging parking activities of vehicles and to 

estimate the battery capacity as the ambient temperature impacts several battery capacity-
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related characteristics such as the internal resistance and state-of-charge (SOC). Thus, I 

needed to search the publicly available databases for a temperature dataset that provides 

hourly temperature data for a large number of geographical locations around the US for a 

period of one year to be used in this BEV simulation study. The first dataset I was able to 

find was provided by the National Oceanic and Atmospheric Administration (NOAA) and 

the second one, which I use in this study, was the TMY3 dataset that was provided by the 

NREL. In the next two subsections I briefly give an overview about the datasets and discuss 

the reasons behind choosing the TMY3 dataset for my study. 

4.1.1 National Oceanic and Atmospheric Administration (NOAA) Temperature 

Dataset [57] 

  The NOAA provides two publicly accessible temperature datasets for hourly 

temperature and daily average temperature collected in a period of 30 years (1981 – 2010). 

The hourly temperature dataset contains temperature data of one year collected in 457 

weather stations around the US. The temperature data for every hour in these stations is 

averaged over the 30 years using available data. The daily average temperature dataset 

provides temperature data for 366 days (February 29 is included) collected in 7,501 

weather stations around the US and averaged over the 30 years [58]. 

 The hourly temperature dataset has two main drawbacks. The first one is that the 

temperature data values for several hours are missing in 198 weather stations. The second 

drawback is that the number of weather stations that provide hourly temperature data 

around the US is small compared to the TMY3 dataset. As mentioned above, the dataset 

provides the hourly temperature data for only 457 geographical locations around the US. 

Hence, to use this hourly dataset in my study, I needed to consider these two issues because 
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at the time I started my study, the NOAA temperature datasets were the only datasets I was 

able to find in the public accessible databases. As a result, I applied some interpolation and 

extrapolation techniques to estimate the missing temperature data in the hourly temperature 

dataset and to approximate the hourly temperature data at several different locations around 

the US other than the locations of the 457 provided stations. To improve the accuracy of 

the interpolation and extrapolation process, the daily average temperature dataset was used 

to validate the interpolation/extrapolation process. 

4.1.2 Typical Meteorological Year Temperature 

The NREL provided the Typical Meteorological Year (TMY3) dataset that 

included numerous weather-related data variables [48]. The TMY3 dataset contains hourly 

temperature data for 1,020 weather stations at different geographical locations around the 

US for a period of one year. Figure 4.1 shows the geographical locations of these weather 

stations on the US map. The dataset is named “typical” because based on some variables 

and criteria, such as number of missing data, the typical climate data for every month were 

chosen from a pool of 24 or 15 years of climate data. The temperature data is typical rather 

than averaged and it may include data for months from different years to represent year-

long data for one weather station. Although the data provided by the TYM3 dataset is 

typical and not averaged as in NOAA dataset, I decided to use it in this study because of 

some reasons such as not including missing data (the missing data issue has already been 

handled by NREL [48]), providing hourly temperature data for more geographical 

locations than NOAA dataset, and the TYM3 has been used by several studies in the 

literature for BEV studies, such as in [45] – [47]. 
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To study the effect of ambient temperature on the performance and utilization of 

BEV, six cities around the US with different climates are selected; Los Angeles, Atlanta, 

Phoenix, Seattle, New York, and Minneapolis. These cities include cold, mild, and hot 

climates. Weather stations with 24 years of temperature data in these six cities are selected. 

Figure 4.2 shows the distributions of the hourly temperature in these six cities over the 

entire typical year [48].  

 

 

Figure 4.1.  Distribution of the geographical locations of the 1,020 weather 

stations included in the TYM3 climate dataset. Note that the green marks 

indicate the geographical locations of the six weather stations in the six cities 

included in this study. 



70 

 

 

 

4.2 Specifications of the 2018 Nissan Leaf 

Nissan Leaf is ranked as the world’s best seller of BEVs based on the cumulative 

sales data from 2010 to 2017 [19], [49], [59]. It was also ranked as an affordable BEV in 

2018, and has an average EPA rated-range of 151 miles [60]. Nissan makes much more 

technical information of the Leaf models available to the public as compared to other BEV 

manufacturers. Even so, for the 2018 model the only testing results available are the final 

results for range and energy usage tests performed by the EPA and the U.S. Department of 

Energy (DOE) [61] and [62]. EPA evaluated and tested the 2018 Nissan Leaf and provided 

the estimated energy consumption/equivalent fuel economy and the range for city (UDDS) 

and highway (HWFET) standard cycles [61]. Manufacturer’s vehicle technical features are 

presented in Table 4.1 and EPA fuel economy testing results are presented in Table 4.2 

[49], [50], [60] – [62]. However, the 2018 model of Nissan Leaf is an upgrade model of 

 

Figure 4.2.  Distribution of hourly temperature for the six selected US 

cities over the typical year. 
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the 2013-2017 models and it is helpful to start its modeling by using the data provided for 

the 2013 model. Several research centers and departments modeled and intensively tested 

the 2013 model of the Nissan Leaf and made most of their testing data and results available 

to public [63], [64]. 

Table 4.1. Specifications of Simulated Vehicle [49], [50]. 

Maker Nissan 

Model Leaf 

Configuration FWD 

Curb Weight, lbs 3,508 

Test Weight, lbs 3,858 

Frontal Area, m2 2.27 

Drag Coefficient (Cd) 0.28 

Wheelbase, m 2.7 

Motor Peak Power, kW 110 

Motor Peak Torque, Nm  320 

Axel Ratio 8.19 

Battery Capacity, kWh 40 

4.3 Vehicle Modeling Using ADVISOR 

The 2018 Nissan Leaf model is first modeled in ADVISOR [66] and vehicle technical 

features and parameters are set based on the data provided in Table 4.1. The modeling 

parameters and settings are adjusted to meet the unadjusted energy consumption values 

provided by EPA as shown in Table 4.2 at climate control off (72 F°) [61]. Table 4.2 shows 

the unadjusted and adjusted values for the fuel economy and the total ranges for the city 

and highway drive cycles for the 2018 Nissan Leaf. The unadjusted fuel economy values 

are provided by the US DOE [62]. Because their tests are carried out on dynamometers 
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instead of actual roads, EPA uses an adjustment factor of about 0.7 to adjust fuel economy 

results to reflect the effect of real-world impacts on BEV’s fuel economy [65]. Because in 

this study I simulate real-world passenger vehicles’ trips with real-world drive cycles and 

actual trip’s details and I also include in this simulation most of the parameters that 

influence the fuel economy of a BEV, such as the ambient temperature and battery 

temperature, I expect that the results of this simulation should take into the account the 

impact of all these parameters and these results should be comparable to EPA adjusted 

values for fuel economy and total range. 

Table 4.2. Results of the tests carried by the EPA and the DOE on the 2018 Nissan Leaf 

[60]- 62]. 

 adjusted unadjusted 

 MPGe Range 

(miles) 

AC Energy 

(Wh/mile) 

DC Energy 

(Wh/mile) 
*RAF Range 

(miles) 

City Cycle (UDDS) 124 - 193.689 170 0.8777 231.462 

Highway Cycle 

(HWFET) 
100 - 238.837 209 0.8751 187.709 

Combined 112 151 - - - - 

*RAF: Recharge Allocation Factor = Net DC consumed energy / AC charged energy 

Because I couldn’t find the information on the efficiency of the motor and the 

inverter of the modeled vehicle, these efficiencies were estimated with the data on the 

efficiencies of the 2013 Nissan Leaf provided by the US DOE and Argonne National 

Laboratory [63] - [64]. The 2013 model was intensively tested and modeled by several 

research centers and the motor of the 2018 model can be considered as an upgrade of the 

previous Nissan Leaf models. 
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4.4 Simulation Process 

The main steps of the simulation process are shown in Figure 4.3. The process is 

applied to every PSRC vehicle starting with the first trip in the one-year window of trips 

and ending with the last trip of the window. For every trip of a PSRC vehicle, the process 

starts by getting the ambient temperature of the specified geographical location at the start 

time of the trip from the temperature dataset. The temperature at every second between the 

hours is achieved using linear interpolation. Since ADVISOR only allows to set the value 

of the ambient temperature at the beginning of the trip, the temperature variation during 

the trip simulation is not considered. Then, ADVISOR is initialized with the ambient 

temperature, the initial temperature values for the battery and the motor, and the auxiliary 

power required after being calculated as shown later in the next subsection. For the first 

trip of the vehicle, the initial temperature for the battery and motor is set to the value of the 

ambient temperature at the beginning of the trip while for all next trips the initial 

temperature values of the battery and motor are set to the final temperature values after the 

soak time of the previous trip. Soak time of a trip is the time duration when a vehicle is off 

before starting the next trip. 

After initializing ADVISOR with the required parameters, the ADVISOR simulator 

is run with the drive cycle of the trip. ADVISOR simulator calculates the energy required 

to maintain the target vehicle speed at every second and drain this energy from the battery. 

The simulator automatically terminates if the SOC of the battery reaches 0.2 (20%) at any 

time of the drive cycle simulation. To consider the Leaf’s long-life mode, I assume the 

battery is allowed to discharge until it reaches 20% of its overall capacity (SOC > 0.2). If 
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the end SOC is less than or equal to 0.2, even if the trip was completely simulated, the trip 

is considered as an uncovered trip and the initial battery SOC is reset to its value before 

simulating this uncovered trip. If the trip was completely simulated by ADVISOR and SOC 

> 0.2, the trip is listed as a covered trip and the total DC and AC consumed energies and 

the miles per gallon equivalent (𝑀𝑃𝐺𝑒) are calculated from the battery available power 

(power consumed during the trip) as shown in Eqs. 4.1 to 4.4. 

𝐸_𝐷𝐶 = ∫𝑃𝑏𝑎𝑡𝑡𝑒𝑟𝑦 𝑑𝑡                                                                        (4.1) 

𝐸𝐶_𝐷𝐶 =
𝐸_𝐷𝐶

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ×  3600
                                                      (4.2) 

𝐸𝐶_𝐴𝐶 =
𝐸𝐶_𝐷𝐶

𝑅𝐴𝐹
                                                                               (4.3) 

𝑀𝑃𝐺𝑒 =
33,705

𝐸𝐶_𝐴𝐶
                                                            (4.4) 

where 𝐸_𝐷𝐶 is the total energy used in Joules, 𝑃𝑏𝑎𝑡𝑡𝑒𝑟𝑦is the power provided by the 

battery during a trip, 𝐸𝐶_𝐷𝐶 is the DC energy consumption in Wh/mile, 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 is the 

trip traveled distance in miles, 𝐸𝐶_𝐴𝐶 is the AC energy consumption in Wh/mile, 𝑅𝐴𝐹 is 

the Recharge Allocation Factor and is set to 0.877 based on the EPA tests [61], 𝑀𝑃𝐺𝑒 is 

miles per gallon gasoline-equivalent, and the constant 33,705 is the energy density of the 

gasoline in Wh/gal (1 gallon gasoline = 33705 Wh) [62]. 

The next step is to check for the possibility of recharging the battery. The battery 

is recharged only if the destination of the simulated trip is to-home, the destination of the 

next trip is from-home, and the soak time of the simulated trip is greater than or equal to 

30 minutes. The soak time here is the time duration between the end of the simulated trip 

and the beginning of the next trip. The battery recharging event may take place after 
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simulating the trip even if the trip was not covered. The battery recharging process is 

discussed in full details later in this section. Finally, the temperature of the battery and 

motor at the end (just one second before the start of the next trip) of the trip’s soak time 

are calculated to be used as the initial temperature values for the next trip. The battery 

temperature estimation is presented later in the battery thermal behavior subsection while 

the motor temperature is estimated using a simple exponential model as shown in Eq 4.5 

considering all heat rejected to the environment by the motor. 

 

 

Figure 4.3.  Main process for simulating vehicle activities for the 376 

selected PSRC vehicles. 
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𝑇𝑚𝑜𝑡𝑜𝑟(𝑡) = 𝑇𝑎𝑚𝑏(𝑡) + (𝑇𝑚𝑜𝑡𝑜𝑟(𝑡 − 1) − 𝑇𝑎𝑚𝑏(𝑡)) × 𝑒
−
1

𝜏                    (4.5) 

where 𝑇𝑎𝑚𝑏(𝑡) is the ambient temperature at current time and τ is the motor cooling 

time constant which is set based on the assumption of the cold soak for the motor which is 

assumed to be eight hours. 

4.4.1 Auxiliary Power Used by the Nissan Leaf 

To calculate the auxiliary energy at the beginning of each trip at ambient 

temperature, I use the method proposed in [47]. In this method, the auxiliary power is 

divided into two parts; the first part is the energy consumed by the climate control system 

and the other part is the energy consumed by other vehicle’s components. The power 

consumed by climate control system is calculated as shown below: 

𝑃𝑡ℎ𝑒𝑟𝑚𝑎𝑙 = 𝐾 × |𝑇𝑜𝑢𝑡𝑠𝑖𝑑𝑒 − 𝑇𝑖𝑛𝑠𝑖𝑑𝑒|                                                 (4.6) 

𝑇𝑖𝑛𝑠𝑖𝑑𝑒(𝐶°) = {

20,            𝑇𝑜𝑢𝑡𝑠𝑖𝑑𝑒 ≤ 20
𝑇𝑜𝑢𝑡𝑠𝑖𝑑𝑒,               20 < 𝑇𝑜𝑢𝑡𝑠𝑖𝑑𝑒 < 24

24,          24 ≤ 𝑇𝑜𝑢𝑡𝑠𝑖𝑑𝑒

                          (4.7) 

  𝑃𝑎𝑢𝑥 (𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐) =

{
 

 
𝑃𝑡ℎ𝑒𝑟𝑚𝑎𝑙

𝐶𝑂𝑃ℎ𝑒𝑎𝑡
+ 𝑃𝑜𝑡ℎ𝑒𝑟 ,    𝑇𝑜𝑢𝑡𝑠𝑖𝑑𝑒 ≤ 20

𝑃𝑜𝑡ℎ𝑒𝑟 ,              20 < 𝑇𝑜𝑢𝑡𝑠𝑖𝑑𝑒 < 24
𝑃𝑡ℎ𝑒𝑟𝑚𝑎𝑙

𝐶𝑂𝑃𝐴𝐶
+ 𝑃𝑜𝑡ℎ𝑒𝑟 ,   24 ≤  𝑇𝑜𝑢𝑡𝑠𝑖𝑑𝑒

                     (4.8) 

where 𝑃𝑡ℎ𝑒𝑟𝑚𝑎𝑙 is the thermal power generated by vehicle climate control system, 

K is the thermal conductivity of vehicle and is taken to be 350 W/C° [47], 𝑇𝑜𝑢𝑡𝑠𝑖𝑑𝑒 and 

𝑇𝑖𝑛𝑠𝑖𝑑𝑒 are the ambient temperatures outside and inside the vehicle respectively, 𝑃𝑎𝑢𝑥 is the 

total electrical power consumed by vehicle auxiliary system, COP is the Coefficient of 

Performance and the values of COP for the AC, COPAC, is set to 2.5 and for the heater, 

COPheat, it is set to 3 as suggested in [47], 𝑃𝑜𝑡ℎ𝑒𝑟 is the non-climate auxiliary electrical 
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power and is set to 250 Watts and I assume that this part is always available during the trip 

simulation while the key is on. It is assume that both climate control power and other 

auxiliary power are not available during the parking events (key is off) even if the parking 

event includes battery charging activity. 

4.4.2 Battery Recharging 

The strategy for recharging the battery is basically based on the destination of each 

trip of the vehicle. As mentioned in Chapter 2, one of the advantages of the PSRC dataset 

is the detailed information about tours and trips destinations. The trips of each vehicle were 

categorized by the original survey into four different tours: home-to-home, home-to-work, 

work-to-work, and work-to-home tours. I assume that the driver always recharges the 

battery only at home and based on the mentioned tours categories, the recharging events 

only take place after the last trip of home-to-home or work-to-home tours (i.e. the trip’s 

destination is to-home). So, rather than limiting the recharge events to the end of every 

driving day as most studies in the literature suggest, I assume the driver will always 

recharge the battery after each to-home trip if they intended to stay home for at least 30 

minutes (trip soak time ≥ 30 minutes). 

Figure 4.4 shows the distribution of percent of to-home trips to the total number of 

trips in the one-year window for the 382 vehicles of the generated trip dataset. The PSRC 

vehicles that had a percent of to-home trips less than 15% are excluded from this study. 

The percent of to-home trips in these vehicles is small (compared to the average vehicle) 

and this means that based on the proposed charging strategy, less battery charging events 

will take place and the BEV will not cover most of the vehicles’ activities. It can be noticed 
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from Figure 4.4 that six vehicles in the dataset are excluded from this study and 376 PSRC 

vehicles are used. The average PSRC vehicle had about 32% of its trips in the one-year 

window as to-home trips. Figure 4.5 shows the distribution of the percent of the driving 

days that their last trip was to-home trip to the total number of the driving days in the one-

year window of trips for the 376 PSRC selected vehicles. It can be noticed from Figure 4.5 

that for most of the selected PSRC vehicles the last trip of most of the driving days was to-

home trip where the average was 90.51%. This indicates that the proposed battery 

recharging strategy also includes charging events at the end of every driving day which 

was proposed by all other studies.  

 

 

Figure 4.4.  Histogram of percent of to-home trips to the total number 

of trips of the vehicle in the one-year window of trips for the 382 

PSRC targeted vehicles. 
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Using this charging strategy makes this simulation study quite close to the reality. 

It is assumed the charger is only available at home and drivers will not charge the battery 

if they are staying home for a short time. We cannot ensure that the driver will be able to 

charge off-home because of such factors as location, availability, and occupancy of off-

home charger. My charging strategy also considers automaker’s recommendations for 

battery recharging - charging the battery more frequently and in smaller amounts to avoid 

battery overheating and also to keep the battery always at high charging status which may 

prolong the battery life [49], [50]. 

For the battery charger, I assume that the driver only uses the regular level 2 charger 

that delivers up to 6.6 kW of power with a supply voltage of 240 V AC and the charger can 

be accessed only at home. The charger efficiency is set to 87% as a constant based on the 

 

Figure 4.5.  Histogram of the percent of driving days that their last trip 

was to-home trip to the total number of driving days of the vehicle in 

the best one-year window for the 376 PSRC targeted vehicles. 
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tests carried by EPA [61]. The charging simulation is performed in a one-second time step.  

The charging current is assumed to be constant. 

It is assumed that the battery is only allowed to be depleted to 20% of its overall 

capacity. This means that the longest battery recharging event takes place when recharging 

the battery from 20% to 100% of its overall capacity (from 0.2 SOC to 1 SOC). Battery 

recharging duration is always restricted by the trip soak time as shown in Eq 4.9.  

battery recharging duration ≤ trip soak time                     (4.9) 

4.4.3 Battery Thermal Behavior  

In this BEV simulation study, I take into the account the thermal behavior of the 

battery during both charging and non-charging parking events. During battery recharging 

events, the actual charging behavior is simulated and the parameters that influence the 

charging efficiency are all considered. One of the main parameters is the battery 

temperature. The battery temperature during the charging process needs to be calculated to 

estimate some other parameters that depend on the battery temperature such as battery 

internal resistance and open circuit voltage and these parameters are required for estimating 

battery SOC. Also, calculating the battery temperature during charging events is required 

for estimating the battery temperature at the beginning of the next simulated trip. When the 

battery is being charged, three major heat components must be considered, ignoring the 

heat component generated by the gradient of concentration [67], [68]. The first two 

components are the reversible and irreversible heat generations and the third heat 

component is the heat rejected to the environment [67]. The change in battery temperature 

is calculated every second during the charging process using the aforementioned three heat 
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components. The irreversible heat generation (𝑞𝑖𝑟𝑟) is calculated as shown in Eq. 4.10 as 

proposed by ADVISOR and the reversable heat generation (𝑞𝑟𝑒𝑣) is estimated as shown in 

Eq. 4.11 based on the studies in [67], [68]. 

𝑞𝑖𝑟𝑟 = 𝐼
2 × 𝑅𝑖𝑛                                                                                (4.10) 

𝑞𝑟𝑒𝑣 = −𝐼 × 𝑇(𝑘) ×
∆𝑈

∆𝑇
                                                                   (4.11) 

where 𝐼 is the charging current, 𝑅𝑖𝑛 is considered as the battery internal resistance 

at 𝑇(𝑘 − 1), 𝑇(𝑘) is the current battery temperature, ∆𝑈 is the change in the battery open 

circuit voltage, and ∆𝑇 is the change in battery temperature. 𝑅𝑖𝑛 and ∆𝑈 are interpolated 

from temperature dependent predefined vectors proposed by the battery model based on 

𝑇(𝑘 − 1), 𝑇(𝑘 − 2), 𝑆𝑂𝐶(𝑘 − 1), and 𝑆𝑂𝐶(𝑘 − 2). 
∆𝑈

∆𝑇
 is the entropic coefficient [67]. 

The amount of heat rejected to the environment, (𝑞𝑟𝑒𝑗), is estimated using a simple 

exponential model to calculate temperature change as shown in Eq 4.12.  

𝑞𝑟𝑒𝑗 = 𝑚 × 𝑐𝑝 × [𝑇(𝑘 − 1) − (𝑇𝑎𝑚𝑏(𝑘) + (𝑇(𝑘 − 1) − 𝑇𝑎𝑚𝑏(𝑘)) × 𝑒
−
1

𝜏)]      (4.12) 

where 𝑚 is the battery mass, 𝑐𝑝 is the battery cell specific heat, 𝑇𝑎𝑚𝑏(𝑘) is the 

current ambient temperature, τ is the battery cooling time constant which is set based on 

the assumption of the cold soak for the battery which is assumed to be eight hours. 

Therefore, the battery temperature is approximated every 1 second time step as 

shown below: 

𝑚𝑐𝑝𝑇 =  𝑞𝑖𝑟𝑟 + 𝑞𝑟𝑒𝑣  −  𝑞𝑟𝑒𝑗                                                        (4.13) 

𝑇 = 𝑇(𝑘) − 𝑇(𝑘 − 1)                                                                   (4.14) 

𝑇(𝑘) =
𝑞𝑖𝑟𝑟 − 𝑞𝑟𝑒𝑗 + 𝑚×𝑐𝑝×𝑇(𝑘−1)

𝑚×𝑐𝑝+ 𝐼× 
∆𝑈

∆𝑇

                                                       (4.15) 
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In case the required charging time is less than the trip’s soak time, the battery 

temperature change from the end of the charging event to the end of the trip’s soak time is 

calculated by only considering the heat rejected to the environment, 𝑞𝑟𝑒𝑗, and battery 

temperature is calculated as shown in Eq. 4.16. This is also applied to the cases when no 

charging event takes place during parking activities by calculating the battery temperature 

change throughout the trip’s soak time (parking time with key off). 

𝑇(𝑘) = 𝑇𝑎𝑚𝑏(𝑘) + (𝑇(𝑘 − 1) − 𝑇𝑎𝑚𝑏(𝑘)) × 𝑒
−
1

𝜏                          (4.16) 

In the battery thermal behavior simulation, battery cooling/warming during battery 

charging events and battery warming during the non-charging parking events are also 

considered. As stated by the automaker in [49], [50], the battery is cooled at high 

temperatures and warmed at low temperatures. For cooling the battery during charging 

events, Nissan Leaf uses a cooling fan that automatically turns on at a specific temperature. 

I set this temperature as suggested by ADVISOR to 35 °C as it is not defined by the 

automaker and its power consumption rate is set to 300 Watts. So, for every second of 

charging the battery, the charging power rate is decreased by 
300

3600
 Watts to consider the 

power consumed by the cooling fan if the battery’s current temperature is greater than or 

equal to 35 °C and the change in the battery thermal energy due to the effect of the cooling 

fan is calculated as presented by ADVISOR in [69]. For warming the battery in cold 

weather, Nissan Leaf uses a battery warmer that automatically turns on during both 

charging and non-charging parking events when the battery temperature reaches -17 °C 

and automatically turns off when battery temperature increases to -10 °C [49], [50]. During 

charging events the warmer uses electrical power from the charger, but during non-
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charging events it uses electrical power from the battery if the battery SOC is greater than 

or equal to 15% [49], [50]. I assume that at non-charging parking events, when battery 

SOC is less than or equal to 15%, the battery warmer does not turn on and the minimum 

battery temperature is set to -20 °C. On the other hand, if the battery warmer turns on during 

a charging parking event, the energy it consumes is always drawn from the charger only. 

The battery warmer is assumed to consume energy at a power rate of 300 Watts and all this 

electrical power is assumed to be converted into thermal power. So, for every second of 

simulation time step, the battery charging power rate is decreased by 
300

3600
 Watts to consider 

the power consumed by the battery warmer within the specified range of battery 

temperature and the battery thermal energy is increased by 
300

3600
 Watts. 

4.5 Range Simulation  

As mentioned above, in the main simulation procedure shown in Figure 4.3 the 

battery is assumed to be recharged after each to-home trip if the customer intended to stay 

home for at least 30 minutes (soak time ≥ 30 minutes). This battery recharging strategy 

does not allow to simulate the battery range for the vehicles of the dataset. According to 

EPA testing procedures, the battery range is calculated by fully charging the battery and 

then driving the vehicle in specified, or unspecified, driving cycles until the battery is 

completely depleted (i.e. the battery is not able to provide enough energy to the motor to 

move the vehicle). Hence, to simulate the battery range for all the vehicles of the dataset, 

the same steps of the main simulation procedure are followed except the charging step. For 

every vehicle, the simulation starts with the first trip with battery SOC = 1 and goes through 

the trips in sequence until the battery is completely depleted (i.e. until ADVISOR 
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terminates the cycle simulation when the battery provided energy is not enough to handle 

the required energy for the drive cycle). Then, the battery range is calculated by summing 

up the traveled distances of the trips that were covered by the battery cycle. To start the 

next battery cycle, the battery is fully recharged again (SOC = 1) and the simulation process 

is restarted with the trip next to the last covered trip in the previous battery cycle and the 

same procedure is repeated until all the trips of the vehicle are simulated. If the last trip of 

a battery cycle was not completely covered, the amount of distance of this trip covered by 

this battery cycle is accounted towards this battery cycle and this trip will be simulated 

again in the next battery cycle. This procedure is applied to all vehicles of the dataset in 

the simulation of the six selected US cities. 
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CHAPTER 5 

UTILIZATION AND PERFORMANCE OF THE 2018 

NISSAN LEAF USING THE GENERATED TRIP DATASET: 

Simulation Results 

 

The results of the BEV simulation study discussed in Chapter 4 are presented here 

in this chapter. The results demonstrate the effect of the battery recharging strategy on the 

BEV to meet driver’s driving requirements as well as the negative influence of the 

temperature on the performance of the BEV. 

Figure 5.1 shows the distribution of the total number of uncompleted driving days 

in the six cities. A driving day is considered as uncompleted if either all or some of the 

trips on this day were not covered. As expected, the simulated BEV was able to cover more 

driving days in the cities with mild annual average temperatures, such as Los Angeles, than 

in the cities with cold and hot annual average temperatures, such as Minneapolis and 

Phoenix. The total number of uncompleted driving days in Los Angeles is 4,269 days for 

the 376 PSRC vehicles out of the 106,203 total driving days in the one-year period while 

in Minneapolis it is 5,507 days. As shown in Figure 5.2, the number of driving days that 

the simulated BEV could not complete for the average vehicle is 12 days in Los Angeles 

while in Minneapolis it is 14 days. Averaged over the six cities, the activities of 15% of 

the 376 PSRC vehicles can be completely covered by the representative BEV with my 

proposed battery recharging policy. 
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Figure 5.1.  Distribution of total number of uncompleted driving days of the 

376 PSRC vehicles in the one-year period for the six selected US cities. 

 

Figure 5.2.  Distribution of the average of number of uncompleted driving 

days of the 376 PSRC vehicles for the six selected US cities. 
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Figure 5.3 shows the distribution of uncompleted driving days for the 376 PSRC 

vehicles in Los Angeles and Minneapolis. Figure 5.4 shows the distribution of percent of 

uncompleted driving days to the total number of driving days for each PSRC vehicle. The 

average percent of uncompleted driving days for Los Angeles is 3.94% while for 

Minneapolis it is 5.15%. The results in Figure 5.3 and 5.4 show the effect of battery 

recharging strategy for the BEV on the activities that can be replaced with the simulated 

BEV besides the effect of the temperature and other factors. 

 

Figure 5.5 shows the average of accumulated fuel economy in the six cities. The 

average fuel economy is calculated by taking the average of the accumulated fuel economy 

(MPGe) for the covered trips of the 376 PSRC vehicles in each city. The results indicate 

the significant influence of temperature on fuel economy of BEV. It can be seen that in Los 

Angeles, where less auxiliary energy is required, the average of accumulated MPGe is    

 
       (a)                                                   (b) 

Figure 5.3.  Distribution of number of uncompleted driving days in 

the one-year period for two cities. a) Los Angeles. b) Minneapolis. 
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about 131 while in Minneapolis, where more auxiliary energy is required, it is about 97. 

The average of the accumulated MPGe for the six cities is 112.33. A close match of these 

values with the EPA figures is not expected because EPA calculates the average of 

combined fuel economy differently. EPA calculates the combined fuel economy by 

averaging the weighed city and highway fuel economy values. The city MPGe value is 

weighed by 55% and the Highway MPGe value is weighed by 45% [62]. However, the 

average of the accumulated MPGe of the six cities in this study appears to be slightly high 

compared to the results in [47] because the dataset used in this study tends to have more 

city trips than highway trips. The average of trip average speeds is about 24 mph and this 

is closer to the average speed of the city drive cycle (UDDS) than the highway drive cycle 

(HWFET) used by EPA. The average speed of the UDDS cycle is 19.59 mph while it is 

48.30 mph for the HWFET cycle. 

 
            (a)                                        (b) 

Figure 5.4.  The corresponding distributions of percent of uncompleted 

driving days shown in Figure 4.8. a) Los Angeles. b) Minneapolis. 
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Comparing the results shown in Figures 5.1 and 5.5 achieved by the BEV in the six 

cities, it can be noticed that the BEV could cover more driving days throughout the period 

of one-year for the entire dataset in Seattle than it could cover in Phoenix although it had 

better fuel economy (more MPGe) in Phoenix than in Seattle (the MPGe for the BEV in 

Phoenix is greater than in Seattle by about 1.2). The reason behind this might be because 

basically the BEV in Seattle will miss more driving days in cold seasons than in hot and 

mild seasons and the opposite is true for Phoenix and as shown in Figure 3.10 the used 

dataset has less driving days in the cold season than in the mild and hot seasons. This can 

also be noticed in Figures 5.6 and 5.7. where Figure 5.6 shows the distribution of total 

number of uncovered driving days per month for the 376 vehicles of the generated dataset 

in Phoenix and Seattle while Figure 5.7 shows the distribution of the difference between 

the total number of uncovered driving days per month for the same 376 in Phoenix and 

 

Figure 5.5.  Distribution of cumulative average MPGe for the six US 

cities. The red dotted line shows the average fuel economy of the BEV 

in the six cities which is 112.33 MPGe. 
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Seattle (total number of uncovered driving days per month in Phoenix - total number of 

uncovered driving days per month in Seattle). Hence, overall the year period, the BEV 

uncovers more driving days in Phoenix than it does in Seattle. 

 

The distribution of the AC electrical energy consumed by the 376 PSRC vehicles 

in the one year period in the six cities is shown in Figure 5.8. The annual electrical energy 

in this figure includes the AC electrical energy required for the drive cycles of the covered 

trips, battery cooling during charging events, and battery warming during charging and 

non-charging parking events (the latter only applies to Minneapolis). The average vehicle 

in Los Angeles requires 2.13 MW of electrical energy annually while the average vehicle 

in Minneapolis requires about 2.68 MW. It is noticed that the average vehicle in Phoenix 

requires slightly more annual energy than the average vehicle in Seattle although the MPGe 

in Phoenix is better than that in Seattle. The reason is that the BEV in Phoenix requires 

 

Figure 5.6.  Distributions of total number of uncovered driving days per 

month for the 376 vehicles of the generated dataset in Phoenix and Seattle. 
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more annual energy for battery cooling during the charging parking events than in Seattle. 

Figure 5.9 shows the distribution of the daily AC electrical energy consumed by the 

covered trips of the 376 PSRC vehicles in Los Angeles and Minneapolis. It is noticed that 

even in a city with low fuel consumption (high MPGe) such as Los Angeles, the simulated 

BEV with the proposed battery charging strategy could not cover the driving days that 

require large amounts of energy. The maximum daily energy can be covered with the 

simulated BEV in Los Angeles is 57.1 kWh. This supports the need for the fast charging. 

 

 

Figure 5.7.  Distributions of the difference between the total number 

of uncovered driving days per month for the 376 vehicles of the 

generated dataset in Phoenix and Seattle. 
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The results of range simulation are presented in Figure 5.10, which indicate the 

variations in the range throughout the cities based on the fuel economy of the simulated 

 

Figure 5.8.  Distribution of the annual electrical energy consumption for 

the 376 PSRC vehicles simulated in the six US cities. This plot does not 

count the trips uncovered due to the charging strategy. 

 

 

 

Figure 5.9.  Distribution of the daily energy consumption of the fully-

covered and partially-covered driving days for the 376 PSRC vehicles for 

two cities. a) Los Angeles. b) Minneapolis. 
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BEV in each city. The average range for Los Angeles (mild annual average temperature) 

is about 174.2 miles while for Minneapolis (cold annual average temperature) it is about 

130.6 miles. The average range for the six cities is 148.5 miles which is very close to the 

EPA values. It can be noticed from Figure 5.10 that in Minneapolis the BEV range was 

low in some cases compared to the other cities and this is due to the effect of cold 

temperatures. Besides the negative impact of the cold temperatures on BEV fuel economy 

and on battery capacity and efficiency, the sever cold temperatures (temperature ≤ -17 C°) 

lead to energy consumption by the battery warmer from the battery to keep it warm during 

non-charging parking events. In some long parking events in severe cold temperatures the 

battery warmer consumed about half of the battery energy to keep it warm. 

 

Figure 5.11 shows the distribution of the annual AC electrical energy required to 

cover all the trips of the 376 PSRC vehicles and their parking events in the six cities. The 

 

Figure 5.10.  Distribution of range in the six US cities. 
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average vehicle in Los Angeles requires 2.31 MW of electrical energy annually while the 

average vehicle in Minneapolis requires 3.18 MW. The distributions of the daily electrical 

energy required to cover all the trips on all the driving days of the trip dataset in Los 

Angeles and Minneapolis are shown in Figure 5.12. It can be seen that the dataset has some 

driving days that require electrical energy beyond the battery capacity of the simulated 

BEV and this means that even with fully recharging the battery once daily the simulated 

BEV will not be able to satisfy the energy requirements of these high-energy driving days 

without using the fast charging. For Minneapolis, there are 1,971 total driving days that 

cannot be completely covered with one battery full-charging. 

 

 

Figure 5.11.  Distribution of the annual electrical energy required to 

cover all activities of the 376 PSRC vehicles in the six US cities. 
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Figure 5.13 shows the distribution of the electrical energy obtained from battery 

charging events for the 376 PSRC vehicles in Los Angeles within the one-year period. The 

distribution shows that by following my proposed battery charging strategy, the battery is 

 

              (a)                                      (b) 

 

                                         (c)                                     (d) 

Figure 5.12.  Distribution of the daily energy consumption to cover 

all the driving days of the 376 PSRC vehicles for two cities. a) Los 

Angeles 0 – 45 kWh. b) Los Angeles 45 – 365 kWh. c) Minneapolis 

0 – 45 kWh. d) Minneapolis 45 - 365 kWh. 
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recharged in small amounts more frequently than in large amounts and this is what 

recommended by the automaker to prolong the battery life. 

 

For battery cooling during charging events, the results, such as those illustrated in 

Figure 5.14, show that the simulated BEV in the hot-climate cities, such as Phoenix, 

requires much more energy for battery cooling (energy consumed by cooling fan) during 

charging events than in the other cities. Figure 5.14 shows the distribution of percent of 

charging events that started with battery cooling to the total number of charging events for 

the 376 PSRC vehicles in the six cities. 

In the city of Minneapolis, because of the severe cold temperatures during winter, 

the battery needed to be warmed by its electrical warmer in several cases to avoid being 

damaged. The distribution of the annual electrical energy consumed by the battery warmer 

in the parking events for the 376 PSRC vehicles in Minneapolis is shown in Figure 5.15. 

 

Figure 5.13.  Distribution of charging energy acquired by the 376 

PSRC vehicles in one year in Los Angeles. 
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Figure 5.14.  Distribution of percent of charging events that 

included battery cooling to the total number of charging events 

for the 376 PSRC vehicles in the six cities. 

 

Figure 5.15.  Distribution of the electrical energy consumed by battery 

warmer for the 376 PSRC vehicles in one year in Minneapolis. 
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The average vehicle consumes about 58 kWh of electrical energy for battery 

warming. So, to protect the battery, drivers in Minneapolis need to consider battery 

warming during the non-charging parking events on severely cold winter days. 

To show the importance of using the real-world driving cycles in BEV performance 

studies, I compared the fuel economy (expressed as AC energy consumption) of the 

representative BEV at 72 °F ambient temperature with climate control off for the EPA City 

and Highway cycles, separately, to its fuel economy for the trips of the used dataset that 

have distance and average speed similar to the City and Highway cycles of EPA with a 

distance and average speed error band of ± 3%. The study in [47] provided a similar 

comparison, but only for the EPA Highway cycle with their representative BEV. Figure 

5.16(a) shows the distribution of the energy consumption of the representative BEV for the 

dataset trips with distance and average speed similar to the City cycle of EPA with a 

distance and average speed error band of ± 3% and the fuel economy of the EPA City cycle. 

Figure 5.16(b) shows the speed profiles of the EPA City cycle and the cycles of the three 

dataset EPA-similar trips shown in Figure 5.16(a). Figure 5.17(a) shows the distribution of 

the energy consumption for the dataset trips with distance and average speed similar to the 

Highway cycle of EPA with a distance and average speed error band of ± 3% and the fuel 

economy of EPA Highway cycle while Figure 5.17(b) shows the speed profiles of the EPA 

Highway cycle and the cycles of the three dataset similar trips that shown in Figure 5.17(a). 

It can be noticed from Figures 5.16 and 5.17 that the fuel economy (AC energy 

consumption) for the City cycle of EPA is less than the average of the fuel economy of the 
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dataset similar-trips, but not too far while for the EPA Highway cycle, the BEV fuel 

economy for the EPA Highway cycle is less than the fuel economy of the 5th percentile of  

 

 

(a) 

 

(b) 

Figure 5.16.  Comparison between the fuel economy of the simulated BEV for the 

EPA City cycle and the dataset trips with distance and average speed similar to the 

City cycle of EPA with a distance and average speed error band of ± 3%. a)  

Distribution of the AC energy consumption for the dataset trips with distance and 

average speed similar to the City cycle of EPA. b) Speed profiles of the EPA City 

cycle and the three dataset trips indicated above in Figure 5.16(a). 
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the dataset similar-trips. Generally, it can be noticed that the BEV consumes more energy 

(less MPGe) in real-world trips than it does in the testing cycles provided by EPA for 

both City and Highway cycles. 

  

 

(a) 

 

(b) 

Figure 5.17.  Comparison between the fuel economy of the simulated BEV for the 

EPA Highway cycle and the dataset trips with distance and average speed similar 

to the Highway cycle of EPA with a distance and average speed error band of ± 3%. 

a)  Distribution of the AC energy consumption for the dataset trips with distance 

and average speed similar to the Highway cycle of EPA. b) Speed profiles of the 

EPA Highway cycle and the three dataset trips indicated above in Figure 5.17(a). 
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CHAPTER 6 

CONCLUSION AND FUTURE DIRECTIONS 

6.1 Conclusion 

The PSRC and ARC datasets are complementary in terms of time resolution, traffic 

and environmental conditions, and variables such as distance, average speed, and duration. 

The two datasets were intensively analyzed and processed. The filtering and cleansing of 

the PSRC data significantly improved the data reliability. Combining the ARC micro-trips 

that were generated from the original ARC trips with the original ARC trips increased the 

ARC trips distance-average speed coverage and produced better matching results for the 

PSRC trips. I achieved high degrees of matching between the PSRC trips and the ARC trips, 

original and micro-trips, and 99.978% of the total PSRC dataset trips were successfully 

matched. The resultant dataset is a new driving cycle database in MS Access format that 

can be easily queried to produce diverse second-by-second realistic driving cycles, that also 

includes the yearly usage patterns for 382 passenger vehicle drivers. Coupled with analyzing 

tools such as ADVISOR, this database can be very useful in studying vehicle fuel economy, 

battery life, and tailpipe emissions impact due to real-world driving scenarios. More 

recently, NREL and other organizations has made more vehicle travel surveys available to 

the public. My approach can be extended and applied to these surveys as well to generate 

different useful datasets. 

The second-by-second driving and non-driving activities of 376 vehicles of the 

generated trip dataset were simulated using ADVISORTM simulation software, the 2018 
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Nissan Leaf as a representative BEV, and the TMY3 temperature dataset to study the 

performance, utilization, and range limitations of the BEV in a period of one year. The 

study included the simulation of climate control power, battery thermal behavior during 

non-driving events, and battery charging events that are only permitted at home if the driver 

intends to stay home for at least 30 minutes. I found significant influence of battery 

charging strategy, ambient temperature, and driving pattern on the performance and 

utilization of the simulated BEV. The simulated BEV achieved results close to EPA rates 

where the average fuel economy in the six cities was 112.33 MPGe and the average driving 

range was 148.5 miles. Public chargers are found to be still essential for the BEV to cover 

all the activities of driving days during long-distance trips and driving days with several 

trips away from home despite the increased driving range of the 2018 model. My findings 

can be helpful for drivers who intend to adopt BEVs as it provided an overview on the 

performance, range limitations, and annual energy consumption of the representative BEV 

through the entire year in different climates. This also may be helpful for BEV 

manufacturers in their design of BEVs for the selection of battery capacity and 

specifications of other powertrain components. The study revealed the challenges with 

battery warming (or cooling) that BEV drivers face in cold-climate (or hot-climate). My 

proposed simulation approach can be applied to other BEV types and can simulate trips 

from different travel survey datasets with their driving cycles. 
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6.2 Future Directions 

To increase the reliability of the proposed approach for generating a new trip dataset 

and improve the efficiency of the generated dataset, some suggested steps can be carried 

out. One suggestion might be using driving cycles from other different GPS travel survey 

datasets to be matched by the PSRC trips to either generate a diverse pool of driving cycles 

from different geographical locations for every PSRC trip or generate multiple trip datasets 

from the PSRC dataset based on the geographical locations of the datasets that their second-

by-second driving cycles will be used as the matches for the PSRC trips. However, this 

suggestion depends on the availability of travel survey datasets that include GPS data 

collected in a period of one week or more to better serve for the trip matching process 

compared to the collection period of the GPS data in the ARC dataset I used. Another 

suggested step is to combine other travel survey datasets that may cover reasonably large 

different parts of the year to generate a full year trip dataset that may include more vehicles 

and trips than the PSRC dataset. 

For the BEV utilization and performance study, to perform more reliable and 

generalized study, one may use velocity profiles of deriving cycles that were made in each 

city of the study, if possible, to efficiently consider the effect of vehicle driving pattern. 

Driving cycles may differ from one city to another considering several factors that may 

influence them such as infra structure and vehicle speed regulations. Additionally, to 

improve the results of the study, I suggest to include and analyze the effect of aging on 

battery efficiency. My study covers the first full year of the BEV life and the influence of 

battery aging was not included. Moreover, as suggested for improving the trip dataset 
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generated in the first part of this dissertation, publicly available travel survey datasets may 

be more deeply explored and such a full year dataset that can be generated by combining 

trips made by vehicles from different travel survey datasets that were run in different 

geographical locations may serve more efficiently for the BEV simulation study.  
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Real-world second-by-second vehicle driving cycle data is very important for 

research and development of the traditional fuel-powered vehicles, the emerging electric 

vehicles, and the hybrid vehicles. A project solely dedicated to generating such information 

would be extremely costly and time-consuming. Alternatively, we introduce a method to 

develop such a database by utilizing two publicly available passenger vehicle travel 

surveys; the 2004-2006 Puget Sound Regional Commission (PSRC) Travel Survey and the 

2011 Atlanta Regional Commission (ARC) Travel Survey. The two surveys complement 

each other – the former is in low time resolution but covers vehicle driving and non-driving 

operation for over one year whereas the latter is in high time resolution but represents only 

one-week long driving operation. After analyzing the PSRC survey, we chose 382 vehicles, 

each of which continuously operated for one year, and then match their trips to all the ARC 

trips after generating ARC sub-trips from the original ARC trips. The matching is carried 

out based on trip distance first, then on average speed, and finally on duration. Of the total 
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509,158 trips made by the 382 PSRC vehicles, 496,276 trips (97.47%) are successfully 

matched by single original ARC trips. The remaining trips are matched by either ARC sub-

trips or combined ARC trips. The resulting high-resolution year-long database can be used 

by drive cycle analysis tools such as the advanced vehicle simulator ADVISOR™ to 

investigate fuel economy, battery life, and vehicle emissions under various driving and 

climate conditions. Our approach can be employed to produce other realistic databases 

from other publicly available vehicle travel surveys. 

Utility and performance of Battery Electric Vehicles (BEVs) are affected by 

important factors such as battery recharging strategy, ambient temperature, and driving 

pattern. None of the studies in the literature covers the performance or utility of BEV for a 

full year using second-by-second vehicle driving and non-driving activities. Furthermore, 

most used recharging strategies do not relate to trip actual destination. I study these same 

factors but employ year-long, second-by-second activities of 376 passenger vehicles from 

the dataset I generated in the first part of this dissertation along with their trip destinations. 

I use ADVISORTM software with the 2018 Nissan Leaf as a representative BEV. Los 

Angeles, Atlanta, Phoenix, Seattle, New York, and Minneapolis are chosen to create 

diverse ambient temperature profiles from the Typical Meteorological temperature dataset 

and all the 376 vehicles are assumed to operate in each of these cities. The battery is 

recharged with a Level-2 charger immediately after driver reaches home if the BEV will 

not be used for at least 30 minutes. Charging may continue until next trip starts. Our 

simulation shows that this recharging strategy can cover all activities of 15% of the 

vehicles. It Also covers 94.82% of the driving days in the year performed by an average 
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vehicle in the remaining vehicle pool. The average fuel economy of the simulated BEV in 

the six cities is 112.33 MPGe while the average range is 148.5 miles. The BEV requires, 

on average, 2.31 MW of electrical energy to cover year-long activities of a vehicle in a 

mild-climate city (i.e. Los Angeles) while in a cold-climate city (i.e. Minneapolis) the 

average increases to 3.18 MW. Our findings reveal BEV performance under more realistic 

driving and non-driving conditions. Such study can be extended and employed to explore 

and analyze other types of BEVs. 
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