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INVITED ARTICLE 

Conflicts in Bayesian Statistics Between 
Inference Based on Credible Intervals and 
Bayes Factors 
Miodrag M. Lovric 
Radford University 
Radford, Virginia  
 
 
In frequentist statistics, point-null hypothesis testing based on significance tests and 
confidence intervals are harmonious procedures and lead to the same conclusion. This is 
not the case in the domain of the Bayesian framework. An inference made about the point-
null hypothesis using Bayes factor may lead to an opposite conclusion if it is based on the 
Bayesian credible interval. Bayesian suggestions to test point-nulls using credible intervals 
are misleading and should be dismissed. A null hypothesized value may be outside a 
credible interval but supported by Bayes factor (a Type I conflict), or contrariwise, the null 
value may be inside a credible interval but not supported by the Bayes factor (Type II 
conflict). Two computer programs in R have been developed that confirm the existence of 
a countable infinite number of cases, for which Bayes credible intervals are not compatible 
with Bayesian hypothesis testing. 
 
Keywords: Point-null hypothesis, Bayes Factor, credible intervals, HPD interval, 
Type I and Type II conflicts  
 

Introduction  

Bayesian arguments made substantial progress from the 1950s when they were 
labeled as dangerous (see Gelman & Robert, 2013) and when David (1949) claimed 
“the application of the [Bayes'] theorem in statistical method is wholly fallacious 
except under very restrictive conditions” (p. 71). As pointed out by Fienberg 
(2006a), today, Bayesian methods are “integrated into both the fabric of statistical 
thinking within the field of statistics and the methodology used in a broad array of 
applications” (p. 3). As emphasized by Bernardo (2010, p. 108), the Bayesian 
approach provides a complete coherent paradigm for both statistical inference and 
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decision making under uncertainty; it constitutes a scientific revolution in Kuhn’s 
sense and is firmly based on axiomatic foundations. Similarly, Jaynes (2003) noted 
“orthodox statistics” (p. 510) is not a coherent body of theory but a loose collection 
of independent ad hoc devices, invented and advocated by many different people 
on many different intuitive grounds, often in sharp disagreement with each other. 
It can be argued, however, a similar image can be attributed to the Bayesian 
statistics. For example, Good (1971) opined there are “46,656 Varieties of 
Bayesians” (p. 65), depending on their positions in regard to eleven facets. That 
number was larger than the number of professional statisticians at the time.  

In the similar vein Fienberg (2006b) stated “today there seem to be at least 
this many varieties of objective Bayesians, with each seeking out his or her own 
method for arriving at the perfect objective prior and then allowing for other 
idiosyncrasies” (p. 431). The pursuit for the objective prior distributions that reflect 
ignorance was compared to the search for the Holy Grail. Fienberg concluded this 
goal is intangible, fruitless, and ultimately diverting energies from computing 
quality statistics. 

The objective of this study is to prove the Bayesian approach to inference is 
not coherent. Potentially, in a countably infinite number of cases, conclusions 
obtained by Bayesian credible intervals collide with conclusions from Bayesian 
hypothesis testing. Without loss of generality, the discussion is confined to the point 
null hypothesis testing under the normal probability model. In addition, normal 
conjugate priors are considered for estimation and Jeffreys mixed prior model for 
testing. 

Testing point null hypotheses using credible or HPD 
intervals 

In many problems involving the normal distribution, there is no collision between 
frequentist confidence intervals and Bayesian credible intervals established for a 
certain class of noninformative priors constructed by some formal rule expressing 
ignorance. Certainly, the philosophical bases and interpretations are quite different. 
Particularly, in making inferences about the single normal mean, (1 − α) shortest 
confidence intervals and HPD (Highest Posterior Density) intervals are numerically 
identical (see, for example, DeGroot, 1989, p. 409; Berger, 1985, p. 141; Lindley, 
1965, pp. 13-42). As Box and Tiao (1992, p. 85) pointed out, when σ is assumed 
known, this is because intervals are based on sufficient statistic , and in both 
approaches the pivotal quantity  is distributed as N(0,1). 

x
z = n µ − x( ) /σ
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When σ is unknown, Bernardo (2005, p. 57) showed in the simple normal 
problems for all sample sizes, posterior reference credible intervals for µ will 
numerically be identical to frequentist confidence intervals based on the sampling 
distribution of t. 

Within frequentist framework significance, testing and confidence intervals 
are closely related. Any point-null hypothesis, H0 : θ = θ0, can be tested using 
corresponding confidence intervals. Specifically, we just invert the equation for the 
test statistic to give us the boundary values of the confidence intervals. Accordingly, 
a confidence interval is derived from an inverted hypothesis test. Therefore, a 
confidence interval is composed of all possible values of θ0 for which the matching 
test would not reject the hypotheses. If the null value is within a (1 − α)% 
confidence interval, frequentist tests will fail to reject it, and conversely, when the 
hypothesized value does not belong  to that interval, we conclude that p-value < α, 
and reject that value at α% significance level. This rationale is being taught even at 
the introductory statistics courses. The same principle must be applied in Bayesian 
statistics to provide a coherent paradigm. If not, it is an approach prone to the 
contradictions in terms. 

When the prior knowledge is vague and the prior distribution in the 
neighborhood is reasonably smooth, Lindley (1965, p. 61) answered positively. It 
was proposed credibility of the null hypothesized value can be tested by checking 
whether or not it belongs to a chosen Bayesian credible interval. A parameter value 
is declared not to be credible if it lies outside the 95% HDI of the posterior 
distribution of that parameter, and vice versa. Although this procedure certainly 
bypasses the well-known Jeffreys-Lindley paradox and is similar to the 
corresponding frequentist procedure, its major drawback is that it cannot attach a 
posterior probability to the null value. Arguably, this procedure might be suggested 
to lecturers in teaching their students the elements of the Bayesian analysis to 
counterbalance controversies in point-null hypothesis testing. As such, a decision 
rule similar to the following has been put forward by some Bayesians, including 
Kim (1991), Ghosh et al. (2006, p. 49), Drummond & Rambaut (2007), Thulin 
(2014), and Koch (2007, pp. 82-83): 
 

“A parameter value is declared to be not credible if it lies outside the 
95% HDI of the posterior distribution of that parameter. If a parameter 
value lies within the 95% HDI, it is said to be among the credible values” 
(Kruschke, 2010, p. 240). 
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Similarly, Bolstad and Curran (2017) claimed when a Bayesian tests the two-
sided hypothesis H0 : μ = μ0 versus H1 : μ ¹ μ0 using continuous prior, the posterior 
probability of the null hypothesis would equal zero because probability of any 
particular value of a continuous random variable always equals zero. Hence, in this 
case Bayesians should never perform any statistical test directly but calculate 
(1 − α)×100% credible interval for the unknown population mean. In other words, 
the rationale should be the same as with the frequentist procedures. If the 
hypothesized value lies inside the interval we fail to reject the null hypothesis, and 
if it is outside the credible interval, it could be concluded it “does not have 
credibility as a possible value, and we will reject the null hypothesis” (Bolstad and 
Curran, 2017, p. 249).   

Conversely, Berger and Delampady (1987, p. 319) argued testing point null 
hypotheses using credible intervals is wrong since it ignores the supposedly special 
prior believability in θ0. They stressed that a hypothetical parameter value may be 
outside a credible interval, yet not strongly contraindicated by the data. Their view 
is that only Bayes factor or posterior probabilities P(H0 | x) can indicate the strength 
of the evidence against a particular hypothesized value. Nevertheless, whenever 
testing a special point value, they recommended reporting both the Bayes factor 
and a confidence or credible intervals. A similar view was given by Hoekstra et al. 
(2014). The aim of the present study is to refute the abovementioned decision rule. 

Bayesian point null hypothesis testing in case of normal 
probability model 

Consider testing a point null hypothesis H0 : θ = θ0 versus H1 : θ ¹ θ0, where θ is an 
unknown element with values in parameter space Θ, based on observing random 
variable, X, with density f(x | θ). Let’s assign prior probabilities π0 and π1 = (1 − π0) 
to the null and alternative hypothesis, respectively. Suppose further that g(θ) is a 
continuous prior probability density, conditional on H1 being true, that is on 
{θ ¹ θ0}. As proposed by Jeffreys (1961), a standard Bayesian solution is to allocate 
probability mass π0 to the single point indicated by the null hypothesis θ = θ0 and 
distributing the remainder, (1 − π0), according to the continuous density g(θ) over 
θ ¹ θ0. This results in a mixed prior distribution sometimes called spike-and-smear 
configuration. It has the form: 
 
   (1) 

 

P θ( ) = π 0δ θ=θ0{ } + 1−π 0( )g θ( )I θ≠θ0{ }
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Jeffreys’ mixed prior distribution is a fusion of two components, a discrete part and 
a continuous part. The main component in the discrete part is . It represents 

Paul Dirac’s mass, or delta function, at θ0. Furthermore, as advocated by Berger 
and Delampady (1987, p. 318), π0 = ½ is the objective choice for the prior 
probability of H0. 

When using normal conjugate priors, the procedure boils down to the 
following. Suppose that (x1, x2, …, xn) is a random sample from a normal 
distribution of the mean θ and known variance, σ2 > 0. Using (1) assign the mass π0 
to the null point θ = θ0, and spread the remaining mass out on H1 according to the 
conjugate prior density , where μ0 is the prior mean, and  is 

the prior variance. As pointed out by Berger and Sellke (1987, p. 112), this prior 
closely follows Jeffreys recommendation for testing a point null.  

In this study Bayesian hypothesis testing is based on the Bayes factor. 
Utilization of Bayes factor as a measure for quantifying evidence has become 
increasingly popular in recent years in many branches of science. Bayes factor is 
advocated by Bayesians as the “primary tool used in Bayesian inference for 
hypothesis testing and model selection” (Berger, 2006, p. 378). Bayes factor for 
comparing a null hypothesis to the alternative can be defined as the ratio of the 
posterior odds in favor of the null hypothesis to the prior odds in favor of the null: 
 

   (2) 

 
According to Kass and Raftery (1995, p. 777), “Bayes factor is a summary of 

the evidence provided by the data in favor of one scientific theory… as opposed to 
another.” A more accurate notion of the Bayes factor is given by Lavine and 
Schervish (1999 p. 120): “What the Bayes factor actually measures is the change 
in the odds in favor of the hypothesis when going from the prior to the posterior”. 
Intuitively, as pointed by Bernardo and Smith (1994, p. 390), "the Bayes factor 
provides a measure of whether the data x have increased or decreased the odds on 
Hi relative to Hj." 

δ θ=θ0{ }

g θ( ) = N µ0 ,σ 0
2( ) σ 0

2

BFH0H1
= BF01 =

Posterior odds in favor of the null hypothesis
Prior odds in favor of the null hypothesis

=

P H0 |Data( )
P H1 |Data( )

P H0( )
P H1( )
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It can be proven (see, for example, Migon et al, 2014, p. 238) the Bayes factor 
in favor of the null over the alternative, in the aforementioned normal model, can 
be expressed as  
 

   (3) 

 
where  is the sufficient statistic for θ. To make a comparison between Bayesian 
credible intervals and Bayesian testing, using the exact same conditions as Berger 
and Sellke (1987) and Berger and Delampaday (1987), we will center prior density 
g(θ) over the hypothesized mean value, that is μ0 = θ0, and equate prior variance 
with the known variance, that is, . Then (3) reduces to 
 

  (4) 

 

where  is a well-known Z test statistic. Hence, using (4), the 

posterior probability of H0 is simply obtained as  
 

   (5) 

Conflicts between Bayesian interval estimation and point-
null hypothesis testing 

Consider the Bayesian interval estimation of the mean of a normal distribution with 
known variance. Suppose (x1, x2, …, xn) is a random sample from a normal 
distribution with the mean μ and known variance σ2,N(μ,σ2). As indicated by 
Murphy (2007, p. 2), because the likelihood is proportional to N( | μ,σ2/n), the 
natural conjugate prior density for μ has the form . Without loss of 

generality, assume σ2 is known and that priors μ0 and  are specified. It can be 

BF01 x( ) = σ 2 + nσ 0
2( ) /σ 2⎡

⎣
⎤
⎦
1
2 exp

n
2

x − µ0( )2
σ 2 + nσ 0

2( ) −
x −θ0( )2
σ 2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

x

σ 0
2 =σ 2

BF01 x( ) = 1+ n( )12 exp − z
2

2
n
n+1

⎧
⎨
⎩

⎫
⎬
⎭

z =
n x −θ0( )

σ

π H0 | x( ) = 1+
1−π 0( )
π 0

1
BF01

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−1

= 1+
1−π 0( )
π 0

1+ n( )− 12 exp z2

2
n
n+1

⎧
⎨
⎩

⎫
⎬
⎭

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−1

x
µ ~ N µ0 ,σ 0

2( )
σ 0
2
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easily seen (see, for example, Jackman, 2009, p. 516, or Murphy, 2007) that the 
posterior distribution of μ is normal with , with a posterior mean 

 

  (6) 

 
Hence, posterior mean μp is a weighted average of the sample mean and the 
posterior variance is given by  
 

   (7) 

 
Let zα/2 stand for the upper α/2 quantile of the standard normal distribution. Then, 
the HPD (Highest Posterior Density) 100(1 − α)% interval is given by 
 
   (8) 

 
where σp is a posterior standard deviation. HPD interval is the region of points 
containing 100(1 − α)% of the posterior probability, with the following two main 
properties (as discussed by Box and Tiao, 1992, p. 123): 
 

(a) Every point within the interval has posterior density at least as large 
as every point outside of it, and 

(b) For a given credibility level 100(1 − α)% it yields the posterior region 
of the shortest length among all credible intervals . 

 
When a prior variance  becomes sufficiently large ( ) or when n is large, 
HPD intervals for the normal mean will yield essentially equal results as frequentist 
confidence intervals, even though they have different interpretations. 

As pointed out by Ghosh et al. (2006, p. 49), and Carlin and Louis (2009, p. 
50), for a unimodal symmetric posterior distribution (e.g., normal distribution), the 
equal tail credible intervals coincide with corresponding HPD intervals or, 
equivalently, Highest Density Intervals (HDI). In other words, (8) is simultaneously 
a HPD (HDI) interval and a credible interval. Therefore, the following discussion 
and conclusions are pertinent for credible intervals as well. 

µ | x ~ N µP ,σ P
2( )

µ p =
nσ 0

2x +σ 2µ0
nσ 0

2 +σ 2 =
nσ 0

2

nσ 0
2 +σ 2 x +

σ 2

nσ 0
2 +σ 2 µ0

σ P
2 =

σ 2σ 0
2

nσ 0
2 +σ 2

C1−α
HPD = µP − zα /2σ p ,µP + zα /2σ p

⎡⎣ ⎤⎦

σ 0
2 σ 0

2 →∞
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In Bayesian inference different types of priors are being used for constructing 
credible intervals and for testing via Bayes factors. As a consequence, the two 
following inconsistencies can be proven between these two Bayesian inferential 
methods:  

 
I. A null hypothesized value may be outside the credible interval and 

therefore initially regarded as not credible but Bayes factor supports 
the null (Type I conflict) 

II. The null hypothesized value belongs to the credible interval and is 
initially regarded as credible but Bayes factor reveals positive 
evidence against H0 (Type II conflict). 

 
Consider two theorems that set conditions for occurrences of Type I and II 

conflicts. The proofs are provided in the Appendix A.  
 

Theorem 1 (Type I conflict theorem).  Consider testing a point-null 
hypothesis of a normal mean H0 : μ = 0 versus H1 : μ ¹ 0. Let us further assume that 
the variance is known to be one, σ2 = 1. Then, whenever Bayesian credible interval 
does not contain the point-null value (zero), and the following condition is satisfied 
 

   (9) 

 
Bayes factor and resultant posterior probability will support hypothesized null 
hypothesis. 
 
Theorem 2 (Type II conflict theorem).  Assume the same setup as in the 
Theorem 1. Whenever a Bayesian credible interval includes the hypothesized value 
(zero), and the next condition is met 
 

   (10) 

 
corresponding Bayes factor and posterior probability will indicate evidence against 
the null hypothesis. 

zα /2
n+1
n

< x <
n+1( )ln n+1( )

n

n+1( )ln n+1( )
n

< x < zα /2
n+1
n
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Undoubtedly, Bayesian procedures in both cases are in direct conflict. This 
confirms testing point-null hypotheses using credible or HPD intervals as 
advocated by some statisticians including Lindley, Bolstad & Curran, and others 
(as considered earlier) should be immediately abandoned. Conflicting Type I errors 
will lead those who put their faith in credible intervals to reject H0, but if they rely 
on Bayes factor (or posterior probabilities) they will support H0. Conflicting Type 
II errors, however, will give such credible intervals that support H0, but Bayes 
factors give enough counterevidence to reject H0. These types of anomalies do not 
occur in the frequentist approach to Statistics.  

The algorithms provided in Appendix B & C can generate countably infinite 
number of contradictory statements (conflicts Type I and II) in Bayesian Statistics. 
Using the simulation results obtained by these programs two interesting remarks 
may be derived: (1) for Type I conflict, as the sample size increases, corresponding 
Bayes factors become increasingly larger, thus providing more decisive evidence 
to support null hypothesis, and (2) Type II conflicts occur for a relatively small 
sample. Simulation results are illustrated in Table 1 and Table 2. 
 
 
Table 1. Null values are outside the credible intervals but Bayes factors support the nulls 
 
	 Case 1A Case 1B 
Interval 95% 95% 
Sample size n 100 1,000 

 0.196974 0.062011 

 (0.0000000568, 0.390047468) (0.0000005142, 0.1238975877) 

BF 1.4723060 4.6349070 
Posterior Probability 0.5955193 0.8225348 

 	 	
	 Case 1C Case 1D 
Interval 95% 95% 
Sample size n 1,000,000 100,000,000 

 0.00196 0.000196 

 (0.000000035, 0.003919961) (0000000036, 0.0003919964) 

BF 146.4901 1464.897 
Posterior Probability 0.9932199 0.9993178 
 
 

Table 1 exemplifies four simulation results for which Bayes factors suggest 
that point nulls are supportable, but HPD (and credible intervals) do not include 
these hypothesized values. As stated in the Type I conflict theorem, in all situations 

x

C
95%

HPD

x

C
95%

HPD
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we were considering null hypothesis H0 : μ = 0 versus H1 : μ ¹ 0, and the variance 
was assumed to be 1. Furthermore, out of all observed Type I conflicts, we have 
displayed only results for the largest Bayes factors and posterior probabilities. 

Following Jeffreys’ scale (1961, p. 432) of interpretation of obtained values 
of the Bayes factor, it can be concluded all four null hypotheses are supported by 
the evidence. Bayes factors should seemingly encapsulate all the data have to say 
about these testing problems. However, in all four cases, hypothesized values are 
outside the Bayesian HPD interval. Hence, all four point null hypotheses should be 
rejected. However, unexpectedly, Bayes factor supports the nulls. The same 
inharmonious conclusions are derived when considering posterior probabilities. As 
the sample size is getting larger, posterior probabilities are approaching 1, thus 
giving the extreme evidence that null value should be favored. We maintain that 
these conflicts are inconsistent with the accepted scientific practice. 

Exemplified in Table 2 are several Type II conflicting cases. Simulation 
results show Bayes factors will provide stronger evidence against null values with 
the increasing of the credibility level. For example, in case 2A, when the credible 
level is 99.99%, there is extremely strong evidence against the null 
(BF = 0.0063475708, and posterior probability is 0.0063075333), although the null 
value belongs to the credible interval. Figure 1 illustrates the notion of Type I and 
Type II conflicts in Bayesian inference. 
 
 
Table 2. Bayes factors do not support null values that belong to the credible intervals 
(one million iterations) 
 
	 Case 2A Case 2B Case 2C 
Interval 99.99% 99% 95% 
Observed number of  
Type II Conflicts 135,224 42,968 4,864 

Sample size n 150 100 10 
 0.318722 0.258867 0.650046 

 : (-0.0000006192, 
0.6332231) 

: (-0.0000006349, 
0.5126086) 

: (-0.0000004672, 
1.181902) 

BF 0.0063475708 0.3642657456 0.4858872214 
Posterior Probability 0.0063075333 0.2670049782 0.3270014133 
 
 

x

C
99.99%

HPD C
99%

HPD C
95%

HPD
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Figure 1. Type I and II conflicts in Bayesian inference 
 
 

Conclusion 

There are disturbing conflicts between Bayesian credible intervals and Bayes factor. 
They are caused by the unnatural configuration of the Jeffreys mixed prior 
distribution given in (1). Obviously, in some instances these priors are incompatible 
with priors that are used for establishing credible priors. These intrinsic 
disagreements within the foundation of Bayesian statistics raise elemental 
questions and deserve further intense study. At least in the Bayesian statistics, the 
current dominant way of testing null hypotheses using point null values is not 
suitable as an expression of uncertainty about the world in the 21st century. 

If “a major goal of statistics (indeed science) is to find a completely coherent 
objective Bayesian methodology for learning from data” (Berger, 2006, p. 386), 
credible intervals and Bayes factors violate this goal; they are not complementary 
parts of the Bayesian vision when testing point null hypotheses. Furthermore, if 
frequentist statistics is not a coherent body of theory as stated by some Bayesians, 
Type I and II conflicts undoubtedly confirm that neither is Bayesian. Bayesians 
need to establish a new paradigm in statistical testing that will be consistent with 
interval estimation. This goal could be attained in different ways, including (a) 
finding the “statistical holy grail: prior distributions reflecting ignorance” (Fienberg, 
2006a, p. 5), (b) using Jose Bernardo’s integrated objective Bayesian estimation 
and hypothesis testing based on reference priors (2011), (c) developing a new 
paradigm of Bayesian testing such as in Kamary et. al. (2014), or (d) by abandoning 
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point null hypothesis and relying on tests based on practical significance as outlined 
in Rao and Lovric (2016). 
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Appendix A: Proofs Of The Theorems 

Proof of Theorem 1 
Proof.  First we will consider the upper bound in (9). Bayes factor as given 
in (4) supports the null hypothesis when it is larger than 1: 
 

   (A1) 

 
When we take the logarithms of both sides of (A1) it becomes 

, or z2 < (n + 1)ln(1 + n). When θ0 = 0 and σ2 = 1, this 

inequality reduces to 
 
   (A2) 
 
Since both sides of this inequality are positive, by taking the square root of both 
sides we obtain 
 

   (A3) 

 
Now we turn our attention to the lower bound in (9). Since hypothesized value 
θ0 = 0 does not belong to the HPD (or credible) interval, consider the case when it 
is smaller than the lower bound of the interval 
 
  (A4) 

 
Using (6) and (7) we can easily expand (A4) to 
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When θ0 = 0 and σ2 = 1, by equating prior variance with the known variance 
(  = σ2 = 1), and by setting the prior mean to zero (μ0 = θ0 = 0), (A5) reduces to 
 

   

 
and finally to  
 

  (A6) 

 
From (A2) and (A6) we obtain the bounds for the sample mean 
 

   

 
This completes the proof. 

Proof of Theorem 2 
Proof.   First we will consider the upper bound in (10). Bayes factor as given 
in (4) favors alternative hypothesis when it is less than 1: 
 

  (A7) 

 

By taking logarithms of both sides of (A7) it becomes , or 

z2 > ln(n + 1). When θ0 = 0 and σ2 = 1, this inequality reduces to 
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Since both sides of this equality are positive, by taking the square root of both sides 
we obtain 
 

  and  (A9) 

 
Now we focus on the lower bound in (9). Since hypothesized value θ0 = 0 belongs 
to the HPD (or credible) interval, it follows that 
 
  (A10) 

 
Using (6) and (7) we can easily transform (A10) to 
 

  

 
When θ0 = 0 and σ2 = 1, by equating prior variance with the known variance 
(  = σ2 = 1), and by setting the prior mean to zero (μ0 = θ0 = 0), the bounds of this 
interval reduce to 
 

  (A11) 

 
Now solving for  in the upper bound of (A11) we obtain 
 

  (A12) 

 
Similarly, solving for , the lower bound of (A11) gives 
 

  (A13) 
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Summarizing (A12) and (A13) we obtain 
 

  (A14) 

 
From (A9) and (A14) we finally obtain the bounds for the sample mean 
 

   

 
This completes the proof. 
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Appendix B 

The following R program was used in this paper to empirically prove Theorem 1 
and produce values in Table 1. 
 
########################################################################  
# This program generates Bayes factors that support 
# null hypothesized values that are outside Bayesian credible interval, 
# 
# More specifically, null hypothesized value is set to 0 
# and credible intervals created for which 0 is less 
# than its lower bound. 
# 
# Note: the larger sample size, the larger BF and posterior probability. 
# 
# This analysis is based on the normal conjugate model with known  
# variance 
# 
# IMPORTANT: Remove the leading # in line 124 to display all results 
# Developed by M. Lovric August 1-10, 2019 
######################################################################## 
# Initial data 
# Conflict Type I 
 
sigma_2 <- 1              # Known variance 
 
mu_prior <- 0             # prior mean 
sigma_2_prior <- 1        # prior variance  
 
n <- 10000                # choose your own sample size  
conf.level = 0.95         # confidence level 
####################################################################### 
# BF_interpret function interprets values of Bayes factor according to  
# the paper "Bayes factors", by Robert Kass & Adrian Raftery (1995), 
# JASA, Vol. 90, No. 430. pp. 773-795. 
# 
# BF in this program is BF_0_1, not BF_1_0 
# hence the inverse values are taken 
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# 
BF_interpret <- function(BF){ 
  if (1/BF > 150){ 
    res <- "Very strong evidence against Ho." 
  }else if(1/BF > 20){ 
    res <-  "We have strong evidence against Ho." 
  }else if(1/BF > 3){ 
    res <-  "We have positive evidence against Ho." 
  }else if(1/BF > 1){ 
    res <-  "Not worth more than a bare mention evidence against Ho." 
  }else{ 
    res <- "supports Ho."   
  }  
} 
alpha <- 1 - conf.level 
## Bayesian credible interval 
 
# First, find the critical value from the standard normal distribution 
z_alpha_2 <- qnorm(1- alpha/2, lower.tail= TRUE)  # conf level = 95% 
Theta_0 = 0 
Z <- 0 
Theta_0_Critical <- c() 
BF_Critical <- c() 
Z_Critical <- c() 
p_value_critical <- c() 
Post_H0_two_sided_critical <- c() 
x_bar <-0 
# prior prob under H_0 
pi_H_0 <- pnorm(mu_prior, mean=mu_prior, sd = sqrt(sigma_2_prior))  
# prior prob under H_1 
pi_H_1 <- 1 - pnorm(mu_prior, mean=mu_prior, sd = sqrt(sigma_2_prior)) 
 
N = 100000 # Number of iterations 
 
# This loop generates as many Bayes factors as you wish that support 
# null hypothesized values (BF > 1), that are outside Bayesian 
# credible interval, Point null hypothesis is : 
# H_0: Theta = 0, vs H_1: Theta <> 0. 
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# 
Output_me = TRUE 
 
for (i in 1:N) { 
  # Calculate posterior mean 
  mu_post <- (sigma_2/(n*sigma_2_prior+sigma_2))*mu_prior +  
    (n*sigma_2_prior/(n*sigma_2_prior+sigma_2))*x_bar 
   
  # Calculate posterior variance 
  variance_post <- (sigma_2 * sigma_2_prior)/(n * sigma_2_prior + 
sigma_2) 
   
  mu_post  # Posterior mean 
 
  # Posterior standard deviation 
  stdev_post <- sqrt(variance_post) 
 
    # Now calculate credible interval 
  LL <- mu_post -  z_alpha_2 * stdev_post   
  UL <- mu_post +  z_alpha_2 * stdev_post 
  Z <- (sqrt(n)*(x_bar - Theta_0))/sqrt(sigma_2) ; 
  p_value <- 2*(1-pnorm(Z)) ; 
  BF <- (1 + n)^(1/2) *exp((-0.5*Z^2)*n/(n+1))   ; 
  Post_H0_two_sided <- (1 + ((1 - pi_H_0)/pi_H_0)*(1 + n)^(-1/2)* 
                          exp((0.5*Z^2)*n/(n+1)))^(-1); 
  if (0 < LL){ 
    if (BF > 1 ) { 
      if (x_bar > z_alpha_2* sqrt(n+1)/n) { 
        if (x_bar < (sqrt((n+1)*log(n+1)))/n) { 
          BF_Critical <- c(BF_Critical, BF) 
            if (Output_me) { 
               cat("\014"); 
               AnalysisTime <- Sys.time(); 
               myInfo <- Sys.info()[["user"]]; 
               output1 = cat("Analysis done by ", myInfo, "\n"); 
               print(Sys.time()); 
               cat("\n"); 
               cat("LL = ", sprintf("%.10f", LL), " UL = ", 
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                      sprintf("%.10f", UL), " BF = ", BF, " p-value =",  
               p_value, "\n"); 
               cat("Initial data: ", "\n", "n = ", sprintf("%.0f", n), 
                      "\n", "x bar: ", x_bar, "\n",  
              "Confidence level: ", conf.level*100, "%", "\n", 
              "Known variance: ", sigma_2, "\n", 
              "Prior mean: ", mu_prior, "\n", 
              "Prior variance: ", sigma_2_prior, "\n", "\n"); 
           
               cat("Theta_0 = 0", "does not belong to the Bayesian", 
              "HPD interval: ",  "\n", sprintf("%.10f", LL), " ", 
                      sprintf("%.10f", UL),  "\n"); 
           
               cat("However in testing", " H_0: Population mean =  ", 0, 
              "versus", "H_1: Population mean != 0","\n") ; 
                
               cat("   H_0 is supported by the Bayes factor since 
                       BF = ", BF, "\n" ); 
               cat("   H_0 is also supported by the posterior  
                       probability = ", 
              Post_H0_two_sided, "\n") ; 
              Output_me = FALSE; 
} 
#  cat("LL = ", LL, "   BF = ", BF, " p-value =", p_value, "\n") 
} 
} 
} 
} 
  x_bar <- x_bar + 0.000001  
} 
 
cat("Number of observed type I conflicts:", length(BF_Critical)) 
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Appendix C 

The following R program was used in this paper to empirically prove Theorem 2 
and produce values in Table 2. 
 
######################################################################## 
# This program generates Bayes factors that do not support those 
# null hypothesized values that are within Bayesian credible interval. 
# 
# More specifically, null hypothesised value is set to 0 
# and credible intervals created for which 0 is within the interval. 
# 
# This analysis is based on the normal conjugate model with known  
# variance 
# 
# Developed by M. Lovric August 1-10, 2019 
######################################################################## 
# Initial data 
# Conflict Type II 
 
sigma_2 <- 1              # Known variance 
 
mu_prior <- 0             # prior mean 
sigma_2_prior <- 1    # prior variance (not prior precision!) 
 
n <- 10                       # choose your own sample size  
conf.level = 0.95       # credible level 
####################################################################### 
# BF_interpret function interprets values of Bayes factor according to  
# the paper "Bayes factors", by Robert Kass & Adrian Raftery (1995), 
# JASA, Vol. 90, No. 430. pp. 773-795. 
# 
# BF in this program is BF_0_1, not BF_1_0 
# hence the inverse values are taken 
# 
BF_interpret <- function(BF){ 
  if (1/BF > 150){ 
    res <- "Very strong evidence against Ho." 
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  }else if(1/BF > 20){ 
    res <-  "We have strong evidence against Ho." 
  }else if(1/BF > 3){ 
    res <-  "We have positive evidence against Ho." 
  }else if(1/BF > 1){ 
    res <-  "Not worth more than a bare mention evidence against Ho." 
  }else{ 
    res <- "supports Ho."   
  }  
} 
 
alpha <- 1 - conf.level 
## Bayesian credible interval 
 
# First, find the critical value from the standard normal distribution 
z_alpha_2 <- qnorm(1- alpha/2, lower.tail= TRUE)  # conf level = 95% 
Theta_0 = 0 
Z <- 0 
Theta_0_Critical <- c() 
BF_Critical <- c() 
Z_Critical <- c() 
p_value_critical <- c() 
Post_H0_two_sided_critical <- c() 
x_bar <- -0.1 
# prior prob under H_0 
pi_H_0 <- pnorm(mu_prior, mean=mu_prior, sd = sqrt(sigma_2_prior))  
# prior prob under H_1 
pi_H_1 <- 1 - pnorm(mu_prior, mean=mu_prior, sd = sqrt(sigma_2_prior)) 
 
N = 1000000 # Number of iterations 
 
# This loop generates as many Bayes factors as you wish that do not  
# favor null hypothesized values (BF < 1), that are within a Bayesian  
# credible interval, Point null hypothesis is : 
# H_0: Theta = 0, vs H_1: Theta <> 0. 
# 
telliter <- 1000 
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for (i in 1:N) { 
if( i %% telliter == 0 ) cat(paste("Iteration", i), "out of ", 
sprintf("%.0f", N), "\n") 
  # Calculate posterior mean 
  mu_post <- (sigma_2/(n*sigma_2_prior+sigma_2))*mu_prior +  
    (n*sigma_2_prior/(n*sigma_2_prior+sigma_2))*x_bar 
   
  # Calculate posterior variance 
  variance_post <- (sigma_2 * sigma_2_prior)/(n * sigma_2_prior +  
                          sigma_2) 
   
  # Posterior standard deviation 
  stdev_post <- sqrt(variance_post) 
 
  # Now calculate credible interval 
  LL <- mu_post -  z_alpha_2 * stdev_post   
  UL <- mu_post +  z_alpha_2 * stdev_post 
  Z <- (sqrt(n)*(x_bar - Theta_0))/sqrt(sigma_2) ; 
  p_value <- 2*(1-pnorm(Z)) ; 
  BF <- (1 + n)^(1/2) *exp((-0.5*Z^2)*n/(n+1))   ; 
  Post_H0_two_sided <- (1 + ((1 - pi_H_0)/pi_H_0)*(1 + n)^(-1/2)* 
                          exp((0.5*Z^2)*n/(n+1)))^(-1); 
  if ((LL < 0) & (UL > 0)){ 
    if (BF < 0.5 ) { 
      if (x_bar < z_alpha_2* sqrt(n+1)/n) { 
        if (x_bar > (sqrt((n+1)*log(n+1)))/n) { 
              BF_Critical <- c(BF_Critical, BF, Post_H0_two_sided, LL,  
                          UL, x_bar); 
} 
} 
} 
} 
  x_bar <- x_bar + 0.000001  
} 
 
cat("\014"); 
AnalysisTime <- Sys.time(); 
myInfo <- Sys.info()[["user"]]; 
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myInfo; 
output1 = cat("Analysis done by ", myInfo, "\n"); 
print(Sys.time()); 
cat("\n"); 
cat("Sample size n = ", n, " x_bar: ", BF_Critical[length(BF_Critical)],  
       "LL = ", sprintf("%.10f", BF_Critical[length(BF_Critical)-2]),  
                          "UL = ",  
       BF_Critical[length(BF_Critical)-1],  "\n", "BF = ",  
                          sprintf("%.10f", 
       BF_Critical[length(BF_Critical)-4]),  
       " Posterior =", sprintf("%.10f", BF_Critical[length(BF_Critical)- 
                          3]), "\n") 
 
cat("Number of observed type II conflicts:", length(BF_Critical)/5) 
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